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A new multivariate product growth model
Abstract

To examine cross-country diffusion of new products, marketing researchers have to rely on

a multivariate product growth model. We put forward such a model, and show that it is a

natural extension of the original Bass (1969) model. We contrast our model with currently

in use multivariate models and we show that inference is much easier and interpretation is

straightforward. In fact, parameter estimation can be done using standard commercially

available software. We illustrate the benefits of our model relative to other models in

simulation experiments. An application to a three-country CD sales series shows the

merits of our model in practice.

Keywords: Diffusion, international marketing, econometric models
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1 Introduction

The Bass (1969) model is often used in marketing research to describe and to forecast

the empirical adoption curve of new products and technological innovations. It basically

has three unknown parameters, which characterize the important features of a variety of

S-shaped curves that are typical for the diffusion process of new products. As the number

of parameters is small, the Bass model is usually considered for a single annual series,

where the time span concerns 10 to 20 years.

Ever since its inception, the Bass model witnessed a large amount of modifications

and extensions in various directions. These model versions aim to capture more dynam-

ics, additional explanatory variables, sequences of generations, and also, more than one

diffusion variable. In this paper we address this last case, that is, the extension of the

basic Bass model to allow for two or more diffusion series, which somehow may be corre-

lated with each other. Hence, we propose a model for multivariate new product growth.

In this paper we present the model in terms of a cross-country diffusion analysis, however

the model can also be applied to other multivariate diffusion processes, such as the (joint)

diffusion of multiple products in the same country.

There are various multivariate versions of the Bass model around, see Putsis et al.

(1997) and Kumar and Krishnan (2002) for example. We review these models in Section

2, where we also show that these models suffer from the critique summarized in Bass

et al. (1994). This basic critique says that if the diffusion of adoptions may depend on

an explanatory variable, which itself is strongly correlated with time, then the basic Bass

model without any such variables would fit about equally well. Hence, if country A’s

diffusion would be correlated with that in country B, then adding country B’s diffusion

to the model for country A would not contribute much to the fit. In fact, a single country

Bass model would fit equally well. In econometric language, the explanatory variables

for country B’s diffusion process are too collinear with the explanatory variables for the

diffusion process in country A, that proper parameter estimates are difficult or impossible

to obtain.

In the same Section 2 we put forward a new multivariate product growth model, that

does not have the above-mentioned problems. Our model extends in a natural way the

empirical Bass-type model as it is proposed in Boswijk and Franses (2005), and hence

it builds naturally on the original Bass model. The basic idea in Boswijk and Franses

(2005) is that a univariate diffusion series follows an S-shaped path, from which short-
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lived deviations are possible. The speed of adjustment towards this path is given by

an adjustment parameter, which in the final empirical model implies the inclusion of an

additional lagged adoption variable. Additionally, Boswijk and Franses (2005) propose

to modify the original Bass model with heteroskedastic error terms. Such an extension is

also rather straightforward for our new multivariate model, as we will demonstrate in the

empirical illustration.

Our multivariate extension of the Boswijk and Franses (2005) model and hence Bass

model allows for cross-equation adjustments to country-specific paths. In other words,

deviations from the path in country A have an effect on the deviations from the underlying

adoption process in country B. Next, we allow for contemporaneous correlation. After

discretizing, our model is a system of equations with parameter constraints. This system

can easily be estimated by (nonlinear) Generalized Least Squares. We provide the relevant

Eviews code in Appendix 1.

In Section 3, we report on the outcomes of a limited simulation experiment in which

we compare the various multivariate Bass models. For each model we generate diffusion

processes and calculate the root mean squared error for all the multivariate diffusion

models. We show that diffusion paths generated by the earlier proposed multivariate

diffusion models can indeed be replicated almost perfectly by simple univariate Bass

models. The model of Boswijk and Franses (2005), and by extension our model, allows for

the case of a stochastic diffusion process. In a second experiment we consider the influence

of the relative size of the stochastic component on the performance of the different models.

In Section 4, we illustrate the usefulness of the various models on data for CD adoption

in the US, Canada and Japan. We give the data in Appendix 2. We show that our model

yields insights in the relation between different countries. For example, we show that cross-

country diffusion may not be symmetric. Finally, in Section 5 we summarize limitations

and ideas for further research.
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2 Multivariate product growth models

In this section we discuss four variants of multivariate product growth models, where we

consider the case of two countries to save notation. Extensions to more than two countries

follow straightforwardly. We first consider a simple extension of the basic Bass model to

the case of two countries. Then we consider two models that have been proposed recently,

that is the model of Putsis et al. (1997), which we assign the acronym PBKS, and the

model of Kumar and Krishnan (2002), which we will label the KK model. Finally, we

introduce our model, for which we use the acronym BFF. At the start, we will use the

commonly used notation in continuous time, while towards the end we will discuss the

discretized versions of the models.

We denote ni(t) as the continuous time increments of the product growth process of

country i and Ni(t) as the level of adoption, that is, ni(t) = dNi(t)/dt. The basic Bass

model reads as
ni(t)

1−Ni(t)
= pi + qiNi(t), (1)

where it is assumed here that 1 marks the maturity level of the adoption process. The

parameter pi is called the innovation parameter, and qi is the imitation parameter. For

sake of notation, to become useful below, we rewrite this equation as

ni(t) = (1−Ni(t))(pi + qiNi(t)) = n∗i (t). (2)

Note that the left hand side of the equation now contains the variable of interest that

one wants to explain, that is, the growth, while the right hand side only depends on

the current installed base at time t. Throughout this paper we will denote the implied

growth rates according to the Bass model by n∗i (t). Modifying this expression to allow

for a maturity level mi is well known to be straightforward, but for ease of notation we

abstain from this for the moment.

2.1 Currently available models

A natural extension of this single-equation Bass model to cover countries 1 and 2, could

be written as(
n1(t)

n2(t)

)
=

(
1−N1(t) 0

0 1−N2(t)

)[(
p1

p2

)
+

(
q1 0

0 q2

)(
N1(t)

N2(t)

)]
=

(
n∗1(t)

n∗2(t)

)
(3)

This diagonal multivariate Bass [DMB] model assumes that each of the two countries

has its own adoption process and that these two processes are everywhere independent.
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We take this model as a benchmark model when we study in the simulation experiments

whether the same issues as noted in Bass et al. (1994) extend to the multivariate case.

It might however be possible that the diffusion processes in the countries 1 and 2

interact somehow. A first proposal of a multivariate model is done in Putsis et al. (1997),

which, in our notation can be written as
(

n1(t)

n2(t)

)
=

(
1−N1(t) 0

0 1−N2(t)

)[(
p1

p2

)
+

(
q11 q12

q21 q22

)(
N1(t)

N2(t)

)]
(4)

Clearly, the key difference between the diagonal multivariate Bass model and this one is

in the 2× 2 matrix with the imitation parameters. This can be seen even more clearly by

writing the PBKS model as
(

n1(t)

n2(t)

)
=

(
n∗1(t)

n∗2(t)

)
+

(
1−N1(t) 0

0 1−N2(t)

)(
0 q12

q21 0

)(
N1(t)

N2(t)

)
. (5)

From a theoretical point of view, this extension makes much sense. Indeed, it can be

the case that the level of the diffusion in a neighboring country exercises an effect on the

own country diffusion. On the other hand, note that this model only allows for a positive

effect of one country on another. The cross-country influence is modeled through the

number of contacts in one country with another country. Furthermore, as Ni(t) measures

the number of cumulative adoptions, ni(t) must be positive, and this also leads to the

restriction that qij > 0.

From a practical point of view, the PBKS model in (5) might not be easy to handle.

The main reason is that it suffers from exactly the same collinearity problems as the

generalized Bass model does, as noted convincingly in Bass et al. (1994). Indeed, it is

most likely that both N1(t) and N2(t) have an S-shaped pattern that is strongly correlated

with time, and with each other. Hence adding say N2(t) to an equation for N1(t) makes

it difficult to estimate the parameters q11 and q12. As an extreme example, consider the

case where the diffusion patterns in two countries follow the same S-shape, but are in fact

unrelated. In this case the correlation between N1(t) and N2(t) will be almost perfect.

It is now impossible to estimate the qij parameters. Furthermore, in case the diffusion

curves are different and interrelated, the additional explanatory power of the cumulative

number of adoptors (N2(t)) to explain the diffusion in country 1 may be very limited. In

our simulation experiments below, we will demonstrate this phenomenon.

Ignoring these possible multicollinearity problems, estimation of the PBKS model

parameters is rather straightforward. After discretizing the continuous time model in (5)
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one can apply least squares to obtain estimates of the model parameters, see Section 2.3

for more details.

A second multivariate model that has been proposed recently in the marketing litera-

ture is given in Kumar and Krishnan (2002). In their notation it reads as

n1(t)

1−N1(t)
= (p1 + q1N1(t))(1 + b21n2(t))

n2(t)

1−N2(t)
= (p2 + q2N2(t))(1 + b12n1(t))

(6)

which in fact seems very close to a multivariate version of the generalized Bass model.

To make it comparable with the two models above, and with our model still to come, we

rewrite this model first as
(

n1(t)

n2(t)

)
=

(
n∗1(t) 0

0 n∗2(t)

)[(
1

1

)
+

(
0 b21

b12 0

)(
n1(t)

n2(t)

)]
, (7)

where n∗i (t) is defined in (2). We can rewrite this equation as

[
I−

(
n∗1(t) 0

0 n∗2(t)

)(
0 b21

b12 0

)](
n1(t)

n2(t)

)
=

(
n∗1(t)

n∗2(t)

)
, (8)

where I denotes a 2 × 2 identity matrix. Solving this equation for the 2 × 1 vector n(t)

containing the country-specific diffusion series gives

(
n1(t)

n2(t)

)
=

[
I−

(
n∗1(t) 0

0 n∗2(t)

)(
0 b21

b12 0

)]−1 (
n∗1(t)

n∗2(t)

)
, (9)

provided that the inverse exists. It is clear that the KK model nests the diagonal mul-

tivariate Bass model as setting b12 = 0 and b21 = 0 in the KK model yields the other

model. An empirical comparison of these two models can simply be done using likelihood

ratio tests, say. Comparing the KK model with the PBKS model is not straightforward,

however.

The expression in (9) shows that this multivariate model is highly non-linear in vari-

ables as well as in parameters, as it contains the inverse of a matrix with elements that

contain parameters and variables. This may make the theoretical interpretation of this

model not easy. Also, at first sight one may expect that this should make parameter

estimation not very easy, and this is confirmed in Kumar and Krishnan (2002). Indeed,

these authors describe a rather complicated estimation routine, which also seems to have

problems to deliver standard errors (as these are not reported in their tables).
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For parameter estimation in the simulation experiments below, we consider an alterna-

tive procedure to the one proposed in Kumar and Krishnan (2002). Instead of estimating

the “structural” model (6), we consider the “reduced form” (9). We apply the common

discretization techniques and estimate the model parameters using least squares, see also

Section 2.3.

2.2 A new multivariate model

To overcome the potential problems raised above concerning currently available multi-

variate models, we intend to propose a model that is easy to interpret and of which the

parameters are easy to estimate. The main idea is to extend the error correction type

expression in equation (6) of Boswijk and Franses (2005) to the multivariate setting.

Boswijk and Franses (2005) consider the basic univariate Bass model and address the

issue of the stochastic nature of the diffusion process. Generally, in practice, the original

Bass equation in continuous time is discretized and than simply an error term is added,

which is assumed to have mean zero and common variance. Boswijk and Franses (2005)

argue that this approach of adding an error term does not match with the original notions

behind the Bass theory. In fact, it makes more sense to assume that theoretical diffusion

follows a deterministic S-shaped path, around which the actually observed diffusion pro-

cess fluctuates where these fluctuations are caused by random events, individual-specific

characteristics, or by marketing-mix effects, say. These fluctuations are however such that

there always is a tendency to return to the theoretical underlying deterministic S-shape.

This implies that there is, say, a target or attractor-like diffusion process, around which

the actual diffusion fluctuates around while preserving a tendency to return to that target

level.

In the notation of the current paper, the key equation in Boswijk and Franses (2005)

for a single country is

dni(t) = αi(n
∗
i (t)− ni(t))dt + σini(t)

γ
i dWi(t), (10)

where Wi(t) is a standard Brownian motion. The actual diffusion series ni(t) wanders

around the target diffusion n∗i (t), where deviations from this target are caused by random

shocks driven by Wi(t). The size of the random shocks are proportional to ni(t)
γ. Over

time the ni(t) returns to the target path, the speed of this error correction is determined

by αi. The target path in this model is exactly the path according to the Bass diffusion
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model (2). Note that the model is now specified in terms of changes in the growth rate,

that is, dni(t).

The BF model explicitly allows for random events to influence the diffusion. Diffusion

curves that correspond with this model do not necessarily show a perfect S-shape. This

is an important feature of this model, as in practice one also does not always encounter

perfect curves.

A multivariate version of this error correction type model, to be labeled as BFF, is

given by the two equations

(
dn1(t)

dn2(t)

)
=

(
α11 α12

α21 α22

)(
n∗1(t)− n1(t)

n∗2(t)− n2(t)

)
dt +

(
σ1n1(t)

γdW1(t)

σ2n2(t)
γdW2(t)

)
, (11)

where W1(t) and W2(t) are possibly correlated Brownian motions. The off-diagonal ele-

ments of the matrix α, that is, α12 and α21, have a straightforward interpretation. They

can be interpreted as the effect that deviations in one country have on the deviations from

the underlying diffusion path in another country. For example, suppose that α12 < 0 and

n2(t) < n∗2(t), that is, the actual diffusion in country 2 is below its target path. The

product α12(n
∗
2(t)− n2(t)) is then also negative, meaning that the diffusion in country 1

will slow down. Hence, deviations from the target paths in each of the countries also have

an effect on the changes in the diffusion in the other country. As in the univariate case,

these deviations can be due to marketing-mix effects.

When we restrict α12 = α21 = 0 we end up with two stacked BF models, where the

random shocks may be correlated. One could call this model a diagonal BFF model.

Below we refer to this model as the BF model.

After discretization, the parameters in the BFF model can simply be estimated using

Generalized (nonlinear) Least Squares, and estimated standard errors can be obtained

along the usual lines. Also, the additional variables in the BFF model do not have

patterns that come close to trends or sigmoid shape trends, and hence, the BFF model

does not have the problems noted in Bass et al. (1994). We present more on estimation

below. Furthermore, as a courtesy to the reader, we give the Eviews code for a bivariate

BFF model in Appendix 1.

In sum, the currently available multivariate models seem to suffer from potential esti-

mation problems, while the BFF model does not. Additionally, the BFF model has easy

to interpret parameters from a marketing point of view. To illustrate the estimation issues

mentioned, we turn to a report of simulation experiments, and we postpone an empirical
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illustration to Section 4. Before doing so, we say a few words about discretization and

estimation.

2.3 Discretization and estimation

All models discussed above are in continuous time. In practice we need to fit these

models to, say, annual data, that is, data measured at discrete intervals. The diffusion

models therefore have to be transformed to discrete time. The equations to use for

parameter estimation follow naturally from these transformations. In general we index

the observation moments using a subscript k, where observation k corresponds to time

t = kδ, k = 0, . . . , T/δ, where δ denotes the length of the time interval between two

observations. In most practical cases δ = 1. The observation moments are then t = 0,

t = 1, . . ., t = T . To keep the presentation as general as possible, we use the subscript k

to denote the observation moments. For example, Ni,k denotes the cumulative adoption

in country i at observation moment t = kδ.

Discretizing the deterministic models (DMB, PBKS, and KK) is rather straightfor-

ward. For t = kδ one can simply replace the ni(t) on the left-hand side of the equations

by Xi,k/δ, where Xi,k = ∆Ni,k = Ni,k−Ni,k−1, and the Ni(t) appearing on the right-hand

side by Ni,k−1. For the discretization of the stochastic components in the BF and BFF

model we replace the component dni(t) on the left-hand side of the equation by ∆Xi,k,

for the right-hand side we replace Ni(t) by Ni,k−1, ni(t) by Xi,k−1, and dt by δ, we re-

fer to Boswijk and Franses (2005) for more details. The discretization of dWi(t) yields

independent identically distributed random variables with variance δ.

For parameter estimation in the DMB, PBKS and KK models one can straightfor-

wardly minimize the sum of squared errors in the discretized models. Note that this

estimation procedure for the KK model is far more straightforward than that proposed

in Kumar and Krishnan (2002). For the BF and BFF models one can choose one of two

options. The first option is to ignore differences in variance across series and possible

correlations across error terms, and simply minimize the sum of squared errors over all

observations. We opt for this procedure in the simulation experiments below. For the

empirical section we take the stochastic component seriously and estimate the parameters

by applying (nonlinear) GLS to the discretized version of the model. One can account for

heteroskedasticity by dividing the equations for country i through Xi,k−1. Note that this

option corresponds to setting γ = 1 in (11).
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3 Simulation experiments

In this section we illustrate the performance of the different multivariate models discussed

above. The setup of the experiment is as follows. We select one of the models and generate

data according to that model. Next, each of the 5 models is fitted to the generated data.

Using the estimated parameters the models are used to generate forecasts of the growth

figures. We measure the forecasting performance by the root mean squared error [RMSE]

of the forecasts. Comparing the RMSE of the different models gives us insight into how

much the models differ from each other in the implied diffusion curves. For example,

when for data generated with a given model, the DMB yields roughly the same RMSE as

the true model, one can conclude that the latter model does not add much to the DMB

model. Possible explanations for findings such as this one are the problems first noted in

Bass et al. (1994).

Except for the BF and the BFF model, the (multivariate) diffusion models do not

have a stochastic component. That is, given the model parameters, the diffusion curve is

fixed. Therefore we first consider the deterministic case, where for BF and BFF we set

σi = 0. Afterwards we consider what happens when the BF or the BFF models are used

as DGP with σi 6= 0.

Deterministic models

For each data generating process [DGP], that is, for DMB, PBKS, KK, BF and BFF,

we generate data for T = 20 periods. To generate data we use the discretizations as

discussed in Section 2.3 but now with δ = 0.001, that is, we very closely approximate

continuous time. For model estimation and diffusion forecasting we of course only use

the observations for t = 0, 1, 2, . . . , T . Next, each of the models is fitted to these data.

For example, we generate data from (2), and fit models (2), (5), (9), and (11), and so

on. We compute the root mean squared error of the sales figures (N(t) − N(t − 1), for

t = 2, . . . , T ), and we average these over 1000 replications.

To generate data that look like the typical data obtained in practice, we have to set

proper parameter values. The illustrations in the various studies that put forward the

models under scrutiny provided a source of inspiration. For DMB model we draw values

for the imitation and innovation parameters in country 1 and 2 from two uniform distri-

butions, that is
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pi ∼ U[0.005, 0.055],

qi ∼ U[0.15, 0.55],
(12)

where i is 1 or 2. For the PBKS model we interpret qi from (12) as the total external

influence, we divide this influence over the within-country influence (qii) and the across-

country influence (qij) using

fi ∼ U[0, 0.5],

qii = (1− fi)qi,

qij = fiqi.

(13)

To make sure that the resultant bivariate series make sense we restrict the cross-country

influence to be smaller than the within-country influence. Unreported graphs of the series

substantiate this claim. Next, for the KK model we use the same way to generate pi and

qi as in the DMB model, where we additionally draw the bij parameters according to

bij ∼ U[0, 0.75]. (14)

For the univariate BF model we additionally need the error correction parameters, and

we draw these according to

αi ∼ U[2, 10]. (15)

Finally, the BFF requires error correction parameters across countries, and these we

generate according to

ri ∼ U[−0.9, 0.9]

αij = riαii.
(16)

Again we restrict the size of cross-country effect to be smaller than the within-country

effect. Note that the BFF model also allows for a negative correlation between countries,

which is in contrast to the PBKS model. In sum, we have 5 sets of DGPs, and in the

first round of experiments, we also fit 5 models for each DGP. To allow for a fair forecast

comparison, we fit all models by minimizing the sum of the squared residuals.

The simulation results for the deterministic case are given in Table 2. The first panel

gives the root mean squared errors when averaged over 1000 replications. Note that the

DGPs in this case are deterministic, that is, conditional on the parameters the diffusion
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figures are fixed. In principle, the model of the DGP would fit the data perfectly. The

reason that we do not find zero RMSE in Table 2 is that there are discretization errors.

The data are generated in (almost) continuous time, while we estimate the model for

discrete time.

The second panel gives these figures again, but now scaled towards each of the DGPs.

Hence, the value 1 should appear when the same model is fitted to the data generated by

that model. The first panel already indicates that differences can be quite large, and this

can even be better seen from the second panel. For example, when the data are generated

by an DMB model, then the root mean squared error of the PBKS model is 0.92 times

that of the DMB model itself. And, when the data are generated by an BFF model, the

RMSE of the KK model is 3.4 times as large that of the BFF model. Clearly, the results

in Table 2 indicate that it is best to fit the BFF model when the data are generated by

any of the other models. This improvement in fit is of course partly because the BFF

model contains the most parameters. Note however that the BF model also outperforms

the KK and PBKS models, while they have an equal number of parameters.

The differences in performance of the PBKS and KK models versus the DMB model

are quite small, even when the data are generated using PBKS or KK. This is mainly due

to the problems noted in Bass et al. (1994). The additional regressors in the PBKS and

KK models do not add much in explanatory power. In fact the generated diffusion curves

very closely resemble curves that can be fitted using the standard Bass model. The poor

fit of the DMB model in case BF and BFF are the DGPs is due to the fact that the DMB

lacks relevant variables.

Nonzero error variance

Our next set of simulations concerns the cases where the BF and BFF models are the

DGP, where we now allow an error term to enter the model with a nonzero variance.

Note that the main difference in the BF model versus the original Bass model lies in the

fact that the BF model allows for stochastic variation in the diffusion. In the multivariate

case it is exactly the stochastic variation that helps us to identify cross-country influences.

Note that we impose zero contemporaneous correlation between the error terms.

In Table 3 we report similar results as we did in the second panel of Table 2, which

can also be seen from the first row of each panel. The results in Table 3 are easy to

interpret. When the DGP is BF, and the error variance is small, then the BFF model

improves the fit. This is of course due to the fact that the BFF model contains more
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parameters. Qualitatively similar results appear when the BFF model is the DGP. A

second important result from these experiments is that when the error variance becomes

larger, the differences in fit become smaller. Indeed, it might be expected that more

variation in the data leads to decreased performance for all models. Once the signal to

noise ratio in the data becomes very low, the differences between the models disappear

as there is only noise to fit.

In sum, the simulation results in this section clearly show that the new multivariate

product growth model outperforms other models in terms of fit, even when it is not the

data generating process.

4 Cross country effects of CD diffusions

We now turn to an illustration of the new multivariate model for new product growth, also

to demonstrate its relevance for actually observed data. We consider annual time series

running from 1983 to 1996 concerning CD sales in the US, Canada and Japan. The data

are given in Appendix 2, and the graphs of these three series appear in Figure 1. When we

compute the correlation between these series, we get 0.996 for the US with Canada, 0.953

for the US with Japan, and 0.929 for Canada with Japan. These high values already

suggest that the PBKS and KK models would run into estimation problems, so these

models are not considered here.

We fit the BFF model while allowing for heteroskedasticity. We follow the suggestions

in Boswijk and Franses (2005) that dividing the left-hand side and the right-hand side

of the equations trough Xj,k−1 can take care of it, hence we set γ = 1 in (11) and we do

not follow a formal empirical testing strategy for γ. Hence, the model that we actually

estimate is




∆X1,k

X1,k−1

∆X2,k

X2,k−1

∆X3,k

X3,k−1


 =




1
X1,k−1

1
X2,k−1

1
X3,k−1







α11 α12 α13

α21 α22 α23

α31 α32 α33


×




(m1 −N1,k−1)(p1 + q1N1,k−1/m1)

(m2 −N2,k−1)(p2 + q2N2,k−1/m2)

(m3 −N3,k−1)(p3 + q3N3,k−1/m3)


 +




ε1,k

ε2,k

ε3,k


 , (17)

where Xi,k = Ni,k −Ni,k−1.

The estimation results for the three-country BFF model appear in Figure 2, where
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we present the actual Eviews output. Normally, we would not like to see such tables

in academic papers, but we do include it here to show that the BFF model with het-

eroskedasticity can actually be estimated using a simple Eviews program. In Table 4,

we provide the relevant parameter estimates in a more common format. The estimation

results in Figure 2 as well as in Table 4 show that there are effects running from the US to

Canada and Japan, as the estimated parameters α21 and α31 are significant at the 5 per

cent level. Both α21 as α31 are negative, this implies that when the development of the

diffusion in the US falls behind the target path the same will happen in Canada and in

Japan. The same holds for the reverse case, if the diffusion in the US goes faster than the

target path, the diffusion in Canada and Japan will also speed up. Other cross-country

effects are insignificant, see Table 4. The implied p, q and m parameters of the standard

Bass model also seem reasonable, see the middle panel of Table 4.

In sum, we see that the new multivariate version of a Bass model can be fitted quite

easily to a trivariate series, that it delivers interpretable and meaningful parameters, and

that it has a high in-sample fit.

5 Conclusion

In this paper we have put forward a new multivariate product growth model, and we

contrasted it with other such multivariate models using theoretical and simulation-based

arguments. Given the outcomes of the simulations, and also of the empirical illustra-

tion, we are tempted to conclude that our new model outperforms its rivals on various

dimensions. Further applications should substantiate our claim, and also out-of-sample

forecasting contests should even further do so. Together with designing a specification

strategy for the best way to incorporate heteroskedasticity, we leave these issues for further

research.
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Appendix 1: Eviews code for a bivariate BFF model

with heteroskedasticity

coef(33) alpha
alpha(11) = 1
alpha(22) = 1
alpha(33) = 1

coef(3) p
p(1) = 0.05
p(2) = 0.05
p(3) = 0.05

coef(3) q
q(1) = 0.3
q(2) = 0.3
q(3) = 0.3

coef(3) m
m(1) = 1
m(2) = 1
m(3) = 1

system BFF

BFF.append (usa+usa(-2)-2*usa(-1))/(usa(-1)-usa(-2)) =
( alpha(11)*((m(1)-usa(-1))*(p(1)+q(1)*usa(-1)/m(1)) - (usa(-1)-usa(-2))) +

alpha(12)*((m(2)-can(-1))*(p(2)+q(2)*can(-1)/m(2)) - (can(-1)-can(-2))) +
alpha(13)*((m(3)-jpn(-1))*(p(3)+q(3)*jpn(-1)/m(3)) - (jpn(-1)-jpn(-2)))

)/(usa(-1)-usa(-2))

BFF.append (can+can(-2)-2*can(-1))/(can(-1)-can(-2)) =
( alpha(21)*((m(1)-usa(-1))*(p(1)+q(1)*usa(-1)/m(1)) - (usa(-1)-usa(-2))) +

alpha(22)*((m(2)-can(-1))*(p(2)+q(2)*can(-1)/m(2)) - (can(-1)-can(-2))) +
alpha(23)*((m(3)-jpn(-1))*(p(3)+q(3)*jpn(-1)/m(3)) - (jpn(-1)-jpn(-2)))

)/(can(-1)-can(-2))

BFF.append (jpn+jpn(-2)-2*jpn(-1))/(jpn(-1)-jpn(-2)) =
( alpha(31)*((m(1)-usa(-1))*(p(1)+q(1)*usa(-1)/m(1)) - (usa(-1)-usa(-2))) +

alpha(32)*((m(2)-can(-1))*(p(2)+q(2)*can(-1)/m(2)) - (can(-1)-can(-2))) +
alpha(33)*((m(3)-jpn(-1))*(p(3)+q(3)*jpn(-1)/m(3)) - (jpn(-1)-jpn(-2)))

)/(jpn(-1)-jpn(-2))

BFF.sur

Note: The series usa, can, and jpn are the cumulative diffusions for the USA, Canada,

and Japan, respectively.
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Appendix 2: CD diffusion in three countries

Table 1: Cumulative CD sales in the

USA, Canada and Japan.

Year USA Canada Japan

1983 0.001763 0.000000 0.011117

1984 0.010578 0.007250 0.040811

1985 0.042465 0.019174 0.134696

1986 0.101068 0.048887 0.284236

1987 0.163569 0.119618 0.391979

1988 0.222702 0.173152 0.497629

1989 0.301163 0.230174 0.653189

1990 0.386953 0.336152 0.747037

1991 0.477370 0.451939 0.895274

1992 0.524994 0.527244 0.914487

1993 0.592513 0.578241 0.929264

1994 0.655934 0.663102 0.934292

1995 0.725858 0.747712 0.935567

1996 0.773400 0.787030 0.946600
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Figure 1: Graphical representation of the diffusion data
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Other tables and figures

System: BFF
Estimation Method: Seemingly Unrelated Regression
Date: 03/15/06   Time: 16:01
Sample: 1985 1996
Included observations: 12
Total system (balanced) observations 36
Iterate coefficients after one-step weighting matrix
Convergence achieved after: 1 weight matrix, 15 total coef iterations

Coefficient Std. Error t-Statistic Prob.  

ALPHA(11) 0.156122 0.253043 0.616978 0.5450
M(1) 0.904784 0.123548 7.323354 0.0000
P(1) 0.036593 0.019512 1.875409 0.0771
Q(1) 0.300414 0.088667 3.388101 0.0033

ALPHA(12) 0.326078 0.216728 1.504546 0.1498
M(2) 0.853710 0.070692 12.07645 0.0000
P(2) 0.038881 0.017231 2.256493 0.0367
Q(2) 0.391601 0.086228 4.541481 0.0003

ALPHA(13) 0.134733 0.107192 1.256933 0.2248
M(3) 0.941106 0.011748 80.11025 0.0000
P(3) 0.093492 0.033463 2.793869 0.0120
Q(3) 0.514120 0.101584 5.061024 0.0001

ALPHA(21) -1.068347 0.370388 -2.884401 0.0099
ALPHA(22) 1.253604 0.267560 4.685321 0.0002
ALPHA(23) -0.035655 0.160001 -0.222842 0.8262
ALPHA(31) -0.478949 0.215553 -2.221960 0.0393
ALPHA(32) 0.048026 0.128257 0.374452 0.7124
ALPHA(33) 1.002103 0.356141 2.813779 0.0115

Determinant residual covariance 0.000123

Equation: (USA+USA(-2)-2*USA(-1))/(USA(-1)-USA(-2)) = ( ALPHA(11)
        *((M(1)-USA(-1))*(P(1)+Q(1)*USA(-1)/M(1)) - (USA(-1)-USA(-2))) 
        + ALPHA(12)*((M(2)-CAN(-1))*(P(2)+Q(2)*CAN(-1)/M(2)) - (CAN(
        -1)-CAN(-2))) + ALPHA(13)*((M(3)-JPN(-1))*(P(3)+Q(3)*JPN(-1)
        /M(3)) - (JPN(-1)-JPN(-2))) )/(USA(-1)-USA(-2))
Observations: 12
R-squared 0.952446    Mean dependent var 0.300680
S.D. dependent var 0.803860    Sum squared resid 0.338017
Durbin-Watson stat 3.127232

Equation: (CAN+CAN(-2)-2*CAN(-1))/(CAN(-1)-CAN(-2)) = (
        ALPHA(21)*((M(1)-USA(-1))*(P(1)+Q(1)*USA(-1)/M(1)) - (USA(-1)
        -USA(-2))) + ALPHA(22)*((M(2)-CAN(-1))*(P(2)+Q(2)*CAN(-1)
        /M(2)) - (CAN(-1)-CAN(-2))) + ALPHA(23)*((M(3)-JPN(-1))*(P(3)
        +Q(3)*JPN(-1)/M(3)) - (JPN(-1)-JPN(-2))) )/(CAN(-1)-CAN(-2))
Observations: 12
R-squared 0.880187    Mean dependent var 0.311958
S.D. dependent var 0.683705    Sum squared resid 0.616074
Durbin-Watson stat 2.716070

Equation: (JPN+JPN(-2)-2*JPN(-1))/(JPN(-1)-JPN(-2)) =  ( ALPHA(31)
        *((M(1)-USA(-1))*(P(1)+Q(1)*USA(-1)/M(1)) - (USA(-1)-USA(-2))) 
        + ALPHA(32)*((M(2)-CAN(-1))*(P(2)+Q(2)*CAN(-1)/M(2)) - (CAN(
        -1)-CAN(-2))) + ALPHA(33)*((M(3)-JPN(-1))*(P(3)+Q(3)*JPN(-1)
        /M(3)) - (JPN(-1)-JPN(-2))) )/(JPN(-1)-JPN(-2))
Observations: 12
R-squared 0.974530    Mean dependent var 0.687833
S.D. dependent var 2.344713    Sum squared resid 1.540288
Durbin-Watson stat 2.142392

Figure 2: Estimation results (actual Eviews output)
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Table 2: Simulation results for the deterministic

case (σ = 0), where DMB denotes the diagonal

multivariate Bass model, PBKS is the model in

Putsis et al. (1997), KK is the model of Kumar

and Krishnan (2002), BF is the univariate model

in Boswijk and Franses (2005) and BFF is the

new multivariate model.

Estimated model

DGP DMB PBKS KK BF BFF

Root mean squared errors

DMB 0.219 0.201 0.166 0.044 0.039

PBKS 0.223 0.190 0.155 0.082 0.074

KK 0.217 0.201 0.160 0.041 0.037

BF 0.131 0.125 0.099 0.032 0.028

BFF 0.146 0.140 0.118 0.053 0.035

Root mean squared errors relative to DGP

DMB 1 0.917 0.757 0.201 0.178

PBKS 1.173 1 0.818 0.431 0.388

KK 1.356 1.257 1 0.254 0.231

BF 4.088 3.899 3.095 1 0.872

BFF 4.162 3.990 3.376 1.527 1
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Table 3: Simulation results for the cases with nonzero variance, where DMB denotes the

diagonal multivariate Bass model, PBKS is the model in Putsis et al. (1997), KK is the

model of Kumar and Krishnan (2002), BF is the univariate model in Boswijk and Franses

(2005) and BFF is the new multivariate model, and where the BF and BFF models are

the DGP. The numbers give the RMSE relative to the RMSE when the data are fitted

using the correct model.

σ DMB PBKS KK BF BFF

DGP: BF

0 4.088 3.899 3.095 1 0.872

0.01 3.808 3.653 2.919 1 0.884

0.1 1.845 1.803 1.584 1 0.954

0.5 1.106 1.088 1.074 1 0.959

1 1.056 1.033 1.041 1 0.960

2 1.042 1.005 1.044 1 0.956

DGP: BFF

0 4.162 3.990 3.376 1.527 1

0.01 4.006 3.832 3.185 1.483 1

0.1 1.861 1.801 1.627 1.145 1

0.5 1.143 1.120 1.110 1.051 1

1 1.110 1.078 1.102 1.062 1

2 1.088 1.053 1.088 1.048 1
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Table 4: Estimation results for a three-

country BFF model, standard errors in

parentheses.

USA CAN JPN

Diffusion characteristics

p 0.0366 0.0389 0.0935

(0.0195) (0.0172) (0.0335)

q 0.3004 0.3916 0.5141

(0.0887) (0.0862) (0.1016)

m 0.9048 0.8537 0.9411

(0.1235) (0.0707) (0.0117)

....depends on

USA CAN JPN

D
iff

u
si

on
in

..
..

USA 0.156 0.326 0.135

(0.253) (0.217) (0.107)

CAN -1.068 1.254 -0.036

(0.37) (0.268) (0.160)

JPN -0.479 0.048 1.002

(0.216) (0.128) (0.356)
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