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Abstract

Although high frequency diffusion data is nowadays available, common practice
is still to only use yearly figures in order to get rid of seasonality. This paper pro-
poses a diffusion model that captures seasonality in a way that naturally matches
the overall S-shaped pattern. The model is based on the assumption that additional
sales at seasonal peaks are drawn from previous or future periods. This implies
that the seasonal pattern does not influence the underlying diffusion pattern. The
model is compared with alternative approaches through simulations and empirical
examples. As alternatives we consider the standard Generalized Bass Model and
ignoring seasonality by using the basic Bass model. One of our main findings is that
modeling seasonality in a Generalized Bass Model does generate good predictions,
but gives biased estimates. In particular, the market potential parameter will be
underestimated. Ignoring seasonality gives the true parameter estimates if the data
is available of the entire diffusion period. However, when only part of the diffu-
sion period is available estimates and predictions become biased. Our model gives
correct estimates and predictions even if the full diffusion process is not yet available.
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1 Introduction

Sales of new products and services typically follow a diffusion process that has an

S-shaped pattern for cumulative sales and the corresponding pattern for sales is

hump-shaped. There is a variety of models that can capture such a diffusion pattern.

By far, the Bass (1969) model is the most often used in marketing. This model has

three key parameters that together fully capture any diffusion pattern. The main

application of these models is forecasting sales. For new products one uses observed

patterns of similar products. However, after having observed the diffusion for a

product for a while, one can also forecast the remainder of the diffusion pattern.

The original Bass (1969) model is set in a continuous time context, and it as-

sumes a smooth development of sales. This smooth development matches well with

observed diffusion data at a yearly frequency. However, at a higher frequency the

sales development tends to be less smooth. Within a year many products are likely

to show a strong seasonal pattern. Seasonality creates periods with higher sales fol-

lowed by periods of lower sales. This pattern of these periods of high and low sales

tends to be systematic. For example, Christmas sales usually generate a sales spike

in the month of December. In this paper we present a model that allows to take into

account such seasonality while keeping intact the basic long-run S-shaped pattern.

The importance of having a diffusion model that incorporates seasonality is am-

plified by the increasing availability of high frequency data. Although high frequency

data is nowadays often available, researchers usually opt to aggregate such data to the

yearly level. For example Venkatesan et al. (2004) mention the practice of collecting

annual data in order to get rid of seasonal fluctuations. Although this aggregation of

data of course reduces or even removes seasonality, it comes at a loss of information.

Other studies argue that the use of annual data in diffusion models results in too

small a number of data points. Such a small number of data points leads to the so-

called ill-conditioning problem, which in turn leads to biased estimates, see van den
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Bulte and Lilien (1997) and Bemmaor and Lee (2002). Putsis (1996) and Non et al.

(2003) find that the use of quarterly or monthly data significantly improves estimates

of diffusion model parameters compared to only using annual data. The main reason

for this improvement is the reduction in the data-interval bias that comes from the

discrete time approximation of the underlying continuous time diffusion model. Both

studies do not model seasonality for these monthly and quarterly data.

From a managerial point of view, we also believe that seasonal patterns hold valu-

able information for managers. This information can be used to answer questions

concerning short-term demand as well as inventory management issues. Hence, filter-

ing out seasonality effects, which is common practice in the literature of financial and

macroeconomic time series, is not a preferable solution in case of diffusion models in

marketing.

The conclusion is that seasonality must somehow be incorporated in the Bass

type model. However, it is not immediately obvious how this should be done. In

this paper we propose a natural way to incorporate seasonality in the Bass model.

We treat seasonality in a peak period as a result of customers who delay or are

speeding up their purchases. We also contrast our model with other approaches.

The first alternative approach we consider is to include seasonal dummies in a way

that matches with the Generalized Bass model [GBM] (Bass et al., 1994). We show

that for this model estimates for the diffusion parameters are biased, where especially

the market potential parameter is underestimated. Although our model is similar to

the GBM specification, the results of our model are intuitively more appealing and

do not lead to a bias. The second alternative approach is the traditional Bass model,

which ignores seasonality even when it is present. Our results give reassuring results

for the practice of ‘guessing by analogy’, because in case the full diffusion series is

present we document that the traditional Bass parameters have no bias.1 However,

1‘Guessing by analogy’ is a popular method among researchers as well as managers to find the diffusion
parameters of a new product based on the diffusion parameters of earlier introduced similar products,
see Ofek (2005) and Lilien et al. (2000). Thus, if published or obtained estimates are biased by ignoring
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if seasonality is ignored when the diffusion process is before its saturation level,

the estimates as well as the forecasts are biased. We use empirical examples and

simulations to show that our new seasonal Bass model is most useful.

Next to our model we also propose another variation to the Generalized Bass

Model with seasonality. This variation has the same nice behavioral statistical fea-

tures of our model, that is the parameter estimates are unbiased, but it does not have

the same nice interpretation that our model has. The main advantage, however, is

that it is easy to implement in standard statistical software packages, and therefore

we also pay attention to this model.

The outline of our paper is as follows. In Section 2 we propose our model and

show that it fits an empirical sales series concerning flat-screen television sets (LCD

and Plasma). In this section we also theorize why the alternative approaches are

less useful when seasonality is present. In Section 3 we contrast our proposed model

with the other approaches in a simulation study. We discuss parameter estimation

and forecasting. In Section 4 we return to actual sales data and demonstrate that

the new seasonal Bass model fits naturally to these data and that it gives plausible

forecasts. In Section 5 we conclude with various suggestions for further research.

2 A Bass diffusion model with seasonality

Although seasonality is a major issue, literature on seasonality in marketing is scarce.

Shugan and Radas (1999) give an overview of the types of seasonality issues in the

context of service marketing. They consider how to overcome these issues and how

managers should react to them. Fok et al. (2007) look at weekly seasonality in sales

in a panel of fast moving consumer goods. There are to our knowledge only two

papers that focus on modeling seasonality in diffusion, and these are Radas and

Shugan (1998) and Einav (2007). Both these papers consider the movie industry.

seasonality this affects the prediction of the diffusion of the new product as well.

4



Einav (2007) uses a structural model to distinguish between the seasonal demand

and supply effects. Sales could be higher because more people go to the movies in

holiday seasons or because better movies are screened during these periods. The view

on seasonality discussed in Radas and Shugan (1998) comes closest to our approach.

These authors interpret seasonality as a time transformation process, that is, it is as

if the service or product ages more quickly along its life cycle in peak seasons. In

off-peak seasons it is as if the product ages slowly. The diffusion model they propose

to explain this results is somewhat in line with the Generalized Bass Model (Bass

et al., 1994). However the seasonal structure is imposed rather than estimated in

that model. Furthermore, this paper does not consider the impact of the specification

on the estimation and interpretation of the standard Bass-type parameters.

As an empirical example of the feature we study, we present in Figure 1 the

monthly sales figures of flat-screen televisions in the United Kingdom. These figures

clearly show a systematic seasonal pattern. Furthermore, the graph suggests that the

seasonal pattern is proportional to the speed and position of the diffusion process,

and therefore we should account for this.

[Figure 1 about here.]

In the following subsection we build up to our proposed methodology and we

show that it is useful for this empirical case on consumer electronics. In the subsec-

tion thereafter we further discuss the alternative approaches, and indicate why these

approaches are less satisfactory. Further, in this last subsection we deal with the

consequences of ignoring seasonality.

2.1 The proposed model

Our aim is to create a model that is consistent with the standard Bass model, there-

fore our starting point is the discrete time specification of the Bass model. As the

underlying Bass diffusion model is specified in continuous time it is up to the empiri-
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cal modeler to shape it such that it can be fitted to actually observed data in discrete

time. Bass (1969) simply puts the theory into the standard linear regression frame-

work, whereas Srinivasan and Mason (1986) take aggregation bias into account and

arrive at a non-linear structure. Recently, Boswijk and Franses (2005) took possible

deviations from the underlying S-shape seriously. They introduced a specification

that contains a heteroscedastic error process and a tendency for the diffusion to re-

turn towards an equilibrium growth path. In the present paper we start with the

Srinivasan and Mason (1986) approach in combination with heteroskedasticity.

The heteroscedasticity implies that larger fluctuations are more likely to occur

around the moment of peak sales. This phenomenon occurs in every diffusion pro-

cess. For the estimation of the traditional Bass parameters it is known that ignoring

heteroscedasticity only leads to a loss in efficiency, it does not lead to a bias. How-

ever, to disentangle seasonality from random shocks it is of importance to properly

model the heteroscedasticity.

The dependent variable in all the models in this paper is the sales2 of a new

product at month t, St. The basis for our model, as well as the alternatives presented

later, is

St = m(F (t)− F (t− 1)) + f(t)εt εt ∼ N(0, σ2), (1)

where F (t) is the fraction of cumulative adopters at time t and f(t) the fraction of

current adopters. F (t) and f(t) are the solutions of the differential equation that

2In this paper we take months as the basic frequency of the observed data. The empirical data we have
available is also monthly data. Further, in the diffusion literature monthly data is the most often used
data interval that contains seasonality. Our model, however, can be used for any other data interval.

6



underlies the continuous time Bass model, that is,

F (t) =
1− exp{−(p+ q)t}

1 + q
p exp{−(p+ q)t}

, (2)

f(t) =
(p+q)2

p [1− exp{−(p+ q)t}]
(1 + q

p exp{−(p+ q)t})2
. (3)

Further, p, q and m are the traditional Bass parameters capturing the innovation,

imitation and market potential, respectively. The error term is weighted by the

fraction of current adopters, this implies that the error term at time t has variance

f(t)2σ2. This specification is slightly different from the original proposal by Boswijk

and Franses (2005). They weight the error term with the sales of the previous period.

The advantage of our suggestion is that it leads to a smooth pattern for the variance.

The lagged sales show a far more erratic pattern, especially in the case of seasonality.

The technical disadvantage is that in this case the variance is dependent on the

diffusion parameters.

From here we move to the inclusion of seasonal factors. To model seasonal peaks

and dips we need to increase or decrease the sales in some months relative to the

specification in (1). Above we already motivated that the seasonal effect should be

proportional to the speed and position of the diffusion process (see also Figure 1).

This proportionally additional effect of seasonality can be represented as

St = m(F (t)− F (t− 1))(1 +
∑
kεK

δkD
01
kt ) + f(t)εt ε ∼ N(0, σ2), (4)

where D01 represents a zero-one dummy for each month k in the subset K, where

K can consist of one or more months depending on the seasonal pattern. To put it

more formally,

D01
kt =


1 if observation t is in month k, that is, κ(t) = k

0 otherwise,
(5)
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where κ(t) gives the month number corresponding to observation t. In this formula-

tion there is of course a maximum of eleven months that can be included in the set

K, because otherwise the model parameters would not be identified.

Below we shall argue that the model in (4) changes the interpretation of the

Bass parameters, especially m. In other words this model introduces a bias in the

parameters.

To avoid this bias we need to introduce the seasonal pattern in such a way that it

does not interfere with the long-run S-shape. To obtain this, the added seasonality

effect should have mean zero. This means that the additional sales at a seasonal

peak must be compensated in other months. For monthly data we therefore define

the dummies such that the effect in the focal month is 11/12 whereas in the other

months it is minus 1/12-th. Note that over an entire year this dummy has mean zero.

We can use this zero-mean dummy (DZM ) to replace the zero-one dummy (D01) in

(4). This zero-mean dummy is formally defined as

DZM
kt =


11
12 if κ(t) = k

− 1
12 otherwise.

(6)

Later we show that the Generalized Bass Model with this zero-mean seasonal dummy

has some preferable features. However there is a counter-intuitive feature as well.

Again consider the case of a seasonal peak at some period t corresponding to month

k. The size of the additional sales equals 11
12δk(F (t) − F (t − 1)). In other words

it is a fraction of the sales predicted by the underlying Bass model. The “com-

pensating” decrease in sales in the next month is 1
12δk(F (t + 1) − F (t)). The

counter-intuitive thing here is that the compensation is relative to the “predicted”

sales for the next period. Intuitively it would be more appealing if the compensa-

tion decrease equals 1
12δk(F (t) − F (t − 1)), that is, a fraction of the increase itself.

Stated differently, although the dummies have mean zero, the seasonal effect itself
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((F (t)− F (t− 1))δkDZM
kt ) does not have mean zero.

In the final model we therefore propose we correct for the above-mentioned

counter-intuitive feature. As a result we take the idea that the seasonal peaks origi-

nate from customers delaying or speeding up their purchases. In this case the addi-

tional sales during a seasonal peak is the summation of the delayed and accelerated

purchases of the other months. Hence we propose to make the additional seasonal

effect dependent on the sum of a fraction of the underlying adoption curve of all the

months influencing the focal month. First we define the set of months that influence

a focal month k. We denote this set as Hk. For example, if Hk = {−3,−2,−1, 1, 2}

sales from up to three months before the focal month are delayed to the focal month

and sales from unto two months after are accelerated towards the focal month. As

we consider monthly data, we choose to take the subset to be all the other months

Hk = {−6, . . . ,−1, 1, . . . , 5}. This results in

St = m[(F (t)−F (t− 1)) +
∑
kεK

δk(DOM
1kt f(t) +DOM

2kt

∑
hεHk

f(t+ h))] + f(t)εt, (7)

where still εt ∼ N(0, σ2). The first dummy is defined as

DOM
1kt =


− 1

12 if period t influences month k, that is, κ(t)− k ∈ Hk

0 otherwise.
(8)

This part of the specification concerns the decrease in sales at time t due to individuals

delaying or speeding up their purchase. The second dummy in (7) makes sure that

the delayed and accelerated sales are added to the sales of the focal month. The

summation
∑

hεHk
f(t + h) sums the sales from the months influenced by the focal
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period. The second dummy is defined as

DOM
2kt =


1
12 if κ(t) = k

0 otherwise.
(9)

An additional advantage of this formulation is that the parameters for all months

are identified. In case the monthly effects are not strong, a model with twelve monthly

dummies is not advisable, but the intuition of our formulation is in this case still

preferable.

This final model seems to capture the seasonal patterns found in practice very

well. To show this we used this model to generate artificial data. Figure 2 shows the

resulting diffusion pattern.

[Figure 2 about here.]

Panel (a) shows the results of a series generated by our proposed model, which is

generated with values 0.00002, 0.075, and 42 for p, q and m. For this illustration we

further add five seasonal dummies representing January, June, October, November

and December, which we gave the parameter values (δk) 0.5, −0.1, 0.1, 0.3 and 0.9.

All this seems very arbitrary, but if we zoom in on the months on the left side of

the hump shaped curve (panel (b)), we see resemblance with the pattern of the sales

of flat-screen televisions in the United Kingdom from February 2004 to June 2008

(panel (d)). In Section 4 we again analyze these data for the United Kingdom as

well as for five other European countries3. In panel (c) of Figure 2 we also zoomed

in on exactly the same part as panel (b), but now we generated the data without

seasonality. From the latter it becomes clear that seasonality is an issue and that

ignoring seasonality is likely to have consequences.
3The reason to zoom in and leave the left hand truncated is because we only have annual data before

2004, whereas flat-screen televisions were introduced in 2000 in the United Kingdom. This gives no problem
for the estimation, because we use the method of Srinivasan and Mason (1986) to estimate the diffusion
parameters. For this method the knowledge of the moment of introduction is sufficient for correct estimates
(Jiang et al., 2006).
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2.2 Alternative approaches

In this subsection we briefly discuss some alternative approaches. We consider the

following models/approaches: (i) Bass model with additive dummies; (ii) GBM with

0/1 dummies; (iii) GBM with mean zero dummies; (iv) standard Bass model without

seasonality; (v) Bass model applied to seasonally adjusted data. In this section we

give intuitive arguments for the qualities and problems of the different approaches. If

possible we support this using examples. In the next section some of the approaches

are more formally compared using a large scale simulation study.

The Bass model with additive dummies does not capture the proportional effect

of seasonality. Such a specification results in a seasonal effect that is the same

throughout the diffusion process. In Figure 3 we show a simulated series for such a

model. The data generating process for this simplified figure is, p = 0.001, q = 0.1,

m = 100 and σ2 = 0. Also note that the cumulative sales in the end exceed m =

100, that is, the seasonal effects result in a higher actual market potential than the

parameter setting seems to imply. Summarizing, it is clear that the approach with

additive dummies does not fit seasonality in diffusion models, and therefore we will

not consider this approach in the simulation study.

[Figure 3 about here.]

The Generalized Bass Model with a zero-one dummy, see (4), makes sure that

the seasonal effects are largest around the moment of peak sales. However, this

model does not solve the bias for the market potential (true market potential is

larger than m). This is shown in Figure 4 where we show simulated data based on

this specification. However, the overall shape of the diffusion process for this model

closely resembles that generated by our model and thus the real data. In the following

sections we compare our model to this model, which we will refer to as the Seasonal

Generalized Bass Model (SGBM).

[Figure 4 about here.]
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Next we consider the SGBM after replacing the zero-one dummy by the zero-

mean dummy as specified in (6). The difference between this specification and our

full model can be small. We further discuss this in the next sections. In Figure 5

there is a simplified comparison between our model and this variation of the SGBM

based on the data generating process mentioned before (p, q and m are 0.001, 0.1 and

100). At first sight both models give artificial data that seem to be equal. However,

if we zoom in on the seasonal peaks, the (small) differences between the two models

become clear.

[Figure 5 about here.]

As said, one can also decide to ignore seasonality altogether or to seasonally

adjust the diffusion data. We argue that if seasonality is not dealt properly the

estimation results are affected. However, if the full diffusion process is used for

parameter estimation, that is, when the market potential has been reached, this

problem disappears. In Figure 6 this is illustrated. The seasonal pattern goes above

and below the dotted line of the underlying sales curve, but in the end they arrive

at the same level of the market potential.

[Figure 6 about here.]

This reassuring result will be proven more thoroughly in the following section. In

contrast, this will not hold if the diffusion is before its saturation level. If seasonality

is not explicitly modeled, the fluctuations will be treated as random fluctuations.

The latter makes that the parameter estimates can depend on the incorporation of

one additional data point. If this data point is for example a month with a seasonal

peak the market potential and/or the speed of diffusion will be overestimated.

In the literature some authors consider monthly and quarterly data in diffusion

models. Some seem to ignore seasonality and in some cases it is smoothed out

with the same statistical tool typically used in macroeconomics, like Census X12.
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One example is Putsis (1996). To check if seasonal adjustment is in fact similar

to ignoring seasonality and estimating the standard Bass Model we take a look at

seasonally adjusted series generated by Census X12 (with all the default options).

For data generated by our model as well as the zero-mean SGBM the seasonally

adjusted series are almost the same as the underlying standard Bass Model, see

Figure 7. Hence, it seems that adjusting for seasonality gives correct estimates if

the full diffusion process is available, but has trouble coping with only a part of the

diffusion process. This is the same as in case the seasonality is ignored altogether. In

the rest of this paper we will not consider seasonal adjustment. We expect the results

to be very similar to the case where seasonality is ignored. Hence, proper analysis of

seasonally adjusted series can only be done if the saturation level is attained.

[Figure 7 about here.]

3 Simulation results

In this section we use simulations to compare our model to the two versions of the

Generalized Bass Model. The first version uses zero-one dummies for the seasonal

months, and this model will be abbreviated as SGBM01. The second seasonal GBM

uses a zero-mean dummy. This model we call SGBMZM . We further compare our

model to the Bass model without seasonal dummies. Here we also make two dis-

tinctions. We consider one version where we leave out the seasonality, but do allow

for heteroscedasticity. The other version excludes seasonality and heteroscedasticity.

This final model resembles the current practice in the literature. We call the two

versions BMhet and BM, respectively.

We divide the simulation study in two parts, first we consider using data of

full diffusion processes. Here we only look at how well the parameters are recovered.

Second, we consider what happens when only part of the process is used for parameter

estimation, that is, we look at the effect of right-hand truncation. In this case we
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look at the estimation results but also at forecasts. For both parts we use a cross

design for the five models. We simulate the diffusion process based on each model

and each of these simulated series is analyzed using all five models.

We vary the levels of the parameters for innovation (p) and imitation (q), as these

two parameters define the curvature of the diffusion process. We use four values of

p and four values for q, resulting in sixteen combinations for curvature. We use the

moment of peak sales (T ∗ = log(q/p)
(p+q) ) to represent this curvature, see Table 1 for the

different settings. The standard deviation of the error is set at 0.01, 5 or 10.4

[Table 1 about here.]

We use three different seasonal structures. The first has a single monthly peak,

say December, which we give a parameter value (δ12) of 0.6. For the second structure

we add a month, say January, with a parameter value (δ1) of 0.3. And for the third

structure we add two more monthly dummies, say June with a parameter value (δ6)

of −0.2 and November with a parameter value (δ11) of 0.1.

We use two levels of truncation, that is one after the moment of peak sales and

one prior to peak sales. The exact number of observations used depends on the level

of curvature. The moment of peak sales (Table 1) lies a little before 50% of the

total diffusion process, and therefore we make the number of data points of the full

diffusion process dependent on the number of data points until the moment of peak

sales5. The two levels of truncation are 20% before the moment of peak sales and

20% after. So, if the sample until peak sales has 50 data points, the first truncated

series contains 40 data points and the second 60 data points.

There is no need to vary the level of the market potential, as it only shifts the

effects of the entire model. The estimated market potential will be a key parameter

4The level of error-variance is proportional to the market potential. In our simulation we set the market
potential to 100.

5The number of data points of the full diffusion process is not equal to two times the data points until
peak sales, as the fraction of adopters at peak sales is actually less than 50%. How much less than 50%
depends on the curvature.
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when comparing the models. We set the level of market potential at 100 such that

deviations can be interpreted as a percentage difference relative to the real market

potential.

In sum, our design has 10800 cells. There are 5 simulated models, 5 estimated

models, 16 curvature combinations, 3 noise levels, 3 truncation levels and 3 types of

seasonality. In each cell we consider 100 replications.

3.1 Full Diffusion Process

In the first part of the simulation study we focus on the percentage difference of

the estimated moment of peak sales (T ∗) compared to the true value, 100(T̂ ∗−T ∗)
T ∗ ,

and the percentage difference for the market potential, 100(m̂−m)
m . The means and

standard deviations of these two criteria are given in Tables 2 and 3. These tables

show the case with four seasonal months and the results are aggregated over all levels

of curvature 6. The results for fewer seasonal months are very similar.

[Table 2 about here.]

[Table 3 about here.]

First we note the large difference between the true and estimated moment of peak

sales and between true and estimated market potential, in case the data is simulated

without heteroscedasticity and a model with heteroscedasticity is used. Models with

heteroscedasticity have problems finding correct estimates in case the true model has

no heteroscedasticity, because relatively large fluctuations at the beginning and end

of the diffusion curve cannot be explained fully by the heteroscedastic error term.

Therefore these random fluctuations will change the diffusion parameters. This shows

that if there is no heteroscedasticity it should not be included in the model. However,

for most practical situations, we believe that the assumption of heteroscedasticity is

6Other results are available upon request from the authors.
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a valid one. If there is uncertainty about the presence of heteroscedasticity in the

diffusion series an additional parameter could be included in the model, see Boswijk

and Franses (2005).

Table 2 shows that almost all models on average find the correct moment of peak

sales. Apart from the case where the simulated model has no heteroscedasticity there

is no cell above 1%. This is the average effect over all combinations of p and q for

the case of four seasonal months. The small difference in the moment of peak sales

means that these models find the correct innovation and imitation parameters. This

is especially remarkable for the case where the estimated model does not account for

seasonality, but the generated data does show seasonal fluctuations.

For the market potential, we see a very different picture. Here there is a large

difference between the SGBM01 and the other models. All models overestimate the

market potential by a little under 7% if the true model is the SGBM01. If the SGBM01

is estimated when one of the other models is the true model the reverse effect of −7%

is present. To see which of the models is correct we note that all models are simulated

with a theoretical market potential of m = 100. In Table 4 the average value of the

last data point of the series for each simulated model is given. Because the full

diffusion process is considered this represents the true market potential. Thus, if

the SGBM01 is simulated with m = 100 the true market potential is more than six

percent higher, this is precisely the difference between the SGBM01 and the other

models. In short, the SGBM01 substantially underestimates the market potential, as

we predicted earlier.

[Table 4 about here.]

In case the full diffusion process is available, the main goal of estimation is to

find the correct estimates. The SGBM01 fails in this objective. The standard Bass

models do find the correct diffusion parameters, so if the goal is to find the un-

derlying diffusion process and not the seasonal structure, the standard Bass models
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(with or without heteroscedasticity) can be used. Note that the use of the standard

Bass model will lead to a loss of precision in the estimates relative to a model with

seasonality.

3.2 Truncated Diffusion Process

In this subsection we look at the case when there is incomplete information. We

consider the situation when the truncation is just before the moment of peak sales,

and when it is just after. To evaluate the performance of the different models we

use the same criteria as before, that is, the difference between true versus estimated

moment of peak sales and market potential. As estimation is done on only a part of

the diffusion curve, we encounter the usual problems of the Bass diffusion model that

the model in some cases does not converge. This occurs mainly if only data before

the moment of peak sales is used and/or the noise level is large. If the estimation

procedure did not converge we do not take the estimates into account in the averages

given in the tables below.

Tables 5 and 6 show the results based on the truncated series. In these tables we

distinguish different seasonality structures and we aggregate over the levels of cur-

vature. This distinction clearly shows that the complexity of the seasonal structure

is an important factor. The level of noise, used to simulate the series, is set at the

lowest level (0.01). Even with such a low noise level the consequences of truncation

can clearly be seen. The main reason to only look at such a small noise level is

that with a larger noise level the problem of non-convergence becomes larger. To

illustrate this, consider the moment of peak sales given in Table 1. The number of

months until peak sales is sometimes as few as 14 months. We subtract 20% from

the data and try to estimate 4 to 8 parameters (diffusion parameters plus the sea-

sonal parameters). It is not surprising that for larger noise levels the models have

some problems. Especially both versions of the standard Bass model already have
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convergence problems for the minimal noise level, and this effect increases with the

level of noise.

[Table 5 about here.]

[Table 6 about here.]

The results in Tables 5 and 6 show that the differences across the seasonal models

are similar to the case of full diffusion series. The versions of the standard Bass model,

on the other hand, do not produce the correct estimates. Not only are the results

biased, but the large variation is also an indication of misspecification. Further, the

bias and variation increase substantially with the complexity of the seasonality in

the simulated process.

In Table 7 we compare the models based on the out of sample forecasting perfor-

mance. The comparison is done based on the Root Mean Squared Prediction Error

(RMSPE) for 12 months after the (truncated) estimation period. These results show

that, despite the wrong estimates, the forecasts are comparable for all seasonal mod-

els. In particular, it shows that the SGBM01 generates similar forecasting results as

the other two seasonal models. Hence, for short term forecasting the three seasonal

models perform equally well. In the case of no seasonality in the true model, the

difference between the seasonal models and the standard Bass version is small. If

the diffusion shows seasonality, the RMSPE of the standard Bass model is more than

two times as large compared to any seasonal model. Despite this, the magnitude

of the difference indicate that, although the estimates of the standard Bass models

are incorrect, the direction of the short term forecast is still correct. Of course the

seasonal peaks are under- or overestimated for the standard Bass model.

[Table 7 about here.]

Summarizing, the simulations show that apart from the difficulties all models

encounter with estimation on truncated diffusion series, the standard Bass model is
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not suited for estimating the underlying diffusion pattern when seasonality is present.

For short-term forecasting all models are able to predict the overall direction of sales.

However, if the objective is to forecast the precise sales in each month the seasonal

structure should be taken into account as well. For forecasting it does not matter

which seasonal model is used. Even the SGBM01, which has a bias in the market

potential, provides good forecasts.

4 Empirical illustration

Finally, we look at the performance of the different models on actual diffusion data.

The data concern six countries in Europe from February 2004 until June 2009 and

contains the sales figures (in millions) of flat-screen televisions. The first months

of the diffusion process are not available. This has no major consequences for the

estimation of our models as they are all based on the Srinivasan and Mason (1986)

approach. With this approach it is only necessary to know the number of months

since introduction (Jiang et al., 2006). In Tables 8 and 9 the estimation results for the

different countries are shown. We show the estimated parameters together with their

standard error, the root mean squared error (RMSE), and two information criteria

(AIC and BIC).

We tried different sets of seasonal dummies and selected the combination with the

best fit. Tables 8 and 9 show that the seasonal pattern, represented by the included

dummies, differs across countries. Also the levels of the seasonal parameters show

that seasonality is not similar across countries. For example, seasonal peaks in the

Netherlands are higher in January compared to December, where the reverse is true

for the United Kingdom.

[Table 8 about here.]

[Table 9 about here.]
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For all countries the diffusion process seems to be around its inflection point.

This explains why the results of the models ignoring seasonality show very different

results for both versions of the standard Bass model. Additional evidence against

the standard Bass model is given by the statistics for the fit of the model. The

models incorporating seasonality outperform the standard Bass model. The model

statistics do not clearly rule out one of the three models with seasonality. However,

our proposed model performs best for 5 of the 6 countries and performs almost equally

good for the other one.

If we compare the models based on the parameter estimates, the major difference

between the three seasonal models is the market potential, where our proposed model

and our variation to the SGBM (with zero-mean dummies) give a higher estimate.

This matches our findings in the simulations. Note that the simulations showed that

for the seasonal model with zero-one dummies the estimate of the market potential

is biased. Another difference is that the seasonal parameters are estimated higher for

the SGBM01. This is also due to the fact that this model uses a different underlying

diffusion curve. Finally, although our proposed model and the SGBMZM have ap-

proximately the same estimates, our model has smaller standard errors and therefore

smaller confidence intervals.

The in-sample comparison of the models based on actual data shows that our

model, closely followed by the SGBMZM , outperforms the other models. In Table

10 the models are compared based on their out-of-sample performance. In this table

we compare the root mean squared prediction error (RMSPE) for the out-of-sample

forecasts of the 1 and 12 months ahead forecasts7. For these RMSPE values we

estimated the model again, but now we left out the last one or twelve months of the

sales figures.

[Table 10 about here.]

7Here the one-step-ahead does not contain a seasonal peak for all the countries except the United
Kingdom
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As we found in the simulation study all seasonal models perform almost equally

well regarding their predictions, including the SGBM01. This shows that for the

short term prediction all seasonal models can be useful. The Bass model with het-

eroscedasticity is outperformed by all seasonal models. However, the standard Bass

model excluding both heteroscedasticity as well as seasonality has, in some cases, a

RMSPE close to that of the seasonal models. In particular for Germany and Spain

the one-period-ahead RMSPE for the Bass model is close to that of our model and

even slightly better than the SGBM. For the twelve-month-ahead comparison the

difference becomes larger, because the one-step-ahead forecast does not contain a

seasonal month for Germany and Spain and the RMPSE for the twelve-month-ahead

forecasts does contain several seasonal months. Nonetheless, this shows that in these

cases ignoring the seasonality, despite wrongly estimating the parameters, still pro-

duces the right direction for short term forecasting.

To conclude the results, we observe that the SGBM01 estimates the market po-

tential wrongly but can be used for short term prediction. The SGBMZM can also

be used for short term forecasting and additionally produces correct estimates. The

same holds for our model, with the additional advantage of smaller confidence inter-

vals. The Bass model with heteroscedasticity is outperformed on all fronts. However,

if the heteroscedasticity is excluded, the model can still be used to find the right di-

rection of the short term forecasts. The standard Bass model still will not have the

right estimates and is off on the seasonal peaks, but its forecasting performance can

still be strong.

5 Conclusion

In this paper we looked at seasonality in diffusion models. The current availability

of higher frequency data makes this a subject of increasing importance. The goal

of study was to find a seasonal structure that can be used in combination with
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standard diffusion models. We based our models on the classic Bass diffusion model,

but our seasonal structure works with any closed form diffusion model. Further,

because estimated diffusion parameters are often used for the practice of ‘guessing

by analogy’, the goal was also to find an extension which does not influence the

estimates and interpretation of the underlying diffusion pattern.

Through simulations and an empirical case we showed that our proposed model

lives up to all these goals. In contrast, the use of the Generalized Bass Model with

seasonal dummies, which seems a straightforward way to take into account season-

ality, finds biased estimates. In particular the market potential is biased. Next to

our model we also put forward a variation of this Generalized Bass Model, which

uses a zero-mean dummy. This variation gives similar results as our model, with

the additional benefit that it can be used straightforwardly in standard statistical

software packages.

That ignoring or adjusting seasonality is not suitable for estimating and predicting

seasonal peaks is obvious. However, for estimation of the basic diffusion parameters,

the current practice is often to ignore seasonality or to adjust the series. In this paper

we found the reassuring result that, if the full diffusion series is available, estimation

of the diffusion process indeed leads to the underlying diffusion pattern. However, if

the series is truncated, this does not hold anymore.

Our model can estimate the seasonal pattern. The basic structure is that the

seasonal peak in a focal month consists of sales drawn from the eleven months around

the focal month. We showed that this works well for the empirical case in our paper,

but in practice other underlying structures are possible as well. For, example it

may be true that a focal month is influenced only by the quarter surrounding it.

Such structures are all possible in our setup, the only restriction is that the seasonal

structure should have the zero-mean feature.

The considerations for future empirical analysis of seasonal diffusion data are

threefold. First, if the goal is to find a model that can be used for short term

22



forecasting all three seasonal models described in this paper can be used. Second, if

the only interest is to find the underlying diffusion, ignoring or adjusting seasonality

seems tempting. However, this only works for full diffusion series and the seasonal

GBM with zero-one dummy does not work. Finally, if the interest lies with both the

correct estimation as well as short term forecasting our model is the way to go.

References

Bass, Frank M. 1969. A new product growth model for consumer durables. Manage-

ment Science 15(5) 215–227.

Bass, Frank M., Trichy V. Krishnan, Dipak C. Jain. 1994. Why the Bass model fits

without decision variables. Marketing Science 13(3) 203–223.

Bemmaor, Albert C., Janghyuk Lee. 2002. The impact of ill-conditioning on diffusion

model parameters. Marketing Science 21(2) 209–220.

Boswijk, H. Peter, Philip Hans Franses. 2005. On the econometrics of the Bass

diffusion model. Journal of Business and Economic Statistics 25(3) 255–268.

Einav, Liran. 2007. Seasonality in the U.S. motion picture industry. RAND Journal

of Economics 38(1) 127–145.

Fok, Dennis, Philip Hans Franses, Richard Paap. 2007. Seasonality and non-linear

price effects in scanner-data-based market-response models. Journal of Economet-

rics 138 231–251.

Jiang, Zhengrui, Frank M. Bass, Portia Isaacson Bass. 2006. Virtual Bass model and

the left-hand data-truncation bias in diffusion of innovation studies. International

Journal of Research in Marketing 23 93–106.

23



Lilien, Gary L., Arvind Rangaswamy, Christophe van den Bulte. 2000. Diffusion

models: Managerial applications and software. Vijay Mahajan, Eitan Muller,

Yoram Wind, eds., New-Product Diffusion Models, chap. 12. Springer, 295–332.

Non, Marielle, Philip Hans Franses, Claudia Laheij, Tijs Rokers. 2003. Yet another

look at temporal aggregation in diffusion models of first-time purchase. Techno-

logical Forecasting and Social Change 70 467–471.

Ofek, Elie. 2005. Forecasting the adoption of a new product. Business Case 9-505-062,

Harvard Business School.

Putsis, William P. 1996. Temporal aggregation in diffusion models of first-time pur-

chase: Does choice of frequency matter? Technological Forecasting and Social

Change 51 265–279.

Radas, Sonja, Steven M. Shugan. 1998. Seasonal marketing and timing new product

introduction. Journal of Marketing Research 35 296–315.

Shugan, Steven M., Sonja Radas. 1999. Services and seasonal demand. T.A. Swartz,

D. Iacobucci, eds., Handbook of Services, Marketing and Management . London:

Sage Publications.

Srinivasan, V., Charlotte H. Mason. 1986. Nonlinear least squares estimation of new

product diffusion models. Marketing Science 5(2) 169–178.

van den Bulte, Christophe, Gary L. Lilien. 1997. Bias and systematic change in

the parameter estimates of macro-level diffusion models. Marketing Science 16(4)

338–353.

Venkatesan, Rajkumar, Trichy V. Krishnan, V. Kumar. 2004. Evolutionary estima-

tion of macro-level diffusion models using genetic algorithms: An alternative to

nonlinear least squares. Marketing Science 23(3) 451–464.

24



Figure 1: The actual flat-screen television sales data of the United Kingdom.
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Figure 2: Panel (a) shows the artificial series generated by our model, with the diffusion
parameters p, q and m being 0.00002, 0.075, and 42 respectively, and five seasonal dummies
with parameter values (δk) 0.5, −0.1, 0.1, 0.3 and 0.9 representing the months January,
June, October, November and December. Panel (b) is the same series as (a) but now
zoomed in on the part that resembles the same period as the actual flat-screen television
sales data of the United Kingdom, panel (d). Panel (c) is the same zoomed in period as
panel (b), with the same diffusion parameters, but now the seasonal months are left out.
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Figure 3: A simplified example of diffusion model with added constant seasonality. The
diffusion parameters (p, q and m) in this simplified example are 0.001 0.1 and 100, there
is no noise added. The actual sales (the upper panel) shows that the added model does
not account for lower fluctuation at the beginning and end of the diffusion series. Further,
the zoomed-in part of the cumulative sales shows that the true market potential is higher
than m = 100.
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Figure 4: A simplified example of the SGBM diffusion model with a zero-one dummy. The
diffusion parameters (p, q and m) in this simplified example are 0.001 0.1 and 100, and
there is no noise added. The zoomed-in part of the cumulative sales shows that the true
market potential is higher than the simulated market potential.
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Figure 5: A simplified example of the SGBM diffusion model with zero-mean dummy
compared to our model. The dotted line is the underlying diffusion pattern with diffusion
parameters p, q and m being 0.001 0.1 and 100 respectively. The solid line is our model
and the semi-dotted line is from the SGBM model, both models seem to overlap, but the
two zoomed-in parts show the small differences in the seasonal peaks.
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Figure 6: A simplified example of the standard Bass model (dotted line) when estimated
on data generated by our model (solid line). The diffusion parameters (p, q and m) in this
simplified example are 0.001 0.1 and 100, and there is no noise added.
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Figure 7: Panel (a) shows the simplified example of our model and the same series after
seasonal adjustment with Census X12 moving average. Panel (b) is the same except here
our proposed zero-mean version of the SGBM is used. Panel (c) shows the two adjusted
series from panels (a) and (b) compared to the underlying Bass model, in case of full
diffusion where they are an almost exact match. Panel (d) shows that when the adjustment
is done over only a part of the series, there is a clear deviation between the adjusted series
and the underlying standard Bass model.
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Table 1: Combinations of parameters p and q used in the simulation design together with
the corresponding curvature given by the moment of peak sales (T ∗). For example, a value
of 0.01 for p and 0.05 for q leads to a combination with a moment of peak sales T ∗ at 27
periods.

q

0.05 0.10 0.15 0.25

p

0.01 27 21 17 14
0.005 42 29 22 18
0.001 77 46 33 26
0.0005 91 53 38 30
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Table 4: The average value of the last datapoint of the cumulative sales across all simula-
tions, this last point represents the true market potential.

Cumulative Sales

S
im

u
la

te
d

M
o
d
e
l

Our Model 99.70
SGBMZM 99.80
SGBM01 106.43
BMhet 99.92
BM 99.91
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Table 7: Results for the truncated diffusion series. The cells show the Root Mean Squared
Prediction Error for 12 months after the truncated period, which is 20% before or after
the moment of peak sales. The RMSPE is aggregated over all levels of curvature, levels
of noise and the number of months. For example the average RMSPE where our model is
the true model and the estimated model as well is 0.50 with a standard deviation of 0.8.

Estimated Model

Our Model SGBMZM SGBM01 BMhet BM

S
im

u
la

te
d

M
o
d
e
l

(B
e
fo

r
e

p
e
a
k

sa
le

s)

Our Model 0.36 0.44 0.47 0.94 1.31
(StDev) 0.39 0.48 0.50 0.84 1.16

SGBMZM 0.45 0.37 0.41 0.92 1.32
(StDev) 0.55 0.40 0.47 0.84 1.17

SGBM01 0.46 0.37 0.40 0.91 1.32
(StDev) 0.55 0.40 0.45 0.82 1.17

BMhet 0.37 0.37 0.74 0.36 0.56
(StDev) 0.43 0.44 11.861 0.38 0.78

BM 0.35 0.34 0.55 0.32 0.23
(StDev) 0.55 0.56 4.381 0.48 0.42

S
im

u
la

te
d

M
o
d
e
l

(A
ft

e
r

p
e
a
k

sa
le

s)

Our Model 0.13 0.15 0.15 0.46 0.58
(StDev) 0.09 0.10 0.10 0.25 0.37

SGBMZM 0.15 0.13 0.13 0.48 0.61
(StDev) 0.10 0.09 0.09 0.27 0.40

SGBM01 0.15 0.13 0.13 0.48 0.61
(StDev) 0.10 0.09 0.09 0.26 0.39

BMhet 0.13 0.13 0.13 0.12 0.13
(StDev) 0.09 0.09 0.09 0.08 0.09

BM 0.13 0.13 0.13 0.12 0.06
(StDev) 0.11 0.11 0.11 0.11 0.08

1The high variation comes from a few extreme outliers
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