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Abstract

We develop a bivariate spectral Granger-causality test that can be applied at each

individual frequency of the spectrum. The spectral approach to Granger causality has

the distinct advantage that it allows to disentangle (potentially) different Granger-

causality relationships over different time horizons. We illustrate the usefulness of

the proposed approach in the context of the predictive value of European production

expectation surveys.

KEYWORDS: Business Surveys, Granger Causality, Production Expectations, Spec-

tral Analysis.



1 Introduction

Investigating causality is a topic of main interest in scientific research. To assess

the causality between two processes in a common and well-defined (non-experimental)

framework, one usually refers to the well-known concept of Granger causality (GC), in-

troduced in 1969 by the 2003 Nobel prize winner in Economics. GC reflects a restricted

sense of causality, i.e. the extent to which a process Xt is leading another process Yt,

and builds upon the notion of incremental predictability. Specifically, a process Xt

Granger causes another process Yt if future values of Yt can be better predicted using

the past values of Xt and Yt rather than only past values of Yt. The reader should keep

in mind that, in some circumstances, the aforementioned notion of causality may not

fully coincide with the concept of causation (Zellner, 1979). However, the underlying

intuition for this approach is that if an event is the cause of another, it should precede

it. Therefore, as soon as the application of the causality concept refers to the search

for the best predictive model, the concept of GC is valid. The standard test of GC

developed by Granger (1969) is based on the following regression model

Yt = α0 +
M∑

k=1

β1kYt−k +
M∑

k=1

β2kXt−k + εt, t = M + 1, ..., T (1)

where εt are uncorrelated random variables with mean zero and variance σ2, and M

is the specified lag length. The null hypothesis that Xt does not Granger cause Yt is

supported when β2k = 0 for k = 1, ..., M , causing (1) to reduce to

Yt = α0 +
M∑

k=1

β1kYt−k + ε̃t. (2)

A wide range of bivariate GC tests exist,1 which have been used extensively to

study a wide range of substantive, economic, issues. For instance, the well-known

“export-led growth” hypothesis has been studied repeatedly in a GC framework (see

1Two well-known alternative test statistics can be derived from equations (1) and (2), i.e. the
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e.g. Abual-Foul, 2004), as has been the relationship between economic growth and

various other variables, such as business-cycle volatility (Dopke, 2004), the degree of

openness (Bahmani-Oskooee and Niroomand, 1999), and defense spending (Al-Yousif,

2002). The causal relationship between money and output has also been studied ex-

tensively (Cheung and Fujii, 2001). In the financial literature, GC testing has been

applied, for instance, to identify price-leadership patterns among national stock prices

(Peiers, 1997), to study the stock price-volume relationship (Hemstra and Jones, 1994),

to get insight in the dynamic behavior of bonds and stocks (Park and Shenoy, 2002),

or in the international links between interest rates (Bruneau and Jondeau, 1999). In

marketing, GC testing has been used predominantly to discern competitive reactions

patterns (see Hanssens et al., 2001, p.314 for a review). While not exhaustive, the

above enumeration clearly demonstrates the widespread use of the GC concept in both

economics and business.

In this paper, we propose a spectral-density based GC test. This approach offers

Granger-Sargent and the Granger-Wald test (1969). The Granger-Sargent test is defined by

GS =
(R2 −R1)/M
R1/(T − 2M)

where R1 is the residual sum of squares in model (1) and R2 is the residual sum of squares in model (2).

The Granger-Sargent test statistic has an F -distribution with M and (T − 2M) degrees of freedom.

The Granger-Wald test, in turn, is defined as

GW = T
(σ̂2

ε̃t
− σ̂2

εt
)

σ̂2
εt

where σ̂2
ε̃t

is an estimate of the variance of ε̃t from model (2), and σ̂2
εt

is an estimate of the variance of εt

from model (1), and follows an asymptotic χ2
M distribution under the null hypothesis. Both tests are

asymptotically equivalent. However, for smaller sample sizes, the Granger-Wald test has been shown

to have more power than the Granger-Sargent test, and is therefore better suited for identification

purposes. A third common GC test is the double prewhitening technique known as the Haugh-Pierce

(1977) test (See Section 2 for more details). This test has been found to have a reasonable power

together with a small bias in size (type-I error) (see e.g. Bult et al., 1997 for a review).
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some distinct advantages relative to the aforementioned, standard, procedures. While

traditional tests indicate whether Granger causality is present or not, we propose to give

a richer and more complete picture by decomposing Granger causality over different

time horizons. As such, one can, for example, compare the predictive power present

at the short, middle or long run. The spectral GC test can be applied at any given

frequency of the spectrum. This allows us to gain insights into potential variations in

the strength of the GC between the two variables over the spectrum. Indeed, there is

increasing research evidence that the nature of the relationship between two variables

may vary depending on the time horizon under consideration. Such variation was,

for example, found in the relationship between real exchange rates and real interest

differentials (Baxter, 1994), between the GDP series of different countries (Croux et

al., 2001), in the nature of competitive price reactions (Bronnenberg et al., 2004),

and in the link between aggregate advertising spending and various macro-economic

indicators (Deleersnyder et al., 2003). Baxter (1994), for example, found evidence

of a relationship between real exchange rates and real interest differentials at trend

(long-run) and business-cycle (middle-run) frequencies (i.e. low to middle frequencies),

which was not found in prior studies that only focused on high-frequency components.

Similarly, Croux et al. (2001) found that the GDPs of US states are more correlated

with each other than European countries’ together, but also that this difference is much

more pronounced in the short run (i.e. at the high frequencies). As a consequence,

a one-shot GC test that is supposed to apply across all time horizons (e.g. in the

short run, over the business cycle frequencies, and in the long run) may well give an

incomplete, and potentially misleading, picture of the temporal ordering between the

variables of interest.

An important feature related to spectral-based GC tests is that they are asympto-

tically independent of each other at different frequencies. This allows us to carry out

a joint test for GC at different frequencies of the spectrum simultaneously. Note that
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estimated cross-correlations between Xt and Yt are, in contrast, strongly correlated.

Moreover, cross-correlations are very cumbersome to interpret, since there is confoun-

dedness between correlations within the series and between the series (e.g. Chatfield, p.

139, 1996). Hence, the cross-correlogram between Yt and Xt is not an appropriate tool

to study the decomposition of the GC over different time horizons. We will rather use

the value of the spectral-based GC test as a measure of GC and plot these measures

with respect to the frequency, resulting in a graphical tool which gives insight into

the decomposition of the GC over the spectrum. This plot is essentially given by the

Fourier transform of the cross-correlations at negative lags between filtered versions of

the series Xt and Yt.

The remainder of paper is structured as follows. The spectral GC test is detailed

in Section 2. In Section 3, we illustrate its use in studying the predictive value of

European production expectation surveys. Section 4 contains a brief conclusion.

2 A Spectral Granger-Causality Approach

Let Xt and Yt be stationary (after possible transformations) time series. Spectral

analysis is performed on the innovations series, ut and vt, derived from Xt and Yt. The

latter are modelled as univariate ARMA processes, i.e.

Φx(L)Xt = Cx + Θx(L)ut (3)

Φy(L)Yt = Cy + Θy(L)vt

where Φx(L) and Φy(L) are autoregressive polynomials, Θx(L) and Θy(L) moving-

average polynomials, and Cx and Cy potential deterministic components. After filte-

ring the series with the above ARMA models, we obtain the innovation series ut and

vt, which are white-noise processes with zero mean, possibly correlated with each other

at different leads and lags. These innovations are central to the development of the
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well-known Haugh-Pierce (1977) test for GC,2 and will also form the main building

blocks for our proposed testing procedure.

Let Su(λ) and Sv(λ) be the spectral density functions, or spectra, of ut and vt at

frequency λ ε [−π, π] defined by

Su(λ) =
1

2π

∞∑

k=−∞
γu(k)e−iλk and Sv(λ) =

1

2π

∞∑

k=−∞
γv(k)e−iλk, (4)

where γu(k) = Cov(ut, ut−k) and γv(k) = Cov(vt, vt−k) represents the autocovariances

of ut and vt at lag k. The idea of the spectral representation is that each time series

may be decomposed into a sum (or integral) of uncorrelated components, each related

to a particular frequency λ. A detailed treatment on the spectral analysis of time series

is given in Koopmans (1995).

As the innovations series ut and vt are white-noise processes, the spectra (4) are

constant functions, given by

Su(λ) =
V ar(ut)

2π
and Sv(λ) =

V ar(vt)

2π
.

Therefore, their spectra Su(λ) and Su(λ) can simply be estimated as

Ŝu(λ) =
V̂ ar(ut)

2π
and Ŝv(λ) =

V̂ ar(vt)

2π
.

To investigate the relationship between both stochastic processes under conside-

ration, we consider the cross-spectrum, Suv(λ), between ut and vt. This is a complex

2Under the null hypothesis of no GC, the M cross-correlations ρvu(k) = corr(vt, ut−k) between

the innovation series ut and vt, with k = 1, ...,M , are asymptotically independently and normally

distributed with mean zero and standard deviation T−1/2, and the Haugh-Pierce (1977) test statistic

HP = T

M∑

k=1

ρ̂2
vu(k)

is asymptotically chi-square distributed with M degrees of freedom.
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number, defined as

Suv(λ) = Cuv(λ) + iQuv(λ) =
1

2π

∞∑

k=−∞
γuv(k)e−iλk, (5)

where the cospectrum Cuv(λ) and the quadrature spectrum Quv(λ) are, respectively,

the real part and the imaginary part of the cross-spectrum. Here γuv(k) = Cov(ut, vt−k)

represents the cross-covariance of ut and vt at lag k. The cross-spectrum can be esti-

mated non-parametrically by

Ŝuv(λ) =
1

2π

{
M∑

k=−M

wkγ̂uv(k)e−iλk

}
, (6)

with γ̂uv(k) = Ĉov(ut, vt−k), the empirical cross-covariances, and with window weights

wk, for k = −M, . . . ,M . The expression (6) is called the weighted covariance estimator,

and when the weights wk are selected as 1− |k|
M

, the Barlett weighting scheme is obtained.

The constant M is the maximum lag order considered.3

This cross-spectrum allows to compute the coefficient of coherence huv(λ), defined

as (see Koopmans, 1995)

huv(λ) =
|Suv(λ)|√
Su(λ)Sv(λ)

. (7)

This coefficient, which can take on values between zero and one, gives a symmetric

measure of the strength of linear association between two time series, frequency by

frequency, but does not express any information on the direction of the relationship

between two processes. The squared coefficient of coherence, which has a similar in-

terpretation as the R-squared in a regression context, was used in Barksdale et al.

(1974) to study the association between advertising and sales, or in Woitek (2003)

to investigate the relationship between human height cycles and cycles of economic

variables.

3In practice (see e.g. Diebold, 2001, p.136), M is often chosen to be equal to the square root of

the number of observations T .
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A confidence interval for the coefficient of coherence can be derived. Specifically, for

n > 20, we have that tanh−1 (huv(λ)) is well approximated by a normal distribution:

tanh−1
(
ĥuv(λ)

)
≈ N

(
tanh−1 (huv(λ)) ,

1

2(n− 1)

)
, (8)

with n = T/
∑

w2
k (see e.g. Koopmans, 1995). We denote 2(n − 1) as the equivalent

degrees of freedom, EDF . From the above equation, if follows immediately that one

can reject the null hypothesis of the nullity of the coefficient of coherence if

|ĥuv(λ)| > tanh

(
zα/2

√
1

EDF

)
,

where zα/2 is the α
2

upper quantile of a standard normal distribution.

If one wants to take the direction of the relationship into account, as asked for to

indicate GC, the coefficient of coherence in (7) should be adapted. Specifically, the

cross-spectrum (5) can be decomposed into three parts, (i) Su⇔v, the instantaneous

relationship between ut and vt, (ii) Su⇒v, the directional relationship between vt and

lagged values of ut, and (iii) Sv⇒u, the directional relationship between ut and lagged

values of vt, i.e.

Suv(λ) =
1

2π
[Su⇔v + Su⇒v + Sv⇒u] (9)

=
1

2π

[
γuv(0) +

−1∑

k=−∞
γuv(k)e−iλk +

∞∑

k=1

γuv(k)e−iλk

]
.

The proposed spectral measure of GC is based on the key property that Xt does not

Granger cause Yt if and only if γuv(k) = 0 for all k < 0 (Gouriéroux et al., 1996).

Hence, if the goal is to assess the predictive content of Xt relative to Yt, one is mainly

interested in the second part of (9), i.e.

Su⇒v(λ) =
1

2π

[ −1∑

k=−∞
γuv(k)e−iλk

]
.

A Granger coefficient of coherence is then given by

hu⇒v(λ) =
|Su⇒v(λ)|√
Su(λ)Sv(λ)

. (10)
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Therefore, in the absence of GC, given that the numerator in (10) cancels out, hu⇒v(λ) =

0 for every λ in [−π, π]. A natural estimator for the Granger coefficient of coherence

at frequency λ is

ĥu⇒v(λ) =

∣∣∣Ŝu⇒v(λ)
∣∣∣

√
Ŝu(λ)Ŝv(λ)

,

with Ŝu⇒v(λ) as in (6), but with all weights wk for k ≥ 0 put equal to zero. Similarly

as for the coefficient of coherence distribution (8), one has that the transformed GC

coefficient is approximately normally distributed4

tanh−1
(
ĥu⇒v(λ)

)
≈ N

(
tanh−1 (hu⇒v (λ)) ,

1

2(n′ − 1)

)
(11)

with

n′ =
T∑−1

k=−M w2
k

.

Indeed, since the weights wk with a positive index k are set equal to zero when com-

puting Ŝu⇒v(λ), only the wk with negative indices need to be taken into account when

computing the appropriate degrees of freedom EDF ′ = 2(n′− 1). The null hypothesis

of no Granger causality at frequency λ, formally H0 : hu⇒v(λ) = 0, is then rejected if

|ĥu⇒v(λ)| > tanh

(
zα/2

√
1

EDF ′

)
. (12)

Another type of decomposition of the cross-spectrum between two time series was

proposed by Gouriéroux et al. (p.373-382, 1996). Our approach differs from theirs in a

number of ways. First, and most importantly, we derive critical values accompanying

the GC measures. This allows for more formal statistical inference than previously

possible. Second, unlike the non-parametric estimation of the spectra proposed in

4The weights in (6) are usually taken to be symmetric, in the sense that w−k = wk. Allowing for

asymmetric weights, however, does not alter the asymptotic results, as can be seen by verifying the

proofs in Brillinger (1969).
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this paper, spectra in Gouriéroux et al. need to be estimated parametrically, via

a bivariate Vector Autoregressive model. This works well for time series which are

relatively smooth. However, the parametric estimation is rather insensitive to local

variations of the spectrum. Consequently, it may overlook spectral peaks (Koopmans,

1995).

Our spectral-based GC approach is very flexible in the sense that it provides a

measure of GC at each individual frequency λ of choice, making it feasible to investigate

the strength of the causal relationships, e.g. at the short run, at the business cycle

frequency, or at the long run. Relative to the other existing GC tests (cf. footnote

1), the spectral-based approach therefore provides additional information on the time

horizon where GC is (most) prevalent, or, in contrast, negligible.

Finally, we want to point out that it is easy to perform a joint test for a null

hypothesis of the form H0 : hu⇒v(λ1) = . . . = hu⇒v(λs) = 0, with λ1, . . . , λs being

different frequencies. Indeed, under H0, one has

EDF

s∑
j=1

(
tanh−1(ĥu⇒v(λj))

)2

≈ χ2
s, (13)

since the spectral estimates ĥu⇒v(λ) are asymptotically independent of each other at

different frequencies. In the following application, we illustrate the use of such a joint

test.
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3 Application

3.1 Introduction

Various governments conduct, at regular intervals, a wide range of surveys about

the judgments and anticipations of consumers, producers and/or manufacturers. As

one of the largest-scale surveys, the European Union has collected, for over forty years,

so-called Business Tendency Surveys. About 68,000 companies and 27,000 consumers

across the European Union are surveyed each month about (i) their judgments (i.e.

their assessment of the current or past status of a given variable), and (ii) their ex-

pectations (i.e. their estimation of the likely future status of that variable). Even

though such surveys are costly to conduct, they may offer useful leading information

on the underlying economic variables. Indeed, the actual, objectively measured, values

of those variables, denoted as accounts, typically become available only several months

later than the surveys’ results (Buffeteau and Mora, 2000). However, timeliness may

not be a sufficient condition to justify the high costs involved, and the accuracy of

the Business Tendency Surveys should be another key consideration. Specifically, one

should expect (or hope) that these attitudinal measures have good predictive power, a

question that naturally translates into the notion of GC. If a surveyed variable Granger

causes its complementary account variable, the respondents of the survey would be

found to possess implicit knowledge about the future levels of the account variable,

that could not be derived from previous account levels.

Even though various studies have already considered whether judgmental data re-

ported in the European Union’s Business Tendency Surveys Granger cause the corres-

ponding objective measures (see, in this respect, Hanssens and Vanden Abeele, 1987 or

Lemmens et al., 2004), none of them has decomposed this potential predictive power

over different time horizons. Using the procedure outlined in Section 2, it is now

possible to compare the strength of the GC for the short-run, middle-run and longer-
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run components of the series. We can test, for example, whether the strength of the

causality at the short run is significant or not. If the former is verified, the Business

Tendency Surveys are able to pick up the quickly-changing (i.e. short-run) components

of the series. Our prior belief is that the slowly-moving (i.e. long-run) component would

be more accurately forecasted by the surveys’ respondents than the more unpredictable

fast-moving changes in production. Testing whether the GC is significant at a long-run

frequency boils down to check whether the surveys have predictive value for the more

slowly-varying component of the corresponding account series.

3.2 Data

In this illustration, we focus on the (potential) predictive value of the European

Production Expectations series. These publicly available data5 are provided by the

Directorate General Economy and Finance of the European Union. They reflect the

respondents’ optimism/pessimism w.r.t. the evolution of the production, and are ex-

pressed in Balance (Bal = Pos − Neg). Specifically, one asks the responding firms

whether they expect certain variables to increase, decrease or remain stable over time,

and subsequently subtracts all decrease (Neg) answers - in percentage points of total

answers - from the percentage of increase (Pos) ones. This expectation series will form

our Xit series (with i = 1, ..., 12), as data will be used on 12 countries (i.e. Austria,

Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg,

The Netherlands and the United Kingdom).6 The data range from January 1985 to

December 2002, resulting in 216 observations.

The investigated account time series, i.e. the Yit series for each country i, are the

5See http://europa.eu.int/ comm/economy finance/ indicators/businessandconsumersurveys en.htm
6Three countries (Portugal, Spain and Sweden) were not withheld, as this would have resulted in

the loss of multiple data points due to missing observations, since surveys in these countries began

later.
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European Production Accounts series, which are published as part of the National Ac-

counts Statistics by the OECD.7 They are expressed as an index with 1995 scaled as

base index 1 (at constant prices). All time series are collected on a monthly basis, and

are already seasonally adjusted by the data providers. In the sequel, we formally inves-

tigate whether the European production expectations have significant predictive power,

and if so, at what time frame, with respect to their corresponding future production

accounts.8

3.3 Empirical Results

Since the traditional time-domain-based GC tests as well as the proposed spectral

GC test require stationarity of time series, we seasonally differenced the production

account series9 (Yit), as in Lemmens et al. (2004). In line with prior studies (see

e.g. Hanssens and Vanden Abeele, 1987; Öller and Tallbom, 1996), we found that

all production expectation series (Xit) were already stationary. Next, the series were

filtered10 to obtain white-noise processes, which, as indicated in Section 2, form the

building blocks for our Granger coefficient of coherence.

For each of the twelve countries, we present in Figure 1 the estimated Granger

coefficients of coherence ĥu⇒v(λ), for all λ ε [0, π]. This coefficient tests whether the

production expectations are Granger causing the production accounts of a given coun-

try at that frequency. The baseline represents the critical bound of significance at the

5% probability level, as given in (12). Note that the frequency λ on the horizontal axis

can be translated into a cycle of T months by T = 2π/λ (in months, for monthly data).

7See OECD publication, Main Economics Indicators, the Industrial Production Index, ref. 2027K
8For all undergone tests, we took M =

√
T

9The Irish account series was taken in logarithm due to its exponential trend
10According to different diagnostic tests, residuals obtained after SARIMA modeling did not deviate

significantly from white-noise processes (Figures are available upon request).
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[Insert Figure 1 about here ]

Figure 1 shows a consistent pattern across eight countries, i.e. Austria, Belgium

Finland, France, Germany, Italy, The Netherlands, and the United Kingdom. For those

countries, the GC at small frequencies (corresponding to the longer-run components)

clearly dominates those at the higher frequencies (corresponding to the shorter-run

components). Hence, even though these countries’ production expectations are found

to have significant (incremental) predictive power with respect to the longer-run com-

ponents in the production account series, they have much more difficulty in predicting

the fast-moving components of these series. Apart from Germany, the Granger coef-

ficients of coherence corresponding with the high frequencies hardly reach statistical

significance, and also for Germany, the GC measure remains much more pronounced

at the lower frequencies. However, given these countries’ significant Granger coeffi-

cient of coherence at the lower part of the frequency band, we expect, for these coun-

tries, that also an overall GC test will indicate significance. As indicated in Table 1,

this conjecture was confirmed through a formal Granger-Wald test in seven instances

(p < 0.01), while the test statistic for the remaining country (The Netherlands) was

only marginally insignificant (p = 0.056). A similar picture emerged when applying the

Haugh-Pierce test as “overall” GC test, even though the corresponding p-values were

somewhat higher.11 A possible explanation for this loss in power is that for these eight

countries, the GC is concentrated with the low-frequency components (see Figure 1),

while the Haugh-Pierce test does not give enough weight to this part of the spectrum.

Other countries, in contrast, do not show much evidence of GC between production

expectations and accounts at any of the frequencies. This is the case for Greece,

Ireland, and, to a lesser extent, Denmark and Luxembourg. As a consequence, for

those countries, we do not expect an overall GC test to give a significant outcome

11This affected the outcome of the test statistic in only one instance, i.e. the United Kingdom.
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either. Again using the conventional Granger-Wald test, we found support for this

conjecture for Ireland (p = 0.357) and Denmark (p = 0.146). For Luxembourg, a

significant overall test statistic was found (p < 0.05), which may be attributed to

the significant GC coefficients of coherence between frequencies 1.5 and 2.5. This

significant overall GC corresponds, however, with a very different coherence pattern

than the one observed for the previous eight countries. This difference in the nature of

the GC relationship over different time horizons goes undetected in conventional test

procedures. When applying the Haugh-Pierce test, an insignificant effect was found

for three countries (Denmark, Greece and Ireland), while, as with the Granger-Wald

test, a significant overall GC was found for Luxembourg.

A few countries also have some idiosyncratic features. For example, we observe a

small increase in the GC coherence measure around frequency 1.5 (corresponding with

cycles of 4 months) in Belgium, France and Italy, while Finland experiences such a small

increase around frequency 1.0. Rather than trying to explain each of these idiosyncratic

features, we find it more insightful to focus on the general picture that emerges across

the various countries. Specifically, the Granger coefficient of coherence tends to either

decrease in λ (for eight out of twelve countries), or to remain flat and non-significant

over the whole frequency band (see e.g. Greece, Denmark and Ireland). For the

latter countries, the production expectations do not convey additional information

about future production levels, which puts into question the usefulness of spending

considerable amounts of money in collecting these data. Such additional information

is conveyed for the other countries, however, but (except for Germany) only for the

longer-run evolution of the production series. Hence, while production expectation

series may be available earlier than the actual account series, this timeliness does not

translate into an incremental forecasting ability for the fast-moving (high-frequency)

movements in the account series. This misconception would not have been detected

through conventional GC tests, and nicely illustrates the additional insights that can

14



be obtained through the proposed spectral decomposition approach.

[Insert Table 1 about here]

The differential intensity of the GC relationship across different time horizons is

also evident in Table 1, where we present the outcomes of formal spectral-based tests

at three different frequencies: λ1 = 0.5, λ2 = 1.5 and λ3 = 2.5. In line with our earlier

discussion, we find (i) that considerable more GC is found at the low frequency (seven

countries) than at the high frequency (three countries), and (ii) that for some countries

(e.g. Ireland), there is little support for GC at any frequency, as opposed to countries

like Belgium, France, Germany and Italy (among others) where there is significant GC

at various frequencies. This differential behavior is also reflected in the final column of

Table 1, which jointly considers the significance of the GC relationship across all three

frequencies.

The spectral-based GC test therefore complements and extends the insights ob-

tained through traditional CG tests. For example, from Table 1, we can infer that the

highly significant overall GC tests for Finland, which are in line with earlier findings by

Bergström (1995) and Teräsvirta (1986), are primarily due to the ability of the Finnish

production expectation series to better predict the long-run evolution of their produc-

tion accounts’ counterparts. For Luxembourg, in contrast, this is due to frequencies

in the 1.5-2.5 range. Also when comparing Germany and France, interesting new in-

sights emerge. The Granger-Wald and Haugh-Pierce test both indicate, in line with

Lemmens et al. (2004), a highly significant predictive power for their respective pro-

duction expectation series. The spectral tests, however, show that for France, superior

predictions are only obtained for time horizons beyond three months, while German

production expectation series have significance predictive content at high frequencies

as well.
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4 Conclusions

As indicated before, GC has been used extensively in previous work to study a

wide range of substantive economic issues. Even though there is increasing evidence

that the nature of the relationship may vary with the time horizon under consideration

(see e.g. Baxter, 1994), most previous studies have applied an overall GC test. In

this paper, we presented a new, spectral-based, approach that, in contrast to these

existing tests, offers insights into potential variations in the strength of the GC over

different time horizons. We demonstrated the additional insights that could be obtained

with this testing procedure in the context of the forecasting ability of European-wide

expectation surveys. We believe that comparable additional insights could also be

obtained in several other substantive areas.

However, a number of interesting areas for future research remain. First, while we

have shown how a joint test for GC can be carried out for a finite number of distinct

frequencies, we did not yet develop a test procedure to test for the nullity of hu⇒v(λ)

over a subinterval λ ∈ [a, b] of [−π, π]. The distribution of such a test statistic would be

very complicated, and is beyond the scope of the current paper. As another limitation,

we restricted ourselves to a test for bivariate GC. In some settings however, see e.g.

Lemmens et al. (2004), it could be insightful to also carry out multivariate tests of

GC.
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Figure 1: Granger coefficients of coherence for 12 European countries. The dotted line

represents the critical bound at the 5% probability level.
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