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Abstract

The performance of Monte Carlo integration methods like importance sampling
or Markov Chain Monte Carlo procedures greatly depends on the choice of the im-
portance or candidate density. Usually, such a density has to be ‘close’ to the target
density in order to yield numerically accurate results with efficient sampling. Neural
networks seem to be natural importance or candidate densities, as they have a uni-
versal approximation property and are easy to sample from. That is, conditionally
upon the specification of the neural network, sampling can be done either directly or
using a Gibbs sampling technique, possibly using auxiliary variables. A key step in
the proposed class of methods is the construction of a neural network that approxi-
mates the target density accurately. The methods are tested on a set of illustrative
models which include a mixture of normal distributions, a Bayesian instrumental
variable regression problem with weak instruments and near-identification, and a
two-regime growth model for US recessions and expansions. These examples involve
experiments with non-standard, non-elliptical posterior distributions. The results
indicate the feasibility of the neural network approach.
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1 Introduction

Markov Chain Monte Carlo (MCMC) methods like Metropolis-Hastings (MH) and Gibbs
sampling are extensively used in Bayesian analyses of econometric and statistical models.
The theory of Markov chain samplers starts with Metropolis et al. (1953) and Hastings
(1970). An important technical paper on MCMC methods is due to Tierney (1994). Well
known econometric studies are provided by Chib and Greenberg (1996) and Geweke (1999).
Indirect independence sampling methods such as importance sampling (IS) have also been
successfully applied within Bayesian inference. Importance sampling, see Hammersley
and Handscomb (1964), has been introduced in Bayesian inference by Kloek and Van Dijk
(1978) and is further developed by Van Dijk and Kloek (1980,1984) and Geweke (1989).

However, in practice, the convergence behavior of Monte Carlo methods is still often
uncertain. The complex structure of a model or some extraordinary properties of the data
may cause this problem. We mention three cases. First, Hobert and Casella (1996) show
that the Gibbs sampler does not converge in the case of a hierarchical linear mixed model
if the prior is uniform. The reason is that the posterior of some conditional variance
is improper. Similar problems may occur in dynamic panel data models using diffuse
priors. A second example of a complex model is a set of equations with a near reduced
rank structure for the matrix of coefficients. Then the Hessian of the likelihood function is
singular. This may be due to near nonidentifiability or near nonstationarity in econometric
models with diffuse priors. We refer to the studies by Schotman and Van Dijk (1991) and
Kleibergen and Van Dijk (1994, 1998). Convergence problems of importance sampling with
a normal or Student t importance density are described by Van Dijk and Kloek (1984)
and Geweke (1989). As a third case we mention a multimodal target density, which one
may encounter in mixture processes with a small number of observations around one of the
different modes. This may cause problems for all methods. If the MH candidate density
is unimodal, with a low probability of drawing candidate values in one of the modes, then
this mode may be completely missed, even if the sample size gets very large. In this case
importance sampling with a unimodal normal or Student t importance density may yield
a sample in which most drawings have a negligible weight and only a few drawings almost
completely determine the sampling results.

So, an important problem is the choice of the candidate or importance density, espe-
cially when one knows little about the shape of the target density.

In this paper we introduce the class of neural network sampling methods to sample
from a target (posterior) distribution that may be multi-modal or skew, or exhibit strong
nonlinear correlation among the parameters. That is, a class of methods to sample from
non-elliptical distributions.

The basic idea of the neural network sampling algorithms is simple. First, a neural
network is constructed that approximates the target density. An important advantage
of neural network functions is their ‘universal approximation property’. That is, neu-
ral network functions can provide approximations of any square integrable function to
any desired accuracy, see Gallant and White (1989). As an application of Kolmogorov’s
general superposition theorem, the neural network approximation property is eluded by
Hecht-Nielsen (1987). Proofs concerning neural network approximations for specific con-
figurations can be found in Gallant and White (1989), Hornik et al. (1989), and Leshno
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et al. (1993). This approximation property implies that the algorithm can handle certain
‘strange’ target distributions, like multi-modal, extremely skew, strongly correlated or fat-
tailed distributions. Second, this neural network is used as an importance function in IS
or as a candidate density in MH. Depending on the specification of the neural network,
an important advantage of neural network densities is that they are easy to sample from.

The proposed methods are applied on a set of illustrative examples. We start with a
mixture of normal densities. Next we perform some experiments with a Bayesian analysis
of the instrumental variable regression model. Finally, we explore a switching model with
recessions and expansions for the US real GNP growth. Our results indicate that the
neural network approach is feasible in cases where a ‘standard’ MH, Gibbs or IS approach
would fail or be extremely slow.

The outline of the paper is as follows. In section 2 we discuss how to construct a
neural network approximation to a density, how to sample from a neural network density,
and how to use these drawings within the IS or MH algorithm. In section 3 we describe
a method yielding estimates of moments of the target distribution without requiring a
sampling algorithm. Section 4 shows the feasibility of our approach in a simple example
of a mixture of bivariate normal distributions. Section 5 illustrates our algorithms in an
example with simulated data in an instrumental variable (IV) regression set up. Section
6 contains an empirical example concerning a switching model for the quarterly growth
rate of the real GNP in the USA. Conclusions are given in section 7 and technical details
are given in the appendices.

2 Approximating with and sampling from neural net-

works

Suppose we have a certain distribution with density function p(x) at hand, where x ∈ Rn.
The aim is to investigate some of the characteristics of p(x), for example the mean and
covariance matrix of a random vector X ∼ p(x). The approach followed in this paper is:

1. Find a neural network approximation nn : Rn → R to the target density p(x).

2. Obtain a sample of random points from the density nn(x).

3. Perform importance sampling or the Metropolis-Hastings algorithm using this sam-
ple in order to obtain estimates of the characteristics of p(x).

Consider a (simplified) 4-layer feed-forward neural network with functional form:

nn(x) = G2 (cG1(Ax + b) + d) + δ (1)

where A is H × n, b is H × 1, c is 1×H, d ∈ R and δ ∈ R. The integer H is interpreted
as the number of cells in the first hidden layer of the neural network. The second hidden
layer contains only one cell.
The vector function G1 : RH → RH is defined by

G1(y) = (g(y1), · · · , g(yH))′ (2)
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where g : R → R, the activation function, is a monotonically increasing function taking
its values in the interval [0, 1].
The function G2 : R→ R is a monotonically increasing function, not necessarily bounded.
In the following sections, two typical specifications of (1) will be used.

Type 1: A standard three-layer feed-forward neural network (δ = 0 and G2 is the
identity G2(x) = x). As activation function g in (2), we take the scaled arctangent
function:

g(x) =
1

π
arctan(x) +

1

2
. (3)

The reason for this choice is that this activation function can be analytically integrated
infinitely many times. We will show in subsection 2.2.1, that this property makes the
neural network, in the role of a density kernel, easy to sample from.

Type 2: A four-layer network with δ = 0 and G2 the exponential function:

G2(y) = ey (4)

In this case, the activation g in (2) is taken to be a piecewise-linear function, called plin:

plin(x) =





0 x < −1/2
x + 1/2 −1/2 ≤ x ≤ 1/2

1 x > 1/2
(5)

With this activation function, the neural network function can be analytically integrated.
We will show in subsection 2.2.2, that this property makes Gibbs sampling possible.

Note that the function G2 is unbounded but invertible: this specification may be
considered as applying a log-transformation to the data, which correspond in our case
to density values. It is possible to specify a different functional form in (4), as long as
the function is positive valued and analytically integrable, and its primitive is analytically
invertible to allow for easy sampling. An example of such a function is the logistic function.
See subsection 2.2.2.

Table 1 gives an overview of the reasons for which we have chosen these particular
specifications. The implications shown in this table will be clarified in the sequel of this
paper.

In the next subsections we will discuss the three steps of our approach: construction
of a neural network, sampling from it, and using the sample in IS or MH.

2.1 Constructing a neural network approximation to a density

We suggest the following procedure to obtain a neural network approximation to a certain
target density p(x). First we construct a grid of equidistant points xi (i = 1, . . . , N) in the
bounded region to which we restrict the random variable X ∈ Rn to take its values. Then
we approximate the target density p(x) with a neural network by minimizing the sum of
squared residuals:

SSR(A, b, c, d) =
N∑

i=1

(
p(xi)− nn

(
xi

∣∣A, b, c, d
))2

. (6)
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Table 1: Motivation of the particular neural network specifications

specifi- special properties consequences of special
cation of nn(x) properties of nn(x)
of nn(x)

- Direct sampling from
- The activation nn(x) is possible.
function g is analy-

Type 1 tically integrable ⇒ - Analytical expressions
infinitely many exist for the moments
times. of the distribution

with density nn(x).
- The activation
function g is
piecewise-linear.

- Gibbs sampling
- The function G2 is ⇒ from nn(x) is
positive valued and possible.

Type 2 analytically integrable,
and its primitive is
analytically invertible.
- The function G2 - Auxiliary variable
is the exponential ⇒ Gibbs sampling from
function. nn(x) is possible.
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We choose the smallest neural network, i.e. the one with the least hidden cells, that
still gives a ‘good’ approximation to the target distribution. One could define a ‘good’
approximation as one with a high enough squared correlation R2. For example, one could
require an R2 of at least 0.80, 0.90 or 0.95, depending on the dimension or the nature of
the target density.

After that, we check the squared correlation R2 between the neural network and the
target density for a (much) larger grid than the ‘estimation grid’. If this R2 is also high
enough, then we say that the estimation grid is fine enough. In that case the network does
not only provide a good approximation to the target density in the points xi (i = 1, . . . , N)
but also in between. Otherwise, we increase the number of grid points N and start all
over again. For example, we make the grid twice as fine for one or more elements of X.

This process continues until the grid is fine enough to allow the neural network to ‘feel’
the shape of the target density accurately.

In the case of our three-layer neural network, we also have to deal with the problem
that the neural network function is not automatically non-negative for each x. In order to
prevent this we add a penalty term to (6), and check for non-negativity between the grid
points xi (i = 1, . . . , N) afterwards. If nn(x) is negative for some x, we look for its most
negative value, and subtract this negative value from the network’s constant d. In that
way nn(x) becomes non-negative for each x, so that it is a proper density kernel (on the
bounded domain to which we restrict it). In our four-layer neural network the exponential
function implies that non-negativity is automatically taken care of.

2.2 Sampling from a neural network density

2.2.1 Sampling from a three-layer neural network density

Suppose the joint density kernel of a certain X ∈ Rn is given by a standard three-layer
feed-forward neural network function with an activation function g that is analytically
integrable infinitely many times. Since the neural network function is a linear combination
of these activation functions, the neural network function itself is integrable infinitely many
times. Hence one can directly sample from the neural network by iteratively drawing the
elements Xi (i = 1, . . . , n) in the following way:

Draw x1 from nn(x1)

Draw x2 from nn(x2|x1)

Draw x3 from nn(x3|x1, x2)

...

Draw xn from nn(xn|x1, x2, x3, · · · , xn−1)

(7)

where nn(x1), nn(x2|x1), nn(x3|x1, x2), etc. are the marginal and conditional neural net-
work densities corresponding to the joint density kernel nn(x). The marginal distribution
function CDFnn(x1):

CDFnn(x1) =

∫ x1

−∞
∫∞
−∞ · · ·

∫∞
−∞ nn(x̃1, x2, . . . , xn)dxn · · · dx2dx̃1∫∞

−∞
∫∞
−∞ · · ·

∫∞
−∞ nn(x̃1, x2, . . . , xn)dxn · · · dx2dx̃1

, (8)
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and the conditional distribution function CDFnn(x2|x1)

CDFnn(x2|x1) =

∫ x2

−∞
∫∞
−∞ · · ·

∫∞
−∞ nn(x1, x̃2, . . . , xn)dxn · · · dx3dx̃2∫∞

−∞
∫∞
−∞ · · ·

∫∞
−∞ nn(x1, x̃2, . . . , xn)dxn · · · dx3dx̃2

(9)

etc. can be evaluated analytically.
An example of an activation function that can be analytically integrated infinitely

many times, is the scaled arctangent function in (3). Some useful integration formulas for
this activation function are given in appendices A.1 and A.2.

So, one can easily sample from the density nn(x1) or nn(x2|x1) in formulas (7) by
drawing random variables Ui(i = 1, . . . , n) from the uniform distribution on [0, 1] and
then finding the scalars xi(i = 1, . . . , n) for which U = CDFnn(x1), U = CDFnn(x2|x1),
etc. The calculation of xi(i = 1, . . . , n) is done numerically with a simple algorithm such
as the bisection method.

2.2.2 Sampling from a four-layer neural network density

Suppose the joint density kernel of a certain X ∈ Rn is given by the four-layer neural
network function in (1) with G2(x) = exp(x), G1 in (2) and the piecewise-linear activation
function in (5). It is fairly easy to perform Gibbs sampling from this distribution, as one
can divide the domain of each Xi (i = 1, . . . , n) into a finite number of intervals on which
the conditional neural network density is just the exponent of a linear function. Therefore
we can analytically integrate the conditional neural network density, and draw from it
using the inverse transformation method. Note the three properties of G2 mentioned
below formula (5) are used here explicitly. Details are given in appendix B.1.

The Gibbs sampling procedure consists of iteratively sampling from one-dimensional
conditional distributions:

Specify feasible starting values x0 = (x0
1, · · · , x0

n).

Do for j = 1, 2, . . . ,m

xj+1
1 from nn(x1|xj

2, x
j
2, · · · , xj

n)

xj+1
2 from nn(x2|xj+1

1 , xj
3, · · · , xj

n)

xj+1
3 from nn(x3|xj+1

1 , xj+1
2 , xj

4, · · · , xj
n)

...

xj+1
n from nn(xn|xj+1

1 , xj+1
2 , xj+1

3 , · · · , xj+1
n−1)

(10)

Under certain regularity conditions, the sequence {x0, x1, · · · , xj, · · · } converges to a sam-
ple from the distribution with joint density nn(x1, . . . , xn).

It is also possible to use a different method to draw from a four-layer neural network
density: auxiliary variable Gibbs sampling. Using this method, we do not have to restrict
ourselves to the piecewise-linear activation function. It allows for well-known activation
functions such as the logistic and scaled arctangent functions. Auxiliary variable Gibbs
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sampling is a Gibbs sampling technique, developed by Damien et al. (1999). The method
is based on work of Edwards and Sokal (1988). In this method, latent variables are
introduced in an artificial way in order to facilitate drawing from the full set of conditional
distributions.

Auxiliary variable Gibbs sampling is possible if the density kernel p can be decomposed
as follows:

p(x) ∝ π(x)
K∏

k=1

lk(x), (11)

where π is a density kernel from which sampling is easy, and lk (k = 1, . . . , K) are non-
negative functions of x ∈ Rn. The trick is that a set U = (U1, . . . , UK) of auxiliary
variables is introduced such that a kernel of the joint density of X and U is given by:

p(x, u) ∝ π(x)
K∏

k=1

I {0 < uk < lk(x)} . (12)

It is easily seen that (11) is a marginal density kernel corresponding to the joint density
(12). Therefore one can sample X ∼ p(x) by sampling both X and U from (12) and
forgetting U .

Kernels from the conditional distributions of X and U are easily obtained from the
joint density kernel:

p(x|u) ∝ π(x)I {lk(x) > uk, k = 1, . . . , K} (13)

p(u|x) ∝
K∏

k=1

I {0 < uk < lk(x)} (14)

It follows from (13) and (14) that an iteration of the auxiliary variable Gibbs sampler
consists of drawing X from a truncated version of an ‘easy’ distribution with density
kernel π, and sampling Uk (k = 1, . . . , K) from K independent uniform distributions.

If X is multi-dimensional, it might be difficult or inefficient to sample the whole vector
X from the truncated distribution in (13). In that case one may break up X, and sample
its components separately, that is, conditionally on the values of U and the other compo-
nents of X.

Suppose a density kernel of X ∈ Rn is given by

p(x) =

{
nn(x) if xi ∈ [xi, x̄i] ∀i = 1, . . . , n
0 else

(15)

where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is restricted. This restriction ensures
that (15) is a proper density kernel. The function nn(x) is given by:

nn(x) = exp

(
H∑

h=1

ch plin

(
n∑

i=1

ahixi + bh

)
+ d

)
, (16)
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We rewrite nn(x) as

nn(x) = exp

(
H∑

h=1

ch plin

(
n∑

i=1

ahixi + bh

)
+ d

)

∝
H∏

h=1

exp

(
ch plin

(
n∑

i=1

ahixi + bh

))
,

so that the density kernel p in (15) can be rewritten as:

p(x) =
n∏

i=1

I {xi < xi < x̄i}
H∏

h=1

exp

(
ch plin

(
n∑

i=1

ahixi + bh

))
. (17)

It is now easily seen that (17) has the shape of (11) with

π(x) =
n∏

i=1

I {xi < xi < x̄i} , (18)

lh(x) = exp

(
ch plin

(
n∑

i=1

ahixi + bh

))
for h = 1, . . . , H. (19)

where π(x) is the ‘easy’ density kernel of n independent variables Xi (i = 1, . . . , n) with
distribution U(xi, x̄i). This means that we can draw from this distribution using auxiliary
variable Gibbs sampling. Appendix B.2 shows the technical details; it appears that in this
case auxiliary variable Gibbs sampling only requires sampling from uniform distributions,
which is done easily and fast.

Note, as indicated before, that it is also possible to perform auxiliary variable Gibbs
sampling from a four-layer neural network density with a different activation function. For
example, one may use the scaled arctangent function instead of the piecewise-linear func-
tion. An advantage of this function is its smoothness, which may facilitate the numerical
gradient-based optimization.

2.3 Importance sampling and Metropolis-Hastings

Once we have obtained a sample of random drawings from the neural network density
nn(x), we can use this sample in order to estimate those characteristics of the target
density p(x) that we are interested in. For this purpose we can use importance sampling
and in some cases the Metropolis-Hastings algorithm.

A discussion of importance sampling can be found in Bauwens et al. (1999). Let X be
a random variable with density p. Suppose we are interested in the expectation E(h(X))
for a certain function h : Rn → R. Then the importance sampling (IS) approach to obtain
an estimate of E(h(X)) is:

Step 1: Draw a sample of yi’s (i = 1, . . . , m) from a ‘candidate distribution’ with density q,
the so-called importance function.
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Step 2: The estimate of E(h(X)) is now given by:

hIS =

∑n
i=1 w(yi)h(yi)∑n

i=1 w(yi)
, (20)

where w(x) ≡ p(x)/q(x) is the so-called weight function.

The Metropolis-Hastings (MH) algorithm was introduced by Metropolis et al. (1953) and
generalized by Hastings (1970). The algorithm samples from a time-reversible Markov
chain, converging to the target distribution of the random variable X ∈ Rn that we are
interested in.

The MH algorithm constructs a Markov chain of m random vectors in the following
way:

Initialization: choose feasible vector x0 ∈ Rn.

Do for j = 1, 2, . . . ,m

Obtain y from a ‘candidate’ density q(y|xj−1).

Compute the ‘acceptance probability’ α(xj−1, y):

α(xj−1, y) ≡ min

{
p(y)q(y|x)

p(x)q(x|y)
, 1

}

Obtain u from the uniform distribution on (0,1).

If u ≤ α(xj−1, y) then xj = y else xj = xj−1.

A realized Markov chain can be used in a number of ways. One way is considering all
realizations after a certain burn-in period, and using the sample statistics of these real-
izations as estimates of the characteristics of the distribution of X that we are interested in.

Note that in the case of a four-layer neural network we need Gibbs sampling in order to
obtain the sample, so that the consecutive drawings are not independent. In this case it
is not efficient to use the Metropolis-Hastings algorithm, since each independent drawing
from the candidate density nn(x) would require a whole Gibbs sequence of drawings. The
problem is that it is difficult to compute the transition density q(y|xj−1), if xj−1 and y
come from the same Gibbs sequence.

Therefore we have four ‘neural network based’ algorithms at hand: Neural Network
Importance Sampling (NNIS) and Neural Network Metropolis-Hastings (NNMH) in which
IS or MH is performed using random vectors that are (directly) drawn from a 3-layer neural
network; Gibbs Neural Network Importance Sampling (GiNNIS) and Gibbs with Auxiliary
Variables Neural Network Importance Sampling (GiAuVaNNIS) in which IS is performed
using random vectors that are drawn from a 4-layer neural network by Gibbs sampling
(possibly with auxiliary variables). Table 2 gives an overview.
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Table 2: Overview of ‘neural network based’ sampling algorithms

Importance Metropolis-
sampling Hastings

3-layer
neural network: NNIS NNMH
direct sampling

4-layer neural network:
(auxiliary variable) Gi(AuVa)NNIS -

Gibbs sampling

3 Analytical expressions for moments of the three-

layer neural network distribution

There exist analytical expressions for the moments of the 3-layer neural network distri-
bution with the scaled arctangent activation function, just like the expressions for the
marginal and conditional distribution functions that make direct sampling possible. The
formulas are derived in appendix A.3. This feature of the 3-layer neural network makes
the following algorithm possible if one only wants estimates of certain moments of the
target distribution:

Step 1: Construct a 3-layer neural network function nn(x) that gives a good approximation
to the target density p(x).

Step 2: Compute the moments of the neural network distribution using the formulas in
appendix A.3. These moments provide estimates of those moments of the target
density p(x) that one is interested in.

In this case no sampling algorithm like MH or IS is needed. As in this case the neural net-
work output is not ‘corrected’ by MH or IS, the neural network has to be a very accurate
approximation to the target density. Otherwise its moments are inaccurate approxima-
tions.

4 Example I: mixture of two bivariate normal distri-

butions

In order to illustrate the neural network sampling algorithms in a simple example, we
consider the following bimodal distribution:

(
X1

X2

)
∼ 0.5 N

(( −5
−5

)
,

(
1 0
0 1

))
+ 0.5 N

((
5
5

)
,

(
1 0
0 1

))
(21)

We use our algorithms in order to obtain estimates of the mean and standard deviation
of X1 and X2, and the correlation coefficient ρ(X1, X2).
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First, we restrict the variables X1 and X2 to the interval [-10,10]. That is, we only
consider the region

{(X1, X2)| − 10 ≤ X1 ≤ 10,−10 ≤ X2 ≤ 10} . (22)

This restriction does not affect our estimates, as the probability mass outside this region
is negligible. Then we use the approach described in subsection 2.1 in order to construct
a 3-layer neural network approximation to the target density. Since this is only a simple
two-dimensional target distribution, we require the squared correlation R2 between the
neural network function and the target density to be at least 0.95. A 41 × 41 grid of
equidistant points on the region (22) appears to be large enough: a 3-layer neural network
with H = 48 hidden cells with an R2 of 0.985 on the 41 × 41 estimation grid still has an
R2 of 0.985 on an 81× 81 grid.

We also construct a 4-layer neural network approximation to the target density. We
find a 4-layer network with H = 10 hidden cells with R2 = 0.988 on the 41×41 estimation
grid and R2 = 0.984 on an 81× 81 grid.

Note the large difference between the sizes of the 3-layer network and the 4-layer
network. The 3-layer network requires 5 times as many hidden cells. This suggests that
the exponential transformation in the 4-layer network makes it much easier to construct
an approximation to the target density.

The contourplots of the 3-layer and 4-layer neural network approximations are given by
Figure 1, together with the contourplot of the target density. These contourplots confirm
that the neural networks are good approximations to the target density.

After we have constructed neural network approximations, we sample from these net-
works and use the samples in IS or MH. For each algorithm we construct two samples, and
we say that convergence has been achieved if the differences between the two estimated
means of X1 and X2 are both less than 0.05. The results are in Table 3. Note that the
four neural network sampling algorithms - NNIS, NNMH, GiNNIS and GiAuVaNNIS - all
yield estimates differing less than 0.05 from the real values. The analytical expressions for
the moments of the 3-layer neural network also yield quite good estimates, although not
as good as the four neural network sampling algorithms.

NNIS and NNMH require only 50000 drawings, whereas GiNNIS and GiAuVaNNIS
require 200000 and 1000000 drawings, respectively. The reason for this is that NNIS

–6

–4

–2

0

2

4

6

x2

–6 –4 –2 0 2 4 6
x1

–6

–4

–2

0

2

4

6

x2

–6 –4 –2 0 2 4 6
x1

–6

–4

–2

0

2

4

6

x2

–6 –4 –2 0 2 4 6

x1

Figure 1: Contourplots: the density of the distribution in (21) (left), its 3-layer neural
network approximation (middle), and its 4-layer neural network approximation (right)
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and NNMH use a sample of uncorrelated points obtained by direct sampling, whereas
GiNNIS and GiAuVaNNIS use Gibbs sequences in which the points are correlated. The
first order serial correlations of the Gibbs sequences of X1’s are 0.90 and 0.97 in GiNNIS
and GiAuVaNNIS, respectively. Apparently the addition of auxiliary variables increases
the serial correlation in the Gibbs sequence, which explains why 1000000 points are needed
instead of 200000.

If we look at the computing times (on an AMD Athlon 1400 MHz processor) required
for generating the samples, we conclude that the GiNNIS algorithm is the winner in this
example. Although in the GiAuVaNNIS method a point is generated faster, the GiNNIS
estimates take less time to converge. In other words, in this example GiNNIS appears
to be a good trade-off between quality and quantity. The NNIS and NNMH algorithms
are relatively slow, as these methods require a numerical method, such as the bisection
method, in order to perform the inverse transformation method.

The total weight of the 5% most influential points is below 10% for the three IS
algorithms, confirming the high quality of the importance density. The high NNMH
acceptance rate of 67% indicates the quality of the neural network as a candidate density.

We now compare the performance of the neural network algorithms with the perfor-
mance of the Gibbs sampler. Again, we construct two samples, and we say that conver-
gence has been achieved if the differences between the two estimated means of X1 and X2

are both less than 0.05. The sampling results are in Table 3. Note the large differences
between the neural network algorithms and Gibbs sampling. The scatter plots in Figure
2 of the samples obtained by NNMH and Gibbs sampling reveal the reason for these dif-
ferences: NNMH yields a fine sample showing the contours of the joint density, whereas
the Gibbs sampler completely misses one of the two modes.

We conclude that the neural network approach works very well in this simple example
in which the Gibbs sampler fails.
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Table 3: Sampling results for the mixture of two bivariate normal distributions

real NNIS NNMH analytical GiNNIS GiAuVa Gibbs
values moments NNIS

E(X1) 0 0.024 0.011 0.063 0.035 -0.048 5.014
E(X2) 0 0.022 0.012 0.063 0.040 -0.047 5.012
σ(X1) 5.099 5.106 5.102 5.088 5.097 5.099 0.995
σ(X2) 5.099 5.103 5.099 5.101 5.104 5.097 0.995

ρ(X1, X2) 0.962 0.962 0.962 0.968 0.962 0.962 0.003
drawings 50000 50000 200000 1000000 10000

time 568 s 568 s 56 s 172 s 0.1 s
time/draw 11 ms 11 ms 0.28 ms 0.17 ms 0.01 ms
5% weights 8.0% 7.4% 7.4%
acc. rate 67%
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Figure 2: Scatter plots: samples obtained by NNMH (left) and Gibbs sampling (right)
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5 Example II: Bayesian analysis of an IV regression

We consider the following equation

y1t = y2tβ + u1t (t = 1, . . . , T ) (23)

where y2t is a possibly endogenous regressor for which we have

y2t = xtπ + v2t (t = 1, . . . , T ) (24)

with (u1t, v2t) ∼ N(0, Σ) and where xt is exogenous. We assume a flat prior for the
parameters β, π and Σ:

p(β, π, Σ) ∝ |Σ|−h/2, h > 0 (25)

The likelihood function for a sample of size T is

L(β, π, Σ|y1, y2, x) ∝ |Σ|−T/2 exp

[
−1

2
tr(Σ−1U ′U)

]
, (26)

where U = (ũ1(β), ṽ2(π)) with ũ1(β) = y1 − y2β and ṽ2(π) = y2 − xπ. So, the joint
posterior based on the flat prior is

p(β, π, Σ|y1, y2, x) ∝ |Σ|−(T+h)/2 exp

[
−1

2
tr(Σ−1U ′U)

]
, (27)

Using properties of the inverted Wishart distribution (see Zellner (1971) and Bauwens and
Van Dijk (1989)), Σ−1 can be analytically integrated out of the joint posterior yielding
the following joint posterior for (β, π):

p(β, π|y1, y2, x) ∝ |U ′U |−(T+h−3)/2. (28)

In this case a common choice for h is h = 3, resulting in the following posterior density

p(β, π|y1, y2, x) ∝ |U ′U |−T/2. (29)

In this example we are interested in the (posterior) distribution of the vector (β, π). So,
(β, π) plays the role of the random vector X in the previous sections, and p(β, π|y1, y2, x)
plays the role of p(x).

Now we simulate T = 20 data from the model in (23) and (24) with β = 0, π = 0.1,
xt ∼ N(0, 1) i.i.d. and

(
u1t

v2t

)
∼ N

((
0
0

)
,

(
1 0.99

0.99 1

))
(t = 1, . . . , T )

Note the extremely high correlation ρ(u1t, v2t) = 0.99, causing a very strong endogeneity
of the regressor y2 in equation (23). Also note the low value of π = 0.1, so that x is a weak
instrument for y2. That is, there is ‘weak identification’. We restrict β to the interval
[−5, 5] and π to the interval [−0.25, 0.25]. Figure 3 shows the contourplot of the posterior
density in (29) for our simulated data set.
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We use our neural network algorithms to obtain estimates of the posterior means and
standard deviations. We find a 3-layer network with H = 43 hidden cells with R2 = 0.931
on the 41× 41 estimation grid (and R2 = 0.930 on a 81× 81 grid), and a 4-layer network
with H = 10 hidden cells with R2 = 0.933 on the 41× 41 estimation grid (and R2 = 0.927
on an 81×81 grid). The contourplots are given by Figure 3. Note that the 4-layer network
is much smaller than the 3-layer network, just like in the previous example (see page 12).

For each algorithm we construct two samples, and we say that convergence has been
achieved if the differences between the two estimated posterior means of β and π are less
than 0.05 and 0.005, respectively. The sampling results are in Table 4.

Note the large differences between the GiNNIS and GiAuVaNNIS results which are
based on the same 4-layer neural network approximation. Figure 4 shows the scatter
plots of the samples drawn from this 4-layer network using Gibbs sampling and auxiliary
variable Gibbs sampling. These scatter plots reveal the reason for the differences: Gibbs
sampling yields a fine sample showing the contours of the 4-layer neural network function,
whereas auxiliary variable Gibbs sampling completely misses one of the two modes. The
first order serial correlations of the Gibbs sequences of π’s are 0.85 and 0.92 in GiNNIS
and GiAuVaNNIS, respectively. Apparently the addition of auxiliary variables increases
the serial correlation in the Gibbs sequence dramatically, so that the auxiliary variable
Gibbs sequence does not ‘escape’ from its top left mode.
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Figure 3: Contourplots: the posterior density in (29) for a simulated data set (left), its 3-
layer neural network approximation (middle), and its 4-layer neural network approximation
(right)

We now compare the performance of the neural network algorithms with the perfor-
mance of IS and MH with the maximum likelihood estimator’s asymptotic distribution as
the candidate density. Recall that the asymptotic distribution of θ̂ML can be approximated
with:

N

(
θ̂ML, Î

(
θ̂ML

)−1
)

, Î
(
θ̂ML

)
= −δ log L(θ̂ML)

δθδθ′
(30)

The maximum likelihood estimates are given by Table 5. The estimated correlation is
very high: ρ̂(π̂ML, β̂ML) = 0.9985. The sampling results are in Table 4. Note the large
differences between the neural network algorithms and IS or MH. The scatter plots in
Figure 5 of the NNMH and MH samples reveal the reason for these differences: NNMH
yields a fine sample showing the contours of the joint posterior density, whereas MH
completely misses one of the two modes.
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Table 4: Sampling results for the Bayesian IV regression

NNIS NNMH analytical GiNNIS GiAuVa IS MH
moments NNIS

π mean -0.01 -0.01 -0.01 -0.01 -0.09 -0.06 -0.06
s.d. 0.10 0.10 0.12 0.11 0.06 0.03 0.03

β mean 0.65 0.65 0.49 0.67 2.65 2.99 3.05
s.d. 2.37 2.38 2.49 2.34 0.99 0.93 0.93

drawings 25000 25000 100000 100000 50000 50000
time 261 s 261 s 28 s 17 s 0.05 s 0.05 s

time/draw 10 ms 10 ms 0.28 ms 0.17 ms 0.001 ms 0.001 ms
5% weights 9% 10 % 9 % 41%
acc. rate 59% 22%
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Figure 4: Scatter plots: samples drawn from the 4-layer neural network approximation
using Gibbs sampling (left) and auxiliary variable Gibbs sampling (right)

Table 5: Maximum likelihood estimates of the Bayesian IV regression

Parameter: π β
MLE: -0.05 3.36
(std. error) (0.23) (11.09)
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Figure 5: Scatter plots: samples obtained by NNMH (left) and MH (right)

We conclude that NNIS, NNMH and GiNNIS seem to work well in this example (yield-
ing approximately the same estimates). Again, GiNNIS is the fastest among these algo-
rithms. The analytical expressions for the moments of the 3-layer neural network also
yield quite good estimates, although not as good as NNIS, NNMH or GiNNIS . In this ex-
ample GiAuVaNNIS and IS and MH with the maximum likelihood estimator’s asymptotic
distribution as the candidate distribution do not yield reliable estimates.

6 Example III: Bayesian analysis of a switching model

for the quarterly growth rate of the real US GNP

In models for the growth rate of the gross national product one often allows for separate
regimes for periods of recession and expansion. One problem that Bayesian analyses of
such models may suffer from is the non-convergence of conventional sampling methods.
The reason for this is the possible multi-modality of the posterior distribution. We consider
the most simple model, a static 2-regime mixture model. In this model the growth rate yt

has two different mean levels:

yt =

{
β1 + εt with probability p
β2 + εt with probability 1− p

, (31)

where εt ∼ N(0, σ2). For identification we assume that β1 < β2, so that β1 and β2 can
be interpreted as the mean growth rates during recessions and expansions, respectively.
The prior densities of the parameters β1 and β2 are taken uniform on the set of values for
which β1 < β2, and zero elsewhere. The prior on p is taken uniform on the interval [0, 1],
while for σ the uninformative prior π(σ) ∝ 1/σ is used.

The underlying data we consider are the quarterly growth rates of the real US GNP in
the period 1959-2001. The data are shown in Figure 6. The maximum likelihood estimates
of the parameters are given by Table 6.

We use the neural network algorithms in order to obtain estimates of the posterior
mean and standard deviation of β1, β2, σ and p. Looking at the graph of the quarterly
growth rate and the maximum likelihood estimates, we choose to restrict the parameters
to the following intervals: β1 ∈ [−3, 1], β2 ∈ [0.5, 2], σ ∈ [0.5, 1] and p ∈ [0, 1].

We construct a 4-layer neural network approximation to the target density. We find
a 4-layer network with H = 15 hidden cells with an R2 = 0.87 on the 21 × 21 × 11 × 41
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Figure 6: Real GNP of the USA in billions of dollars (above), and its quarterly growth
rate in % (below).

Table 6: Maximum likelihood estimates of the 2-regime mixture model

Parameter: β1 β2 σ p
MLE: -1.01 0.93 0.79 0.05
(std. error) (0.51) (0.08) (0.06) (0.04)
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estimation grid and R2 = 0.86 on a 41 × 41 × 21 × 81 grid. As indicated before, a 3-
layer neural network approximation requires far more hidden cells than a 4-layer network
approximation (see pages 12 and 16). In this case we were not able to construct an accurate
3-layer neural network approximation.

We sample from the 4-layer network using (auxiliary variable) Gibbs sampling, and use
the samples in IS. For both GiNNIS and GiAuVaNNIS we construct two samples, and we
say that convergence has been achieved if the differences between the estimated posterior
means are all less than 0.05. The results are in Table 7. GiNNIS and GiAuVaNNIS
estimates of the marginal posterior densities are given by Figure 7 and Figure 8.

We now compare the performance of GiNNIS and GiAuVaNNIS with the performance
of IS with the maximum likelihood estimator’s asymptotic distribution as the candidate
density. The asymptotic distribution of θ̂ML is approximated with formula (30) on page
16. Again we construct two samples, and we say that convergence has been achieved if the
differences between the estimated posterior means are all less than 0.05. The results are
in Table 7. IS estimates of the marginal posterior densities are given by Figure 9. Note
the large differences, especially in the marginal densities of β1 and p. The IS estimates
indicate a much smaller posterior probability that β1 ≈ 0.8, and almost zero probability
that p exceeds 0.25. Therefore the estimated posterior means of β1 and p are much smaller
according to IS.

The following question remains: which of the results are correct? Or which results are
closer to the real values? In order to obtain an answer to this question, we use the fact
that we can perform Gibbs sampling from the posterior distribution, if we use the method
of data augmentation of Tanner and Wong (1987). Data augmentation is used in order to
sample from models with latent variables Z, in which sampling the parameters θ seems
very difficult, but sampling θ given Z is straightforward. In this algorithm, the parameters
θ are drawn conditionally on the latent variables Z, and the latent variables Z are drawn
conditionally on θ. Forgetting the values of Z, this procedure yields a valid Markov chain
for the parameters θ. In our model we define the latent variables Zt (t = 1, . . . , T ) as:

Zt =

{
0 if period t is a recession period
1 if period t is an expansion period

(32)

Conditionally on these latent variables Z (and each other), β1 and β2 are normally dis-
tributed, while σ2 and p have an inverted gamma and a beta distribution, respectively.
Conditionally on the values of the parameters, the latent variables Zt (t = 1, . . . , T ) have
a Bernoulli distribution.

Again we construct two samples, and we say that convergence has been achieved if the
differences between the estimated posterior means are all less than 0.05. The results are
in Table 7. Data augmentation estimates of the marginal posterior densities are given by
Figure 10. Note that the results from the data augmentation algorithm are much closer
to the results from GiNNIS and GiAuVaNNIS than to the IS results. This suggests that
the results of GiNNIS and GiAuVaNNIS are more reliable than the IS results.

In the GiNNIS method convergence is achieved somewhat faster than in the GiAuVa-
NNIS algorithm (269 versus 421 seconds on an AMD Athlon 1400 MHz processor). The
reason for this is the lower serial correlation in the GiNNIS Gibbs sequence than in the
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GiAuVaNNIS Gibbs sequence: for example, for the parameter σ these serial correlations
are 0.42 and 0.79, respectively. However, it should also be remarked that the data aug-
mentation algorithm took much less time. Therefore this is just an illustrative example in
which the GiNNIS and GiAuVaNNIS algorithms work where another IS algorithm fails.

Table 7: Sampling results for the 2-regime mixture model

GiNNIS GiAuVaNNIS IS Data
Augmentation

mean s.d. mean s.d. mean s.d. mean s.d.
β1 -0.24 0.84 -0.26 0.83 -0.70 0.68 -0.25 0.86
β2 0.99 0.17 0.98 0.15 0.93 0.08 1.03 0.29
σ 0.84 0.07 0.83 0.07 0.82 0.06 0.84 0.07
p 0.24 0.27 0.22 0.25 0.07 0.05 0.25 0.29

drawings 400000 800000 400000 400000
time 269 s 421 s 0.69 s 42 s

time/draw 0.67 ms 0.53 ms 0.002 ms 0.11 ms
5% weights 31% 32% 42%
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Figure 7: GiNNIS estimates of the marginal densities
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Figure 8: GiAuVaNNIS estimates of the marginal densities
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Figure 9: IS estimates of the marginal densities
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Figure 10: Data augmentation estimates of the marginal densities

7 Conclusion

In this paper we have introduced a class of neural network sampling algorithms. In these
algorithms neural network functions are used as an importance or candidate density in
importance sampling or the Metropolis-Hastings algorithm. Neural networks are natural
importance or candidate densities, as they have a universal approximation property and
are easy to sample from. We have shown how to directly sample from a 3-layer neural
network, or use Gibbs sampling (possibly with auxiliary variables) to draw from a 4-layer
neural network. A key step in the proposed class of methods is the construction of a neural
network that approximates the target density accurately. The methods have been tested
on a set of illustrative models which include a Bayesian instrumental variable regression
problem with weak instruments and near-identification, and a two-regime growth model for
US recessions and expansions. In our examples, involving experiments with non-standard,
non-elliptical posterior distributions, the GiNNIS algorithm (4-layer neural network, Gibbs
sampling) performs the best among the exposed sampling procedures. It is the fastest and
moreover the most reliable neural network algorithm, whereas some other algorithms such
as the ‘usual’ Gibbs sampler, MH and IS fail. These results indicate the feasibility and
the possible usefulness of the neural network approach.

We end this paper with some remarks on how to extend the proposed techniques. First,
one may pursue the construction of well-behaved neural networks with other activation
functions which are more smooth than the piecewise-linear one. We noted in section 2 that
it is possible to perform auxiliary variable Gibbs sampling from a 4-layer neural network
density with a scaled arctangent instead of the piecewise-linear function. One may also
investigate the effects of substituting the exponential function in the second hidden layer
by a different function such as the logistic function. Second, more experience is needed
with empirical econometric models like business cycle models as specified by Hamilton
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(1989) and Paap and Van Dijk (2002), stochastic volatility models as given by Shephard
(1996), and dynamic panel data models; see Pesaran and Smith (1995). Third, one may,
as a first step, transform the posterior density function to a more regular shape. This
line of research is recently pursued by, e.g., Bauwens, Bos, Van Dijk and Van Oest (2002)
in a class of adaptive direction sampling (ADS) methods. A combination of ADS and
neural network sampling may be of interest. Fourth, in practice, one encounters cases
where only part of the posterior density is ill-behaved. Then one may combine the neural
network approach for the ‘difficult part’ with a Gibbs sampling approach for the regular
part of the model. Finally, in recent work Richard (1998) and Liesenfeld and Richard
(2002) constructed an efficient importance sampling technique where the estimation of the
parameters of the importance function is done in a sequence of optimization steps. It is
also of interest to investigate whether the numerical optimization used for the estimation of
the parameters of the neural network approximations can be performed in a more efficient
way than proposed in this paper.
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A Sampling from a three-layer neural network distri-

bution and computing its moments

Appendix A.1 gives analytical expressions for the integrals of the arctangent function.
Appendix A.2 shows how these expressions are used in order to sample from a three-
layer neural network distribution. In appendix A.3 these expressions are used to obtain
analytical expressions for the moments of a three-layer neural network distribution.

A.1 A simple analytical expression for the integrals of the arct-
angent function

Theorem A.1: The n-th integral of the arctangent function is given by

Jn(x) ≡
∫
· · ·

∫
arctan(x)dx · · · dx

= pn(x) arctan(x) + qn(x) ln(1 + x2) + rn(x), (33)

where pn and qn are polynomials of degree n and n− 1, respectively:

pn(x) = pn,0 + pn,1 x + · · ·+ pn,n−1 xn−1 + pn,n xn

qn(x) = qn,0 + qn,1 x + · · ·+ qn,n−1 xn−1

The coefficients pn,k (k = 0, 1, . . . , n) are:

pn,k =





(−1)(n−k)/2

(n−k)!k!
if n− k is even,

0 if n− k is odd.

(34)

and the coefficients qn,k (k = 0, 1, . . . , n− 1) are given by:

qn,k =





(−1)(n−k+1)/2

2(n−k)!k!
if n− k is odd,

0 if n− k is even.

(35)

The polynomial rn (of degree at most n− 1) plays the role of the integrating constant.

Proof: We will prove this theorem by induction. First, note that for n = 1 we have by
partial integration with arctan(x) as the factor to be differentiated:

∫
arctan(x)dx = x arctan(x)− 1

2
ln(1 + x2), (36)

so that this expression has the shape of formula (33) with p1,0 = 0, p1,1 = 1 and q1,0 = −1/2.
It is easily verified that these values correspond with formulas (34) and (35), so that we
conclude that for n = 1 the proposition holds. Now suppose that our proposition holds for
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a certain positive integer n. Then we have to show that this implies that the proposition
also holds for n + 1.

First, note that for any positive integer k the integral of xk arctan(x) is given by:

∫
xk arctan(x)dx =

1

k + 1
xk+1 arctan(x)− 1

k + 1

∫
xk+1

1 + x2
dx, (37)

which is derived by partial integration with arctan(x) as the factor to be differentiated.
In a similar fashion we have for any positive integer k :

∫
xk ln(1 + x2)dx =

1

k + 1
xk+1 ln(1 + x2)− 2

k + 1

∫
xk+2

1 + x2
dx. (38)

Second, notice that a partial fraction decomposition yields the integral of xm/(1 + x2)
(m = 0, 1, 2, . . .):

∫
xm

1 + x2
dx =

=





(−1)m/2 arctan(x) +
∑(m−2)/2

i=0
(−1)i

m−1−2i
xm−1−2i if m is even,

(−1)(m−1)/2 ln(1+x2)
2

+
∑(m−3)/2

i=0
(−1)i

m−1−2i
xm−1−2i if m is odd.

(39)

We may omit the polynomials in (39), since these would eventually be absorbed by the
irrelevant polynomial rn in formula (33), anyway. So, it follows from (37) and (39) that
we may use the following equality

∫
xk arctan(x)dx =

=





1
k+1

xk+1 arctan(x)− (−1)(k+1)/2

k+1
arctan(x) if k is odd,

1
k+1

xk+1 arctan(x)− (−1)k/2

2(k+1)
ln(1 + x2) if k is even.

(40)

In a similar fashion it follows from (38) and (39) that we may use the equality:

∫
xk ln(1 + x2)dx =

=





1
k+1

xk+1 ln(1 + x2)− 2(−1)(k+2)/2

k+1
arctan(x) if k is even,

1
k+1

xk+1 ln(1 + x2)− (−1)(k+1)/2

(k+1)
ln(1 + x2) if k is odd.

(41)

The induction assumption is that for a certain n it holds that:

Jn(x) = (pn,0 + pn,1 x + . . . + pn,n xn) arctan(x)

+
(
qn,0 + qn,1 x + . . . + qn,n−1 xn−1

)
ln(1 + x2) (42)
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where the coefficients pn,k (k = 0, 1, . . . , n) and qn,k (k = 0, 1, . . . , n − 1) are given by
formulas (34) and (35). It follows from (40), (41) and (42) that:

Jn+1(x) =

∫
Jn(x)dx

=

(
pn+1,0 + pn,0 x +

pn,1

2
x2 + . . . +

pn,n

n + 1
xn+1

)
arctan(x)

+
(
qn+1,0 + qn,0 x +

qn,1

2
x2 + . . . +

qn,n−1

n
xn

)
ln(1 + x2)

Note that Jn+1(x) has the shape of formula (33) with

pn+1,k = pn,k−1/k (k = 1, . . . , n + 1), (43)

qn+1,k = qn,k−1/k (k = 1, . . . , n). (44)

It follows from (43), (44) and the induction assumption that for k = 1, . . . , n + 1 we have:

pn+1,k =





(−1)(n−k+1)/2

(n−k+1)!(k−1)!k
= (−1)(n+1−k)/2

(n+1−k)!k!
if n + 1− k is even,

0 if n + 1− k is odd.

(45)

and for k = 1, . . . , n:

qn+1,k =





(−1)(n−k+2)/2

2(n−k+1)!(k−1)!k
= (−1)(n+1−k+1)/2

2(n+1−k)!k!
if n + 1− k is odd,

0 if n + 1− k is even.

(46)

Notice that formulas (45) and (46) are just (34) and (35) with n + 1 instead of n, so that
we have proved the correctness of the formula for k ≥ 1. Now we only have to prove that
pn+1,0 and qn+1,0 are also given by formulas (34) and (35). From (40) and (41) we have:

pn+1,0 =
∑

{k|1≤k≤n;k odd}
−(−1)(k+1)/2

k + 1
pn,k

+
∑

{k|0≤k≤n−1;k even}
−2(−1)(k+2)/2

k + 1
qn,k. (47)

Suppose that n is even. Then we have that n− k is odd when k is odd, and n− k is even
when k is even. This means that in this case all pn,k’s and qn,k’s in the two summations
of (47) are equal to zero. So, pn+1,0 = 0 if n is even. If n is odd, we have:

pn+1,0 =
∑

{k|1≤k≤n;k odd}
− (−1)(n+1)/2

(n− k)!(k + 1)!

+
∑

{k|0≤k≤n−1;k even}
− (−1)(n+3)/2

(n− k)!(k + 1)!
,

27



which can be rewritten as:

pn+1,0 = (−1)(n+1)/2

n∑

k=0

(−1)k

(n− k)!(k + 1)!

=
(−1)(n+1)/2

(n + 1)!

n∑

k=0

(−1)k

(
n + 1
k + 1

)
=

(−1)(n+1)/2

(n + 1)!
. (48)

The last equality of (48) follows from the fact that:

n∑

k=0

(−1)k

(
n + 1
k + 1

)
= −

n+1∑

l=1

(−1)l

(
n + 1

l

)

= −
(

n+1∑

l=0

(−1)l

(
n + 1

l

)
− 1

)
= 1, (49)

which follows from Newton’s binomium:
n+1∑

l=0

(−1)l

(
n + 1

l

)
=

n+1∑

l=0

(
n + 1

l

)
(−1)l 1n+1−l = (−1 + 1)n+1 = 0.

In a similar fashion it follows that

qn+1,0 =
∑

{k|1≤k≤n;k even}
−1

2

(−1)k/2

k + 1
pn,k

+
∑

{k|0≤k≤n−1;k odd}
−(−1)(k+1)/2

k + 1
qn,k. (50)

Suppose that n is odd. Then we have that n− k is odd when k is even, and n− k is even
when k is odd. This means that in this case all pn,k’s and qn,k’s in the two summations of
(50) are equal to zero. So, qn+1,0 = 0 if n is odd. If n is even, we have:

qn+1,0 =
∑

{k|1≤k≤n;k even}
−1

2

(−1)n/2

(n− k)!(k + 1)!

+
∑

{k|0≤k≤n−1;k odd}
−1

2

(−1)(n+2)/2

(n− k)!(k + 1)!
,

which can be rewritten as:

qn+1,0 =
(−1)(n+2)/2

2

n∑

k=0

(−1)k

(n− k)!(k + 1)!

=
(−1)(n+2)/2

2(n + 1)!

n∑

k=0

(−1)k

(
n + 1
k + 1

)
=

(−1)(n+2)/2

2(n + 1)!
, (51)

where the last equality follows from formula (49). From (48) and (51) and the fact that
pn+1,0 = 0 if n + 1 is odd, and qn+1,0 = 0 if n + 1 is even, we conclude that pn+1,0 and
qn+1,0 are also given by formulas (34) and (35), so that we have proved the theorem by
induction. 2
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A.2 The marginal and conditional distribution functions corre-
sponding to a three-layer neural network density

Suppose the random vector X = (X1, . . . , Xn)′ has the following density p(x1, . . . , xn):

p(x1, . . . , xn) =





nn(x1, . . . , xn) if xi ≤ xi ≤ x̄i ∀ i = 1, . . . , n

0 else
(52)

where [xi, x̄i] is the interval to which the variable xi (i = 1, 2, . . . , n) is restricted. Suppose
the function nn(x1, . . . , xn) is given by:

nn(x1, . . . , xn) =
H∑

h=1

ch g(ah1x1 + . . . + ahnxn + bh) + d (53)

with activation function:

g(x) =
1

π
arctan(x) +

1

2
. (54)

Then nn(x1, . . . , xn) can be rewritten as:

nn(x1, . . . , xn) =
H∑

h=1

ch

π
arctan(ah1x1 + . . . + ahnxn + bh) +

1

2

H∑

h=1

ch + d

=
H∑

h=1

ch

π
arctan(a′hx + bh) +

1

2

H∑

h=1

ch + d

Now the cumulative distribution function of X is given by:

CDFX(x̃1, . . . , x̃n) =

∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

nn(x1, . . . , xn)dx1dx2 · · · dxn

=
H∑

h=1

ch

π

∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

arctan(a′hx + bh)dx1dx2 · · · dxn

+

(
1

2

H∑

h=1

ch + d

)
x1x2 · · ·xn. (55)

Using the fact that dx1 = d(a′hx+ bh)/ah1 (for constant values of x2, . . . , xn), we make the
following change of variables:

∫ x̃1

x1

arctan(a′hx + bh)dx1 =

=
1

ah1

∫ ah1x̃1+a′h,−1x−1+bh

ah1x1+a′h,−1x−1+bh

arctan(a′hx + bh)d(a′hx + bh)

=
1

ah1

[
J1(ah1x̃1 + a′h,−1x−1 + bh)− J1(ah1x1 + a′h,−1x−1 + bh)

]
,
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where we define ah,−1 = (ah2, . . . , ahn)′ and x−1 = (x2, . . . , xn)′. In a similar fashion we
derive:

∫ x̃2

x2

∫ x̃1

x1

arctan(a′hx + bh)dx1dx2 =

=
1

ah1

[∫ x̃2

x2

J1(ah1x̃1 + ah2x2 + a′h,−12x−12 + bh)dx2

−
∫ x̃2

x2

J1(ah1x1 + ah2x2 + a′h,−12x−12 + bh)dx2

]

=
1

ah1ah2

[
J2(ah1x̃1 + ah2x̃2 + a′h,−12x−12 + bh)

−J2(ah1x̃1 + ah2x2 + a′h,−12x−12 + bh)

−J2(ah1x1 + ah2x̃2 + a′h,−12x−12 + bh)

+J2(ah1x1 + ah2x2 + a′h,−12x−12 + bh)
]
,

where we define ah,−12 = (ah3, . . . , ahn)′ and x−12 = (x3, . . . , xn)′. If we continue in this
way, we obtain the following formula:

∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

arctan(a′hx + bh)dx1dx2 · · · dxn =
1

ah1ah2 · · · ahn

×

×
1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+D2+···+Dn Jn(ah1x1,D1 + · · ·+ ahnxn,Dn + bh) (56)

where we define xi,0 = x̃i and xi,1 = xi (i = 1, 2, . . . , n), the upper and lower bounds of
the integration intervals. The primitive Jn(x) is given by Theorem A.1 in appendix A.1.
Substituting (56) into (55) yields:

CDFx(x̃1, . . . , x̃n) =

(
1

2

H∑

h=1

ch + d

)
x1x2 · · · xn+

+
H∑

h=1

ch

πah1ah2 · · · ahn

1∑
D1=0

· · ·
1∑

Dn=0

(−1)D1+···+Dn Jn

(
n∑

i=1

ahixi,Di
+ bh

)
. (57)

The marginal distribution functions CDF (xj) (j = 1, . . . , n) are now obtained by taking
x̃i = x̄i ∀i = 1, . . . , n; i 6= j:

CDFXj
(xj) = CDFx(x̄1, . . . , x̄j−1, xj, x̄j+1, . . . , x̄n). (58)

The conditional CDF of xj given xj+1, . . . , xn is given by:

CDF (x̃j|xj+1, . . . , xn) =

∫ x̃j

xj

∫ x̄j−1

xj−1
· · · ∫ x̄1

x1
nn(x1, . . . , xn)dx1 · · · dxj−1dxj

∫ x̄j

xj

∫ x̄j−1

xj−1
· · · ∫ x̄1

x1
nn(x1, . . . , xn)dx1 · · · dxj−1dxj

,
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for j = 1, 2, . . . , n− 1, where

∫ x̃j

xj

· · ·
∫ x̃2

x2

∫ x̃1

x1

nn(x1, . . . , xn)dx1dx2 · · · dxj =

=
H∑

h=1

ch

π

∫ x̃j

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

arctan(a′hx + bh)dx1dx2 · · · dxj

+

(
1

2

H∑

h=1

ch + d

)
x1x2 · · ·xj

=
H∑

h=1

ch

πah1ah2 · · · ahj

1∑
D1=0

· · ·
1∑

Dj=0

(−1)D1+···+Dj × (59)

×Jj

(
j∑

i=1

ahixi,Di
+

n∑
i=j+1

ahixi + bh

)
+

(
1

2

H∑

h=1

ch + d

)
x1x2 · · ·xj,

where we define xi,0 = x̃i and xi,1 = xi (i = 1, 2, . . . , j).
As we have formulas (57) and (59) indicating explicit expressions for the marginal

and conditional distribution functions, it is easy to sample a random vector from a three-
layer neural network density with (scaled) arctangent activation function. We can use the
inverse transformation method in the following way:

Step 1: Draw n independent U(0,1) variables U1, U2, . . . , Un.

Step 2: Draw Xn from its marginal distribution by computing the value of Xn such that
CDFXn(Xn) = Un.

Step 3: For j = n − 1, n − 2, . . . , 1 iteratively draw Xj from its conditional distribution on
Xj+1, . . . , Xn by computing the value of Xj such that CDF (Xj|Xj+1, . . . , Xn) = Uj.

A.3 Analytical expressions for the moments of a three-layer neu-
ral network distribution

Suppose the vector X = (X1, . . . , Xn)′ has the following density p(x1, . . . , xn):

p(x1, . . . , xn) =





nn(x1, . . . , xn) if xi ≤ xi ≤ x̄i ∀ i = 1, . . . , n

0 else
(60)

where [xi, x̄i] is the interval to which the variable xi (i = 1, 2, . . . , n) is restricted, and
where

nn(x1, . . . , xn) =
H∑

h=1

ch

π
arctan(a′hx + bh) +

1

2

H∑

h=1

ch + d. (61)
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Then the expectation of Xk
n (k = 1, 2, . . .) is given by:

E(Xk
n) =

=

∫ x̄n

xn

∫ x̄n−1

xn−1

· · ·
∫ x̄1

x1

xk
n · nn(x1, . . . , xn)dx1 · · · dxn−1dxn

=

∫ x̄n

xn

xk
n

[∫ x̄n−1

xn−1

· · ·
∫ x̄1

x1

nn(x1, . . . , xn)dx1 · · · dxn−1

]
dxn

=
H∑

h=1

ch

π

∫ x̄n

xn

xk
n

[∫ x̃n−1

xn−1

· · ·
∫ x̃1

x1

arctan(a′hx + bh)dx1 · · · dxn−1

]
dxn

+

(
1

2

H∑

h=1

ch + d

)
1

k + 1
(x̄1 − x1) · · · (x̄n−1 − xn−1)(x̄

k+1
n − xk+1

n )

=
H∑

h=1

ch

πah1 · · · ah,n−1

1∑
D1=0

· · ·
1∑

Dn−1=0

[
(−1)D1+···+Dn−1× (62)

×
∫ x̄n

xn

xk
n Jn−1

(
n−1∑
i=1

ahixi,Di
+ ahnxn + bh

)
dxn

]

+

(
1

2

H∑

h=1

ch + d

)
1

k + 1
(x̄1 − x1) · · · (x̄n−1 − xn−1)(x̄

k+1
n − xk+1

n ),

where we define xi,0 = x̄i and xi,1 = xi (i = 1, 2, . . . , n − 1), the upper and lower bounds
of the integration intervals. We now make use of the following theorem:

Theorem A.2: If the n-th integral of a certain function f : R→ R is given by Jn : R→ R,
then it holds for ah, x ∈ Rn and k = 0, 1, 2, . . . that:

∫
xk

i Jn(a′hx + bh)dxi =

=
1

ahi

k∑
m=0

(
− 1

ahi

)m
k!

(k −m)!
xk−m

i Jn+1+m(a′hx + bh). (63)

Proof: We will prove this theorem by induction with respect to k. First, note that for
k = 0 we have:

∫
Jn(a′hx + bh)dxi =

1

ahi

∫
Jn(a′hx + bh)d(a′hx + bh) =

1

ahi

Jn+1(a
′
hx + bh).

It is easily verified that this corresponds to Theorem A.2 for k = 0. Now suppose that
our proposition holds for a certain nonnegative integer k. Then we have to show that this
implies that the proposition also holds for k + 1.
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Partial integration with xk+1
i as the factor to be differentiated yields:

∫
xk+1

i Jn(a′hx + bh)dxi =

= xk+1
i

[∫
Jn(a′hx + bh)dxi

]
− (k + 1)

∫
xk

i

[∫
Jn(a′hx + bh)dxi

]
dxi

= xk+1
i

1

ahi

Jn+1(a
′
hx + bh)− k + 1

ahi

∫
xk

i Jn+1(a
′
hx + bh)dxi (64)

The induction assumption is that Theorem A.2 holds for the value k. Using this induction
assumption we rewrite the second term of (64) as:

− 1

ahi

(k + 1)

∫
xk

i Jn+1(a
′
hx + bh)dxi =

=
1

ahi

k∑
m=0

(
− 1

ahi

)m+1
(k + 1)!

(k −m)!
xk−m

i Jn+2+m(a′hx + bh)

=
1

ahi

k+1∑
j=1

(
− 1

ahi

)j
(k + 1)!

(k + 1− j)!
xk+1−j

i Jn+1+j(a
′
hx + bh) (65)

Adding (65) to the first term of (64) yields:

∫
xk+1

i Jn(a′hx + bh)dxi =

=
1

ahi

k+1∑
j=0

(
− 1

ahi

)j
(k + 1)!

(k + 1− j)!
xk+1−j

i Jn+1+j(a
′
hx + bh) (66)

which is just equation (63) with k + 1 instead of k. We conclude that we have proved
Theorem A.2 by induction. 2

Substituting equation (63) of Theorem A.2 into (62) yields:

E(Xk
n) =

H∑

h=1

ch

πah1 · · · ahn

1∑
D1=0

· · ·
1∑

Dn=0

[
(−1)D1+···+Dn×

×
k∑

m=0

(
− 1

ahn

)m
k!

(k −m)!
xk−m

n Jn+m(a′hx + bh)

]
(67)

+

(
1

2

H∑

h=1

ch + d

)
1

k + 1
(x̄1 − x1) · · · (x̄n−1 − xn−1)(x̄

k+1
n − xk+1

n ).

Of course, formula (67) can easily be adjusted to the general case of E(Xk
i ) (i = 1, 2, . . . , n)
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by taking ahi and xi instead of ahn and xn:

E(Xk
i ) =

H∑

h=1

ch

πah1 · · · ahn

1∑
D1=0

· · ·
1∑

Dn=0

[
(−1)D1+···+Dn× (68)

×
k∑

m=0

(
− 1

ahi

)m
k!

(k −m)!
xk−m

i Jn+m

(
n∑

i=1

ahixi,Di
+ bh

)]

+

(
1

2

H∑

h=1

ch + d

)
1

k + 1
(x̄k+1

i − xk+1
i )

n∏

j=1;j 6=i

(x̄j − xj)

In a similar fashion it can be derived that E(XiXj) (i, j = 1, 2, . . . , n; i 6= j) is equal to:

E(XiXj) =
H∑

h=1

ch

πah1 · · · ahn

1∑
D1=0

· · ·
1∑

Dn=0

(−1)D1+···+Dn ×

×
[
xixjJn

(
n∑

i=1

ahixi,Di
+ bh

)

−ahixi + ahjxj

ahiahj

Jn+1

(
n∑

i=1

ahixi,Di
+ bh

)
(69)

+
1

ahiahj

Jn+2

(
n∑

i=1

ahixi,Di
+ bh

)]

+

(
1

2

H∑

h=1

ch + d

)
1

4
(x̄2

i − x2
i )(x̄

2
j − x2

j)
n∏

k=1;k 6=i,j

(x̄k − xk).

Using formulas (68) and (69), one can easily compute statistics of a three-layer feed-forward
neural network distribution, such as mean, variance, skewness, kurtosis, covariances and
correlations.
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B Sampling from a four-layer neural network distri-

bution

Appendix B.1 discusses how to draw from a four-layer neural network distribution us-
ing Gibbs sampling. Appendix B.2 shows another way to draw from a four-layer neural
network: auxiliary variable Gibbs sampling.

B.1 Gibbs sampling from a four-layer neural network distribu-
tion

Suppose a density kernel of X ∈ Rn is given by

p(x) =

{
nn(x) if xi ∈ [xi, x̄i] ∀i = 1, . . . , n
0 else

(70)

where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is restricted. Suppose the function
nn(x) corresponds to the following four-layer feed-forward neural network with n inputs
xi (i = 1, . . . , n), and H hidden cells:

nn(x) = exp

(
H∑

h=1

ch plin

(
n∑

i=1

ahixi + bh

)
+ d

)
, (71)

where plin : R→ R is the following piecewise-linear function:

plin(x) =





0 x < −1/2
x + 1/2 −1/2 ≤ x ≤ 1/2

1 x > 1/2
(72)

We rewrite the neural network density nn(x) = nn(xj, x−j) as

nn(xj, x−j) = exp

(
H∑

h=1

ch plin

(
n∑

i=1

ahixi + bh

)
+ d

)

∝ exp

(
H∑

h=1

ch plin

(
ahjxj +

n∑

i=1,i 6=j

ahixi + bh

))
,

which is a kernel of the conditional density of xj given x−j. Each hidden cell h (h =
1, . . . , H) has two points xj, where its input a′hx + bh moves from one of the intervals
(−∞,−1/2), [−1/2, 1/2] and (1/2,∞) to another one:

ahjxj +
n∑

i=1,i6=j

ahixi + bh = ±1

2
⇔

xj =
1

ahj

(
±1

2
−

n∑

i=1,i6=j

ahixi − bh

)
(73)
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Consider only those ‘changing points’ x̃j,k (k = 1, . . . , m with m ≤ 2H) that are in the
interval of interest [xj, x̄j], and order these m points such that:

x̃j,1 < x̃j,2 < · · · < x̃j,m−1 < x̃j,m

If we define x̃j,0 = xj and x̃j,m+1 = x̄j, we have m+1 intervals [x̃j,k, x̃j,k+1] (k = 0, 1, . . . , m)
on which a kernel of the conditional density of Xj given X−j is given by:

nn(xj, x−j) ∝ exp(ãkxj + b̃k) (74)

with

ãk =
H∑

h=1

chahjD1,k,h

b̃k =
H∑

h=1

{
ch

(
n∑

i=1,i 6=j

ahixi + bh +
1

2

)
D1,k,h + chD2,k,h

}

where the dummies D1,k,h and D2,k,h, defined by:

D1,k,h =

{
1 if − 1

2
<

∑n
i=1 ahixi + bh < 1

2

0 else

and

D2,k,h =

{
1 if

∑n
i=1 ahixi + bh > 1

2

0 else

are constant within each interval [x̃j,k, x̃j,k+1]. Equation (74) follows from the fact that:

ch plin

(
n∑

i=1

ahixi + bh

)
=

=





ch if D2,k,h = 1

(chahj)xj + ch

(∑n
i=1,i 6=j ahixi + bh + 1

2

)
if D1,k,h = 1

0 else

(75)

The primitive of (74) is given by

∫
exp(ãkxj + b̃k)dxj =





1
ãk

exp(ãkxj + b̃k) + Ck if ãk 6= 0

exp(b̃k)xj + Ck if ãk = 0.

where Ck (k = 0, 1, . . . ,m) are integration constants. In order to obtain a proper kernel
of the conditional CDF that starts at the value 0 and is continuous in the points x̃j,k

(k = 1, 2, . . . , m), we recursively determine the constants Ck in the following way:

C0 =




− 1

ã0
exp(ã0xj + b̃0) if ã0 6= 0

− exp(b̃0) xj if ã0 = 0.

36



and for k = 1, 2, . . . , m:

Ck = Ck−1 +
1

ãk−1

exp(ãk−1x̃j,k + b̃k−1)− 1

ãk

exp(ãkx̃j,k + b̃k)

if ãk−1, ãk 6= 0, and otherwise analogously.
After a kernel of the conditional CDF has been obtained, it is easy to sample Xj from

its conditional distribution using the inverse transformation method. First, the ‘scaling
constant’ S of the kernel is computed:

S ≡
∫ x̄j

xj

exp

(
H∑

h=1

ch g

(
ahjxj +

n∑

i=1,i6=j

ahixi + bh

))
dxj

=





1
ãm

exp(ãmx̄j + b̃m) + Cm if ãm 6= 0

exp(b̃m)x̄j + Cm if ãm = 0.

(76)

Then we draw Xj by drawing U ∼ U(0, 1), and solving

U =
1

S

(
1

ãk

exp(ãkXj + b̃k) + Ck

)
⇔ Xj =

log [ãk (S U − Ck)]− b̃k

ãk

or

U =
1

S

(
exp(b̃k)Xj + Ck

)
⇔ Xj =

S U − Ck

exp(b̃k)

depending on whether Xj falls in a region with ãk = 0 or not.
Since it is easy to draw Xj conditional on X−j (j = 1, . . . , n), it is easy to perform

Gibbs sampling from a four-layer neural network distribution.

B.2 Auxiliary variable Gibbs sampling from a four-layer neural
network distribution

Suppose a density kernel of X ∈ Rn is given by

p(x) =

{
nn(x) if xi ∈ [xi, x̄i] ∀i = 1, . . . , n
0 else

(77)

where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is restricted. Suppose the function
nn(x) corresponds to the following four-layer feed-forward neural network with n inputs
xi (i = 1, . . . , n), and H hidden cells:

nn(x) = exp

(
H∑

h=1

ch g

(
n∑

i=1

ahixi + bh

)
+ d

)
, (78)

where g : R → R is a monotonically increasing function taking its values in [0,1], which
is invertible on the interval (x, x̄) where it takes its values in (0,1). We will denote this
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invertible function by g̃ : (x, x̄) → (0, 1) with inverse g̃−1 : (0, 1) → (x, x̄). Note that the
interval (x, x̄) may be equal to (−∞,∞).

Auxiliary variable Gibbs sampling is possible if the density kernel p can be decomposed
as follows:

p(x) ∝ π(x)
K∏

k=1

lk(x), (79)

where π is a density kernel from which sampling is easy, and lk (k = 1, . . . , K) are non-
negative functions of x ∈ Rn. The trick is that a set U = (U1, . . . , UK) of auxiliary
variables is introduced such that a kernel of the joint density of X and U is given by:

p(x, u) ∝ π(x)
K∏

k=1

I {0 < uk < lk(x)} . (80)

It is easily seen that (79) is a marginal density kernel corresponding to the joint density
(80). Therefore one can sample X ∼ p(x) by sampling both X and U from (80) and
forgetting U .

Kernels from the conditional distributions of X and U are easily obtained from the
joint density kernel:

p(x|u) ∝ π(x)I {lk(x) > uk, k = 1, . . . , K} (81)

p(u|x) ∝
K∏

k=1

I {0 < uk < lk(x)} (82)

It follows from (81) and (82) that an iteration of the auxiliary variable Gibbs sampler
consists of drawing X from a truncated version of an ‘easy’ distribution with density
kernel π, and sampling Uk (k = 1, . . . , K) from K independent uniform distributions.

We rewrite (77) as:

p(x) ∝
n∏

i=1

I {xi < xi < x̄i}
H∏

h=1

exp

(
ch g

(
n∑

i=1

ahixi + bh

))
. (83)

which has the shape of (79) with

π(x) =
n∏

i=1

I {xi < xi < x̄i} , (84)

lh(x) = exp

(
ch g

(
n∑

i=1

ahixi + bh

))
for h = 1, . . . , H. (85)

where π(x) is the ‘easy’ density kernel of n independent variables Xi (i = 1, . . . , n) with
distribution U(xi, x̄i).

Drawing U conditionally on the values of X is straightforward. Combining (82) and
(85), it follows that the elements Uh (h = 1, . . . , H) are drawn independently from the
distributions:

Uh|X = x ∼ U

(
0, exp

[
ch g

(
n∑

i=1

ahixi + bh

)])
(86)
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Drawing X conditionally on the values of U is a little harder. There are two approaches to
do this. The first approach is to draw random vectors X from the ‘unrestricted’ distribu-
tion in (18), that is, drawing the elements Xi (i = 1, . . . , n) independently from U(xi, x̄i),
until the inequalities lh(x) > uh (h = 1, . . . , H) are all satisfied. However, this acceptance-
rejection approach is probably very inefficient. The second approach is to break up X,
and sample the elements Xi (i = 1, . . . , n) conditionally on the values of U and the set of
all other elements X−i.

Combining (81), (84) and (85), we derive a density kernel of the conditional distribution
of Xi given X−i and U :

p(xi|u, x−i) ∝ I {xi < xi < x̄i} I {lh(xi, x−i) > uh, h = 1, . . . , H} (87)

We now take a closer look at the inequalities lh(xi, x−i) > uh (h = 1, . . . , H). First, we
can rule out that ch = 0 for any h, since in this case we just delete the involved hidden
cell.

Now suppose that ch > 0. Then lh takes its values in the interval [1, exp(ch)], as
g takes its values in [0,1]. This means that uh has to lie in (0, exp(ch)), as we have
0 < uh < lh ≤ exp(ch). We conclude that if uh ∈ [0, 1], the inequality lh(xi, x−i) > uh is
always satisfied, that is, it does not imply any restriction on the value of xi. However, if
uh ∈ (1, exp(ch)), the inequality can be rewritten as:

exp

(
ch g

(
n∑

j=1

ahjxj + bh

))
> uh ⇔

g

(
n∑

j=1

ahjxj + bh

)
>

log(uh)

ch

.

Since uh ∈ (1, exp(ch)) implies that log(uh)/ch ∈ (0, 1), we rewrite this as:

n∑
j=1

ahjxj + bh > g̃−1

(
log(uh)

ch

)
,

which is equivalent with

ahixi > g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

)
,

so that if ahi > 0, we obtain a lower bound:

xi >
1

ahi

(
g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

))
, (88)

whereas if ahi < 0, we get an upper bound:

xi <
1

ahi

(
g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

))
. (89)
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Now suppose that ch < 0. Then lh takes its values in the interval [exp(ch), 1], so that
uh lies in (0, 1). We conclude that if uh ∈ [0, exp(ch)], the inequality lh(xi, x−i) > uh does
not imply any restriction on the value of xi. However, if uh ∈ (exp(ch), 1), the inequality
can be rewritten as:

exp

(
ch g

(
n∑

j=1

ahjxj + bh

))
> uh ⇔

ahixi < g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

)
,

so that if ahi > 0, we obtain an upper bound:

xi <
1

ahi

(
g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

))
, (90)

whereas if ahi < 0, we get a lower bound:

xi >
1

ahi

(
g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

))
. (91)

Note that the conditions uh ∈ (1, exp(ch)) for ch > 0 and uh ∈ (exp(ch), 1) for ch < 0
can be summarized by the condition

log(uh)

ch

∈ (0, 1),

the interval for which the inverse g̃−1 exists. So, it follows from (88), (89), (90) and (91)
that the conditions

lh(xi, x−i) > uh, h = 1, . . . , H

in (87) are equivalent with

xi >
1

ahi

(
g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

))
,

for those h with chahi > 0 and log(uh)/ch ∈ (0, 1) , and

xi <
1

ahi

(
g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

))
,

for those h with chahi < 0 and log(uh)/ch ∈ (0, 1).
Note that if we consider lh(xi, x−i) as a function of xi for given values of x−i, denoted

by lh,x−i
(xi), then the inverse l−1

h,x−i
(if it exists) is given by:

l−1
h,x−i

(uh) =
1

ahi

(
g̃−1

(
log(uh)

ch

)
−

(
n∑

j=1,j 6=i

ahjxj + bh

))
. (92)
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We conclude that (87) is a density kernel of the distribution

Xi|U = u,X−i = x−i ∼ U(xi,LB(u, x−i), xi,UB(u, x−i)), (93)

with

xi,LB(u, x−i) = max

{
max

1≤h≤H

{
l−1
h,x−i

(uh)

∣∣∣∣chahi > 0,
log(uh)

ch

∈ (0, 1)

}
, xi

}

xi,UB(u, x−i) = min

{
min

1≤h≤H

{
l−1
h,x−i

(uh)

∣∣∣∣chahi < 0,
log(uh)

ch

∈ (0, 1)

}
, x̄i

}
,

where l−1
h,x−i

(uh) is given by (92), and where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n)
is a priori restricted.

The auxiliary variable Gibbs sampling procedure is now given by:

Initialization: Choose feasible x0 = (x0
1, . . . , x

0
n).

Do for j = 1, 2, . . . ,m

Do for h = 1, 2, . . . , H

Obtain uj
h ∼ Uh|X = xj−1 from (86).

Do for i = 1, 2, . . . , n

Obtain xj
i ∼ Xi|U = uj, X−i = xj−1

−i from (93).

Here xj−1
−i denotes

xj−1
−i = xj

1, . . . , x
j
i−1, x

j−1
i+1 , . . . , xj−1

n ,

the set of all components except xi at their current values. Note that this procedure only
requires drawing from uniform distributions, which is done easily and fast.
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