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Abstract

We develop a parsimonious panel model for quarterly regional house prices, for which

both the cross-section and the time series dimension is large. The model allows for

stochastic trends, cointegration, cross-equation correlations and, most importantly,

latent-class clustering of regions. Class membership is fully data-driven and based

on (i) average growth rates of house prices, (ii) the propagation of shocks to house

prices across regions, also known as the ripple effect, and (iii) the relationship of

house prices with economic growth and other variables. Applying the model to

quarterly data for the Netherlands, we find convincing evidence for the existence of

two distinct clusters of regions, with pronounced differences in house price dynamics.

Keywords: cross-section dependence, cointegration, ripple effect

JEL Classification: C21, C23, C53

∗We thank Rene Segers for assistance with the graphs. The corresponding author is Bram van Dijk,

Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Nether-

lands, e-mail: avandijk@few.eur.nl, phone: +31-10-4088943, fax: +31-10-4089162. Part of the calcu-

lations are done in Ox 4.00 (Doornik, 2002).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Erasmus University Digital Repository

https://core.ac.uk/display/18507976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Real estate prices in many countries have experienced a dramatic boom in recent years

(IMF, 2004). At the same time, the extent of the price increase appears to vary substan-

tially across different regions within a given country. In the Netherlands, for example, it

is commonly believed that house prices in Amsterdam and the densely populated western

part of the country increased far more than prices in the smaller cities and rural areas in

the east. As house prices are typically available per region or city, we may analyze these

data at such a disaggregate level, to examine whether indeed regions or cities behave

differently, perhaps in terms of trends, but also in terms of response to outside economic

shocks. In this paper we develop a time series model that suits this purpose.

Most regional house prices have the following properties. First, they tend to display a

trend, and historical price patterns suggest that this trend probably is not deterministic

but stochastic. In particular, house prices show ‘bubble’-type behavior, where periods of

sharp increases of the price level suddenly end with a sharp drop followed by a prolonged

period of low price levels, suggesting that trends are unlikely to be deterministic. Second,

for different regions within a country these stochastic trends should somehow be linked.

It is not plausible that prices in different regions would diverge indefinitely or that certain

regions would not respond to common macroeconomic shocks. So, a model for regional

house prices should allow for some form of common trends. Third, it can be expected

that adjacent regions show similar price patterns, although this may also be the case for

regions far apart geographically but with similar economic or demographic characteristics.

Hence, a suitable model should allow for similarities in the dynamic behavior of house

prices across regions. Put differently, the model should allow for groups or clusters of

regions, where house price dynamics in regions within a given cluster are the same, while

they can be different across clusters. Preferably, such a model should not require ex-ante

or exogenous assignment of regions to specific clusters. In fact it would be best if the

data themselves were allowed to indicate if clusters exist and if so, which regions belong

to which cluster.
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In this paper we extend the latent-class panel time series model introduced by Paap

et al. (2005) to capture these different properties of regional house prices. The key feature

of this model is that the clustering of regions is purely data-driven, where cluster member-

ship is based on three characteristics corresponding to three specific research questions we

want to address. The first question is whether prices in all regions have the same average

growth rate. Note that a common trend specification across the regions entails that their

growth rates must be somehow compatible, but it still leaves open the possibility that

house prices in some regions grow faster than in others. The second question concerns

the so-called ripple effect, see, for example, Cameron et al. (2006). This refers to the

phenomenon that price changes start in one particular region (or cluster of regions) and

gradually disseminate to other regions in subsequent time periods. Within our model we

can examine the speed at which regions react to price changes in other regions. The third

question we consider is the way the house prices in each region react to changes in GDP.

We examine whether the house prices just follow the trend of GDP, or whether there is

another process underlying the trends in house prices.

We apply our model to house price data for the Netherlands, comprising 76 regions for

which we have quarterly data for the period 1985Q1-2005Q4. We find that the 76 regions

can be grouped into two clusters. The first cluster consists of the capital Amsterdam and

of rural areas that are close to larger cities, especially close to the Randstad (consisting

of Utrecht, Amsterdam, Den Haag, Rotterdam and other cities in the area). This cluster

has a higher growth rate than the other regions in the second cluster. The regions in the

first cluster also react faster to changes in the house prices in Amsterdam than regions

belonging to the second cluster. We find that both classes react equally fast to changes in

GDP. However, the extent to which they react to GDP changes differs, where the house

prices in regions in the first cluster are more strongly influenced by changes in GDP.

There are not many studies that describe regional house prices. Cameron et al. (2006)

build a model from inverse demand equations. They have, however, only a limited number

(9) of regions, and their model would not work in our situation where we have many more
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(76) regions, as we will describe below. Malpezzi (1999) constructs an error correction

model for regional house prices. The parameters of his model are however not allowed to

vary across regions. Holly et al. (2007) model US house prices at the state level. Their

model is ‘fully heterogenous’ in the sense that it has different parameters for each region.

In this paper we cover the middle ground, that is, the model parameters are allowed to

vary across groups of regions but not across each region individually.

Before we propose our latent-class model for a large panel of house price series, we

first provide some details on the data in Section 2. We consider two decades of quarterly

house prices on 76 regions in the Netherlands. We discuss their trending behavior by

performing panel unit root tests and we also show that the growth rates in different

regions show strong cross-correlations. Using multidimensional scaling techniques we get

a first impression if and how these 76 regions could get clustered. Then, in Section 3, we

put forward our model specification, highlighting the underlying data-driven clustering

mechanism. In addition, we describe the method used for parameter estimation. In

Section 4 we first present our estimation results, and give interpretation to the various

outcomes. Next, we take a look at impulse response functions of the house prices with

respect to a shock in GDP, in the house prices in one leading region and in the interest

rate. In Section 5 we conclude with some limitations and we outline topics for further

research.

2 Data

The Dutch real estate agent association [NVM] publishes quarterly data on house prices

for N = 76 regions in the Netherlands. Our dataset covers the sample period 1985Q1-

2005Q4 (T = 84 quarters). Hence, we have a panel database where both the cross-section

dimension N and the time dimension T are fairly large.

The way the country is divided into 76 regions is determined by the NVM. Macroeco-

nomic data, such as output and inflation, are not available for this particular specification

of regions. Other (macro) variables that we use in our model are therefore measured at
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the country level. In particular, this concerns the interest rate (obtained from the Dutch

Central Bank) and quarterly real GDP (from Statistics Netherlands). The GDP series

is available until 2005Q2. We obtain real house prices by deflating with the consumer

price index [CPI] (from Statistics Netherlands). In addition, we seasonally adjust the real

GDP series using the Census X-12 algorithm (available in EViews 5.1). We denote the

real house price in region i at time t as pi,t, and yt to denote real GDP.

Figure 1 shows time series of log(pi,t) for three specific regions: Noordwest-Friesland,

which usually is the least expensive region, Bunnik/Zeist, which usually is the most ex-

pensive region, and Amsterdam, which is in between. On top we also plot log(yt) (scaled

to limit the size of the vertical axis in the graph). Comparing the graphs in Figure 1

suggests that real house prices increase slightly faster than real GDP. Prices in Bun-

nik/Zeist and Amsterdam show substantial variations in the trend growth rate over time,

with alternating periods of steep price increases and of stable or falling prices. Especially

the ‘hump’ in the prices around 2000 stands out clearly. This suggests that the trend

in the house prices is stochastic rather than deterministic. Furthermore, as the trending

behavior of the different price series seems quite similar regional house prices may well be

cointegrated.

2.1 Unit roots and cointegration

To test whether these visual impressions from Figure 1 can be given more formal statistical

support, we perform panel unit root tests on the regional house prices. Two of the most

popular tests in the literature are those from Levin et al. (2002) [LLC] and Im et al.

(2003) [IPS], see Breitung and Pesaran (2008). These tests have as null hypothesis the

presence of a unit root in all the series in the panel. The alternative hypotheses are

different however. Levin et al. (2002) assume that the house price dynamics are the same

for each region, and therefore the alternative hypothesis is that all regional house prices

are stationary. Im et al. (2003), however, have as alternative hypothesis that at least

one regional house price is stationary. Both these tests assume that there is no cross-
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correlation between different series in the panel. In fact, they are not consistent if such a

dependency is present, which is quite likely in our case. Alternative tests that do allow

for cross-section dependence are available, like the one in Moon and Perron (2004), but

these usually rely on asymptotics that require T to be much larger then N , while in our

case they are about equal.

To meet our data characteristics, we therefore employ the cross-sectionally augmented

IPS [CIPS] test, recently developed in Pesaran (2007). This allows for cross-sectional

dependence, and is also valid when N is larger than T . The idea of the CIPS test is

to add the cross-section averages of the lagged levels and first differences to the familiar

augmented Dickey-Fuller [ADF] regression equation. If it can be assumed that the cross-

correlations are caused by a common factor, then this common factor must also be present

in the cross-section averages. Adding these to the ADF equations should then get rid of

the common factor in the residuals and thus correct for the presence of cross-correlations.

As the CIPS test is known to have reduced power relative to the IPS and LLC tests

in case cross-correlation is not present, we test whether we really should use the CIPS

test instead of these simpler tests. For this purpose we use the cross-section dependence

[CD] test of Pesaran (2004) and the adjusted LM [LMadj] test of Pesaran et al. (2008).

These tests both use the cross-correlations between the residuals of the individual ADF

regressions for the different regions. The CD test takes a simple sum which is scaled

such that it has a standard normal distribution under the null hypothesis of no cross-

sectional dependence. Therefore, the CD test has little power in the case that there are

both positive and negative correlations such that the average is close to zero. The LMadj

test, however, is also valid in this case as it employs the squares of the cross correlations

in the construction of the test statistic. However, the LMadj test is less robust against

non-normally distributed error terms and exhibits size distortions, especially when N is

much larger than T .

Table 1 gives the result of these tests for the panel of quarterly growth rates in house

prices ∆ log(pi,t), where ∆ denotes the first-difference filter, and of log(pi,t) − log(p34,t),

5



which is the difference of each series with the log house prices in Amsterdam (region

34, see Appendix A). The reason for examining the log price differences with respect

to Amsterdam is that finding these to be stationary, we can conclude that the house

prices in each region are cointegrated and have (1, −1) cointegration relationships. The

number of lagged (first) differences is allowed to vary across each (C)ADF equation and

is determined by minimizing BIC. Adding a lagged variable means losing one observation,

therefore we actually minimize BIC/T , see Cameron and Trivedi (2005, pp. 279) or the

definition of BIC given in Franses and Paap (2001). Each (C)ADF regression equation

contains an intercept and a trend.

From the second column of Table 1 we see that for the first difference of the log of

house prices there is substantial cross-sectional dependence, according to both the CD

and LMadj tests. Next, we see that all three unit root tests reject the presence of a

unit root in these growth rate series. Results for the difference between the log price

in a region and the log price in Amsterdam (region 34) appear in the third column of

Table 1. Again, the CD and LMadj tests indicate that there is substantial cross-sectional

dependence. Next, the LLC and IPS unit root tests do not reject the presence of a unit

root, but the CIPS test does. Since the LLC and IPS tests are not valid in case of cross-

sectional dependence, we rely on the CIPS test and conclude that the log house prices in

each region are cointegrated. Note that the (1, −1) cointegration relationships suggested

by the results in Table 1 are quite plausible. It means that the difference between the log

of house prices, or, equivalently the ratio of house prices, in each region is a stationary

process. This constrains the long-term growth of house prices in each region to be about

the same.

2.2 Clusters

Before we turn to our conditional clustering analysis using latent class techniques we

consider unconditional clustering based on the correlations of the house price growth rates

or of the residuals of the ADF regressions used above. For this purpose, we use multi-
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dimensional scaling [MDS], which results in the graphs shown in Figure 2 and 3. Although

the graphs in these figures are rather different, they basically lead to the same conclusion

that there is just a single cluster. Hence, a clustering of regions based only on the cross-

correlations of the regional house prices is not a meaningful possibility. Apparently, we

need a more sophisticated clustering method, perhaps based on latent classes, as we will

propose in the next section.

3 The model

In this section we put forward the specification of the latent-class panel time series model

for describing the regional house prices. We first discuss the characteristics of the model,

and then we outline the parameter estimation procedure.

3.1 Representation

Our starting point is the latent-class panel time series model developed by Paap et al.

(2005). The crucial idea behind this model is that the individual time series may be

grouped into a limited number of clusters. Within each cluster, a linear model is assumed

to describe the dynamic behavior of the time series. The clusters are defined such that the

model parameters are the same for all time series within a cluster, but they are different

across clusters. Hence, this model covers the middle ground between a pooled regression

model, where the model parameters are constrained to be the same for all regions, and

a ‘fully heterogenous’ model, where the parameters are allowed to be different for each

individual region. Whereas a pooled regression model may be too restrictive, a fully

heterogenous model may be too flexible and ignores the possible similarities between

regions. Finally, the key feature of the model of Paap et al. (2005) is that the number

of clusters in the model as well as the allocation of the individual time series to different

clusters is purely data-based. This avoids ex ante, and necessarily subjective, grouping

of regions according to geographical location or economic or demographic characteristics,
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for example.

In our model for quarterly growth rates of house prices we allow for more flexibility

than was done in Paap et al. (2005). As mentioned, there are three research questions we

want to answer with our model and each question corresponds to a different parameter

that can vary across the latent classes. The first is whether the growth rates of house

prices are the same across all regions. We therefore allow the clusters to have a different

average growth rate by allowing for a class-specific intercept. To facilitate interpretation,

we demean all other variables in the model such that the intercept is equal to the average

growth rate of the house prices in the regions in a cluster.

The second question concerns the so-called ripple effect, see Cameron et al. (2006),

which describes how price changes propagate across regions. To investigate this issue,

we consider the parameters of the difference between the log price in region i relative

to Amsterdam. As discussed in the previous section, we find that these variables are

stationary, such that the log regional prices are cointegrated, As we fix the cointegration

relationships at (1, −1), this implies that the (log) ratio of the house prices in each

pair of regions is stationary. Thus, the long-term growth rates of all regional house

prices are constrained to be somewhat similar, but in the short term deviations from

this equilibrium are quite possible. The adjustment parameter determines the speed at

which a region moves towards the equilibrium. We allow this adjustment parameter to

vary across the clusters. House prices in regions with a higher adjustment parameter will

respond relatively quickly to deviations within other regions, while those regions with a

lower adjustment parameter need more time to react.

As the house prices of a region are (1, −1) cointegrated with those of each other

region, in principle it does not matter which region we choose to put in the cointegration

relationship. Here we choose Amsterdam in each relationship as a kind of benchmark,

also based on the idea that equilibrium deviations might generally start in the capital city

Amsterdam, and then ripple through to the other regions of the Netherlands.

The third and last question we wish to answer with our model is whether the house
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prices in regions follow the trend in real GDP. We add an error correction variable linking

regional real house prices and real GDP, where the long-run parameter should be esti-

mated. The adjustment parameter indicates how fast the house prices in a region react

to changes in GDP.

Based on the above discussion, we propose the following latent-class panel time series

model for regional house prices in the Netherlands

∆ log(pi,t) = β0,si
+ β1,si

[log(pi,t−1)− log(p34,t−1)]+

β2,si
[log(pi,t−1) + γsi

log(yt−1)] + ηi,t. (1)

The β and γ parameters are class-specific parameters, where the subscript si = 1, . . . , S

denotes the latent class which region i belongs to with S being the number of latent

classes. We denote the probability that a region belongs to latent class s, the mixing

proportions, as πs. Naturally it must hold that, 0 < πs < 1 and that
∑S

s=1 πs = 1.

Even though model (1) includes log(yt−1), which is the same for all equations, there

may still be some cross-section correlation among the house prices that is not captured.

Therefore, following Holly et al. (2007), we allow the error term ηi,t in (1) to be correlated

across regions, but assume that this correlation is due to dependence on certain common

factors. To be precise, we consider the specification

ηi,t = α1,i∆ log(yt−1) + α2,i log(It−1) + α3,i∆ log(pt−1) + εi,t, (2)

where It−1 denotes the long-term interest rate at time t−1, pt−1 denotes the average house

price in the Netherlands at time t − 1 and where αk,i for k = 1, 2, 3 are region-specific

parameters. The residuals εi,t are now assumed to be independently normally distributed

with a region-specific variance σ2
i .

In the application below, we demean all variables in (1) and (2) and hence the inter-

cepts β0,s in (1) are equal to the average growth rates of the house prices in the latent

classes s for s = 1, . . . , S.
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3.2 Estimation

The parameters in our model (1) with (2) can be estimated as outlined in Paap et al.

(2005), using the EM algorithm of Dempster et al. (1977). This makes use of the full data

log-likelihood function, that is, the joint density of the house prices and the latent classes

si, which we specify in detail below. The EM algorithm is an iterative maximization

algorithm, which alternates between two steps until convergence occurs. In the first

step (E-step) we compute the expected value of the full data log-likelihood function with

respect to the latent classes si, i = 1, . . . , N , given the house prices and the current values

of the model parameters. In the second step (M-step) we maximize the expected value

of the full data log-likelihood function with respect to the model parameters. As the

model given the class memberships can be written as a standard linear regression, the

M-step amounts to a series of (weighted) regressions. As the EM algorithm maximizes

the log-likelihood function, the resulting estimates of the model parameters are equal to

the maximum likelihood [ML] estimates. We can therefore compute standard errors of

the estimates using the second derivative of the log-likelihood function.

Note that due to the presence of the term β2,si
[log(pi,t−1) + γsi

log(yt−1)] the model in

(1) is actually nonlinear in the parameters. To deal with this issue, we follow Boswijk

(1994) and rewrite the model as

∆ log(pi,t) = β0,si
+ β1,si

[log(pi,t−1)− log(p34,t−1)]+

β2,si
log(pi,t−1) + β3,si

log(yt−1) + ηi,t, (3)

where β3,s = β2,sγs. Note that (3) is linear in the parameters, which facilitates estimation.

The ML estimate γ̂s can then be obtained from the ML estimates of β2,s and β3,s as

β̂3,s/β̂2,s.

The full data likelihood function, that is, the joint density of P = {{∆ log pi,t}T
t=1}N

i=1

and S = {si}N
i=1 is given by

l(P ,S; θ) =
N∏

i=1

(
S∏

s=1

(
πs

T∏
t=1

1

σi

φ(εs
i,t/σi)

)I[si=s])
, (4)
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where φ(·) denotes the probability density function of a standard normal random variable

and θ is a vector containing all model parameters. The error term at time t for region i

belonging to cluster s is defined as

εs
i,t = ∆ log pi,t − x′i,tβs − w′

tαi, (5)

where xi,t is the 4 × 1 vector with the regressors appearing in (3) and βs contains the

corresponding parameters for cluster s. Similarly, wt is the 3times1 vector with com-

mon factors in the specification for ηi,t in (2), and αi = (α1,i, α2,i, α3,i)
′ containing the

parameters for region i.

The expectation of the full data log-likelihood function with respect to S|P , θ [E-step]

is given by

L(P ; θ) =
N∑

i=1

(
S∑

s=1

π̂i,s

(
ln ps +

T∑
t=1

−1

2
ln σ2

i −
1

2
ln 2π − (εs

i,t)
2

2σ2
i

))
, (6)

where π̂i,s denotes the conditional probability that region i belongs to class s which is

equal to

π̂i,s =
πs

∏T
t=1

1
σi

φ
(
εs

i,t/σi

)
∑S

k=1 πk

∏T
t=1

1
σi

φ
(
εk

i,t/σi

) . (7)

In the M-step, we need to maximize (6) with respect to the parameters βs, πs, s =

1, . . . , S and αi, σ2
i for i = 1, . . . , N . We perform this maximization step sequentially.

First, we optimize over βs keeping the other parameters fixed. This can be done by a

simple weighted regression of ∆ log(pi,t)−w′
tαi on xi,t. The weights are given by

√
π̂i,s/σi.

Clearly, we want regions with a larger probability of belonging to class s to have a larger

weight in estimating βs. At the same time, regions with a larger standard deviation of the

error term σi should get a smaller weight, as their house prices contain relatively more

noise and less information about βs. Each βs, s = 1, . . . , S is estimated in a separate

weighted regression.

Second, we optimize the log-likelihood function over αi for i = 1, . . . , N . We do

this by regressing
∑S

s=1 π̂i,s [∆ log(pi,t)− xi,tβs] on wt. The dependent variable in this

regression is the conditional expectation of ηi,t. We perform these regressions for each

region separately.
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Next, the new estimate of σ2
i is given by

σ2
i =

1

T

T∑
t=1

S∑
s=1

π̂i,s

(
εs

i,t

)2
(8)

for i = 1, . . . , N . Finally, the mixing proportions are updated by averaging the conditional

class membership probabilities, that is,

πs =
1

N

N∑
i=1

π̂i,s (9)

for s = 1, . . . , S.

As we maximize over the parameters sequentially in the M-step, we do not reach the

optimum of the expected full data log-likelihood function (6) in each iteration of the EM-

algorithm. We can repeat the individual update steps until convergence, but this is not

necessary. Indeed, Meng and Rubin (1993) have shown that an increase in the full-data

log-likelihood function in the M-step is sufficient for the EM algorithm to converge to the

maximum of the log-likelihood function.

Determining the appropriate number of latent classes is not straightforward. We

cannot use a standard statistical test, due to the Davies (1977) problem of unidentified

nuisance parameters under the null hypothesis. The usual approach is using a criterion

function balancing the fit and the complexity of the model, where the model fit is mea-

sured by the value of the log-likelihood function while the number of model parameters

provides a measure of complexity. The most well-known criteria are the Akaike infor-

mation criterion [AIC] and the Bayesian information criterion [BIC]. Bozdogan (1994)

suggests that the AIC should have a penalty factor of 3 instead of 2 in the case of mixture

models. Indeed, Andrews and Currim (2003) show that this AIC-3 criterion outperforms

other criteria. Bozdogan (1987) modifies the AIC into the so-called consistent Akaike in-

formation criterion [CAIC], which is almost equal to BIC. He shows that when the sample

size is large the CAIC and BIC criteria perform better than AIC. We will consider all

four criteria below.
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4 Empirical results

In this section we discuss the results of applying our model to the regional house price

data for the Netherlands described in Section 2. The effective sample period ranges from

1985Q3 (because we have ∆ log(pt−1) = log(pt−1) − log(pt−2) in our model) to 2005Q2

(because we only have real GDP data until 2005Q2), giving us T = 80 data points

in the time series dimension. To obtain a first impression of the extent of similarities

across regions, we start by estimating a fully heterogenous model allowing for different

parameters for each region. Next, we provide estimation results for the model with a

limited number of latent classes. Finally, we consider impulse-response functions for

three interesting scenarios to provide further interpretation of the model.

4.1 A fully heterogenous model

We first estimate the parameters in a fully heterogenous model, that is, we estimate the

model in (1) with (2) allowing for different parameters for each individual region. This

essentially is a model with S=76 latent classes, in which case each region forms a separate

class.

Figure 4 displays the histograms for the 76 estimated values for each of the parameters

βj, j = 1, 2, 3, and γ in (1). The top left panel shows the intercepts, which equal the

quarterly growth rates. These are all positive, reflecting the upward trend in the house

prices, and range between 0.6% and 1.3% per quarter. The top right panel contains the

adjustment parameters for the (1, −1) cointegration relationship with the house prices in

the Amsterdam region. We find a few positive values here, which is not as expected as

these imply divergence between the prices in those regions and in Amsterdam. Similar

results are obtained for the adjustment parameter for the cointegration term with GDP,

in the bottom left panel of Figure 4. Finally, the histogram in the bottom right corner

shows the parameter γ in the cointegration relationship with GDP, which we expect to

be negative as we expect the house prices and GDP to move in the same direction.

We can see from these graphs that some form of aggregation may be useful, as we now
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get a wide variety of parameter estimates, with sometimes quite implausible results. At

the same time, this variety also suggests that we should perhaps better not restrict the

parameters to be the same across all regions. Hence, it may be optimal to allow for a

limited number of different clusters.

4.2 A model with latent classes

A major issue for successful application of the latent-class panel time series model is of

course determining the appropriate number of latent classes. As discussed in Section 3.2,

we consider four different information criteria for this purpose. Table 2 shows the values of

these criteria for models with one to five and 76 classes. For all criteria, we see that going

from a homogenous model (with a single class) to two classes amounts to a relatively large

improvement in the balance of model fit and complexity. Both AIC and AIC-3 prefer four

classes, while both BIC and CAIC prefer two classes. We choose to focus on the model

with two classes, as preferred by the BIC and CAIC criteria, also because some of the

(unreported) estimation results with four classes turn out to be difficult to interpret.

The estimation results for the model with two latent classes are given in Table 3.

Additionally, Table 4 gives the results for a series of Wald tests which we use to examine

whether the parameters for the different classes are significantly different from each other.

The estimation results show that the regions in the two latent classes do indeed differ from

each other in several important respects. First, the estimated intercepts show that the

average growth rates are significantly different at the 5% level, with class 1 having a higher

growth rate than class 2.1 The average growth rate in class 1 is equal to 1.2% per quarter,

or 4.9% annually, while the house prices in class 2 grow with 1.0% per quarter, or 4.2%

annually.

Second, we find that prices in regions in the high-growth class react faster to changes

in the house prices of Amsterdam than those in the low-growth class. The interpretation

1Recall that we demeaned all other variables the model, so the intercepts represent the average growth

rates.
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is that changes in house prices start in Amsterdam, first disseminate to the regions in

class 1, and then to regions in class 2. So, this is the ripple effect in the Dutch house

prices.

Third, examining the cointegration relationship with GDP, we find that the high-

growth class has a larger adjustment parameter, but the difference across the two classes

is not significant as can be seen from Table 4. The cointegration relationship itself,

however, is significantly different across the classes. For class 1, it is (1, −1.51), meaning

that in the long run the house prices in the regions in this cluster grow about 50% faster

than GDP. In class 2 the cointegration relationship is (1, −0.93), which is not significantly

different from (1, −1). This implies that if GDP increases, so do the house prices in the

regions in this cluster, and roughly by the same amount.

The parameters in (2) are region-specific, and full estimation results are not reported

to save space. Only 17% of the α1,i parameters is significant, suggesting that the impact

of GDP on the house prices is mostly captured by the cointegration term. The α2,i

parameters are mostly negative, and only two regions have an (insignificant) positive

value. Furthermore, for 77% of the regions the α2,i parameter is significant at the 5%

level, indicating that the interest rate indeed influences the house prices in the expected

direction. The α3,i parameters, relating the growth of the house price in a region to growth

of the average house price in the Netherlands in the previous quarter, is positive for 84%

of the regions, but only significant for about one-third of these regions.

The latent classes

The parameter estimation results obviously become more interesting if we know which

regions belong to each of the two classes. Therefore, we compute the conditional class

membership probabilities using (7). The resulting classification of the regions is shown

in Figure 5. Regions are colored based on π̂i,1, the probability of belonging to the high-

growth class. Regions are colored in five shades of grey. For the regions that are colored

in the darkest shade it holds that π̂i,1 > 0.8. For regions colored in subsequently lighter
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shades of grey it holds that 0.6 < π̂i,1 ≤ 0.8, 0.4 < π̂i,1 ≤ 0.6, 0.2 < π̂i,1 ≤ 0.4 or π̂i,1 ≤ 0.2.

It can be seen that most regions are either very dark or very light, suggesting that the

classification is very clear for most regions. In fact, the average value of max(π̂i,1, π̂i,2) is

equal to 0.93.

We find that the high-growth class contains mainly rural regions surrounding the big

cities in the Netherlands. The main exception is the inclusion of Amsterdam itself. Other

larger cities included are Delft and Tilburg. The regions in this class cover parts of Noord-

Brabant, the Veluwe and the south of Friesland. Even though the East belongs almost

completely to class 1, the larger cities of the East, like Zwolle, Almelo, Hengelo, Enschede,

Arnhem and Nijmegen are part of class 2.

Class 2 contains different types of regions. First, it contains many large cities in

different parts of the country, like Breda and Groningen, as well as almost all of the

regions in the Randstad, the densely populated western part of the country. At the same

time some rural regions, like Zeeland, Zuid-Limburg and regions in the North belong to

this class with high probability. Note that these rural regions are not as close to the

Randstad as most of those in class 1.

A possible explanation for our results is the increased number of commuters that live

in the regions belonging to class 1 and who work in the large western cities. If the number

of commuters increases, it is likely that they move to regions in cluster 1, as these are still

at traveling distance from the Randstad. This development has two consequences for the

regions in class 1. First, the average income in these regions is likely to increase, as the

individuals who move away from the cities are relatively wealthy. The second consequence

is an increase of housing quality in these regions, as wealthier people leaving the cities

will increase the demand for more luxurious houses.

These potential structural changes within the regions of cluster 1 are consistent with

all of our findings. First, the increase in housing quality will result in a larger increase

in the average house prices in class 1 as compared to class 2. Our second finding is that

house prices in these regions react faster to changes in the house prices in Amsterdam. As
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a lot of the commuters actually work in the Amsterdam region, their decision the move

might be influenced by the house prices in Amsterdam itself. Our last and most striking

finding is that the house prices in class 1 increase roughly 50% faster than GDP. Note

however that the increase is not corrected for higher housing quality.

4.3 Impulse-response functions

To give further interpretation to our estimation results we compute impulse-response

functions for three interesting scenarios, each occurring in the second quarter of 2005. In

the first scenario real GDP receives a shock of 10%. In the second scenario real GDP stays

the same, but the house price in Amsterdam receives an upward shock of 10%. In the

third scenario it is the long-term interest rate that receives a shock of 10%. We forecast

the house prices for each of the three scenarios and compare with a no-change scenario,

for the subsequent three-year period from 2005Q3 until 2008Q2.

In order to compute the impulse responses up to 12 quarters ahead, we also need

forecasts for GDP and the interest rate, as these variables also affect house prices, see

(1). Here we assume that the interest rate stays the same during the forecast period. In

scenario 3, the interest rate is higher, but still assumed to be constant over the whole

forecast period. To obtain forecasts for GDP we construct a simple AR(q) model with

intercept for ∆ log yt. We choose q based on out-of-sample forecasting performance, where

we use the last 3 years as a hold-out sample. It turns out that q = 8 gives the best

performance.

Figure 6 shows the impulse-response functions of the log house prices with respect

to the log of GDP. The y-axis gives the relative change in house prices between the

two scenarios, that is, a value of 0.10 means that the house price is 10% higher than

the reference forecast. We show the impulse-response functions for only three regions:

Noordwest Friesland, Bunnik/Zeist, and Amsterdam. Of these three, Amsterdam belongs

to class 1, the high-growth cluster, while the other two regions belong to class 2 with high

probability.
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We find that the effect of an increase in GDP is initially negative, which is caused

by the relatively large negative α1,i parameter for all three regions. The negative effect

is, however, probably not significant as the α1,i estimates are not significant for these

regions. After a while the house prices are higher compared to the reference forecasts,

and as expected in Amsterdam the prices increase fastest.

Figure 7 shows the impulse-response functions of an increase in the house price in

Amsterdam with 10%. Naturally, we find that Amsterdam has initially a higher price,

though the difference with the reference forecast soon diminishes. After three years the

impulse responses are about the same for all three regions. This illustrates the effect of

the (1, −1) cointegration relationships between the house prices in each region.

In the last scenario, the log interest rate receives a shock, and increases from 2.06%

to 2.27%. We find that the house prices are falling, but the effect is not very large. After

three years the house prices are about 2% lower, as compared to the reference forecasts.

5 Conclusions

In this paper we developed a latent-class panel time series model for describing several

key characteristics of regional house prices in the Netherlands between 1985 and 2005. An

important feature of the model is that we cluster the regions in separate classes, where

the price dynamics of house prices in regions within the same class are similar, while they

are different across the classes. For the 76 regions in the Netherlands we find that two

classes are sufficient. The first class contains mainly rural regions close to large cities.

The second class contains both the larger cities and some more remote rural regions.

The house prices in regions in the first class are characterized by higher average growth

rates, a faster response to price changes in the house prices in Amsterdam, and stronger

reactions to changes in GDP. These findings may be caused by the increased number of

commuters. Indeed, the number of people working in the larger cities, but living in the

regions of class 1, has increased substantially during our sample period.

Our model allows for the analysis of rather detailed data. To fully exploit its properties
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one would want to analyse even further disaggregated data. The collection of such more

detailed series is left to further research. Another issue for further research is to make the

class probabilities dependent on certain explanatory variables.
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A Regions by number

1 Noordoost-Groningen 27 Kop v. Noord-Holland 52 Dordrecht

2 Slochteren +s 28 Noord-Kennemerland 53 Gorinchem

3 Grootegast +s 29 West-Friesland 54 Culemborg/Dodewaard

4 Stad Groningen +s 30 Midden-Kennemerland 55 Ede +s

5 Zuidoost-Groningen 31 Waterland 56 Arnhem

6 Noord-Drenthe 32 Zaanstreek 57 Duiven/Westervoort

7 Opsterland 33 Zuid-Kennemerland 58 Elst +s

8 Oost-Friesland 34 Amsterdam 59 Nijmegen

9 Noordwest-Friesland 35 De Bollenstreek 60 Noordoost-Brabant

10 Zuidwest-Friesland 36 Haarlemmermeer 61 Uden +s

11 Zuid-Friesland 37 Almere 62 Oss +s

12 Zuidwest-Drenthe 38 Het Gooi 63 Den Bosch

13 Zuidoost-Drenthe 39 Amersfoort 64 Waalwijk/Drunen

14 Hardenberg +s 40 Barneveld 65 Zeeuwse Eilanden

15 Kop van Overijssel 41 Bunnik/Zeist 66 Zeeuws-Vlaanderen

16 Zwolle +s 42 Utrecht 67 Bergen op Zoom +s

17 Raalte +s 43 Woerden 68 West-Brabant

18 Almelo Tubbergen 44 Alphen 69 Breda

19 Hengelo Enschede 45 Leiden 70 Tilburg/Oirschot

20 Ruurlo Eibergen 46 Den Haag 71 Eindhoven +s

21 Doetinchem +s 47 Gouda 72 Zuidoost-Brabant

22 Zutphen +s 48 Delft +s 73 Noord-Limburg

23 Apeldoorn +s 49 Rotterdam 74 Weert +s

24 Nunspeet +s 50 Westland 75 Roermond +s

25 Lelystad 51 Brielle/Goeree 76 Zuid-Limburg

26 Den Helder/Texel

Note: +s means including surrounding area.
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Figure 1: Log house prices for 3 distinct regions, and log GDP.
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Figure 2: Multidimensional scaling plot of the regions, based on the correlations of the

first differences of the log house prices over the period 1985Q1-2005Q4.
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Figure 3: Multidimensional scaling plot of the regions, based on the correlations of the

residuals of the ADF regressions for the log house prices over the period 1985Q1-2005Q4.
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Figure 4: Histograms of the estimated values of the parameters βj, j = 1, 2, 3, and γ in

(1) in the fully heterogenous model with 76 classes.
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Figure 5: Clustering of regions. Regions with a high probability of belonging to the

high-growth class are colored dark, regions with a low probability of belonging in the

high-growth class are colored lighter. The numbers inside the regions correspond to the

ones in Appendix A.
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Figure 6: Impulse-response function of log(pi,t) with respect to log(yt) for 3 regions.
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Figure 7: Impulse-response function of log(pi,t) with respect to log(p34,t) for 3 regions.
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Figure 8: Impulse-response function of log(pi,t) with respect to log(It) for 3 regions.
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Table 1: Results of the CD test, the LMadj test

and three different tests for a unit root for two

series (boldface numbers indicate rejection of the

null hypothesis).

Test Series ∆[log(pi,t)] log(pi,t)− log(p34,t)

CDa 92.0 144.2

LMadj
a 60.4 175.1

LLCa -61.2 2.0

IPSa -55.9 1.9

CIPSb -8.9 -3.5
a Test statistic is asymptotically distributed as normal
b Tables with critical values for various values for N and

T are given by Pesaran (2007), in the presence of and
intercept and a trend in the CADF equations and for
N = T = 70 the critical value at the 95%-level is
−2.58, for N = T = 100 it is −2.56.

Table 2: Criteria values for different numbers of latent classes (bold-

face numbers indicate the optimum).

Criterion \ S 1 2 3 4 5 76

AIC -3.985 -4.102 -4.103 -4.104 -4.104 -3.988

AIC3 -3.934 -4.050 -4.050 -4.051 -4.050 -3.875

BIC -3.645 -3.756 -3.752 -3.748 -3.742 -3.234

CAIC -3.594 -3.705 -3.699 -3.695 -3.688 -3.121
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Table 3: Estimation results for S = 2

latent classes.

Class Estimate Standard error

intercept β0,s

1 0.012 0.001

2 0.010 0.000

adjustment parameter Amsterdam β1,s

1 -0.163 0.015

2 -0.114 0.010

adjustment parameter GDP β2,s

1 -0.122 0.010

2 -0.097 0.008

cointegration relationship GDP γs

1 -1.511 0.076

2 -0.935 0.103

mixing proportions πs

1 0.381 0.071

2 0.619 .

Table 4: Wald tests for equality of the

parameters across the two classes in (1).

Restriction Wald statistic p-value

β0,1 = β0,2 4.01 0.045

β1,1 = β1,2 7.13 0.008

β2,1 = β2,2 3.37 0.066

γ1 = γ2 18.54 0.000
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