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The econometrics of the Bass diffusion model
Abstract

We propose a new empirical representation of the Bass diffusion model, in order to
estimate the three key parameters, concerning innovation, imitation and maturity. The
representation is based on the notion that the observed data may temporarily deviate
from the mean path determined by the underlying hazard rate. Additionally, it rests
on the idea that uncertainty about the cumulative process should be smaller, the closer
it is to the start of the process and to the level of maturity. Taking this into account,
we arrive at an extension of the basic representation proposed in Bass (1969), with an
additional heteroskedastic error term. The type of heteroskedasticity can be set by the
modeler, as long as it obeys certain properties.

Next, we discuss the asymptotic theory for this new empirical model, that is, we
focus on the properties of the estimators of the various parameters. We show that the
parameters, upon standardization by their standard errors, do not have the conventional
asymptotic behavior. For practical purposes, it means that the {-statistics do not have
an (approximate) t-distribution. Using simulation experiments, we address the issue how
these findings carry over to practical situations.

In a next set of simulation experiments, we compare the new representation with
that of Bass (1969) and Srinivasan and Mason (1986). We document that these last two
approaches often seriously overestimate the precision of the parameter estimators. We
also shed light on the effects of temporal aggregation and on the effects of a serious and
persisent deviation between the actual data and their mean.

Finally, we consider the various empirical representations for a monthly series on
installed AT Ms.

Key words: Bass diffusion model, representation, estimation



1 Introduction

The Bass diffusion model, introduced in Bass (1969), is frequently applied in modeling
and forecasting diffusion processes in marketing research and other disciplines. The basic
model is fascinatingly simple, also as its basic form only contains three parameters. Its
popularity is likely to be due to the fact that the model can capture a wide variety of
diffusion patterns observed in practice. The model parameters have an interpretation
in terms of internal effects (imitation), external effects (innovation) and saturation level
(maturity), and the basic theory behind the model is solid. Additionally, the model
allows for various modifications without loosing its interpretation.

Interestingly, although the theoretical framework of the Bass model is beyond doubt,
its translation into a representation for observed empirical and discrete data appears not
straightforward. There are two main reasons for this phenomenon. The first is that the
basic theory is formulated in continuous time, while in practice one always has discrete
data. Hence, the question is how one represents the theory, while taking in account that
one does not have continuous data. The second is that the theoretical model can be
written in various ways, and that translations of this into an empirical representation
should involve a decision on where to put the stochastic error term. Indeed, once an
error term has been added to a model, it is not easy to write one empirical model into
another, even though they are all based on the same theory.

It is conceivable that different model representations lead to different parameter es-
timates and associated standard errors. Hence, the choice for a model representation
matters in practice. In this paper we aim to contribute to the literature by proposing a
new empirical representation of the Bass diffusion model, which we believe is the most
natural one, given the theory. A key feature is that we assume that the discrete data
have a tendency to revert to the underlying mean path of the continuous process, and
that this tendency may vary across processes and levels of temporal aggregation. As

such, our model should be resistant to aggregation of the data, in the sense that, even



though the discrete data are observed at too high an aggregation level, the underlying
three key parameters can still be estimated. As this is also the property of the empirical
representation in Srinivasan and Mason (1986), we shall compare our model with theirs
when it comes to comparing the consequences of aggregation.

A second important feature of our model is that we assume that the uncertainty on
the diffusion path should not be constant over time. Indeed, in the beginning and towards
the end of a diffusion process, there must be much less uncertainty than somewhere in
the middle. For example, if the process concerns first-time purchases, in the beginning
sales are zero, and in the end they are zero again, while they obtain peak levels some-
where before halfway the sample. Consequently, there must be more uncertainty about
cumulative sales around the inflection point of the S-shaped curve than there is close to
the saturation level.

It turns out that our model extends the basic Bass (1969) representation in two
dimensions. The first is that our model incorporates an additional variable, representing
the dynamic adjustment to the underlying mean diffusion path. The second is that we
allow the error process to be heteroskedastic, where the type of heteroskedastic variation
is up to the user to decide, subject to the property mentioned above.

In our paper we propose the new model formulation, derive the asymptotic properties
of the corresponding estimators and compare these with the models in Bass (1969) and
Srinivasan and Mason (1986). A salient finding is that the estimators do not have stan-
dard asymptotic properties. We use simulation experiments to examine how this carries
over to practical cases. When we compare our model with other models, we observe that
the confidence intervals around the estimators in the Bass (1969) and Srinivasan and
Mason (1986) models are often too narrow, which is in part due to their assumption that
the variance of the error process is constant over time.

The outline of our paper is as follows. In Section 2, we put forward the new model
representation for the theoretical Bass diffusion model. We start with an analysis in

continuous time, proposing a stochastic differential equation for the diffusion process,



and then we discuss the discretization of the continuous-time process. In Section 3, we
focus on parameter estimation. We show that the parameters in the Bass models are not
consistent in the usual sense. We examine the consequences of this result for practically
relevant cases through simulations. In Section 4, we compare our model with two other
models, thereby focusing on the effects of variable omission and the consequences of
having a heteroskedastic error process. In Section 5, we illustrate our model on real-life
data, and we find that most of our predictions based on theory and simulations hold true

for this example. In Section 6, we discuss various topics for further research.

2 Representation

In this section, we first discuss the basic premises of the Bass diffusion theory. Next,
we put forward our new representation, which accounts for temporary deviations of
sales from their expected value implied by the Bass model, and for level-dependent het-
eroskedasticity. In the last subsection, we compare it with the representations in Bass

(1969) and Srinivasan and Mason (1986).

2.1 The Bass diffusion model

The Bass model starts with a population of m potential adopters. For each of them, the
time to adoption is a random variable with a distribution function F'(t) and density f(t),
such that the hazard rate satisfies

L =+ arw). (1)

The cumulative number of adopters at time ¢, N(t), where ¢ is measured in continuous

time, is therefore a random variable with mean N(t) = E[N(t)] = mF(t). The function

N(t) then satisfies the following differential equation, that is,
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The solution of this differential equation is given by

1 — e—(pta)t
1+ Le-Grat |’

p(p + q)26‘(”+"’t]

N@) = mF{t)=m (3)

n(t) = mf(t)=m

(4)

(b+ ge-rror)?

The parameter p can be interpreted as the innovation parameter (or, external effect),
g can be seen as the imitation parameter (or, internal effect), and m is the saturation level
(or, maturity). In practice, one is interested in estimating these three key parameters.
An additional motivation is that the inflection point (which occurs at the time of peak
adoptions) of F(t) is a function of p and ¢, and a first good guess of the timing of this
peak can be important for managers.

It is important to recognize that N(¢) is a random variable, for which the law of
large numbers implies that as m increases, N(t) — N(t). For the size of m typically
encountered in empirical applications, N(¢) may in fact be equated to its mean. This is
illustrated in Figure 1, which concerns simulated data from the model with m = 100000,
p = 0.01 and ¢ = 0.15. Note that N(¢)/m (obtained from simulating m waiting times
with density f(¢)) and its mean F'(t) (given in (3)) are indistinguishable. Similarly, the
scaled increments AN(t)/m = [N(t) — N(t — 1)]/m, t = 1,2,..., are virtually identical

to the smooth function AF(¢).
Insert Figure 1 about here

In practical applications, the cumulative number of adopters, and in particular its
increments, are not completely described by a smooth curve as in Figure 1, even for
very large m. This may be caused by individual-specific effects on the hazard rates,
which could be observable or which could amount to unobserved heterogeneity, as well
as by aggregate effects caused by marketing-mix variables or environmental factors (like
the macro economy). These effects imply that one should either extend the model with
individual and/or aggregate covariates, or allow for more general random deviations from

(3). In this paper we follow the latter approach.
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2.2 New representation

Upon translating the Bass diffusion theory to a model that can be confronted with
the data to deliver estimates of the parameters, one needs to allow for random, and
possibly serially dependent, deviations from the path of the continuous process given
by (3)-(4). Furthermore, the continuous-time model has to be translated to discrete-
time observations N; = N(t;),i =0,1,...,T, with corresponding incremental number of
adopters over the interval (¢;_1,%;] given by X; = N; — N;_;. In what follows, we shall
refer to X; as “sales”.

Our starting point is to generalize the differential equation (2) to a (continuous-time)
stochastic differential equation (SDE) for N(¢) and n(t) = dN(¢)/dt. This SDE may then
be discretized into a stochastic difference equation, which in turn may be used for least-
squares or maximum likelihood estimation. We require the process for n(t) and N(¢)
to satisfy the following properties. First, n(t) is non-negative, so that N(t) = f(f n(s)ds
is non-decreasing. Second, and related to the first, we require the volatility of n(t) to
depend on the level of n(t), in such a way that the random variation converges to zero
as n(t) J 0 (which, for example, will occur as N(t) 1 m). Third, we allow the random
deviations in n(t) from its mean path to display mean-reverting serial correlation. To
our knowledge, no studies in the relevant literature have addressed the second and third
property.

For any path N(t),t > 0, let

n*(t) = plm — N(t)] + %N(t) [m — N (2)]. (5)

Note that this corresponds to (2), but with the mean number of adopters N(t) replaced

by the actual number. We propose the following two alternative specifications

dn(t) = afi(t) — n(t)] dt + on(t)dW (1), (6a)

dn(t) = a[n*(t) —n(t)] dt + on(t)"dW (t), (6b)

where a > 0, 0 > 0 and v > 3, and where W (¢) is a standard Brownian motion.
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The model (6) generalizes the basic Bass (1969) representation in two directions.
First, it amounts to a stochastic generalization, as it incorporates a continuous-time
error term with standard deviation proportional to on(t)?. Hence, with v # 0 this
implies a level-dependent heteroskedastic error term. Secondly, the model amounts to a
dynamic generalization. The drift term implies that n(f) “mean-reverts” to either 7i(t) or
n*(t), which is its value under the non-stochastic differential equation (2) or its empirical
counterpart (5). This mean reversion occurs with speed determined by o. When « is
close to zero, there is almost no mean reversion, and when ov — oo this speed is infinitely
fast. Note that the basic deterministic Bass model is obtained when o« — oo and o — 0.

The volatility 0"n(t) guarantees that the random variation vanishes as n(t) — 0,
and hence that the process n(t) remains non-negative. Here -y will not be treated as
an unknown parameter to be estimated, but as a choice variable that is set by the
researcher. In the remainder of our theoretical analysis, we will focus on the case v =1,
but we should stress here that the choice for v = % or v = 2 can be considered too, as
long as v > %, which is needed to guarantee non-negativity (as discussed further below).
In practice, one may decide to use diagnostic tests for heteroskedasticity, to see which
variant suits the data best. For example, in the illustration below, we will find that a
volatility specification of om is a good choice.

The specification (6a) is inspired by a class of stochastic processes that is often used
in the mathematical finance literature for interest rates, see for example Hull and White

(1990). In particular, with v = 0 the model corresponds to the Vasicek (1977) model with

L
2

time-varying mean 7i(¢) (which does not exclude negative realizations), whereas for v =
and v = 1 it leads to the Cox-Ingersoll-Ross (Cox et al., 1985) and Brennan and Schwartz
(1982) models, respectively. It has been shown in this literature that when v = 1, the
process is strictly positive. For v = % it is non-negative, and strictly positive under the

condition afi(t) > ;0% since 7i(t) converges to zero as ¢ increases, this condition will

eventually be violated, which means that n(t) eventually reaches zero for this choice of

.



The alternative specification (6b) leads, upon substitution of (5) in (6b), and under

the restriction v = 1, to the following process:
dn(t) = a (p[m ~N@)] + %N(t) m — N ()] — n(t)) dt + on(®dW ().  (7)

Observing that N(t) = | !

o "(s)ds, we see that the model (7) is actually a stochastic

differential-integral equation. We prefer to work with this specification, because it re-
places the exogenously given mean adoption rate function 7i(t) by the endogenous target
adoption rate n*(t). Moreover, its discretization, discussed below, leads to a more conve-
nient estimation procedure than the model with 7(¢). We do not address the questions
of existence and uniqueness of a solution to (7) explicitly in this paper, but simulation
evidence reveals that realizations from the two specifications closely resemble each other,
with the n*(t) specification leading to somewhat more random variation for the same
value of 0. From these simulations, we expect most of the properties of (6a) to carry
over to (6b), and in particular we expect the process (6b) to be non-negative for v > 1.

One aspect that can be immediately derived from both (6a) and (6b) is that N(¢)
in both cases increases monotonically from N(0) = 0 to limyo N(t) = m. That it
increases monotonically follows from non-negativity of n(t) = dN(t)/dt. Furthermore,
that it eventually converges to m follows because n(t) eventually has to converge to zero,
and this can only occur when the drift in (6a) or (6b) is zero, so that in particular
limy_, . n*(t) = 0, which requires lim; ,, N(t) = m.

To give an impression of what data from (7) look like, consider the graphs in Figure
2. It contains two realizations of the process with o« = 5, ¢ = 0.5, and the remaining
parameters the same as in Figure 1. These figures are obtained by simulating a discrete
Euler-type approximation of the continuous-time model (7), discussed below, using a
very fine partition. We observe that the cumulative number of adoptions N (t) follows the
familiar smooth S-shaped curve, which however deviates randomly from its mean N(t) =
mF(t), with the largest deviations occuring around the inflection point. Correspondingly,

the sales data X; clearly show mean-reversion to 7i(t) = mf(¢), with the largest random



variation around the peak sales.

Insert Figure 2 about here

The discretize the model, we use the standard Euler approach, which for (7) results

in

n(t) = nltir) ~ o (plm— Nt + Nt [m = N(tion)] = n(tio) ) [ = ti]

+on(ti_1) [W(ti) — W(ti_1)]

= a(plm = Not) + L Nii(m = Niet) = nlti1) ) 6+ nlti1)es

where 6 = t; — t;_1, and

Ei =0 [W(tz) — W(tz_l)] ~ 1.1.d. N(O, 0'2(5),

(8)

as the increments W (t;) — W(t;_1) are independently and identically distributed with

mean zero and variance (t; — t;_1) = 0.

The approximation of the sales X; over the interval (¢;_1,%;], is given by
ti
This implies that

Xi—Xio1 = d[n(t) — n(ti-1)]

X X
SR Yo (p(m — Ni1)+ %Ni_l(m — N;_1) — 5 1) d+46 ; Le,

= a52p(m — Ni—l) -+ 0452%Ni_1(m — Ni—l) — CU(SXZ'_l -+ Xi_lffi.

In summary, the discretization gives
AX; = fy+ BaNi_1 + BsN7 | + BuXiy + X1,
with €; ~ 1.i.d. N(0,02), and where 8, = —ad, and

B = pmad® = —PBsdpm,

B2 = ad’(q—p)=—Pub(q—p),

_ 52
By = —12% — gL
m

m
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The discrete-time model (9) immediately suggests a maximum likelihood estimation
procedure. Note that this reparametrized Euler approximation encompasses the case
with 8, = —1, corresponding to immediate adjustment of X; to its equilibrium path.
This submodel is a straightforward extension of the Bass linear regression considered
below, using a particular heteroskedastic specification of the error term. On the other
hand, in the underlying continuous model (7), immediate adjustment is only possible
in the limiting case @« — oo. The fact that 5, = —ad suggests that 84 can be less
than or equal to —1 must be seen as an approximation error. However, we expect this
approximation to mainly affect inference on the adjustment parameter «, and much less
on the parameters of interest (m,p, q).

We now should say a few words about identification of the parameters. As is clear
from (9), there are four § parameters, corresponding to the four underlying parame-
ters (m,p,q, @), given a choice for 6. Note that § represents the observation frequency.
Assuming that ¢ is measured in years, annually observed data correspond to § = 1, quar-
terly data to § = 7, and monthly data to § = ;5. This means that § is not an unknown
parameter, but a known property of the data. This allows recovering the parameters of
interest (m,p,q) together with the speed of adjustment «, from the four § parameters,

which may be estimated by maximum likelihood as discussed in the next section.

2.3 Alternative representations

The most commonly considered empirical representations of the Bass diffusion theory
are proposed in Bass (1969) and Srinivasan and Mason (1986).
In Bass (1969) it is proposed to consider ordinary least-squares estimation of the

difference equation corresponding to (2), that is,

Xi = plm—Ni1)+ %Ni—l(m — Nio1) +&

= o +aeN;_; + 042NZ~2_1 + €, (10)

where ¢; is assumed to be an independent and identically distributed (i.i.d.) error term

11



with mean zero. Note that (p, ¢, m) must be obtained from (i, ag, @3). An alternative
approach is to apply non-linear least squares directly. Note also that these values of p
and g correspond to those of the continuous-time model (2) only if § =¢; —¢;_1 = 1. In
other instances, these parameters have to be rescaled, see also Putsis (1996). Clearly,
our model adds a regressor on the right-hand side and also modifies the error term.
Srinivasan and Mason (1986) recognize that the Bass (1969) formulation above may
introduce aggregation bias, as X; is simply taken as the discrete representative of n(t).
Therefore, these authors propose to apply nonlinear least-squares to their representation,

that is,
X; =m[F(t;0) — F(ti—1;0)] + ui, (11)

with u; assumed to be i.i.d error term. This method is quite elegant, although parameter
estimation might not be easy as it involves estimating p and ¢ jointly from ratios like
% and sums p + ¢, and this might make the estimation process unstable. Furthermore,
again it is assumed that there are homoskedastic errors.

Below we will compare these two alternative estimation procedures with the estima-

tors resulting from our model, which are analyzed next.

3 Estimation and inference

In this section we discuss the estimation of the parameters in our new representation. As
it will turn out that standard asymptotic properties does not hold, nor would it for the
standard Bass (1969) model, we resort to simulations to see how large the differences are

between standard normal variates and our estimators divided by their standard errors.

3.1 Estimation

Suppose that we have observations {V; = N(di),s = 0,...,T}, and its increments
X;. The (quasi-) maximum likelihood estimators of the parameters (5;,02) of the dis-

cretization (9) can be obtained simply by weighted least squares (WLS), with 1/X; ;

12



acting as weights. Thus, letting ¥; = AX;/X;_ 1, Z; = (1, N;_1, N2, X;_1)/X;_1, and

/6 = (/617/627/637/64)I7 we find

-1 7 T

T
~ 1 ~
_ 2 : 7l 2 : RV ~2 2 - Q72
- (i:l ZZZi) i1 il 7T er i 72 12
From £, we may obtain estimates of the parameters (m,p, ¢) and the rate of adjustment
_/62 -V /6? - 4/61/63 Bl mB3 ,84 (13)

, p= i="2, a=-t

26 8By 5B 5

« from

Note that the estimates of p, ¢ and « involve the sampling frequency 9, which is a
known constant as discussed in the previous section. Observe also that the estimate of m
does not depend on §, nor on the parameter 84 characterizing the speed of adjustment.
Asymptotic standard errors of the parameters could be obtained, using the delta method,
from V]3] = 662 (Zz;l ZiZZf) _1. Whether these standard errors may be used to obtain
asymptotic £-tests and confidence intervals in the usual fashion depends on the asymptotic

properties of the estimators, is considered next.

3.2 Asymptotic properties

As T increases and ¢ is kept fixed, we have seen in the previous section that Ny — m,
so that Xt — 0. This implies that as T — oo, the parameter m may be estimated
without error. On the other hand, when Nr has essentially reached m, it is clear that
the information on the other parameters p, ¢ and « will no longer increase, and this
implies that the estimators of p and ¢ in (12)—(13) will not be consistent. However large
T is, different realizations of {N;}7, will lead to different realizations of the estimators.
This in turn means that we cannot validate the conventional use of asymptotic standard
errors for p and ¢, since the proof of asymptotic normality builds on consistency of the
relevant estimators.

As an alternative approach, suppose that we fix the time span [0, S] for the continuous

time parameter ¢, and we let the time interval § = S/T vary, such that 6 — 0 as T — oo.

13



Then we may characterize the limiting behavior of sample moments such as Y., Z;Z!
and Zz;l Zie; by the corresponding integrals of the continuous time processes. This leads

to the following results for the estimator 3 and its estimated covariance matrix.

Theorem 1 Let Z(t) = n(t)"'[1,N(t), N(t)%,n(t)]' and Ds = diag(62,6%,42,8). Then,

as T — oo and 6 — 0, with S fized,

([ [ Bi-5))
A 6_2 /82 - /62 d S - S

D;Y (B —pB) = ) — 0 Z(t)Z(t)dt Z(t)dW (t), (14)
5 Ba— s y ) |

\ ' Bi-B) )

and

-1
D; 'WV[B|D; ' % o2 ( / SZ(t)Z(t)’dt) . (15)
0

The proof of this theorem is given in the Appendix. The limiting distribution obtained
here is expressed as a functional of continuous-time processes, which themselves are
functionals of a Brownian motion process. Such expressions are very common in the
econometrics literature on unit roots and cointegration, see for example Hamilton (1994).
An important result from this literature is that if Z(¢) would be independent of W (¢), then
the limiting expression in (14) would have a so-called mized normal distribution, which
would enable the construction of asymptotic standard normal {-ratios on 5. However,
this independence is violated here, which means that such ¢-ratios can have a non-normal
asymptotic distribution. In principle, this distribution will depend on all parameter
(p,q, m,a) as well as S. In practice we can set S to 1 by redefining the units of time

measurement, but then the dependence on the unknown parameters remains.
The limiting behavior of (11, p, §, &) may be obtained from (13). Here, one has to
take into account that the true value of § is really a sequence satisfying (81, 82, B2) =
O(6?) and B4 = O(J). Together with (14), this implies that 6=2(8y, Ba, 83) = 0,(1) and

6='81 = Op(1), which in combination with (13) implies that (71, , §, @) are all O,(1),

14



and hence do not converge in probability to their true values for fixed S. In other words,
the parameters of the Bass model cannot be estimated consistently based on a fixed time
span S, even if the sampling frequency d goes to zero. This is a common phenomenon
when estimating the parameters of a continuous-time model.

In general, one expects consistency and asymptotic normality as S — oco. However,
in this particular case one may definitely expect m to be consistent as S — oo, but for
the other parameters this might not be possible for the same reasons given earlier. At
some point, n(t) has converged to zero, and extending the sample period will not lead
to any new information. An important consideration is that as S — oo, n(S) — 0 and
hence n(S)~! explodes. This means that as the process reaches its saturation point,
the information on the parameters should increase considerably, since it involves a factor
n(t)~'. In the next subsection, we will use Monte Carlo simulation methods to investigate
the asymptotic behavior of the estimators and their standard errors as S increases.

The result that the parameters pand ¢ in the Bass model cannot be estimated consis-
tently, even as the sample period increases, may shed some new lights on the simulation
results reported in Van den Bulte and Lilien (1997). These authors study the effect of
extending the sample period on the bias of the Srinivasan-Mason (SM) estimator. The
interpretation of their simulation results is based on the premise that the SM estimator,
as any non-linear least squares estimator under conventional circumstances, is consistent
as the sample size increases or as the error variance decreases to zero. Although consis-
tency will indeed be obtained as ¢ — 0, the results here indicate that consistency as the
sample size increases is very doubtful, because the information no longer increases as the

sample size is extended beyond the saturation point.

3.3 Monte Carlo simulation of asymptotic properties

The theoretical results in the previous subsection indicate that both consistency and
asymptotic normality of the estimators of the parameters m, p and ¢ cannot be proved

analytically, even as both the sampling frequency ¢ goes to zero and the sample period
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S goes to infinity, although the latter is sufficient for consistency of /m. On the other
hand, we have obtained a characterization of the limiting distribution of the reduced-form
parameter estimator 8 and its estimated covariance matrix. In this subsection, we study
the properties of the implied limiting distribution of (7, p, §, &), for various values of S,
using Monte Carlo simulation of the limiting integral expressions in Theorem 1. That
is, we simulate realizations from this limiting distribution, and then transform these to
realizations of (77, P, §, &) and its estimated standard error. Using these simulations, we

hope to answer the following questions:

1. Do the estimator biases and variances decrease to zero as S increases?

2. Do the standardized estimators (that is, t-ratios) have an approximate standard

normal distribution as S increases?

In all cases we use a relatively fine discretization of 6 = 0.01 to simulate an approx-
imation of the continuous-time processes and stochastic integrals. All numerical results
in this section and the next have been obtained using Ox version 3.1, see Doornik (2001).

In order to address the question of (lack of) consistency as S increases, we consider
first the behaviour of the asymptotic (6 — 0) standard errors of /m, p, ¢ and &, as S in-
creases. Figure 3 plots the average over 1000 Monte Carlo replications of these asymptotic
standard errors, expressed as fraction of the true value of the corresponding parameter.
Here the true values are chosen as (p,q,«,0) = (0.01,0.5,5,0.5). The results are invari-
ant to m, which is here set at 1, and other parameter combinations lead to (unreported)
qualitatively similar patterns. For this parameter configuration, the inflection point lies
around 8, and the process has reached its maturity level at about ¢ = 25. This leads us

to depict the behavior of the relative standard errors for S ranging from 8 to 32.
Insert Figure 3 about here

From Figure 3 we clearly see that the standard error of /n has essentially converged

to zero for S > 20. However, the standard errors of the other three parameters indicate
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that these parameters are still estimated with some uncertainty when S = 32, after which
no new information on these parameters can be expected. This is most evident for the
parameter p. After about 15 years the standard error of p virtually remains the same at
about 10% of its true value, indicating that no additional information on the parameter
is obtained from larger samples. For the other two parameters ¢ and ¢, the standard
errors seem to decrease somewhat at S = 32, but only very slowly. Bearing in mind that
the process has already reached its maturity level at S = 32, this again indicates that
these parameters cannot be estimated without error, even when the full diffusion process
has been observed.

These properties are confirmed by the simulated distributions of the parameter esti-
mates in deviation from their true values, depicted in Figure 4. Here we use the same
parameter combination as before, with the estimated densities based on 10000 Monte
Carlo replications. As expected, the density of /i quickly concentrates around the true
value as S increases, to such an extent that the densities for S = 16 and S = 32 could not
be conveniently displayed. In contrast, the distribution of p hardly changes as S increases
beyond 10, although the densities seem to become slightly better centered around the
true value. The densities of ¢ and & do become more concentrated as S increases, but it
is important to note that for S = 32, both estimates still display substantial variation,

even though the process has converged to its maturity level.

Insert Figure 4 about here

Figure 5 considers the distribution of {-statistics corresponding to four parameters,
for the same parameter values. With the possible exception of «, the densities of the
t-statistics seem to be fairly close for S large enough. Therefore, although the theoretical
analysis in the previous sub-section does not explicitly indicate asymptotic normality,
the simulation results in this subsection indicate that the standard normal distribution
may be used as an approximation for {-statistics based on 7, p and §. Although we

have only demonstrated this for one particular parameter value, unreported simulations
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indicate that this result holds more generally, at least for the cases where the inflection

point is within the estimation sample.

Insert Figure 5 about here

4 Comparing model representations

In this section we evaluate the empirical performance of the representations of Bass (1969)
and of Srinivasan and Mason (1986) [abbreviated as SM], when the data generating
process is our newly developed model, which we label here as BF1. We also incorporate
the new model without the autoregressive variable, and label this as BF2. We examine
the consequences of assuming immediate adjustment and of neglecting heteroskedasticity.
As the two alternative empirical models lack autoregressive dynamics, we may expect that
this omission leads to biased estimates of all parameters. It is however not immediately
clear which parameter would be affected most. Next, we would expect that the erroneous
assumption of homoskedasticity would lead to empirical distributions which are not close

to the normal distribution.
Insert Figures 6, 7, 8 and 9 about here

The DGP is again the same as before, as well as the Monte Carlo setup, where we
now consider S = 12 and S = 18, and we vary over = 0.1 and § = 1. The cases with
d = 1 can be viewed as concerning aggregated data. It is unclear to what extent the
exclusion of a relevant variable hurts the models with also homoskedastic errors, but one
might expect that aggregation makes such an exclusion less harmful. This can seen by
comparing the graphs for BF1 and BF2 when ¢ increases from 0.1 to 1.

The results in Figure 6 concern the finite-sample distributions of the BF1, BF2,
Bass and SM in case S = 12 and § = 0.1. In words, this case would concern rather
disaggregated data, where the inflection point has been passed just recently. The first

conclusion from these graphs is that the parameter estimates obtained from the BF2,
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Bass and SM models show substantial bias, whereas the estimates from the BF1 model,
as expected given the simulation results in the previous section, do rather well. For
example, the mean estimated value for p from the BF1 model would be around 0.01,
whereas that of the SM model equals about 0.0075. The second conclusion (from the
right-hand side panel of Figure 6) is that the empirical distributions of the non-DGP
models are, effectively speaking, all over the place. Hence, standard confidence intervals
of the BF2, Bass and SM models can not be trusted at all, at least when the data
correspond with the BF1 model.

When we compare the graphs in Figure 6 with those in Figure 7, where the only
change is that we go from § = 0.1 to § = 1, we observe that the earlier seen overwhelming
differences between the various models becomes smaller. There still is substantial bias in
the key parameters for the non-DGP models, and also do the distributions of the {—ratios
become a little more closer to the standard normal distribution, but differences seem to
be smaller. This suggests that neglecting a variable and a time-varying error process
might be less harmful for more aggregated data. The same type of conclusion can be
drawn from comparing Figure 8 with Figure 9.

Upon comparing Figure 6 with Figure 8, where S = 18 and 6 = 0.1, we see that
the differences between the empirical distributions for the estimated parameters become
smaller. This suggests that, as the diffusion process proceeds, the point estimates of the
various empirical models get closer to each other, where it should be mentioned that the
largest differences across models persist for the parameter p. Given the discussion in the
previous section about consistency, we should not expect that the empirical distribution
of the t-ratios would change much with more data. This is indeed confirmed by the
graphs in the right-hand panel of Figure 8.

A final remark about the empirical models would concern the performance of the SM
model. It is not easy to explicitly indicate how the omitted variable and the neglected
heteroskedasticity emerge in this highly non-linear model, but the simulation results do

suggest that this method is rather unstable, see for example Figure 9 and in particular
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for m. Perhaps these simulation results shed additional light on similar kinds of findings

in Van den Bulte and Lilien (1997).

5 Illustration

We illustrate various issues discussed above for a series of 74 monthly observations con-
cerning the number of ATMs in the Netherlands. The main focus is on how one can
make decisions in practice. The data range from March 1990 to April 1996. We decide
to use this series, which contains more observations than one typically has when con-
sidering Bass-type diffusion models, as the graphs of this series obviously display the
heteroskedastic features we emphasized before. The graph of the monthly number of
newly installed machines is given in Figure 10, and the graph of the cumulative number
appears in Figure 11. It seems that the inflection point has just been passed at the end of
the observation sample. Also, it is clear that the uncertainty around the installed series
is not constant over time, being much less in the beginning of the sample and rather high

towards the end of the sample.
Insert Figures 10 and 11 about here

We start with fitting the BF1 model, where we use EViews version 4.1, and then we
examine the estimation results for the other models, also considered in the simulations
before. We fix § as 1. We first need to decide on the type of heteroskedasticity. To this
end, we fit the BF1 model with homoskedastic errors, and focus on the properties of the
estimated residuals. When we regress the squares of these residuals on X; and X?, we
obtain the highest and significant ¢-ratio for Xj;, and hence we take the error term as

v X;e;. The estimation results appear in the top panel and the first column of Table 1.
Insert Table 1 about here

These estimation results suggest that 84 is not equal to -1, and hence the autoregres-

sive terms does matter. If this is truly the case, one might expect that the BF2, Bass and
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SM models, which all neglect this term, have estimated residuals with serial correlation.
Such correlation could be detected by the familiar Durbin-Watson [DW] test. And in-
deed, the results in the fifth row of Table 1 show that the DW test obtains a comforting
value for the BF1 model, whereas it suggests neglected autoregressive dynamics in the
other three models. Such neglected dynamics also have consequences for the estimated
parameters p, ¢, and to a lesser extent for m, as we have seen in the previous section.
When we compare the estimation results for these parameters across models, we can
observe substantial differences across models. Note by the way, that these differences
also imply differences across the estimated locations of peak sales, or inflection point.

When the BF1 model would indeed provide the most accurate description of the
data, then the neglecting of heteroskedasticity by the Bass and SM model could perhaps
be diagnosed by tests for heteroskedasticity. Examples of those tests are the LM type
test of White and the test for ARCH. Application of these farily standard tests gives
the outcomes in the rows underneath the DW test results in Table 1. Clearly, the test
statistics for the Bass and SM models are highly significant, and clearly indicate that
these models would be inadequate for this dataset.

Finally, if the BF1 model would indeed provide the best fit to the data at hand, one
might expect model selection criteria to favor this model. When we consider the values
of the familiar Akaike Information Criterion [AIC] in the last row of Table 1, which by
the way should be minimized, we see that the BF1 model is also preferred using this

criterion.

6 Concluding remarks

In this paper we have introduced a new model representation for the Bass diffusion
theory, which in a sense comes closest to the basic premises of this theory. Taking
this theory along, we ended up with a representation which extends the original Bass

model with an autoregressive variable. Additionally, we argued that the theory should
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involve an empirical model which allows uncertainty about the diffusion path to be small
in the beginning as well as at the end of the process. We analyzed the econometric
properties of this new model, and we found that its parameters cannot be consistently
estimated. As our model encompasses the original Bass model, this finding also holds
for this model. Through simulation experiments we aimed to see what this inconsistency
means for sample data typically encountered in practice. The main conclusion was that,
provided that the inflection point is in the sample period, one might rely on the standard
normal distribution for the {—ratios as an approximation. Again using simulations,
we also examined the consequences of neglecting the autoregressive variable and the
heteroskedasticity. We found that these consequences can be very large for the point
estimates of the key parameters as well as for the distributions of their {—ratios. In
other words, if our new model fits the data well, the estimates and their standard errors
obtained from the Bass (1969) and Srinivasan and Mason (1986), are far from reliable, and
in some cases nonsensical. On the positive side, a reassuring result of our simulations is
that the differences across models for highly aggregated data (think of, 10 years of annual
data) would not be large, but again provided the inflection point is in the sample.
There are various avenues for further research. The key parameters in the Bass
theory determine the location of the inflection point and the size of peak sales. It would
be interesting to examine how the various models perform for these parameters. Further,
we plan to derive the one- and multi-step ahead forecasts for the new model, as well
as their associated confidence bounds. As the model is rather complicated in terms of
serial dependence, we expect that simulation methods will be needed. Finally, we plan
to illustrate the new model for many real-life data series, in order to see whether it really

also provides an empirical improvement over currently fashionable models.
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Appendix

Proof of Theorem 1. To prove the theorem, we need to obtain the limiting behavior
of the sample moments ZZ;I Z;Z! and ZTZI Z;g;. It will be convenient to express these

sums, after appropriate standardization, as integrals. Let |z| is the integer part of z,

and define
(1)
_ 1 NLt/5J+1
Z&(t) =9 IDJZLt/JJ—I—l = W ) )
1
Le/el+ NLt/6J+1
\ 6 Xpysa )
and
t/4]
Z gi = W(S|[t/s)).
Then we have
T T
07'Ds Y ZZiDs = Y Zs(ti) Zs(tina)'6
i=1 i=1
T

and similarly

T T S
505 Y Zies = 0’3 Zslti ) Walts) - Wsltia)] = o / Zo(t)AWi(2).
i=1 i=1 0
Consider

Xy _ NQO#/8] +6) — N([#/8])

d d

It is clear that as § — 0, d|t/6| — t, and hence X|y/5/11/0 — n(t). Similarly, with
Nigssj+1 = N(8|t/8] + 6) we have Ns(t) — N(t) as 6 — 0. Combining these two results

leads to

Zs(t) — Z(1),
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where the convergence in distribution applies in D[0, S], the space of processes on [0, S]
that are right-continuous and have finite left limits. Analogously, it follows that Ws(t) N
W (t), jointly with the convergence of Zs(t) to Z(t). Applying the continuous mapping

theorem, this gives

5—1D52T:Zing5 = /S Zs() Z5(t) dt - /S Z(t)Z(t)'dt, (16)
Y Zei = o /0 Y Zidws(t) -5 o /0 C Ze(aw (D). (a7)

The second result actually cannot be proved by the continuous mapping theorem only,
but needs additional results about convergence to the solution of a stochastic differential
equation, see Hansen (1992).

From (16)—(17) we find

i=1

LI ( /0 ’ Z(t)Z(t)’dt)

Note that 3 is a consistent estimator. The convergence rate is O,(62) = O,(T~2) for the

T -1 T

D' (B-B) = (5_1DJZZiZ£D5) 67'Ds Y | Ziei
i=1

-1

/0 C Zi 0w (b).

first three components, and O,(8) = O,(T™') for the fourth component (describing the

autoregressive dynamics). This in turn may be used to show that 62 - ¢2, and hence

i=1

T -1 S -1
D;WV[BID;" = 62 (5—1175 > ZiZ£D5> 5 o ( / Z(t)Z (t)’dt> :
0
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Table 1: Estimation results for the new Bass model (BF1), the same model with « set
equal to 1 (BF2), the original Bass (1969) model, and the representation of Srinivasan

and Mason (1986)(SM). The sample for all models ranges from May 1990 to April 1996.

Standard errors are given in parentheses.

BF1 BEF2 Bass SM
m 142064.3 142052.5 142060.8 142060.1
(45502.99) (23644.90) (18048.95)  (18806.93)
P 0.000406 0.0000978 0.001081 0.000730
(0.000350) (0.000148) (0.000559)  (0.000170)
q 0.072660 0.066406 0.064948 0.064831
(0.015874) (0.007353) (0.007221)  (0.007761)
Bs+1 0.425568
(0.137421)
DW 2.117 1.278 1.488 1.513

LM — ARCH (1) 0.001 < 0.001 7.300 7.951
LM — White 2.122 4.097 22.638 11.791

AlIC 13.872 14.074 15.007 14.975
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Figure 1: Simulation from the Bass hazard rate model, with m = 100000, p = 0.01, and
qg = 0.15.
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Figure 2: Simulations from (7), with p = 0.01, ¢ = 0.15, « = 5, and ¢ = 0.5.
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Figure 3: Asymptotic relative standard errors of /,p, ¢ and &, as a function of the sample

period S. Key parameters in the DGP are (p, ¢, a,0) = (0.01,0.5,5,0.5).
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Figure 4: Asymptotic distributions of m — m, p — p, § — ¢ and & — «, for various values

of S. Key parameters in the DGP are (p, ¢, a,0) = (0.01,0.5,5,0.5).
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Figure 5: Asymptotic distributions of t-statistics of 7, p, § and &, for various values of

S. Key parameters in the DGP are (p, ¢, «,0) = (0.01,0.5,5,0.5).
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Figure 6: Finite-sample distributions of estimators (left) and ¢-statistics (right) of m, p,
and ¢, with sample period and frequency given by S = 12,4 = 0.1. Key parameters in

the DGP are (p, ¢, «,0) = (0.01,0.5,5,0.5).
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Figure 7: Finite-sample densities of estimators (left) and t-statistics (right) of m, p, and
g, with sample period and frequency given by S = 12,0 = 1. Key parameters in the

DGP are (p,q,«,0) = (0.01,0.5,5,0.5).
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Figure 8: Finite-sample densities of estimators (left) and t-statistics (right) of m, p, and

g, with sample period and frequency given by S = 18,6 = 0.1. Key parameters in the

DGP are (p,q,«,0) = (0.01,0.5,5,0.5).
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Figure 9: Finite-sample densities of estimators (left) and t-statistics (right) of m, p, and
g, with sample period and frequency given by S = 18,0 = 1. Key parameters in the
DGP are (p,q,«,0) = (0.01,0.5,5,0.5).
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Figure 10: Number of newly installed ATMs, March 1990 - April 1996
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Figure 11: Cumulative number of installed ATMs
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