
 

 
 
 
 

 
Optimal Storage Rack Design for a 3D Compact AS/RS 

with Full Turnover-Based Storage 
 

Yu Yugang and M.B.M. de Koster 
 
 

 
 
 
 
 
 
 
 
 
 

ERIM REPORT SERIES RESEARCH IN MANAGEMENT 
ERIM Report Series reference number ERS-2006-026-LIS 
Publication  June 2006 
Number of pages 34 
Persistent paper URL  
Email address corresponding author yyugang@rsm.nl 
Address Erasmus Research Institute of Management (ERIM) 

RSM Erasmus University / Erasmus School of Economics  
 Erasmus Universiteit Rotterdam 
 P.O.Box 1738  
 3000 DR Rotterdam, The Netherlands 
Phone:  + 31 10 408 1182   
Fax: + 31 10 408 9640 
Email:  info@erim.eur.nl 
Internet:  www.erim.eur.nl

 
Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:  

www.erim.eur.nl 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18507803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.erim.eur.nl/


ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT 
 

REPORT SERIES 
RESEARCH IN MANAGEMENT 

 
 

ABSTRACT AND KEYWORDS 
Abstract Compact, multi-deep (3D) automated storage and retrieval systems (AS/RS) are becoming 

increasingly popular for storing products with relatively low turnover on a compact area. An 
automated storage/retrieval crane takes care of movements in the horizontal and vertical 
direction in the rack, and a gravity conveying mechanism takes care of the depth movement. An 
important question is how to layout such systems to minimize the product storage and retrieval 
times. Although much attention has been paid to 2D AS/RS, multi-deep systems have hardly 
been studied. This paper studies the impact of system layout on crane travel time. We calculate 
the rack dimensions that minimize single-command cycle time under the full-turnover-based 
storage policy. We prove the expected travel time is minimized when the rack is square-in-time 
in horizontal and vertical directions and the conveyor’s dimension is the longest. We compare 
the model’s results with the performance of the random storage policy and show a significant 
crane travel time reduction can be obtained. We illustrate the findings of the study by applying 
them in a practical example. 

Free Keywords Order Picking, Storage Rack Design, AS/RS, Travel Time Model, Warehousing, Turnover-Based 
Storage 

Availability The ERIM Report Series is distributed through the following platforms:  

Academic Repository at Erasmus University (DEAR), DEAR ERIM Series Portal

Social Science Research Network (SSRN), SSRN ERIM Series Webpage

Research Papers in Economics (REPEC), REPEC ERIM Series Webpage

Classifications The electronic versions of the papers in the ERIM report Series contain bibliographic metadata 
by the following classification systems: 

Library of Congress Classification, (LCC) LCC Webpage

Journal of Economic Literature, (JEL), JEL Webpage

ACM Computing Classification System CCS Webpage

Inspec Classification scheme (ICS), ICS Webpage

 
 

 

https://ep.eur.nl/handle/1765/1
http://www.ssrn.com/link/ERIM.html
http://ideas.repec.org/s/dgr/eureri.html
http://lcweb.loc.gov/catdir/cpso/lcco/lcco_h.pdf
http://www.aeaweb.org/journal/jel_class_system.html
http://www.acm.org/class/
http://www.iee.org/Publish/Support/Inspec/Document/Class/index.cfm


 1

Optimal Storage Rack Design for a 3D compact AS/RS with full 

turnover-based storage 

Yu Yugang 

René (M.) B.M. de Koster 

Department of Management of Technology and Innovation, RSM Erasmus University, 

the Netherlands 

Abstract 

Compact, multi-deep (3D) automated storage and retrieval systems (AS/RS) are 

becoming increasingly popular for storing products with relatively low turnover on a 

compact area. An automated storage/retrieval crane takes care of movements in the 

horizontal and vertical direction in the rack, and a gravity conveying mechanism takes 

care of the depth movement. An important question is how to layout such systems to 

minimize the product storage and retrieval times. Although much attention has been 

paid to 2D AS/RS, multi-deep systems have hardly been studied. This paper studies 

the impact of system layout on crane travel time. We calculate the rack dimensions 

that minimize single-command cycle time under the full-turnover-based storage policy. 

We prove the expected travel time is minimized when the rack is square-in-time in 

horizontal and vertical directions and the conveyor’s dimension is the longest. We 

compare the model’s results with the performance of the random storage policy and 

show a significant crane travel time reduction can be obtained. We illustrate the 

findings of the study by applying them in a practical example. 
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1. Introduction 

Compact, multi-deep (3D), automated storage/retrieval systems (AS/RS) become 

increasingly popular for storing products with relatively low unit-load demand, on 

standard product carriers. In principle, every load can be accessed individually, 

although some shuffling may be required. They are also used to automatically presort 

unit loads within the system, so that these loads can be retrieved rapidly when they are 

needed (Le-Duc et al. 2005). Their main advantage, besides the full automation of 

tasks, is the large storage capacity on a limited area, which can make such systems more 

cost efficient than traditional single-deep AS/RS. An example is the system of Miele in 

Gütersloh (D), where a combination of cranes and shuttles store and retrieve individual 

palletized white goods (like washing machines and dish washers), and automatically 

sequence them for loading trains and trailers. We discuss a new multi-deep AS/RS, 

with a major innovative contribution in its cheap construction. Potential application 

areas are also innovative. We have studied applications in dense container stacking at a 

container yard and the Distrivaart project in the Netherlands (Waals, 2005), where 

pallets are transported by barge shipping between several suppliers and several 

supermarket warehouses. This project has actually been implemented and has resulted 

in a fully automated storage system on a barge (see Figure 1).  

<Insert Figure 1 here> 

The rack in the system is sketched in Figure 2 and consists of a 3D storage rack, a 



 3

depot (or I/O point), an S/R machine (or crane), and a gravity conveying mechanism 

with conveyors operating in pairs responsible for the depth movement in conjunction 

with an elevating mechanism. The same system has been studied by Le-Duc et al. 

(2005). The pallets enter and leave the system via the I/O point and are stored in the 

rack. The S/R machine can drive and lift simultaneously and takes care of the 

movements in the horizontal and vertical directions. It picks up pallets from the I/O 

point to bring them to a storage conveyor or retrieves them from a conveyor to bring 

them to the I/O point. The gravity conveyors work in pairs: on the inbound conveyor 

pallets flow to the back end of the rack by controlled gravity. At the back of the rack a 

simple, inexpensive elevator lifts the pallet to the neighboring outbound conveyor 

from which it flows to the front end of the rack. Consequently, unit loads can rotate 

independently of the S/R machine and can be retrieved individually. 

<Insert Figure 2 here> 

Different storage policies can be used to store pallets in the rack, in particular random 

and dedicated storage policies (including full-turnover-based policies). Under the 

random storage policy, each pallet is equally likely to be stored in any of the storage 

positions in the rack. In reality, usually some items are requested more frequently than 

others, as described by an ABC curve. Full turnover-based storage policies store pallets 

at a travel distance of the I/O point decreasing with increasing item turnover frequency, 

and thereby realize short storage/retrieval times. 

Determining the throughput or, alternatively, the crane cycle time, is one of the main 

issues in designing a compact system. It depends on material handling speeds and 
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capabilities, but also on system dimensions, crane dwell-point strategy, and storage 

and retrieval policies. While this problem has been tackled for 2D systems to a great 

extent, literature on 3D systems is far from abundant. We try to fill this gap by 

determining the expected S/R travel time for single command-storage or retrieval 

requests and determining the optimal rack dimensions. We assume a full 

turnover-based storage policy and compare our results with those of the random 

storage policy as studied by Le-Duc et al. (2005). We apply the full turnover-based 

storage policy in such a rack by sequentially assigning products on unit loads, sorted 

by decreasing turnover frequency of the unit loads to positions on the conveyor pairs 

that are sorted on increasing travel distance from the I/O point. For a given rack 

storage capacity, we express the single-command S/R machine travel time as a 

function of the rack dimensions. Due to the complexity of the model, we first give 

several theorems to reduce the feasible area of the model variables without losing the 

optimal solution and show the optimal structure of the rack must be square-in-time 

(SIT) and the conveyor’s dimension the longest. With these results, the proposed 

model is simplified into an equivalent non-linear convex programming model that can 

be solved numerically to obtain the optimal solution. Finally the results of the model 

are compared with those of the random storage policy in Le-Duc et al. (2005), and a 

practical example is given to illustrate the application of our research. Optimal racks 

using a full turnover-based storage policy can obtain significant reductions (up to 68%, 

depending on the steepness of the ABC curve) in the expected travel time compared 

with random storage. 
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2. Literature review 

Designing an efficient AS/RS has interested many researchers for decades. 

Performance measures used include travel time per S/R operation cycle, number of 

S/R requests carried out per unit time, and average cost per S/R operation. Much 

literature focuses on the travel time per S/R operation cycle which depends on the 

shape of the storage rack (ratio between different dimensions: SIT, or non-SIT 

(NSIT)), pallet storage policies (random/dedicated S/R policies), the S/R crane’s 

operation modes (single, dual, and multiple commands per cycle), dwell point policies 

(at the middle or corner of the rack), and the number of rack dimensions (2D or 3D 

racks). Because this paper discusses how to dimension the 3D rack by minimizing the 

expected travel time for a single command cycle under the full turnover-based storage 

policy, in this section, we only review literature closely related to our research. We 

focus on travel time calculation with different rack shapes, on storage policies, and on 

3D rack systems. 

Storage rack shape. Calculating the travel time based on different rack shapes with 

Chebyshev travel has received considerable interests since the study of Hausman et al. 

(1976). They calculate the one-way travel time for a single command cycle based on a 

SIT-rack system with different storage policies: random, turnover, and class-based 

storage. Bozer and White (1984) obtain the travel time for single and dual command 

cycles for NSIT rack systems under the random storage policy, and prove that with a 

constant AS/RS speed, the SIT rack is the optimal 2D-rack configuration. In practice 

other rack shapes exist, given the various cost components as well as height and 
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length constraints. Based on Bozer and White’s travel time model for NSIT racks, 

Eynan and Rosenblatt (1994) develop a procedure for dividing a rectangular rack into 

storage classes and calculate the travel time resulting from class-based storage. 

Recently, travel time as main performance criterion is used in Pan and Wang (1996), 

Park et al. (2003), Hu et al. (2005), Park et al. (2006), and Park (2006) for different 

types of NSIT racks systems. In the above literature, only Bozer and White (1984) 

take the travel time as a function of the rack dimensions, and minimize the travel time 

by dimensioning the 2D rack. 

Storage policies. Under the random storage policy S/R requests are allocated 

randomly over the available storage locations in a rack. This method is considered 

widely in the literature, see for example Bozer and White (1984), Lee and Elsayed 

(2005), and Le-Duc et al. (2005). In many studies, like Hausman et al. (1976) and Lee 

and Elsayed (2005), it is used to benchmark improvements of other storage policies. 

The full turnover-based policy was first described by Heskett (1963, 1964) as the 

Cube-per-Order index (COI) rule without a proof of its optimality. Kallina and Lynn 

(1976) discuss the implementation of the COI rule in practice. The earlier mentioned 

work of Hausman et al. (1976) assumes a Pareto (or ABC)-demand curve and a basic 

EOQ (Economic Order Quantity)-based reordering policy, in their derivation of an 

expression for the expected single-command travel time for random and full 

turnover-based storage. Graves et al. (1977) extend this to an expression for the 

expected dual-command travel time under these storage policies. These analytical 

results under the full turnover-based storage policy are derived for SIT racks. The 
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formulation by Hausman et al. (1976) to calculate the one way travel time is a 

universal expression which can be used for NSIT racks and multi-deep racks as well, 

because in its derivation only EOQ assumptions and an ABC-demand function are 

used. It has been used by other researchers in different warehouse settings. For 

example, Koh et al. (2002) apply it to estimate the travel time for a warehousing 

system with a crane in combination with a carousel. Kim and Seidmann (1990) 

assume a product turnover distribution function different from that of Hausman et al. 

(1976) resulting in a different single-command travel time function. Their turnover 

distribution function has the advantage that it is analytically more tractable. However, 

it has the disadvantage that it is not concave as Figure 1 in their paper shows. For 

NSIT racks, Park et al. (2003) assume that the full turnover-based distribution 

function is given as ( ) sG x x=  for 0 1x< ≤  and 0 1s< ≤ , identical to Hausman et 

al. (1976), but they assume that every item type has only one pallet in the storage rack 

which is not appropriate in many cases. The same full turnover-based distribution 

function is also used by Park (1999), Park (2006), and Park et al. (2006). 

3D rack systems. Park and Webster (1989a) propose a conceptual model that can help 

a warehouse planner in the design of certain 3D pallet-storage systems by minimizing 

the total storage system costs. The costs consist of land, building, handling equipment, 

storage-rack, labor, maintenance, and operating costs. Park and Webster (1989b) deal 

with a “cubic-in-time” layout, for minimizing the travel time of selected handling 

equipment. In these two publications, the rack dimensions are given or, in other words, 

the problem of determining the optimal rack dimensions is neglected. Sari et al. (2005) 
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study a 3D flow-rack AS/RS where the pallets are stored and retrieved at different 

rack sides by two cranes. In order to retrieve a particular pallet, the retrieval crane has 

to move all pallets in front of it and store these on a special restoring conveyer. They 

derive the travel time for the random storage policy with given lengths of the three 

rack dimensions. Le-Duc et al. (2005) extend the method of Bozer and White (1984) 

for 2D rack systems to three dimensions and find the optimal design of the 3D rack 

system by minimizing the expected single- and dual-command travel time of the S/R 

machine of random S/R requests under random storage policies. They conclude that 

the optimal ratio of the three dimensions in vertical, horizontal and conveyor 

directions is 0.72 : 0.72 :1  for single-command systems and 0.84:0.84:1 for 

dual-command systems. 

No literature exists on travel time estimation and/or optimal system dimensioning for 

3D AS/RS with the full turnover-based storage policy. In the following sections, we 

will step by step estimate the single-command travel time of the S/R machine after 

first introducing the problem assumptions. 

3. Assumptions and general model 

3.1 Assumptions 

The studied system is identical to that of Le-Duc et al. (2005), and sketched in Figure 

2. We follow the assumptions of Le-Duc et al. (2005) (see also Hausman et al. 1976, 

Bozer and White 1984, 1990, 1996 Ashayeri et al. 2002, Foley et al. 2004) 
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• The 3D rack is considered to have a continuous rectangular pick face, where the I/O 

point (or depot) is located at the lower left-hand corner of the rack (see Figure 2). 

When the crane is idle, it stops at the I/O point 

• The S/R machine (or crane) is capable of simultaneously moving in vertical and 

horizontal direction at constant speeds. Thus, the travel time required to reach any 

location in the rack (or a storage conveyor pair in our case) is represented by the 

Chebyshev metric. 

• The conveyor can move loads in an orthogonal depth direction, independent of the 

S/R machine movement, at a constant speed. 

• The S/R machine operates on a single-command basis (multiple stops in the aisle 

are not allowed). 

• Each pallet holds only one item type. All storage locations and pallets have the 

same size. Therefore all storage locations can be used for storing any pallet load. 

The items are replenished according to the EOQ model. 

• Following Hausman et al. (1976), we assume the pick-up/deposit (P/D) time for the 

crane to pick up or deposit a pallet can be ignored. This is justified if the P/D time is 

fairly small compared to the total crane travel time. 

• We use a full turnover-based storage policy. That is, the storage position of each 

pallet is determined by its relative activity among all pallets in the rack by sorting 

the pallets from most to least active, starting from the I/O point. One item type can 

have multiple pallets. 
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3.2 Notations and general model 

The length (L), the height (H) of the rack, and the perimeter (of length 2P) of the 

conveyor form three orthogonal dimensions of the rack, in which the speeds of the 

conveyor, and the S/R machine’s speed in the horizontal and vertical direction are cs , 

hs , vs  respectively. 

To standardize the system, we define the following quantities. 

2*
c

c

Pt
s

= : length (in time) of the conveyor. 

h
h

Lt
s

= :  length (in time) of the rack. 

v
v

Ht
s

= :  height (in time) of the rack. 

{ }max , ,h v cT t t t=  

min , ,h v ct t tb
T T T

⎧ ⎫= ⎨ ⎬
⎩ ⎭

. Note that 0 1b< ≤  and 1b =  if h v ct t t= = . 

a  is the remaining element (besides b  and 1 ) of the set , ,h v ct t t
T T T

⎧ ⎫
⎨ ⎬
⎩ ⎭

, thus 

0 1b a< ≤ ≤ . 

For determining the optimal dimensions of the rack, we suppose that * *H L P  is a 

constant. As a result h v ct t t V=  (the storage capacity in cubic time) is also a positive 

constant. 

Assume that a S/R request location is represented by ( , , )x y z , and ,  X Y and Z  refer 

to the movement directions of the S/R machine or conveyor: the longest dimension 

refers to the Z  direction, the shortest dimension refers to the Y  dimension and the 
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left medium dimension refers to the X  direction. We can see that the S/R machine’s 

travel time for single-command cycles (ESC) consists of the following components: 

♦ Time needed to go from the depot to the pickup or drop-off position and to wait for 

the load or empty slot to be available at the pick/drop position (if the conveyor’s 

circulation time is larger than the travel time of the S/R machine), W . In other 

words, W  is Chebyshev metric, and the maximum of the following three 

quantities:  

- time needed to travel horizontally from the depot to the pick/drop position, 

- time needed to travel vertically from the depot to the pick/drop position, 

- time needed for the conveyor to circulate the load or empty slot from the current 

position to the pick/drop position. 

♦ Time needed for the S/R machine to return to the depot from the request point, U . 

Hence, the expected travel time can be expressed as follows: 

 ( ) ( )ESC E W E U= + . (1) 

In order to calculate ESC  under the full turnover-based policy, we recall Hausman 

et al. (1976). In their paper, in order to calculate the turnover of each item in a storage 

space, they model the well-known ABC curve as  

 ( )G i iδ= , 0 1δ< ≤ , (2) 

where i  is the percentage of inventoried items, 0 1i< ≤ , δ  is the skewness of the 

ABC curve, and ( )G i  is the cumulative percentage of demand in full pallet loads. 

Under the full turnover-based storage policy, for a fraction or percentage i of the items, 

they derive the expected one-way travel time for the crane traveling from the I/O 
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point to a random P/D position of a request to pick-up or store a pallet (denoted by 

'
TT  in their paper) as: 

 

1

0'
1

0

( ) ( )

( )
j

T

j

j y j dj
T

j dj

λ

λ
=

=

=
∫
∫

, (3) 

In which ( )jλ  is the turnover, of the thj  pallet in the rack, and 

 1/ 2 ( 1) /( 1)2( ) ( )j j
K

δ δδλ − += , 0 1j< ≤ , (4) 

where K  is the ratio of order cost to holding cost which is assumed to be identical 

for all items. ( )y j  is the ranked one-way time for the crane to travel from the I/O 

point to location j  and 0 ( ) 1y j< ≤ , where by definition the j th percentile of the 

locations is closer to the I/O point than the location under consideration. For 2D SIT 

racks, ( )y j  equals 1/ 2j  (Hausman et al. 1976).  

In order to calculate ( )E W , ( )y j  needs to be calculated in non-cubic in time setting. 

The calculation of ( )y j  is given in Appendix A, from which we have 

 

1/3 2

1/ 2 2

( ) 0 /
( ) ( ) /

1

abj j b a
y j aj b a j a

j a j

⎧ < ≤
⎪

= < ≤⎨
⎪ < ≤⎩

. (5) 

Substituting (5) into (3), and multiplying the result with T  results in 

( )

2

2

/ 1
3

0 /
1

0

( ) ( ) ( )
 

( )

b a a

j j b a j a

j

j abjdj j ajdj j jdj
E W T

j dj

λ λ λ

λ
= = =

=

+ +
= ×

∫ ∫ ∫
∫

 

( )
2 1 1

(2 1)(3 1) ( 1)(2 1) 1

s s

s

sb sa sE W T
s s a s s s

+ +⎛ ⎞
⇒ = + +⎜ ⎟+ + + + +⎝ ⎠

, (6) 

where 2 /(1 )s δ δ= + .  

( )E U  can be obtained in a similar fashion, by neglecting the depth movement. 
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Without loss of generality, we suppose h vt t≥ . Set β = /v ht t  which is the rack shape 

in the crane’s moving directions. If we standardize 1ht = , then similar to the above 

procedure for obtaining (5), we have 

 
1/ 2( ) 0

( )
1

j j
y j

j j
β β

β
⎧ < ≤

= ⎨
< ≤⎩

. (7) 

Substituting (7) into (3) and multiplying the result with T , ( )E U  is obtained as 

 

1
1

0
1

0

( ) ( ) (2 1 )( )
( 1)(2 1)( )

s
j j

h h

j

j jdj j jdj s sE U t t
s sj dj

β

β
λ β λ β

λ

+
= =

=

+ + +
= =

+ +
∫ ∫

∫
, (8) 

More details on the calculation of ( )E W  and ( )E U  can be found in Yu and De 

Koster (2006). 

From (1), (6) and (8), the mathematical model to determine the optimal pallet storage 

rack system then can be determined by the following general model (denoted as GM): 

Model GM: 

 

1 2 1 1

3

       ( , , ) ( ) ( )

(2 1 )
( 1)(2 1) (2 1)(3 1) ( 1)(2 1) 1

       
/

s s s

h s

c

c

c

c

h c

c

Minimize ESC a b T E U E W

s s sb sa st T
s s s s a s s s

subject to abT V
b a if t T
b if t aT
a if t bT

aT if t T
t T if t aT

T if t bT

β

β

+ + +

= +

⎛ ⎞+ +
= + + +⎜ ⎟+ + + + + + +⎝ ⎠

=

=⎧
⎪= =⎨
⎪ =⎩

=⎧
⎪= =⎨
⎪ =⎩

 (9) 

              where 0T >  and 0 1b a< ≤ ≤ . 
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When the optimal values of variables a, b, T  of model GM can be determined, the 

expected travel time is minimized for a given rack capacity V . T In order to find these 

optimal solutions, we distinguish the following three cases: 

 The conveyor’s length is the longest dimension (denoted by CL), or ct T=  and 

: : : :1v h ct t t b a≡ ;  

 The conveyor’s length is the medium dimension (denoted by CM), or ct aT=  

and : : :1:v h ct t t b a≡ ;  

 The conveyor’s length is the shortest dimension (denoted by CS), or ct bT=  and 

: : :1:v h ct t t a b≡ . 

4. Properties and equivalent model 

Solving Model GM directly based on the three cases CL, CM, and CS is difficult. 

Therefore, we propose several theorems to simplify it. Theorems and 2 show that the 

cases CS and CM can be neglected respectively. Theorem 3 shows the optimal rack 

shape is SIT. These theorems lead to a much easier nonlinear convex programming 

model equivalent to model GM. 

We first reformulate Model GM for the three cases: CL, CM and CS respectively. 

For the case CL, ct T=  and the corresponding model can be presented as: 

 

1/3 -
1 1 2 1

1/3

1 2 1 1 2 1 1 2 2 1 2

  ( , ) (
(1 )(1 2 )(1 3 )( )

5 5 3 3 6 6 )
       0 1.

s
s s s s

CL

s s s s s s s s

V a sMinimize ESC a b a a a b
s s s ab

b a s a s a s b s b s a s a s
subject to b a

+ + +

+ + + + + +

= + + +
+ + +

+ + + + + + + +
< ≤ ≤

 (10) 

For the case CM, ct aT=  and the corresponding model turns out to be: 
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1/3 -
1 2 1

1/3

1 2 1 2 1 1 2 2

  ( , ) (2
(1 )(1 2 )(1 3 )( )

10 3 3 12 )
       0 1.

s
s s s s

CM

s s s s s s s

V a sMinimize ESC a b a a a b
s s s ab

b a s a s a b s b s a s
subject to b a

+ +

+ + + +

= + +
+ + +

+ + + + + +
< ≤ ≤

 (11) 

For the case CS, ct bT=  and the corresponding model can be presented as: 

 

1/3 -
1 2 1 2

1/3

1 2 1 2 2

  ( , ) (2 2
(1 )(1 2 )(1 3 )( )

10 6 12 )
       0 1.

s
s s s

CS

s s s s

V a sMinimize ESC a b a a b
s s s ab

a s a s b s a s
subject to b a

+ +

+ +

= + +
+ + +

+ + + +
< ≤ ≤

 (12) 

We denote ( , )l la b , ( , )m ma b , and ( , )s sa b  as the optimal variable values of Models 
(10), (11), and (12) where the minimal objective function values are denoted by 

* ( , )CL l lESC a b , * ( , )CM m mESC a b , and * ( , )CS s sESC a b , respectively. 

The optimal variable value of ( , )a b , denoted by * *( , )a b , of Model GM satisfies  

 * * * * *

,
( , ) arg min{ ( , ), ( , ), ( , )}CS s s CM m m CL l la b
a b ESC a b ESC a b ESC a b= . (13) 

The minimum objective value of Model GM is * * * *( , , )ESC a b T  where 

* 1/3 * * 1/3/( )T V a b= . 

4.1 Simplifying Model GM 

Theorem 1. The minimal objective function value * ( , )CM m mESC a b  of model (11) is  

(I) equal to the minimal objective function value * ( , )CS s sESC a b  of model (12) 

if s s m ma b a b= = = . 

(II) less than the minimal objective function value * ( , )CS s sESC a b  otherwise. 

Proof. See Appendix B. 

Case I, or s sa b=  in Theorem 1, represents the situation where the optimal rack’s 

y -dimension ( sb ) equals the x -dimension ( sa ) in the CS case. This rack 
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configuration is included in the CM case if m ma b=  (note that ( , )a b  represent 

different dimensions in the two cases). We conclude from Theorem 1:  

“The case CS in Model GM can be neglected for calculating the optimal solution of 
Model GM.” 

Theorem 2 is similar to Theorem 1. We state it here without proof (this follows the 

same lines as the proof of Theorem 1). It shows the case CM can be neglected in 

calculating the optimal solution of Model GM. 

Theorem 2. The minimal objective function value * ( , )CL l lESC a b  of model (11) is  

(I) equal to the minimal objective function value * ( , )CM m mESC a b  of model 

(12) if l la b= = m mb a= =1 (i.e. cubic-in-time). 

(II) less than the minimal objective function value * ( , )CM m mESC a b  otherwise. 

From Theorem 1 and Theorem 2, we conclude: 

“All optimal solutions of Model GM exist in the case CL (i.e., Model (10)). The model 

(10) is an equivalent to Model GM.” 

It is obvious that finding the optimal expected travel time of Model (10) is easier than 

Model GM. However this is still fairly complicated as its objective function cannot be 

proven to be convex or concave. We therefore have to analyze the problem further. 

With Theorem 3 we prove the optimal 3D rack must be SIT. 

Theorem 3. For the 3D rack, the expected travel time with the full turnover-based 

storage policy will be minimized only when the rack is SIT and the conveyor’s length 

is the longest. 

Proof. See Appendix C. 
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4.2 The equivalent model of Model GM and its solution 

From Theorem 3, we conclude the optimal solution of Model GM has the following 

properties: cT t= , ( )thus 1a b β= = , h v ct t at= = , and 2 3
ca t V= . Therefore a model 

equivalent to model GM is the following constrained-optimization problem: 

 

{ }

1/3
1

2/3

1 2 2

      ( ) (1 2 2 5
(1 )(1 2 )(1 3 )( )
8 4 6 6 )

       0 1 .

s

s

V sMinimize ESC a a a s
s s s a

as a s s as

subject to D a a

+

+

= + + +
+ + +

+ + + +

= < ≤

 (14) 

Since 
2 1/3

1 1 1 2
2 8/3

( ) 2 (5 - 2 - 2 10 - 2 - 6 )
9 (1 )(1 2 )

s s sd ESC a sV a a s as a s a s
da a s s

+ + += + +
+ +

>0 and 

constraint D  is linear, the problem is a strict convex non-linear programming 

problem. 

At this point, if the critical point *a  of equation ( )dESC a
da

=0 is in D , we have 

found the minimum objective function value *( )ESC a , where 

 
1/3

1 1
5/3

( ) 2 (-1 - 2 2 )
3 (1 )(1 2 )

s sdESC a sV a a s as a s
da a s s

+ += + + + +
+ +

. (15) 

Because 
0

( )
lim
a

dESC a
da→

= −∞ , 1/3
1

( ) 2 /(3(1 2 ))a
dESC a V s s

da = = + >0, and ( )dESC a
da

 is 

continuous, the unique critical point *a  of equation ( )dESC a
da

=0 must be in D .  

Equation ( )dESC a
da

=0 can be solved numerically for any given s . The optimal 

solution of Model (14) is given by the optimal decision variable *a a=  and the 

optimal objective function value *( )ESC a . *a  is a function of s , according to (15). 

Because 2 3
ca t V= , we have * 1/3 *2/3/ct V a= . Again, because h v ct t at= = , we have 

* * * 1/3( )v ht t a V= = . 

From the above analysis, we conclude the following for Model GM: 
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(a) Given a 3D rack with a total storage capacity V , the expected travel time of the 

S/R machine will be minimized if * * * 1/3( )v ht t a V= =  and * 1/3 *2/3/ct V a=  (i.e. 

* * * * *: : : :1v h ct t t a a= ) and the optimal expected travel time for the single command 

cycle is *( )ESC a  where ( )ESC a  is the objective function of Model (14) and *a  is 

the solution of the equation ( )dESC a
da

=0. 

(b) The optimal ratio of the three dimensions * * *: :v h ct t t  is independent of the rack 

capacity 0V > . 

5. Comparing the results with those of Le-Duc et al. (2005) 

Le-Duc et al. (2005) consider randomized storage policies in which any point within 

the rack is equally likely to be selected for storage or retrieval. Their problem 

corresponds to 1δ =  or 1s =  in our paper. Let 1s = , the objective function of 

Model GM turns into: 

 
3 22 11( , , )

12 6 26 2 h
b aESC a b T t T

a
β ⎛ ⎞⎛ ⎞

= + + ++ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, (16) 

which is the same as that of Le-Duc et al. (2005). The optimal solution for a random 

storage policy can be found from Le-Duc et al. (2005) as: * * 1/30.90h vt t V= = , 

* 1/31.24cT t V= =  and *ESC =1.38 1/3V .  

In our paper, using the conclusion in Section 4.2, we can find the optimal solution and 

its expected travel time for the 3D AS/RS rack system for every skewness parameter 

value corresponding to a particular ABC curve. Using Equation (2) to represent an 

ABC curve, the notation i / ( )G i  denotes that a fraction i  of the inventoried items 

represents a fraction ( )G i  of the total demand. For a given i / ( )G i combination we 
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can obtain δ  from Equation (2), by solving ln ( ) / lnG i iδ = . According to the 

relationship between s  and δ , the corresponding s  can also be determined as 

/(2 )s δ δ= − .  

Table 1 tabulates values of the optimal solutions for different i / ( )G i  combinations 

and their corresponding s  or δ  values for a given V . In this table, the time values 

for *
ht , *

vt , *
ct  and *ESC  are expressed in the quantities 1/3V . In Figure 3, the 

expected travel time of our full turnover-based storage policy is compared with that of 

the random storage policy in Le-Duc et al. (2005), for various ABC curves, and shows 

the corresponding expected travel time improvement. In this Figure, Series “ FTESC ”, 

“ RANESC ” and “Time saved” represent the optimal *ESC  value of this paper, the 

optimal *ESC  value of Le-Duc et al. (2005), and the percentage improvement 

( ) / 100%FT RAN RANESC ESC ESC− × , respectively. 

<Insert Table 1 here> 

<Insert Figure 3 here> 

From Table 1 and Figure 3, it can be seen that  

(1) When 0 1δ< < (all cases except 20%/20%), reductions in the expected travel 

time are obtainable from the turnover-based storage policy compared with the 

random storage policy in the 3D rack system. The reduction percentage depends 

on the steepness of the ABC curve. For a 20%/90% ABC curve with 0.07δ = , 

the improvement is significant and the percent travel time saved is 67.68%. 

(2) When 1δ =  (20%/20%), our result is the same as that of Le-Duc et al. (2005) 

with the random storage policy. The problem in their paper is a special case of that 
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in this paper with 1δ = . 

(3) For the turnover-based storage policy, the smaller the skewness parameter δ  is 

in the ABC curve, the more sensitive the expected travel time is. For example, 

when δ  decreases from 1 to 0.86 (20%/20% to 20%/30%), the relative ESC 

decreases 
1/3 1/3

1/31.38 1.31 0.26
1 0.75

V V V−
=

−
, however when δ  decreases from 0.24 

to 0.12 (20%/80% to 20%/90%), the relative ESC decreases 

1/3 1/3
1/30.72 0.45 3.74

0.14 0.07
V V V−

=
−

, which is much bigger than 1/30.26V . 

6. An example 

As an illustrating example, assume that we have to design a 3D compact system with 

data as given in Table 2, based on those in Le-Duc et al. (2005). The layout of the 

system refers to Figure 2. The problem is to find the approximate optimal dimensions of 

the system so that the expected travel time is minimized for two ABC curves 

considered in Table 2. 

<Insert Table 2 here> 

The rack should have sufficient capacity to store 2000 pallets, which means the rack 

should have at least 0.5 0.5 2.17 2000V = × × × =1085 ( 3seconds ). 

Recalling the conclusion in Subsection 4.2, we obtain the optimal solutions for a 

continuous rack system: (1) for the 20%/20% ABC curve, * 31.24 12.78ct V= =  

(seconds), *
ht = *

vt
*0.72 ct= 9.21=  (seconds) and the optimal travel time 

*ESC = 31.38 V =14.20 ( seconds ); (2) for the 20%/90% ABC curve, 
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* 31.50 15.37ct V= = (seconds), *
ht = *

vt  *0.55 ct= 8.40= (seconds) and the optimal 

travel time *ESC = 30.45 V =4.59 ( seconds ). 

However, in a real-world setting, AS/RS systems are discrete and the rack 

dimensions must be integral multiples of the pallet dimensions. Therefore, we choose 

‘practical optimal’ dimensions such that they are as close as possible to the 

corresponding optimal dimensions found while the system storage capacity is at least 

2000 pallets. We obtain the following practical approximate optimal dimensions and 

expected travel time for both ABC curves: (1) for the 20%/20% ABC curve, *
ht = 9 

seconds (18 pallets), *
vt =8.68 seconds (4 pallets), *

ct =14 seconds (28 pallets), the 

approximate optimal travel time 
*

ESC =14.24seconds , with a real rack capacity of 

2016 pallets; (2) for the 20%/90% ABC curve, *
ht = 8.5 seconds (17 pallets), *

vt =8.68 

seconds (4 pallets), *
ct =15 seconds (30 pallets), the approximate optimal travel time 

*
ESC =4.64seconds , and the real rack capacity is 2040 pallets. From the above results 

we find that the deviation of the approximate optimal solutions from the optimal 

solutions is fairly small: the deviation percentages (i.e. (
*

ESC - *ESC )/ * 100%ESC × ) 

are 0.27% and 0.66% respectively. Note that the resulting rack dimensions do not differ 

much. This is a phenomenon also known from 2-dimensional rack layouts: it is possible 

to find robust layouts good for various ABC-curves. 

7. Conclusion 

In this paper we discuss the design of a 3D (multi-deep) compact AS/RS system using a 

full turnover-based storage policy, which originates from the Distrivaart project. We 

extend the results from Le-Duc et al. (2005), based on the random storage policy, to the 
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full turnover-based storage policy and find the optimal ratio of the three rack 

dimensions minimizing the expected single-command travel time of the S/R machine. 

From the results of the paper, we find that  

(1) The optimal ratio between the three dimensions * * *: :c h vt t t  is independent of the 

rack’s storage capacity V , but varies with the skewness parameter δ  of the ABC 

curve. For a decreasing δ , or increasing turnover frequency for a given percentage of 

the inventoried items in the rack inventory, the optimal ratio * */c ht t  or * */c vt t  will 

increase. The problem with the random storage policy discussed by Le-Duc et al. 

(2005) is a special case of our problem with skewness parameter 1δ = . 

(2) For the 3-dimemsional rack system, the expected travel time will be minimized 

only when the rack is SIT in horizontal and vertical directions, which is similar to the 

results of Bozer and White (1984) and Le-Duc et al. (2005), but not cubic in time with 

any (0,1]s∈ . 

(3) The full turnover-based storage policy is a good assignment rule for improving the 

performance of the expected travel time of S/R machine for single command cycle. 

The more skewed (smaller δ ) the ABC curve is, the more expected time is saved 

compared to the random storage policy. For example, for 0.07δ = ,(a 20%/90% ABC 

curve), the saved time is 67.68%. 

(4) From Section 6, it can be seen that the optimal results for our discussed continuous 

3D AS/RS are helpful to find an approximate optimal solution for practical examples.  

The results in this paper may be extended in several directions, albeit the analysis may 

become cumbersome. It is interesting to study the class-based storage assignment. 
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Although class-based storage is not optimal, it is easier to implement in practice while 

it still can improve travel time substantially, compared to random storage. Second, the 

impact of dwell point strategies of the S/R machine can be studied. Third, multiple 

commands for a single cycle may be considered to improve the performance of the 3D 

AS/RS. Finally, the time needed for pickup/drop-off a pallet may also be considered 

in a 3D rack system although it is commonly omitted by researchers in 2D systems. 

 

Appendix A. Calculation of Equation (5) 

Because W { }max , ,= h v ct t t  and 0 1b a< ≤ ≤ , the calculation of ( )y j  should be 

classified into three cases (see Figure 4). 

<Insert Figure 4 here> 

Case 1: Let 3 2/( ) /j b ab b a≤ = ; or 0 W b< ≤ . Consider a location ( , , )x y z  in the 

j th fractile or percentile of the distance distribution (region A in Figure 4). By 

definition j% of the locations are closer to the I/O point than the location under 
consideration. These j% locations must be arranged in a cube in time, since the total 
time taken by the crane and conveyor to move from the I/O point to the P/D position 

of any point ( , , )x y z  is max(x,y,z). Since the dimension of the total warehouse is ab, 

the volume of this cube is j  by the total volume ab , or abj . Therefore, for 

2 /j b a≤ , the travel time from the depot to the location thj  percentile is 

 1/3( ) ( )y j abj= . (17) 

Case 2: Any point ( , , )x y z  located in region B (Figure 4) satisfies the location 

percentile 3 2/( ) /j b ab b a≥ =  and 2 /( )j a b ab a≤ = ; or b W a≤ ≤  where W  

max( , )x z= . The racked locations of the j th percentile must be arranged in a 

rectangular block in time with aj b aj× ×  in the horizontal, vertical and depth 
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dimensions (so that the total volume is abj  and aj b≥ ). Then, for 2 /b a j a≤ ≤ , 

the travel time from the depot to thj  percentile location is 

 ( )y j aj= . (18) 

Case 3: Any point ( , , )x y z  located in the region C (Figure 4) satisfies 1a j≤ ≤  or 

1a W≤ ≤  where W z= . The locations of j th percentile must be arranged in a 

rectangular block in time with a b j× ×  in the horizontal, vertical and depth 

dimensions (so that the total volume is abj ). Then for 1a j≤ ≤ , the travel time from 

the depot to the location thj  percentile is  

 ( )y j j= . (19) 

Considering (17), (18) and (19), Equation (5) is obtained. 

 

Appendix B. Proof of Theorem 1 

Because the optimal solution ( , )a b  of model (12) is ( , )s sa b , its objective function 

value is  

 

1/3 -
* 1 2 1 2

1/3

1 2 1 2 2

( , ) (2 2
(1 )(1 2 )(1 3 )( )

10 6 12 )

s
s s ss

CS s s s s s
s s

s s s s
s s s s

V a sESC a b a a b
s s s a b

a s a s b s a s

+ +

+ +

= + +
+ + +

+ + + +

. (20) 

The constraint is the same for Models (11) and (12), so ( , )s sa b  is a feasible solution 

of model (11), and its corresponding objective function value of model (11) is  

 

1/3 -
1 2 1

1/3

1 2 1 2 1 1 2 2

( , ) (2
(1 )(1 2 )(1 3 )( )

10 3 3 12 )

s
s s s ss

CM s s s s s s
s s

s s s s s s s
s s s s s s s

V a sESC a b a a a b
s s s a b

b a s a s a b s b s a s

+ +

+ + + +

= + +
+ + +

+ + + + + +

. (21) 

From Equations (20) and (21), we have  

* ( , )CS s sESC a b - ( , )CM s sESC a b  
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=
1/3 -

1 2 1 1 2 1
1/3 ( - 3 -3 )

(1 )(1 2 )(1 3 )( )

s
s s s s s ss

s s s s s s
s s

V a s a a b a s a b s
s s s a b

+ + + ++
+ + +

. (22) 

Because , ,a b s , and 0V > , we have 

 
1/3 -

1/3(1 )(1 2 )(1 3 )( )

s
s

s s

V a s
s s s a b+ + +

>0. (23) 

When s sb a=  for a and b  in Models (11) and (12), 1 2 1- 0s s s
s s sa a b+ + =  and 

1 2 13 -3s s s
s s sa s a b s+ +  1 13 ( )s s s

s s sa s a b+ += − 0= . Considering Equations (23) and (22), we 

have * ( , )CS s sESC a b - ( , )CM s sESC a b 0= . If ( , )s sa b  equals ( , )m ma b  and s sb a= , 

then ( , )s sa b  is also the optimal solution of Model (11) and 

* ( , ) ( , )CM m m CM s sESC a b ESC a b= . In this case * *( , ) ( , )CM m m CS s sESC a b ESC a b=  holds. 

(I) is proven. 

Otherwise, s sb a< , in Equation (22), 1 2 1 1 1- ( ) 0s s s s s s
s s s s s sa a b a a b+ + + += − >  and 

1 2 13 -3s s s
s s sa s a b s+ +  1 13 ( )s s s

s s sa s a b+ += − 0> . Considering Equations (23) and (22), we 

have * ( , )CS s sESC a b - ( , )CM s sESC a b 0> . Because ( , )m ma b  is the optimal solution of 

Model (11), for the minimized model, * ( , ) ( , )CM m m CM s sESC a b ESC a b≤ . Thus 

* *( , ) ( , )CS s s CM m mESC a b ESC a b− 0> . (II) is proven.  

 

Appendix C. Proof of Theorem 3 

From the above Theorems 1-2, we know the optimal result of Model GM exists in the 

case CL, where the conveyor’s length is the longest. Thus, if we can prove the 3D 

rack must be SIT for CLESC  to be minimized, then Theorem 3 is proven. For 

convenience, we use an equivalent version of the model, different from Model (10) 

only in form, for the case CL as follows: 
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-
1 1 2 1

1 2 1 1 2 1 1 2 2 1 2

3

  ( , , ) (
(1 )(1 2 )(1 3 )

5 5 3 3 6 6 )
       

0 1
0.

s
s s s sc

CL c

s s s s s s s s

c

c

a stMinimize ESC a b t a a a b
s s s

b a s a s a s b s b s a s a s
subject to abt V

b a
t

+ + +

+ + + + + +

= + + +
+ + +

+ + + + + + + +

=
< ≤ ≤

>

 (24) 

We use reduction to absurdity to prove that the optimal 3D rack is SIT when CLESC  

is minimized.  

Suppose the optimal rack were not SIT for CL. Let ( , , )ca b t  and CLESC  denote the 

optimal solution and objective function value of Model (24). Then we have a b> , 

and CL CLES ESC C≤ . 

Because 3
cabt V= , we have 3/ cab V t= . Let 3/ cab V t k= =  ( k  is a positive 

constant). We can design a new solution: 1/ 2a b k= = , and 3 /( )c ct t V ab= =  

3 /V k=  that provides the 3D SIT rack.  

Then we obtain 

 

(1 3 ) 1/3______
1/ 2 1/ 2 2 3

1/3

2 4 1 3 1 3 1 1 1 2 2 3 2 4

1 3 1 3 1 1 1 2 2 3 2 1 3 2

( , , ) ( , , ) (
(1 )(1 2 )(1 3 )

- 2 - 2 5 3

-8 - 4 3 6 - 6 ).

s
s

CL c CL c

s s s s s s s s s

s s s s s s s s

a sVESC a b t ESC k k t a
s s s k

a a k a k a k k a s a s

a s k a s k a k s k s a s a s k

− +
+

+ + + + + + + +

+ + + + + + +

− =
+ + +

+ + + + +

+ + +

 (25) 

Because , ,a s k  and 0V > , we have
(1 3 ) 1/3

1/3(1 )(1 2 )(1 3 )

sa sV
s s s k

− +

+ + +
>0. Define  

 
2 3 2 4 1 3 1 3 1 1 1 2 2 3 2 4

1 3 1 3 1 1 1 2 2 3 2 1 3 2

( ) - 2 - 2 5 3

-8 - 4 3 6 - 6 .

s s s s s s s s s s

s s s s s s s s

f x x x x k x k x k k x s x s

x s k x s k x k s k s x s x s k

+ + + + + + + + +

+ + + + + + +

= + + + + +

+ + +
 (26) 

Then to check 
______

1/ 2 1/ 2( , , ) ( , , )CL c CL cESC a b t ESC k k t− <0 or not is equivalent to check 

( )f a <0 where 1/ 2a k≠ . 

With ,x s  and 0k > , we have 
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2 -3(1 )

1 1 2 2(1 2 ) 1 1 2
2

( ) (2 2 4 3 ) 0
1 2

s
s s s s s s sf x x s x k k x s x k s k s

x s

+
+ + + + +∂

= + + + + >
∂ +

 (27) 

Equation (27) shows that ( )f x  is a strictly convex function of x . Therefore at most 

one critical point exists and satisfies  

 
-3(1 )

2 3 2 4 1 1 2 2 3 2 4 1 1 2( ) ( - - 2 -2 - ) 0
1 2

s
s s s s s s s s s sf x x s x x x k k x s x s x k s k s

x s

+
+ + + + + + + +∂

= + + + =
∂ +

. (28) 

If the point exists, the corresponding value of ( )f x  must be the overall minimal 

point. Set x k= , we find that ( )
x k

f x
x =

∂
∂

=0 and k  is the critical point. That is, 

min ( ) ( ) 0f x f k= = . Then we have ( ) 0f x >  for all x ≠ k . 

Because the optimal rack were not SIT for CL (i.e. a b>  ), and 0a b k= > , we 

have a k b> >  (here a k≠ ), and then ( ) ( )f k f a< . Then ( ) 0f a > , which 

implies that 
______

1/ 2 1/ 2( , , ) ( , , )CL c CL cESC a b t ESC k k t− >0, contradicting that ( , , )ca b t  is 

the optimal solution of Model (24). Hence, we have completed the proof of Theorem 

3.
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Figure 1:  Distrivaart: A conveyor-supported automated compact storage system on 

a barge (source: Waals, 2005). 
 
 

 

 

 

 

 

 

 

 

Figure 2:  A compact S/RS with gravity conveyors for the depth movements (Le-Duc 

et al. 2005) 
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Figure 3:  Reduction of ESC of the full turnover-based storage policy compared 

with that of the random storage for various / ( )i G i  
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Table 1:  The optimal solutions for different skewness parameters(ABC curves) 

δ  s  ABC Curve  *a  *b  *
ht  *

vt  *
ct  *ESC  

1.00 1.00 20%/20% 0.72 0.72 0.90 0.90 1.24 1.38 
0.75 0.86 20%/30% 0.70 0.70 0.89 0.89 1.27 1.31 
0.57 0.73 20%/40% 0.68 0.68 0.88 0.88 1.29 1.24 
0.43 0.60 20%/50% 0.66 0.66 0.87 0.87 1.31 1.15 
0.32 0.48 20%/60% 0.64 0.64 0.86 0.86 1.35 1.05 
0.22 0.36 20%/70% 0.61 0.61 0.85 0.85 1.38 0.91 
0.14 0.24 20%/80% 0.58 0.58 0.84 0.84 1.43 0.72 
0.07 0.12 20%/90% 0.55 0.55 0.82 0.82 1.50 0.45 

 
 

Table 2:  System parameters 

Total system capacity (V) 2000 pallets 
Storage policy Full turnover-based storage 
Pallet size in seconds  Net  0.4 x 0.4 x 2 
(width x length x height) Gross 0.5 x 0.5 x 2.17 

Operating policy Single-command cycle 

Vertical speed ( vs ) 0.8 (meter per second) 
S/R machine 

Horizontal speed ( hs ) 2.8 (meter per second) 

Conveyor speed ( cs ) 1.6 (meter per second) 

Cases of ABC curve considered 20%/20% and 20%/90% 
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