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Abstract

We consider a consumer electronics (CE) manufacturer’s problem of controlling the inven-

tory of spare parts in the final phase of the service life cycle. The final phase starts when the

part production is terminated and continues until the last service contract or warranty period

expires. Placing final orders for service parts is considered to be a popular tactic to satisfy de-

mand during this period and to mitigate the effect of part obsolescence at the end of the service

life cycle. To satisfy demand for service in the final phase, previous research focuses on repair-

ing defective products by replacing the defective parts with properly functioning spare ones.
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However, for consumer electronic products there is a remarkable price erosion while repair

costs may stay steady over time. As a consequence, this introduces the idea that there might

be a point in time at which the unit price of the product is lower than repair associated costs.

Therefore, it would be more cost effective to adopt an alternative policy to meet demands for

service such as offering customers a replacement of the defective product with a new one or

giving a discount on the next generation of the product. This paper examines the cost trade-offs

of implementing alternative policies for the repair policy and develops an exact formulation for

the expected total cost function. Based on this developed cost function we propose policies to

simultaneously find the optimal final order quantity and the time to switch from the repair to

an alternative replacement policy. Numerical analysis of a real world case study sheds light

over the effectiveness and advantage of these policies in terms of cost reduction and also yields

insights into the quantitative importance of the various cost parameters.

Keywords: service parts, end-of-life inventory control, consumer electronics

1 Introduction

In this paper, we consider the inventory control of service parts of a consumer electronics (CE)

manufacturer in the final phase of their service life cycle. This problem is known in the literature

as the end-of-life (EOL) inventory problem. It is also called the final buy problem (FBP), or the end

of production problem (EOP). The final phase starts when service part production is terminated and

ends when the last service (or warranty) contract expires. In general, the final phase is the longest

period within the life cycle of a service part. For instance, in the electronics industry this phase

may last from four up to thirty years while the production of electronic appliances is normally

terminated after less than two years (Teunter and Klein Haneveld, 2002). In the past decade, there

has been a significant increase in innovation throughout the consumer electronic industry. As a

result, a typical product may go through all its life cycle stages including development, initial,

normal and final production within a year, or less. Accordingly, this spurt in innovation has led to

placement of the final order, that should suffice for the sequel of the service period, typically within
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a year after production kick-off. As a consequence, the difficulty of accurately predicting demand

over time and the lack of a sound inventory system to estimate final order quantities have resulted

in many cost ineffective purchases. On one hand, companies are mandated to satisfy customer

demand for service parts due to warranty obligations, but on the other hand, they face a huge

obsolescence and disposal risk at the end of the final phase. Many firms have encountered large

write-offs of excess inventory after the product life ultimately ends. For example, IBM disclosed

a $1 billion loss from its personal-computer business in 1998, attributed to excess PCs in dealer

channels that had to be sold at a steep discount (Bulkeley, 1999).

One of the main obstacles in the final phase inventory management is that the acquisition of

parts is no longer guaranteed and this forces companies to decide on the final order quantity before

the cessation of the production. Basically, during the final phase, customers return defective prod-

ucts for service. The literature relevant to the management of the final phase inventory focuses only

on the repair of defective products by replacing the defective part of the product with a functioning

one. This functioning part may be either a new part or a repaired returned item. To the best of

our knowledge, the literature considers this as the only way to service customers. This approach

makes sense as the one and only feasible tool to service the demands for very expensive capital

goods and their associated spare parts. However, for consumer electronic goods other approaches

should be considered because of the continuous price erosion of such products over time. This

price erosion is very typical of consumer electronic goods and may even exceed an annual rate of

30%, while the repair associated costs may stay steady over time. This introduces the idea that

within the final phase there may be a break even point in time after which a regular repair policy

is no longer the best policy with respect to the total cost. After this break-even point, a firm can

satisfy customer demands through an alternative policy such as product swapping or set exchange.

Swapping means offering the customer a new product rather than repairing a defective product.

From a practical standpoint, there are many cases, particularly for consumer electronic appliances,

where swapping is actually more cost-effective than using expensive spare parts to repair defective

products. Other alternative policies include offering discount on a new model of the product, or by
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giving credit or monetary compensation to customers.

We contribute to the literature of the end-of-life inventory problem with developing a new

methodology introducing the possibility of switching to an alternative policy. According to this

methodology, from some point in time to the end of the service life cycle, the system services

customers through an alternative policy instead of a repair policy. Throughout this paper we mean

by repair policy the whole process of replacement of the defective part of a product with a func-

tioning spare part. We first develop a closed-form expression for the expected total discounted

cost function. Then, we propose four policies to deal with this problem. The first is when a

manufacturer is loathe to scrapping on-hand serviceable inventory and switches to an alternative

policy only when on-hand inventory of service parts is depleted. In this case, the only decision

variable is the final order quantity. In the second policy a scrapping option is taken into account.

The manufacturer scraps on-hand inventory if it is clear that scrapping the available inventory and

switching the policy is more cost efficient. Hence, the decision variables are final order quantity

and policy switching time. No inventory level review takes place in these first two approaches. In

other words, in the first two approaches the optimal value of the decision variables are calculated

just once at the beginning of the period and there is no further adjustment of optimal values after

demand realization. To incorporate review, we develop two rolling horizon types of policies. In the

third policy, after demand realization given the inventory level at each point in time we recalculate

the optimal time to switch. In the fourth policy, given the optimal time to switch we obtain the

optimal inventory level at each point in time.

The modeling approach is based on a real world case study. This problem was brought to

us by a major European consumer electronic goods manufacturer. The company is a prominent

global player in this industry and is one of the companies involved in the European Information

and Communication Industry Association (EICTA) in which members have agreed on the length

of the service period for different products. In general, the consumer electronics service parts or

non-professional service parts comprise the majority of parts stocked in service departments and

it is reported that two-thirds of the total stock of spare parts belongs to this category. Although
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our methods are generic, we consider a cathode ray tube (CRT) as the service part to illustrate our

approach. CRTs were a relatively expensive and crucial element in TV screens and monitors in the

1990s. Due to the introduction of liquid crystal display (LCD), plasma and organic light emitting

diode (OLED) screens, CRTs have become obsolete and to their production has been termiated.

For the company, obsolescence of CRTs kept in stock in anticipation of demand for service is an

enormous challenge. The demand originates from the large installed base of households that own

CRT-based products such as TVs and monitors.

The current approach applied by the company is somewhat complex due to the incorporation

of differences between the various regions and agreements with the logistic service providers. The

approach basically stems from the ideas mentioned in Teunter and Fortuin (1999) for a nearly

cost-optimal final order, where a fixed yearly drop in demand is assumed and a newsvendor type

of problem is solved using a predicted repair rate. Neither scrapping before the end of the horizon

or an alternative policy are considered. This yields a rather simple problem to be solved. However,

consumer electronics market-watch shows that these products may have an annual price erosion

of up to 30%. Consequently, the company has an incentive to investigate an alternative policy to

service customers in addition to simply purchasing a quantity of stocks to sustain repair activities

over a long period of time. In other words, it is keen to examine whether it is feasible to implement

an alternative policy and whether this will lead to any cost efficiency.

The remainder of this paper is structured as follows: Section 2 proceeds by providing the rele-

vant literature and position of our paper with respect to the existing literature. Section 3 develops

building blocks for a cost-driven model and ends by proposing a closed-form expression in terms

of elementary functions for the expected total discounted cost. By applying the results of section

3, section 4 proposes a variety of end of life policies. In Section 5 a numerical analysis is presented

and finally section 6 contains discussion and conclusions.
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2 Literature Review

Parts that are used in a product have their own life cycles and might become obsolete before the

end of the product life cycle. This lack of synchronization between part and product life cycles

has been referred to as “Life cycle mismatch” in the literature (Solomon et al. (2000)). Various

strategic decisions can be made on how to deal with this mismatch in order to keep the product

in the market. These include substituting another part for the obsolete one, obtaining the obsolete

part from an after market manufacturer, redesigning the product, discontinuing the product or

purchasing a sufficient volume of the obsolete part to sustain production of the product for its

remaining life time; this is called a life-time or a last-time buy (Bradley and Guerrero, (2008)). In

this paper, we focus on the last-time or end-of-life buy as a countermeasure tool to cope with the

final phase inventory problem.

In general, research on the end-of-life inventory problem in the literature can be divided into

three categories: service-driven, cost-driven and forecasting based approaches. In a service-driven

approach a service level should be optimized regardless of the cost incurred by the system. How-

ever, a cost-driven approach gives a monetary value to the unserved part of the demand by means

of back-order or penalty costs, and then adapts a policy to minimize the total cost. Forecasting

based approaches ignore production and inventory costs and seek to build a forecasting model to

mimic the demand behavior during the final phase. This model is used to predict the total amount

of demand in the final phase and this predicted value is used as the final order quantity. In the

sequel of this section, we will briefly review the literature and provide examples of these three

approaches to the end-of-life inventory problem.

Fortuin (1980, 1981) describes a service level approach and addresses non-repairable items or

consumable spare parts. He derives a number of curves by which the optimal final order quantity

for a given service level can be obtained. He assumes an exponentially decreasing demand pattern

and uses a normal approximation to derive expression for several service levels. Another service-

driven approach is developed by van Kooten and Tan (2009) for a system in which parts are subject
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to the risk of condemnation. They build a transient Markovian model to represent the problem for

a repairable spare part with a certain repair probability and repair lead time. They also develop

some approximate models that allow involvement of further real world characteristics. Using their

model, the corresponding optimal final order quantity can be obtained for a given service level.

Basically, a cost-driven approach decides on the quantity purchased by weighing the cost of

ordering too many against the cost of buying too few or in other words a news-vendor problem

approach. Among this category of works the most pertinent to ours is Teunter and Fortuin (1999).

They assume that failed parts can be remanufactured and reused. They find a near optimal solu-

tion for the final order quantity and further extend their work by introducing a dispose-down-to

level policy. This policy allows unused parts to be removed from stock before the end of the hori-

zon. This approach is applied at Philips Consumer Electronics and results are shown in Teunter

and Fortuin (1998). Another cost-driven approach is developed by Teunter and Klein Haneveld

(1998). They analyze a multi-part life time problem from an equipment supplier perspective. The

equipment supplier permits the machine operator to place a final order for critical parts to keep the

machine operational to the end of the horizon. Teunter and Klein Haneveld’s model minimizes a

firm’s internal cost for maintaining an obsolete machine where the failure rate of each part is in-

dependent of the failure rates of other parts. In another paper, Teunter and Klein Haneveld (2002)

consider the possibility of ordering in the final phase but they assume that if the part is not ordered

at the beginning of the final phase, its price will be higher in the later stages. They propose an

ordering policy consisting of an initial order-up-to level at the beginning of the final phase fol-

lowed by a subsequent series of decreasing order-up-to levels for various intervals of the planning

horizon.

Cattani and Souza (2003) have developed another cost-driven approach that studies the effect

of delaying a last-time buy. They perform a news-vendor analysis which considers overage and

underage costs to evaluate the effect of delaying final order placement. Another work in this area

is carried by Bradley and Guerrero (2009). They consider different parts of a product becoming

obsolete sequentially over product life time wherein a final order for each one has to be placed.
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In the proposed model, it is assumed that once a life-time buy inventory for any part is depleted,

manufacturing of the product ceases forever. An exact and two heuristic approaches are developed

to solve this problem.

Forecasting based approaches focus on forecasting demand for a discontinued product instead

of dealing with the production or inventory problem. To the best of our knowledge, this approach

was first developed by Moore (1971). The proposed model forecasts the all-time requirements of

consumable service parts in the motor-car industry. By plotting the sales data on a logarithmic

scale, the author obtains three families of curves to be common for 85% of the spare parts con-

sidered. Later on, Ritchie and Wilcox (1977) develop a method, using renewal theory, to forecast

all-time future demand for spare parts to the moment of the final production run. A more recent

work by Hong et. al. (2008) develops a stochastic forecasting model using the number of product

sales, the product discard rate, the failure rate of the service part and the replacement probability

of the failed part. The model decides on the final order quantity based on the forecasting results.

Our work develops a new cost-driven approach. Several issues distinguish our work in this

field. First we develop a model incorporating an alternative service policy and show how this will

result in cost efficiency. Secondly, we exploit a more sophisticated and detailed model for the cost

function that captures the characteristics of a real world problem more precisely. Furthermore,

according to the case study demand analysis a non-stationary Poisson demand process is shown to

better represent the demand behavior and it is used as a basis for our analysis. We also investigate

the effect of neglecting the non-stationarity in the demand pattern. Even though these assumptions

complicate the problem, we show by applying the standard techniques for martingale theory that it

is possible to give elementary expressions for the considered expected total cost function.

3 Introduction of the Problem and Model

This section briefly describes the problem whereas the next section provides more details about the

cost structure. Throughout this paper, we define the end-of-life inventory problem as the problem
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of finding the final order quantity, n, of service parts that covers the demand for a finite service

period [0, T ] and minimizes the expected total discounted cost function given the possibility of

switching to an alternative service policy at time τ before the end of the horizon. In other words,

before time τ the system operates according to the repair policy and services customers by replace-

ment of the defective part with a spare one. At time τ the repair policy is terminated and the system

switches to an alternative service policy that runs to the end of the horizon. Since this approach to

the final phase of service can be characterized by two decision variables, n and τ , we call it a (n, τ)

policy. According to a (n, τ) policy, a final production batch of size n of spare parts is delivered

to the inventory system at the beginning of the final phase. The total provisioning cost is cpn with

cp denoting either the purchasing or production cost per part. These spare parts have inventory

holding costs h > 0 per unit per time. For any demand occurring before time τ , with probability

0 < q < 1 (independent of the arrival process), the returned defective part can be repaired at repair

cost cr. After repairing, this part is placed back into the defective product at a service cost cs. If

the defective part is not repairable, a new part is taken from the serviceable inventory and is placed

into the defective product at service cost cs.

For all non-repairable parts arriving before time τ for which there are no spare parts available

in stock, demand is satisfied through an alternative policy. In this case, the cost to meet demand is

ca + p with p a penalty cost that is incurred due to the occurrence of stock-out before the switching

time τ . This circumstance is called “forced exchange policy” and ca is the associated alternative

policy cost incurred per item. From time τ to the end of the final phase all demands are serviced

through an alternative policy at cost ca. Furthermore, if there is stock available at the switching

time τ , all the remaining inventory has to be scrapped at a cost of cscr per unit. All cost terms and

notations are summarized in table 1. In summary, the fundamental assumptions of this model are

as follows:

A1: The demand process is assumed to be a non-stationary Poisson process with a decreasing in-

tensity function. In practice it is observed that demand arrival for service parts in the final phase

has a declining pattern over time due to the decreasing number of installed bases in the market.
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Table 1: Notations summary

Notation Definition
cp Provisioning cost of each part
h Holding cost per item per time
cs Service cost per item
cr Repair cost per repairable item
p Penalty cost per item
ca Alternative policy cost per item

cscr Scrapping cost per item
q Repair yield factor
γ Price erosion factor per time
δ Discounting factor per time
n Final order quantity
τ Time to switch to the alternative policy

This behavior cannot be characterized by a stationary Poisson process.

A2: The repair lead time is assumed to be negligible. This assumption is common in the remanu-

facturing literature and makes the analysis tractable (see for example Souza et. al., 2002 and Atasu,

Cetinkaya, 2006). Moreover, in the context of this case, the negligibility can be justified because

the repair lead times are much shorter than the planning period.

A3: All costs are discounted back to the beginning of the horizon. The exponential unit price ero-

sion factor which applies to the devaluation of alternative policy cost is denoted by γ and all other

cost terms are exponentially discounted to the beginning of the horizon with discount factor δ > 0.

3.1 Demand Behavior

While deciding upon the final order quantity and the time to switch to the alternative policy, a

highly important aspect is the assumption on demand behavior. The general assumption in our

work is that the demand for spare parts is an independent, non-stationary Poisson process. Intu-

itively, this makes sense, since the number of products available in the market is sufficiently large

and diminishes over time and consequently so does the demand for service parts. Sigar (2007)

has done a detailed analysis over demand for CE spare parts of a firms including CRT that spans

10



an eight year period. In this study, the assumption of a Poisson demand stream was validated and

several models regarding the intensity function were introduced and tested. Among the proposed

forms, the poly-exponential model given by λ(t) = t2exp(a − bt) with a and b are constant pa-

rameters, showed the best performance regarding demand prediction. In this paper we consider

the same intensity function. It should be noted that our proposed approach is generic and can be

adapted for any type of positive intensity function. With intensity function λ(t) the so-called mean

value function is given by Λ(t) =
∫ t

0
λ(s)ds. To make the problem analytically tractable, we apply

a piecewise linear approximation to the mean value function Λ(t) in the analysis. We will elaborate

on this issue in the numerical analysis section.

3.2 Inventory Process

In this section, we introduce notations and definitions to build up the equations expressing the

inventory process. The demand process for spare parts is given by a non-stationary Poisson pro-

cess defined by NΛ := {N(Λ(t)) : t ≥ 0} with Λ a strictly increasing continuous function

and N a Poisson process with rate 1. Since 1 − q is the probability of an arriving defective part

being non-repairable, the net stock inventory process of spare parts decreases before the policy

switching time, τ , according to a non-stationary Poisson process with a strictly increasing mean

value function Λ1(t) = (1 − q)Λ(t), t ≥ 0. This is due to the well known thinning property of

a non-stationary Poisson process (Ross (1970)). Hence it follows that the net inventory process

IN = {IN(t) : t ≤ τ} has the form

IN(t) = n−NΛ1(t). (1)

Moreover, by relation (1) the hitting time σn at which the net stock process equals zero is given by

σn := min{t ≥ 0 : NΛ1(t) ≥ n}. (2)
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Since the function Λ is strictly increasing and continuous, we obtain that its inverse function Λ−1 :

[0,∞) → [0,∞) given by

Λ−1(s) = inf{t ≥ 0 : Λ(t) > s} (3)

is strictly increasing, continuous and satisfies Λ−1(Λ(t)) = t for every t ≥ 0. Also, since Λ1(t) =

(1− q)Λ(t) we obtain Λ−1
1 (s) = Λ−1((1− q)−1s). This implies by relation (2) that

σn = Λ−1
1 (inf{Λ1(s) ≥ 0 : N(Λ1(s)) ≥ n}) = Λ−1

1 (inf{t ≥ 0 : N(t) ≥ n})

= Λ−1
1 (Tn) = Λ−1((1− q)−1Tn)

(4)

with Tn :=
∑n

k=1 Xk and Xk a sequence of independent and exponentially distributed random

variables with parameter 1. Clearly relation (4) expresses the intuition that the arrival time of the

nth non-repairable part depends on the inverse of the mean value function of the Poisson arrival

process of non-repairable items.

3.3 Exact Calculation of Expected Discounted Cost Using a Martingale Ap-

proach

In this section, we give an exact calculation of the total expected discounted cost function, Cδ(n, τ),

of a (n, τ)-policy, by showing that a related cost process is a martingale with filtration (Ft)0≤t≤∞

(see Protter (1992)) and τ∧σn := min{τ, σn} is a stopping time of this process. Using the optional

sampling theorem for martingales enables us to simplify our calculations.

To start with the different cost components, let C1,δ(n, τ) with discount factor δ > 0 be the

expected total discounted inventory holding cost of a (n, τ) policy. The holding cost is discounted

back to the beginning of the final phase and the main advantage of this is that capital costs do

not have to be included in the holding cost rates. This is especially important in an inventory

system with both repair and disposal options. These two options have different associated capital

costs. As a result, it is not clear what the right capital holding cost rates should be (see (Teunter et.
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al., 2000) for a detailed discussion of this issue). In our setting holding cost incorporates storage,

warehouse material handling, insurance and loss and damage (shrinkage) costs but not capital cost.

The system incurs inventory costs either up to time τ or to the time σn of hitting inventory level 0

(whichever occurs first). Therefore the discounted inventory holding cost is given by

C1,δ(n, τ) = hE
(∫ τ∧σn

0

exp(−δt)IN(t)dt

)
. (5)

Hence by relation (1) and (5) we obtain

C1,δ(n, τ) = hnδ−1(1− E(exp(−δ(τ ∧ σn))))− hE
(∫ τ∧σn

0

exp(−δt)NΛ1(t)dt

)
. (6)

Whenever the system provides service to an end customer by replacing the failed part with a

properly functioning one, a service cost cs is incurred. This is probably the most difficult cost

to estimate among all the costs identified in the process. The problem is usually solved in the

literature by ignoring it or claiming that it is negligible compared to the other costs. However, due

to high labor costs especially in Europe and North America, it is in fact considerable. Service cost

mainly includes labor cost incurred during the diagnosis and replacement of the failed parts. To

calculate the expected total discounted service cost, C2,δ(n, τ), of a (n, τ) policy over the planning

horizon, we first observe that up to time τ ∧ σn all arriving defective parts incur a service cost cs,

while from time τ ∧ σn up to time τ this only applies to the repairable parts. Using the thinning

property, the arrival process of repairable parts is a non-stationary Poisson process with mean value

function Λ2(t) = qΛ(t) for every t ≥ 0. This yields

C2,δ(n, τ) = csE
(∫ τ∧σn

0

exp(−δt)dNΛ(t)

)
+ csE

(∫ τ

τ∧σn

exp(−δt)dNΛ2(t)

)
. (7)

Perceivably in equation (7), the first term represents the service cost for all demands before the

inventory depletion time. The second term applies for all repairable parts arriving after the de-

pletion time and before the policy switching time. It is worth noting that the above integral is a
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Riemann-Stieltjes integral (see chapter 1 of Widder, (1972)). Using well-known properties of a

non-stationary Poisson process and the definition of a Riemann-Stieltjes integral the expression in

relation (7) for the expected total discounted service costs can be rewritten as follows

C2,δ(n, τ) = qcs

∫ τ

0
exp(−δt)dΛ(t) + csE

(∫ τ∧σn

0
exp(−δt)d(NΛ −NΛ2)(t)

)

= qcs

∫ τ

0
exp(−δt)dΛ(t) + csE

(∫ τ∧σn

0
exp(−δt)dNΛ1(t)

)
.

(8)

Parts repair cost is incurred whenever a repairable defective part is repaired. In most service

related research, this cost is assumed to be small compared to other costs and therefore neglected.

However, using the same argument as mentioned above with reference to the service cost, it may

be worth including in the model. In our setting, repair cost includes labor and freight cost. Freight

cost is the cost of transporting the part to the repair shop and then to the service department once

repaired. In order to calculate this cost, we first observe using the definition of τ that the repair

policy terminates at time τ . Since with probability q a defective part can be repaired, the arrival

process of repairable parts is a non-stationary Poisson process with mean value function Λ2(t) =

qΛ(t) for every t ≥ 0. Hence the expected total discounted repair cost C3(n, τ) of a (n, τ) policy

is given by

C3,δ(n, τ) = crE
(∫ τ

0

exp(−δt)dNΛ2(t)

)
= qcr

∫ τ

0

exp(−δt)dΛ(t). (9)

From time τ , τ ≤ T , to the end of the final phase period, the EOL process is in the alternative

policy state and demands for service are met by an alternative policy instead of the repair policy.

But if the inventory level hits zero before τ , the system is forced to switch to the alternative policy

earlier for non-repairable parts. This alternative service can be swapping product with a new one,

leniency, monetary compensation or an alternative product. Either way, this cost is referred to as

the alternative policy costs, ca. Alternative service is provided in two circumstances. The first

is when there is a stock-out before the policy switching time. In this case, repair policy is still
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less expensive than the alternative policy, implying an (potentially extremely) unpleasant situation.

This case of policy switching is referred to as a “forced policy exchange”. Additional costs called,

“penalty costs” denoted by p are applicable for these exchanges. The reason to include this penalty

cost term can be due to customer dissatisfaction or the possibility of a cheaper alternative service

only being available at some later time. Moreover, acquiring products before the planned time τ

may impose extra ordering costs to the system. For these reasons, the penalty cost, p, is added to the

computation and the alternative policy cost per nonrepairable parts arriving before τ equals ca + p.

The second circumstance happens when there is demand for service after the policy switching time,

τ . In this event called “regular policy exchange”, an alternative policy is, in fact, the preferred

service policy. For regular policy exchanges, the costs incurred, ca, are mostly the cost of running

the alternative policy. It should be noted that the costs due to forced exchanges are calculated over

the shortages (non-repairable items arrival) before τ , whereas the costs due to policy exchanges are

calculated simply over the demand after the policy switching time. Therefore, the total expected

discounted penalty and alternative policy costs up to the end of the service period is given by

C4,γ(n, τ) = caE
(∫ T

τ

exp(−γt)dNΛ(t)

)
+ (ca + p)E

(∫ τ

τ∧σn

exp(−γt)dNΛ1(t)

)
. (10)

Again applying the well-known properties of a non-stationairy Poisson process we obtain by rela-

tion (10) that

C4,γ(n, τ) =





ca

∫ T

τ
exp(−γt)dΛ(t) + (1− q)(ca + p)

∫ τ

0
exp(−γt)dΛ(t)

−(ca + p)E
(∫ τ∧σn

0
exp(−γt)dNΛ1(t)

)
.

(11)

When all service obligations have ended or when the switching time has arrived, the stock on

hand turns into excess stock and has to be removed from the warehouse. Scrapping costs include

disposal, transportation and environmental cost since most countries heavily tax disposal of stock.

It is worth noting that in some cases, excess stock can be sold to a third party at a salvage value.

In such a situation, the corresponding scrapping cost is negative since it generates revenue. The

15



system only incurs scrapping cost in case τ ≤ σn, which means there are serviceable items avail-

able in inventory at the policy switching time. Using using relation (1) together with the fact that

IN(τ ∧ σn) = 0 for τ ≥ σn, then we have

C5,δ(n, τ) = cscrE( exp(−δ(τ ∧ σn))IN(τ ∧ σn))

= ncscrE( exp(−δ(τ ∧ σn)))− cscrE( exp(−δ(τ ∧ σn))NΛ1(τ ∧ σn)).

(12)

The last cost term that needs to be calculated for a (n, τ) policy is the final order provisioning

cost. This is either purchasing or production cost incurred for n parts and is calculated by:

C6,δ(n, τ) = cpn. (13)

Adding the individual cost components listed in relations (6), (8), (11) (9), (12) and (13) we

finally obtain the average discounted cost Cδ,γ(n, τ) of a (n, τ) policy given by

Cδ,γ(n, τ) =
∑6

i=1,i6=4
Ci,δ(n, τ) + C4,γ(n, τ). (14)

Looking in more detail to these individual cost components we still need to simplify four different

expectations. The following lemma shows that this task can be reduced to three different expec-

tations. In the rest of this paper only the results are mentioned and all the proofs are listed in the

Appendix.

Lemma 1 It follows

δE
(∫ τ∧σn

0
exp(−δt)NΛ1(t)dt

)

= E
(∫ τ∧σn

0
exp(−δv)dNΛ1(v)

)− E( exp(−δ(τ ∧ σn)NΛ1(τ ∧ σn)).

(15)
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Proof. See appendix. ¤

To simplify the notational burden, for α ≥ 0 we introduce the expectations

J1(α, n, τ) := E( exp(−α(τ∧σn))) (16)

J2(α, n, τ) := E
(∫ τ∧σn

0

exp(−αt)dNΛ1(t)

)
(17)

and

J3(α, n, τ) := E( exp(−α(τ∧σn))NΛ1(τ∧σn)) (18)

Applying Lemma 1 and relation (14) we obtain after rearranging the expressions for the different

cost components in relations (6), (8), (11) (9), (12) and (13) that

Cδ,γ(n, τ) = K(n, τ) +
∑3

i=1
κiJi(δ, n, τ) + κ4J2(γ, n, δ) (19)

with

K(n, τ) =





q(cs + cr)
∫ τ

0
exp(−δt)dΛ(t) + (1− q)(ca + p)

∫ τ

0
exp(−γt)dΛ(t)

+ca

∫ T

τ
exp(−γt)dΛ(t) + n(hδ−1 + cp)

(20)

and κ1 := n(cscr − hδ−1), κ2 := cs − hδ−1, κ3 := hδ−1 − cscr and κ4 := −(ca + p).

Considering relation (19) we still need to evaluate the three different expectations listed in (16)

up to (18). To start with the first expectation we observe that

J1(α, n, τ) = exp(−ατ)P{σn > τ}+ E( exp(−ασn)1{σn≤τ}) (21)

with 1A denting the Bernoulli indicator random variable of the event A. This shows by relation (4)

that

J1(α, n, τ) = exp(−ατ)P{Tn > Λ1(τ)}+ E( exp(−αΛ−1
1 (Tn))1{Tn≤Λ1(τ)}) (22)
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To simplify the expectation J2(α, n, τ) we next show that a related process is a martingale.

Lemma 2 If NΦ is a (non-stationary) Poisson process with continuous mean value function Φ,

then for every α ≥ 0 the stochastic process M = {Mt : t ≥ 0} given by

Mt =

∫ t

0

exp(−αv)dNΦ(v)−
∫ t

0

exp(−αv)dΦ(v), (23)

is a martingale with respect to filtration (Ft)0≤t≤∞.

Proof. See appendix. ¤

Applying Lemma 2 and using Doob’s optional sampling theorem for martingales (See Theorem

18 of Protter, (1992)) the next lemma yields a simpler expression for the expectation J2(α, n, τ).

Lemma 3 It follows that

J2(α, n, τ) = (1− q)E
(∫ τ∧σn

0

exp(−αt)dNΛ(t)

)

and

E
(∫ τ∧σn

0

exp(−αt)dNΛ(t)

)
= E

(∫ Λ(τ)∧(1−q)−1Tn

0

exp(−αΛ−1(t))dt

)
.

Proof. See appendix. ¤

Finally we still need to evaluate J3(α, n, τ).

Lemma 4 It follows

J3(α, n, τ) = exp(−ατ)E(NΛ1(τ)1{NΛ1
(τ)≤n−1}) + nE(exp(−αΛ−1

1 (Tn))1{Tn≤Λ1(τ)}) (24)

Proof. See appendix. ¤

Applying now relations (19), (20) and Lemma 3 and 4 the total discounted cost of a (n, τ )
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policy is given by

Cδ,γ(n, τ) =





β1E
(∫ Λ(τ)∧(1−q)Tn

0
exp(−δΛ−1(t)dt

)
+ β2E

(∫ Λ(τ)∧(1−q)Tn

0
exp(−γΛ−1(t)dt

)

+β3P{Tn > (1− q)Λ(τ)}+ β4E(NΛ1(τ)1{NΛ1
(τ)≤n−1}) + K(n, τ)

(25)

with β1 = (cs − hδ−1)(1 − q), β2 = −(ca + p)(1 − q), β3 = n(cscr − hδ−1) exp(−δτ) and

β4 = (hδ−1 − cscr) exp(−δτ).

Hence we have reduced the computation of the discounted cost to elementary integrals, which

can be calculated.

4 End-of-Life Inventory Policies

Using the results of the previous section, we now propose a variety of end-of-life policies based

on various settings. Firstly, these settings consider the possibility of implementing a scrapping

operation. In general, the company is loathe to scrap parts. Therefore, in our first policy, this

unwillingness to scrap is taken into account and it is assumed that an alternative policy is triggered

once the serviceable inventory depletes. In this case, the only decision variable is the final order

quantity, n. In the second policy, the serviceable inventory can be scrapped at the switching time,

τ . Accordingly, the decision variables are n and τ . Contrary to the company’s intuition, the

numerical analysis shows that this policy leads to a better cost efficiency compared to the one

without scrapping. The second setting is related to the inclusion of a review process. The first

two policies are intrinsically static decision making processes meaning that decision making is

performed once at the beginning of the horizon and values of the decision variables are set based

on the outcome of the optimization procedure. But during the course of the final phase, demand

may fluctuate more or less than expected. Therefore, we add a review process to the (n, τ) policy

(the second one). In this review process, at the beginning of each period we re-visit the available

serviceable inventory on-hand and based on that we re-optimize the policy switching time (as
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implemented in the third policy). In the fourth policy, we keep the policy switching time fixed, as

obtained according to the second policy, and find the optimal inventory level at the beginning of

each period. Furthermore, we consider the option that the system can partially scrap the excessive

inventory if it exceeds the optimal inventory level. The latter two policies are inherently rolling-

horizon type of policies which aim at improving the second one.

It is worth mentioning that in these policies the time-line is divided into equi-spaced intervals

to which we limit our attention. Then, for the second and third policies, we consider each interval

to be continuous in time and use the lemmas presented in the previous section in each interval to

calculate the corresponding cost terms.

4.1 One-time Buy, without Review or Scrapping

If the company is not willing to dispose of any serviceable inventory, a “one-time buy without

review or scrapping” policy can be applied. The final order is placed at the beginning of the period

and the alternative policy is triggered once the inventory depletes. Hence, no scrapping cost occurs

before T , and it may happen only at the end of the horizon if there is any stock left. This policy

resembles the Teunter and Fortuin (1998) end-of-life inventory problem since the only decision

variable is the final order quantity. We can apply a marginal cost analysis in order to find the

optimal n. We define E∆TC(n) = E(TC(n))− E(TC(n− 1)) as the cost difference of ordering

n − 1 instead of n. Then, we can find E∆TC(n) by conditioning on σn. If the inventory level

drops to zero before the end of the horizon , σn ≤ T , the overage cost of carrying n items instead

of n− 1 includes purchasing, holding, service and repair cost but the system may benefit from less

alternative policy cost. Hence we have the following

E∆TC(n|σn ≤ T ) = cp + h

∫ σn

0

exp(−δt)dt− ca exp(−γσn) + (qcr + cs) exp(−δσn). (26)

Next, we consider a case that σn > T . This happens when the system keeps serviceable inventory

available for the entire final phase. In order to calculate E∆TC(n) in this case, we have to include
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extra purchasing cost for one unit, holding cost for period (0, T ) and extra scrapping cost at time

T . Therefore we have

E∆TC(n|σn > T ) = cp + h

∫ T

0

exp(−δt)dt + cscr exp(−δT ). (27)

Using relations (26) and (27) we have

E∆TC(n) = E∆TC(n, σn ≤ T ) + E∆TC(n, σn > T )

= cp + h
δ

+ (qcr + cs − h
δ
)
∫ T

0
P{σn = t} exp(−δt)dt

−ca

∫ T

0
P{σn = t} exp(−γt)dt− (h

δ
− cscr)P{σn > T} exp(−δT ).

(28)

Considering time to be continuous, we can find n as the integer number that satisfies E∆TC(n) ≤
0 and E∆TC(n + 1) ≥ 0.

4.2 One-time Buy, with Scrapping but without Review

In this policy, we assume that the system is allowed to scrap items at policy switching time. In

other words, if the system carries stock at the time to switch to the alternative policy, all available

inventory should be scrapped at that time. We aim at finding the optimal final order quantity, n,

and the time to switch to the alternative policy, τ .

4.2.1 Dynamic Programming Approach

In this section, we develop a backward dynamic program to find the optimal arguments of a (n, τ)

policy. We first divide the time-line into equi-spaced intervals such as [0, 1), . . . , [T−2, T−1), [T−
1, T ]. The starts of intervals and stock on hand at time t are considered as stages and system state

respectively. Assume that the stock on hand at time l is y, y = 0, 1, 2, . . . . Let Cl(y, τ) be the

total expected cost, corresponding to a (y, τ) policy in interval [l, T ], discounted back to time l.

Obviously, considering a backward dynamic program, the cost function Cl(y, τ) is dependent on
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the decision made at time l + 1. Meaning that if the system keeps on repairing at time l + 1, it

is only allowed to repair in period l since it cannot later switch from the alternative policy to the

repair policy. Moreover, if the system decides to switch to the alternative policy at time l + 1, it

can either execute the repair policy during the lth period and switch to the alternative policy at time

l + 1 or start the alternative policy at time l. Therefore, in order to derive the iterative function for

each stage, the system needs to decide whether to launch the alternative policy or keep on servicing

customers by the repair policy and hence postpone the decision of launching the alternative policy

to the next period. If the system switches to the alternative policy, the available stock must be

scrapped. Therefore, the expected alternative policy cost from time l up to time T is given by

CALT (y, l) = cscrE(exp(−δl)IN(l)) + caE
(∫ T

l

exp(−γt)dNΛ(t)

)
. (29)

If the system keeps on repairing and the decision to switch to the alternative policy is deferred to

the next period, we have relation (30) as the expected repair policy cost for the period [l, l + 1]. It

is the sum of expected holding, service, repair and forced alternative policy exchange costs.

CR(y, l) = hE
(∫ lf

l
exp(−δt)IN(t)dt

)
+ csE

(∫ lf
l

exp(−δt)dNΛ(t)
)

+csE
(∫ l+1

lf
exp(−δt)dNΛ2(t)

)
+ crE

(∫ l+1

l
exp(−δt)dNΛ2(t)

)

+(ca + p)E
(∫ l+1

lf
exp(−γt)dNΛ1(t)

)
.

(30)

In this formula lf is the minimum time wherein either the system runs out of stock or enters the

next stage and it is defined as

lf = (l + 1) ∧min{t ≥ l : NΛ1(t) ≥ n}. (31)

22



Hence, the iterative objective function can be defined as

Cl(y, τ) = min {CALT (y, l), CR(y, l) + Cl+1(y′, τ)} : y = 0, 1, 2, . . . (32)

where y′ is the expected stock on hand at the beginning of the next period. It is worth noting

that the provisioning cost should also be incorporated in the expected total cost function at the

beginning of the final phase. Therefore, the repair policy cost at the beginning of the final phase,

time 0, needs to be reformulated as follows

CR(y, 0) = hE
(∫ lf

0
exp(−δt)IN(t)dt

)
+ csE

(∫ lf
0

exp(−δt)dNΛ(t)
)

+ csE
(∫ 1

lf
exp(−δt)dNΛ2(t)

)
+ crE

(∫ 1

0
exp(−δt)dNΛ2(t)

)

+ (ca + p)E
(∫ 1

lf
exp(−γt)dNΛ1(t)

)
+ cpy.

(33)

Where lf = 1 ∧min{t ≥ 0 : NΛ1(t) ≥ n}. Relations (29), (30) and (33) can be simplified using

lemmas 1-4. The idea is that the time-line is divided into equi-spaced intervals and we consider

the beginning of each interval as the potential switching time to the alternative policy. Then each

interval is analyzed in a continuous time way by applying the results obtained in section 4.

So far, we have proposed two policies to deal with the end-of-life inventory problem that can

switch to an alternative policy. However, the drawback of these approaches is that there is no

further review to revise decision variables based on the state of the system after demand realization.

In the next two subsections, two more policies are proposed taking review into account.

4.3 One-time Buy, with Review and Scrapping

In this case, the system starts with the optimal arguments for a (n, τ) policy, gained by the second

approach. This policy is a rolling-horizon one in which optimal switching time is recalculated

after demand realization in each period. According to this policy, we can determine all possible

switching times and find the optimal solution in each period, for a given inventory level y at time
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t ≤ T . This can be implemented because the expected total cost function of a (n, τ) policy can

be calculated using Lemmas 1-4. If the system is at the beginning of period t and the serviceable

inventory on-hand is y then we can calculate the expected total discounted cost for all possible

values of τ , τ = t, t + 1, . . . , T by the following

Cδ,γ(y, l) =
∑τ

l=t

(
(hE

(∫ lf
l

exp(−δt)IN(t)dt
)

+ csE
(∫ lf

l
exp(−δt)dNΛ(t)

)

+crE
(∫ lf

l
exp(−δt)dNΛ2(t)

)
+ (ca + p)E

(∫ τ

lf
exp(−γt)dNΛ1(t)

)
)

)

+cscrE(exp(−δτ)IN(τ)) + caE
(∫ T

τ
exp(−γt)dNΛ(t)

)
.

(34)

Then, the τ that leads to the least total cost is selected as the new policy switching time. In this

case lf is defined as the minimum time that the system faces a stock-out, enters the next stage or

reaches the policy switching time. It is defined by lf = min{t ≥ l : NΛ1(t) ≥ n} ∧ (l + 1) ∧ τ .

4.4 One-time Buy, with Review and Partial Scrapping

As mentioned earlier, in the second policy, decisions over the values of n and τ are just made once

at the beginning of the horizon. During the course of the final phase, the system may encounter

less demand than expected, which means that excess stock has to be carried over time. To avoid

the build-up of excessive net stock, if the inventory level at time t0 is IN(t0), the system is given

the option to scrap down to level s, s < IN(t0). This is called “partial scrapping” since the system

can scrap a portion of the serviceable inventory. In this policy, the system starts with the optimal

solution, n and τ , obtained by the second policy and then the optimal inventory level is derived by

a marginal cost analysis approach. It is a type of news-vendor formulation wherein the marginal

profit of scrapping down to level s should compensate the cost of its implementation. If some parts

are scrapped, the system benefits from less holding and service costs for the rest of the period but

might incur more scrapping and forced policy exchange cost.

Defining σs as the time that inventory level hits zero, we drive the news-vendor equation by
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conditioning on σs. E∆(TC(s)) = E(TC(s))−E(TC(s− 1)) is defined as the cost difference of

scrapping to s − 1 instead of s. In a situation that inventory level drops to zero before τ , σs ≤ τ ,

the system benefits from less scrapping and forced policy exchange costs but incurs more repair,

service and holding costs as shown in the following relation

E(∆TC(s) | σs ≤ τ) = hE
(∫ σs

t0
exp(−δt)dt

)
+ (qcr + cs) exp(−δσs)

−(ca + p) exp(−γσs)− cscr exp(−δt0).

(35)

If σs > τ , the system incurs more holding cost but benefits from less scrapping cost at the policy

switching time, hence

E(∆TC(s) | σs > τ) = hE
(∫ τ

t0

exp(−δt)dt

)
− cscr (exp(−δt0)− exp(−δτ)) . (36)

Therefore s is the value satisfying E∆TC(s + 1) ≥ 0 and E∆TC(s) ≤ 0 where E∆TC(s) is

given by

E∆(TC(s)) = E∆(TC(s) | σs ≤ τ)P{σs ≤ τ}+ E∆(TC(s) | σs > τ)P{σs > τ}

= exp(−δt0)(
h
δ
− cscr) + (qcr + cs − h

δ
)
∫ τ

t0
P{σs = t} exp(−δt)dt

−(ca + p)
∫ τ

t0
P{σs = t} exp(−γt)dt− (h

δ
− cscr)P{σs > τ} exp(−δτ).

(37)

5 Numerical Experiments

We hope to achieve three goals with our numerical experiments. First, we examine which of the

proposed policies outperforms others, next we investigate how different cost terms affect the opti-

mal solutions and which of these play a prominent role. Thirdly, we investigate the cost efficiency

that can be achieved by an accurate demand forecasting. The data originate from a case study on a
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typical CE service part, namely Cathode Ray Tube, which was an important and expensive part in

the former generation of TVs and monitors. The cost structure of the base case scenario is shown

in table 2. It is worth noting that in this case swapping is considered as the alternative policy. Ac-

cordingly, after the policy switching time customers are offered a new product rather the repairing

the defective product.

5.1 Effects of Cost Parameters

We first proceed by evaluating the performance of the proposed policies and analyze the sensitivity

of the solutions to the different variations of the base case scenario parameters. The planning

horizon covers more than five years. These are divided into 66 periods, each of which is assumed to

represent one month. Costs are all discounted to the beginning of the final phase. According to the

demand analysis (Sigar, 2007), the parameters a and b in the poly-exponential intensity function,

given by λ(t) = t2exp(a− bt), have the value 0.2 and 2 respectively. These parameters match the

data of the demand for CRT over an eight-year period. The mean value function, Λ(s) =
∫ s

0
λ(t)dt,

is linearized in each period (month). To this end, after dividing the time-line into equi-spaced

intervals, the upper and lower points in each interval are extracted and the mean value function

is approximated by the line crossing those two points. This linearization allows us to analytically

calculate the cost terms.

The third and fourth policies are rolling-horizon type of approaches, we implemented a simula-

tion program replicating 100 times. The choice of 100 is made on the basis of maintaining a small

standard deviation for the expected total cost that reduces the length of the confidence interval

to 1000, in a 90% confidence interval. Moreover, in order to generate arrival times that follow a

non-stationary Poisson process, we use the approach proposed by Cinlar (1975, pp. 94-101). This

approach can be implemented due to the linear approximation of Λ(t) that makes the Λ−1(t) easy

to calculate. Average values are shown in Table 2. We investigate the effect of discounting, price

erosion and repair yield factors as well as purchasing, holding, alternative policy, repair, scrapping

and service costs.
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Table 2: Parameter setting of the base case scenario (in euro)

Term Cost
Provisioning 225
Holding 3.25
Service 30
Repair 20
Penalty 20
Alternative Policy 645
Scrapping 30
Price erosion factor per month 0.02
Discounting factor per month 0.005
Part repair yield 0.1

It is observed that the first policy, one time buy without review and without scrapping, shows

the worst performance. Therefore, it is considered as the benchmark policy to compare the per-

formance of all policies. The percentage of relative cost improvement that can be achieved by

implementing each of the policies compared to the benchmark policy is shown in the ∆% column.

It can be observed that the policy with partial scrapping outperforms all other policies. The primary

factor that leads to the cost efficiencies in this case is that in case of excess stock in each period,

the system avoids additional holding and service costs by partially scrapping serviceable inventory

down to the optimal level.

The effect of discounting and price erosion factors on decision variables is illustrated in figure

1. Figures 1.a and 1.b show that when the discounting factor increases the time to switch as well

as the final order quantity increase. The intuition behind these graphs is that a high discount rate

makes the future repair related costs cheaper and thus the system tends to run the repair policy for

a longer period. Therefore, the associated final order quantity increases and the time to switch to

the alternative policy is postponed to a later time. Increasing δ from 0.005 to 0.03 results in the

increase of final order quantity from 93 to 107 and consequently switching time changes from 22

to 41. Figure 1.c and 1.d show the effect of increasing price erosion on the final order quantity

and the time to switch to the alternative policy. As intuition dictates, figure 1.b illustrates when

price erosion rate increases the system shows a tendency to start the alternative policy earlier and
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Table 3: Sensitivity analysis

1st Policy 2nd Policy 3rd Policy 4th Policy
Parameter Value n cost n τ (∆)% τ (∆)% (∆)%

δ 0.001 79 31408 92 21 6.9 23 7.5 8.2
0.005 83 30460 93 22 4.4 28 5.8 6.7
0.015 85 29889 97 24 3.5 33 4.9 5.3
0.025 86 29444 102 34 3.2 35 4.4 4.7

γ 0.01 85 31317 97 23 5.2 29 5.5 6.9
0.05 79 27856 87 19 1.5 23 4.1 5.5
0.09 72 25346 75 16 1.0 19 3.2 4.3
0.13 61 22881 64 15 0.4 14 2.7 3.7

q 0.0 101 31911 101 21 1.4 23 3.0 4.2
0.2 71 28204 85 23 4.3 27 6.4 6.9
0.4 50 22719 64 26 4.2 30 5.5 7.1
0.8 24 11153 39 32 5.5 27 7.2 8.6

cp 100 87 18130 101 26 6.0 27 6.3 7.8
350 78 42210 89 22 4.1 24 5.8 6.7
500 67 53736 72 16 2.0 19 4.1 5.1

ca 345 71 27185 79 19 3.2 25 4.5 7.1
945 87 32464 99 24 7.1 27 8.5 9.1
1245 90 33647 101 25 7.3 30 9.3 9.5

cs 0 84 27725 96 22 5.8 33 6.4 7.8
10 83 28636 95 22 5.3 32 7.5 7.6
50 83 32283 94 22 3.6 33 4.2 6.4

h 0.25 88 28340 98 41 3.3 63 4.1 5.7
6.25 80 32072 92 18 4.4 27 5.8 6.6
9.25 78 33388 90 16 4.8 23 6.2 7.8

cr 0 83 30247 95 22 4.4 26 5.4 6.2
5 83 30300 95 22 4.4 27 5.1 5.4
35 83 30619 95 22 4.4 27 4.8 6.8

cscr -30 84 30451 96 22 4.7 25 5.2 6.7
10 83 30457 95 22 4.5 25 5.1 7.1
50 83 30462 94 22 4.3 25 5.5 6.7

p 0 83 30460 94 22 4.7 24 6.3 7.2
80 83 30460 96 22 3.7 24 6.5 7.9
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Figure 1: optimal final order quantity and time to switch versus price erosion and discount rates

consequently the final order quantity decreases (Figure 1.d). For instance, when γ is increased to

0.25 from 0.02, the time to switch is pushed forward to 11 from 22 and the final order quantity

shrinks to 42 from 93.

It seems that the repair yield, q, has a high impact on the final order quantity optimal values.

Basically, with the increase of the repair yield, the system resorts to ordering less in anticipation

of facing more repairable parts arriving. In this case, when the system orders less the effect of

purchasing cost is alleviated. Consequently, this makes the whole repair policy cheaper as opposed

to the alternative policy and thus the system allows the repair policy to run for a longer period.

Therefore, with the increase of the repair yield we observe an increase in the policy switching time

as well.

It is also inferred from the numerical analysis that the holding and alternative policy costs are

the important determinants for choosing between the repair and alternative policies. Intuitively, if

holding is cheap, it is preferred to order more and switch to the alternative policy later in time.

We observe when holding cost approaches zero (h = 0.25), then n increases to 98 from 93 and τ

increases to 41 from 22 in the base case. Similarly, if the alternative policy is cheap the system
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Figure 2: expected total cost versus final order quantity

orders less and the alternative policy launches earlier in order to avoid expensive repair policy

associated costs.

It is observed that the repair cost does not play a major role. The intuition behind this is when

repair yield is 0.1, the repair cost just applies to a small portion of items which are repairable.

Moreover, service cost does not affect the optimal value of policy switching time. The system

just decides to place a slightly bigger final order quantity as it does if the service cost is cheaper.

Penalty cost also has the same effect. Due to discounting, penalty cost becomes smaller over time

and therefore has a minor role in determining the optimal values.

It is cumbersome to prove analytically the joint or component-wise convexity of the total cost

function over n and τ . Figure 2 illustrates the total cost function versus the final order quantity.

Apparently the expected total cost function shows a convex behavior over the final order quantity

values for different discounting and price erosion rates. This is important since it justifies the use

of marginal cost analysis in the first and fourth policies.

Interestingly, we also observe in figure 2 that at some point the expected total cost function

starts to show a linear behavior. The reason can be explained better by also considering figure
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3. In general, when the final order quantity increases, we may expect the system to adjust the

policy switching time by increasing it. But contrary to the intuition, it is not always the case and

with the increase of final order quantity the system may either keep the policy switching time

fixed or push it forward. This incident happens due to the fact that with the increase of the final

order quantity the repair policy associated costs increase considerably. Then, in order to avoid the

excessive costs that this situation imposes to the system, it becomes more cost efficient to switch

to the alternative policy earlier in time and scrap the available stock on-hand. Therefore, when

the final order quantity is higher than a certain value the system scraps the available serviceable

inventory and retains the policy switching time at a fixed time. As a consequence we observe in

the right hand side of figure 2 that at some point the expected total cost function starts to increase

linearly with the scrapping cost.

From a practical standpoint, the observation in figure 3. pinpoints a drawback of applying the

third policy. In this policy the system adjusts the optimal τ given the inventory level. But as it is

observed, it is likely that, depending on the inventory level, the policy switching time be pushed

forward or postponed and thus causes difficulties in planning for the start of the alternative policy.

It is worth noting that the fourth policy does not suffer from such hassle since policy switching

time is kept constant.

Another intriguing observation is that the policy without scraping (first policy) always orders

less than the one with scrapping (second policy). This happens since according to the first policy

the system switches to the alternative policy in case that the serviceable inventory is empty. Hence,

in order to be able to switch to the alternative policy once it becomes sufficiently cheap, the system

decides to order less than the second policy.

To glean an insight on the significance of the cost terms and the effect they have on the total

expected cost, final order quantity and policy switching time we use a linear regression model. As

listed in table 4., we deal with 10 factors affecting decision variables and objective function. To

run the experiment, we assign uniformly distributed value to each factor chosen between upper and

lower bounds. Then, we obtain the optimal arguments of a (n, τ) policy as well as the expected
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Figure 3: time to switch versus final order quantity

Table 4: Parameter values for the regression analysis

Parameter γ δ q cp ca cs h cr cscr p
Lower bound 0.018 0.005 0.1 100 600 10 1 15 12 0
Upper bound 0.026 0.015 0.3 400 1000 50 4 35 55 30

total cost corresponding to each combination of factors. Having 10 factors for which we consider

two levels results in 1024 possible combinations that we use as the data set for regression analysis.

Parameters and their corresponding bounds are shown in Table 4.

Price erosion rate is typically between 25% and 35% per year for the consumer electronic

goods. This can be interpreted to a rate of 1.88% to 2.53% per month. The upper and lower

bounds for the discount factor are set as 0.005% and 0.015%. In practice about 10% of all returned

spare parts are repairable. But, this value is quite dependent on the region, e.g. South America has

a far higher percentage. Therefore, in the experiment repair yield factor varies between 10% and

30%. It is agreed that the proposed policies, discussed in this paper, are to be used for the relatively

expensive spare parts. Thus the provisioning cost chooses values between 100 and 400. The cost of

the alternative service is always more expensive than the provisioning cost, otherwise it is always
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cheaper to run the alternative policy. Hence, the bounds for the alternative cost are chosen to be

600 and 1000. Regarding the holding cost, we consider the fact that the more expensive the part is,

it results in the larger holding cost components including insurance and shrinkage costs. Therefore,

the magnitude of the holding cost is highly related to the provisioning cost. It is assumed that the

holding cost varies between 1 to 4 per item per month.

The analysis is carried out in a 0.05 significance level (α = 0.05). We perform three linear

regressions to see the effect of cost terms on n, τ and the expected total cost. The results are listed

in the appendix. Interestingly, the linear models fit the data very well with high R2. It is observed

that cscr and p are insignificant in determination of the total expected cost. Moreover, γ, δ, h, cp

and q seem to have the highest impact on the total expected cost value. The reason that ca is not

such an important determinant stems from the demand behavior. Due to positive skewness of the

intensity function, main part of the demand happens in the earlier stages of the final phase and

therefore, a minor part of the total demand is satisfied through the alternative policy. This makes

ca to have a less significant effect on the total cost. Additionally, the parameters cr and cs seem to

be insignificant in determination of τ and n. Furthermore, q, cp, ca and h play a significant role in

determination of τ and n, that supports the previously mentioned observations.

5.2 Effect of Demand Behavior

As explained earlier we employ a non-stationary mean value function to explain demand behav-

ior during the course of the final phase. The proposed models in the literature mostly consider a

stationary demand pattern with a constant mean over time. Therefore, it might be interesting to

investigate the gain that could be achieved by including an accurate non-stationary demand pattern.

Denoted by intensity function 1 in figure 4., it shows the strictly decreasing poly-exponential in-

tensity function used for the base case scenario and the corresponding mean arrival rate. However,

as mentioned earlier due to the spurt in technology and innovation parts may enter the final phase

while the demand rate is increasing. Therefore, we also look at an increasing and then decreasing

pattern for the intensity function denoted by intensity function 2 in figure 4.
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Figure 4: intensity functions

The objective is to figure out to what extend assuming a stationary demand intensity func-

tion rather than a non-stationary one affects the expected total cost of the system. To this end,

we execute the second policy according to a stationary Poisson process with a constant intensity

function similar to the mean intensity rate 1(2) and find the optimal values for decision variables

and associated expected total cost denoted by TCs. Then, the obtained optimal values are plugged

into a model with a non-stationary arrival rate with intensity function 1(2) and the correspond-

ing expected total cost is calculated, TCns. Results for different set of parameters are shown in

table 5. ∆% shows the percentage of the relative cost efficiency and is calculated according to

∆% = TCs−TCns

TCns
× 100. As it is observed in table 5, assuming a stationary demand pattern

whereas the actual demand follows a non-stationary process considerably devastates the cost effi-

ciency. This major observation emphasizes the prominent role that an accurate demand forecasting

plays when dealing with the end-of-life inventory problem. Due to positive skewness of the in-

tensity function, the system expects to face a big portion of the demand earlier in the course of

the final phase, when repair policy is still cheaper than the alternative policy. As a consequence,

always a larger final order quantity is placed in case of non-stationary demand arrival.
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Table 5: Effect of demand

constant intensity function 1 intensity function 2 constant intensity function 2
Parameter Value n τ ∆% n τ n τ (∆)%

δ 0.005 50 30 27.13 131 33 72 25 15.78
0.010 52 31 26.20 134 36 75 26 17.91
0.015 54 33 25.23 139 37 78 27 14.85

γ 0.01 80 50 7.49 138 36 115 43 6.43
0.05 24 13 28.07 90 30 35 13 16.68
0.09 15 7 30.09 52 27 21 5 25.47

q 0.2 46 34 25.74 117 36 66 28 18.25
0.4 37 35 22.31 88 40 54 29 19.39
0.8 15 37 9.06 30 54 21 31 6.85

cp 100 73 47 19.30 140 38 105 39 15.11
350 32 23 15.35 111 31 50 17 8.12
500 14 9 6.60 48 12 26 8 5.58

ca 345 18 9 12.12 71 34 28 10 9.40
945 71 45 24.37 139 36 103 39 12.42
1245 81 57 20.72 143 38 121 46 8.69

h 0.24 71 46 16.22 138 57 138 53 8.71
3.25 40 26 29.75 123 30 123 48 18.16
6.25 33 20 30.69 114 27 114 44 16.53

6 Conclusion

In this paper we build models to obtain the optimal final order quantity and time to switch to an

alternative policy for a consumer electronics service parts in the final phase of its life cycle. The

final phase starts when the part production is terminated. However, a company is mandated to

serve customers due to warranty or service contract obligations. The idea of accommodating an

alternative policy is triggered by the fact that consumer electronics prices erode considerably over

time. Therefore, from some point in time it might be beneficial to serve demands for service parts

through an alternative channel such as swapping the defective product with a new one.

To deal with this problem, we first find a closed-form expression for the expected total dis-

counted cost in terms of elementary functions using a martingale stochastic process and related

optional sampling theorem property. We then propose four policies to deal with end-of-life inven-

tory decision making and implement them using real world data from a major European consumer

electronics manufacturer. First of all, numerical analysis shows including an alternative policy for

the repair is feasible and results in cost efficiency. Furthermore, it sheds light over the importance
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of various cost terms. Moreover, it shows that the “final order quantity with review and partial

scrapping” outperforms all other policies in terms of cost efficiency. This is because the system

avoids a build-up of excessive stocks and the associated costs by scrapping down the inventory

level at each period. Moreover, the “final order quantity without review or scrapping” shows to

have the worst performance.

One of the advantages of our approaches is that they inherently reduce the risk of obsolescence.

All previous approaches place the final order to cover the demand over the whole service period

while in our proposed approaches demand is partially serviced through part repair and therefore it

considerably lowers the part obsolescence risk.

Another prominent finding lies in the importance of an accurate demand forecasting scheme in

the final phase. Comparisons highlight the danger of the the assumption of a stationary demand

process while demand is following a non-stationary process. Therefore, it is quite important to

study the demand behavior before deciding over the final order quantity.
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A Appendix

Proof of Lemma 1.
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Proof. Since N(Λ1(0)) = 0 and each sample path of the increasing process t → NΛ1(t) is of

bounded variation we obtain by Theorem 15a of Widder (1972) that for every s > 0

δ
∫ s

0
exp(−δt)NΛ1(t)dt = δ

∫ s

0
exp(−δt)

∫ t

0
dNΛ1(v)dt

= δ
∫ s

0

∫ s

v
exp(−δt)dtdNΛ1(v)

=
∫ s

0
(exp(−δv)− exp(−δs))dNΛ1(v)

=
∫ s

0
exp(−δv)dNΛ1(v)− exp(−δs)NΛ1(s).

(38)

This implies

δ

∫ τ∧σn

0

exp(−δt)NΛ1(t)dt =

∫ τ∧σn

0

exp(−δv)dNΛ1(v)− exp(−δ(τ ∧ σn))NΛ1(τ ∧ σn)

and by taking expectations the desired result follows. ¤

Proof of Lemma 2.

Proof. By the definition of a martingale we need to verify that E(Mt|Fs)
a.s
= Ms for every t ≥ s.

Observe for every t ≥ s that

E(
∫ t

0
exp(−αv)dNΦ(v)|Fs) = E(

∫ s

0
exp(−αv)dNΦ(v)|Fs) + E(

∫ t

s
exp(−αv)dNΦ(v)|Fs)

=
∫ s

0
exp(−αv)dNΦ(v) + E(

∫ t

s
exp(−αv)dNΦ(v)|Fs).

Since the process NΦ has independent increments it follows

E(

∫ t

s

exp(−αv)dNΦ(v)|Fs) = E(

∫ t

s

exp(−αv)dNΦ(v)) =

∫ t

s

exp(−αv)dΦ(v)

and this shows the desired result. ¤

Proof of Lemma 3.
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Proof. Since the random variable τ ∧ σn is a Ft-stopping time we obtain by Lemma 2 applied

to the non-stationary Poisson arrival process of non-repairable parts with mean value function

Λ1 = (1− q)Λ and the optional sampling theorem (Lipster and Shiryayev (1978)) that EMτ∧σn =

EM0 = 0. This shows in combination with relation (4) that

E
(∫ τ∧σn

0
exp(−αt)dNΛ1(t)

)
= E

(∫ τ∧σn

0
exp(−αt)dΛ1(t)

)

= (1− q)E
(∫ τ∧σn

0
exp(−αt)dΛ(t)

)

= (1− q)E
(∫ Λ−1(Λ(τ)∧(1−q)−1Tn)

0
exp(−αt)dΛ(t)

)

Applying now the same argument as above to the martingale driven by the non-stationary Poisson

process with mean value function Λ yields the first formula. By a change of variables and using Λ

is strictly increasing and continuous (see Theorem 11a of Widder 1972) we also obtain

E

(∫ Λ−1(Λ(τ)∧(1−q)−1Tn)

0

exp(−αt)dΛ(t)

)
= E

(∫ Λ(τ)∧(1−q)−1Tn

0

exp(−αΛ−1(t))dt

)
.

This finally shows

E
(∫ τ∧σn

0

exp(−αt)dNΛ(t)

)
= E

(∫ Λ(τ)∧(1−q)−1Tn

0

exp(−αΛ−1(t))dt

)

and we have verified the result. ¤

Finally the proof of Lemma 4 is given. Remark:In original proof there was a mistake in the end

formula.

Proof of Lemma 4.

Proof. Clearly it follows

E( exp(−α(τ∧σn))NΛ1(τ∧σn)) =
∑n

k=0
E( exp(−α(τ∧σn))NΛ1(τ∧σn)1{NΛ1

(τ∧σn)=k}) (39)
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with 1A denoting the indicator random variable of the event A. Since σn denotes the random time

that the process NΛ1 hits level n we obtain for every 0 ≤ k ≤ n− 1 that

{NΛ1((τ ∧ σn)) = k} ⊆ {σn > τ}.

This shows for every 0 ≤ k ≤ n− 1 that

E( exp(−δ(τ ∧ σn))NΛ1(τ ∧ σn)1{NΛ1
(τ∧σn)=k}) = kE( exp(−δ(τ ∧ σn))1{NΛ1

(τ∧σn)=k})

= k exp(−δτ)P{NΛ1(τ ∧ σn) = k}

= k exp(−δτ)P{NΛ1(τ) = k}.
(40)

Also, using {NΛ1(τ ∧ σn) = n} = {σn ≤ τ}, we obtain

E( exp(−δ(τ ∧ σn))NΛ1(τ ∧ σn)1{NΛ1
(τ∧σn)=n}) = nE( exp(−δ(τ ∧ σn))1{σn≤τ})

= nE( exp(−δσn)1{σn≤τ})

(41)

Combining relations (39),(40) and 41) we obtain

E( exp(−δ(τ ∧ σn))NΛ1(τ ∧ σn) = exp(−δτ)
∑n−1

k=0 kP{NΛ1(τ) = k}+ nE( exp(−δσn)1{σn≤τ})

= exp(−δτ)E(NΛ1(τ)1{NΛ1
(τ)≤n−1}) + nE( exp(−δσn)1{σn≤τ})

This shows the desired result. ¤
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Table 6: Model summary-Expected total cost as the dependent variable

R R Square Adjusted R Square Std. Error of the Estimate
0.998 0.995 0.995 499.423

Table 7: Coefficients-Expected total cost as the dependent variable

Unstandardized Coefficients Standardized Coefficients
Model B Std. Error Beta t Sig.

(Constant) 8099.545 357.427 22.61 0.000
γ -31029.150 6672.244 -0.11 -4.650 0.000
δ -37614.797 5951.689 -0.15 -6.320 0.000
q -28937.914 320.558 -0.205 -90.274 0.000
h 412.963 19.516 0.47 21.160 0.000
cp 79.136 0.181 0.971 437.031 0.000
ca 3.600 0.139 0.058 25.983 0.000
cr 22.937 4.929 0.018 4.654 0.000
cs 94.234 7.683 0.047 12.267 0.000

cscr 2.667 2.199 0.003 1.213 0.226
p 0.611 1.668 0.001 0.366 0.714

Table 8: Model summary-Final order Quantity, n, as the dependent variable

R R Square Adjusted R Square Std. Error of the Estimate
0.994 0.987 0.987 0.749

Table 9: Coefficients-Final order Quantity, n, as the dependent variable

Unstandardized Coefficients Standardized Coefficients
Model B Std. Error Beta t Sig.

(Constant) 18.877 0.536 203.042 0.000
γ -178.184 10.010 -0.066 -17.801 0.000
δ 43.243 8.929 0.018 4.824 0.000
q -104.118 0.481 -0.789 -216.500 0.000
h -0.653 0.029 -0.080 -22.308 0.000
cp -0.039 0.000 -0.507 -142.278 0.000
ca 0.16 0.000 0.274 76.944 0.000
cr -0.011 0.007 -0.009 -1.481 0.139
cs 0.002 0.012 0.001 0.185 0.853

cscr -0.007 0.003 -0.009 -2.062 0.039
p 0.017 0.003 0.028 6.747 0.000
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Table 10: Model summary-Policy switching time, τ , as the dependent variable

R R Square Adjusted R Square Std. Error of the Estimate
0.982 0.964 0.963 0.432

Table 11: Coefficients-Policy switching time, τ , as the dependent variable

Unstandardized Coefficients Standardized Coefficients
Model B Std. Error Beta t Sig.

(Constant) 22.863 0.309 73.938 0.000
γ -130.901 5.772 -0.143 -22.677 0.000
δ 262.855 5.149 0.318 51.050 0.000
q 15.435 0.277 0.342 55.657 0.000
h -2.302 0.017 -0.823 -136.314 0.000
cp -0.003 0.000 -0.106 17.570 0.000
ca 0.006 0.000 0.305 50.779 0.000
cr -0.001 0.004 -0.002 -0.229 0.819
cs -0.004 0.007 -0.006 -0.614 0.540

cscr 0.046 0.002 0.171 24.175 0.000
p -0.003 0.001 -0.015 -2.167 0.030
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