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Abstract

We propose a new periodic autoregressive model for seasonally observed time
series, where the number of seasons can potentially be very large. The main novelty
is that we collect the periodic parameters in a second-level stochastic model. This
leads to a random-coefficient periodic autoregression with a substantial reduction in
the number of parameters to be estimated. We discuss representation, estimation,
and inference. An illustration for monthly growth rates of US industrial production
shows the merits of the new model specification.

Key words: periodic autoregression, random coefficient model
Jel codes: C22, C51.

∗We thank Dennis Fok for his comments. Address for correspondence: Philip Hans Franses, Econo-
metric Institute (H11-2), Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The
Netherlands, e-mail: franses@few.eur.nl

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Erasmus University Digital Repository

https://core.ac.uk/display/18507939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Periodic autoregressive time series models [PAR] have become frequently used models to

describe and forecast seasonal time series in economics, see, for example, Osborn and

Smith (1989), Osborn (1991), Franses and Paap (1994), Franses (1994), Boswijk et al.

(1997), and Herwartz (1999). These models seem to be particularly considered for time

series with low seasonal frequency, like quarterly data within a year or daily data within a

week, see Ghysels and Osborn (2001, Chapter 6) and Franses and Paap (2004) for recent

surveys of the current state of the art.

Although periodic models may have benefits in terms of fit, forecasting and interpre-

tation, they also have drawbacks. The major problem is that the number of parameters

quickly grows with the number of seasons, hence making these models less attractive for

application to weekly data and sometimes even monthly data. This is due to the fact that

an unrestricted periodic autoregression of order p for seasonal data with frequency S can

require pS parameters. Next to potential estimation problems due to a lack of degrees of

freedom, the interpretation of such an amount of parameters is also not easy.

In this paper we offer a solution to these problems by proposing a new periodic au-

toregression, which can easily be used for high frequency seasonal data while preserving

interpretability of the parameters. The new model builds on the idea in Jones and Brels-

ford (1967), where the authors propose to restrict the periodic parameters by imposing a

Fourier Series approximation, see also Bloomfield et al. (1994) for an application. Indeed,

as the periodic parameters themselves show a recurrent pattern, they can be summarized

by sums of sine and cosine functions. Jones and Brelsford (1967) also propose to consider

a restrictive set of these functions in order to gain degrees of freedom. The latter proposal

is taken up in our model as well, though with one major modification. As a smaller set

of functions can only amount to an approximation, we introduce an additional error term

in our model. Hence, we have a first-level model which contains the time series as the

variable to be explained by its own past, and we have a second-level stochastic model

for the periodic parameters. We will call the joint model a random-coefficient periodic

autoregressive [RCPAR] model.
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The outline of our paper is as follows. In Section 2, we describe the representation

of the RCPAR model and discuss parameter estimation. In Section 3, we summarize the

results of a limited simulation experiment to examine the small sample properties of the

parameter estimators. In Section 4, we illustrate our RCPAR model to growth rates of

monthly US industrial production. We find convincing evidence that the RCPAR model

improves on the deterministic approximation of Jones and Brelsford (1967), as the error

term in the second-level model clearly has a non-zero variance. Furthermore, the RCPAR

outperforms the deterministic specification and is similar to but much more parsimonious

than a conventional PAR model. In Section 5 we conclude with a concise review of further

research topics.

2 The model

In this section we discuss the random-coefficient periodic autoregressive model. We con-

sider model representation, parameter estimation, and forecasting.

2.1 Random-coefficient PAR model

Let yt for t = 0, . . . , n = SN be a seasonal time series and let S denote the number

of seasons with a period of length N . Typically, N amounts to years or weeks and S

to months, quarters or weeks. To describe this seasonal time series, one may consider a

periodic autoregression of order 1, that is,

yt =
S∑

s=1

(µsDs,t + φsDs,tyt−1) + εt, (1)

where Ds,t = 1 if t corresponds to season s and 0 otherwise, and where εt ∼ NID(0, σ2
ε).

To ensure stationarity of the time series we impose that
∏S

s=1 φs < 1, see, for example,

Franses and Paap (2004, Section 3.2).

If S is large, the number of autoregressive parameters becomes large too. To limit the

number of parameters, Jones and Brelsford (1967), amongst other suggestions, propose

to describe the φs parameters by the deterministic function

φs = α0 + α1 cos

(
2πs

S
− α2π

)
, (2)
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where α0, α1, α2 are unknown parameters. Such a function reduces the amount of pa-

rameters from S to 3. Note that for parameter identification we restrict α2 ∈ [0, 1) as

cos(x + kπ) = (−1)k cos(x) for k ∈ Z and x ∈ R.

For some economic time series, particularly when S is large, the deterministic speci-

fication (2) may be too restrictive. Therefore, we propose to extend (2) with a random

error term resulting in

φs = α0 + α1 cos

(
2πs

S
− α2π

)
+ us, (3)

where us ∼ NID(0, σ2
u) and E[usεt] = 0 for all s, t. This random term distinguishes

(3) from the deterministic specification (2). Adding the second-level error term, leads

to a random-coefficient specification, see, for example, Swamy (1970) and more recently

Maddala et al. (1997) and Hsiao (2003, Chapter 6). The difference with a standard

random-coefficient approach is that we shrink the periodic autoregressive parameters to

the deterministic function (2) instead of a simple mean. We call the PAR(1) model in

combination with (3) a random-coefficient periodic autoregression of order 1 RCPAR(1).

2.2 Parameter estimation

Parameter estimation of the PAR model with the deterministic specification (2) can be

done using concentrated nonlinear least squares [NLS], see Jones and Brelsford (1967).

Given the value of α = (α0, α1, α2), we can easily compute the optimal values of the

remaining parameters using ordinary least squares [OLS]. Hence, one only has to perform

a nonlinear maximization with respect to the three α parameters.

In case of our random-coefficient specification (3) the RCPAR(1) model can be written

as

yt =
S∑

s=1

(µsDs,t + (α0 + α1 cos
(2πs

S
− α2π

)
)Ds,tyt−1) + vt, (4)

where the error term vt = εt + Ds,tusyt−1 is heteroskedastic. It is easy to derive that the

vector of disturbances v = (v1, . . . , vn)′ is normal distributed with mean 0 and covariance

matrix

Σv = σ2
εIn + Σu, (5)
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where the (i, j)th element of the n× n matrix Σu equals σ2
uDs,iyi−1Ds,jyj−1. To estimate

the model parameters we may opt for a feasible generalized NLS [FGNLS] estimator

following the lines of Swamy (1970) or a maximum likelihood [ML] estimator.

FGNLS estimator

To construct the GNLS estimator we need consistent estimators for σ2
ε and σ2

u. A consis-

tent estimator for σ2
ε is given by σ̂2

ε = (n− 2S)−1
∑n

t=1 ê2
t , where êt are the OLS residuals

from

yt =
S∑

s=1

(µsDs,t + φsDs,tyt−1) + et (6)

for t = 1, . . . , n. An estimator for σ2
u can be obtained by estimating the parameters of

φ̂s = α0 + α1 cos

(
2πs

S
− α2π

)
+ ωs (7)

for s = 1, . . . , S, using NLS, where φ̂s is the OLS estimate obtained from (6). If we denote

the NLS residuals by ω̂s the estimator for σ2
u is given by σ̂2

u = 1/S
∑S

s=1 ω̂2
s . Note this

estimator is consistent for both S and n going to infinity. In practice S may be relatively

small and we may divide by S − 3 instead of S, see Davidson and MacKinnon (1993,

Section 3.2).

The FGNLS estimator follows from minimizing v′Σ̂−1
v v with respect to α and µ =

(µ1, . . . , µS), where Σ̂v is given by (5) evaluated in σ̂2
ε and σ̂2

u. Note that given the

values of α0, α1, α2, the optimal values of the remaining parameters can be obtained

using a FGLS estimator and hence we only have to minimize with respect to the three

α parameters. Standard errors of the parameters can be estimated using Ĝ′Σ̂−1
v Ĝ, where

Ĝ is the n-dimensional vector of first-order derivatives of the nonlinear regression mean

of (4) with respect to α and µ evaluated in the FGNLS estimates, see Davidson and

MacKinnon (1993, Section 9.6). Note that E[usyt−1] 6= 0 and hence the FGNLS estimator

may be biased. However it is easy to show that the correlation between yt−1 and us is

proportional to the product of at least S − 1 φs parameters. For stationary periodic time

series, practical values of φs are about 0.5, and hence this product is approximately zero

if S is 12 or higher and so the bias will be small. Simulation results in Section 3 show

5



that the estimator performs very well for relatively small values of S and small values of

the product of the individual φs parameters.

ML estimator

It is also possible to estimate the model parameters using ML. There are two ways to

derive the likelihood function. Using the results of the FGNLS approach, it is easy to

show that the log of the joint density of Y = (y0, . . . , yn) is given by

ln f(Y ; µ, α, σε, σu) = −n

2
ln 2π − 1

2
ln |Σv| − 1

2
vΣ−1

v v, (8)

where Σv is given by (5) and v is the vector of residuals of (4). The ML estimator can be

obtained by maximizing this log likelihood function with respect to the model parameters.

Given the values of α, σu and σε the optimal value of the µ parameters is given by a GLS

estimator as discussed before. Hence, one only needs a nonlinear optimization with respect

to 5 parameters. The disadvantage of the approach is that one has to deal with an n× n

covariance matrix. Although there is an analytical expression for the inverse of Σ−1
v due

to its specific structure, the size of the covariance may become very large for large values

S and n.

Another way to compute the likelihood function is to integrate with respect to the

error terms us. The advantage of this approach is that one does not have to deal with

the potentially large covariance matrix Σv. Consider the density of Y conditional on

φ = (φ1, . . . , φS), that is,

f(Y |φ; µ, σε) =
S∏

s=1

N∏
T=1

1

σε

φ

(
ys+S(T−1) − µs − φsys+S(T−1)−1

σε

)
, (9)

where φ(·) denotes the pdf of a standard normal distribution. Note that we can consider

each of the S seasons separately. The unconditional density of Y is given by

f(Y ; µ, α) =

∫

RS

f(Y |φ; µ, σε)
S∏

s=1

1

σu

φ

(
φs − α0 − α1 cos

(
2πs
S
− α2π

)

σu

)
dφ1 . . . dφS. (10)

This unconditional distribution can be split up in S parts which equal

∫ ∞

−∞

1

σu

φ

(
φs − φ̄s

σu

)
N∏

T=1

1

σε

φ

(
ys+S(T−1) − µs − φsys+S(T−1)−1

σε

)
dφs, (11)
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with φ̄s = α0 + α1 cos(2πs
S
− α2π). If we define

φ̃s = (σ−2
u +

N∑
T=1

(ys+S(T−1)−1/σε)
2)−1(φ̄s/σ

2
u + ys+S(T−1)−1(ys+S(T−1) − µs)/σ

2
ε), (12)

we can rewrite (11) as

c−1

∫ ∞

−∞
exp

(
−1

2

(φ̄s − φ̃s)
2

σ2
u

−1

2

N∑
T=1

(ys+S(T−1) − µs − φ̃sys+S(T−1)−1)
2

σ2
ε

−1

2
(φs−φ̃s)

2/σ2
φ̃s

)
dφs,

(13)

where σ2
φ̃s

= (σ−2
u +

∑N
T=1(ys+S(T−1)−1/σε)

2)−1 and c = (
√

2π)NσN
ε σu. Evaluating the

integral results in

σφ̃s

σu(
√

2πσε)N
exp

(
− 1

2

(φ̄s − φ̃s)
2

σ2
u

− 1

2

N∑
T=1

(ys+S(T−1) − µs − φ̃sys+S(T−1)−1)
2

σ2
ε

)
, (14)

and hence the likelihood function can be written as

f(Y ; µ, α, σε, σu) =
S∏

s=1

√
2πσφ̃s

1

σu

φ
( φ̄s − φ̃s

σu

) N∏
T=1

1

σε

φ
(ys+S(T−1) − µs − φ̃sys+S(T−1)−1

σε

)
.

(15)

The maximum likelihood estimator is obtained by maximizing the log-likelihood function

(15) with respect to µ, α, σε and σu. Note that it is now not possible anymore to

construct a concentrated ML estimator and hence we have to maximize with respect to

all parameters. Standard errors of the parameters can be obtained from the second-order

derivatives of the log-likelihood function.

To describe the periodic autoregressive structure, our RCPAR model requires four

parameters, that is, α0, α1, α2 and σu. Hence, there should be enough degrees of freedom

to apply this model to describe monthly time series, where we should mention that we then

only have twelve observations to estimate σu. To investigate the small sample properties

of the FGNLS and the ML estimator of the RCPAR model, a simulation experiment shall

be beneficial. Note that for many practical purposes, like out-of-sample forecasting, we

are more interested in consistent estimates of the individual φs parameters rather than

the value of σu itself.
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2.3 Forecasting

To use the RCPAR model (1) and (3) for forecasting we need the values of the φs param-

eters. These parameters are stochastic and unobserved. To estimate the parameters for

each of the seasons we use the conditional expected value of φs given the data Y , which

is given by

E[φs|Y ; µ, α, σε, σu] =

∫ ∞

−∞
φs

f(Y |φ; µ, σε)σ
−1
u φ((φs − φ̄s)/σu)

f(Y ; µ, α, σε, σu)
dφs = φ̃s (16)

for s = 1, . . . , S. If we evaluate these φ̃s as defined in (12) in the parameters estimates,

we obtain an estimate for the seasonal φs parameters. The conditional variance of the φs

is given by V[φs|Y ; µ, α, σε, σu] = σ2
φ̃s

for s = 1, . . . , S, where σ2
φ̃s

is defined below (13).

Given the estimates of φs, one can generate forecasts of the periodic autoregressive

model in a straightforward manner, see, for example, Franses and Paap (2004, Sections 3.4

& 4.4).

2.4 RCPAR(ppp) model

In many applications it is not likely that a first-order PAR model is sufficient to capture

dynamics. To allow for higher order autocorrelation we assume that εt follows an AR(p−1)

process, that is,

εt =

p−1∑
i=1

ψiεt−i + ηt (17)

with ηt ∼ NID(0, σ2
η) and E[usηt] = 0 for all s, t. The combined RCPAR(p) model can

then be written as

yt −
S∑

s=1

φsDs,tyt−1 =
S∑

s=1

λsDs,t +

p−1∑
i=1

ψi(yt−i −
S∑

s=1

φsDs,t−iyt−1−i) + ηt (18)

together with (3), where λs = µs −
∑p−1

i=1 ψiµs−i with µs−Sk = µs for k ∈ Z.

Parameter estimation can be done in a similar way as for the RCPAR(1) model. One

can either choose for an FGNLS estimator or an ML estimator. Note that the covariance

matrix of the disturbances, denoted by Σv in the RCPAR(1) representation, will depend on

the ψi parameters. This is not a problem for the FGNLS estimator as these parameters

can be estimated consistently in the first-step regression like (6). In the final FGNLS
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estimation step, one can still use a concentrated GLS estimator to reduce the dimension

of the optimization procedure. Note that if we choose a relatively large value of p, the

correlation between yt−p and us may become large and hence this may lead to a bias in

the FGNLS estimator.

Concentration is not possible anymore in the ML approach. It is therefore computa-

tionally more convenient to integrate with respect to the latent us variables in constructing

the likelihood function. One simply rewrites (18) as

(yt −
p−1∑
i=1

ψiyt−i) =
S∑

s=1

(
λsDs,t + φs(Ds,tyt−1 −

p−1∑
i=1

ψiDs,t−iyt−1−i)
)

+ ηt (19)

or

ỹt =
S∑

s=1

(λsDs,t + φszt) + ηt, (20)

where ỹt = (yt −
∑p−1

i=1 ψiyt−i) and zt = Ds,tyt−1 −
∑p−1

i=1 ψiDs,t−iyt−1−i. The analytical

integration can be done in a similar way as before by just replacing ys+S(T−1) by ỹs+S(T−1)

and ys+S(T−1)−1 by zs+S(T−1) in the relevant equations.

3 Simulations

To investigate the small sample properties of the FGNLS and ML estimator, we consider

a simulation experiment. As data generating process [DGP] we consider the RCPAR(1)

model as in (1) together with (3). The parameter values are set at µs = 1 for s = 1, . . . , S,

and α0 = α1 = α2 = 0.5, σε = 1, σu = 0.2. Without the error term, this DGP implies φs

parameters as displayed in Figure 1 for the case S = 12.

We first consider 100 years of monthly observations (S = 12) which corresponds to

1200 observations. Table 1 displays the results of the ML estimator. The number of

replications is 10 000. It can be seen from this table that the means of the maximum

likelihood estimates correspond very well with the true parameters, except for the σu

parameter which is slightly underestimated. This seems to be due to the small number

of seasons. The biases in the estimates of φs based on (16) are however very small. The

maximum bias over the seasons is only 0.005. Furthermore, Table 1 shows that the small

sample distribution of the maximum likelihood estimator corresponds reasonably well
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with the normal distribution, especially for the seasonal intercept parameters µs. For

the α parameters there is some size distortion. And, as expected, for σu, the normal

approximation is not too good due to the small sample bias.

Table 2 displays the results of the FGNLS estimator. We can see that the mean of the

FGNLS estimator corresponds better to the true values than the ML estimator. The bias

in the estimate for σu is now much smaller. The variance of the estimator is comparable

to the variance of the ML estimator. Furthermore, Table 2 shows that the theoretical

size of the small sample distribution of the FGNLS estimator is almost the same as the

nominal size with the exception of the α1 parameter. Hence, we recommend to use the

normal approximation in practice.

To see whether matters improve for the ML estimator, we repeat this simulation

exercise, where we increase the number of seasons. Table 3 displays the results for the

ML estimator for S = 24 and N = 100. We notice that the small sample bias in the ML

estimator for σu is substantially smaller than for S = 12. The small sample bias in the

other parameters is almost 0. The small sample distribution of the ML estimator is closer

to normal than for S = 12.

In sum, the simulation results suggest that we can reliably draw inference on the

parameters in the cosine function, but that we have to be careful with their estimated

standard errors. In fact, these errors may be a bit too small for monthly data.

4 Illustration

To illustrate our RCPAR model we consider the monthly growth rates of total industrial

production of the United States. The estimation sample is 1920.01–2000.12. Figure 2

displays the times series under scrutiny.

4.1 Model specification

First, we consider a regular PAR(1) model (1) for the series, that is, with unrestricted

parameters. The parameter estimates are given in the second column of Table 4. The LM-

test for first-order serial correlation in the residuals of a PAR(1) model equals 0.80 with a

p-value 0.74. The same test for first-to-fourth order serial correlation equals 2.14 with a
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p-value of 0.24. Hence, this model seems to fit the data well. To test for periodicity we test

for equal periodic autoregressive parameters φs in (1) using an F -test. The F -statistic

equals 9.04 which is clearly significant at the 5% level and hence there is substantial

evidence of periodicity in the autoregressive parameters.

Next we consider the PAR(1) model (1) under the restriction (2), that is, the Jones

and Brelsford (1967) type of model. The parameter estimates are given in the fourth

column of Table 4. Note that this model only uses three parameters to describe the

periodic autoregressive parameters instead of twelve. This restriction has some impact on

the estimates of σε and of the seasonal intercepts µs, which are clearly different than for

the unrestricted model. If we evaluate (2) in α̂ we obtain the estimates for φs, which equal

0.40, 0.32, 0.24, 0.17, 0.14, 0.16, 0.21, 0.29, 0.37, 0.44, 0.47 and 0.45. Figure 3 displays the

estimated φs parameters for the unrestricted and the restricted PAR(1) model. We clearly

see a difference between the two specifications, where the restricted model corresponds

with the smooth function.

To make the autoregressive specification more flexible, we consider our RCPAR(1)

model (1) with (3). The sixth column of Table 4 displays the ML parameter estimates of

this model. The LR-statistic for σu = 0 equals 44.59. As we have a one-sided alternative

(σu > 0), the asymptotic distribution of the likelihood ratio statistic is 1
2
χ2(0) + 1

2
χ2(1),

see Wolak (1989). Hence, it is clearly significant at the 5% level and our stochastic

specification (3) is preferred. Note that the seasonal intercept parameters and the σε are

closer to the unrestricted PAR(1) model than those of the non-stochastic specification

(2).

The expected values of the φs parameters (16) are 0.12, 0.29, 0.19, −0.03, 0.42, 0.42,

0.29, −0.14, 0.40, 0.55, 0.59 and 0.74. Note that the values are close to the estimated

φs parameters of the unrestricted PAR specification. Figure 3 also displays the estimates

of the RCPAR specification. Evidently, the estimated PAR parameters are close to the

estimates of the unrestricted PAR(1) but now estimated using a much smaller number of

parameters.

Our RCPAR specification is however not nested in the unrestricted PAR model. There-

fore, to compare the fit of both models we use the BIC. As can be seen from the last line
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of Table 4, our random-coefficient periodic autoregressive model has the smallest value,

and hence has the best fit.

The eighth column of Table 4 shows the FGNLS estimates of the RCPAR model The

parameter estimates are almost the same as the ML estimates with the exception of the σu

estimate which is larger. This result corresponds to our simulation results which showed

that there is a negative small sample bias in the ML estimator for σu.

4.2 Forecasting

Table 5 compares the forecasting performance of the three models, where we use the ML

estimates of the RCPAR model1. We remove the final H observations from the time

series and re-estimate the parameters of the three models for the smaller sample for H =

12, 24, 36. Next, we generated H 1-step ahead forecasts and 1 to H-step ahead forecasts for

H = 12, 24, 36. We compared the forecasts with the out-of-sample realizations using the

Root Mean Squared Error [RMSE], Mean Absolute Error [MAE] and the Mean Absolute

Percentage Error [MAPE].

The table shows that the forecasting performance of the random-coefficient and the

unrestricted PAR model is very similar. This holds for the 1-step ahead predictions as well

as the multi-step ahead predictions. The biggest difference can be found for the 12 1-step

ahead predictions if we consider the MAPE criterion. This suggest that the parameter

reduction from an unrestricted PAR to the random-coefficient PAR specification does not

harm forecasting performance. The restricted PAR always performs worse except for the

36 1-step ahead forecasts. Hence, imposing a deterministic structure (2) seems to lead to

a decrease in forecasting performance.

5 Conclusion

In this paper we have introduced a new periodic model that should be useful to capture pe-

riodic properties of high frequency seasonal data. We illustrated the model for a monthly

time series, but in our further work we will explore the relevance of the random-coefficient

1There is no substantial difference in forecasting performance if we use the FGNLS estimates.
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PAR model for weekly data. This exploration will concern univariate time series data,

and also multivariate series. There are various situations where one might think of having

a periodic effect of an explanatory variable on the dependent variable.

Another interesting avenue for further research concerns the inclusion of variables other

than sine and cosine functions in the second-level of the model. Indeed, an important and

meaningful question concerns the nature of the periodicity of the parameters. Perhaps

there are economic or institutional reasons why parameters show periodic patterns and

the relevance of these reasons can simply be examined using the second-level specification.
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Table 1: Small sample properties of the ML estimator and estimated z-ratios.
Sample size is 100× 12 (1200 data points). Number of replications is 10 000.c

θ true value E[θ̂]a V[θ̂]a Nominal size z-ratiosb

left tail right tail
0.05 0.10 0.20 0.20 0.10 0.05

α0 0.50 0.50 0.00 0.13 0.19 0.28 0.25 0.17 0.12
α1 0.50 0.51 0.01 0.11 0.15 0.24 0.29 0.20 0.14
α2 0.50 0.50 0.00 0.13 0.18 0.27 0.26 0.17 0.12
µ1 1.00 1.00 0.03 0.07 0.12 0.22 0.23 0.13 0.08
µ2 1.00 1.00 0.04 0.07 0.13 0.22 0.23 0.13 0.08
µ3 1.00 1.00 0.05 0.07 0.12 0.22 0.23 0.13 0.08
µ4 1.00 1.01 0.07 0.07 0.12 0.22 0.23 0.13 0.08
µ5 1.00 1.01 0.08 0.07 0.13 0.22 0.23 0.13 0.08
µ6 1.00 1.00 0.09 0.08 0.13 0.22 0.24 0.14 0.08
µ7 1.00 1.00 0.08 0.08 0.13 0.22 0.23 0.14 0.09
µ8 1.00 1.00 0.04 0.08 0.13 0.22 0.23 0.14 0.08
µ9 1.00 0.99 0.03 0.07 0.13 0.23 0.21 0.12 0.07
µ10 1.00 1.00 0.02 0.07 0.12 0.22 0.22 0.12 0.07
µ11 1.00 1.00 0.02 0.07 0.12 0.22 0.22 0.12 0.07
µ12 1.00 1.00 0.03 0.07 0.13 0.22 0.22 0.12 0.07
σε 1.00 1.00 0.00 0.08 0.14 0.26 0.16 0.07 0.03
σu 0.20 0.14 0.00 0.45 0.53 0.64 0.03 0.01 0.00

a The mean and variance of the ML estimates.
b The cell denotes the empirical size of the distribution of the z-ratios defined

as, (θ̂ − θ)/σ̂(θ), where σ̂(θ) denotes the estimated standard error of θ̂.
c The maximum bias in the estimated φs parameters based on (16) over the

12 seasons is 0.005.

14



Table 2: Small sample properties of the FGNLS estimator and estimated z-
ratios. Sample size is 100 × 12 (1200 data points). Number of replications is
10 000.c

θ true value E[θ̂]a V[θ̂]a Nominal size z-ratiosb

left tail right tail
0.05 0.10 0.20 0.20 0.10 0.05

α0 0.50 0.50 0.00 0.05 0.10 0.20 0.19 0.10 0.05
α1 0.50 0.51 0.01 0.04 0.08 0.16 0.21 0.11 0.06
α2 0.50 0.50 0.00 0.06 0.10 0.20 0.19 0.10 0.05
µ1 1.00 1.00 0.03 0.05 0.10 0.20 0.20 0.10 0.05
µ2 1.00 1.00 0.04 0.05 0.10 0.20 0.20 0.11 0.06
µ3 1.00 1.00 0.05 0.05 0.10 0.20 0.21 0.10 0.05
µ4 1.00 1.00 0.05 0.05 0.10 0.20 0.20 0.10 0.05
µ5 1.00 1.00 0.06 0.05 0.10 0.20 0.21 0.10 0.05
µ6 1.00 1.00 0.07 0.05 0.10 0.19 0.20 0.11 0.05
µ7 1.00 1.00 0.06 0.05 0.09 0.19 0.21 0.10 0.05
µ8 1.00 1.00 0.04 0.05 0.10 0.20 0.20 0.10 0.05
µ9 1.00 1.00 0.02 0.05 0.10 0.21 0.20 0.10 0.05
µ10 1.00 1.00 0.02 0.05 0.10 0.20 0.20 0.10 0.05
µ11 1.00 1.00 0.02 0.05 0.10 0.20 0.20 0.10 0.05
µ12 1.00 1.00 0.02 0.06 0.11 0.21 0.20 0.10 0.05
σε 1.00 1.00 0.00
σu 0.20 0.21 0.00

a The mean and variance of the FGNLS estimates.
b The cell denotes the empirical size of the distribution of the z-ratios defined

as, (θ̂ − θ)/σ̂(θ), where σ̂(θ) denotes the estimated standard error of θ̂.
c The maximum bias in the estimated φs parameters based on (16) over the

12 seasons is 0.009.
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Table 3: Small sample properties of the maximum likelihood estimator and
estimated z-ratios. Sample size is 100 × 24 (2400 data points). Number of
replications is 10 000.c

θ true value E[θ̂]a V[θ̂]a Nominal size z-ratiosb

left tail right tail
0.05 0.10 0.20 0.20 0.10 0.05

α0 0.50 0.50 0.00 0.09 0.14 0.25 0.23 0.13 0.08
α1 0.50 0.50 0.00 0.08 0.13 0.22 0.26 0.15 0.09
α2 0.50 0.50 0.00 0.08 0.14 0.24 0.24 0.14 0.08
µ1 1.00 1.00 0.03 0.06 0.11 0.21 0.21 0.11 0.06
µ2 1.00 1.00 0.04 0.06 0.11 0.21 0.22 0.12 0.06
µ3 1.00 1.00 0.04 0.05 0.10 0.20 0.21 0.11 0.06
µ4 1.00 1.00 0.05 0.05 0.11 0.21 0.21 0.11 0.06
µ5 1.00 1.00 0.06 0.06 0.11 0.21 0.21 0.11 0.06
µ6 1.00 1.00 0.07 0.05 0.10 0.20 0.21 0.11 0.06
µ7 1.00 1.00 0.08 0.05 0.10 0.20 0.21 0.11 0.06
µ8 1.00 1.00 0.09 0.06 0.11 0.21 0.21 0.11 0.06
µ9 1.00 1.00 0.09 0.05 0.10 0.20 0.21 0.11 0.06
µ10 1.00 1.01 0.10 0.05 0.10 0.20 0.21 0.11 0.06
µ11 1.00 1.01 0.10 0.05 0.10 0.19 0.21 0.11 0.06
µ12 1.00 1.00 0.09 0.06 0.11 0.20 0.21 0.11 0.06
µ13 1.00 1.00 0.07 0.06 0.11 0.20 0.21 0.11 0.06
µ14 1.00 1.00 0.05 0.06 0.11 0.21 0.21 0.11 0.06
µ15 1.00 1.00 0.03 0.05 0.10 0.21 0.21 0.11 0.06
µ16 1.00 1.00 0.02 0.06 0.11 0.21 0.21 0.11 0.06
µ17 1.00 1.00 0.02 0.06 0.11 0.20 0.21 0.11 0.06
µ18 1.00 1.00 0.02 0.05 0.11 0.21 0.21 0.10 0.05
µ19 1.00 1.00 0.02 0.05 0.10 0.21 0.21 0.11 0.05
µ20 1.00 1.00 0.02 0.05 0.10 0.20 0.20 0.11 0.05
µ21 1.00 1.00 0.02 0.05 0.11 0.21 0.21 0.11 0.06
µ22 1.00 1.00 0.02 0.06 0.11 0.21 0.20 0.10 0.05
µ23 1.00 1.00 0.02 0.06 0.11 0.21 0.21 0.11 0.06
µ24 1.00 1.00 0.03 0.06 0.11 0.21 0.21 0.11 0.06
σε 1.00 1.00 0.00 0.09 0.17 0.30 0.13 0.06 0.03
σu 0.20 0.17 0.00 0.34 0.43 0.56 0.04 0.01 0.00

a The mean and variance of the ML estimates.
b The cell denotes the empirical size of the distribution of the z-ratios defined

as, (θ̂ − θ)/σ̂(θ), where σ̂(θ) denotes the estimated standard error of θ̂.
c The maximum bias in the estimated φs parameters based on (16) over the

24 seasons is 0.008.
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Table 4: Parameter estimates and estimated standard errors of the unrestricted,
the restricted and the random-coefficient PAR(1) model for the growth rates of
US industrial production.

unrestricted restricted random-coefficient PAR(1)
PAR(1) PAR(1) ML FGNLS

θ̂ s e θ̂ s e θ̂ s e θ̂ s ea

µ1 1.17 0.33 1.96 0.29 1.26 0.33 1.23 0.33
µ2 1.93 0.28 1.89 0.27 1.92 0.27 1.92 0.28
µ3 0.27 0.39 0.13 0.30 0.23 0.36 0.25 0.37
µ4 −0.35 0.27 −0.52 0.26 −0.39 0.26 −0.38 0.27
µ5 0.76 0.26 0.62 0.26 0.73 0.26 0.74 0.26
µ6 1.49 0.26 1.67 0.26 1.52 0.26 1.51 0.26
µ7 −4.41 0.31 −4.25 0.28 −4.39 0.30 −4.40 0.30
µ8 2.87 0.42 4.78 0.32 3.12 0.42 3.03 0.42
µ9 0.62 0.41 0.73 0.32 0.62 0.39 0.62 0.40
µ10 −0.88 0.33 −0.61 0.28 −0.85 0.32 −0.86 0.32
µ11 −2.06 0.26 −2.01 0.26 −2.05 0.25 −2.05 0.26
µ12 −1.04 0.31 −1.67 0.28 −1.13 0.30 −1.10 0.31

φ1 0.08 0.09
φ2 0.29 0.10
φ3 0.17 0.13
φ4 −0.09 0.12
φ5 0.49 0.12
φ6 0.47 0.10
φ7 0.30 0.10
φ8 −0.20 0.09
φ9 0.40 0.09
φ10 0.56 0.10
φ11 0.62 0.10
φ12 0.79 0.09

σε 2.26 0.04 2.36 0.05 2.27 0.05 2.28
α0 0.30 0.03 0.32 0.07 0.32 0.09
α1 −0.16 0.04 −0.16 0.10 −0.16 0.13
α2 0.86 0.08 0.82 0.20 0.82 0.25
σu 0.23 0.06 0.30

max. lik. -2167.89 -2209.64 -2187.35
BIC 4510.1 4529.5 4490.6

a Standard errors for σ̂ε and σ̂u are not available for the FGNLS estimator.
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Table 5: Out-of-sample forecasting performance of
the unrestricted, the restricted and the random-
coefficient PAR(1) model for the growth rates of
US industrial productiona.

unrestricted restricted random-coef.
PAR(1) PAR(1) PAR(1)

1-step ahead predictions 2000.01–2000.12
RMSE 1.09 1.12 1.10
MAE 0.93 0.93 0.94
MAPE 0.60 0.60 0.62

1-step ahead predictions 1999.01–2000.12
RMSE 1.13 1.14 1.13
MAE 0.95 0.95 0.95
MAPE 0.81 0.81 0.81

1-step ahead predictions 1998.01–2000.12
RMSE 1.20 1.18 1.20
MAE 0.98 0.98 0.98
MAPE 1.13 1.13 1.12

1–12 step ahead predictions 2000.01–2000.12
RMSE 0.99 1.01 0.99
MAE 0.84 0.89 0.85
MAPE 0.71 0.76 0.71

1–24 step ahead predictions 1999.01–2000.12
RMSE 1.01 1.02 1.01
MAE 0.84 0.86 0.84
MAPE 0.72 0.74 0.72

1–36 step ahead predictions 1999.01–2000.12
RMSE 1.04 1.05 1.04
MAE 0.85 0.86 0.85
MAPE 0.90 0.94 0.91

a Out-of-sample forecasts are constructed using
parameter estimates obtained from in-sample
observations only.
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