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Abstract

Consumer preferences can be measured by rankings of alternatives.

When there are too many alternatives, this consumer task becomes

complex. One option is to have consumers rank only a subset of the

available alternatives. This has an impact on subsequent statistical

analysis, as now a large amount of ties is observed. We propose a sim-

ple methodology to perform proper statistical analysis in this case. It

also allows to test whether (parts of the) rankings are random or not.

An illustration shows its ease of application.
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1 Introduction and motivation

Stated consumer preferences can be measured by rankings of alternatives.

Rankings are easy to collect, they are easy to interpret, and various statistical

tools to evaluate the randomness of observed rankings have been developed.

Interestingly, such tools have not yet been fully developed and analyzed for

the case where consumers would evaluate only a subset of the alternatives,

and in the particular interesting case where not all consumers evaluate the

same subset of alternatives.

This situation, which we address in the current paper, has become in-

creasingly important these days in marketing and consumer research, as it

has been widely recognized that individuals face difficulties, or even be-

come dissatisfied, when having to evaluate and compare too many choice

options. Iyengar and Lepper (2000) in their famous experiment showed that

too much choice can be de-motivating for consumers. In a marketing con-

text, Boatwright and Nunes (2001) demonstrated that a reduction of the

assortment is in fact felt as beneficial to consumers, a finding which has

been supported by Chernev (2003) and Gourville and Soman (2005), among

others. In another context, Deshazo and Fermo (2002) showed that con-

sumers experience task complexity when choice options are plenty, see also

Sandor and Franses (2008). In sum, consumers may find it difficult to rank

preferences across too large an amount of alternatives.

In the case of having many alternatives, a simple solution would now be

to ask consumers only to evaluate a subset of these alternatives. A conse-

quence of this liberty is that subsequent statistical analysis becomes more

complicated as the potential number of ties becomes (much) larger. In this

paper we advocate a simple methodology to deal with this consequence.

The outline of our paper is as follows. In Section 2 we give a few prelim-

inaries to sketch the problem at hand. In Section 3 we outline the statistical

methodology. In Section 4 we illustrate its relevance and ease of use on the

observed rankings of ten blockbuster movies where respondents were asked

only to rank four of these. Section 5 concludes with a few avenues for further

research.
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2 Preliminaries

Preference rankings are a common tool in consumer surveys. Various studies

indicate that the task of comparing all k objects or products could be too

difficult. The respondent may become frustrated if asked to rank many al-

ternatives, and then may select only the most and least preferred and may

ignore the rest. Even if the respondent would complete the task and ranks all

products, the discriminating power may be doubtful as the ability of respon-

dents to rank alternatives effectively and reliably is a function of the number

of comparisons to be made. As a consequence, a statistical methodology to

analyze observed rankings should better allow for ties as it is rather likely

that respondents are indifferent between a subset of the alternatives.

The problem of task complexity can be alleviated by asking respondents

to evaluate all k alternatives but only to give preference rankings for a subset

s, with s < k, that is selected by each respondent. Hence, each respondent

can have a different subset s.

A second issue of our interest is to statistically test observed preference

rankings. The corresponding null hypothesis of interest is then

H0: There are no differences across the alternatives. Each arrangement of

the k ranks is equally likely,

while the alternative is

H1: At least one alternative tends to yield a higher ranking than at least

one other alternative.

The null hypothesis implies that the underlying distributions for each al-

ternative for each respondent are the same. The null hypothesis is rejected

at the significance level α if a test statistic T exceeds the (l-α)th quantile

of a chi-square random variable with k − 1 degrees of freedom. In the most

basic model, where we have one observation per respondent and each respon-

dent ranks all alternatives, the Friedman test statistic (Friedman, 1937) is

appropriate and most commonly used.

However, in our case where we ask respondents to evaluate k alternatives

but only give preference rankings for a subset s, that is selected by each
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respondent, matters are different. We assume that respondents are indifferent

to alternatives outside their own subset and these alternatives thus receive

equal rank. As a consequence, we must deal with a substantial number of

ties.

We aim to propose a statistical method that can handle this situation

and we propose an appropriate test statistic to examine if observed rankings

imply statistically significant differences across the alternatives. If there is

statistical evidence of such differences, the final question is of course which

alternatives it concerns. To this end, we apply multiple comparison proce-

dures to test which alternatives are significantly different from others and in

this way we can construct homogeneous subsets with alternatives that have

equal rankings.

3 Methodology

Suppose there are k alternatives, with j = 1, . . . , k, and that there are n

respondents, with i = 1, . . . , n, who are asked to indicate their top s alterna-

tives and to assign ranks to the alternatives in this subset, where the most

preferred alternative gets rank value 1 and the least preferred gets rank s.

We assume that respondents are indifferent between the k − s alternatives

outside this subset, which are thus observed as ties. Denote the observed

rankings of respondent i for alternative j by xij. Let R (xi1, . . . , xik) be the

set of all possible rankings consistent with xi1, . . . , xik given the ties for re-

spondent i. The weighted rank r̄ij assigned to xij is defined as the average

of all possible ranks within the set R (xi1, . . . , xik). In Wittkowski (1988) it

is shown that the weighted rank for tied ranks is equal to the average of the

ranks ”available” for those tied ranks. Adjusted (centered-weighted) ranks

aij are obtained by subtracting the expected score k+1
2

under H0.

Insert Table 1 about here

In Table 1 we illustrate the computation of weighted and adjusted ranks

for a respondent who has indicated her top s = 3 alternatives from a set of
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k = 6. This respondent has indicated alternative C as most preferred, alter-

native A is next preferred and alternative D is least preferred. We assume

that this respondent is indifferent to alternatives B, E and F . Ranks within

subset (A, C,D) are fixed, however ranks assigned to alternatives outside this

subset could be rank 4, 5 or 6. The set of all possible rankings is listed in Ta-

ble 1. It then follows that the average of all possible ranks for an alternative

equals the average of the ”available” ranks for that alternative. Alternatives

outside the subset thus receive tied rank 4+5+6
3

= 5. The adjusted ranks are

obtained by subtracting the expected score under H0, which in this case is
6+1
2

= 3.5, from the weighted ranks, see the last column of Table 1.

The test statistic for H0 is based on sums of adjusted ranks and the

individual covariance matrix Vi, which is given in Wittkowski (1988) as

Vi = A2
0,i

(
diag(ι)− ιιT

k

)
(1)

where ι is a k-dimensional vector of ones, diag(ι) denotes a diagonal matrix

with elements 1 on the diagonal and where A2
0,i denotes the (conditional)

individual variance under H0 with correction for ties, which is

A2
0,i =

k(k + 1)

12

(
1− k − s− 1

k − 1

k − s

k

k − s + 1

k + 1

)
(2)

This individual variance A2
0,i is the same for all i, as the sum of the (squared)

adjusted ranks for each respondent is the same, which of course is a crucial

aspect in our methodology. Since each respondent only has to assign ranks to

s alternatives, and alternatives outside this subset all receive the same tied

rank, this yields the same sum of ranks for each respondent. In our example

in Table 1, A2
0,i = 3.1 for each respondent, see Table 2.

The individual variance A2
0,i is instrumental in computing the individual

covariance matrix Vi. Note that (1) implies that the diagonal elements of Vi

are given by

Vi = A2
0,i

k − 1

k
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and the off-diagonal elements by

Vi = A2
0,i

−1

k

Hence, the diagonal elements of (1) are 1− k times those of the off-diagonal

elements. One can observe that Vi only depends on k and A2
0,i, and both

are the same for each respondent. As a consequence, Vi is also the same for

each respondent. In our example, Vi has 5
6

as diagonal elements and −1
6

as

off-diagonal elements, multiplied by A2
0,i. The computation of A2

0,i and Vi in

this example is given in Table 2.

Insert Table 2 about here

The adjusted ranks can be summarized in a vector a+ by summing all

ai over the n respondents, that is, the jth element of vector a+ is given

by a+j =
∑n

i=1 aij. The random vectors ai are independent under H0 and

the covariance matrix V+ of the vector a+ is thus equal to the sum of the

individual covariance matrices Vi. As the Vi is the same for all i, V+ is

obtained by multiplying Vi by the number of respondents n. Hence, the

diagonal elements of V+ are given by

V+jj = nA2
0,i

k − 1

k

and the off-diagonal elements by

V+jj∗ = nA2
0,i

−1

k
, j 6= j∗

As aik in each i can be expressed in terms of ai1, . . . , ai(k−1), it follows that

V+ is not of full rank but has rank k − 1 instead.

For large n, a+ approximately has a multivariate normal distribution with

zero expectation vector and covariance matrix V+ under the null hypothesis

H0 (Wittkowski, 1988).
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Test statistic

The quadratic-form test statistic is now computed along standard lines as

W = a′+ (V+)− a+, (3)

where (V+)− denotes a generalized inverse of V+, that is, any matrix which

satisfies

V+ (V+)− V+ = V+

Below we will use the Moore-Penrose generalized inverse of V+.

Under H0 and for large n, W in (3) has approximately a chi-square dis-

tribution with k − 1 degrees of freedom. Recall that k − 1 is the rank of

V+. If the corresponding p-value is below the α% significance level, the null

hypothesis H0 is rejected and there is sufficient evidence to conclude that

there exists difference in preference rankings between the k alternatives.

Multiple comparisons

When the null hypothesis H0 is not rejected, it is generally agreed that all

hypotheses implied by that hypothesis (its ”components”) must also be con-

sidered as not rejected. When H0 is rejected, we conclude that there exist

differences between the alternatives. However, we do not know which alter-

natives differ in terms of preference rankings and so we resort to a multiple

comparison procedure to make decisions about differences between all k(k−1)
2

pairs of alternatives. Note again that multiple comparisons are only of inter-

est if the global null hypothesis H0 is rejected.

Denote the average adjusted rank over the respondents for alternative j

by

a·j =
1

n

n∑
i=1

aij

The null hypothesis H0,jj∗ for each pairwise comparison of no difference be-

tween alternative j and alternative j∗ is rejected if

|a·j − a·j∗| ≥ rα
k,n (4)
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where the critical value rα
k,n is chosen to make the type I error rate equal to

α. That is, rα
k,n is the largest constant such that

PH0

(
(max a·j)− (min a·j) ≥ rα

k,n

)
≤ α (5)

This implies that when H0 is true all k(k−1)
2

inequalities in (4) fail to exceed

the critical constant with probability α.

When H0 is true, we show in the Appendix that the covariance matrix of

the difference a·j−a·j∗ is the same as the covariance matrix of the differences

Zj−Zj∗ where Zj, Zj∗ are independent random variables with mean zero and

variance
A2

0,i

n
, with j, j∗ = 1, . . . , k. It then follows that when n is large, the

critical value rα
k,n can be approximated by

rα
k,n ≈ qα

k

A0,i√
n

(6)

where qα
k is the upper α percentile point of the range of k independent stan-

dard normal random variables. The critical points qα
k for k = 1, . . . , 20 and

α = 0.001, . . . , 0.1 are given in Table 3.

Rank plots

To visualize the results of the multiple comparison procedures, we can con-

struct for each j an interval Qj centered at a·j with length rα
k,n and endpoints

a·j ±
rα
k,n

2

When we observe that interval Qj and Qj∗ do not overlap, the distance

between a·j and a·j∗ exceeds rα
k,n and hence (4) should be rejected, yielding the

conclusion that there is a significant difference in rank between alternative

j and alternative j∗. The rank plot simultaneously displays the intervals

Q1, . . . , Qk. Moreover, a reference line can be drawn at the height of the

upper boundary of the interval of the ”most preferred” alternative, which

naturally has the lowest upper boundary. This reference line in fact visualizes

the ”unconstrained multiple comparison procedure with the best, deducted
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from all-pairwise comparisons” as described in Hsu (1996) (section 4.2.1.1).

This implies that all alternatives with intervals above this reference line are

rated significantly lower than the best ranked alternative.

Homogeneous subsets

Finally, based on the multiple comparisons results, we can form homoge-

neous groups of alternatives by performing a cluster analysis. The clustering

algorithm we prefer is the complete linkage clustering (see for example Lat-

tin et al. (2003)), where the maximum distance between elements of each

cluster is used. Because the cluster analysis should be based on the results

of the multiple comparison procedure, we construct a distance matrix which

summarizes the significance tests (4) by zero’s (non rejection) and ones (re-

jection). It is well known that such a distance matrix of zero’s and ones could

lead to multiple solutions in complete linkage clustering. We prevent this by

adding the distance matrix of a·j when alternatives are not significantly dif-

ferent. However, these distances may not dominate the multiple comparisons

results and to avoid this, we multiply the distance matrix of a·j by ε, with ε

small enough like 0.001.

4 Illustration

In this section we illustrate our statistical methodology to analyze preference

rankings where individuals are asked to rank just s of the total k alternatives.

Data

We illustrate our proposed methodology with data of n = 93 individuals who

are asked to evaluate a list of k = 10 blockbuster movies in Dutch cinema

theatres in 2007. The movies are listed in Table 4.

Insert Table 4 about here

Respondents are asked to indicate their top s = 4 movies. Movies outside

this subset are observed as ties and their weighted rank is the average of the
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available ranks, that is 5+6+7+8+9+10
2

= 7.5. The adjusted ranks of individual

i for each movie is obtained by subtracting the expected score, that is 10+1
2

=

5.5, from each weighted rank. As aij takes all values from 1 to s and 7.5 for

tied ranks for each respondent, the sum of the adjusted scores is the same for

each respondent and, as a consequence, the individual variance and individual

covariance matrix are the same for all i. These are respectively A2
0,i = 65

9

and Vi is given by a matrix with A2
0,i

9
10

on the diagonal and A2
0,i

−1
10

on the

off-diagonal elements. To compute the test statistic (3) we sum the adjusted

ranks over all 93 individuals and a+j for each movie is given in the second

column of Table 4. In the same way, we compute the conditional covariance

matrix V+ by summing all individual covariance matrices Vi. Recall that this

V+ has rank 9.

Results

Our null hypothesis H0 of no differences between the movies is clearly re-

jected as the value of the test statistic (3) takes the value W = 83.276 with

corresponding p-value is 0. We conclude that there is sufficient evidence that

there exists a difference between the movies.

As H0 is rejected, the question remains which movies differ in terms of

preferences and so we perform multiple comparisons between all pairs of

movies. According to Table 3 in the Appendix, for α = 0.05 and k = 10,

qα
k = 4.474. The critical value rα

k,n can now be approximated by (6) and it

takes the value rα
k,n = 1.247.

To visualize the results of the multiple comparison procedure, we con-

struct rank plots. For convenience the a·j values are retranslated into the

average weighted ranks r̄·j, that is 1
n

∑n
i=1 r̄ij. As we have already calculated

the sum of the adjusted ranks for each movie, we can also compute this av-

erage rank r̄·j by adding the expected score to the average adjusted score of

movie j, that is

r̄·j = a·j +
k + 1

2

The average weighted ranks are given in the last column of Table 4. The

interval Qj for movie j is then centered at r̄·j and has length rα
k,n. Hence,
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the endpoints of Qj are given by

r̄·j ±
rα
k,n

2

If the intervals Qj and Qj∗ do not overlap, then the distance between r̄·j and

r̄·j∗ exceeds rα
k,n, and hence the corresponding null hypothesis (4) should be

rejected. The corresponding rank plot is displayed in Figure 1.

Insert Figure 1 about here

We can observe in Figure 1 that the best ranked movie is j = 10,

which corresponds to the movie ”The Bourne Ultimatum”. This interval

has the lowest upper boundary and consequently all intervals above this up-

per boundary are ranked significantly lower than that movie. This holds for

the intervals of the movies 2, 3, 4, 5, 6, 8 and 9, and hence, these movies

are ranked significantly lower than ”The Bourne Ultimatum”. The intervals

of movie 1, ”Pirates of the Caribbean: At World’s End”, and 7, ”Ocean’s

Thirteen”, do have overlap with the interval of the movie ”The Bourne Ulti-

matum” and hence are not significantly ranked lower.

Based on the multiple comparisons we now create homogeneous subsets of

movies by performing a cluster analysis. The corresponding distance matrix

is the sum of a matrix which summarizes the significance tests (4) and the

distance matrix of a·j multiplied by ε = 0.001. Homogeneous subsets of

movies are then formed by the corresponding dendrogram, which can be

found in Figure 2.

Insert Figure 2 about here

Figure 2 suggests three main clusters. Cluster 1 contains the best ranked

movies (10, 1 and 7): ”The Bourne Ultimatum”, ”Pirates of the Caribbean:

At World’s End” and ”Ocean’s Thirteen”. Cluster 2 contains the worst

ranked movie (5): ”Mr. Bean’s Holiday” and the last cluster contains all

other movies: ”Harry Potter and the order of the Phoenix”, ”Alles is Liefde”,

”Shrek the Third”, ”Ratatouille”, ”Spider-Man 3” and ”Transformers”. In

sum, there seem to be just three clusters of movies with the same within-

cluster rank.
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5 Conclusion

Preference rankings are easy to perform and the outcomes are easy to under-

stand. However, in practice we often encounter the problem that consumers

find it difficult to rank preferences across a large amount of alternatives. Our

solution is to ask consumers to rank only a subset of these alternatives and

we have shown that it does not matter whether these individual subsets are

all different. We have provided a methodology how to handle ties in this

situation and how to analyze such data. We have given the test statistic

to examine if observed rankings imply statistically significant differences be-

tween alternatives. Further, if there are differences across alternatives, we

have explained how to apply multiple comparisons to determine which alter-

natives differs. Moreover, based on these multiple comparisons we propose

a method to perform a cluster analysis to construct homogeneous groups of

alternatives. We have illustrated our methodology with data of ten block-

buster movies in Dutch cinema theatres and we found that there are basically

just three groups of movies with common ranks.

We envisage a range of practical applications of our methodology, for

example in the area of conjoint analysis. Consumers can now face many

alternatives, but when they are asked to rank just a few alternatives, the

task will become less demanding.

12



References

Boatwright, P., J.C. Nunes. 2001. Reducing assortment: An attribute-based

approach. Journal of Marketing 65 50–63.

Chernev, A. 2003. When more is less and less is more: The role of ideal

point availability and assortment in consumer choice. Journal of Consumer

Research 30 170–183.

Deshazo, J.R., G. Fermo. 2002. Designing choice sets for stated preference

methods: The effects of complexity on choice consistency. Journal of En-

vironmental Economics and Management 43 360–385.

Friedman, M. 1937. The use of ranks to avoid the assumption of normality

implicit in the analysis of variance. Journal of the American Statistical

Association 32 675–701.

Gourville, J.T., D. Soman. 2005. Overchoice and assortment type: When

and why variety backfires. Marketing Science 24 382–395.

Harter, H.L. 1960. Tables of range and studentized range. The Annals of

Mathematical Statistics 31 1122–1147.

Hsu, J.C. 1996. Multiple comparisons. Theory and methods . Chapman &

Hall, London.

Iyengar, S.S., M. Lepper. 2000. When choice is de-motivating: Can one desire

too much of a good thing? Journal of Personality and Social Psychology

79 995–1006.

Lattin, J., J.D. Carroll, P.E. Green. 2003. Analyzing Multivariate Data.

Brooks/Cole, Canada.

Sandor, Z., P.H. Franses. 2008. Experimental investigation of consumer price

evaluations. Journal of Applied Econometrics to appear.

Wittkowski, K.M. 1988. Friedman-type statistics and consistent multiple

comparisons for unbalanced designs with missing data. Journal of the

American Statistical Association 83 1163–1170.

13



Appendix

Proof of (6) Let a·j denote the average adjusted rank for alternative j. It

is shown that the moments of a·j are

E (a·j) = 0

V ar (a·j) =
1

n

k − 1

k
A2

0,i

Cov (a·j, a·j∗) =
1

n

−1

k
A2

0,i

Cor (a·j, a·j∗) =
−1

k − 1

and hence, the moments of the difference a·j − a·j∗ are

E (a·j − a·j∗) = 0

V ar (a·j − a·j∗) =
2

n
A2

0,i

Cov (a·j − a·j∗ , a·j − a·j∗∗) =
1

n
A2

0,i

Cov (a·j − a·j∗ , a·j∗∗ − a·j∗∗∗) = 0

Cor (a·j − a·j∗ , a·j − a·j∗∗) =
1

2
Cor (a·j − a·j∗ , a·j∗∗ − a·j∗∗∗) = 0

This means that the covariance matrix of the differences a·j − a·j∗ is the

same as the covariance matrix of the differences Zj − Zj∗ where Zj, Zj∗ are

independent random variables with mean zero and variance
A2

0,i

n
, with j, j∗ =

1, . . . , k. Thus, the asymptotic distribution of

maxj,j∗ |a·j − a·j∗|
A0,i/

√
n

coincides with the distribution of the range Qk,∞ of k independent standard

normal random variables. This proves (6). 2
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Table 1: Computation of adjusted ranks for a hypothetical dataset with s = 3
and k = 6 and one respondent.

Alternative xij R (xi1, . . . , xik) Weighted rank Adjusted rank
A 2 2 2 2 2 2 2 12/6=2 -1.5
B - 4 4 5 5 6 6 30/6=5 1.5
C 1 1 1 1 1 1 1 6/6=1 -2.5
D 3 3 3 3 3 3 3 18/6=3 -0.5
E - 5 6 4 4 6 5 30/6=5 1.5
F - 6 5 6 5 4 4 30/6=5 1.5
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Table 2: Example continued. Computation of conditional individual covari-
ance matrix.

A2
0,i = 6(6+1)

12
×

(
1− 2

5
× 3

6
× 4

7

)
= 31

10

Vi = A2
0,i ×


1− 1

6
−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6



V+ = nA2
0,i ×


1− 1

6
−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6

−1
6

−1
6

−1
6

−1
6

−1
6

−1
6

1− 1
6


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Table 3: Selected percentile points of the range of k independent N(0, 1)
random variables.

k\α 0.1 0.05 0.025 0.01 0.005 0.001
2 2.326 2.772 3.170 3.643 3.970 4.654
3 2.902 3.314 3.682 4.120 4.424 5.063
4 3.240 3.633 3.984 4.403 4.694 5.309
5 3.478 3.858 4.197 4.603 4.886 5.484
6 3.661 4.030 4.361 4.757 5.033 5.619
7 3.808 4.170 4.494 4.882 5.154 5.730
8 3.931 4.286 4.605 4.987 5.255 5.823
9 4.037 4.387 4.700 5.078 5.341 5.903
10 4.129 4.474 4.784 5.157 5.418 5.973
11 4.211 4.552 4.858 5.227 5.485 6.036
12 4.285 4.622 4.925 5.290 5.546 6.092
13 4.351 4.685 4.985 5.348 5.602 6.144
14 4.412 4.743 5.041 5.400 5.652 6.191
15 4.468 4.796 5.092 5.448 5.699 6.234
16 4.519 4.845 5.139 5.493 5.742 6.274
17 4.568 4.891 5.183 5.535 5.783 6.312
18 4.612 4.934 5.224 5.574 5.820 6.347
19 4.654 4.974 5.262 5.611 5.856 6.380
20 4.694 5.012 5.299 5.645 5.889 6.411

Source: Table 3 in Harter (1960).
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Table 4: List of k = 10 blockbuster movies in Dutch cinema theatres in 2007,
ranked in the first column according to the total size of audience.

Name movie Sum adjusted ranks Average weighted ranks
1. Pirates of the Caribbean: -79.5 4.645

At World’s End
2. Harry Potter and 1.0 5.511

the order of the Phoenix
3. Alles is Liefde 40.5 5.936
4. Shrek the Third -6.0 5.435
5. Mr. Bean’s Holiday 150.0 7.113
6. Ratatouille 1.5 5.516
7. Ocean’s Thirteen -66.5 4.785
8. Spider-Man 3 76.5 6.323
9. Transformers 5.5 5.559
10. The Bourne Ultimatum -123.0 4.177
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Figure 1: Rank plot with α = 0.05 of k = 10 blockbuster movies in Dutch
cinema theatres in 2007.
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Figure 2: Dendrogram from cluster analysis based on multiple comparisons
of k = 10 blockbuster movies in Dutch cinema theatres in 2007.
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