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Sales models for many items using attribute data
Abstract

Sales models are mainly used to analyze markets with a fairly small number of items,
obtained after aggregating to the brand level. In practice one may require analyses at a
more disaggregate level. For example, brand managers may be interested in a comparison
across product attributes. For such an analysis the number of relevant items in the product
category make commonly used sales models difficult to use as they would contain too many
parameters.

In this paper we propose a new model, which allows for the analysis of a market with
many items while using only a moderate number of easily interpretable parameters. This
is achieved by writing the sales model as a Hierarchical Bayes model. In this way we relate
the marketing-mix effectiveness to item characteristics such as brand, package size, package
type and shelf position. In this specification we do not have to impose restrictions on the
competitive structure, as all items are allowed to have different own and cross elasticities.
The parameters in the model are estimated using Markov Chain Monte Carlo techniques.

As a by-product this model allows to make predictions of sales levels and marketing-
mix effectiveness of new to introduce items or of attribute changes. For example, one
can assess the impact of changing the packaging from plastic to glass, on sales and price
elasticity. Besides entering and changing products, our model also allows for items to leave
the market.

We consider the representation, specification and estimation of the model. We apply
the model to a ketchup scanner data set with 23 items at the chain level. Our results

indicate that the model fits the sales of most items very well.

Keywords: sales models, attribute data, SKU level analysis, Hierarchical Bayes, Markov
Chain Monte Carlo.



1 Introduction

Sales models are useful tools for analyzing competitive structures, see Wittink et al. (1988)
among many others. These models are often used to analyze markets with fairly small
numbers of items, for example, three national brands and one private label. In practice,
the number of items in a product category can easily be very large, and hence the current
sales models already concern somehow aggregate data. Suppose one does not want or
can aggregate over items, and is aiming at using the same type of sales models for all
items, it is easy to imagine that one may run into problems of implementation. A full-
blown multivariable sales equation would yield a very large number of parameters when
a complete model is analyzed. To reduce the number of parameters, one can assume
restricted versions of the general model. For example, one can assume that the covariance
matrix is restricted to a diagonal matrix, or that the sales of each brand depend only on
its own explanatory variables measuring marketing-mix effects. To simplify matters even
more, one can also assume that certain parameters are equal across brands, which entails
that one pools parameters. Finally, the dynamics in the equations may be restricted, by
removing item-specific effects or some lags in the sales equations.

It is important to understand, though, that if one restricts sales model in this sense,
the number of parameters can still be large when analyzing many items. In this paper we
address this issue by proposing a new approach, which allows for modeling many items,
while keeping the number of parameters at a reasonable level. To this end, we propose a
Hierarchical Bayes [HB| method which uses product attribute data, such as package size
and type (like glass/plastic/tube), in the parameter equation. This enables us to reduce
the number of parameters considerably, while still having item-specific elasticities. Our
method also allows the analysis of the consequences of the introduction of a new item.
One can vary across different attributes and see which have most potential in terms of
sales.

We assume attribute data have an impact on the parameters in the sales equation using
the following arguments. Suppose two items are completely the same on their attributes.
In this case, there is no reason to assume that their effects of marketing-mix efforts would

differ. Now, suppose that two items are not the same, but very similar, that is, they differ



only on one attribute. In this case, such a difference may result in different marketing
effectiveness parameters for these two items. The magnitude of the difference can then be
assigned to the differences across attributes.

Our method improves on an often used approach in marketing research. This approach
is that one first regresses sales on marketing instruments, and then regresses the estimated
parameter values on product attributes. It is important to understand that this amounts
to assuming that the parameter uncertainty in the first step is not taken into account in
the second step, and this entails too much confidence in statistical inference. Our HB
approach does not require this this assumption, as we take the two steps simultaneously.
A by-product is that this also makes calculating confidence intervals for the attribute effect
parameters more straightforward, as we will show below.

To our knowledge, there are two related studies in the literature. Fader and Hardie
(1996) take a similar approach, but they consider individual level data. Furthermore, they
assume the attributes only have impact on the intercepts in the sales model, instead of
on all variables. Our approach is different in two respects. First, we use data which are
aggregated at the market level. This type of data is more widely available and new data
can quite easily be obtained, in contrast to panel scanner data. Furthermore, we allow the
attributes to have impact on all marketing instrument parameters.

The second study is Foekens et al. (1997), who use market share models to better under-
stand the competition between brands. In their model, consumers evaluate some attributes
in a hierarchical way to make their brand choice. This evaluation is however assumed to
be in a fixed order, whereas in our model there is no such sequence. Furthermore, in their
approach, only few attributes can be evaluated, as it is assumed for a consumer, that it
is not possible to evaluate multiple attributes in his/her own preferred order. In contrast,
our model allows for a large number of attributes.

The outline of our paper is as follows. In Section 2, we discuss the specification of our
sales model. In Section 3, we apply this model to the ketchup category. In this section we
consider the impact of marketing instruments, forecasting of sales and the introduction of

new items. In Section 4, we conclude our paper with a discussion of the main results.



2 A new model for sales

In this section we introduce our sales model. In Section 2.1, we discuss a simple variant of
the model in which we assume that there are no cross effects of marketing instruments. In
Section 2.2, we will show how these cross effects can be incorporated. Next, in Section 2.3

we discuss examining the effects of brand repositioning.

2.1 Basic model

First, we discuss notation. The number of items (SKU) in a market will be denoted by I,
the number of marketing mix instruments by K, and the number of available attributes
by L. Let In s;; be the natural log of sales of SKU i at time £ = 1, ..., T, and assume it can
be respresented by

Insiy = p; + 25,0 + €, (1)

where z;; denotes a K x 1 dimensional vector of explanatory variables for SKU ¢ at time
t and where 3; = (814, ... ,Pk;) with B, the coefficient measuring the effect of the k-th
explanatory variable for SKU . The vector of explanatory variables will in general contain
(log-transformed) marketing instruments and lagged log sales. The parameter y; is a SKU-
specific intercept. All parameters in (1) are allowed to differ across items. Finally, let the
error term (g4, ...674)" be normally distributed with zero mean and ¥ as covariance matrix.

In a typical application, (1) constitutes the entire model. However, for a market with
many different items such a specification may contain too many parameters. The number
of parameters may be too large from a substantive or from a statistical point of view. That
is, there may be too many parameters to allow for a straightforward interpretation of the
model and there may be too many parameters relative to the available data, creating a
degrees of freedom problem. These considerations are even more relevant when extended
versions of the sales model are considered, for example when considering cross-item effects
of marketing efforts, as we will do in the next subsection.

To impose some structure on the parameters, one can use attribute data. In this case,
an item is considered to be represented by a specific point in an attribute space. A (linear)
mapping then relates the model parameters to this attribute space. This approach is also

used when attribute data are not directly available, and in that case a latent attribute space



is introduced. The locations in attribute space should then be inferred from the data, see,
for example Chintagunta (1999). However, if available, the use of actual attribute data is
to be preferred.

An often considered approach in empirical marketing research is to estimate the map-
ping from an (observed) attribute space to the parameter space from data using a two-step
method. First, the competitive model in (1) is estimated using item-specific parameters ;.
In a second step the estimated item-specific parameters BZ are regressed on the attributes.
In this approach, the estimated parameters from the first step are treated as fixed in the
next round. There are several statistical and practical problems with this approach. First
of all, this approach will break down if there are not enough data to estimate all the item-
specific effects. Moreover, the second step ignores the uncertainty about the parameters.
These parameters are treated as fixed, while in fact they are estimates. Especially when
there are limited data, the uncertainty in these parameters may be large, and hence one
might be too confident about the attribute effects in the second step.

Both these problems are solved by combining the two steps in a single approach. This
approach accounts for the uncertainty in the SKU-level parameters by directly estimating
the attribute space mapping. Furthermore, by explicitly recognizing that items that are
close in attribute space will have similar parameters, we can make use of the data more
efficiently.

Denote by Z; an L x 1 vector of the observed attributes of item 7. We introduce the
following linear relation between the item-specific parameters and the attribute space, that

is,
i\ _ 7z . 9
8, = o + a1 Z; + 1, (2)

with ap a (K + 1) x 1 vector and e a (K + 1) x L matrix of parameters. The coefficients
a1, now represent the effect of attribute ! on the effectiveness of marketing instrument
k. If k = 0 the coeflicient gives the effect on the intercept. Of course, there may be
attributes that we do not observe or intangible attributes such as brand equity that also
influence the marketing-instrument effectiveness. To account for that, we represent the
joint effect of such attributes by a normally distributed disturbance term, that is, n; =

(M0, Wity - - - »Mik) ~ N(0,%,). The size of uncertainty may differ across instruments, and



we therefore allow the variance of 7;; to depend on k. Furthermore, we may expect that
unobserved attributes affect multiple marketing instruments. For example, if an item has
a high feature effectiveness it may also be effective with display. Such relations will lead
to positive correlations between 7, ; and 7; ;. To capture these correlations we allow ¥, to
be non-diagonal.

In sum, the combination of (1) and (2) gives our attribute-based sales model, which
is particularly useful in case I is large. Note that, technically speaking, u; and §; are
not the key parameters in this model. Indeed, by substituting (2) in (1) we would have
a model that does not contain p; and §;. In fact, the only parameters are oy, o1, >, and
Y... Therefore, our model contains less parameters than a model in which §; is estimated
directly. Instead of having to estimate (K +1)I S-parameters, we now only have to estimate
(L 4+ 1)(K + 1) parameters. For large I and with L +1 < I, this will of course give a
considerable reduction in the number of parameters. Finally, the joint estimation of (1)
and (2) gives more precise estimates of the attribute mapping than a two-step approach
as it combines all the available information and accounts for uncertainty in the marketing
instrument effectiveness.

Although only ap and a4 can be seen as the “true” parameters of the model, we can
still get estimates of the marketing instrument effectiveness from the model and the data.
Without observing actual sales, (2) gives the prior beliefs about the effects of marketing
efforts. Conditional on observed sales, we can update these beliefs to reflect the data. In
the Appendix, we discuss an MCMC algorithm that can be used to estimate the model
parameters and which, as a by-product, gives draws from the distribution of y and £

conditional on the data.

2.2 Including cross effects

In many practical cases, model (1) could be considered to be too restrictive. For example,
in this model it is assumed that the marketing efforts of one SKU do not affect the sales
level of competing SKUs. Although a very restrictive assumption, it is often imposed in
practical applications, since adding all cross effects to (1) would entail many parameters.
A model with all cross-effects in general has I + KI? parameters, instead of (K + 1)I in

(1). Consider a market with 25 items and only 3 marketing instruments. A model with all



cross effects has 25 + 3 x 252 = 1900 parameters, while the corresponding model without
cross effects only has 4 x 25 = 100 parameters. A reasonably sized data base will suffice
for the estimation of 100 parameters, but the amount of parameters involved in the most
flexible cross-effect model will be more than most available datasets can handle. Indeed,
such a data set would have to contain data on a very large number of observations.

It should be evident that the use of attribute data to summarize the competitive struc-
ture is especially relevant in case one wants to model cross-item effects of marketing in-

struments. Including all possible cross effects, the general sales model in (1) becomes

T
Insiy = p; + i .0 + Z 5 By + i (3)

i
Denoting by §;; a K X 1 vector representing the effect of item j’s marketing instruments
on the sales of item i, we now specify the attribute-to-parameter mapping for the cross

effects as
Bii = O+ KZi+ AZj+|Zi — Z;| + &y, (4)

where § is a K x 1 vector, and where k, A and v are K x L matrices. We will denote
6 = (4, K, A,7), which is a K X (1 + 3L) matrix . The number of parameters to estimate
therefore equals K (1 4+ 3L). The effects of unobserved attributes on the cross effects are
captured by &;;, for which we again assume that these effects have a normal distribution,
now with covariance matrix ¥¢. The parameter estimation of the model including (3) and
(4) follows along the lines as outlined in the appendix.

The explained part of the cross effects is assumed to depend on the attribute values of
both items, that is Z; and Z;. Note that the cross effects are not necessarily symmetric,
that is in general E(f;;) # E(f; ;). The effect of attributes of SKU ¢ on j only equals the
reverse effect if Kk = A\. We expect v < 0, as we believe that more distant items in the
attribute space will have smaller cross elasticities.

To illustrate the interpretation of the parameters in (4), consider a binary attribute
denoting the brand of ketchup. This attribute equals 1 if the particular ketchup item is
“Heinz” and 0 otherwise. The cross effect of item j on item ¢ now depends on the brand

of both items, that is



j\i | Brand =1 Brand =0
Brand=1| 6+k+A d+A+7
BrandzO‘ d+kKk+7 o

Hence, § measures the “baseline” cross effect, k and J the effect of a “Heinz” item and
measures the change in the cross effect for items that differ on this attribute. Note that
the four parameters exactly match the four different cases for the brand attribute. In case
of binary attributes, the specification in (4) is the most flexible. Higher order functions
of the attributes can be added to (4), in order to model the dependence of the marketing

effectiveness on attributes that are measured on a continuous scale.

2.3 Brand repositioning

The store layout may be part of the attribute space. For example, consider the position-
ing of items on the shelves in the store. Items on the top or bottom shelf may be less
attractive to consumers compared to items at the eye level. Furthermore, items that are
(physically) close to each other may compete more intensely and therefore have stronger
cross elasticities.

Including the store layout in the attribute space leads to some difficulties. Although
the store layout is likely to be constant during large periods of time, it does change oc-
casionally. If we assume that the attribute location of an item determines the marketing
instrument elasticities, a change in store layout will lead to a change in some of the param-
eters concerning competition. Note that given the parameters in (4) we can easily predict
the effects of such a change.

We do not have to change the model to deal with changes in the attributes, as we will

show now. With a change in the attributes at time 77, 1 < T} < T, the model becomes

I .
Ins;, = pi +1n xé,tﬂ} + Z]I.ZI’#Z. In x;tﬂ}z +e, f1<t<Ty
, pZ +In xé,tﬂ? + ijly#i In x;tﬂfz +e, T <t<T,

=0+ KZ + AT+ |2 - Z| + €

2 __ 2 2 2 2 2
1
(lgl> =g+ w7+

2
(52) =yt a2 +n;
;



where Z' denotes the attributes before T, and Z? the attributes after the change, §7; and
7n; are independent and have normal distributions, ¢,j = 1,... ,I and 7 = 1,2, where the
distribution is independent of r .

Clearly, to allow for changes in the parameters due to the attributes in the classical
setting, one would have to double the number of parameters, while in our specification the
number of parameters to estimate does not change at all. This is an important advantage

of our model.

3 An illustration

To illustrate our method, we present a detailed analysis of an interesting dataset. In
Section 3.1 we briefly describe the data. Sections 3.2 and 3.3 concern the estimation
results and the forecasting performance, respectively. In Section 3.4, we illustrate how our

model can be used to predict the performance of new items and of attribute changes.

3.1 Data description

We analyze a dataset with 23 items from a ketchup market. We have sales data for 89 weeks
and percentages of stores engaging in display, featuring, promotions and distribution. For
each item, we have information on a number of attributes. These are subcategory (curry
or tomato), brand, number of facings, shelf position and package size. Table 1 gives some
descriptive statistics for our dataset. About halfway the sample period, a change in the
category occurs. Four new items enter the market and five items exit the market. The
store layout also changes, that is, many items change on the attributes shelf and facings.

As described in Section 2.3, our model can easily handle such changes.

3.2 Estimation results

As explanatory variables, we use feature, promotion, distribution and 1-period lagged sales.
The variable display, despite the fact that it is ’display only’, showed too much correlation
with the promotion variable, and is therefore omitted from the analysis. Because of the
lagged sales variable, we use the first observation as a starting value and hence end up

with 88 observations. For the estimation of the parameters of our HB model, we generate
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4000 iterations of the Gibbs sampler for burn in and 8000 iterations for analysis, where we
retain every eighth draw. The (unreported) iteration plots are inspected to see whether
the sampler converges to stationary draws from the posterior distributions of the model
parameters.

Table 2 shows the parameter estimates for «, that is the parameters linking the at-
tributes to the effectiveness of own marketing instruments. From these estimates, it can
be seen that the number of facings has a strong positive influence on the constant in the
sales equation. This indicates that items that have many facings, have a higher expected
sales level when there is no promotion, feature activity, or otherwise. There could be some
feedback effects here as well. An item with a high sales level will be granted more shelf
space in the store, and thus result in more facings for the item. This feedback effect is not
analyzed in our model, since this would require including facings as an endogenous vari-
able. Furthermore, in our dataset the number of facings changes only once, which makes
it very hard to analyze the reverse causality. Facings also has a positive influence on the
effectiveness of featuring. Items with the Heinz brand name are also more successful with
featuring.

Values for § = (4, k, A,7y) are presented in Table 3. Most significant cross effects occur
for the instrument feature. To illustrate the interpretation of these parameter estimates,
consider the “subcategory” coefficients for feature (own: 0.32, competitor: -2.35 and dif-
ference: -0.81). The interpretation of these three coefficients is as follows. Consider two
items both having subcategory=1, that is, they are tomato ketchup items. For these two
items there will be a strong negative cross effect, as the contribution of the subcategory
attribute is 0.32 — 2.35 = —2.33. For two items with subcategory=0, that is, two curry
items, there is a much smaller cross effect, since the contribution of this attribute is only
0.32. Finally, the cross effect between different subcategories is -2.35 - 0.81 = -3.16 for
the effect of subcategory=1 on subcategory=0 or 0.32 - 0.81 = -0.49 for subcategory=0 on
subcategory=1.

For 3; and B;;, we also report values averaged over items in Table 4, as the dimensions
are perhaps too large for interpretation. Notice that the change in the store and entry and
exit of the items has most effect on the feature instrument. To give some more insight into

the values of §;, the graphs in Figure 1 display the posterior means per item. The top line
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is the posterior mean plus two times the standard deviation and the bottom line displays

the posterior mean minus two times the standard deviation.

3.3 Forecasting results

In each run of the Gibbs sampler, we simulate a sales forecast for the last 10 periods in
the dataset. We use the posterior mode of these forecasts as the out-of-sample prediction.
The Mean Average Percentage Error for both in sample fit and out of sample forecast are
reported in Table 5. When we compare our HB model with a model which concerns a
regression per item, we see that our model performs better, both in sample and out of

sample.

3.4 Introducing a new item

As a by-product, our model allows to make predictions of sales levels and marketing-mix
effectiveness of new to introduce items and of attribute changes. To illustrate the former,
we estimate the model for only 22 of the 23 items. In each iteration of the Gibbs sampler,
we use the current values for o and 6 to generate values for pintro, Bintro @Dd S_intro,intro-

The sampling is performed using equations (2) and (4) in the following way:

(Nintro: ﬂilntro)l ~ N((a()’ al) (le ) ) Zn)

. (6)
/Bj,intro ~ N((67 K, )‘7 ’Y)Wj,h E‘f):j 7é intro

Given the values for fintro, Bintro and B_intro intro, We can now generate values for yintro,
using (3). The variance of einro is taken as the average of the other 22 item-specific
error variances. In each (stored) iteration of the Gibbs sampler, we simulate sales for the
in sample period, as well as for the out-of-sample period. We perform this introduction
exercise for each of the 23 items in the market. The MAPE results can be found in Table 6.
The first column of forecasts, that is, the “in sample” forecasts, can also be seen as a cross-
validation check, while the second column, that is, the “out of sample” forecasts, concerns
genuine item introduction. Obviously, the forecast errors are much larger now, but for

some items our model gives quite accurate forecasts of these sales levels.
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4 Conclusion

In this paper we have shown that it is possible to analyze a parsimonious sales model that
describes many items. It appeared even possible to model cross-effects between the items,
without having large numbers of parameters. Moreover, with our model, one can gain
insight in the impact that attributes can have on the effectiveness of marketing instruments.
Also, our model could incorporate store layout changes, without the need to introduce even
more parameters. We have shown that the model performs considerably better than an
item-specific regression. Finally, our model was able to predict the introduction of a new
item reasonably well.

The limitations of our study immediately suggest further avenues for research. Our
dataset did not include pricing information and further applications would benefit from a
more extensive data set. Furthermore, it would be insightful to compare our ”new-item”
exercise with alternative methods, for example by using the 2-step-estimation procedure.
This would require the development of new evaluation criteria. Finally, it would be inter-
esting to examine why sales of some items can be better predicted than those of others,

and whether these findings could be generalized across product categories.
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Appendix: Parameter estimation

This appendix describes the algorithm for sampling from a Markov Chain that has the

posterior distribution of the model parameters as its stationary distribution. In this ap-
1

pendix we will denote y;; = Ins;, Wy = ( % ) and use W_,; ; for the matrix obtained
|Zi—Z;]|
by horizontally concatenating W;; for j € {1,...,I}\i. Finally, the matrix X_; gives the

matrix consisting of horizontally stacked X; for j € {1,...,I}\i.

Sampling of o, a1|y, 5,2,

Rewrite (2) as

U1 Mo ... W 1 1 ... 1)
= ... . 1
(/61 By .. ﬂ[) (e, 1) <Z1 Zo .. + (771 72 771) (.1)
Writing this model as w = aZ + 7, we obtain
vec(w) = (Z' @ I)vec(w) + vec(n), (.2)

where vec(n) ~ N(0,I; ® X,). The posterior distribution of a, ; conditional on p, 8 and
Y, is therefore normal, where the mean and the variance follow from the OLS estimator
of vec() in (.2), that is
E(vec(a)|p, 8, 5,) = [(Z @ IN(Ir @ 3" )(Z' @ In)] (£ @ I1)(I; ® X" vec(w)
= vec(wZ'(ZZ')™)
[(ZeINIrez, ' )(Z' L)
(ZZ) ' ®@%,].

Var(vec(a)|u, 8,%,)

Sampling of (§,x,A,7)|8-i; ¢ =1,...,1),%
The model specifies

(Boigy - B-rg) = (6,6, M, V) Wi, s Worg) + (Ecan, -+ 5 €21)- (.4)

Denoting this as feross = (0, K, A, Y)W + &, with vec(§) ~ N(0,I;_1) ® X¢), we obtain
analogous to (.3) that the conditional posterior distribution of vec(d, , A,7) is normal
with

E(vec(d, &, A, Y)| Beross, Ze) = vec(Beross W' (WW') ™)

D
Var(vec(8, 5, A7) Berosss 5) = [(WW') ™ ® ] (9)

14



Sampling of i, /6i7 /B—i,i Yi, G, O, 67 K, )‘7 Y, 267 En

3 — ! _ !
Denoting y; = (yi1, Y2, - -- , ¥ir)’ and &; = (g4, €49, - - . , €)' We have

Hi
yi=(1,Xz~,X—z')( b )+5i7 gi ~ N (0,07, Tr)

vec(ﬂ_i,i)
i 1
(gz> = (ap, 1) (Zz> +ni, M~ N(0,%,) (6)
Boii= (0, k, A\, V)W_ii+&_is,  vec(é_iz) ~ N(0,Ir_1 @ X¢)

Normalizing equations and collecting them, we get

(,ljiyi é(l, Xi) (,%X—z' 1L
S P, @) (4) | =| = 0 g J+6 (D
vee(Zg (8, 8, X, 1) W_i;) 0 I ®%; /%) \vee(B-ii)

where ( ~ N(0,I ;1 k7). Again the conditional posterior distribution of (u;, 5, vec(8_:;)")’

is normal with mean (X!X;)~'X!; and variance (X!X;)~!, where

— X_i
X/ X; = a (x xx) + 37 ”L%(X'X—")
iXi a (XLXLX) S (XLX )+ (L @ ) (8)
1 .

o FUwE ) (4)
Y= c%giX'—iyi + VeC(Eg_l(fs, K A IWois) |
Sampling of z:6|yi7 Hi, /6i7 /B—i,i (Z = 17 s 7I)
Given y;, i, Bi, B—ii (i = 1,... ,I) the disturbances are obtained using
Hi
gi =y — (1, X3, X ) B
vec(ﬂ_i,i)

As we assume the disturbances to be independent, the posterior distribution of 0,2” is
inverted x?(T) that is, a draw from the posterior conditional distribution can be obtained

by drawing R from x?(T) and calculating £le;/R.

Sampling of %, |ag, o4, s, 5

For the case of a possibly non-diagonal covariance matrix for 5, previous research has shown

that the performance of the Markov Chain can be significantly improved by incorporating
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some prior information on the covariance matrix. In this paper, we use an informative
but diffuse inverted Wishart prior, that is ¥, ~ IW(S,,vy). The conditional posterior
distribution is ¥, |ag, cq, b, 8 ~ IW (n'n + Sy, I + vy), where n = w — aZ.

Sampling of E§|5, K, )\, Y, /B—i,i (’L = 1, P ,I)

For ¢ we also use the inverted Wishart prior, that is 3¢ ~ IW (S, v¢). The conditional
posterior is X¢|d,k, A, v, B-ii (¢ = 1,...,I) ~ IW('é + Se, I(I — 1) + vg), where § =
(5_171, . ,5_171) With f—i,z’ = /B—i,i — ((5, K, )\, 'Y)W—z',i
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Table 1: Descriptive statistics for ketchup dataset

Attribute Values

Subcategory curry (7 items) or tomato (16 items)
Brand Heinz (11 items) or other (12 items) ?
Number of facings 1 to 5

Shelf position 1to7

Package size 200 to 875 ml

Number of items 23
Number of weeks 89

2 We have data for more brands, but for illustration pur-
poses, we focus on Heinz versus other brands. Further-
more, other brands have few items each, which could make
estimation of brand effects more difficult.
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Table 2: Parameter estimates for «

attribute const feature promotion distribution lagged sales
const —2.92«  —0.16 2.21x 3.47x 0.19
subcategory 1.56 1.08 -3.13 5.27 0.46
facings 5.53x 12.00% —2.3bx —1.95 —0.40
shelf 2.73 —2.98 —1.27% —1.13 0.31x
package size 2.90 —3.05 0.88x —2.28% —0.38%
brand —0.71 3.09x —0.77% 0.07 0.01
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Table 3: Parameter estimates for § = (4, , A, )

attribute feature promotion distribution lagged sales
const -0.16 -0.07 0.36* 0.00
own subcategory 0.32 0.04 -0.83 0.10
facings 0.15 -0.07 0.02 -0.02
shelf 0.09 -0.01 -0.15 -0.01
package size 0.24 -0.02 0.04 -0.01
brand 0.17* 0.02 0.02 0.01
competitor subcategory -2.35% 0.14 -0.54 -0.02
facings 0.85* -0.11 0.38 -0.07
shelf 0.23 0.11 -0.21 0.04
package size -0.30 -0.07 -0.15 0.01
brand 0.17* 0.03* -0.11 0.00
difference  subcategory -0.81 0.23 -0.49 0.09
facings -0.17 0.14* -0.05 -0.03
shelf 0.33 0.03 -0.06 0.00
package size -0.01 0.06 0.04 -0.01
brand -0.21* 0.01 -0.01 -0.01
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Table 4: Average parameter estimates for

constant feature promotion distribution lagged sales

1 0.704 1.2 1.09 1.75 0.0737
2 0.515 1.46 1.06 1.9 0.0482
}Z 0.105 -0.0151 0.0599 -0.00361
ﬂfz 0.0782 -0.0259 0.0901 -0.00563
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Table 5: MAPE (Mean Average Percentage Error) for two models for
ketchup items

HB Regression per item
subcat. item description i.s. o0.0.8.* 1i.s.2 0.0.8.%
Curry 1 Others 750 6% 9% 9% 11%
2 Calve 500 5% 11% 12% 10%
3 Gouda’s Gloria 750 9% 8% 11% 14%
4 Heinz 450 5% 8% 9% 6%
5 Heinz 750 6% 0% ™% 13%
6 Hela 800 5% 6% ™% ™%
7 Remia 500 ™% 19% 10% 22%
Tomato 8  Others 300 23% b 24% b
9 Calve 500 6% ™% 14% 13%
10  Private label 300 9% 17% 11% 10%
11 Private label 450 6% 9% 10% 11%
12 Gouda’s Gloria 750 5% 16% 9% 13%
13 Heinz hot 450 9% b 11% b
14  Heinz hot 500 5% 8% 6% 10%
15  Heinz 300 glass ™% 10% 9% 6%
16  Heinz 450 glass 7% b 11% b
17  Heinz 500 glass 6% 1% 8% 201%
18 Heinz 400 plastic 9% 12% 14% 16%
19  Heinz 500 plastic  16% b 17% b
20  Heinz 875 plastic ™% ™% 8% ™%
21  Heinz 200 tube 11% 13% 10% 13%
22 Remia 440 8% b 12% b
23 Remia 500 ™% 20% 13% 19%
average 8%  12% 11% 22%

4 j.g.: in sample, 0.0.8.: out of sample.
b For this item no out of sample forecast can be calculated, since it exits the
market in period 44.
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Table 6: MAPE per ketchup item introduced

subcat. item description i.s.2 0.0.8.2

Curry 1 Others 750 34%  43%
2 Calve 500 20% 1%
3 Gouda’s Gloria 750 45% 66%
4 Heinz 450 33%  33%
5! Heinz 750 59% 51%
6 Hela 800 35% 28%
7 Remia 500 19% 18%

Tomato 8  Others 300 7% b
9 Calve 500 22%  24%

10  Private label 300 45% 81%
11  Private label 450 66% 65%
12  Gouda’s Gloria 750 13% 13%

13 Heinz hot 450 64% b
14  Heinz hot 500 17% 11%
15  Heinz 300 glass 1% 48%
16  Heinz 450 glass 55% b

17  Heinz 500 glass 46% 38%
18  Heinz 400 plastic 54%  63%

19  Heinz 500 plastic  77% b
20 Heinz 875 plastic  44% 52%
21 Heinz 200 tube 32%  46%
22 Remia 440 54% b
23  Remia 500 19% 27%
average 42%  40%

2 i.s.: in sample, 0.0.s.: out of sample.
b For this item no out of sample forecast can be cal-
culated, since it exits the market in period 44.
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Figure 1: Posterior means and confidence bounds per f;, for each of the five explanatory

variables.
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