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Abstract

In this paper we introduce a sequential seasonal unit root testing approach
which explicitly addresses its application to high frequency data. The main
idea is to see which unit roots at higher frequency data can also be found
in temporally aggregated data. We illustrate our procedure to the analysis
of monthly data, and we find, upon analyzing the aggregated quarterly data,
that a smaller amount of test statistics can sometimes be considered. Monte
Carlo simulation and empirical illustrations emphasize the practical relevance
of our method.
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1 Introduction

The use of seasonally unadjusted data in empirical applications is increasing and so

is the need to adequately characterize the properties of those series, see for example

Franses (1996) for an overview. As many data in economics display trends and also

signs of stochastic seasonality, this has led to the development of a large number

of seasonal unit root tests over the last two decades, see Dickey, Hasza and Fuller

(1984), Hylleberg, Engle, Granger and Yoo [HEGY] (1990), Osborn, Chui, Smith

and Birchenhall (1988), among many others. Among the tests proposed, the most

widely used procedure is the HEGY test.

A characteristic common to unit root tests, as well as to seasonal unit root tests,

is their poor power performance in small samples, see for example Ghysels, Lee

and Noh (1994) and Rodrigues and Osborn (1999) for Monte Carlo evidence on the

performance of quarterly and monthly seasonal unit root tests, respectively. Also,

the power deteriorates, the more unit roots one has to examine. For instance, in

a simple test regression with no deterministic variables, the HEGY test procedure

in the quarterly context requires the estimation of four parameters, whereas in a

monthly context this number increases to twelve.

In this paper, we propose a sequential procedure for higher frequency data, which

should have better power. For this, we use information on the properties of a series

under different periodicities, like quarterly and monthly, to devise more parsimo-

nious test regressions. We show that the characteristics of a quarterly series, for

example, can be useful to justify the use of more parsimonious test regressions at a

monthly level. Naturally, other periodicities can be considered, but for the purpose

of presentation, in this paper we focus only on quarterly and monthly data.

The paper is organized as follows. Section 2 shows how seasonal unit roots

in monthly data appear in their temporally aggregated quarterly data. We use

extensive simulation experiments to substantiate the results. Section 3 introduces

new test procedures, their asymptotic limits and critical values. In Section 4 an

empirical application is presented, and, finally, Section 5 concludes the paper.
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2 Temporal Aggregation

We first determine the implications of monthly seasonal unit roots when the obser-

vations are aggregated to quarterly series. That is, we identify relationships between

monthly and quarterly unit roots.

2.1 Preliminaries

Consider the monthly autoregressive process

α(L)xtM = εtM , (1)

where εtM ∼ iid(0, σ2), α(L) is a polynomial of order twelve and the index tM refers

to monthly data. The (seasonal) unit roots allowed for in α(L) for monthly data are

those given in the first panel of Table 1, while the second panel gives the unit roots for

the quarterly data. When all unit roots occur simultaneously, α(L) = (1−L12) ≡ ∆12

(or α(L) = (1− L4) ≡ ∆4), one has, what is called, a seasonal random walk.

From Table 1, we use the length of the cycles corresponding to the roots in the

quarterly and monthly context, to establish that several relationships can be identi-

fied. Obviously, there is a link between the monthly and the quarterly zero frequency

roots. Next, there is a link between the monthly root occurring at frequency 2π/3

and the quarterly π/2 frequency root. Finally, there is a link between the monthly

root at frequency π/3 and the quarterly π frequency root.

2.2 Seasonal unit root test

In order to identify other potential, but not immediately obvious, relationships be-

tween monthly and quarterly roots, as well as to confirm the ones put forward above,

we resort to an application of the HEGY seasonal unit root test procedure.

The HEGY approach was originally derived for quarterly data, and has been

extended to the monthly case by Franses (1991) and Beaulieu and Miron (1993).

The HEGY test is based on a root decomposition of a general polynomial of at least

order S, where S represents the periodicity of the data, and it has the ∆S filter as

its overall underlying null hypothesis.
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Following Smith and Taylor (1999), linearizing ∆S around the unit roots at

different frequencies yields the test regression

∆SxtS = π0x0,tS−1 + πS/2xS/2,tS−1 +
S∗∑

k=1

(
πα,kx

α
k,tS−1 + πβ,kx

β
k,tS−1

)
+ εtS , (2)

where πS/2xS/2,tS−1 needs to be omitted if S is odd, and where

x0,tS ≡
S−1∑
j=0

xtS−j, (3)

xS/2,tS ≡
S−1∑
j=0

cos[(j + 1)π]xtS−j, (4)

xα
k,tS

≡
S−1∑
j=0

cos[(j + 1)ωk]xtS−j (5)

xβ
k,tS

≡ −
S−1∑
j=0

sin[(j + 1)ωk]xtS−j, (6)

k = 1, ..., S∗, where S∗ = (S/2)− 1 (if S is even), while it is [S/2] (if S is odd), with

[·] denoting the integer part of its argument. Finally, ∆SxSn+s ≡ xSn+s − xS(n−1)+s.

For the purpose of the present paper, concerning quarterly and monthly data,

the relevant transformations are for S = 4 given by

x0,tQ ≡ (1 + L + L2 + L3)xtQ ,

x2,tQ ≡ − (
1− L + L2 − L3

)
xtQ ,

xα
1,tQ

≡ −L(1− L2)xtQ

xβ
1,tQ

≡ −(1− L2)xtQ ,
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and for S = 12 they are

x0,tM ≡ (1 + L + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10 + L11)xtM ,

x2,tM ≡ − (
1− L + L2 − L3 + L4 − L5 + L6 − L7 + L8 − L9 + L10 − L11

)
xtM ,

xα
1,tM

≡ −(L− L3 + L5 − L7 + L9 − L11)xtM

xβ
1,tM

≡ −(1− L2 + L4 − L6 + L8 − L10)xtM

xα
2,tM

≡ −1

2
(
√

3− L + L3 −
√

3L4 + 2L5 −
√

3L6 + L7 − L9 +
√

3L10 − 2L11)xtM

xβ
2,tM

≡ 1

2
(1−

√
3L + 2L2 −

√
3L3 + L4 − L6 +

√
3L7 − 2L8 +

√
3L9 − L10)xtM

xα
3,tM

≡ 1

2
(
√

3 + L− L3 −
√

3L4 − 2L5 −
√

3L6 − L7 + L9 +
√

3L10 + 2L11)xtM

xβ
3,tM

≡ −1

2
(1 +

√
3L + 2L2 +

√
3L3 + L4 − L6 −

√
3L7 − 2L8 −

√
3L9 − L10)xtM

xα
4,tM

≡ −1

2
(1 + L− 2L2 + L3 + L4 − 2L5 + L6 + L7 − 2L8 + L9 + L10 − 2L11)xtM

xβ
4,tM

≡ −
√

3

2
(1− L + L3 − L4 + L6 − L7 + L9 − L10)xtM

xα
5,tM

≡ 1

2
(1− L− 2L2 − L3 + L4 + 2L5 + L6 − L7 − 2L8 − L9 + L10 + 2L11)xtM

xβ
5,tM

≡ −
√

3

2
(1 + L− L3 − L4 + L6 + L7 − L9 − L10)xtM .

Before we turn to a discussion of temporal aggregation, a few remarks can be

made. The precise transformations of the regressors of the HEGY test regression

depend on the periodicity of the data. For quarterly data (S = 4) these transfor-

mations can be found in Hylleberg et al. (1990), for the monthly case (S = 12) in

Franses (1991) and Beaulieu and Miron (1993), and for the general case see Smith

and Taylor (1999).

Typically, with the HEGY approach, the roots in monthly data are tested as

follows. The zero frequency unit root and the bi-monthly unit root (π0 = 0 and

π6 = 0) are tested using left-sided t-statistics, whereas the complex roots, πα,k =

πβ,k = 0 (for k = 1, ..., 5) are tested using joint tests. These t and F type tests have

nonstandard distributions.

Additionally, in the context of quarterly data, Ghysels et al. (1994) propose two

new F -statistics. One of these concerns the hypothesis that π0 = π2 = πα,1 = πβ,1 =

0, and hence provides an overall test of the null hypothesis of seasonal integration.
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The other test concerns unit roots at all seasonal frequencies (π2 = πα,1 = πβ,1 = 0).

These test statistics have been extended to the monthly case by Taylor (1998).

A potential problem with the HEGY test, which is inherent to the multiple

testing procedure, is related to the size of the test. That is, the large number of

tests of individual parameters used with this procedure has a substantial impact on

the significance level implied for the overall null hypothesis. Consequently, one major

difficulty is the choice of an appropriate level of significance for each of the individual

tests mentioned above. On the other hand, the advantage of the HEGY test over

other available seasonal unit root test procedures is that more general processes are

considered under the alternative hypothesis, by allowing the possibility that some

but not all unit roots implied by ∆S could be present.

Finally, given the orthogonality of the regressors, the joint tests computed from

HEGY test regressions are equivalent to averages of squared t-statistics, see for

example, Chan and Wei (1988), Ghysels, Lee and Noh (1994), and others for details.

2.3 From monthly to quarterly data

To understand the implications of monthly unit roots on aggregated quarterly data,

we carry out a Monte Carlo investigation. The DGP considered is

α(L)xtM = εtM , (7)

where εtM ∼ nid(0, 1), α(L) = (1−α1L)(1+α2L)(1+α3L
2)(1+

√
3α4L+α2

4L
2)(1−

√
3α5L + α2

5L
2)(1 + α6L + α2

6L
2)(1− α7L + α2

7L
2) and αi ∈ (0, 1], i = 1, ..., 7.

Based on the aggregation of data generated from (7), quarterly data are obtained

such that

xtQ = (1 + L + L2)xtM .

The resulting quarterly observations do not have overlapping monthly observations

as they are systematically sampled.

In order to determine the implications that the monthly roots have on quarterly

data, we consider the application of a HEGY test regression with S = 4, on samples

of 500 quarterly observations obtained through the aggregation of 1500 monthly

observations. For each case, we use 20000 replications.
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Table 2 summarizes the findings of our extensive Monte Carlo study. From this

table, we can draw the following conclusions. With regard to the zero frequency

unit root, there is a direct relationship between the monthly and quarterly root.

The earlier expected effects of temporal aggregation anticipated this result. Next,

the monthly root at frequency π/3 impacts on the quarterly π frequency root as

expected. Moreover, also the monthly π frequency root affects the quarterly π

frequency root. Finally, the quarterly π/2 frequency root emerges when monthly

unit roots at frequencies 5π/6, π/6 and π/2 are present in the DGP. And, the

monthly unit root at frequency 2π/3 seems to affect the phase of the quarterly π/2

root.

Based on these outcomes, we see opportunities to design more parsimonious

monthly unit root test regressions, which are based on the outcomes of tests for

monthly data when first aggregated to quarterly data.

3 A sequential testing procedure

The results in the previous section conveyed that an application of the quarterly

HEGY procedure could be informative for the presence of unit roots at different fre-

quencies in the monthly polynomial denoted as φM(L). Consequently, the following

can be considered:

1) If a zero, bi-annual and an annual unit root are detected in the quarterly data,

then, in the monthly context one should consider the overall null hypothe-

sis that φ1
M(L) ≡ ∆12 is adequate. Hence, one should apply the procedure

proposed by Beaulieu and Miron (1993), and others.

2) If only a zero frequency and π frequency unit root are detected in the quarterly

data, then for the monthly data one only has to consider the filter φ2
M(L) ≡

(1− L)(1 + L)(1− L + L2) ≡ 1− L + L3 − L4.

3) If a long-run (zero frequency) and an annual root (π
2

frequency) are present in

the quarterly series, then, in the monthly context, the filter to be considered
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is φ3
M(L) ≡ (1 − L)(1 + L2)(1 +

√
3L + L2)(1 − √

3L + L2)(1 + L + L2) ≡
1− L3 + L6 − L9.

In sum, in cases 2) and 3), one can save on variables (and hence parameters) in

the monthly test regression, and hence increase power.

3.1 Test Procedures

To derive the necessary test regressions, the following DGP will be considered,

φκ
M(L)xtM = εtM (8)

where κ = 1, 2, 3, refers to the three scenarios mentioned above. For each case, one

should consider the following test regressions.

1) When κ = 1, the adequate test regression is the one proposed by for example

Beaulieu and Miron (1993). In the notation of Smith and Taylor (1999), the

adequate test regression is

φ1
M(L)ytM = π0x0,tM−1 + πS/2xS/2,tM−1

+
5∑

k=1

(
πα,kx

α
k,tM−1 + πβ,kx

β
k,tM−1

)
+ εtM (9)

where the regressors correspond to the linear combinations provided earlier;

see Section 2.

2) When κ = 2, φ2
M(L) ≡ 1− L + L3 − L4, the corresponding test regression is

φ2
M(L)ytM = π0x0,tM−1 + π6x6,tM−1 +

(
πα,1x

α
1,tM−1 + πβ,1x

β
1,tM−1

)
+ εtM (10)

where

x0,tM ≡ (
1 + L3

)
xtM ,

x6,tM ≡ − (
1− 2L + 2L2 − L3

)
xtM ,

xα
1,tM

≡ −1

2

(
1− 2L− L2 + 2L3

)
xtM

xβ
1,tM

≡ −
√

3

2

(−1 + L2
)
xtM .
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3) When κ = 3, φ3
M(L) ≡ 1 − L3 + L6 − L9 and the relevant test regression in

this case is

φ2
M(L)ytM = π0x0,tM−1 +

4∑

k=1

(
πα,kx

α
k,tM−1 + πβ,kx

β
k,tM−1

)
+ εtM (11)

where the test regression variables are defined as

x0,tM ≡ (
1 + L + L2 + L6 + L7 + L8

)
xtM ,

xα
1,tM

≡ (
L− L3 − L4 + L5 + L6 − L8

)
xtM ,

xβ
1,tM

≡ (
1− L2 − L3 + L4 + L5 − L7

)
xtM ,

xα
2,tM

≡ 1

2

(
−2L8 +

√
3L7 − L6 + 2L5 +

(
1−

√
3
)

L4 +
(
1−

√
3
)

L3 − L +
√

3
)

xtM

xβ
2,tM

≡ −1

2

(
−L7 + L6

√
3− 2L5 +

(√
3 + 1

)
L4 +

(
−
√

3− 1
)

L3 + 2L2 −
√

3L + 1
)

xtM

xα
3,tM

≡ −1

2

(
2L8 + L7

√
3 + L6 − 2L5 +

(
−1−

√
3
)

L4 +
(
−1−

√
3
)

L3 + L +
√

3
)

xtM

xβ
3,tM

≡ 1

2

(
−L7 −

√
3L6 − 2L5 +

(
1−

√
3
)

L4 +
(√

3− 1
)

L3 + 2L2 +
√

3L + 1
)

xtM

xα
4,tM

≡ 1

2

(
1 + L− 2L2 + L6 + L7 − 2L8

)
xtM

(
root

2π

3

)

xβ
4,tM

≡ −
√

3

2

(
1− L + L6 − L7

)
xtM

Hence, cases 2) and 3) have a smaller amount of variables.

3.2 Asymptotic Results

In order to derive the asymptotic results of the test procedures presented, we will

refer to Chan and Wei (1988) and Smith and Taylor (1999).

Theorem 1 Assuming that the DGP is φκ
M(L)xtM = εtM with κ = 1, 2, 3 and setting

the initial values to zero, the t-ratios obtained from (9), (10) and (11) can be shown

to converge in each case to 1) when κ = 1, the distributions can be found in Beaulieu

and Miron (1993)
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2) when κ = 2, we observe that

i) tj ⇒
∫ 1

0
Wj(r)dWj(r)(∫ 1

0
W 2

j (r)dr
)1/2

≡ Jj, j = 0, 6

ii) tα,1 ⇒
∫ 1

0
Wα,1(r)dWα,1(r) +

∫ 1

0
Wβ,1(r)dWβ,1(r)(∫ 1

0
W 2

α,1(r)dr +
∫ 1

0
W 2

β,1(r)dr
)1/2

≡ Jα,1

iii) tβ,1 ⇒
∫ 1

0
Wβ,1(r)dWα,1(r)−

∫ 1

0
Wα,1(r)dWβ,1(r)(∫ 1

0
W 2

α,1(r)dr +
∫ 1

0
W 2

β,1(r)dr
)1/2

≡ J
β,1

3) When κ = 3, it can be established that

i) t0 ⇒
∫ 1

0
W0(r)dW0(r)(∫ 1

0
W 2

0 (r)dr
)1/2

≡ J0

ii) tα,k ⇒
∫ k

0
Wα,k(r)dWα,k(r) +

∫ k

0
Wβ,k(r)dWβ,k(r)(∫ k

0
W 2

α,k(r)dr +
∫ k

0
W 2

β,k(r)dr
)k/2

≡ J
α,k

iii) tβ,k ⇒
∫ k

0
Wβ,k(r)dWα,k(r)−

∫ k

0
Wα,k(r)dWβ,k(r)(∫ k

0
W 2

α,k(r)dr +
∫ k

0
W 2

β,k(r)dr
)k/2

≡ J
β,k

where Wi(r) are standard Brownian motions.

Proof: The results follow from Lemmas 3.3.1 and 3.3.2 in Chan and Wei (1988).

Given the orthogonality of the regressors (see Chan and Wei (1988), Osborn and

Rodrigues (1998) and Smith and Taylor (1999)), we can analyse the asymptotic

behaviour of the test statistics component wise. In other words, we can consider

each test statistic independently of the others.

Furthermore, the following theorem regarding relevant joint tests can also be

provided.

Theorem 2 Under the same assumptions of Theorem 1 and given the independence

of the test statistics, the distributions of the joint tests are

1) For κ = 1, see Beaulieu and Miron (1993) and others;
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2) For κ = 2, we have

F0,6,α,β ⇒ 1

4

[J0 + J6 + Jα,1 + J
β,1

]

F6,α,β ⇒ 1

3

[J6 + Jα,1 + J
β,1

]

Fα,β ⇒ 1

2

(Jα,1 + J
β,1

)

3) For κ = 3, it can be established that

F0,α1,β1,...,α4,β4 ⇒ 1

9

[
J0 +

4∑

k=1

(J
α,k

+ J
β,k

)
]

Fα1,β1,...,α4,β4 ⇒ 1

8

4∑

k=1

(J
α,k

+ J
β,k

)

Fα,β ⇒ 1

2

(J
α,k

+ J
β,k

)

Proof: The proof of this theorem follows straightforwardly from the asymptotic

orthogonality of the regressors. Tables 3, 4 and 5 contain the relevant critical values

for the newly developed test statistics. The critical values for the statistics presented

in Theorems 1 and 2 are derived, based on data generated from a data generation

process (DGP) such as (8) with κ = 2, 3 and ut ∼ nid(0, 1). The RNDN function in

GAUSS for Windows NT/95 Version 3.2.38 is used. The critical values are derived

for samples of 120, 300 and 600 observations (10, 25 and 50 years, respectively). In

each case, 20000 replications are used.

3.3 Empirical size and power

We now contrast the performance of the new procedures proposed with that of the

monthly version of the HEGY test (κ = 1) via Monte Carlo simulations. Two data

generation processes (DGPs) are considered, that is,

a) DGPA: κ = 2

(1− φL)(1 + φL)(1− φL + φ2L2)yt = ut

b) DGPB: κ = 3

(1−φL)(1+φL2)(1+
√

3φL+φ2L2)(1−
√

3φL+φ2L2)(1+φL+φ2L2)yt = ut

where εt ∼ nid(0, 1) and φ = {0.7, 0.8, 0.9, 0.95, 1.00}.
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The procedures are applied on artificial samples of 120 and 300 observations and

in each case 20000 replications are used. The results are summarized in Tables 6

and 7. The overall conclusion from the results in these tables is that the sequential

procedure has higher power in most instances, and in particular in smaller samples.

4 Illustration

In this section, we illustrate our sequential procedure and compare it with the stan-

dard HEGY approach for five monthly series. These series are five US industrial

production series, concerning Automotive products, Food and Tobacco, Clothing,

Fuels and Energy. The data are downloaded from www.economagic.com. The data

for the first two series start in 1947.01 and end in 2001.03, while the last two series

start in 1954.01. These series are selected out of 14 production series considered

(on a quarterly basis) in Franses and Paap (2003), as it is found that the quarterly

series have the following unit roots, that is, Automotive products has −1, Food and

Tobacco, Clothing and Energy products have 1, i and −i and Fuels has 1 and −1.

So we have three times the situation with κ = 2 and twice that κ = 3.

Application of the HEGY tests, where we include seasonal dummies and a trend

in each auxiliary regression, leads to the results summarized in Table 8. Note that

we decide on the lag structure using LM tests for 1 to 12-th order serial correlation.

Clearly, the differences between the test results are not major for most series, except

for the Food and Tobacco series, for which our method does not indicate that there

are seasonal unit roots at frequency 5π
6

. On the other hand, for Clothing, we do

not reject the presence of the seasonal unit roots at the frequency 2π
3

, whereas the

standard HEGY approach does.

5 Conclusion

In this paper we proposed a sequential approach to testing for seasonal unit roots

in high frequency data. Our ideas were framed in the context of monthly data, but

of course, it can be extended to any frequency, like for example daily data within a

year. Through simulations we showed that our new approach has more power than
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the standard HEGY method, especially in small samples. We expect these outcomes

to hold a fortiori when considering higher frequency data.
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Table 1: Factors and Roots of Seasonal Random Walks
Monthly Seasonal Random Walk

Factors Roots Freq. Cycles Length
(1− L) 1 0 0
(1 + L) -1 π 6/12 2 months

(1 + L2)
i
−i

π/2
3π/2

3/12
9/12

4 months
1.33 months

(1 +
√

3L + L2)
−1

2

√
3 + 1

2
i

−1
2

√
3− 1

2
i

5π/6
7π/6

5/12
7/12

2.4 months
1.7 months

(1−√3L + L2)
1
2

√
3 + 1

2
i

1
2

√
3− 1

2
i

11π/6
π/6

11/12
1/12

1.09 months
12 months

(1 + L + L2)
−1

2
+ 1

2
i
√

3

−1
2
− 1

2
i
√

3

2π/3
4π/3

4/12
8/12

3 months
1.5 months

(1− L + L2)
1
2
− 1

2
i
√

3
1
2

+ 1
2
i
√

3

5π/3
π/3

10/12
2/12

1.2 months
6 months

Quarterly Seasonal Random Walk
Factors Roots Freq. Cycles Length
(1− L) 1 0 0 0
(1 + L) -1 π 2/4 2 quarters
(1 + L2) ±i π/2 1/4 1 quarter
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Table 2: Summary of Monte Carlo experiments
Monthly Unit Roots tπ1 tπ2 tπ3 tπ4 F1−4 F2−4 F34

π x
π
2

x x x
π
3

x
2π
3

x
π
6

x x x
5π
6

x x x
0, π, π

2
x x x

0, 2π
3

, π
3

x x x
π, π

2
, 5π

6
, π

6
x x x x x

5π
6

, π
6
, 2π

3
, π

3
x x x x x

π, π
2
, 5π

6
, π

6
, 2π

3
, π

3
x x x x x

0, π
2
, 5π

6
, π

6
, 2π

3
, π

3
x x x x x x x

0, π, 5π
6

, π
6
, 2π

3
, π

3
x x x x x x x

0, π, π
2
, 5π

6
, π

6
, π

3
x x x x x x x

0, π, π
2
, 5π

6
, π

6
, 2π

3
x x x x x x x

0, π, π
2
, 5π

6
, π

6
, 2π

3
, π

3
x x x x x x x

Note: An x indicates that the results obtained for the test statistics are close to their

nominal levels (1%, 5% and 10%).
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Table 3: Critical Values of test statistics obtained from test regression

(9); κ = 1.

t0 t6
12N 1% 5% 10% 1% 5% 10%
120 ξ = 0 -3.203 -2.652 -2.357 -3.221 -2.650 -2.366

ξ = 1 -3.767 -3.169 -2.868 -3.218 -2.650 -2.360
300 ξ = 0 -3.367 -2.780 -2.480 -3.317 -2.782 -2.490

ξ = 1 -3.855 -3.301 -3.034 -3.317 -2.780 -2.491
600 ξ = 0 -3.390 -2.838 -2.543 -3.383 -2.822 -2.526

ξ = 1 -3.964 -3.376 -3.083 -3.387 -2.823 -2.525

F0,6,α,β F6,α,β Fα,β

12N 1% 5% 10% 1% 5% 10% 1% 5% 10%
120 ξ = 0 5.492 4.492 4.037 5.503 4.490 4.045 7.774 5.724 4.768

ξ = 1 5.754 4.710 4.260 5.465 4.474 4.024 7.789 5.728 4.759
300 ξ = 0 5.193 4.446 4.052 5.276 4.479 4.087 8.359 6.227 5.264

ξ = 1 5.466 4.658 4.262 5.266 4.479 4.080 8.390 6.217 5.272
600 ξ = 0 5.100 4.422 4.075 5.218 4.480 4.088 8.573 6.445 5.461

ξ = 1 5.339 4.640 4.270 5.215 4.473 4.085 8.578 6.441 5.459

Note: ξ = 0 and ξ = 1 indicate critical values obtained from test regressions with

monthly seasonal dummies only and with monthly seasonal dummies and time

trend, respectively. N represents de number of years considered.
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Table 4: Critical Values of test statistics obtained from test regression

(10); κ = 2.

t0 t6
12N 1% 5% 10% 1% 5% 10%
120 ξ = 0 -3.281 -2.676 -2.387 -3.273 -2.698 -2.393

ξ = 1 -3.736 -3.182 -2.902 -3.272 -2.690 -2.394
300 ξ = 0 -3.325 -2.788 -2.495 -3.395 -2.785 -2.491

ξ = 1 -3.844 -3.305 -3.047 -3.387 -2.785 -2.488
600 ξ = 0 -3.393 -2.829 -2.534 -3.366 -2.813 -2.517

ξ = 1 -3.906 -3.372 -3.075 -3.369 -2.813 -2.516

F0,6,α,β F6,α,β Fα,β

12N 1% 5% 10% 1% 5% 10% 1% 5% 10%
120 ξ = 0 6.484 5.106 4.426 7.201 5.403 4.651 8.233 5.991 5.023

ξ = 1 7.247 5.725 5.014 7.173 5.363 4.622 8.134 5.955 4.984
300 ξ = 0 6.742 5.336 4.677 7.437 5.698 4.927 8.598 6.364 5.405

ξ = 1 7.465 6.031 5.343 7.437 5.685 4.924 8.601 6.347 5.386
600 ξ = 0 6.857 5.435 4.758 7.543 5.841 5.017 8.867 6.570 5.516

ξ = 1 7.632 6.129 5.421 7.524 5.839 5.014 8.835 6.567 5.514

Note: See Table 3.
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Table 5: Critical Values of test statistics obtained from test regression

(11); κ = 3.

t0
12N 1% 5% 10%
120 ξ = 0 -3.236 -2.647 -2.359

ξ = 1 -3.731 -3.147 -2.867
300 ξ = 0 -3.333 -2.780 -2.500

ξ = 1 -3.856 -3.318 -3.042
600 ξ = 0 -3.387 -2.804 -2.517

ξ = 1 -3.893 -3.353 -3.077

F0,α1,β1,...,α4,β4 Fα1,β1,...,α4,β4 Fαk,βk

12N 1% 5% 10% 1% 5% 10% 1% 5% 10%
120 ξ = 0 5.595 4.562 4.085 5.662 4.600 4.114 8.046 5.884 4.925

ξ = 1 5.821 4.862 4.367 5.640 4.572 4.086 7.961 5.856 4.891
300 ξ = 0 5.471 4.607 4.184 5.620 4.686 4.245 8.553 6.336 5.394

ξ = 1 5.774 4.904 4.465 5.589 4.673 4.234 8.523 6.320 5.372
600 ξ = 0 5.430 4.600 4.180 5.587 4.699 4.257 8.606 6.516 5.504

ξ = 1 5.736 4.896 4.477 5.570 4.699 4.254 8.600 6.516 5.504

Note: See note under Table 3.
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Table 6: Size and power of new procedure versus the standard HEGY

approach: DGP a
12N = 120

φ tκ=2
0 tκ=1

0 tκ=2
6 tκ=1

6 F κ=2
com F κ=1

com

1.00
ξ = 0
ξ = 1

.050

.050
.059
.067

.050

.050
.055
.055

.050

.050
.058
.059

0.95
ξ = 0
ξ = 1

.139

.097
.140
.107

.131

.133
.115
.116

.203

.204
.166
.173

0.90
ξ = 0
ξ = 1

.381

.235
.264
.177

.380

.384
.218
.219

.630

.628
.365
.375

0.80
ξ = 0
ξ = 1

.876

.678
.478
.323

.910

.913
.412
.415

.995

.995
.684
.696

0.70
ξ = 0
ξ = 1

.981

.908
.601
.423

.996

.996
.541
.542

1.00
1.00

.823

.834

12N = 300
φ tκ=2

0 tκ=1
0 tκ=2

6 tκ=1
6 F κ=2

com F κ=1
com

1.00
ξ = 0
ξ = 1

.050

.050
.053
.053

.053

.050
.052
.053

.052

.050
.056
.054

0.95
ξ = 0
ξ = 1

.600

.377
.461
.280

.601

.595
.437
.437

.881

.877
.719
.710

0.90
ξ = 0
ξ = 1

.993

.934
.862
.659

.995

.994
.851
.852

1.00
1.00

.991

.990

0.80
ξ = 0
ξ = 1

1.00
1.00

1.00
.944

1.00
1.00

1.00
.992

1.00
1.00

1.00
1.00

0.70
ξ = 0
ξ = 1

1.00
1.00

1.00
.986

1.00
1.00

1.00
.999

1.00
1.00

1.00
1.00

Note: ξ = 0 and ξ = 1 indicate the percentage of rejection of the test statistics

obtained from test regressions with monthly seasonal dummies only and with

monthly seasonal dummies and time trend, respectively.
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Table 7: Size and power of new procedure versus the standard HEGY

approach: DGP b
12N = 120

φ tκ=3
0 tκ=1

0 F κ=3
com1 F κ=1

com1 F κ=3
com2 F κ=1

com2 F κ=3
com3 F κ=1

com3

1.00
ξ = 0
ξ = 1

.05

.05
.05
.05

.05

.05
.98
1.0

.05

.05
.99
1.0

.05

.05
.04
.05

0.95
ξ = 0
ξ = 1

.11

.11
.18
.11

.10

.49
1.0
1.0

.48

.51
1.0
1.0

.34

.21
.27
.20

0.90
ξ = 0
ξ = 1

.31

.22
.36
.20

.20

.96
1.0
1.0

.92

.96
1.0
1.0

.79

.56
.48
.50

0.80
ξ = 0
ξ = 1

.78

.44
.60
.38

.55
1.0

1.0
1.0

1.0
1.0

1.0
1.0

.98

.93
.81
.86

0.70
ξ = 0
ξ = 1

.95

.53
.69
.46

.79
1.0

1.0
1.0

1.0
1.0

1.0
1.0

.99

.98
.99
.90

12N = 300
φ tκ=3

0 tκ=1
0 F κ=3

com1 F κ=1
com1 F κ=3

com2 F κ=1
com2 F κ=3

com3 F κ=1
com3

1.00
ξ = 0
ξ = 1

.05

.05
.05
.05

.05

.05
1.0
1.0

.05

.05
1.0
1.0

.05

.05
.05
.05

0.95
ξ = 0
ξ = 1

.58

.35
.59
.34

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

.87

.87
.83
.82

0.90
ξ = 0
ξ = 1

.98

.87
.96
.79

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

0.80
ξ = 0
ξ = 1

1.0
1.0

1.0
.98

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

0.70
ξ = 0
ξ = 1

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0
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Table 8: F test results for seasonal unit roots using the standard

HEGY approach for monthly data (top panel) and our sequential ap-

proach (bottom panel)

Variables n lags π
2

5π
6

π
6

2π
3

π
3

Standard HEGY approach

Automotive products 614 25 5.944 4.208 7.915 5.663 4.182
Food and Tobacco 615 24 11.271 6.345 3.583 11.535 14.708
Clothing 615 24 4.618 2.014 5.502 9.355 3.582
Energy Products 534 21 5.754 5.879 4.151 14.437 2.916
Fuels 543 12 17.755 19.373 10.901 30.936 10.510

Sequential HEGY approach

Automotive products (κ = 2) 614 33 4.714
Food and Tobacco (κ = 3) 626 16 17.320 14.432 4.715 7.827
Clothing (κ = 3) 606 36 5.834 1.405 2.672 3.981
Energy Products (κ = 3) 534 24 5.909 5.886 1.566 4.359
Fuels (κ = 2) 553 10 8.781
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