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CHAPTER 1 

Introduction and Aims of the studies 
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1.1 GENERAL INTRODUmON 

Inhalation of aerosolized drugs has become an established means for treatment 
of pulmonary diseases in the last fifiy years [1-4J. The majoriry of aerosol therapy in 
childhood concerns inhaled corticosteroids and bronchodilators in the management 

of asthma [3,5J. Administration of drugs via the inhaled route has major advantages 
over the oral route. The drug is targeted directly to its site of action, which results in 

a more rapid effect and a lower dose needed with less systemic side effects [1,2,6-9J. 
However, to deliver the drug into the lungs reliably and reproducibly is difficult, 
especially in children [lO,l1J. It requires understanding of the mechanisms of aerosol 
deposition in the lungs and knowledge about the factors affecting delivery and 
deposition of aerosols. There are several ways to deliver therapeutic aerosols to the lungs. 
The current methods can be classified in three categoties: nebulizers, pressurized metered 
dose inhales (pMDI's) with or without spacer, and dry powder inhalers (DP!'s) [10-
16J. Not all systems are suirable for use in young children [1O,13,17,18J. Application 
of aerosol therapy in young children requires a different approach compared vvith adults 
and older children. Factors such as age, co-operation, breathing pattern, nose breathing 
and size of the airways should be raken into account as they can have substantial effect 
on the dose delivered to the lungs. Nebulizers have long been the mainstay of aerosol 

therapy in children [1 ,13J. Currently, the pMDI combined with spacer is 
recommended as the first choice for asthma therapy in young children [13,19-21]. 
However, the pMDIIspacer and most other aerosol delivery systems were primarily 
designed for use in adults, and subsequently adapted for use in children. 
Furthermore, studying efficiency of aerosol delivery systems in young children is difficult 
and has ethical limitations. This explains why there is extended information available 
on the performance of aerosol delivery systems in adults, but only limited data in 
children. The use of drugs with potential side effects, such as corticosteroids [22-28J, 
requires precise dosing with the administration of the lowest effective dose. Therefore, 

knowledge about the dose inhaled and factors affecting this dose for each particular 
drug, device and patient is necessary for optimal application of aerosol therapy. Better 
understanding of aerosol therapy in children is urgently needed. 

1.2 OUTLINES AND AIMS Of THE STUDIES 

The aim of our studies was to improve the quality of aerosol therapy in clinical 
pediatric practice. Our studies mainly focussed on the performance of pMDIIspacers 
to deliver inhaled corticosteroids in young children with recurrent wheeze or asthma, 

since asthma or recurrent wheeze is the most common diagnosis in children in whom 

aerosol therapy is used. Furthermore, the pMDl/spacer combination is the most 

convenient and most vvidely used device for maintenance asthma therapy in children. 
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Knowledge about aerosol delivery efficiency is particularly important for inhaled 
corticosteroids, because of their potential side effects. 

Extensive background information on aerosol therapy and delivery systems in 

children is presented in chapter 2. 

REPRODUCIBIUTY OF DOSE 
Predictable and reproducible dosing is important to balance the lowest dose with 

maximal therapeutic effect and minimal risk of side effectS. Surprisingly, dose-to-dose 
or within-subject variability of delivery from pMDl/spacers is not known for young 
children. It is known that many factors in a spacer can affect its dose delivery [29-34]. 
An important factor is electrostatic charge, which can be present on the inner surface 
of a plastic spacer and hence reduce the delivered dose substanrially [32,35,36]. The 
introduction of a metal spacer eliminated the problem of electrostatic charge and was 
shown to deliver aerosol to children effectively [37,38]. All srudies measuring dose delivery 
from pMDIIspacers in children have been performed in a laboratory setting in which 
the administration was performed under well-defined controlled conditions. Clearly, 
this does not reflect the daily life situation. In the first srudy described in chapter 3 we 
aimed to assess and compare dose variabilirywithin children from 1-8 years from plastic 
and metal pMDI/spacers in a daily life setting. 

In a second study we investigated within-subjecr dose variability in children aged 
0-2 years old in daily life. We thereby aimed to investigate the effect of electrostatic 
charge on dose delive.ry and dose variability by comparing a metal spacer, a detergent 
coated and non-detergent coated plastic spacer. Additionally, we investigated how factors 
such as co-operation during the administration and inhalation technique affect the dose 
delivery and dose variability by using diary cards and video recordings. This study is 
described in chapter 4. 

In both studies aerosol from the spacer was collected by means of filters, 
interposed between pMDIIspacer and child. 

LUNG DEPOSmON 
Filter srudies measure the toral dose inhaled by the patient. This is the dose that 

is delivered to the mouth, but this does not necessarily reflect the amount of drug 
deposited in the lung. Therefore we aimed to study lung deposition from 
pMDI/spacers in children using radiolabelled aerosol. The aim of the study described 
in chapter 5 was to determine the lung deposition in asthmatic children of different 

, ages inhaling through a plastic spacer with minimal electrostatic charge. 

BREATHING PATTERN AND DEPOSmON 
To study in detail how breathing patterns affect aerosol deposition in young 

children we aimed ro develop an upper airway model of an infant. The making of this 
model is described in chapter 6. The model is called the SAINT-model, which is an 
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acronym of Sophia Anatomical Infant Nose Throat model. The SAINT-model can be 
used in an experimental set-up using simulated infant breathing patterns. 

We aimed to srudythe influence of tidal volume and respiratory rate on aerosol 
deposition from 4 pMO II spacer combinations, using the SAINT-model and a breathing 
simulator. Spacer-output, upper airway deposition, dose delivered to the lungs and 
panicle size distribution were studied for different tidal volumes and respiratory rates. 
This srudy is described in chapter 7. 

Poor co-operation during the administration procedure is a major problem in 
young childten. Crying has been shown to reduce lung deposition to almost zero [39,40]. 
Therefore, it has been suggested that aerosol adtninstration during sleep might be more 
effective for toddlers. However, the efficiency of administration during sleep is not 
known. We aimed to study in vitro the dose reaching the lungs from a pMOIlspacer 
using in vivo recorded breathing patterns of awake and sleeping children in the SAINT 
model. This study is described in chapter 8. 

PARTICLE SIZE AND DEPOSITION 
The banning of pMOI's containing chlorofluorocarbon (CFC) propellants to 

prevent further damage to the ozone-layer lead to the development of new inhaler 
devices. A recently introduced pMOI with hydtofluoroalkane (HFA)-134a propellant 
containing beclomethasone dipropionate (BOP) has a large proportion of small particles 
considerably below the panicle size of currently available pMDI's. Smaller particles 
are more likely to bypass the upper airways of young children [41-44]. In the srudy 
described in chapter 9 we aimed to compare the dose delivered to the lungs and the 
panicle size distribution ofHFA-BOP and CFC-BOP at different breathing patterns 
in the SAIl'<'T-model. 

Chapter 10 gives a summary of the studies in this thesis, a general discussion with 
recommendation for aerosol therapy in young children and directions for future reseach. 

REFERENCES 

1. Everard ML, LeSouefPN. Aerosol therapy and delivery systems. In: Taussig LM, 
Landau LI, eds. Pediatric respiratory medicine. St. Lows: Mosby, 1999: 286-
299. 

2. Everard ML. Aerosol therapy past, present, and future: a clinician's perspective. 
Res?ir Care 2000; 45: 769-76. 

3. International consensus report on diagnosis and management of asthma. Eur 
Respir} 1992; 5: 601-641. 

4. Fink JB. Metered-dose inhalers, dty powder inhalers, and transitions. Repir Care 

2000; 45: 623-35. 



Introduction 115 

5. Warner JO. Review of prescribed treatment for children with asthma in 1990. 
EM] 1995; 311: 663-6. 

6. Volovitz B, Amir J, Malik H, Kauschansl.,), A, Varsano 1. Growth and piruirary­
adrenal function in children with severe asthma treated with inhaled budesonide. 
N Eng!] Med 1993; 329: 1703-8. 

7. Ilangovan P, Pedersen S, Goc!.&ey S, Nikander K, Noviski N, Warner JO. 
Treatment of severe sreroid dependent preschool asthma with nebulised budes­
onide suspension. Arch Dis Child 1993; 68: 356-9. 

8. Brownlee KG. A rationale for use of nebulized steroids in children. Eur Respir 
Rev 1997; 7: 177-179. 

9. Barnes PJ, Pedersen S, Busse ww. Efficacy and safety of inhaled corticosteroids: 
new developmenrs. Amer] Respir Cnt Care Med 1998; 157: SI-S53. 

10. Cole CH. Special problems in aerosol delivery: neonatal and pediatric consid­
erations. Respir Care 2000; 45: 646-51. 

11. Everard ML Trying to deliver aerosols to upset children is a thankless task. Arch 
Dis Child 2000; 82: 428. 

12. Canny G, Levison H. Aerosols- therapeutic use and delivery in childhood asth-
ma. Annals ofA!lergy 1988; 60: 11-23. 

13. Bisgaard H. Aerosol treatment of young children. Eur Respir Rev 1994; 4: 15-20. 
14. FinkJE. Aerosol device selection: evidence to practice. Respir Care 2000; 45: 874-85. 
15. Nikander K Drug delivery systems.] Aeroso!Med 1994; 7: SI9-S24. 
16. Sly PD. Delivery systems in the management of childhood asthma. Aust Fam 

Physician 1991; 20: 1113-4, 1116-8. 
17. Pedersen S. Inhalers and nebulizers: which to choose and why. Respir Med 1996; 

90: 69-77. 
18. Dolovich M. Aerosol delivery to children: what to use, how to choose. Pediatr 

Pu!mono! Supp! 1999; 18: 79-82. 
19. Dolovich M. Rationale for spacer use in children. Pediat Pu!m 1997;: 184-185. 
20. O'Callaghan C, Barry PW Asthma drug delivery devices for children. EM]2000; 

320: 664. 
21. O'Callaghan C, Barry PW How to choose delivery devices for asthma. Arch 

Dis Chi!d2000; 82: 185-7. 
22. Doull IJ, Freezer NJ, Holgate ST. Growth of prepubertal children with mild 

asthma treated with inhaled beclomethasone dipropionate. Am] Respir Cnt Care 
Med 1995; 151: 1715-9. 

23. Agertoft L, Pedersen S. Short-term knemometry and urine cortisol excretion 
in children treated with fluticasone propionate and budesonide: a dose response 
study. Eur Respir] 1997; 10: 1507-12. 

24. Agertoft L, Pedersen S. Bone mineral densiry in children with asthma receiv­
ing long-term treatment with inhaled budesonide. AmerJ Respir Crit Care Med 
1998; 157: 178-183. 



~ 

.l'! 
"-
~ 

= w 

16 

25. Boot AM, de ]ongste ]C, Verberne AA, Pols HA, de Muinck Keizer-Schrama 
SM. Bone mineral density and bone metabolism of prepubenal children with 
asthma after long-term treatment with inhaled conicosteroids. Pediatr 

Pulmonoll997; 24: 379-84. 
26. Philip M, Aviram M, Leiberman E, Zadik Z, Giat Y, Levy], Tal A. Integrated 

plasma cortisol concentration in children with asthma receiving long-term in­

haled corticosteroids. Pediatric pulmonolI992; 12: 84-9. 
27. Kamada AK, Parks DP, Szefler S]. Inhaled glucocorticoid therapy in children: 

How much is safe? Pediatric pulmonolI992; 12: 71-2. 
28. Priftis K, Milner AD, Conway E, Honour JW Adrenal function in asthma. Arch 

Dis Child 1990: 65: 838-40. 
29. Wudhaber ]H, Devadason SG, Eber E, Hayden M, Everard ML, Summers QA, 

LeSouefPN. Effect of electrostatic charge, flow, delay and multiple actuations 
on the in vitro delivery of salbutamol from different small volume spacers for 

infants. Thorax 1996: 51: 985-8. 
30. 

3l. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

Barty pw, Robertson CF, O'Callaghan C. Optimum use of a spacer device. Arch 
Dis Child 1993; 69: 693-4. 
Barty pw, O'Callaghan C. Multiple actuations of salburamol MOl into a spac­
er device reduce the amount of drug recovered in the respirable range. Eur Respir 
] 1994; 7: 1707-9 . 
Barty pw, O'Callaghan C. The effect of delay, multiple actuations and spacer 
static charge on the in vitro delivety of budesonide from the Nebuhaler. BrJ 
Clin Pharmacoll995; 40: 76-8. 
Barty pw, O'Callaghan C. Inhalational drug delivety from seven diffi:rent spac­
er devices. Thorax 1996; 51: 835-40. 
Barty pw, O'Callaghan C. The output ofbudesonide from spacer devices assessed 
under simulated breathing conditions.] Allergy Clin Immunoll999: 104: 1205-10. 
O'Callaghan C. Lynch], Cant M, Robertson C. Improvement in sodium cro­
moglycate delivery nom a spacer device by use of an antistatic lining, immediate 
inhalation, and avoiding multiple actuations of drug. Thorax 1993; 48: 603-6. 
Wildhaber ]H, Devadason SG, Hayden M], James R, Dufty AP, Fox RA, 
Summers QA, et al. Electrostatic charge on a plastic spacer device influences 

the delivery of salbutamol. Eur RespirJ 1996; 9: 1943-6. 
Bisgaard H, Anhoj ], Klug B, Berg E. A non-electrostatic spacer for aerosol de­
livery. Arch Dis Child 1995; 73: 226-30. 
Bisgaard H. A metal aerosol holding chamber devised for young children with 
asthma. Eur RespirJ 1995; 8: 856-60. 
Tal A, Golan H, Grauer N, Aviram M, Albin 0, Quastel MR. Deposition pat­
tern of radiolabeled salburamol inhaled from a metered-dose inhaler by means 
of a spacer with mask in young children with airway obstruction.] Pediatr 1996; 
128: 479-84. 



Introduction 117 

40. Iles R, Lister P, Edmunds AT. Crying significantly reduces absorption of 
aerosolised drug in infants. Arch Dis Child 1999; 81: 163-5. 

41. Phalen RF, Oldham MJ, Mautz \X7]. Aerosol deposition in the nose as a func­
tion of body size. Health Phys 1989; 57: 299-305. 

42. Phalen RF, Oldham MJ, Kleinman MT, Crocker TT. Tracheobronchial depo­
sition predictions for infants, children and adolescents. Ann Occup Hyg 1988; 
32: 11-2l. 

43. Hofmann W, Martonene TB, Graham RC. Predicted deposition of nonhy­
groscopic aerosols in the human lung as a function of subject age. ] Aerosol 
Medicine 1989; 2: 49-57. 

44. Dolovich MA. Influence of inspiratory flow rate, particle size, and airway cal­
iber on aerosolized drug delivery to rhe lung. Respir Care 2000; 45: 597-608. 





CHAPTER 2 

Aerosol therapy and delivery systems 

In young children: Science and practice 

H.M. Janssens, J.e. de Jongste, H.A.W.M. Tiddens 

Department of Pediatrics, division of Respiratory Medicine, Sophia Children's 
Hospital/Erasmus Medical Centre, Rotterdam, The Netherlands 



N 

20 

2.1 INTRODUmON 

Aerosol therapy in the management of pediatric respiratory disorders has gained 
importance over the last decades. Aerosol therapy is now the mainstay of asthma 
management in children, and is increasingly used for other respiratory disorders such 
as cystic fibrosis and broncbopulmonary dysplasia. Thererore, aerosol therapy in pediatrics 
has a wide field of application, and is relevant to a wide variery of patients, including 
premarures and adult-sized teenagers [I]. Aerosol therapy should be effective and efficient 
in these different patients. 

Aerosol therapy is considerably more complex than oral therapy, since drugs 
must be delivered to an organ that is specialized in excluding foreign material. To 
deliver drugs to the lungs efficiendy and reproducibly is extremely difficult, especially 
in young children. Effective aerosol delivery in the young child requires specific 
knowledge by the prescribing clinician. Success or failure of aerosol therapy depends 
on numerous mctors. Despite the complexiry of the method, treatment of pulmonary 
disease via inhalation of aerosols has major advantages compared with oral therapy. 
The medication is directly targeted to the site of action. Therefore there is a more 
rapid therapeutic effect and relatively low doses are required, compared with 
systemically delivered drugs. As a consequence, aerosol therapy has a favorable 
efficacy/toxicity ratio. Furthermore, inhalation of drugs is a non-invasive alternative 
to deliver drugs with poor gastrointestinal absorption or a high first-pass effect by 
the liver. 

Delivery of aerosolized agents to the lungs for therapeutic purposes has been 
used for many centuries [2]. Inhalation of smoke of burning plants has been used since 
ancient times. In recent centuries, the "asthma cigarene" was used as the first portable 
aerosol delivery system, in which anticholinergic agents were inhaled during smoking 
[2]. Since the late nineteenth century, devices specifically designed to aerosolize 
therapeutic products were developed, like the steam driven atomizer and the hand-bulb 
nebulizer [2] (figure 1). The latrer was the only available option for a porrable hand­
held aerosol delivery system before the introduction of the pressurized metered dose 
inhaler (pMDI) in 1956 [3]. Since the last fifi:y years, aerosol tecbnology has developed 
rapidly, resulting in a great nwnber of different aerosol delivery devices. However, most 
aerosol delivery systems were primarily designed for use in adults and subsequently 
adapted for use in children. As a consequence, there is extended information available 
on the performance of aerosol delivery systems in adults, but only limited data for 
children and for those of pre-school age in particular. 

In the following section we will discuss the indications for aerosol therapy in 
cbildren. Next, the basic principles underlying aerosol delivery and deposition and the 
methods to study the efficiency of aerosol delivery are discussed. Next, the requirements 
for aerosol delivery systems in children are discussed. Finally, currendy available aerosol 
delivery systems are discussed with respect to their use in children. 
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FIGURE 1. Hand bulb nebulizer 

2.2 INDICATIONS FOR AEROSOL THERAPY 

In children. aerosol therapy is used for diseases such as asthma, bronchopulmonary 
dysplasia (BPD), cystic fibrosis (CF), and croup. The main indication for aerosol therapy 
in childhood is management of asthma symptoms [4,5J. Therefore this review is focussed 
on aerosol therapy in asthma. The remaining indications will only be discussed briefly. 

2.2.1 ASTHMA AND RECURRENT WHEEZE 
The prevalence of asthma in the Netherlands is about 10% and epidemiological 

studies show an increase especially in the young age group [6,7]. In other countries 
prevalences of even 20-30% in children have been reponed [7 -IIJ. This implicates that 
worldwide many millions of children are in need for treatment of asthma symptoms. It 
is difficult to diagnose asthma in young children with the currenrly available dia,,"llostic 
tests [12,13J. Therefore, asthma-like symptoms in young children are ofren described 
as recurrent wheeze. \'\!hen we use the term asthma in this review we refer to both asthma 
and recurrent wheeze. Asthma is a chronic inflammatory disorder of the airways [4, 14J, 
which results in airway narrowing by airway wall thickening, bronchospasm and increased 
mucous production [15,16J In adults it has been shown that the inflammation extends 
from the central to the peripheral airways [17-19]. For effective treatment of both central 
and peripheral inflamed ainvays it is important that anti-inflammatory drugs penetrate 
into the periphery of the lungs. In a limited number of srudies, it has been shown that 
asthma-like inflammation is present even at a very early age [20,21J. Elevated inflammatory 
cells and thickening of the lung basement membrane have been described in infants and 
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young children [20-22J. Asthma-like symptoms in young children have been 
associated with lung function abnormalities [20]. Lung function tests in children with 
persistent wheezing showed significantly lower dynamic flows by 6 years of age compared 
with children who had no wheezing episodes during the same period [20J. Differences 
bervveen groups were not apparent at 6 months of age. Therefore~ early treatment with 
anti-inflammatory agents may prevent long-term, irreversible impairment oflung function 
[13,23,24]. Furthermore, asthma treatment in young children is indicated to reduce 
symptoms and to improve quality oflife of the children and their parents. 

The most important class of anti-inflarrunatory drugs to treat asthma at present 
are inhaled corticosteroids, such as beclomethasone, budesonide and fluticasone [25,26]. 
Long term treatment with inhaled corticosteroids has been shown to reduce symptoms, 
exacerbations and hospital admissions in both adults and children [23,27-33J. 
Furthermore, early intervention with inhaled steroids in young children with persistent 
wheeze resulted in improved lung function at later age compared with later intervention 
[23J. Therefore, guidelines in the management of asthma stress the importance of inhaled 
conicosteroids in the treatment of young children with asthma [34]. A disadvantage 
of corticosteroids is that long term use in high dosages can cause adverse effects as grovvth 
retardation, adrenal suppression and bone density reduction [35-41J. Long-term use 
of inhaled corticosteroids in low to moderate doses has been shown to have no effect 
on growth rate [42,43J. This favours the use of the lowest effective dose [26J. 

Other inhaled anti-inflammatory drugs used in asthma treatment are 
cromones, such as disodium cromoglycate and nedocromil sodium [5,44J. These 
cromones are considered far less potent compared with inhaled corticosteroids to treat 
asthma and therefore no longer recommended in the latest Dutch guidelines for asthma 
therapy in children [45 ,46J. 

Other important drugs used in asthma treatment are the bronchodilators. These 
include ~2-agonists and anticholinergics, which dilate the airways by relaxation of the 
bronchial smooth muscle [4J. Acute symptoms of dyspnea can be quickly relieved by 
inhaled bronchodilators [4,47J. Bera-2 agonists are available as short-acting agents, such 
as salbutamol and terbutaline [5,27,45,48,49J, and the long-acting agents salmeterol and 
formoterol [50,51J. Bera-2-agonists have a relatively wide therapeutic index and can be 
used safely even in high doses, without the risk of serious adverse effects [48,52-55J. 

2.2.2 OTHER INDICATIONS FOR AEROSOL THERAPY 
Inhaled corticosteroids have also been shown to be effective in croup in infants 

[56-61 J. Both inhaled corticosteroids and bronchodilators are used for infunts with BPD 
[1,62J and for children with cystic fibrosis [63,64J. There are several other aerosolized 
drugs used to treat other lung diseases in children. Inhaled antibiotics, such as 
tobramycine, are used to treat infectious lung disease in cystic fibrosis [65-71J. 
Recombinant human DNase is a mucolytic that is effective to reduce sputum viscosity 

in cystic fibrosis [72-77], primaryciliar dyskinesia [78J and to treat atelectasis [79,80J. 
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A variety of new aerosolized drugs are in development, using the lungs as an 
alternative route to treat non-pulmonary disease. Inhaled insuline has been shown to be 

effective in the treatment of type I and II diabetes [81-87]. Drugs like morphine [88,89], 

prostaglandins for treatment of pulmonary hypenension [90-94], and vaccines [95-98J 

are being developed for inhalation. The use of aerosol therapy for new, often expensive 

and potent drugs requires efficient systems that deliver the aerosol to the patient reproducibly. 

2.3 BASIC PRINCIPLES OF AEROSOL DEUVERY AND DEPOSmON. 

The probability for inhaled panicles to deposit and their distribution patrern in 

the respiratory tract depend on particle characteristics, such as size, density and shape, 

the anatomy of the respiratoty tract and the breathing pattern [2,99-106]. These factors 

determine whether a particle will deposit by impaction, sedimentation or diffusion, which 
are the main physical mechanisms of panicle deposition [99,106,107J (figure 2). 

2.3.1 DESCRIPTION OF AEROSOL 
An aerosol is defmed as a suspension of solid andJ or liquid particles in a gaseous 

phase. Therapeutic aerosols may consist of'dry' solid or liquid particles [2J. An aerosolized 

particle may vary in shape, size and density. To define the aerodynamic behaviour of 

an aerosol, a particle is assigned a single value: the aerodynamic diameter [2]. Particles 

with a cenain aerodynamic diameter have the same aerodynamic behaviour as a sphere 

of unit density with that diameter. In medical literature the term particle size is often 

used instead of aerodynamic diameter, but meaning the same. Medical aerosols usually 

Airflow 

Inertial impaction 

Diffusion 

Airflow 

Airflow 

FIGURE 2. Mechanisms of particle deposition in the respiratory tract [269]. 



24 

consist of particles with a wide range of aerodynamic diameters. Therefore aerosols are 
generally described in terms of rheir median mass aerodynamic diameter (MMAD) and 
geometric standard deviation (GSD) [2,99,lOS]. The MMAD is defined as rhe 

aerodynamic diameter of an aerosol of which 50% of particle mass is smaller and 50% 
larger. The GSD describes rhe distribution of particle diameters and is defined as rhe 
ratio of rhe diameter of the parricle on rhe S4.2rh percentile and rhe MMAD [2]. For 
a monodispersed aerosol, in which all rhe particles are rhe same shape and size, rhe GSD 
is 1. Medical aerosols are usually polydisperse. 

2.3.2 MECHANISMS OF AEROSOL DEPOSITION 

Impaction 
Impaction is rhe collision of a particle on a surface, which occurs when a particle's 

momentum prevents it from changing course in a change in airflow direction. Impaction 
is determined by inertia. The larger the particle and the higher its velocity, the more 
likely it is to impact. Impaction is the main deposition mechanism in the upper and 
central airways and at bronchial bifurcations [109]. 

Sedimentotion 
Sedimentation is deposition of a particle by gravitational forces. Breath-holding 

after inhalation of an aerosol allows particles to settle and deposit by sedimentation. 
This is an important deposition mechanism in small airways where the air velocity is 
low [110,111]. 

Diffusion 
Diffusion is determined by rhe Brownian motions of a particle [109]. The 

probability of particles smaller rhan 0.5 jliIl to deposit by Brownian motion is inversely 
related to particle size [2,112]. Diffusion is an important deposirion mechanism in rhe 
bronchioles and alveoli [109]. 

2.3.3 FACTORS AFFECTING AEROSOL DEPOSITION IN THE RESPIRATORY TRACT 

Particle size 
Particle size is the most important factor to determine by which mechanism a 

particle will deposit in rhe respiratoty tract [106,109,113] (figure 3). The relarion between 
particle size and deposition has been studied in numerous theoretical and practical studies 
[101,113-116]. Based on rhese srudies particles between 1 filll and 5 filll are considered 
to be wirhin rhe 'respirable range' [117 ,liS]. These particles are likely to bypass rhe upper 
airways and ro be deposired in rhe lower airways [100,101,119] In general, smaller particles 
will deposir more peripherally in rhe lungs rhan larger particles [100,101,113,120]. Particles 
in rhe range of 0.1-1 filll are believed to have a higher probability to be exhaled [2]. Below 
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Particle size (!JITI) 

FIGURE 3. Efficiencies of the particle deposition mechanisms of inertial impaction, sedimentation, 
and diffusion in relation to particle size [113]. 

0.1 )lffi deposition is largely determined by Brownian diffusion [101]. However. tbese 
assumptions are mainly based on studies in adults and adulr models. Matbematical models 
ofin.£mts and children exist, bur tbese are based on tbe asswnption tbat tbe airway geomeny 
of children can be scaled down from adult dimensions. [100,120-122]' Validared deposition 

models using me airway geometry of children of different ages do nOt exist to date. 
Therefore, the 'respirable range' in particle size for infants and children is unknown. 

Breathing pattern 
The breathing pattern used to inhale an aerosol is another important determinant 

for tbe deposirion of particles in tbe respiratory tract [2,123]. High inspiratory flow 
rates will enhance impaction of particles. Several studies in adults showed that slow 
inhalation increased lung deposition compared witb fast inbalation [111,124-126]. Deep 
inspiratory breatbs are more likely to enhance peripheral deposition. Inhalarion of 
salburamol from residual volume ratber tban from functional residual capacity resulted 
in higher relative bioavailability to tbe lung [124]. However, several otber studies 
suggested mat mere is no advantage in inhaling from residual volume rather man from 
functional residual capacity [111,127]. Children inhale witb deep inspiratory volumes 
when crying. It is a general misunderstanding that me deep inspiratory volumes during 
crying would enhance aerosol deposition. In fact, it has been shown that crying results 
in almost no aerosol being deposited in tbe lungs [128,129]. 

Children from tbe age of 8 years and older are able to inbale aerosols in one breatb 
followed by a 10 seconds breatb hold. This is tbe recommended inhalation technique 
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for pMDI's and dry powder inhalers (DP]'s) [104,111,130]. Below the age of8 years 
children are not able to perform such a complicated inhalation procedure 
reproducibly [131]. These children should therefore inhale via tidal breathing. Tidal 
breathing results in a larger proportion of the inhaled aerosol being exhaled [132,133] 
and shortens residence time of the aerosol in the lungs. Tidal breathing at a low 
respiratory rate was shown to increase lung deposition and decrease upper airway 
deposition in adults compared with a high respiratory rate [134]. It is largely unknown 
how breathing patterns relate to lung deposition for young children. 

Airway geometry and depasivan 
The geometry of the respiratory tract determines aerosol deposition in several ways. 

Airway dimensions, the inhalational route and disease-related changes of the airway geometry 
affect the dose delivered and the deposition pattern of aerosol particles in the lungs. The 
airways can be seen as a trumpet shaped rube, meaning that the total cross-sectional diameter 
increases from the central to the peripheral airways [11 0]. Therefore, flow velocity is higher 
in centtal airways and lower in peripheral airways. This means that particles will mainly 
deposit by impaction in the central airways and by sedimentation and diffusion in the 
peripheral airways. In young children the airway diameters may be up to 4 fold smaller 
compared with adults [135]. Furthermore, it has been calculated that there are relatively 
high flows in the central airways in young children [135], which cause increased deposition 

of panicles by impaction. Therefore, it is unlikely that aerosol deposition predictions derived 
from adult airway diameters will apply for the airway diameters in children. Inhalation 
via the nose instead of the mouth will negatively affect the dose delivered to the lungs in 
young children [136]. It has been shown that nasal inhalation of aerosol increases deposition 

in the upper airways byrurbulent flows in the nose [119,137-139]' Disease related changes 
of the airways in patients with diseases like asthma, CF and BPD can lead to dramatically 

different geometry of airways compared with the geometry in healthy subjects [17,140-
142]. Chronic airway inflammation leads to thickening of the airway wall, which is more 
severe in peripheral than in central airways [17,140-142] These changes in airway geometry 
can have a considerable effect on the deposition patterns in the lungs [106,143]. In adults 
with severe asthma or CF, lung deposition showed a more centrally localized and 
heterogeneous pattern compared with healthy volunteers [144,145]. 

2.4 METHODS TO STUDY EFFICIENCY Of AEROSOL DELIVERY DEVICES 

There are numerous methods, in vitro and in vivo, to study the efficiency of 

aerosol delivery devices. In vitro systems are used to define particle size distribution 
of an aerosol. These characteristics can be used to predict the lung deposition [146]. 
In vivo methods include lung deposition srudies using radiolabelled aerosols, 
pharmacokinetic studies, pharmacodynamic studies and studies showing the clinical 
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efficacy of a therapeutic aerosol device. Each method provides different aspects of the 
performance of the device. Both in vitro and in vitro data are required to adequately 
predict the performance of aerosol delivery devices in patients. It should be noted that 
each device/drug combination can behave differently [147]. Therefore, the 
effectiveness of a certain inhaler device with one drug does not predict the effectiveness 
of the same device with another drug. 

2.4.1 IN VITRO METHODS 

Measurement of particle size 
In vitro, measurements of the particle size distribution of an aerosol playa key 

role in the development of new aerosol delivery devices and in qualiry control. There 
are many methods to characterize particle size distribution of an aerosol [148]. The 
most commonly used methods to characterize aerosols are laser diffraction and inertial 
impaction [148]. A laser diffiaction system measures particle size distribution by passing 
a laser beam through an aerosol. The beam is scattered by opaque aerosol particles, or 
refracted by non-opaque particles. The scattered light is recorded by a seties of detectors, 
and the resultant signals are converted into information relating to the volume 
distribution of particles within the aerosol. From this information the mass distribution 
of the aerosol can be derived [2J. Laser systems are expensive but are very convenient, 
producing results rapidly. It is an advantage that particle size distribution can be measured 
as the aerosol leaves the device without secondary artifacts resulting from drying. Laser 
diffraction is convenient to study wet aerosols from nebulizers [2,149]. 

Inertial impaction devices include liquid impingers and cascade impactors. Particle 
size distribution in impaction devices is determined by drawing the aerosol through 
the device at a constant flow. This can vary between 5 and 60 Llmin depending on 
the device. The airflow passes through a series of srages before it passes through an 
absolute filter. The velocity of the airflow increases between the successive stages as the 
connecting jets narrow (figure 4). Particles from an aerosol introduced in this airflow 
impact on plates contained in each stage. The stage at which a particle impacts is 
determined by its aerodynamic diameter. Large particles impact on upper stages, whereas 
small particles impact on the lower stages. Each stage has a known cut-off value for a 
aerodynamic diameter. Next, the particle size disuibution is derived from an assay that 
quantifies the mass of medication on each stage, e.g. by means of high performance 
liquid chromatography (HPLC) [2]. The most important advantage of the inertial 
impaction method is that it provides information on the distribution of medication 
in droplets of different sizes. The medication may not be evenly distributed amongst 
droplets from an aerosol delivery device. Some droplets may have no medication and 
others, particularly larger ones, carrying the bulk of the aerosolized medication. The 
impaction method is recommended for pMDI's and DPI's [2,118]. A disadvantage of 
this method is that it is very time consuming. 
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FIGURE 4. Picture of 8-stage Anderson 

cascade impactor showing the separate 
stages with progressively smaller orifices. 

Upper airway madels 

FIGURE 5. 8-stage Anderson cascade 

impactor with USP-throat. 

.An impactor or impinger is usually used with an extension on top of the stages, 

to which the aerosol device is attached. This is often referred to as the 'throat'. The standard 
'throar' used on impacting devices is the United States Pharmacopoeia (USP)-throat, which 
is a round rube with a 90° bend (figure 5) [150J. Obviously, this is a poor surrogate of 
the real anatomy of the oropharynx. For a more realistic estimate of the upper airway 

deposition, anatomical models of the oropharyngeal pathway were developed. Several 
models have been made, with different techniques. There are models made with the wax­

waste method in cadavers [151, 152J, or made with help of CT-scans from the upper airways 
in combination with a stereolithographic technique [153J. A recently presented artificial 
throat is a geometric model using the dimensions derived from CT-scans, MRI-scans and 
direct observations ofliving subjects [154J. This latter model seems physiologically realistic. 
There are only a few models available of the nasal airways. All the models desctibed above 
are adult models. There are no realistic models available for children. 

Breathing simulatian 
To test the performance of aerosol devices for use in children, simulation of the 

breathing pattern is used for adequate prediction of the dose inhaled. There are several 
studies showing that the dose delivered from a pMDl/spacer with simulated tidal 
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breathing is lower compared with consrant inhalation flow [133,155,156]. However, 
most studies using simulated breathing measure the total dose delivered from the device 
by filters [132,133,155-157]. These studies give information on the total dose delivered 
with a certain breathing pattern. However, this method does not give details about the 
distribution pattern of the aerosol in the respiratory tract. Additional information can 
be obtained by measurement of particle size during simulated breathing. This is a 
complicated technique because impacting devices are calibrated for use with a constant 
inhalation flow. Several experimental set-ups have been described to measure particle 
size distriburion during simulated breathing [158-160]. 

The relevance of in vitro testing of aerosol devices increases when testing 
conditions mimic the in vivo situation as closely as possible. This may be achieved with 
anatomical models of the upper airvvays and realistic flow profiles in combination with 
impactors [118,161]. 

2.4.2 IN VIVO METHODS 

Radiolabelled aerosal studies 
Gamma scintigraphy is used to assess the lung deposition of inhaled drugs in 

vivo. By inhalation of radiolabelled aerosol the total amount of drug deposited in the 
lung can be estimated and the regional deposition pattern within the lung can be 
quantified [162]. The radiolabelling is done by adding a radionuclide, mosdy""Tc, 
to the aerosol formulation so that ir forms a physical association with the drug particles 
or is incorporared into the drug molecule. For most formulations the label is only loosely 
associated with the drug [163]. Validation experiments should be cartied our to establish 
whether the association between drug and radiolabel is consistent across all particle 
sizes and to show that the in vitro performance of the product has not been altered 
by the labeling process [162]. Following inhalation of the radiolabelled formulation, 
planar 2-dimensional images of the head and chest are made by a gamma-carnera. To 
conven gamma counts into deposition of drug mass, data must be corrected for the 
attenuation of the gamma ray signal as it passes from the body to the gamma camera 
[162]. The 2D-image of the lung is subdivided in the peripheral zone and the central 
zone. The ratio (P:C ratio) between the two zones is used as a parameter to describe 

the regional lung deposirion pattern. The problem using this P:C ratio is that the 
discrimination between the peripheral and central regions is not precise, and is therefore 
only an estimation. A more detailed regional deposition pattern may be obtained by 
using single photon emission computed tomography (SPECT), which provides 3-
dimensional images of the lung [118,164]. However, this is a very expensive, complex 
method that requires higher radiation exposure. Furthermore, this method is less well 
validated than the conventional2-dimensional gamma scintigraphy [118]. 

The use of radio-active aerosols in children raises ethical questions, since the 
long term risk for children per unit radiation dose is believed to be higher compared 



N 

30 

with adults [165]. The toral radiation dose of an inhaled radiolabelled dose is in the 
range of the dose received from natural background sources during a few weeks [163]. 
Therefore the risks are probably small. However, the risk of high local deposition of 
radiolabelled particles, which may occur on airway bifurcations, is not known. The 
localized radioactive dose of these 'hotspots' may be 20-100 times higher than the average 
radioactive exposure [166]. Therefore, radiolabelled aerosol studies in children should 
be limited to those studies of which the potential benefit justifies the unknown risks. 
Clearly, such studies should only be done when appropriate and validated techniques 
and study designs are used [163]. Furthermore, the exposure should be kept minimal. 
Finally, dose limits specified by the Inrernational Commission on Radiological Protection 
should not be exceeded [167J. 

Pharmacokinetic studies 
A non-radioactive method to determine lung deposition is to measure the 

systemic availability of an inhaled drug afrer it has been absorbed from the lungs. The 
pulmonary availability equals the systemic availability in case the drug is not absorbed 
from the gastro-intestinal tract, or when it is completely eliminated by first-pass 
metabolism [168]. However, most inhaled drugs, such as steroids and bronchodilatOrs, 
are significantly absorbed from the gut. Activated charcoal can be used to block the 
gastro-intestinal absorption [168J. The systemic availability can be determined by the 
pharmocokinetic technique in which area under the curve (AUC) of the plasma 
concentration of the inhaled drug versus time is compared vvith the AUC of a reference 

dose, which is generally given intravenously [169-171]. 
It has been shown that lung deposition measured with gamma scintigraphy 

is a few percent higher compared with the charcoal block method [168J. This is 
explained by the fact that gamma scintigraphy measures the amount of drug deposited 
on the lung surface, including drug which may subsequently be removed from the 
lungs by mucociliary action. The charcoal-block method measures only the amount 
of drug absorbed via the lung. These differences should be kept in mind when data 
obtained by the twO methods are compared. The most important advantages of the 
bioavailability method are that it does not require a radioactive substance and that 
the intact drug formulation is used. However, it does not give information on the 
regional distribution of a drug within the lung, as is the case in the scintigraphic method 
[118J. 

Clinical efficacy 
The most important method to test the efficiency of aerosol delivery devices 

is to measure the clinical efficacy and safety. The design of clinical efficacy studies is 
determined by the type of drug used. In general, to avoid bias, trials should be of a 
randomized, double-blind, and placebo controlled design [25]. Pharmacodynamic 
studies, which measure one clinical parameter, are often designed as a simplification, 
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but can not be considered as substitures, for clinical efficacy srudies. Bronchodilators 
are tested with lung function tests before and after inhalation. A rapid effect can be 
assessed with relatively small groups. Testing efficacy of inhaled steroids requires long­
term studies, a large number of patients, frequent lung function tests, and registration 
of symptoms, hospital admissions, exacerbations and concomitant use of other drugs. 
In young children rhis type of clinical efficacy srudies for anti-asrhma inhaler devices 
are difficult to perform [172]. Firstly because of the difficulty in diagnosing asrhma 
in this age group [173]. Secondly, because of rhelack of reproducible endpoints suitable 
to measure a large number of infants [13]. For example, reproducible lung function 
testing is possible from age 6, but infant lung function testing is only available in a 
limited number of centers. Furthermore, infant lung function testing is extremely time 
consuming. An alternative for lung function tests is the use of symptom scores. 
Symptom scores have rhe disadvantage of high variability. Therefore rhere are only few 
srudies showing clinical effect of inhaled sreroids in pre-school children, and rhese are 
mostly based on symptom scores and recording of hospital admissions [28,29,33]. The 
development of non-invasive tests to measure inflammation and airway resistance in 
young children may provide reproducible end-points for clinical studies in this age 
group in the future [174-177]. A promising example to measure airway inflammation 
in asthma is rhe assessment of nitric oxide (NO) in exhaled air [174,176]. Airway 
resistance can be measured in young children with the interrupter technique (Rint) 
during tidal breathing [177]. Validation and assessment of reference values are in 
development for these techniques. 

2.4.3 EXPRESSION OF DOSE 
One should be careful in directly comparing aerosol delivety data from different 

studies, for the doses and deposition values can be e.xpressed in different ways. Dose 
delivery or lung deposition can be expressed as a percentage of the nominal dose or 
the metered dose. The nominal dose is the dose that is mentioned on the label, also 
referred to as rhe label claim. This is a fL~ed reference value. The metered dose is rhe 
total dose rhat has len the aerosol delivety device. For pMDI's rhe metered dose is 
sometimes called actuated dose or ex-valve dose, and for DPI's it is sometimes called 
emitted dose. The metered dose is generally lower than the nominal dose and can 
vary between and within devices [130]. For pMDI's the metered dose is usually only 
a few percent below the nominal dose. However, for DPI's the metered dose is 
substantially lower rhan the nominal dose and can vary from 30 to 80 % dependent 
on inhalation flow [130,178]. Therefore, reading the literarure one should always pay 
atrention on the way aerosol deposition is calculared. The method used should always 
be clearly defined in the methods section to enable proper interpretation of the data. 
Interpreting deposition data, which are mentioned as percentages of the metered dose, 
can give considerably higher results when compared with data in percentages of 
nominal dose. 
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2.5 REQUIREMENTS FOR AEROSOL DELIVERY DEVICES IN YOUNG CHILDREN 

The high number of available aerosol delivery devices makes aerosol therapy 
confusing. The choice depends on the patient, the device, and the drug. Therefore, 
knowledge about each of these items is important to make the right choice for 
individual patients. Aerosol therapy in young children demands special requirements 
for the aerosol delivery device [179]. Firstly, the device should be simple to use, 
requiring a minimum of cooperation and coordination of the child. Young children 

are not able to perform special inhalation manoeuvres, and are only able to inhale 
via tidal breathing. Secondly, the device should target the drug effectively into the 
lungs, v.rith a minimwn of naso-oropharyngeal deposition, since high doses of steroids 
in the upper airways can give local side effects as dysphonia and candida infections 
[25]. Young children preferably breathe through the nose while inhaling aerosols [136]. 
As the nose is designed for filtering aerosol particles from inhaled air, it forms a barrier 
for effectively targeting aerosols into the lower airways. Thirdly, the device should 
deliver a predictable and reproducible dose [179]. This is especially important for 
drugs with potent side effects that require a precise dosage regimen and treatment 
with the lowest effective dose. Therefore, the prescriber must be able to rely on 
predictable dosing within and bervveen individuals, regardless of age and 
cooperation. 

32 2.6 METHODS TO DELIVER AEROSOLS TO YOUNG CHILDREN 

The current methods to deliver therapeutic aerosols can be classified in three 
categories: nebulizers (jet or ultrasonic), pMDI's used with a press-and-breathe 
method or as breath actuated device or in combination with a spacer, and DPI's. 
It is important to keep in mind that these devices were primarily designed for use 
in adults and subsequently adapted for use in children. These adaptations might 
have changed the characteristics of the device considerably. However, only limited 
dara are available on the efficiency of devices to deliver aerosols to the lungs of young 
children. 

The nebulizer and the pMDII spacer are the most suitable aerosol delivery systems 
for young children, for they only require tidal breathing to inhale the aerosoL For a 
long time jet nebulizers have been the mainstay of aerosol therapy in young children, 
since there were no other good alternatives available. The introduction of the pMDI 
combined with spacer revealed new possibilities for effective aerosol therapy in children. 
Currently, the pMDIIspacer is recommended as the first choice for aerosol delivery to 

treat asthma in young children [45,180]. Therefore, this thesis focuses on the use of 
pMDIIspacers. Nebulizers and DP],s are discussed briefly. The advantages and 
disadvantages of the different devices are summarized in table L 



Aerosol therapy: Science and practice i33 

TABLE 1: Advantages and disadvantages of aerosol delivery devices for use in children 

Device Advantages Disadvantages 
Nebulizer • all ages • cumbersome 

pMDI 

• tidaL breathing 
• delivery of high doses over 

prolonged period 

• face mask can be used 
• only aerosol deLivery device 

for liquids 

• smaLL, handy 

• quick 
• low dose-to dose variability 

pMDI breath-actuated • smaLL handy 

pMDIjspacer 

• quick 
• no hand-mouth coordination 

required 

• Low inspiratory flow rate required 

• all ages 
• tidaL breathing possibLe 
• face mask can be used 

• quick 
• reduction of oropharyngeal 

deposition, less local side effects 

• noisy 
• time consuming 
• easily contaminated 
• poor reproducibiLity in dose and 

particle size 

• maintenance required 
• Large inter-device variability 
• complicated hand-mouth 

coordination 

• high velocity of aerosoL causing 
high oropharyngeaL deposition 

• not suitabLe for children 
• high aerosol velocity causing 

high orophaJYngeaL deposition 

• deep inspiration required 
• not suitable < 7-8 years 

• eLectrostatic charge of plastic 
spacers 

• size 
• many mistakes can be made 

DPI • small, handy • high inspiratory fLow required 

• quick 
• no hand-mouth coordination 

• propellant free 

• effort dependent-efficiency 
• not suitabLe <7 -8 years 
• between-device differences in 

handLing and inhaLation 
technique 

2.6.1 PRESSURIZED METERED DOSE INHALERS AND SPACERS 

Pressurized metered dose inhalers 
The pMDI was first inrroduced in 1956 [3]. Since then it has become the most 

widely prescribed aerosol delivery device. The principle of a pMDI is based on a spray­
can as used for hair spray [3]. It consist of a canister with an actuator-valve mechanism, 
which is filled with micronized drug, propellant and surfactant [181] (figure 6). The 
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FIGURE 6. Schematic drawing of a pMDI. 
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medication is usually suspended rather than dissolved in the propellant-surfactant 
mD..wre. Surfactants reduce aggregation of the particles during actuation and lubricate 
the valve mechanism of the canister. The propellant serves as an energy source to e.."Xpel 
the drug formulation from the canister in the air. Before use the pMDI must first be 
shaken vigorously, because the drug and propellant separate out very rapidly within 
the pMDI (figure 7) [2J. Failure to shake results in variations in dose up to 25% [IS2]. 
During actuation, a metered dose leaves the metering chamber that is closed to the 
canister and open to the atmosphere by the valve mechanism. An aerosol cloud 
containing droplets of drug panicles, propellant and surfactant leaves the actuator ¥rith 
high velociry. The particles dry, as the propellant evaporates [2]. Other factors that can 
contribute to dose variabiliry are: no priming of the pMDI by firing waste puffs before 
initial use, extreme temperatures, and tailing off when the pMDI is nearly empty 
[ISI,IS3J. 

Inhalation technique: The recommended technique for the patient to inhale an 
aerosol from a pMDI is: deep exhalation, coordination of actuation of the dose with 
the onset of inhalation, slow inhalation till total lung capaciry and breath-holding for 
10 seconds. [111,124,184]. This technique is known as the press-and-breathe technique 
and has proven to be complicated; only 9 - 48% of adults and older children can perform 
this correctly [185,IS6]. The pMDI is used directly in the mouth. This has the 
disadvantage that the majotity of aerosol particles, leaving the actuator with high velocity, 
impact in the oropharynx [IS7J. With optimal inhaler technique a lung deposition of 
around 10% can be achieved by asthmatic adults, with an oropharyngeal deposition 
of around SO% [103,IS7J. 

Breath-actuated pMDTs: Breath-actuated pMDI's have a flow-triggered system 
to release a dose at the onset of an inhalation [ISS]. This system overcomes the difficulty 
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FIGURE 7. The behaviour of the contents of a pMDI as revealed in a special glass-walled container: 
Showing the suspension in the pMDI immediately after shaking at time 0 and the separation 
of the suspension within 1, 3 and> 60 minutes after [181]. 

of synchronizing the actuation of the dose with the inhalation [189,190], but does not 
eliminate the problem of high oropharyngeal deposition. The breath-actuated pMDI 
may be effective in children from 6 years of age and older [190,191]. However, one 
has to keep in mind that children in studies are optimally instructed and guided. 

Recent developments: Since the introduction of the pMD I, its technology has been 
changed little. Until recently, chlorofluorocarbons (CFC's) were used as propellant in 
pMDI's. The need to ban CFC containing products, in accordance with the Montreal 
Protocol on Substances that Deplete the Ozone Layer in 1994 [192], created an 
opportunity to improve pMDI-technology. Hydrofluoroalkanes (HFA:s) are now used 
as an alternative more environment-friendly propellant. The first HFA-pMDI containing 
salbutanlol has improved valve design, resulting in a consistent dose from the first to 
the last actuation. Dose variability is further decreased because the dose does not change 
with extreme temperatures [193]. Furthermore, the aerosol cloud from the actuator 
travels with lower velocity and has a smaller volume compared with a CFC-pMD I [194]. 

Some major manufacturers opted for (equivalence' when developing CFC-nee 
pMDI's [161]. One manufacturer recognized the need to improve the delivering 
characteristics of inhaled steroids [195]. Therefore, a new HFA-pMDI was developed, 
containing beclomethasonedipropionate (BPD) in solution rather than in suspension. 
This resulred in an aerosol with a MMAD of 1.1 rm. Lung deposition ofHFA-BDP 
in adults has been shown to be up to lO-fold higher compared with CFC-BDP. 
Furthermore, deposition in the peripheral regions is higher and oro-pharyngeal 
deposition lower compared with CFC-BDP [195]. In a dose-response study in adults 
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it was shown that the same clinical efficacy was achieved with 2.6 times lower doses 
using HFA-BDP compared with CFC-BDP [196]. The small particles of this HFA­
BDP might be a particular advantage for aerosol delivery in young children. 

Spacers 
To overcome the co-ordination problems of the press-and-breath technique for 

the pMDI's, spacers were introduced [197-204]. Furthermore, spacers have the advantage 
that they reduce oropharyngeal deposition [187] since coarse particles impact on the 
walls of a spacer and the particles have a longer distance to decelerate and evaporate. 
Therefore, the dose available for inhalation from a spacer contains a large proportion 
of fine particles. 

In adults, the use of a spacer with a pMDI has been shown to result in improved 
lung deposition, better clinical effect and less local side effects compared with the use 
of a pMDI with the press-and breathe method [201,202,204-209]. 

Lung depositions of 20-45 % of metered dose (approximately 19-43 % of 
nominal dose) have been achieved in adults using pMDIIspacerwith an oropharyngeal 
deposition of 5-30% depending on type of spacer [187,210-212]. The pMDI/spacer 
has been proven to be a useful aerosol delivery system in children [213-219]. The use 
of inhalation and exhalation valves offers the opportuniry to inhale with multiple breaths, 
which is an advantage in children [203,220]. An attached facemask, instead of a 
mouthpiece makes spacers also applicable in young children [29,132,219,220]. Although 
a clinical effect is shown with pMDI/spacers in young children [221-223], the dose 
delivered to the lungs is low. Radiolabelled aerosol studies in children < 5 years of age 
showed lung depositions of 0.67% to 5.4% of metered dose [128,224,225]. It can 
therefore be concluded that the efficiency of aerosol delivery from pMDI/spacers for 
young children can be substantially improved. 

Tjpes of spacers: In the Netherlands, there are four differenr spacers commercially 
available (figure 8); 1) The Aerochamber" (Boerhinger Ingelheim, Alkmaar, The 
Netherlands) is a small volume (150 mI) spacer made of plastic (Ektar®). It has a low 
resistance inspiratory valve. It is available with facemask or mouthpiece and all types 
of pMDI's fit in the spacer-inlet. 2) The plastic (polycarbonate) Babyhaler® 
(GlaxoSmithKline, Zeist, the Netherlands) has a volume of 350 m!. It has low 
resistance in-and expiratory valves. It is available with a face mask, but can also be 
used without. The inler of the spacer is only compatible for Glaxo- pMDI's. The 
same is true for 3) The Volumatic® (GlaxoSmithKline), which has a large volume 
(750 mI) and is also made of polycarbonate plastic. It has a relatively high resistance 
valve integrated in the mouthpiece. It is only available with a mouthpiece. 4) The 
metal Nebuchamber'" (AstraZeneca, Zoetermeer, The Netherlands) is a small volume 
(250 mI) spacer, which is only compatible with Astra pMDI's. The low resistance 
in and-expiratory valves are integrated in the mouthpiece. It can be used with or 
without a facemask. 
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FIGURE 8. Commercially avaiLabLe spacers in the NetherLands. From top: VoLumatic® 

(GlaxoSmith Kline), Babyhaler® (GlaxoSmithKline), Nebuhaler® (AstraZeneca), Aerochamber® 
(Boehringer Ingelheim). 

The growing number of available pMD I's and spacers makes comparative srudies 
necessary. It has been shown that each pMDIIspacer combination behaves 
differently [147,226] and that numerous factors affect the dose delivered from 
pMD II spacers. 

Volume ofa spacer: The volume of a spacer is critical for children with small tidal 
volumes. Actuation of a dose in a small volume spacer results in a highly concentrated 
aerosol. Therefore more drug can be inhaled in the first breaths. Furthermore, it takes 
less time to empty a small volume spacer for children with small tidal volumes. In large 
volume spacers there is more aerosol available for inhalation because less particles impact 
on the walls of the spacer, the dose delivered in children with small tidal volumes is 
higher from small volume spacers [132]. 

Electrostatic charge: Electrostatic charge can build up on the inner surface of plastic 
spacers, which attracts the aerosol and reduces the dose delivered from the spacer 

considerably. Electrosratic charge can be reduced by coaring the spacer with an antistatic 
lining, such as household detergent [212,227,228] or by priming the spacer by several 
puffs from the pMDI [210,226]. In adults, lung deposition has been shown to increase 
from 11 % of metered dose with a Static untreated spacer to 45% with a detergent coated 
plastic spacer [212]. A metal spacer was introduced to overcome the negative effects 
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of electrostatic charge on the dose delivered [229]. The meral spacer delivered twice 

as much aerosol compared with several plastic spacers in children aged 0.5 to 6 years 

old [226J. However, a plastic spacer 'With detergent coating can deliver an equal dose 

compared with the meta! spacer in young children [230]. A radiolabelled aerosol study 

showed a lung deposition of 34% of metered dose in adults, using the metal spacer. 
Delay after actuation: A one or more seconds delay of inhalation following 

actuation has been shown to decrease dose delivery. This is especially seen in stacic spacers, 
because electrostatic charge shortens the half life of aerosol available for inhalation in 

the spacet. [227-229] 
Dead space: A large dead space between the in- and exhalation valves or from 

a large face mask causes loss of aerosol with tidal breathing inhalation. Adding a dead 

space of 50 ml can reduce the dose delivered from the spacer by half when using a tidal 

volume of 50 ml [132]. 

Multiple actuations: It has been shown that the dose delivered per actuation 

decreases when more actuations are introduced in the spacer [132,227,228,231,232]. 

This is probably due to the relatively greater loss from impaction on the walls of the 

spacer when multiple actuations are fired into the spacer. Therefore, each single acruacion 
should be followed by inhalation, and a single actuation can be repeated in case more 
than one actuation need to be administered. 

Valves: In adults it has been shown that during acute asthma the expiratory flow 
of a patient may be toO low to close the valve of a large volume plastic spacer, and hence 
aerosol is blown out of the device during expiration [233]. A partially open valve is 
likely to impair drug delivery significandy. In young children the valves of a spacer need 

to be oflow resistance to function effectively even at low tidal volumes [132]. 

pMDI: Charactetistics of the pMDI, such as formulation, particle size, and aerosol 

cloud characteristics, interact with the design and shape of the spacer and may therefore 

also affect the dose delivered [194J. For example, the aerosol cloud from the earliet 

discussed HFA-pMDI with salbutamol moves with lower velociry and has a smaller 

volume compared with a CFC-pMDI [194]. This results in a higher dose delivered to 

the patient when used with a spacer, since less aerosol is impacted on the spacer wall 
[158,194]. 

Inhalation technique: The recommended inhalation technique for pMDI/spacers 

is shown in table I. The use of a pMDI/spacer is relatively simple compared with a 
nebulizer or a pMDI alone. However, several studies showed that patient still can make 
many mistakes [185,234] and that even pediatricians and nurses have lack of knowledge 

about the correct use of the prescribed inhalation devices [235,236]. 

Since many factors affect dose delivery, it is hard to predict the dose from a 
particular pMDI/spacer in a particular patient. Several studies showed high inter-subject 

variability in dose delivery in children [226,237,238]. Within-subject variability has 

not been studied yet. Therefore it is not known how a dose can vary from day to day, 
which makes optimal dosing difficult. 
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2.6.2 NEBULIZERS 
The most frequently used method of nebulization is the jet nebulizer. The design 

of a jet nebulizer is based on the Bernoulli principle. A jet of air is forced through a narrow 
orifice, creating a vacuum as it expands beyond the orifice. Fluid is drawn up into the 
region oflow pressure via the Venturi effect. The fluid becomes entrained into the airflow, 
creating long filaments of liquid that rhen break into droplets. The majority of these 
primary droplets are too large to inhale. To prevent wastage, modern small-volume 
therapeutic nebulizers use a baffle placed between the jet orifice and the patient. Smaller 
droplets can follow the airstream around the baffle as the majority oflarge droplets impact 
on the baffle and fall back into the nebulizer reservoir to be renebulized [2,239]. Another 
method of nebulization is the ultrasonic nebulizer which uses ultrasonic energy, produced 
by a piezoelectric ctystal, to convert fluid into a fine mist [240,241]. The Output of 

ultrasonic nebulizers is higher compared with jet-nebulizers, which is useful for 
admininstration oflarge volumes [242]. However, ultrasonic nebulizers are not suitable 
to nebulize suspensions such as steroids or viscous fluids such as antibiotics. Furthermore 
they are expensive and produce relatively large particles compared with jet-nebulizers [2]. 

The nebulizer can be used in combination with a mouth piece or a face mask. 
A face mask should be used only for children who are unable to inhale via a mouthpiece 
[157,243]. Lung deposition studies showed a deposition of 1.3% to 5.4% of nebulized 
dose in young children using a facemask [136,224,225] and 6.3% to 11.1 % in children 
from 5 years and older using a mouthpiece [136,225]. 

Nebulizers have the advantage that they can be used by patients of all ages since 
they only require tidal breathing. Another advantage is that high doses can be nebulized 
over a prolonged period [179J. The disadvantages of nebulizers are numerous. The 
equipment is expensive, cumbersome, noisy and it needs a power supply [179 165]. 
The administration time can be as long as 20 to 30 minutes several times a day. This 
is not beneficial for patient compliance [244]. Furthermore, it requires regular cleaning, 

with a high risk of contamination if the cleaning instructions are nOt followed correctly 
[245J. There are numerous technical factors that can affect aerosol output and particle 
size distribution of a nebulizer. These may result in highly variable doses and poor 
reproducibility of particle size [109,239,241]. These technical factors include the fill 
volume, driving gas flow [157,246]' the viscosity, concentration and temperature of 
the solution or suspension [246], nebulizer design [156,239,246,247J and breathing 

patrern [156,157]. Unveoted nebulizers, with continuous output of aerosol, are inefficient 
since there is loss of aerosol during exhalation [179]. More efficient systems have been 
developed, such as breath-enhanced and open vent nebulizers with in- and exhalation 
valves, and breath-actuated systems, which follow the patient's breathing pattern 
[123,248-252]. The use of breath actuared systems results in improved dose 
reproducibility and reduced loss by exhalation and residual volume. 

The use of nebulizers in the maintenance therapy of asthma is limited, because 
of the improvements in other delivery systems which are more convenient in use, such 
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as the pMOIlspacer. Nebulizers in maintenance asthma therapy are still used for some 
unco-operative children, who only accept a nebulizer. Even for the treatment of acute 
asthma the pMDI/spacer may be a more attractive alternative. Numerous studies in 
both adults and children and several meta-analyses have shown that pMDl/spacers are 
arleast equally effective compared with nebulizers to treat acute asthma [253-264J. The 
continued preference for nebulizers in acute asthma is because the advantage that high 
doses ofbronchodilators can be given relatively easy in combination with oxygen [2). 
Nebulizers are continued to be used for drugs which are only available as nebulizer fluids. 

Examples of such drugs are antibiotics, surlactants, rhDNase and pentamidine. Efficient 

and effective nebulizing is important for these often potent and expensive drugs. 

2.6.3 DRY POWDER INHALERS 
DPI's contain micronized particles of drug in aggregates, either alone or in 

combination with larger carrier particles, commonly lactose. The aggregates are 
disintegrated into small particles in the DPI by the energy created by the patient's 
inspiratory flow. All currenclyavailable DPI's are breath-actuated devices and hence no 
hand-mouth coordination as in pMDI's is required. Other advantages of DPI's are that 
they are compact and portable and therefore convenient in use. Funhermore, they do 
not contain gasses that are harmful for the environment like the CFC-pMOfs. 
Radiolabelled aerosol studies with a DP] in both adult and children from 6 years of age 
showed lung depositions of around 28% of the metered dose [265,266], which is 
approximately 20% of the nominal dose. DPI's have the major disadvantage that high 
inspiratory flows are required to deagglomerate the powder. Insufficient inspiratory flow 
results in a lower inhaled dose and larger particles [130J. The required high inspiratory 
flows are ofren not achieved by children below 8 years of age or by older children with 
severe dyspnea [131]. Two studies showed adequate lung deposition from a DP] in children 
from 6 years of age, below this age lung deposition was less reliable [266,267J. Therefore, 
DPI's are ofren recommended for children from 6 years of age. However, these 
recommendations are based on studies using optimally trained and instructed children 
in a laboratory setting. It is likely that below the age of 8 there is substantial day-to-day 
variability in the inhaler technique. Therefore DP],s should not be used in clinical practice 
for children below the age of 8 years, for whom the pMDIIspacer is a better flow­
independent alternative. A prototype of a flow-independent DP] has been desctibed [268J. 
However, it is questionable whether this device will become commercially available. 

2.7 CONCLUSIONS 

The majoriry of aerosol therapy in childhood is prescribed to control asthma 
symptoms. The most important classes of inhaled drugs are corticosteroids to treat 
inflammation and bronchodilators for dilation of obstructed airways. The potential 



Aerosol therapy: Science and practice 141 

side effects of corticosteroids make it necessary to select an efficient aerosol delivery 

system to be able to administer the lowest effective dose. The delivery of aerosols to 

the respiratory tract is complex, and depends on nwnerous factors, like particle size 

of the aerosol, breathing patterns and the geometry of the airways. Aerosol therapy in 
young children requires special attention with respect to the aerosol delivery device. 
Problems like cooperation during the administration, inabiliry to perform an inhalation 
manoeuvre, nasal breathing and small airways need to be considered. Currendy there 
are three categories of delivery devices available, pMDI's with or without spacer, 
nebulizers and DPI's. Nebulizers and DPI's have numerous disadvantages for use in 
young children. The pMDI/spacer is the recommended aerosol delivery device for 
maintenance asthma therapy in young children. However, there is lack of knowledge 
about the efficiency of pMDI/spacers to deliver aerosols to young children. Knowledge 
of aerosol delivery devices in young children is needed to optimize aerosol therapy. 
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ABSTRACT 

Pressurized metered dose inhaLers (pMDI) are widely used together with spacers 

for the treatment of asthma in children. However, the variability of daily 

medication dose for pMDI/spacer combinations is not known. Electrostatic charge 

is a potential source of dose variability. Metal spacers have no static charge. 

This study assessed and compared within-subject variability of aerosol delivery 

of metal and plastic spacers. This was a randomized, crossover study in children 
with stable asthma aged 1-4 (group I, n~17) and 5-8 (group II, n~16) yrs. In 

both groups the amount of drug delivered to the mouth by a metal spacer 

(Nebuchamber®) and one of two plastic (polycarbonate) spacers, i.e. 
Babyhaler® in group I and Volumatic® in group II was measured. The metaL and 

plastic spacers were tested at home;n a randomized order for 7 days each, using 

budesonide (200!-!g b.i.d.). Aerosol was collected on a filter positioned between 

spacer and facemask or mouth. Budesonide on the filter was assessed by high 

performance liquid chromatography. The mean filter dose for each child (mean±SD) 

during the 7 days was expressed as a percentage of the nominal dose. Within­

subject variability was expressed as coefficient of variation (CV). 

Mean filter dose in group I was 41.7±10.1% for Nebuchamber and 26.0±4.0% 

for Babyhaler (p<O.OOl). Mean filter dose in group II was 50.2±9.2% for 

Nebuchamber and 19.4±7.2% for Volumatic (p<O.OOl). Mean CV in group I was 

34% for Nebuchamber and 37% for Babyhaler (p=O.44). Mean r::v in group II was 

23% for Nebuchamber and 34% for Volumatic (p=O.003). 
There was substantiaL within-subject dose variability in aerosol delivery in children 

usig a pMDljspacer at home. This variability was lower for the metal than for the 

plastic spacer in children 5-8 yrs of age. The dose delivered to the mouth was about 

two-fold higher for the metaL than the pLastic spacer independent of age. 
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INTRODUCTION 

Pressurized metered dose inhalers (pMDI) combined witb spacets are widely 

used for the treatment of astbma in children. Altbough pMDl/spacers are convenient 

and relatively simple to use, tbe dose delivery from a spacer depends on a number of 

patient and device fearures [1-4]. Predictability and reproducibility of dosing are televant 

for any drug tberapy. This general pharmacological principle allows tbe clinician to seleer 

tbe proper dose and device for a given patient. Considerable between-subjeer variability 

in aerosol delivery from spacers has been described [1,5]. These results were based on 

only one or twO observations per child in a laboratory setting, recorded within a short 
interval. Though such studies may provide a good impression of tbe quality of tbe 
different devices, it may not adequately represent the situation in daily life, which is 
obviously important when prescribing inhaled drugs. 

One of the factors that can contribute to variability in aerosol delivery is the 
material from which the spacer is made. Until recently, spacers were made of plastic. 
Various studies have shown that electrostatic charge on plastic spacers decreases drug 
delivery [6,7]. Recendy, a metal spacer (Nebucharnber" (Astra Draco, Lund, Sweden)) 

has been developed tbat does not have tbis disadvanrage [5]. The aim of tbis study was 

to assess within-subject variability of aerosol delivery from several spacers in asthmatic 
children 1-8 yrs old in a daily life setting in an open randomized, crossover study. 
Secondary aims were to compare tbe variability of aerosol delivery from metal and plastic 

spacers and to invesrigate whether within-subject variability was age dependent. 

MATERIALS AND METHODS 

STUDY POPULATION 
Children aged 1-8 yrs witb stable astbma and on daily inhalation tberapy were 

recruited from the asthmatic population treated at the Princess Margaret Hospital for 
Children in Penh, Australia. Stable asthma was defined as having no exacerbations 

requiring additional oral corticosteroids or any change in asthma medication for at least 
one montb prior to tbe onset of tbe study. None of tbe children suffered from any otber 

disorder tbat could affeer lung function. The children were divided into two age groups, 

1-4 yrs (group I) and 5-8 yrs (group 11), to distinguish between inhalation via a face 

mask or a mouthpiece. Written informed consent was obtained from all parents. The 
study was approved by tbe local etbics committee. 

MATERIALS 
Group I used tbe metal Nebuchamber® (250 mL; Astra) and tbe polycarbonate 

Babyhaler® [8] (350 mL; Glaxo Wellcome, Lodon, UK) botb witb face masks. Group II 

used tbe Nebuchamber" witbout face mask and tbe polycarbonate Volumatic" (750 mL; 
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Glaxo Wellcome). The inlet of the Babyhaler was slightly adapted to obtain a good fit 
and a straight plume of the Pulmicort® pMDI (Astra) into the spacer. For the Volumatic 
a small plastic connector (Astra) was used to fit the Pulmicort pMDL The day before 
the spacers were allocated to the children, they were washed in water with normal 
household detergent, rinsed thorougbly with warm water and drip-dried according to 
the instructions for use from the manufacturers. Each week the subjects received a clean 
spacer. Budesonide pMDI 200pg.dose·' (Pulmicorr") was used as the study 
medication. Each child received a new budesonide pMDL The first 10 actuations of 
a new pMDI were wasted, to avoid variable doses in the first 10 acruations [9,10]. Aerosol 
from the spacers was collected on a filter (Vita! Signs, Totowa, NJ, USA) inserted between 
the face mask or the patient's mouth and spacer. The filter has been shown to retain 
> 99% of the budesonide delivered from a spacer [5]. The filter added a dead space 
of20 mL to the system. The pressure drop over the filter was 230 Pa at 60 L·min·' [5], 
which is approximately one fifrh of the airway resistance of a young child [11]. 

To evaluate asthma stability, all parents filled out a diary card on asthma 
symptoms twice a day during the study period. The symptoms cough, wheeze and 
shortness ofhreath, and co-operation during drug administration were each assigned 
a score of 0-3. 

STU DY PROCEDU RE 
The study was designed as a randomized crossover study. During the 3 study 

weeks, the investigator visited the children 4-times at home. On the first visit the use 
of the pMDIIspacers with the filter was demonstrated and study materials provided. 
The study medication had to be administered t:vv:ice daily, before regular maintenance 
therapy, which was continued during the study period using the patient's own medication 
and device. Before each administration the parents attached a new ftlter to the spacer. 
The spacer was held in a horizontal. position, while ensuring a dose fit of the face mask 
or lips sealed around the mouthpiece with the child in an upright position. The pMDI 
had to be shaken vigorously for 10 s just prior to actuation. One puff ofbudesonide 
was actuated into the spacer. The cbild had to inhale for 60 s with quiet tidal breathing. 
Subsequently, the filter was removed from the spacer and both sides of the filter holder 
were sealed with sticL-y tape. Each ftlter was labelled with a unique code. Finally, the 
filters were wrapped in aluminium foil to protect the budesonide from destabilisation 
by ligbt. In the first study week, all children practised the use of both spacers with filters 
and a placebo. After this run-in period the children were randomized to start with 
budesonide via the metal or the plastic spacer. On the second visit any problems were 
discussed. The administration procedure was demonstrated by the child, corrected if 
necessary; and new spacers, filters and pMDI were provided. On the third visit the filters 
and the first spacer were collected and the second spacer and set of filters were issued. 
On the fourth visit the filters and the second spacer were collected. Thus, for each spacer 
14 samples were obtained per child, i.e. two samples per day. 
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FILTER ANALYSIS 
All filters were analysed in a blinded fashion. Filter and filter holder were washed 

in ethanol, containing an internal standard (fluocinolone acetonide). Budesonide was 
quantified by high-performance liquid chromatography (HPLC), using an ethanol­
water (43:57) mobile phase and a Supercosil LC-18 column (5f1ID particles, 5 em x 
0.46 em ID; Supelco, Bellafonte, PA, USA). Budesonide was detected by UV 
spectrophotometry at a wavelength of 254 nm. 

STATISTICAL ANALYSIS 
SPSS for Windows version 6.1 (SPSS, Chicago, IL, USA) was used for the 

statistical analysis. The filter dose, i.e., the amounr ofbudesonide deposited on the filter, 
was expressed as a percentage of the nominal dose. The mean ± SD of the filter dose 
of the 14 samples collected in I week was calculated for each child. Within-subject 
variability was expressed as coefficient of variation (CV). Paired t-tests were used to 
compare means, afier verifYing that there were no period or carry-over effects [12l. The 
presence of a priming effect was investigated by plotting all filter doses for each child 
~oa.inst the 14 consecutive sample numbers and drawing individual regression lines 
through these data points. The mean slope of the individual regression lines per spacer 
was calculated for the two groups. 

Relationships between age and filter doses, age and within-subject Cv, between 
individual filter doses of both spacers and between within-subject CV of both spacers 
were calculated by means of regression analysis. Mean asthma scores, defined as the 
sum of asthma symptOms recorded on the diary card during one week, while using one 
of the two spacers were compared by paired t-test. 

This analysis was repeated afier excluding the samples where the child had not 
cooperated (score 2 and 3) during the procedure, as indicated in the diary. A p-value 
of 0:;0.05 (two-sided) were considered significant. 

RESULTS 

Forry-one children were enrolled into the study. Eight dropped out afier the run­
in-period. The reasons for drop our were: noncooperative child (n=4), asthma 
e.xacerbation (n=l) and noncomplianr parents (n=3). Seventeen children (12 male) in 
group I, and 16 (12 male) in group II completed the study. Mean age in group I was 
40 months (range 17-59), mean age in group II was 83 months (range 65-104). All 
children had been using a pMDl/spacer for more than six months, except one who had 
been using a dry-powder device. The devices used before study entry were for group 
I: Breath-a-Tech" (Scott Dibben, New Castle, NSW, Australia) (n=8), Volumatic (n=2), 
Aerochamber" (Trudell Medicals, London, Ontario, Canada) (n=6), Babyhaler (n=l), 
and for group II: Breath-a-tech" (n=3), Volumatic (n=12), Turbuhaler" (n=I) (Astra). 
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TABLE 1. Mean filter dose and within-subject variability ln aerosol deLivery 
Group I Group II 

(1-4yrs) (5-8yrs) 

Nebuchamber Babyhaler Nebuchamber VoLumatic 
Filter dose 41.7 ± 10.1 26.0 ± 4.0' 50.3 ± 9.2 19.4 ± 7.2" 

within-
subject CV' 34.1 ± 15.6 37.2 ± 5.0' 23.1 ± 9.1 34.0± 6.5' 

ResuLts are mean±SD in % of nominal dose. t: coefficient of variation (OJ) as measure of variabiLity. 
': p<O.OOOl compared with Nebuchamber; ': p~ 0.44 compared with Nebuchamber; ': p~ 0.003 

compared with Nebuchamber. 

b) , • 
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ago (months) 

FIGURE 1. Aerosol dose delivered to the mouth for various spacer devices in relation to age. a) 
Group I (age 1-4 yrs, n~17) with mean (±SO) filter-dose of budesonide for each child for the 

Nebuchamber (0) and the Babyhaler (III) as a percentage of the nominal dose (200 ~g). 

b) Group II (age 5-8 yrs, n~16) With mean (±SO) filter-dose of budesonide for each child for 

the Nebuchamber (0) and the Volumatic (00) as a percentage of the nominal dose (200 ~g). 

Each pair of coLumns represents one chHd in ascending order of age. 
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fIGURE 2. Correlation between within-subject variability (coefficient of variation (CV)) of dose 

and age for the Nebuchamber in group L (r ~ -0.6, P ~ 0.02) 
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FILTER DOSE 
Filter doses (mean± SD) for the spacers in group I and II are shown in figure 1 

and in table 1. Filter doses were significantly higher (p<O.0001) in the Nebuchamber 
man in the plastic spacers. There was no significant correlation between age and filter 
dose in group I and II with both spacers. In group II there was a significant positive 
correlation between the filter dose for the Nebuchamber and the Volumatic (r = 0.79, 
p = 0.0003). In other words, children with higher filter doses for the Nebuchamber also 
tended to have higher filter doses for the Volumatic. This correlation was not found in 

group 1. 
In group I, a small bur significant priming effect was found for me Babyhaler but 

not for the Nebuchamber (p<0.05). The filter dose in the Babyhaler increased 0.4% per 
consecutive sample, or 0.8% per day. In group II mere was no correlation between filter 
dose and sample number for the Nebucharnber or for the Volumatic. 

VARIABIUTY 
Within-subject variability of aerosol delivety in both groups (mean±SD) is shown 

in table 1. In group I the within-subject CV for the Nebuchamber and for the Babyhaler 
were similar (p = 0.44). In group II the within-subject CV for the Nebuchamber was 
significantly smaller than for the Volumatic (p = 0.003). The range of within-subject 
CV was large in both groups for all spacers. In group II, children with a higher within­
subject CV for the Nebucharnber also had a higher within-subject CV for the Volumatic 
(r = 0.7, P = 0.028). This corrdation was not found in group I. The within-subject CV 
decreased significantly with age in group I for the Nebuchamber (figure 2). For the 
Babyhaler, within-subject CV tended to decrease with age (r = -0.5, p = 0.06), but this 
was not the case for the spacers in group II. 

DIARY CARDS 
Mean asthma scores were similar during the use of the different spacers in both 

groups. The majority of children were cooperative during the procedure. Of the 476 
assessments in group I scote 2 or 3 were recorded 41 times (8.6%) and of the 448 
assessments in group II, twice (0.4%). The analysis of the data was repeated after 
excluding the assessments where the cooperation was scored as 2 or 3. This did not 
change the outcomes. 

DAILY LIFE OBSERVATIONS 
Despite careful repeated instruction, mistakes were still made. Some were 

mentioned on the diary cards or could be concluded from the raw data, while others 
were observed. Recorded faults were not shaking pMDI before actuation, leaving the 
cap on the pMDI during actuation, the wrong number of actuations (6 samples of 
> 1 00% and 15 samples of >80% of the nominal dose), and using the face mask of the 
Nebucharnber upside-down by a 17 -month-old child, resulting in a very low filter dose. 
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DISCUSSION 

This study assessed the within-subject variability in aerosol delivety from 
pMDI/spacer devices in asthmatic children aged 1-8 yrs old in a daily life situation. 
It was found that the within-subject variability in aerosol delivery was considerable. 
Former studies have already indicated large between-subject variability in aerosol delivety 
in children using plastic and metal spacers [1,5,13J. In clinical practice the performance 
of inhalation devices should be known in order to prescribe medication dosages correctly 

and consistendy. 

There are seveal sources of dose variability. Electrostatic charge which retains 
the drug in the spacer can build up on plastic (polycarbonate) [14, 15J. Therefore, we 
hypothesized that electrostatic charge in plastic spacers is a potential source of dose 
variability. It was found that the within-subject variability in the metal and plastic spacers 
was the same in younger children, and significantly less in the metal spacer in older 
children. A small but significant priming effect was found in the Babyhaler but not 
in the Volumatic. Previously, it has been shown that several actuations from a pMDI 
reduce the negative effect of electrostatic charge on aerosol delivery [5J. The present 
results indicate that electrostatic charge probably plays a minor role as a cause of 
variability. The fact that no priming effect was shown in the Volumatic is difficult to 

interpret. It is possible that some priming was present but that other factors, such as 
valve design or volume, in the Volumatic were more important for aerosol delivery and 
therefore masked a possible small effect of priming. It is also possible that because of 
the larger volume, and therefore larger inner surface, the priming was not sufficient 
to show an increase of filter dose within a week of use. 

lt was found that within-subject variability of aerosol delivery was inversely related 
to age only in children <5 yrs old. This relation was stronger for the Nebutharnber than 
for the Babyhaler. A difference between age groups might be explained by the use of 
a face mask in group I. The effectiveness of a face mask depends on the fit and the 
cooperation of the child. A fitting problem with the facemask can lead to aerosol dilution 
by air entrained from the side of the facemask. The low mean filter dose of thel7 -month 
old child, who used the face mask of the Nebucharnber upside-down, illustrates this 
possibility. However, mask fit was not systematically investigated in this study, so its 
importance can only be speculated upon. 

Other patient-related factors could have contributed to variability in aerosol 
delivety. Within-subject variability for Nebucharnber and Volumatic in group II were 

positively correlated. A likely ""-'Planation fot this correlation is that consistent differences 
in inhalation technique or administration procedure between children occured. This 
is confirmed by the positive correlation between the mean ftlter dose for the 
Nebucharnbet and the Volumatic, which indicates that children with a better technique 
are able to inhale more aerosol from each device. Mistakes were made despite repeated 
instruction: filter doses of 0% and > 1 00% demonstrated that the instructions had not 
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been followed correctly by some children and parenrs. These data were not excluded 
from the analysis because mistakes in the administration procedure will always contribute 
to variability in aerosol delivery in daily life. In an in vitro study, it has been shown 
that the way in which the pMDI is handled before inhalation contributes to the 
variability of dose. For instance not shaking the pMDI reduced the dose delivered by 
25.5% [16J. The present resulrs and observations confirm that differences in inhalation 

technique and administration procedure are indeed important factors in the variability 
in aerosol delivety in daily life. 

It can be argued that the plastic spacers were not designed for the use of a 
Pulmicorr pMDI. Each formulation/spacer combination may behave differently, 
therefore it is not known how the results would have varied if a different drug had been 
used. However, the large within-subject variability appeared to be not only spacer­
dependent and can therefore be considered as a general feature in the use of 
pMDI/ spacers for inhalation therapy in young children. Further research to assess dose 
variability in other pMDI/spacer combinations is needed. 

Within subject variability is expressed as CV which cannot be interpreted 
separately from the mean filter dose. There were large differences bervv-een the filter doses 
of the various spacers, whereas the variabilities expressed as CV were similar. This indicates 
that the plastic spacers with the lower dose also had the lowesr absolute variability. It 
is encouraging that the average amount of aerosol a child received over a I-week period 
appeared reasonable. The filter dose was significantly less with the two plastic spacers 
than with the meral Nebuchamber. It is likely that electrostatic charge on the plastic 
spacers contributed to this difference, as it has been shown that the Babyhaler performs 
as well as a Nebuchamber when electrostatic charge is minimized by detergent coating 
[17J. However, this was nor the case in the present study, as the majority of plastic spacers 
are actually used without coating, in accord with the manufacturer's instructions. 

In this srudy, ftlter dose was found to be independent of age in both groups. 
This is in agreernentwith previous srudies.[1,13,17J. The difference in mean filter dose 
between group I and II is probably not an effect of age, but a result of the use of a face 
mask in group I. The nee mask adds dead space and may cause air entrainment, thereby 
reducing the filter dose in group I selectively. 

It is can be argued that filter studies only provide information about the amount 
of aerosol delivered to a patient and not about deposition in the respiratory tract. In 

the present srudy, the primary aim was to assess reproducibility of aerosol delivety from 
pMDI/spacer combinations in children and not to assess the efficiency of inhalation 

systems to deliver aerosol to the lungs. Therefore, the assessment of aerosol delivery 
by means of a filter is a valid method to obtain such information. Clearly, further research 
should focus on the therapeutic implications of the present findings. 

In conclusion, there was a considerable within-subject variability in aerosol 
delivery from both metal and plastic spacers in asthmatic children 1-8 yrs old in daily 
life. This variation was age dependent below the age of 4 yrs. Only a small part of the 
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variability in aerosol delivery could be attributed to differences in spacers. The absence 

of electrostatic charge on the metal spacer did not result in more constant dose delivery 

in children aged 1-4 yrs. However, the relative within-subject variability was less for 

metal than for plastic spacers in children> 5 yrs old. Factors such as spacer design, use 

of a face mask, age, inhalation technique and compliance vvith a correct administration 

procedure are possible causes of variability in aerosol delivery. Further research is required 

to investigate the causes and consequences of dose variability in aerosol treatment with 
pressurized metered dose inhalers/spacers in asthmatic children. 
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ABSTRACT 

The aims of this study were to assess and compare dose delivery and dose vari­

ability of pressurized metered dose inhalers (pMDI)/spacers in wheezy infants 

in daily life and to investigate factors influencing aerosol delivery. 

In an open randomized cross-over study in 25 wheezy infants aged 5-26 months, 

a metal spacer (Nebuchamber"'), a detergent coated (DC) and a non-detergent 

coated (nonDC) plastic spacer (Babyhaler"') were tested at home for 7 days each. 

Budesonide (200 j.l9 b.i.d.) was administered via a Nebuchamber orfluticasone 
(125 ~g b.i.d.) via a Babyhaler. Aerosol was trapped in filters, positioned be­

tween the spacer and face mask. Cooperation was scored on diary cards. 
Electrostatic charge (ESC) of the spacers was measured. Evaluations of admin­

istration technique were made from video recordings. 

Median (range) dose delivery on the filters expressed as per cent (%) of nom­

inal dose, was 34% (3 - 59), 23% (1 - 49), and 41% (12 - 55) for the 

Nebuchamber, nonDC-Babyhaler, and DC-Babyhaler respectively. Considerable dose 

variability was found, median (range) within-subject dose variability, expressed 

as coefficient of variation, for the Nebuchamber (49% (15-249» was signifi­

cantly higher compared with both non DC- (36% (12-325)) and DC-Babyhalers 

(27% (10-122», for which dose variabilities were similar. 

Detergent coating was effective to reduce electrostatic charge, and to increase 

dose delivery, but had no effect on dose variability. Bad cooperation was an im­

portant cause for high dose variability for all spacers (R=0.5-0.6, p<O.02). Many 

mistakes were made during the administration procedure. 
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INTRODumON 

Spacers were introduced to facilitate inhalation of therapeutic aerosols from 
pressurized meteted dose inhalers (pMDI), being especially useful for the treatment 
of asthma in young children. Spacers are widely used, but little is known about their 
dose delivery, and dose variability in daily life use. This information is important, since 
it allows the clinician to select the proper dose and device for a patient. The dose delivered 
from a spacer can be unpredictable and depends on a number of patient and device­
related factors [1-4]. Considerable between-subject variability in aerosol delivetyfrom 
spacers has been found in a laboratory setting [1,5]. However, these previous studies 
did not adequately represent the situation in daily life. 

In a previous study the authors showed that there is considerable dose-to-dose 

(or within-subject) variability from metal as well as plastic spacers when srudied at the 
homes of children aged 17 months-8 yeatS [6]. In children aged <4 yrs, dose variability 
was inversely related to age. However, this study resulted in a number of unanswered 
questions, which prompted furthet tesearch. Firstly, the number of children aged <2 
yrs was too small for the results to be conclusive for this age group. Young children of 
this age form a special treatment group, as faCtors such as cooperation, acceptance and 
the use of a face mask may determine the success or failure of inhalation therapy. The 
relevance of these fuctors on aerosol delivety from pMDI/spacers in daily life has not 
been studied previously. Additionally, many mistakes in the administration technique 
were observed or suspected but it was not systematically evaluated. Secondly, it was 
not clear whether the results of the metal and plastic spacers could be interpreted as 
differences in spacer design or due to the presence or absence of electrostatic charge 
(ESC). Various srudies have shown that plastic spacets can get electrostatically charged, 
which decreases drug delivety [7,8]. ESC can be minimized by coating the plastic spacer 
with a household detergent [8,9]. ESC is absent in a metal spacer. Furthetmore, the 
authors wanted to repeat the study using a different pMDIIspacer combination, for 
it has been shown that each pMDI/spacet combination behaves differently [2]. 
Thereforea study to assess and compare aerosol delivery for a metal spacer 
(Nebucharnber®, AstraZeneca, Lund, Sweden) [5] with budesonide pMDI 
(Pulmicon®, AstraZeneca) and for a DC and nonDC plastic spacer (Babyhaler®, Glaxo 
Wellcome, London, UK) [10] with fluticasone pMDI (Flixotide®, GlaxoWellcome), 
in wheezy infants aged 0-2 years in a daily life sening, was designed. Various factors, 
such as cooperation and administration technique, that might affect dose delivery and 
dose variability in daily life were srudied. 
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MATERIALS AND METHODS 

STUDY POPULATION 
Twenty-six children aged 5-26 months with recurrent wheeze requiring daily 

inhalation therapy were recruited from the outpatient clinic of the Sophia Children's 
Hospital (Rotterdam, the Netherlands), the Merwede Hospital (Dordrecht, The 

Netherlands) and from a general practitioner population (Brielle, The Netherlands). 
None of the subjects suffered from other disorders that could affect cooperation or lung 

function. Written informed COnsent was obtained from all parents. The study was 
approved by the local ethics committee. 

STUDY DESIGN 
In a four-week randomized cross-over study, the children were visited on five 

occasions. At the first and second home visit standardized instructions were given on 

the use of the spacers. During the first week, the run-in week, the cbiIdren had to practice 
with both types of spacers. Over the next three weeks a metal spacer, a nonDC and 
DC plastic spacer were tested in a randomized order, twice a day for 1 week each. Aerosol 
delivery was assessed by means of filters, placed between the face mask and spacer. The 
parents completed a diary card on symptom score and cooperation score during the 

administration procedure twice daily. ESC of the plastic spacers was measured before 

and after one week of use. The administration procedure was recorded on video twice, 
once at the end of the week of using the metal spacer and once after using one of the 

plastic spacers. 

SPACERS AND PMDI'S 
The spacers tested were the metal Nebuchamber® (250 mL) and the 

polycarbonate Babyhaler® (350 mL), both with their original face masks. The Babyhaler 
was used with and vvithout detergent coating, to evaluate the influence of ESe. All spacers 
were washed the day before they were allocated to the children. The Nebuchamber and 
the nonDC Babyhaler were washed in soapy water with normal household detergent, 

rinsed thoroughly with warm water and drip dried according to the instructions for 

use provided by the manufacturers. The DC Babyhaler was also washed in soapy water 
but not rinsed with water, and left to drip-dry [9J. All subjects received a clean spacer 
each week. 

Budesonide pMDI 200 rg·dose-1 (Pulmicort®, AsttaZeneca, Lund, Sweden) was 
used as the study medication for the Nebuchamber. Fluticasone pMDI 125 rg·dose-1 
(Fli.'Cotide®, Glaxo Wellcome, London, UK) was used for the Babyhaler. Each cbiId 
received new pMDI's. The first ten actuations of a new pMDI were wasted, to avoid 

variable doses [11,12J. 
At the end of each week, spacers were rinsed with ethanol to quantifY the amount 

of drug retained in the spacer for evaluation of the effect of detergent coating. 
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FILTERS AND FILTER ANALYSIS 
Aerosol delivery was measured by means of a filter (Vita! Signs Inc, Totowa, USA), 

inserted between the face mask and spacer. The filter has been shown to retain >99% 
of the drug delivered from a spacer [5]. The filter added a dead space of20 mL to the 
spacer. The pressure drop over the filter is 230 Pa at 60 L'min-' [5], which is approx­
imately one-fifrh of the airway resistance of an infant [13]. A preliminary srudy showed 
that the filter did nOt significandy alter the tidal volume and respiratory rate in nine 
children aged 10-24 months (data not shown). For each spacer a maximum of 14 fil­
ters was obtained per child, (i.e. twO filters per day). Budesonide and f1uricasone on 
filters and spacers were quantified by a validated method with high-performance liq­
uid chromatography (HPLC), using an ethanol:water (43:57) mobile phase and a 
Supelcosil LC-1S column (5 mm particles, 5 em x 0.46 em (inner diameter)). The co­
efficient of variation of the method was <3%. 

DIARY CARD 
To monitor symptoms and cooperation during the study period, parents filled 

out a diary card twice a day. The following items were scored; cough, wheeze, shortness 
of breath, and cooperation during the administration procedure. Each item was assigned 
a score of 0-3. Score 0 for no symptoms or good cooperation, score 3 for severe symptoms 
or for struggling against the procedure. Total symptom score, with a maximum of9, 
was defined as the sum of scores for the 3 items: cough, wheeze and shortness of breath. 
This symptom score was used to assess whether the different spacers were tested under 
similar conditions. 

ELECTROSTATIC CHARGE 
To evaluate the effect of detergent coating, (ESC) on the inner surface of the 

nonDC-Babyhaler and DC-Babyhaler was measured during the home-visits 
immediately before and after 1 week of use with a custom made electrometer (Central 
Instrumentation Dept, Erasmus University Rorterdam, The Netherlands). The 
elecuometer consisted of a metal probe with a length of 12 em connected to a high 
impedance voltmeter. To measure ESC the probe was positioned exactly in the middle 
of one-half of the spacer, using a wooden disc at the bottom of the probe, which fitted 
as a lid on the spacer half The variability of this method of measurement was 5%. Any 
ESC on the inner surface of the spacer induced a charge on the probe, which was shown 
on the display of the elecrrometer. The elecrrometer had been calibrated on a foil-coated 
Babyhaler with applied voltages. The measurements were done in a standardized fashion. 
Both halves of the disconnected Babyhaler were measured separarely. The measured 
voltage was used as a measure for ESC. The ESC of the entire spacer was calculated 
according to theforrnulas: C1+~ = Vrota! (C,+c;J and C1+~= C,V,+C2V2 in which 
nwnbers 1 and 2 refer to the two separate spacer halves, Q is charge, C is capacitance 
of spacer, V is measured voltage and Vtota! is voltage of total spacer. 
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VIDEO 
The administration technique was recorded on video during 2 of the 5 home 

visits, for the Nebuchamber and the nonDC-Babyhaler or DC-Babyhaler after they 
were used for one week. After completion of the study all recordings were scored on 
administration technique according to a checklist with 10 items (table 1) in a binomial 
scale, by five experienced observers. Observers were trained how to use the scoring 
system with an instruction video. The video recordings were scored in a randomized 
order. An item was considered correct if at least 3 observers had scored this item as 
COrrect. 

Agreement between video observers was calculated as follows: for each child, 
all 10 items (table 1) were added by each observer per spacer to give a total score ranging 
from 0 (all items wrong) to 10 (all items correct). The agreement between each pair 
of observers regarding this score was assessed by calculation of the intra-class correlation 
coefficient. All pairwise coefficients were found to be >0.72 (mean: 0.84), indicating 
a good level of agreement between observers. 

INSTRumON OF ADMINISTRATION TECHNIQUE 
On the first visit the use of the pMDI/spacers with the fUter was demonstrated. 

The study medication had to be administered twice daily, before regular maintenance 
therapy, which was continued during the study period. Before each administration a 
new filter was placed on the spacer by the parents. The face mask and the pMDI were 
attached to the spacer. Subsequently the pMDIIspacer was shaken for lOs before placing 
the face mask on the child. The spacer was held in a horizontal position, while ensuring 
a close fit of the face mask, with the child in an upright position. Next, one puff of 

TABLE 1. Checklist for the administration technique 
Number (Ofo) scored correctly 

Items Nebuchamber Babyhaler 
(n~22) (n=24) 

1. Child sits upright 20 (91) 22 (92) 
2. PMDI is placed correctly into the spacer. 22 (100) 24 (100) 

3. PMDI/spacer is shaken for at least 5 seconds 15 (68) 16 (67) 
4. Time between shaking and actuating is < 5 seconds? 17 (77) 18 (75) 

5. Face mask is placed on face before actuation of the puff. 19 (86) 22 (92) 

6. There is a close fit of the face mask. 16 (73) 22 (92) 
7. One puff is actuated? 20 (91) 23 (96) 
8. Child breathes for 30 seconds through the spacer. 10 (46) 14 (58) 
9. Child breathes quietly through the spacer? 14 (64) 15 (63) 

10. Face mask is held on face during the 30 seconds? 11 (50) 13 (54) 

pMDI: pressurized metered dose inhalers. Nebuchamber: n=22; Babyhaler: n",,24 
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aerosol was actuated into the spacet. The child had to inhale for 30 s with quiet tidal 

breathing. Subsequently, the filter was temoved ftom the spacer and both sides of the 

filtet holdet wete sealed with tape. Each filtet was labelled with a unique code. Finally, 

the filters were stored in a black plastic bag to protect the drug from destabilization 
by light. On the second visit the administration technique was demonstrated by the 
parent and child to the investigator and corrected where necessary. 

STATISTICAL ANALYSIS 
Filter dose was calculated as the amount of aerosol deposited on the filter as a 

percentage of nominal dose. Nominal dose for the budesonide pMDI was 200 jlg and 

for the fluticasone pMDI 125 jlg. Dose delivery, was calculated as the mean filter dose 

of the 14 samples collected in one week for each child. The within-subject dose variability, 

expressed as coefficient of variation (CV), was calculated for each child and spacer. Drug 

retained in the spacer after one week use was expressed as a percentage of the toral amount 
of drug administered in 1 week. Mean symptom score was defined as the average of 
the toral symptom score recorded on the diary card during one week. Mean cooperation 
score was calculated for each child per spacer. 

Consecutive actuations into an electric spacer may reduce ESC and 
subsequently increase the dose delivered [5]. Whether this "priming effect" was present 

during 1 week use, was investigated by ploning all filter doses for each child against 
the 14 sample numbers and drawing individual regression lines through these data points. 
For each spacer the mean slope of the individual regression lines was calculated. 

The Friedman test was used for overall comparisons bet\iVeen the various 

parameters investigated for the three spacers. If significance was present (p<0.05), pairwise 

comparisons were made with the Wilcoxon signed ranks test. The comparisons were 
carried out in triplicate: a) analysis of all available data, b) after excluding the samples 

where the child had not cooperated during the procedure (cooperation score 2 and 3), 

and c) after excluding the filters where filter dose was o. Correlations were investigated 
bernreen dose delivery and within-subject dose variability versus age, mean cooperation 
score, and video score using Spearman's correlation coefficient (r). Dose delivery and 
dose variability of children who were using a Nebuchamber for maintenance therapy 
berore study entty were compared with the dose delivety and dose variability of children 
who were using another spacer. There were only five children who used a Babyhaler 

before study entry, a number that was too small to reliably compare this group with 
those who used other spacers. Results are given as median (range) unless otherwise 
indicated. 
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RESULTS 

Of the 26 children included in the study, one child was ",,,cluded because the 
fluticasone pMDI had been used with the cap on, resulting in no drug on the frlters. 
The remaining 25 children (21 male) form the study group of this repon. Median age 
was 14 (5-26) months. The inhalation devices used before study entry were: 
Nebuchamber (n=12), Babyhaler (n=5), Aerochamber® (n=5) (Trudell Medicals, 
London, Ontario, Canada), nebulizer (n=2), nebulizer+Nebuchamber (n=I). A total 
of319, 326 and 325 frlters were collected for the Nebuchamber, the nonDC-Babyhaler 
and the DC-Babyhaler respectively. Symptom scores were low and similar during the 
use of the different spacers: median score was 0.2, 0.1, and 0.4 for the Nebuchamber, 
the nonDC-Babyhaler, and DC-Babyhaler respectively (p= 0.99). 

DOSE DmVERY 
Dose delivery; expressed as a percentage of nominal dose, for all spacers is shown 

in frgure 1. Median (range) dose delivery was 34% (3 - 59), 22% (1 - 49) and 410/0 
(12 - 55) for the Nebuchamber, the nonDC-Babyhaler, and DC-Babyhaler 
respectively. Median dose delivery for the Nebuchamber was signifrcantly higher than 
for the nonDC-Babyhaler (p= 0.03) but lower than for the DC-Babyhaler (p=0.005). 
The difference in dose delivery between nonDC-Babyhaler and DC-Babyhaler was highly 
signifrcant (p<O.OOI). There was a positive correlation between the dose delivery of the 
Nebuchamber and the DC-Babyhaler (r=0.5, p= 0.01) and berween the nonDC- and 
DC-Babyhaler (r=0.5, p=0.02). In other words, children with a low dose delivery in 
one spacer tended to have a low dose delivery in the other spacers too. This correlation 

was not signifrcant berween the Nebuchamber and the non-DC Babyhaler (r=0.3, 
p=O.I). No drug was found on the ftlter in n= 37 (12%), n=20 (6%) and n=11 (3%) 
ftlters of the Nebuchamber, the nonDC-Babyhaler and DC-Babyhaler respectively. The 
conclusions as described above did not change when the fIlters without drug were 
excluded from analysis. No signifrcant priming effect was found for any of the three 
spacers. No significant correlation was found between age and dose delivery for any 
of the three spacers. 

DOSE VARIABILITY 
Dose variability, expressed as the within-subject coefficient of variation (CV), 

for each spacer is shown in figure 2. Median dose variabiliry was 49% (15-249), 36% 
(12-325) and 27% (10-122) for the Nebuchamber, the nonDC-Babyhaler, and DC­
Babyhaler respectively. The dose variability for the Nebuchamber was significantly higher 
than the dose variability for the nonDC-Babyhaler and DC-Babyhalers. The dose 
variability for the nonDC-Babyhaler and the DC-Babyhaler were not signifrcantly 
different. There was a positive correlation between the dose variabilities of the 
Nebuchamber and the nonDC-Babyhaler (r=O.4, p= 0.03) and berween the nonDC-
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FIGURE 1. Boxplot of dose delivery, calculated from the mean dose on the filters as a percentage 
of nominal dose per child, for the Nebuchamber, non-detergent coated (non DC) Babyhaler and 
the detergent coated CDC) Babyhaler. Whiskers represent Largest and smallest obselVed value 
that is not outlier, box represents 25th and 75th percentiles, and bar represents median. 
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FIGURE 2. Boxplot of within-subject dose variability, expressed as coefficient of variation (CV%) 
for the Nebuchamber, non-detergent coated (non DC) Babyhaler and the detergent coated (DC) 
Babyhaler. 



82 

350 1 , 

300 ~ 

" > 250 
£ 
~ 200 
:c 
.~ 150 

~ 
~-~-

/' 
~ 100 
o 

50 - ~~-r-:~~:~'-;f.:.~~~~··:-~~·""-·-·-"" 

o 
o 2 

co-operation score 

3 

'" 
Figure 3. Scatterplot of within-subject dose variability (CV%) versus mean cooperation score 
for the Nebuchamber, non-detergent coated Babyhaler and detergent coated BabyhaLer. 
-,'Nebuchamber (r=0.6, p=0.002);---,D:non-detergent coated Babyhaler (r=0.5, p=0.02); 

..... , " detergent coated babyhaler (r=0.5, p= 0.009). Cooperation score: O=good, 3=bad. 

and DC-Babyhaler (r=0.6, p=O.OOl): children with a high dose variability in one spacer, 
also tended to have a high dose variability in the other spacers. This correlation was 

nOt significant for the combination Nebuchamber versus DC-Babyhaler (r=0.3, p=O.l). 
There was no significant correlation between dose variability and age. Differences in 

dose delivery and dose variability between children who used a Nebuchamber before 

study entry and children who used another spacer were not significant. 

COOPERATION SCORE 
Mean cooperation scores, obtained from the completed diary cards, were not 

significantly different betvleen the three different spacers: median (range) was 0.7 (0-
2.7),0.4 (0-2.3) and 0.6 (0-2.3) for the Nebuchamber, nonDC-Babyhaler and DC­
Babyhaler, respectively. Bad cooperation during administration (score 2-3) was scored 

in 28%, 19% and 22% of all scores for the Nebuchamber, the nonDC-Babyhaler and 
the DC-Babyhaler respectively. The overall comparisons of the dara were repeated after 
excluding the fIlter doses on which cooperation was scored 2 or 3 (bad cooperation). 

This did nOt affect the conclusions as described. A high (=bad) cooperation score led 

to a higher dose variability for all spacers (figure 3) and a lower dose delivery for the 
Nebuchamber only (R=05, p=0.009). 

ELECTROSTATIC CHARGE 
ESCbefore and ESCafter one week use for each spacer is shown for the nonDC­

Babyhaler and DC-Babyhaler in figure 4a and 4b respectively. In both the nonDC­
Babyhaler and the DC-Babyhaler the ESC increased significancly during us for one week 
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FIGURE 4. a) Electrostatic charge (V) for the non-detergent coated Babyhaler before (ESCb,',") 
and after (ESLfter) one week use for each child (p<O.OOl)_ Median ESCbcror~ = 370 V (range: 0-
4071), median ESCoe" ~ 740 V (range: 74-5550) 
b) Electrostatic charge (V) for the detergent coated Babyhaler before (ESC",,") and after (ESCo",c) 

one week use for each child (p<O.OOl). Median ESCb,f,,,: 0 V (range: 0-295), median ESCo,,,: 296 

V (range: 0-1850). ESGefo~ and ESC.ft~r for detergent coated Babyhaler compared with ESCbefore and 
ESC,fter for non-detergent coated Babyhaler respectively: p<O.OOl for both. 

(p<O.OOl). ESCb,fN' and ESC",,, were significantly higher in rhe nonDC-Babyhaler 
compared wirh rhe DC-Babyhaler (p<O.OOl). ESCb,f,,, was 0 V in only one (4%) of 
rhe nonDC-Babyhalers, a"o-ainst 18 (72%) of rhe DC-Babyhalers. ESC"", was 0 V in 
none of rhe nonDC-Babyhalers and in rhree (12%) of rhe DC-Babyhalers. 

Detergent coating significantly reduced rhe amount of drug retained in rhe spacer. 
This was 50% (32-78) and 29% (21-60) for rhe nonDC-Babyhaler and DC-Babyhaler 
respectively (p<O.OOl). Amount of drug retained in rhe Nebuchamber was 46% (23-
93), which was not significantly different from the amount retained in the nonDC­
Babyhaler but significantly higher rhan in the DC-Babyhaler (p<O.OOl). 

ADMINISTRATION TECHNIQUE 
Table 1 shows rhe number of children rhat performed rhe administration 

technique correctly for each item of rhe checklist for borh spacers. In one-rhird of the 
cases rhe pMDl/spacer was not shaken correctly. A close fit of rhe face mask was observed 
in 73% of rhe cases for rhe Nebucharnber and in 92% for Babyhaler. Additional 
observations for rhe Nebuchamber mask were rhat substantial pressure was used (pressing 
the nose down and causing flattening of the nose and whitening of the skin) or that 
parents folded rheir fingers around rhe edges to keep rhe face mask in place. Furrhermore, 
rhe seal between rhe Nebucharnber mask and rhe face was easily interrupted by 
movements of rhe child. The suboptimal fit was clearly visible especially around rhe 
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nose. Only half of the children managed to breath for 30 s or more through the spacer 
or managed to maintain the mask on the face. This showed that items requiring good 
cooperation (items 8,9, and 10) during the administration procedure appeared to be 
difficult to achieve in this age group. 

DISCUSSION 

In this study dose delivery and within-subject dose variability from a metal and 
a plastic spacer in children aged 5-26 months were compared. Furthermore, several hctors 
that could affect dose delivery and dose variability in daily life were studied. Dose delivery 
from the spacers was on average one-third of the nominal dose with a wide range between 
the children. Dose delivery W<lS lowest in the nonDC-Babyhaler and highest in the DC­
Babyhaler. The dose variability, in daily life, in all of the tested spacers was found to 

be considerable. Dose variability in the nonDC-Babyhaler and the DC-Babyhalerwere 
not significantly different and were lower than in the Nebuchamher. These findings 
are in contrast with other studies, in which the Nebucharnber with face mask delivered 
a similar dose as a detergent coated Babyhaler [9], and a higher dose than other spacers 
[5,14,15]. However, these previous studies were performed in a laboratory setting, using 
controlled and standardized procedures, where one experienced person performed the 

administration. The present study was performed in a daily life setting where the 
administration was done by parents. In this set-up the influence of factors such as 
cooperation and administration technique on dose delivery and dose variability of spacers 
could be investigated. 

For both the Nebucharnber and the Babyhaler, it was found that non-cooperation 
increased dose variability. For the Nebucharnber bad cooperation reduced dose delivery, 
but this correlation was not significantly present in the Babyhaler. It seems logical that 
the drug delivery of a spacer improves when a child is cooperative during the 
admirllstration. However, the importance of cooperation for the administration of inhaled 
drugs in daily life has not been investigated previously. Tal et al. [4] found that lung 
deposition, in twO infants, from a small volume plastic spacer was negligible when they 
were crying. Recently, it was shown that crying significantly reduces drug delivery to 
the lungs in infunrs [16]. The present study has clearly shown that cooperation is a major 
problem for aerosol therapy in young children in daily life. The video recordings showed 
that items requiring good cooperation during the administration procedure, i.e. quiet 
breathing, inhaling for 30 s and holding the face mask on the hce for 30 s were achieved 
by only half of the children. It should be remarked that 30 s is quite a long period, which 
was obviously not achieved by many children. However, the optimal time in which for 
children to empty a spacer is not known. The authors chose 30 s inhalation time after 
taking into account the small tidal volumes and irre.:,oular breathing patterns of children 
of this age [17]. Bad cooperation was scored by the parents in more than one-fifth of 
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all assessments. Even though the cooperation score was a subjective measure, scored by 
the parents on the diary cards, dose variability was found to be significandy higher when 
children were less cooperative. The findings emphasise the importance of stimulating 
good cooperation for optimal aerosol delivery from pMDl/spacers in infants. 

The seal of the mce masks used might explain the discrepancies of our 'daily life' 
findings with previous 'laboratory' studies. The video-recordings showed that children 
were often struggling against the procedure, which is likely to affect the seal of the face 
mask. Ir seemed that in these young children the seal of the Nebucharnber face mask 
was more sensitive to movements than the Babyhaler face mask. The face mask of the 
Nebuchamber lost contact with the face more easily, which was visible on the video­
recordings. However, the seal of the face mask was nor objectivdy measured. The finding 
that dose delivery was correlated to the cooperation score for the Nebuchamber but 
not for the Babyhaler, supports the authors impression that cooperation plays a larger 
role in the dose delivery of the Nebucharnber. Additionally, it has been previously shown 
that the dose ddivery for older and more cooperative children (17 months-4 yrs) was 
higher and also dose variabiliry was equal for the Nebucharnber when compared to the 
Babyhaler [6]. The results may be explained by the difference in design of the 
Nebucharnber mask and the Babyhaler mask. The Nebucharnber mask is pre-shaped 
to the facial contours, but did not seem to fit on each face. This mask was designed 
to minimize the dead space of the inhalarion sysrem. The Babyhaler mask has a larger 
dead space, but is round and made of a more flexible material than the Nebucharnber. 
With this facemask it seemed easier to achieve a tight fit in these young 
(uncooperative) children. Recendy, Arnirav and Newhouse [18] found that the ventilation 
through a pneumotachograph was better and less variable with a Babyhaler mce mask 
than with a Nebuchamber mce mask, when tested in children <5 years of age. It has 
been shown before that holding a mce mask 2 em from the face substantially reduces 
the dose delivered [3]. Based on these arguments ir is suspecred that the rdativdy high 
dose variabiliry of the Nebucharnber can be explained by a suboptimal fit of its mce 
mask. The authors hypothesize that aerosol delivery of the Nebucharnber for infants 
can be improved by an improved design of the face mask. 

The results of the checklist for adminisrration rechnique showed that even when 
instructions were given repeatedly, many mistakes were still made. Similar findings were 
found in another srudy in older children where 14% to 26% of children, depending 
on the type of spacer used, failed to demonstrate critical skills for using a spacer efficiently 
[19]. Consistent differences between children in administration techniques, breathing 
patterns and cooperation can explain why children with a low dose delivery or high 
dose variability in one spacer tended to show this in the other spacers also. It has been 
shown that patient-dependent mctors such as tidal volume [3] and inhalation flow [20] 
are determinants for drug delivery from spacers, which can vary the dose delivered 
remarkably. The results emphasize the need for regular evaluation of administration 

technique while a child is treated with inhaled drugs by pMDI/spacer. 
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Plastic spacers accumulate ESC, which decreases the dose delivered [7,8]. The 
present study showed that detergent coating of the spacer was effective in reducing ESC, 
although its effect diminished over a one week petiod of daily use. Reducing ESC resulted 
in a higher dose delivery and less drug retained in the spacer. Priming of the spacer, 
during one week use, did not decrease ESC. The effect of priming was probably too 
small to compensate for other, not studied, factors that increase ESC. The influence 
of ESC on dose variability was investigated. Dose variability in the nonDC-Babyhaler 
and the DC-Babyhaler were comparable, and the dose variability was higher in the 

Nebuchamber, in which ESC is absent. Furthermore, in an earlier study caried out by 
the authors, dose variability was the same in the Nebucharnber and in the non-DC 
Babyhaler in children 1-4 yrs of age [6]. In the present study, it was found that ESC 
is not a potential source for dose variability in the plastic Babyhaler. Whether this is 
applicable to all plastic spacers needs to be investigated further. 

No correlation between age and dose delivery or dose variability was found. In 
previous studies dose delivery from a Nebuchamber and a Babyhaler were also age 
dependent [5,6,9]. Previously, it was shown that dose variability was inversely related 
to age in children <5 yrs of age [6]. The small range in age might explain why no age 
dependent dose variability was found in the present study. Also the fact that cooperation 
played a larger role in this age group than in the group of <5 yrs of age, could have 
masked a small age effect. 

Caution must be taken when interpreting filter studies, as was the case with the 
present srudy, with regard to clinical efficacy and lung deposition. The doses found on 
the filters is the amount of aerosol delivered to the mouth. It does not give any 
information on where in the respiratory tract the drug will be delivered. However, the 
filter method was sufficient to answer the authors questions with regards to the 
reproducibility of aerosol delivery from pMDl/spacers of spacers in daily life. Further 
research is needed to study the therapeutic implications of the present findings. 

To conclude, considerable within subject dose variability was found when spacers 
were used at home by infants aged 5-26 months. High dose variability means that the 
day-to-day dose delivered from spacers is unpredictable. Reducing electrostatic charge 
by detergent coating of a spacer was effective for increasing dose delivery but had no 
influence on dose variability. Hence, electrostatic charge appeared not to be important 
for dose variability in the spacers studied. Dose variability was highest in the 
Nebucharnber and it was speculated that this was caused by a suboptimal fit of the lace 
mask in this age group. Children with good cooperation during the administration 
procedure had a lower dose variability in all the spacers. The results of the present study 
show the importance of performing studies in 'daily life' setting. Whether or not the 
training of parents and their children and the evaluation of cooperation during the 
administration of inhaled drugs leads to more effective aerosol treatment, remains to 
be shown. 
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ABSTRACT 

Pressurized metered-dose inhalers attached to spacers are now the most com­
mon form of delivery of anti-asthma medication in children. However, no reli­

able data are available of how drug reaches the lungs;n children of different 
ages. This information is crucial, as it determines the efficacy of therapy. In this 

study, we present information on the amount of drug reaching the lungs;n chil­

dren from a pressurized metered-dose inhaler attached to a detergent-coated 
spacer to minimize electrostatic charge on the spacer wall. Lung deposition was 
much higher than expected when using detergent-coated spacers. Mean (SD) lung 
deposition, expressed as a percentage of the total actuated dose (five actua­
tions), was 16.4% (5.5) in younger children inhaling through a small volume 
spacer, and 28.2% (6.7) and 41.8% (3.8) in older children inhaling with dif­

ferent breathing patterns through a large volume spacer. These findings have 
major implications for dosage regimens for inhaled anti-asthma medication in 
children. Lower doses may be sufficient for adequate drugs delivered through 
spacers treated for static to achieve a desired clinical response. 
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INTRODumON 

Pressurized metered-dose inhalers (pMOls) are widely used for the treatment 

of childhood asthma. Direct, local administration of the drug to its site of action in 
the airv.rays is preferable to systemic administration. The amount of dose deposited in 
the ainvays determines the efficacy and side effects. Previous deposition srudies assessed 

lung deposition from a p MOl/spacer in young children. Only a small proportion (<2%) 

of each individual drug dose released from a salburamol pMOI through a spacer reached 
the airways. '-'The moS( important technical facror limiting drug delivery from a pMOI 
through a spacer in vitro is electrostatic charge on the surface of plastic spacers. 3 We 
have shown that this can be abolished by coating the spacers with detergent. oj By this 
simple and practical method, in vitro drug delivery is increased by more than five times 
and hence, in vivo delivery to adult patients is significandy increased with less variabiliry. 
5The current study was undertaken to determine how much of the total actuated dose 
of a drug released from a p MOl reaches the airways in children with asthma, using 
a spacer treated to minimize static. 

MATERIAL AN D METHODS 

STUDY SUBJECTS 
Eighteen children (14 males), mean age 68 months (range 12 to 146 months), 

were included and divided into three groups according to their age: A, <48 months; 
B, 49-96 months and C, >96 months. All patients had asthma in a stable S(ate as judged 
by the absence of an exacerbation in the preceding 4 weeks and, when it was possible 
to measure, an FEVr >800/0 of predicted values. Patients underwent a presrudy evaluation 
which included clinical examination and instructions in the optimal use of the inhalation 
device and, where possible, measurements of pulmonary function. The parents were 
given information regarding the use and effects of radioactive aerosols in children. The 
radioactive dose to be used was explained to be less than the natural exposure to he 
radioactivity on a flight from Prth to Sydney. Written informed consent was obtained 
from all parents, and where appropriate, from the children. The study was approved 
by the local hospital ethics committee and the Stare Radiation Safery Officer. 

STUDY DESIGN 
All children inhaled five puffs from a radiolabelled salburamol pMOI through 

a plastic spacer in which stati charges were reduced. The number of actuations to be 
given to each patient was assessed on each study day prior to the inhalation procedure, 
based on the actual amount of radiactivity per actuation measured by using a multistage 
liquid impinger (MSLI: Copley, Nottingham, UK), so that patients would not receive 
a dose exceeding 2 Megabecquerels (MBq) in total dose. Children <48 months (group A) 
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used a small volume spacer with face mask (Babyhaler"; Gk"o Wdcome, Schoenbuehl, 

Switzerland). Children >48 months (groups Band C) used a large volume spacer 
(Volumatic"; Allen Hanburys, Sydney, Australia). Electrostatic charge on the internal 
surface of the spacers was reduced by detergent (Cetrimide 40%; Princess Margaret 
Hospital Pharmacy, PeM, WA, Australia) coating (the spacers were soaked in diluted 
detergent and subsequenrly drip-dried). Residual eleCtrostatic charge was measured using 
a modified electrometer (EleCtronic Instruments, model 37C, Jacoby Mitchell, Sydney, 
Australia).5 The pMDI was shaken between actuations. Patients from Groups A and 

B were allowed five tidal breaths between each actuation. Patienrs from Group C inhaled 
with a single, slow maximal inhalation following each actuation and hdd their breath 
for 10 sec afrer each inhalation. Following inhalation, subjecrs from group B and C 
exhaled slowly through a filter (Curio/' Anesthesia Filter; Kendall, MA) and subsequenrly 
rinsed their mouths and gargled with water. Washings were collected. Activity in these 

washings was quantified using an ionisation chamber (Atomlab 200 dose calibrator; 

Gammasonics, Sydney, Australia). A filter (Curio/' Anesthesia Filter) was inserted at 
the expiratory valve of the Babyhaler"' to collect the expired aerosol in Group A. 

Quantification of the distribution of radioactivity depositing in the patienrs' lungs 

was done in the following way. A flood source containing approximately 37 MBq of 
99mTc was used to obtain values for attenuation of activity due to absorption by body 
tissues. 6,7 Since attenuation of activity is dependent on size and body mass, and since 
these parameters varied greatly between patients, an attenuation value was determined 
for each patient. After the inhalation procedure, anterior and posterior images of the 
chest and the abdomen were obtained together with lateral images of the upper airway, 
using a gamma camera (Dual Head GCA-7200A; Toshiba Corporation, Tochigi-Ken, 
Japan). Collection times were 2 min for each of the images. Areas of interest were defined 
for each of the images, and separate count rates were determined for the right and left 
lungs, stomach, oesophagus, throat and mouth. Each count rate was corrected for 
background counts and attenuation, and the geometric means of corresponding anterior 
and posterior count rates were calculated. The dose deposited in the lungs was then 
expressed as a percentage of the toral actuated dose, defined as total body dose, dose 
retained in the actuator and spacer, dose exhaled, and, where obtained, dose from 
mouthwashing and dose from gargle. All these doses were measured using the same 
gamma camera and the same collection timeof2 min. The total dose deposited in the 
mouth, throat, oesophagus, stomach and, where obtained, in the mouthwash and gargle, 
was defined as gastrointestinal deposition. Deposition within the lungs was then 
subdivided into two regions: peripheral and central. The petipheral to central deposition 
ratio (P:C ratio) was quantified using the method described by O'Doherty et al.,'in 
which deposition in the central region representing half the width of the lung and one 
third the height was compared with the remaining peripheral region. The distribution 
index was defined as the following ratio: lung deposition divided by gastrointestinal 
deposition. 
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LABEllNG OF SALBUTAMOL PMDI 
Salbutamol pMDI (Ventolin";Allen Hanburys, Sydney, Australia) was labeled 

using a modification of the method desctibed by Kohler et al.' For the labeling of one 

canister, 500-600 MBq 99mTc (0.5-1.0ml) were eluted from a generator (Technetium 

99m Generator, Australian Radioisotopes, Lucas Heights, Australia) and mixed with 

2 mL of200/0 NaC!. The 2 mL were then poured into a separating funnel and shaken 

together with 4mL of ethyl methyl ketone (buranone). The twO phases were allowed 
to separate, and the top layer (:>')mTc in butanone) was collected in a new pMDI canister. 
The collected butanone containing the radioactivity was evaporated for 12 min in a 
nitrogen flow (9-13L.min·'). The canister was placed into an oven for half an hour at 

a temperature between 73-85°C to evaporate the water content. The canister was then 
placed in dry ice to be cooled. A frozen (dry ice) commercial pMDI was opened with 

a pipecutter (TC 1000, Imperial Easunan), and the contents were poured into the cooled 

canister containing the radioactivity and immediately crimped (Crimper Type 555G, 
Parnasol; Willi Mader AG; pfaffikon, Switzerland). 

The closed canister was subsequently shaken for half an hour in different 

positions. In vitro assessment of radiolabelling was done by measuring in vitro particle 
size distribution and total drug delivery using a multistage liquid impinger (MSLI) before 
and after testing the children. The sizes of particles deposited on Stages 1, 2, 3 and 4 

were >13pm, 6.8-13f1II1, 3.1-6.8)lm and <3.1f1II1, respectively. Ten actuations of 

radiolabelled salbutamol from the pMDI were drawn through the MSLI at a continuous 
flow of 60 L min". The actuator, the glass throat and the four stages of the MSLI were 

washed with 45 mL of methanol. Five milliliters ofO.lM NaOH were added to each 

wash. The absorbance of salbutamol (wavelength = 246 nm) was measured in each wash, 

using a spectrophotometric method. The concentration of salbutamol was calculated 
using the absorbance of a solution containing a known concentration of salbutamol. 
The standard curve for salbutamol was linear (r=I.00) for concentrations between 0 

and 21 )lg.ml·'. The distribution of radioactivity in the different washes Was measured 

in an ionisation chamber (Atomlab 200 dose calibrator; Garnmasonics, Sydney, 

Australia). The output and the particle size distribution opmTc labeled salbutamol from 

the study pMDls (n = 6) were then compared to the particle size distribution of 

salbutamol from commercial Ventolin® pMDls (n = 6). This was done to confirm that 
99mTc acts as a suitable marker for salbutamol and to determine the amount of 

radioactivity and of drug per actuation by dividing the amount recovered in the MSLI 
by a factor of 10. 

ANALYSIS 
The Minirab statistical package, version 11.12 (Minitab Corporation), was used 

to perform the statistical analysis. Descriptive statistics were generated using the Excel 
program, version 5.0 (Microsoft Corporation). The following variables were 

calculated in Mbq as a percentage of total actuated dose: a) total lung deposition; b) 
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gastrointestinal deposition; c) dose exhaled; d) dose retained in the actuator and spacer; 

and e) ratio of peripheral to central lung deposition. Continuous variables were compared 
using the Pearson product moment correlation coefficient (r). The mean of continuous 

variables across two categories of a variable were compared using a two-sample t-test. 

The mean of a continuous variable across more than two categories of a variable were 

compared usingANOVA. 

RESULTS 

Figure I shows the drug partide size distributions from commercial and labeled 
salbutamol pMOls, compared with the distribution of the radioactivity, assessed with 
the MSLI. A good correspondence was found. The mean (SD) amounr of particles 
<3.1 jlll1 from stage 4, expressed as a percentage of the metered dose, was 37.5% (2.1), 
37.4% (O.S) and 35.9% (I.G) for unlabeled drug (commercial Ventolin®), radiolabel 
(labeled salbutamol pMOI) and labeled drug (labeled salbutamol pMOI), respectively. 
The mean (SO) amount of radioactivity and salbutamol per actuation was 0.37 (0.02) 
MBq and 9S.5 (2.8) p.g, respectively. 

Gender, age and height of the patients who completed the study (n = IS) are 
shown in Table I, together with individual FEV, values, lung deposition, and 
gastrointestinal deposition. 

Mean (SD) lung deposition expressed as a percentage of the metered dose was 
IG.4% (5.5),28.2% (G.7), and 41.S% (3.S) in Groups A, B and C, respectively (P < 
0.001) (see Table 2). There was a positive correlation between total lung deposition 

actuator throat stago1 stago2 staga3 stagG4 

FIGURE 1. Drug (salbutamol) particle distribution from commercial and labelled pMDIs compared 
to the distribution of the radioactivity from labeled pMDI (n ~ 6). 
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TABLE 1. Demographic Data lor the Patients (n ~ 18) Including Individual FEV, Values, Total Lung 

Deposition, and Gastrointestinal Deposition Expressed as Percentage of Total Metered Dose. 
Total lung Gastrointestinal 
deposition deposition 

Age Height FEV, (% 01 total (% 01 total 

Gender (months) (em) (% predicted) delivered dose) delivered dose) 

I 12 75 12.3 20.2 

m 18 81 11.3 23.1 

m 23 88 20.0 23.0 

m 24 87 8.5 27.4 

m 25 87 21.9 17.1 

m 34 95 14.4 26.9 

m 44 106 18.6 14.3 

m 45 102 23.9 14.8 

m 73 116 1.69 (138) 29.0 22.3 

m 78 109 1.13 (120) 27.6 13.1 

I 81 115 1.25 (113) 22.7 16.7 

I 85 118 1.74 (111) 22.6 13.6 

m 94 121 1.38 (99) 38.9 18.1 

m 98 130 1.66 (101) 39.4 18.4 

m 104 129 1.73 (103) 48.5 11.4 

m 120 152 2.61 (106) 39.5 16.7 

m 121 134 1.64 (89) 41.2 16.7 

I 146 142 2.02 (98) 40.2 19.2 

Mean (range) values 26.7(8.5 - 48.5) 18.5(11.4 - 27.4) 

f, female; m, male 

TABEL 2. Mean (SO) amount 01 lung and gastrointestinal deposition and Mean (SO) amount 01 

dose retained ;n the actuator, filter, spacer, and face mask, expressed as percentage of total 
actuated dose ;n different age groups (Group A, B, and C) 

Group A Group B 

Actuator 12.3% (5.2) 12.4% (4.3) 

Spacer 36.9% (2.6) 42.4% (10.3) 

Filter 8.7% (3.9) 0.2% (0.1) 

Mask 4.7% (2.8) 

Gastrointestinal 
deposition 20.9% (5.1) 16.8% (3.7) 

Lung deposition 16.4% (5.5) 28.2 (6.7) 

Group C 

8.5% (2.7) 

32.9% (2.7) 

0.3% (0.2) 

16.5% (3.0) 

41.8% (3.8) 



98 

a)~l b) :1 ~ 

: 
, 

'" .' ,"' 

c 3S , ~~ 

i 30 00· 

-l:i ~5 ,,~ -< 

..5 ~D : " " , 
" :G 

" 
' , , 

, , 

, , 
" " "' 

., ,,, I~O '" ,,, " " " 
,,, ", l~O '00 ''" ,~ ,,, 

~g' (m<>ntl1"l "",~h' {~"ll 

FIGURE 2. Scatter plots of total Lung deposition expressed as a percentage of the total metered 
dose vs. (a) age (R' = 0.78, P <0.001) and (b) height (R'= 0.76, P <0.001). 

and age (r = 0.88, P < 0.001) (Fig. 2a) and height (r = 0.88, P < 0.001) (Fig. 2b). When 
the amount deposited in the lungs was correcced for body weight (BW), there were 
no differences between the different age groups. Mean (SD) lung deposition corrected 
for BW was 1.1 %/kg BW (oA), L3%/kg BW (03), L3%/kg BW (03) and L3%/kg 
BW (OA) in Groups A, B, and C, respectively (P = OA9). The mean (SD) P:C ratio 
was 1.9 (03), 1.8 (03), 1.6 (0.5) and 1.7 (OA) in Groups A, B, and C, respectively 
(P = 0.67). There was no significant correlation between P:C ratio and age (r = -026, 
P ~ 030) or height (r = -034, P = 0.17). 

Mean (SD) gastrointestinal deposition (mouth, throat, oesophagus, stomach and, 
where obtained, mouthwash and gargle) was 20.9% (5.1), 16.8% (3.7), and 165% 
(3.0) in Groups A, B, and C, respeccively (P ~ 0.08). There was a small, positive 
correlation between gastrointestinal deposition and age (r ~ -OA7, P ~ 0.05) or height 
(r ~ -OA7, P ~ 0.05). 

The distribution index was 0.9, 1.7 and 25 in groups A, B, and C, respectively 
(P ~ 0.001). 

DISCUSSION 

Total lung deposition ofOOmtechnetium labeled salbutamol from a pMDI through 
a plastic spacer treated with detergent in asthmatic children was much higher than predicted. 
Several in vitro and filter studies using different plastic spacers have estimated the lung 
deposition in children to be less than 10%.10-12 OUf finding of a higher lung deposition 
is most likely explained by reducing electrostatic charge on the surface of the plastic spacer. 
0' Callaghan et al. 'showed that electrostatic charge plays a major role in drug delivery 
through a plastic spacer. Static on the spacer surface attracts the small particles and hence, 
leads to a much lower delivery of particles available for deposition in the lungs. Reduced 
static leads to a higher and more consistent dose delivery in vitro and in vivo.5 
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A major improvement in the delivery efficiency of inhalation devices is likely 
to have considerable clinical and economic impact. By simply reducing electrostatic 
charge, the dose deposited in the lungs can be gteady increased with markedly reduced 
variability. This will allow for a lower prescribed dose in asthmaric children and results 
in the same clinical effect that a suboptimal device could achieve. CoSts of therapy would 
be reduced. However, the treating physician must be aware of the increase in dose 

reaching the patient~ as side effects may arise with a higher amount of drug being 
absorbed systemically. There has been an increasing trend to escalate the doses (relative 

to body size) of inhaled drugs given to children, despite there being no direct measure 
of the amount of drug that is actually delivered to the patient. This dose escalation has 
given rise to concerns regarding the safety of both inhaled bronchodilators and 
corticosteroids, particularly in children. \.3,t~ Anti-asthma drugs are widely used in the 

pediatric age group, often in similar dosages to those used in adults. This practice results 
in children receiving a much higher dose relative to their size than adults. Considering 
lung deposition obtained in our present study, each child received a dose independent 
of age when corrected for body weight. 

There is ongoing discussion regarding the most efficient and suitable delivery 
device for aerosol therapy in children. The results from this study are comparable to 

the results obtained in a similar patient group inhaling from a dry powder inhaler (range 
oflung deposition, 15.6-47.2%)." 

Our results show the importance of radio labeled depostion studies for 
determination of the efficiency of delivery systems. These studies answer questions on 
termining dosage regimens in childhood therapy. However, ethical issues must be 
considered when radioactivity is used in young children. As a research group, we are 
aware of the ethical aspects of performing studies with radiolabeled medications in 

children. Studies such as this passed stringent examination by both our Ethics Committee 
and the Srate Radiation Safety Officer. The doses used in our studies were kept to the 
absolute minimum to allow an image to be obtained over background levels of 
radioactivity and are equal to the natural background doses over 2 weeks and much 
lower than the doses used in diagnostic imaging procedures. 

In summary, using detergent-treated spacers, drug delivery to the airvvays was 
much greater than e..xpecred for nonstatic treated spacers. This raises important questions 
regarding the need to change current aerosol dosing practices in children. Improving 

delivery efficiency may gready increase efficacy and reduce treacrnent costs. \"V'hen using 
detergent-treated spacers, children should be monitored for potential side effects due 
to the delivery oflarger amounts of medication per actuation of metered-dose inhalers. 
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ABSTRACT 

Relatively little ;s known about the variables that influence lung deposition of 

inhaled aerosols in children. A modeL of the upper airways of an infant could 
be a useful tooL to study these variables in-vitro. Objective To construct an 

anatomically correct modeL of the upper airways of a young child. Methods A 
routine 3D CT-scan of the skull and neck of a child was selected that included 
the airway from the nasal cavity down to the subglottic region. The CT-scan was 
edited to obtain an anatomically correct distinction between air and mucosa. 
Next, a modeL was constructed with a stereo lithographic technique using a uv­
sensitive resin. To validate the modeL a 30-CT-scan of the model was made and 

compared to the anatomy of the original Tmage. To study aerosol deposition the 
model was connected to a breathing simulator. Medical aerosols were delivered 
to the model by MDI/spacer during simulated breathing. Results An upper air­
way model was made of a 9-month-old child that needed reconstructive surgery 
for a skull deformity and with normaL anatomy of the upper airways. The nasal 
airway of the model was open for air passage and the oral airway was closed. 
The CT-scan of the model matched the original in-vivo CT-scan closely. Aerosol 
deposition measurements showed that dose passing the modeL or 'lung dose' was 
comparable with in vivo lung deposition data. Conclusions We have constructed 
an anatomically correct model of the upper airways of a child, using a stere­
olithographic method for in-vitro studies of aerosol deposition in young chil­
dren. This model will be used to obtain insight in aerosol treatment that can­
not be obtained in vivo. 
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INTRODUCTION 

Effective targeting of therapeutic inhaled aerosols into the lungs is crucial for 
effective treatment. Therefore aerosol delivery devices have to be extensively studied 
to determine their efficiency to deliver aerosol to the lungs. In children such studies 
are more difficult to perform than in adults for practical and ethical reasons. Therefore, 
relatively little is known about the variables that influence lung deposition of inhaled 
aerosols in children. In-vitro studies using models could be a useful alternative to study 
new aerosol delivery devices and aerosol deposition mechanisms in children. Several 
deposition models, both mathematical and anatomical, have been developed for 
adults.(1-4) These show that the upper airways of adults (nose, mouth pharynx down 
to the larynx) are an important trap for inhaled aerosols.(1,3,5-8) However, adult models 
are not suitable to study deposition mechanisms in children for the following reasons. 
Firsdy, young children mainly breathe through their nose while inhaling aerosols (9), 
while adults predominantly inhale through their mouth. Therefore, a young child has 
to inhale through a face mask until it is old enough to inhale through a mouthpiece 
on demand. In practice this is not before the age of 4 years (10,11). Secondly, children 
inhale via tidal breathing, whereas in most deposition studies adults inhale via slow deep 
inhalations. Thirdly, the geometry of the upper airways of children is different compared 
to adults, and changes with age. For instance, with age the diameters of the upper and 
lower airnrays increase and the conchae progressively intrude into the nasal cavity.(12) 
Flow patterns are also known to be different, which will affect aerosol deposition.(7,8) 

To our knowledge no suirable upper airway model of young children is available. 
Therefore, we aimed to develop a model of the upper airway of a child. 

MATERIALS AND METHODS 

The Sophia Anatomical Infant Nose-Throat (SAINT) was made as follows: 
Firstly, a three dimensional CT scan (3D CT-scan) of the upper airways of a child was 
made, the imaging phase. Secondly, the 3D CT-scan images were 'translated' into a 
hard-copy model, using stereolithography, the modeling phase. Thirdly, the model was 
tested for anatomical accuracy, the validation phase. Finally, in vitro aerosol deposition 

measurements were done, the experimental phase. 

IMAGING 
In our hospital3D-CT scans of the head and neck of children with congenital 

skull malformations are made routinely prior to reconstructive surgery. A helical CT 
evaluation of the skull was performed with a GE Pro-Speed S Fast scanner (GE Medical 
Systems, Milwaukee, Wis. USA) under anesthesia with the child in a supine position. 
Technical parameters included: 3-mm collimation, 1.0 pitch, 120kV, lOOmA and a 
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2 second rotation time. Slice orientation was parallel to the lower surface of the mandible. 
After data acquisition transverse 3 mm slices were recontructed with an overlap of 1 

mm. These images were srudied on a workstation v,rith 3D and multiplanar reformations 
(Advantage Windows release 1.2, GE Medical systems, Milwaukee, Wis. USA). From 
these routinely made scans a 3D CT-scan was selected for the model by an 
otolaryngologist, radiologist, and the principal investigator, who were blinded to the 
patient's identification. The following criteria were evaluated: 

- age < 1 year, 

- nasal airway open for air passage 
- spontaneously breathing, no endotracheal or oropharyngeal tube used for 

anesthesia 

- normal anatomy of upper airways 
- scan minimally "'-"tends from the frontal bone to the subglottic region, including 

vocal cords 

MODEUNG 
The SAINT model (figure 1) was made from the 3D CT-scan of a 9-month­

old Caucasian girl of 1 0 kilograms, who needed a pre-operative CT-scan for correc­

tion of an isolated skull deformation, which is not associated vvith abnormalities of 

the viscero-cranium. The 3D-scan showed that the nasal airway was open and the 
oral airway was closed for air passage. The CT-scan showed a normal viscero-crani­

um as judged by the radiologist and otolaryngologist. The upper airways were in­

cluded in the CT-scan from the nasal bone to the subglottis, about 3 mm below the 
vocal cords. The selected CT-scan was stored on optical disk (DEC-702, Pioneer) 
and sent to for stereolithography imaging (Materialise, Leuven, Belgium). The im­

ages were edited for optimal 3D reconstruction with a special software package 

(Materialise's Interactive Medical Image Control System, MIMICS®, Leuven, 

Belgium). Optimal thresholds were chosen for each slice to get an anatomically cor­

rect distinction between air and mucosa. Subsequently, the edited scan was recon:­
structed to a 3D image. The software interpolated the cascades between the 2 mm 

slices during reconstruction, to obtain a smooth surface. Finally, the model was 

constructed using stereolithographic equipment, which consists of a computer con­
trolled UV-Iaser beam radiating a liquid monomer resin (Stereocol(}iJ, Vantico, 

Cambridge, UK) in a basin. The laser radiation polymerizes the resin, which be­
comes solid. The model was built in layers of 0.25 mm. 

VAUDATION 
The model was scanned with I-mm collimation and 130 mA, since radiation 

exposure was not an issue. Other settings were identical to the original CT-scan. Both 

the original CT-scan and the CT scan of the model underwent multiplanar 
reconstructions in transverse, sagittal and coronal directions and were compared using 
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FIGURE 1. The Sophia Anatomical Infant Nose-Throat (SAINT) ModeL 
Side view (top) and front view (bottom). 
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identical soft tissue windows. The airway images of both scans were compared at the 
level of several anatomical landmarks. The images were judged for similarity by the 

principal investigator, radiologist and otolaryngologist. The resistance profile of the model 
was tested by measuring pressure drop over the model during applied flows. A flow 
calibrator (Godart, Bilrhoven, The Nerherlands) generated flow rates of 0 to 20 Umin 

in a concinious scale. These flow rates are within the physiological range of flows during 
tidal breathing in infants. Flows were measured wirh a Fleisch no. 0 pneumotachograph 

(Medical Electronic Construction, Brussels, Belgium) placed between rhe subgIottis 

region of rhe model and rhe flow calibrator. Subsequently, rhe pressure drop over rhe 

model from the nose to the subglottis was measured using a differential pressure 
transducer (LCVR 0-100 cmH20, Celesco, Canoga Park, CA, USA) , connected to 

the subglottic region of rhe model and rhe atmosphere. 

AEROSOL DEPOSITION EXPERIMENTS 
Budesonide aerosol was generated by pMDI (Pulmicott" 200 fIg) and delivered 

into a spacer (Nebucharnber", AstraZeneca, Lund, Sweden) wirh attached fucemask. 

The tOtal dose ofbudesonide rhat passed rhrough rhe model was defined for rhis study 

as 'lung dose'. The particle size distribution of the lung dose was quantified during 
simulated tidal breathing using the experimental set-up as previously described and 
validated.(13) (figure 2). A similar set-up has been used by Finlay et.al. (14) The model 

~ ~~:i 

,,~-~~irilit~"~' ~I=~=_== 
J breathing simulator 

Andersen impactor 

Fai 28,3 flmin. 

FIGURE 2. Experimental set-up used to measure lung dose and particle size from pMDIjspacer 
during simulated tidal breathing. 
The breathing simulator supplied tidal breathing through the SAINT-model and pMDI/spacer while 

a constant flow Faj of 283ljmin flows to the Andersen impactor, balanced by an inflow Fj of 
28.3 ljmin. A three-way glass connection attached all the parts together. 



Upper airway model of infant j 109 

was connected to a breathing simulator (Pari Sinus Breathing Simulator, Pari GmbH, 
Starnberg, Germany) and an Andersen S-srage cascade impactor (Graseby Andersen, 

Smyrna, GA, USA) by means of a rhree-way glass connection. A constant flow of2S.3 

Llmin rhrough rhe Andersen impactor (F "') was balanced wirh an inflow (F i) of 2S.3 

LI min through rhe glass connection, resulting in a flow of zero through rhe model. When 

the breathing simulator was switched on, there was simulated tidal breathing through 
the model and a constant flow through the Andersen impactor. To test that no aerosol 
was drawn into the breathing simulator we placed a filter bervveen breathing simulator 
and glass-connection. No drug was detected on this filter. The breathing simulator 
settings were as follows: 1) Sinusoidal pattern, 2) inspiration-expiration ratio of 1: 1.3, 
3) tich! volumes: 50, 100 and 200 m!, and 4) respiratory rate: 30 brearhs/min. These 

settings are according to reference values appropriate for rhe age and weight of rhe subject 
used to construct rhe model.(15) Before deposition experiments rhe inner surface of 

rhe model was coated wirh a rhin layer of glyceroliBrij-35 (polyoxyerhylene 23 

laurylerher) mixture by pipetting 4 ml into rhe model and allowing the excess fluid to 

drip out. This coating was to mimic a stid..y mucosa and to eliminate electrostatic charge. 
A dose ofbudesonide was delivered to rhe model as follows: 1) rhe &.cemask of rhe spacer 

was put on rhe &.ce of rhe model using therapeutic putty (Caners, Westbury, Wilts, 

UK) to ensure an airtighr fit. This was orherwise not possible because of rhe non flexible 

face of rhe model. 2) rhe pMDlIspacerwas shaken and put on rhe model wirh &.cernask. 
3) during simulated tidal brearhing a puff ofbudesonide was actuated into rhe spacer 

at rhe end of an expiration, wirhin 5 seconds alier rhe pMDI was shaken. Tich! volume 

breathing was continued for 30 seconds before the next dose was given. Ten separate 
puffs were actuated for each measurement. Finally, rhe amount ofbudesonide deposited 

on the glass connection and impactor plates was assessed by high performance liquid 
chromatography (HPLC) as follows: Budesonide on rhe impactor plates and glass 

connection was dissolved in ethanol containing an internal standard (fluocinolone 
acetonide). Budesonide was quantified by a validated HPLC merhod, using an 

erhanol:water (43:57) mobile phase and a Supelcosil LC-IS column (5flITl panicles, 

5 cm * 0.46 em (i.d.)). The coefficient of variarion of rhe method was below 3%. 

The toral dose passing the model or 'lung dose' was the sum of the amount of 

budesonide on the glass connection and all partS of the impactor. Lung dose of 
budesonide was expressed as a percentage of nominal dose. Measurements were done 
in triplicate, in a randomized fashion. Results shown are mean (SEM). 

We intended to measure upper airway deposition by rinsing the model with 
erhanol, and assessing rhe amount of drug in rhe erhanol solution by HPLC. However, 

it appeared that the polymerized resin of rhe model disturbed rhe HPLC 
chromatogram. Hence, drug deposited in the model could not be assessed directly. 
However, we did clean rhe model wirh erhanol alier use. Repeated cleanings of rhe model 

with ethanol over 2 years of intensive use did not change the internal geometry. This 
was tested by repeated CT-scans and resistance measurements. 
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FIGURE 3. Comparison of original CT-scan with CT-scan of model 

A, C and E: Multiplanar reconstructions of original CT-scan, with mid-sagital and transverse views 

through the nasaL cavity region, and transverse view through the epiglottic region, respectively. 

S, D and F: Corresponding images of SAINT-model. 
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RESULTS 

The CT-scan of the SAINT model and the original CT-scan matched closely 

(figure 3). 

RESISTANCE PROFILE 
The resistance profile for inspiratory and expiratory flow is shown in figure 4. 

Upper airway resistance of the model was within the range of reported physiologic in­
vivo data (mean 14 em H 20·I·'·sec (range: 3.7 - 23.9» for Caucasian infants, weighing 
1.5 - 10.2 kg.(16) 

EXAMPLES OF AEROSOL DEPOSITION MEASUREMENTS: 
Lung dose, dose in particles <4.7 /IDl and dose in particles <2.1 11m from a 

pMDI/spacer (Pu!miCOrt" 200 lWNebuchamber) measured during simulated breathing 
at different tidal volumes with the SAINT model are shown in figure 5. The 'lung dose' 
decreased with increasing tidal volume from 13.9 (0.9) %,8.8 (0.3)% to 3.2 (0.1)% 
of nominal dose at 50, 100 and 200 mI tidal volume, respectively. The dose in particle 
<4.7 fUll decreased from 11.8 (0.7)%, 8.1 (0.3) to 3.0% of nominal dose with increasing 
tidal volumes of 50, 100 and 200 mI, respectively. The dose in particles <2.1 fUll showed 
no change with tidal volume, which was 1.6 (0.07)%, 1.8 (0.02)% and 1.3 (0.03)% 
of nominal dose for tidal volumes of 50, 100 and 200 ml, respectively. The MMAD 
of thelung dose was 3.3 (0.05),2.8 (0.01) and 2.3 (0.01) fUll and the geometric standard 
deviations (GSD) were 1.4 (0.01),1.4 (0.01) and 1.5 (0.01) for tidal volumes of 50, 
100 and 200 ml, respectively. 

-25 -20 -15 -10 -5 5 
-5 

-10 

expiratory flow 

10 

/' 
/' 

/ 
inspiratory flow 

15 20 25 

f1ow(Umin) 

FIGURE 4. SAINT-model resistance profile for inspiratory and expiratory flows. 
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FIGURE 5. Aerosol deposition with pMDljspacer for SAINT-model. 
Lung dose, dose in particles < 4.7 ~m and dose;n particles < 2.1 11m for budesonide pMDI with 
Nebuchamber, expressed as a percentage of the nominal dose (200 ~g). Results are mean (SEM). 

DISCUSSION 

There is a lack of knowledge about factors that determine aerosol 
deposition in infants. To study these factors it is desirable to have an in-vitro system 
that mimics the in-vivo situation as well as possible. Therefore, an anatomically correct 
model of the upper airways of a 9-month-old infant, the Sophia Anatomical Infant 
Nose-Throat (SAINT) model, was developed to srudy variables that influence aerosol 
deposition. The SAINT model has advantages in comparison to other currently 
available models. 

Several human upper airvvay casts have been made to study aerosol deposition. 
Several adult casts of the oral airway (2-4,17), or the nasal airway (7,18,19) have been 
described. However, to our knowledge, only rv.ro infant casts are available. An infant 
nasal cavity model was described by Phalen et.al.(7) It consisted of two hollow silicone­
rubber models, each representing the anterior region of one side of an infants nose. 
This model was geometrically similar to an adult modeL The adult model was a 
simplification of reality and was constructed according to a number of dimensions 
of the adult nose, derived from other srudies.(20) The infant model was extrapolated 
from the adult model by reducing adult airway dimensions by 50%. However, the 
nasal cavity of young children is not a proportionally smaller version of an adult nasal 
cavity.(l2,21) The SAINT model has major advantages over the Phalen model since 
its airvray dimensions are derived directly from a CT-scan of a living infant. 
Furthermore the SAINT model also contains the pharyngeal and laryngeal region, 
which are important locations for aerosol particles to deposite before entering the 
lower airways.(22) 
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Another model of a child is the anatomical throat of a 35-year-old child made 
by the late Prof DL Swift, which has not been described in literature but has been 
used in previous stuclies.(13) This throat-model was made by the wax-waste method 
in a cadaver. It is not known how posunonem changes influence airway dimensions. 
The Swift model might therefore not adequately reflect in-vivo airway dimensions. 
Another limitation of the Swift model is that it consists of the oropharynx only. 
Therefore the Swift model is suitable for studying inhalation of aerosols through the 
oral passageway, which is applicable for children who are able to inhale orally (usually 
older than 3 years). However, most children of this age and younger preferably breathe 
through their nose while inhaling aerosols. (9) The SAINT model has advantages over 
the Swift model since it includes the nasopharynx and its dimensions are derived 
from a child breathing spontaneously through the nose. Aerosol deposition studies 
were done with the Swift model using the same experimental set-up as used for the 
SAINT model.(l3) Breathing simulator settings for these tests were: inspiration­
expiration ratio 1 :2, tidal volume 200 ml, respiratory rate 25 breaths/min. Using the 
Swift model, 'lung dose' was 19.6% of nominal dose, dose in particles < 4.7 fIm was 
15%, dose in particles <2.1 fIm was 1.4% andMMAD was 3.6 f1ill (E. Berg, Lund, 
personal communication). This is a substantially higher 'lung dose' than was found 
in our model, whereas the extra fine particle dose seems to be similar. The lower 'lung 
dose' for the SAINT model is probably caused by the nasal route of inhalation which 
is likely to decrease 'lung' deposition as the result of a more turbulent airflow pattern 
in the nose. Apparently, particles <2.1 f1ill deposite independently of the inhalation 
route. 

Though the SAINT model is an improvement over other currently available 
models it is still a model and therefore a reduction of reality. Its anatomy is derived 
from a single anesthetized but spontaneously breathing child who was positioned 
on its back during the making of the CT-scan. The time needed to make the total 
CT-scan is about 2 minutes. As a consequence, the model represents an average 
configuration of the anatomy during breathing. Apparently, the geometry of the upper 
airways does not change significantly during a breathing cycle, for there were no large 
cascades between the several slices of the CT-scan images. 

At best the SAINT model will predict adequately aerosol deposition of the 
infunt ftom whom the CT-scan was taken. For ethical reasons we could not validate 
this assumption, by doing a lung deposition test in the child ftom which the model 
was made. There are reasons to believe that the SAINT model reflects the in vivo 
situation. Firstly, upper airway dimensions on the CT-scan of the SAINT model 
closely matched those on the CT-scan of the infant. Secondly, airway resistance of 
the upper airways of the model is within a the physiological range. 
Thirdly, lung dose (or total dose passing the modell) of budesonide delivered by 
pMDI/spacer in the model is within the range of in vivo lung deposition data.(23,24) 
In these studies a mean lung deposition of 1.70/0 of metered dose with 
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salbutamoll Aerochamber was found by Tal et.al, 13% of metered dose with 
salbutamoliBabyhaler (Glaxo Wellcome, Uxbridge, UK) by Wildhaber et.al for 
children under 2 years of age. The large differences berw-een these studies can be 
explained by the use of different spacers and by the presence (Tal) or absence 
(Wildhaber) of static charge. Futthermore, the accuracy of the Tal study is not clear 
for there was no validation of the radiolabeling method. OUT data are close to those 
of the Wildhaber. This can be explained by the fact that we also used a non-static 
spacer: the metal Nebuchamber. However, in comparing the dara it should be noted 
that the in vivo values are expressed as percentage of metered dose and the SAINT­
values as percentage of nominal dose. Furthermore, in comparing the lung dose 
obtained in vitro with the SAINT model to the lung deposition data obtained in 
vivo, one has to keep in mind that we were able to deliver the aerosol in the most 
optimal circumstances. The pMDIIspacer was handled in the most optimal way, 
the seal of the facemask to the &ce of the model was air-tight, and the aerosol was 
inhaled with a regular breathing pattern. 

A disadvantage of the present SAINT-model is that ethanol can not be used 
as a solvent for measuring deposition in the model. The Stereoco}O~ of which the model 
is made, interferes vvith the HPLC-signal. This means that upper airvray deposition 
in the model cannot be measured directly for ethanol soluble products, but can be 
assessed indirectly by measuring the dose-ex-model and substracting this from the 
dose entering the model. Future efforts should focus on the development of new 
versions of the model using a more inert polymer. 

In conclusion we made an anawmically correct upper airway model of a nasally 
breathing infant, which mimics the in-vivo situation for infants in in-vitro aerosol 
deposition studies better than the currently used "throats" .The SAINT model enables 
us to obtain useful information which is either difficult or impossible to obtain 
in vivo. With the help of the model we are able to study the influence of variables 
like breathing patterns on lung deposition. Furthermore, the S.AINT model might 
be useful to test new aerosol devices for infants or in the field of environmental 
medicine. 
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ABSTRACT 

Aim The aim of this study was to measure the influence of tidal voLume (Vt) 
and respiratory rate (RR) on aerosol deposition from 4 pMDI/spacer combina­
tions, which are used for infants. Methods An anatomically correct upper air­

way model of a 9-month-old infant was connected to a breathing simuLator. 
Sinusoidal breathing patterns were simulated with; duty cycle T JTWt= 0.42, Vt: 

25, 50, 75, 100, 150, 200 ml (RR: 30 breaths/min); and RR: 20, 30, 42, 60, 78 

breaths/min (Vt: 100 ml). pMDIjSpacers tested were: budesonide 200 

rg/Nebuchamber®, fluticasone 125 rg/Babyhaler®, and both budesonide and 

fLuticasone with Aerochamber®. Plastic spacers were detergent coated to reduce 
electrostatic charge. Spacer-output and lung dose were measured by a filter po­
sitioned between spacer and facemask or between model and breathing simu­
Lator. Particle size distribution of lung dose was assessed with an impactor dur­

ing simulated breathing. Results Spacer-output was significantly positively 

correlated with Vt for all pMDI/spacers (all R>O.77, p<O.OOl), but not correlated 

with RR. Lung doses initially increased from Vt= 25 to 50ml (Nebuchamber, 

Aerochamber) or to 100 ml (Babyhaler) and then decreased, with increasing Vt 

and RR (R:-0.98 to -0.82, p<O.OOl). Lung doses offluticasone were 1.5 to 6 fold 

higher compared with budesonide, irrespective of spacer type (p< 0.001). MMAD 

decreased with increasing Vt and RR. Dose to the lungs of particles < 2.1 pm 

was independent of Vt and RR. Conclusions Lung dose decreases with increas­

ing inspiratory flow (increasing Vt or RR) by increasing impaction of coarse par­

ticles in the upper airways. Deposition of particles <2.1 ]lm ;s relatively flow 

independent. When electrostatic charge of spacers is reduced, lung dose;s pMDI 

dependent and spacer independent. 
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INTRODumON 

A popular way to deliver aerosol therapy to infants is by a pressurized metered 
dose inhaler (pMDI) in combinarion with a holding chamber (spacer). However, most 
of the available pMDI/spacer combinations have not been thoroughly tested in young 
children. Only few deposition and efficacy studies have been done in this age group. 
This leaves us with lack of knowledge of the behaviour of aerosols and inhaler devices 
in the treatment of young children. Most in vitro data on spacers were obtained using 
inhalation flow rates typical for adults, who inhale in a single breath. These adult data 
cannot be extrapolated to pediatric flow rates, since young children inhale via tidal 
breathing. Recognizing this, several studies measured aerosol delivery from spacers during 
pediatric tidal breathing [1-5]. A limitation of these studies was that aerosol delivery 
was measured direcdy from the spacer with either a filter [1,2,4,5] or an impactor [3]. 
This gives us information on the amount of aerosol delivered to the mouth at tidal 
breathing, but not on the actual dose delivered to the lungs. Furthermore, it is known 
that young children have variable breathing patterns [6]. In addition, tidal volume and 
respiratory rates will vary according to the age and weight of the child. In vitro studies 
have shown that tidal volume affects the dose delivered from spacers. An increase of 

tidal volume results in an increased dose from the spacer [2,5,7J. Furthermore, ir has 
been shown that each pMDIIspacer combination delivers a different dose [8J. However, 
it is not known how the dose from the spacer relates to the dose delivered to the lungs. 
This relation is difficult to investigate in young children. Therefore, it is unknown for 
young children how breathing patterns relate to lung deposition. To study the relation 
between breathing patterns and aerosol deposition in vitro we recently developed an 
anatomically correct model of the upper airways of an infant [9J. The aim of this study 
was to measure the influence of tidal volume and respiratory rate on the deposition 
of inhaled steroids from 4 pMDI/spacer combinarions, which are used for infants. 

MATERIALS AND METHODS 

UPPER AIRWAY MODEL 
A model of the upper airways of a 9-month-old infant was used for the aerosol 

deposition measurements. This model, known as the Sophia Anatomical Infant Nose­
Throat (SAINT) model, was extensively described in detail elsewhere [9J. In shott, it 
is a stereo lithographically made, anatomically correct model of the upper airv.rays. The 
model includes the face, nasal caviry and pharyI"" till the subglottic region. The nasal 
airv.ray is open for air passage, the oral airv.ray is closed. To mimic a sticky mucosa and 
to eliminate electrostatic charge on the inner surface of the model, the model was coated 
with a glycerol/Brij-35 (poly-oxyethelene 23 laurylerher) mi,1:ure before use by pipetting 
4 ml into the nose of the model and allowing the excess fluid to drip out. 
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PMDIjSPACERS 
Two inhaled steroids available in pMDI formulation were tested in their respective 

spacer and in a general purpose spacer. Budesonide pMDI (Pulmicort" 200 jlg, 

AstraZeneca, Zoetermeer, The Netherlands) was tested in the Nebuchamber® 

(AstraZeneca) (budiNebuchamber), which is a metal spacer with a volume of250 ml. 
In addition budesonide was tested in an Aerochamber® (Trudell Medical, London, 

Canada) (budiAerochamber), a plastic (Ektar plastic) small volume spacer with a volume 

of 135 ml. Fluticasone pMDI in BFA-formulation (Flixotide® 125 jlg, Glaxo Wellcome, 

Zeist , The Netherlands) was rested in the Babyhaler® (Glaxo Wellcome) 

(flut/Babyhaler), which is a polycarbonate spacer with a volume of350 ml, and in the 
Aerochamber (flutfAerochamber). Before testing the pMDI's were primed by firing 10 

waste puffS. All spacers were used with infant face-masks as provided by the 

manufacturers. Electrostatic charge can develop on the inner surface of a plastic spacer, 

which decreases drug delivery by retaining the drug in the spacer [10]. Therefore, 

electrostatic charge of the plastic spacers was reduced by coating it with household 
detergent several hours before use. Detergent coating was done by washing the spacer 
in diluted detergent and subsequently leaving it to drip-dry. Detergent coating has been 
shown to reduce electrostatic charge on the inner surface of the spacer effectively [11,12]. 

EXPERIMENTAL SET-UP 

FILTER MEASUREMENTS 
The SAINT model was connected to a custom made computer-controlled 

breathing simulator [13] which was adapted for simulating infant breathing patterns. 
Filters were used to collect drug from the pMDI/spacers at different positions in the 
breathing pathway. Spacer-ourput, defined as dose delivered from the spacer, was assessed 
by placing a filter (Vital Signs®, Totowa, NJ, USA) between facemask and spacer (figure 

IA). Lung dose, defined as total dose passing the model, was assessed by placing a filter 

between model and breathing simulator (figure 1 B). Drug deposited on the face mask 

was also measured and expressed as percentage of nominal dose. 'Upper airvvay 
deposition', defined as the dose deposited in the model, was calculated as follows: spacer 

output - (lung dose + dose-on-facemask). 

PARTICLE SIZE MEASUREMENTS OF LUNG DOSE 
Particle size distribution of the lungdose was measured during simulated breathing. 

The SAINT model was connected to a breathing simulator (Pari Infant) and an Andersen 

8-stage cascade impactor (Graseby Andersen, Smyrna, GA, USA) using a three way glass 

connection (see figure 2). A balanced inflow made it possible that there was a constant 
flow of28.3 Llmin through the impactor and tidal breathing through the model and 

spacer. This set-up has been previously described by Berg et.aL [14J. A similar set-up 
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FIGURE 1. Experimental setup: A. To measure spacer-output, B. To measure lungdose 

breathing simulator 

Andersen impactor 

Fai 28,3 I/min. 

FIGURE 2. Experimental set-up: to measure particle size distribution of lung dose during simulated 
breathing. 
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for measuring particle size distribution from spacers with simulated tidal breathing was 
used by Finlay et.a1. [3]. Fine particle dose (FPD) was defined as tbe mass of tbe lung 
dose in particles < 4.7 f1ill (impactor stage 3-8) exptessed as a percentage of nominal 
dose. Extra fine particle dose (EFPD) was defined as tbe mass of tbe lung dose in particles 
< 2.1 J-llTI (impactor stage 5-8) expressed as a percentage of nominal dose. Particle size 
distribution oflung dose was expressed as median mass aerodynamic diametet (MMAD). 

BREATHING SIMULATION 
Influence of tidal volume (Vt) and tespitatory rate (RR) on aerosol delivery was 

investigated by using sinusoidal breathing patterns with the following settings for the 
breathing simulator: 
1. Respiratory duty cycle (inspiratory time (T;) / total tespiratoty cycle time (T,od): 0.42. 
2. Influence ofVt on spacer-output, lung dose and upper airway deposition was 

tested witb Vt's of 25, 50, 75, 100, 150 and 200 mI witb a fixed RR of 30 
bteatbs/min. Influence ofVt on FPD, EFPD, and MMAD was tested witb Vt's 
of 50, 100 and 200 mI witb fixed RR of 30 breatbs/min. 

3. Influence ofRR on spacer-output, lung dose and upper airway deposition was 
tested witb RR's of 18, 30, 42, 60, 78 breaths/min witb a fixed Vt of 100 mi. 
Influence ofVt on FPD, EFPD, andMMAD was tested witb RRof18, 30 and 
42 witb fixed Vt of 100 m!. 
A respiratory duty cycle (T/Twd of 0.42, Vt of I 00 mI and RR 000 breaths/min 

are in accordance with reference values appropriate for the 9-month-old subject used 
to construct tbe SAINT model [15]. Measurements for tbe Vt and RR series wete done 
in a randomized order and repeated three times for each Vt and RR. 

STUDY PROCEDURE 
A new filter or a clean impactor were placed in the appropiate position before 

each experiment. Ne>..'l, the breathing simulator was set on the selected breathing pattern. 
The pMDIIspacet witb attached facemask was shaken and placed on tbe face of tbe 
model ensuring an airtight fit using therapeutic putty (Carters, Westbury, Wilts, UK). 
Subsequently, one puff ofbudesonide or fluticasone was actuated into the spacer just 
before the start of an inspiration, within 5 seconds after the pMDI was shaken. Drug 
from the spacer was withdrawn during 30 seconds of simulated tidal breathing. For 
the impactor measurements, 10 separate puffs were actuated for each measurement to 
get detectable amounts of drug on the impactor plates. The experiments were performed 
in ambient conditions with 30-40% humidity. 

DRUG ANALYSIS 
Drug on tbe filtets, masks and impactot plates was dissolved in ethanol conraining 

an internal standard (f1uocinolone acetorride). Budesorride and f1uticasone wete quantified 
by a validated high petformance liquid chtomatography (HPLC) metbod, using an 
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ethanol:water (43:57) mobile phase and a Supelcosil LC-1S column (51'm panicles, 

5 em * 0.46 em (i.d.)). The coefficient of variation of the method was below 3%. 

STATISTICAL ANALYSlS 
Amount of drug found on the filters and impactor plates is expressed as a percentage 

of nominal dose. Results shown are mean (± SEM). The correlation between Vt or RR 

and deposition variables were investigated using Spearman's correlation coefficients (R) and 
were tested for linearity. Tests using multiple regression analysis showed that the profiles 
of variables significandy differed from parallelism, therefore all spacers were compared at 
separate Vt's and RR's. Overall comparisons between spacer-output, upper airway deposition, 
lungdose, FPD, EFPD and MMAD between the 4 pMDl/spacer combinations were made 
using one-way analysis of variance (ANOVA) for each Vt and RR Subsequently, if 

significance was present, comparisons were made for each pair of means. Bonferroni 
correction for multiple comparisons was made. Statistical significance was set at p= 0.05. 

RESULTS 

FILTER MEASUREMENTS 

Spacer-output 
The rdation between spacer-output and Vt is shown in figure 3A. For all spac­

ers a significant increase of spacer-output with increasing Vt was found (all R>O.77, 
p<0.001). For budiNebucharnber and flutlBabyhaler this was a non-linear relation­

ship. Spacer-output was significantly higher for the budiNebucharnber and the 

flutlBabyhaler compared with the spacer-output from the budiAerocharnber and 

flutlAerocharnber for all Vt's except ar 25 ml. At Vt=25 ml spacer-output for the 

bud/Nebucharnber was significantly higher compared to the fluriBabyhaler. 

Additional observations were that at Vt=25ml the in- and e.xpiratory valves of the 

Babyhaler did not open and close sufficiendy. Spacer-outputs were significandy high­

er for fluriAerocharnber compared to budiAerocharnber at Vt = 50, 100 and 150 ml. 

The relation between spacer-output and RR is shown in figure 3B. The flat curves 

obtained for all spacers indicate that RR has no significant influence on spacer-out­
put. Spacer-output from budiNebucharnber was significantly higher compared to 

budl Aerocharnber at all RR's. Both flutlBabyhaler and flurl Aerocharnber had inter­

mediate spacer-outputs in relation to budiNebucharnber and bud/Aerocharnber. 

Lung dose 
The relation between lung dose and Vt is shown in figure 3C. All spacers showed 

a significant non-linear relationship with Vt, with an initial increase and a subsequent 
decrease in lung dose with increasing Vt. BudiNebucharnber, budiAerocharnber, and 
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flutfAerochamber showed maximwn lung dose at about Vt:::: 50 m!, whereas 
£IutiBabyhaler showed its maximum dose at Vt = 100 ml. Lung dose of £Iuticasone was 
significantly higher compared vvith budesonide irrespective of spacer used, except at 
a Vt of25 ml where there were no significant differences between any pMDIIspacer. 
Maximum lung doses were ar Vt= 50 ml 11%, 9% and 16% for respectively 
budiNebuchamber, budl Aerochamber and £Iutl Aerochamber and ar V t = 1 00 ml 19% 
for £Iut/Babyhaler. 

The relation between lung dose and RR is shown in figure 3D. For all spacers, 
increasing RR generally resulted in decreasing lung dose (all R: between -0.98 and-
0.82, p<O.OOI). Lung doses of £Iuticasone were significantly higher compared with 
budesonide irrespective of spacer used, e..xcept for lung doses at RR::::18, where 
£Iut/Babyhaler was not significantly different from bud/Nebuchamber and 
bud/ Aerochamber. 

Upper airway depasition 
For the calculation of upper airway deposition drug deposited on the facemask 

was measured. Dose-on-ftcemask showed no relationship with Vt or RR Mean (SEM) 
dose (% of nominal dose) found on the ftcemask was 1.9 (0.1)% for budlNebuchamber, 
8.3 (0.7)% for £Iut/Babyhaler, 3.5 (0.4)% for the budiAerocharnber and 8.4 (0.5)% 
for the £Iut/Aerocbamber. 

The relation between upper airway deposition and Vt is shown in figure 3E. 
In general, it was shown that upper airway deposition increased with increasing Vt. 
Upper airway deposition was significantly higher for the budiNebuchamber 
compared with the budiAerochamber and £Iut/Aerocbamber at all Vt's, and for the 
£IutiBabyhaler at Vt=100 and 150 ml. There was no significant difference between 
Budl Aerocbamber, £Iut/ Aerocbamber and £Iut/Babyhaler. 

The relation between upper airway deposition and RR is shown in figure 3F. 
There was no significant difference of upper airway deposition between any spacer at 
anyRR 

PARTICLE SIZE MEASUREMENTS OF LUNG DOSE. 

Fine particle dose 
The relation between FPD and Vt is shown in figure 4A. A significant nega­

rive correlation was found for FPD and Vt for all spacers (R: between -0.95 to -0.84, 
p< 0.005) except £IutiBabyhaler, which showed no significant correlation (R=0.053, 
p=0.9). FPD for £Iuticasone was significantly higher than for budesonide irrespecrive 
of spacer used, except for FPD at Vt:::: 50 ml where there were no significant differ­
ences between the 4 pMDI/spacer combinations. 

The relation between FPD and RR is shown in figure 4B. There was a signif­
icant negative correlation between FPD and RR for bud/Nebuchamber and 
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bucIJAerochamber (borh R= -0.95, p<O.OOI), but not for flut/Babyhaler and 
flut/Aerochamber (R= -0.58 and -0.53 resp., p~O.I). Again FPD for fluticasone was 
significantly higher rhan for budesonide irrespective of spacer used, except at RR= 18 
breaths/min where none of the pMDI/spacers were significantly different from each 
orher and at RR= 42 breaths/min where FPD of flut/Babyhaler was not significantly 
different from rhe orher 3 pMDI/spacer combinations. 

Extra fine particle dose 
The relation between EFPD and Vr is shown in figure 4C. Vr did not influ­

ence rhe EFPD significantly for any of rhe pMDI/spacer combinations (p>O.I). The 
EFPD for fluticasone was significantly higher rhan for budesonide irrespective of spac­
er used, except at Vt = 50 ml where flut/Babyhaler was significantly different from 
flutiAerochamber. 

The relation between EFPD and RR is shown in figure 4D. There was no sig­
nificant correlation between RRand EFPD for any of rhe pMDI/spacer combinations 
(p>O.I). Borh bucIJNebuchamber and bucIJAerochamber had a significant lower EFPD 
compared with borh flutiBabyhaler and flut/Aerochamber, except at RR=18 
brearhs/min, where flutiBabyhaler was not significantly different compared wirh 
bucIJNebuchamber and bud/Aerochamber. 

2 
~ Median mass aerodynamic diameter 

<5 The relation between the MMAD and V t is shown in figure 4E. MMAD signif-
126 icantly decreased wirh increasing Vt for all spacers (all: R= -0.95, p<O.OOI). MMAD of 

fluticasone was significantly smaller than for budesonide irrespective of spacer used, ex­
cept at Vt=200 ml where all 4 pMDIIspacers were significantly different from each orher. 

The relation between MMAD and RR's are shown in figure 4F. Increasing RR 
significantly reduced MMAD for all spacers (all R: between-0.95 and -0.80, p<O.OI). 
The MMAD for fluticasone was significantly smaller than for budesonide, irrespec­
tive of the type of spacer used. 

DISCUSSION 

In this study we investigated the influence ofVt and RR on aerosol deposition 
from 4 pMDI/spacer combinations, using an anatomically correct upper airway model 
of a nose-breathing infant. We found that spacer-output increased with increasing Vt, 

but was not influenced by changing RR's. Lungdose decreased wirh increasing RR and 
Vt, from Vt = 50 ml or higher. Increase in Vt and RRlead to an increase in upper airway 
deposition. Furrhermore, extra fine particle dose to rhe lungs was relatively independent 
ofVt and RR. Finally, lungdose appeared to be pMDI dependent, but independent 
of spacer. 
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FIGURE 4. Particle size measurements (Explanation of symbols, see figure 3.) 

A: Fine particle dose (FPD) versus Vt: for bN, bA and fA: R~·0.95 to -0.84, p<0.005, for fB NS correlation; 

bN versus bA, and fB versus fA: NS; bN and bA versus fB and fA: p<0.05, except at Vt ~50 ml: NS differences 

between pMDI/spacers. B: Fine particle dose (FPD) versus RR: for bN and bA: R=-0.95, p<0.005; for fB and 

fA NS correlation (R= -0.5, p<:O.l); at RR ~ 18: NS difference between pMDI/spacers; at RR ~ 30: bN versus 
bA, and fB versus fA: NS; bN and bA versus fB and fA: NS; at RR = 42: fB versus bN and bA: NS. C: Extra 

fine particle dose (EFPO) versus Vt: no significant correlation for any spacer; bN versus bA, and fB versus 
fA: NS; bN and bA versus fB and fA: p<0.05, except at Vt =50 me fB versus fA:p<0.05. 0: Extra fine particle 

dose (EFPO) versus RR: NS correlation for any spacer; bN versus bA, and fB versus fA: NS; bN and bA versus 
fB and fA: p<O.05, except at RR",,18 m~ fB, bN and bA: NS difference. E: Median mass aerodynamic diameter 
(MMAD) versus Vt: for all pMDI/spacers R= -0.95, p<O.OOl; bN versus bA, and fB versus fA: NS; bN and bA 

versus fB and fA: p<0.05, except at Vt =200 ml: all pMDI/spacers significantly different from each other. 

F: Median mass aerodynamic diameter (MMAD) versus RR: for all pMDI/spacers R: -0.95 to -0.80, p<O.Ol. 

bN versus bA, and fB versus fA: NS; bN and bA versus fB and fA: p<0.05, at all RR's 
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Spacer-output In general the spacer-ouput increased with increasing Vt. This is 
in agreement with previous studies [2,3,5,7,16]. Compared to the 3 other pMD II spacers, 

the Babyhaler showed the largest increase in spacer-output with increasing Vr. This can 
be explained by the larger volume of the Babyhaler compared with the Nebucharnber 

and Aerocharnber (350 ml, 250 ml and 150 ml respectively). In a larger volume spacer 

aerosol concentration and particle impaction is less than in smaller volume spacers, which 
results in a lower inhaled doses at small tidal volumes but higher doses when the spacer 

can be emptied faster with larger tidal volumes [2]. Furthermore, the relatively large dead 

space in the Babyhaler (40 ml) and suboptimal functioning of the valves are additional 
factors that can explain the relatively low spacer-output at small tidal volumes [2]. The 

spacer-output values found for the different spacers in OUf study correspond with in vivo 
values found in wheezy infants [17,18], although different pMDIIspacer combinations 

were used. One needs to be cautious with directly comparing spacer-output of spacers 
with different pMDI's, for this study and previous studies have shown, that each 
pMDI/spacer combination delivers different doses [8]. 

Lungdose The initial increase oflungdose with increasing Vt can be explained 
by the fact that with low tidal volumes each breath mobilizes more aerosol from the 
spacer. The subsequent decrease in lungdose with increasing Vt and with increasing 
RR is explained by the higher inspiratory flow rates. With high flows, coarse particles 

are more likely to deposit by inertial impaction in the narrow upper airways resulting 
in decreased penetration of aerosols to the lower airways [19J. Our findings do not 
completely comply with the concept that lower tidal volume leads to reduced delivery 

of aerosol to the lungs [7]. This concept is based on studies where only spacer output 
was measured, without taking the route of inhalation into consideration 
[2,3,5,7,16]. Our results show that measuring spacer-output is not sufficient to predict 

the dose delivered to the lungs. The finding that lung dose decreases with increasing 

Vt and RR, i.e. inspiratory flow rate, fits in with studies in adults [20-22]. These 

studies showed that slow inspiratory flow rate gives higher lung deposition of 
therapeutic aerosols. 

The lung doses with the SAINT model for the 4 pMDIIspacer combinations 

are close to values found in in-vivo lung deposition studies. A detergent coated 
Aerocharnber or Babyhaler with radio labeled salbutarnol showed mean lung 

depositions of resp. 5.4% (range 2.5-9.7%) and 16.4% (range 8.5-23.9) in children 

under 4 years of age [23,24]. Although the lung doses found with our model reasonably 
correspond with these in vivo data, the data should still be considered as in vitro data. 
The aerosols were administered in optimal conditions, with idealized breathing patterns. 
Additionally, differences in upper airway geometry between children are likely to result 

in different lung deposition for a given pMDl/spacer combination. Furthermore, the 
lung doses found only show the measured dose at subglottic level of the model, but 
this does not give any information on the distribution of drug in the lower airways. 
For instance, large tidal volumes showed low lung doses, but deep inspiratory breaths 
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are likely to enhance peripheral deposition [25]. Measurements of particle size give an 
indication on where the aetosol will deposit. Small particles are more likely to deposit 

peripherally in the airways than larger particles [26-29]. 
Particle size Particle size measurements oflung dose, showed that the total lung 

dose measured with the fUters mainly consisted of particles < 4.7 j.lffi. Furthermore, 
it was found that with increasing inspiratory flow rate the MMAD of the lung dose 
decreased. This means that the larger particles impact in the upper airways of the model, 
while smaller particles still pass the model at higher inspiratory flow rates. In general, 
the FPD decreased with increasing Vt and RR, except for flutiBabyhaler and for the 
flutiAetocharnber with RR for which this relationship was not significant. The EFPD 
appeared relatively independent ofVt and RR. Apparently, extra fine particles «2.1 
j.lffi) passed the upper airway model flow-independently. This ptobably explains why 
the relationship ofFPD with Vt and/or RR was not significant for the spacers tested 
with fluticasone, for the FPD contains a larger percentage of ",-'(ra fine particles, of which 
deposition is relatively flow independent. From these results it can be extrapolated that 

pMD I's containing extra fine particles will deliver drug to the lungs relatively independent 
of breathing pattern. 

pMDIlspacercombinatiom. For the four pMDI/spacer combinations tested in this 

study, lungdose depended especially on the type of pMDI used and much less on the 
type of spacer used. In genetal, lung dose, FPD and EFPD were significantly higher and 
MMAD smaller for fluticasone than for budesonide irrespective of spacer used. Only 
at the small ves and low RR's there were some differences between the spacers. It should 
be noted that the fluticasone pMDI contains HFA-ptopellant and the budesonide pMDI 
CFC-ptopellant. The technical characteristics of the HFA-formulation of fluticasone, 
however, has been claimed to be identical to the old CFC-fluticasone [30]. Furthermore, 
it should be stressed that the spacers used in this study were used in optimal conditions, 
i.e. electrostatic charge of the plastic spacers was reduced by detergent coating and the 
face mask was put airtight on the model. A recent study in adults showed that coating 
a plastic spacer with detergent increased lung deposition 4 fold compared with non­
detergent coated spacer [12]. We did one measurement in triplicate, at Vt= 1 00 rnl and 
RR 30 breaths/min, with the flutiBabyhaler when it was washed, water-rinsed and towel­
dried and thus not detergent coated. Lung dose was 2.9%, FPD was 2.8% and EFPD 
was 1.2% (data not shown). The corresponding data for the detergent coated Babyhaler 

were: 19%, 15.9% and 5.7% respectively. This confirms that when electrostatic charge 
is present in a spacer, aerosol delivery to the lungs can be considerably reduced. Therefore, 
our finding that lung dose is dependent of pMDI but relatively independent of spacer 
used is only valid if the electrostatic charge of a spacer is minimized. 

Upper airway deposition. Increased inertial impaction at higher inspiratory flow 
rates explains that upper airway deposition was found to increase with Vt and RR for 
all pMDIIspacet combinations. The deposition in the upper airways increased to almost 
90% of the spacer-output at high Vt and RR for all studied spacets. 
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Clinical consquences The present findings suggest that the use of pMDI's 
delivering a high mass of particles smaller than 2.1 flIXl will increase the dose delivered 
to the lungs in infants and that the dose delivered will be less dependent on the breathing 
pattern. Especially, in crying children, when high inspiratory flows are present, the 
use of small panicles can be an advantage. Crying during the administration reduces 
lung deposition substantially [31,32]. Furthermore, it should be taken into account 
that the dose to the lungs is also reduced in other cases when high inspiratory flow 
rates are present, such as in tachypnoea caused by an asthma attack or after physical 
exercise. Quiet breathing during inhalation of aerosols should be encouraged, when 
ever possible. The dose delivered to the lung is primarily determined by the pMDI 
and much less by the spacer (if optimally used). The choice for the spacer becomes 
important for children with a tidal volume below 50 ml. The Babyhaler is less suitable 
in these children due to a large dead volume and suboptimal functioning valves at small 
tidal volumes. 

In conclusion In this srudywe t;"'ted 4 pMDI/spacer combinations using a upper 
airway model of a 9-month-old infant and a breathing simulator. We found that lungdose 
initially increased, but then decreased with increasing inspiratory flow rate (Vt and RR) 
by impaction of coarse panicles in the upper airnrays. Furthermore, we found that the 
spacer-output, increased with increasing Vt, but was not influenced by changing RR's. 
The lungdose of particles < 2.1 flIXl was relatively independent of the breathing pattern. 
Furthettnore, with the studied pMDI's and (detergent-coated) spacers, lungdose appeared 
to be pMDI dependent and spacer independent. We believe that the use of pMDI's 
delivering a high mass of particles smaller than 2.1 }lm will increase dose delivered to 

the lungs and dose reproducibilty in infants. 
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ABSTRACT 

Background Insufficient cooperation during administration of aerosols by me­
tered dose inhaler (MOI)/spacers is a problem;n nearly 50% of treated children 
younger than two years old. For these children administration during sleep might 
be more efficient. However, it is unknown how much aerosol reaches the lungs 
during sleep. Aim To determine ;n vitro the dose to the Lungs ;n young chil­

dren from a MDl/spacer during sleep and while being awake. Methods Breathing 
patterns were recorded by a pneumotachograph in 18 children (age 11 ± 5.1 

months) during sleep and wakefuLness. Next, breathing patterns were replayed 
by a computer-controlled breathing simulator to which an anatomically correct 
nose-throat model of a 9-month-old child (Sophia Anatomical Infant Nose-Throat 
(SAINT) -model) was attached. One puff of budesonide (Pulmicort® 200 ~g) was 
administered to the model via a metal spacer (Nebuchamber®). Aerosol was 
trapped in a filter placed between model and breathing simulator. Finally, the 
amount of budesonide on the filter (= lung dose) was analyzed by HPLC. For each 
of the 36 breathing pattern lung dose was measured in triplicate. Results The 
sleep breathing patterns had significantly lower respiratory rate and peak in­
spiratory flows, and had smaller variability in respiratory rate, tidal volume and 
peak inspiratory flows. Lung dose (mean ± sd) was 6.5 ± 3.2 ~g and 11.3 ± 3.9 
~g (p=0.004) for the wake and sleep breathing pattern respectively. Conclusions 
This infant model-study shows that the lung dose of budesonide by MDI/spac­
er is significantly higher during sleep compared to inhalation while being awake. 
Administration of aerosots during sleep might, therefore, be an efficient alter­
native for uncooperative toddlers. 
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INTRODumON 

Inhaled drugs are widely used for management of asthma in children. Several 
devices are available to deliver inhaled drugs to the lungs in young children. The 
pressurized metered dose inhaler (pMDI) combined with a spacer with arrached face 
mask is considered the most convenient way to administer inhaled drugs to young 
children [1,2]. However, the efficiency of the pMDI/spacer sysrem is relatively low in 
this group. Lung deposition studies showed that little of the administered dose is 
deposited in the lungs of young children [3-5]. When children are crying, lung deposition 
is even reduced to almost zero [3,6]. Furthermore, it was shown in a filter study that 
the dose delivered from a spacer decreased and the dose variabilty increased when a 
child was not co-operative during the administration procedure [7]. Therefore, anti­
asthma therapy could fail in non co-operative children. To ttear these children it has 
been suggested to adminisrer the drugs by pMDI/spacer during sleep [3]. However, 
the efficiency of administration during sleep has not been investi"aared. Breathing patterns 
of young children have been shown to vary for the different behavioral states [8-10]. 
It is likely that this will affect the dose delivered from a pMDI/spacer, for it has been 
shown that tidal volume and inspiratory flow rate are imponant detenninants for aerosol 
deposition [11,12]. We studied the dose reaehing the lungs from a pMDIIspacer in 
vitto in an anatomically correct upper airway model of an infant and simulated breathing 
patterns of awake and sleeping children. 

MATERIAL & METHODS 

BREATHING PATTERNS 
Breathing patterns were recorded from children under the age of nvo years 

who were referred for lung function tests to the out-patient clinic of the Department 
ofPediattic Pulmonology of the Sophia Children's Hospital in Rotterdam. Before 
routine lung function testing the wake breathing pattern was recorded during tidal 
breathing. The recording of the breathing pattern was done with a pneumoraehograph 
(Jaeger, Germany) which was attached to a face mask (Babyhaler" face-mask, 
Glaxo Wellcome, UK). The child was sitting in an upright position. The mask was 
put on the face, while an ainight fit was assured. The child needed to breathe through 
the facemask for 1 minute. Children who were not co-operative during the recording 
were excluded. Subsequendy; chloralhydrate (7.5 mg/kg) was administered to the 
child according to the routine protocol for infant lung function testing in our hospital. 
It has been shown that chloralhydrate does not significandy alter the breathing pattern 
of a child [13]. After routine lung function tests were complered the breathing pattern 
was ~o-ain recorded while the child was in a supine position and sleeping in quiet 

or non-REM sleep. 
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The breathing patterns were recorded digitally, using a multi channel recording 
program (MKR-system, custom made software development, Erasmus University 
Medical Center Rotterdam, the Netherlands). The sampling rate was 125 Hz. A 
representative 16 seconds part of the registration was selected for simulation, as the 
breathing simulator could simulate the breathing patterns in cycles of ma.-ximally 16 
seconds. 

The breathing patterns were analysed using an adapted computer programme 
based on existing software MATLAB® release 12 (The Maths Works, Natrich, Mass, 

US). The programme recognises breath-to-breath intervals in the digitised flow-signal, 

by detecting zero flow crossings. A single breath was defined as the distance from the 
onset of an inspiration to the next inspiration. Respiratory rate, tidal volume and peak 
inspiratory flow were calculared for each breath. The mean of these values was calculated 

for each breathing pattern. Variability of these values was expressed as coefficient of 
variation [14-16J. 

UPPER AIRWAY MODEL 
A model of the upper airways of an infant was used for the aerosol deposition 

measurements. This model, the Sophia Anatomical Infmt Nose-Throat (SAIND model 
(Sophia Children's Hospital, Rotterdam, The Netherlands) was eA'tensively described 

elsewhete [17J and has been shown to be a valuable tool to study aerosol deposition 

in vitro. In shott, it is a CT-scan derived sreteolithographically made, anatomically correct 

model of the upper airways of a 9-month-old infant. The model includes the face, nasal 

cavity and pharynx till the subglottic region. The nasal airway is open for air passage, 
the oral airway is closed. Before use, the inner surface of the model was coated with a 

thin layet of glycerol/Brij-35 (polY0"Yethylene 23laurylethet) mixture by pipetting 4 
ml into the model and allowing the e.."(cess fluid to drip out. This was to mimic a sticky 

mucosa and to eliminate any electrostatic charge present on the inner surface of the 
model. 

EXPERIMENTAL SET-UP AND STUDY PROCEDURE 
The SAINT-model was connected to a custom made computer-controlled 

breathing simulator [18J, which was adapted for simulating infant breathing patterns 
(figute I). The pMDl/spacer used fot these experiments was the budesonide pMDI 

(Pulmicott® 200 rg, AsttaZeneca, Lund, Sweden) and the metal Nebuchambet" 

(AstraZeneca) spacet with attached facemask. Filters (Vital Signs, Totowa, NJ, USA) 

were used to collect drug deliveted from pMDII spacet. A clean filtet was placed before 

each experiment between model and breathing simulator (figure 1). The pMDl/spacer 

with attached facemask was shaken for 5 seconds and placed on the face of the model 

ensuring an airtight fit using therapeutic purry (Carters, Westbury, Wilts, UK). One 

puff ofbudesonide was actuated into the spacer just before the start of an inspiration, 
within 5 seconds after the pMDI was shaken. Drug from the spacer was withdrawn 
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during 30 seconds of simulated breathing. The amount of budesonide found on the 
filter was defined as lung dose, which equals the tOtal dose passing the model. For each 
breathing pattern, lung dose was measured three times. Breathing patterns were selected 
in a randomized order. 

DRUG ANALYSIS 
Budesonide was washed from the filters with ethanol containing an internal 

standard (fluocinolone acetonide). Budesonide was quantified by a validated high 
performance liquid chromatography (HPLC) method, using an ethanol:water (43:57) 
mobile phase and a Supelcosil LC-18 column (5)lll1 particles,S em * 0.46 em (i.d.)). 
The coefficient of variation of the method was <3%. 

STATISTICAL ANALYSIS 
The mean values for respiratory rate, tidal volume and peak inspiratory flow 

were analyzed for each breathing pattern. Variability, expressed as coefficient of variation, 
was calculated for these variables for each breathing pattern. Sleep and wake breathing 
patterns were compared using paired t-test test. 

Lung dose is expressed in micrograms of budesonide. The mean lung dose of 
the three measurements of each breathing pattern was used for further statistical analysis. 
Paired t-test was used to compare lung doses of wake and sleep breathing patterns. 

pMDI spacer 

breathing simulator 

SAINT 
model 

filter 
(lung dose) 

FIGURE 1. Experimental set-up to measure lung dose (filter) for a pMDljspacer during simulated 

breathing using the Sophia Anatomical Infant Nose-Throat (SAINT) -model. 
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RESULTS 

The breathing patterns of 18 children were recorded. The children had a mean 
age of 11 (SD 5.1) months. The reasons for lung function tests were suspicion asthma 
(n~7), bronchopulmonary disease (n~3), dyspnoea of unknown origin (n~3), frequent 
pneumonia (n~3), cystic fibrosis (n~I), sequestration (n~I). Table 1 shows the 
characteristics for the recorded breathing patterns. In general it was seen that wake 
breathing patterns were irregular and sleep breathing patterns were regular. A typical 
example of a wake and sleep breathing pattern of one child is shown in figure 2. 

Results for lung doses are shown in figure 3. Mean (±SD) lung dose for sleep 
breathing patterns was 11.3 (3.9) fIg and significantly (p~O.004) higher compared with 
lung doses for wake breathing patterns, which was 6.5 (3.5) fig. Only in three cases 
lung dose for sleep breathing pattern was lower than for the wake breathing pauern. 
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FIGURE 2. Example of typical breathing pattern of a 10 month-old child while awake (a) and 

asleep (b). 
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FIGURE 3. Comparison of lung dose for pMDljspacer with wake and sLeep breathing patterns 
of 18 children. Results are mean±SD. Difference between wake and sleep patterns: p=O.004 



TABLE 1. Characteristics breathing patterns: 
Descriptives are means of mean values. 
Variability is expressed as coeffident of variation (CV) 

n=18 

Descri ptives 
• Respiratory rate (breaths/min) 
• Tidal volume (ml) 
• Peak inspiratory flow (Llmin) 
Variability (CV) 
• Respiratory rate (%) 
• Tidal volume ('!o) 

• Peak inspiratory flow (%) 

DISCUSSION 

Sleep 
mean (range) 

32 (22-53) 

97 (39-138) 

10.2 (4.6-14.4) 

4.7 (0.8-12.1) 

7.0 (2.1-33.5) 

7.2 (1.9-18.6) 
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Wake 
mean (range) 

49 (33-83) 

83 (20-141) 

13.8 (5.7-33.8) 

29.2 (6.0-89.3) 

29.4 (4.4-58.2) 

31.6 (6.5-60.4) 

p-vaLue 

<0.001 

0.094 

0.039 

<0.001 

<0.001 

<0.001 

In this study we compared the dose ofbudesonide delivered to the lungs from 

a pMDIIspacer during wakefulness and sleep using a anatomical infant upper airway 
model and in vivo recorded breathing patterns. The total dose passing the model, or 
lung dose, was significantly higher for the sleep breathing patterns than the wake 

breathing patterns. 
The differences between the wake and sleep breathing patterns can be explained 

as follows. Firsdy; the variability of respiratory rate, tidal volume and peak inspiratOry 

flow of the wake breathing patterns were significandy higher compared with the sleep 

breathing pattern. This implies that in general wake breathing patterns were irregular, 
and sleep breathing pattern were more regular. Even though the children in our study 
were co-operative during the recording, the wake breathing patterns were vel)' irregular. 
Our findings are in agreement with other studies in which higher values and higher 
variability was found for respiratOry rate in young children while being awake compared 

with being asleep [9,1 0,19J. It should be noted that there is also difference in variability 

between the different sleep-states. Regular breathing patterns are particularly seen in 
quiet or non-REM sleep, whereas breathing becomes more irregular during REM-sleep 

[8]. The children in our study were all recorded during quiet sleep, which probably 

corresponds to non-REM sleep. 
Secondly; mean respiratory rate and peak inspiratory flow were significandy higher 

for the wake breathing patterns compared with the sleep breathing patterns. It has been 

shown that lung deposition decreases with high respiratory rate [20] or high inspiratOry 
flow rate in adults [12,21]. High inspiratol)' flow rate, especially with nose-breathing 
will lead to increased impaction of aerosol particles in the upper airways, resulting in 

a lower dose to the lungs. 
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Our results suggest that administration of inhaled drugs during sleep may be 
a good alternative for uncooperative toddlers. However, a number of questions need 
to be answered before it can be used in practice. In this study the tOtal amount of 
drug reaching the lungs was measured, but not the distribution pattern within the 
lung. It is likely that the distribution pattern in the awake and upright position will 
be different from the pattern in the sleeping and supine position. In adults it has been 
shown that lung deposition in the supine position was more homogeneous through 
the lung compared with the upright position [22,23]. It is unknown whether this would 
be the same for infants. Furthermore, we do not know whether administration of 
aerosol during sleep is a feasible alternative since this was not studied in practice. 
Children might wake up and get up-set due to the handling. The next question to 
answer would be, whether administration during sleep is more effective than during 
wakefulness to reduce asthma symptoms in the fighting toddler. This can only by 
studied by clinical efficacy studies. Unfortunately such studies in this age group are 
difficult to perform. Firstly because of the difficulty in diagnosing asthma [24] and 
secondly due to the lack of reproducible endpoints suitable to measure a large number 
of infants [25]. 

In conclusion, we found a higher lung dose for sleep breathing patterns compared 
with wake breathing from a pMDIlspacer with attached face mask in an anatomically 
correct upper airway model of an infant. Administration of inhaled drugs during sleep 
seems therefore a good alternative for the fighting toddler. Feasibility in practice and 
clinical efficacy should be studied further. 

Acknowlegdement: The authors would like to thank Mr. Bastiaan Kruijt and Mr. 
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the breathing simulator. 
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ABSTRACT 

The particles of a new hydrofluoroalkane-134a becLomethasone dipropionate (HFA­

BDP)metered dose inhaler (Qvarm) are considerably smaller than those of chlo­
rofluorocarbon (CFC)-BDP. This may improve lung deposition in infants, who in­
hale nasaLLy, have irregular breathing patterns and small airways. Aim To compare 
the dose delivered to the lungs of HFA-BDP and (F(-BDP at different breathing 

patterns using an upper-airway model of an infant. Methods An anatomically 
correct upper-airway model of a 9-month-old child with an open nasal airway 
was connected to an Andersen impactor and breathing simulator. HFA-BDP 1001-19 

and (Fe-BOP 100 1-19 were deLivered to the modeL through a detergent coated 

Aerochamber®. The totaL dose leaving the model (lung dose), its particle size 
distribution and median mass aerodynamic diameter (MMAD) were assessed dur­
ing simulated tidal breathing with a tidal volume (Vt) of 50, 100 and 200 ml 

and 30 breaths/min. Dose was expressed as percentage of nominal dose. Results 
Lung dose for HFA-BDP was 25.4, 26.5 and 30.7% compared with 6.8,4.8 and 

2.1% for (F(-BDP at Vt= 50, 100 and 200 ml respectively. Dose of particles <2.1 

~m to the lung for HFA-BDP was 23-28%, compared with 0.6-0.8% for (F(-BDP. 

Lung dose of (F(-BDP mainly consisted of particles between 2.1 and 4.7 ~m. 

MMAD for HFA-BDP was 1.2 ~m. and 2.6-3.3 ~m for (F(-BDP depending on Vt. 

Lung dose for (F(-BDP decreased significantly with increasing Vt. HFA-BDP lung 

dose did not alter significantly with Vt. Conclusions In this infant model study, 
the use of HFA-BDP with a high dose of particles < 2.1 ~m improves lung dep­

osition substantially, and reduces variability related to breathing pattern com­
pared with (F(-BDP. 
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INTRODUCTION 

Inhaled steroids have been shown to reduce symptoms in wheezy infants [1]. A 
convenient way to administer inhaled steroids to the lungs of infants is by pressurized 
metered dose inhaler (pMDI) combined with spacer and attached &ee mask [2]. However, 
only a small proportion of the administered dose is deposired in the lungs of young children 
[3,4] and the inhaled dose is highly variable [5]. The replacement of chlorofluorocarbons 
(CFC's) byozone-friendly propellants, such as hydrofluoroalkane (HFA), has been an 
opportuniry to revise the delivery properties of pMDI's [6]. The new HFA-beclomerhasone 
dipropionate (BDP)(Qvar™) has a large proponion of small particles compared with 
conventional formulations. This has been shown to resulr in a higher and a more peripheral 
lung deposition in adults [7]. There are reasons to believe that these small particles may 
also be beneficial for treatment of infants. Firstly, infants inhale aerosols mainly nasally 
[8]. Small particles are more likely to bypass the nose and to be deposited in the lungs 
compared with larger panicles [9]. Secondly, infants may not co-operate during the 
administration procedure, leading to crying or irregular and fast breathing while inhaling 
the aerosoL Crying and high inspiratory flow rates have been shown to result in decreased 
lung deposition [4,10], with only small particles reaching the lungs [II]. Thirdly, the 
narrow airvvays of infants are characterised by high velocity and rurbulent airflow causing 
increased deposition of particles in the proximal airways [12,13]. Small particles are more 
likely to reach the peripheral airways [14]. Lung deposition of the new HFA-BDP has 
not yet been studied in infants. Lung deposition studies in infants using radiolabelled 
aerosols are difficult to perform and subject to ethical discussion [IS]. Therefore, we studied 
the delivery ofHFA-BDP via a spacer to an in&nt upper airway model. We hypothesized 
that HFA-BDP would deliver a substantially higher dose to the lungs with less dependence 
on breathing panern or inspiratory flow rate, compared with CFC-BDP. 

MATERIALS & METHODS 

UPPER AIRWAY MODEL 
A model of the upper airways of an infant was used for the aerosol deposition 

measurements. This model, the Sophia Anatomical In&nt Nose-Throat (SAINT) model, 
was extensively desctibed elsewhere [16]. In shon, the SAINT-model is a CT-scan derived 
stereo lithographically made, anatomically correct model of the upper airvvays of a 9-
month-old infant. The model includes the face, nasal caviry and pharynx until! the 
subglottic region. The nasal airway is open for air passage; the oral airvvay is closed. 
To mimic a stiell' mucosa and to eliminate any electrostatic charge present on the inner 
surface of the model, the inner surface of the model is coated with a thin layer of 
glycerollBrij-35 (polym:yethylene 23 laurylether) mixture by pipening 4 ml into the 
model and allowing the excess fluid to drip out. 
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PMDI/SPACER 
Two pMDI's containing bedomethasone dipropionate (BDP) were tested. HFA­

BDP (Qvar™. 3M Pharmaceuticals, St. Paul, MN, USA) was compared with 
chlorofluorocarbon BDP (CFC-BDP)(BecotideOO

, GlaxoWellcome, Uxbridge, UK). 
Before testing, the pMDI's were primed by shaking and firing 10 waste puffs. The 
pMDI's were used in combination with a smail volume plastic spacer, the 
Aerochamber® (Trudell Medical, London, Canada). The Aerochamber was used with 
the infant face-mask as provided by the manufacturer. Electrostatic charge can develop 
on the inner surface of a plastic spacer, which decreases drug delivery by retaining the 
drug in the spacer [17]. To reduce the electrostatic charge of the Aerochamber it was 
coated with household detergent. Several hours before use the spacer was washed in 
diluted detergent and subsequendy left to drip-dry. Detergent coating has been shown 
to reduce electrostatic charge on the inner surface of the spacer [18,19]. 

EXPERIMENTAL SET-UP 
The SAINT model was connected to a breathing simulator (Pati Sinus Breathing 

Simulator, Pari GmbH, Starnberg, Germany) and anAndersen 8-stage cascade impactor 
(Graseby Andersen, Smyrna, GA, USA) by means of a three-way glass connection (figure 
1). A constant flow of28.3 Umin through the Andersen impactor (F~) was balanced 
with an inflow (F;l of28.3 Umin through the glass connection, resulting in zero flow 

pMO[ spacer 

SAINT 
model 

breathing simulator 

Andersen impactor 

Fai 28,3 I/min. 

FIGURE 1. Experimental set-up used to measure lung dose and particle size from pMDljspacer 
during simulated tidal breathing. The breathing simulator supplied tidal breathing through the 

SAINT-model and pMDIjspacer while a constant flow F,; of 28.3l/min flows to the Andersen 

impactor, balanced by an inflow Fi of 28.3 L/min. A three-way glass connection attached all 
the parts together. 
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through the model. When the breathing simulator was switched on, there was simulated 
tidal breathing through the model and a constant flow through the Andersen impactor. 
This set-up has been previously described and validated. [20,21]. Lung dose was defined 
as the total dose leaving the SAlNT-model, expressed as a percentage of nominal dose. 
Fine particle dose (FPD) was defined as the mass of the lung dose in particles < 4.7 
)lm (impactor stage 3-S) expressed as a percentage of nominal dose. Exrra fine particle 
dose (EFPD) was defined as the mass of the lung dose in particles < 2.1 )lm (impactor 
stage 5-8) expressed as a percentage of nominal dose. Particle size of lung dose was 
e.xpressed as median mass aerodynamic diameter (MMAD). 

BREATHING SIMULATION 
Aerosol delivery was tested at various tidal volumes (Vt) using sinusoidal tidal 

breathing patterns with the following settings for the breathing simulator: Respiratory 
duty cycle (inspiratory time (T) / total respiratory cycle time (TwJ): 0.42 and Vt of 
50, 100 and 200 ml with fixed tespiratory rate (RR) of30 breaths/min. A tespiratory 
duty cycle (T;fT<oc) of 0.42, Vt of 100 ml and RR of30 breaths/min are in accordance 
with reference values appropriate for the age of the subject used to construct the model 
[22J. Measurements for each Vt were done 3 times in a randomized order. 

STUDY PROCEDURE 
The SAlNT-model was attached to the clean impactor and the breathing 

simulator was started. The pMDI/spacet with facemask was shaken and placed on the 
face of the model ensuring an airtight fit using therapeutic putty (Carters, Westbury, 
UK). Within 5 seconds of being shaken, one puff of HFA-BDP or CFC-BDP was 

actuated into the spacer just before the Start of an inspiration. Aerosol was drawn from 
the spacer during 30 seconds of simulated tidal breathing. Ten separate puffs were 
actuated for each impactor measurement to get detectable amounts of drug on the 
impactor plates. The experiments wete performed in ambient conditions with 30-40% 
humidity. 

DRUG ANALYSIS 
Drug on the impactor plates and glass connection was dissolved in ethanol 

containing an internal standard (fluocinolone acetonide). Beclomethasone dipropionate 

was quantified using a validated high performance liquid chromatography (HPLC) 
method, comprising an ethanol:water (43:57) mobile phase and a Supelcosil LC-IS 
column (5)lffi particles, 5 ctn * 0.46 ctn (i.d.)). The coefficient of variation of the method 

was <3%. 

STATISTICAL ANALYSIS 
The amount ofBDP found is expressed as a percentage of nominal dose. Results 

shown are means (± SEM). Comparisons between dose delivery from HFA-BDP and 



150 

CFC-BDP were tested using independent sample t-test for each Vt. The following 
variables were tested: lungdose, FPD, EFPD and MMAD. The correlation between 
Vt and these variables were investigated using Pearson correlation coefficients (R). 
Analysis of covariance (ANCOVA) was used to show differences between the 
relationships of HFA-BDP and CFC-BDP deposition variables with Vt. Statistical 
significance was set at p:S; 0.05. 

RESULTS 

Results for lung dose are shown in figure 2A. Lung doses for HFA-BDP were 
25.4 (2.0)%, 26.5 (3.6)% and 30.7 (0.5)% compared with 6.S (1.1)%,4.8 (0.7)% and 
2.1 (0.1)% for CFC-BDP at tidal volumes 50, 100 and 200 ml, respectively. The 
differences between HFA-BDP and CFC-BDP were highly significant (p<O.OOl) for 
all Vt's. Furthermore, lung dose ofHFA-BDP did nor significandy depend on tidal 
volume (R=0.6, p=O.l), whereas lung dose ofCFC-BDP showed asignificanr decrease 
with increasing tidal volume (R=-0.9, p=0.002). 

Results for FPD (particles <4.7 jlltl) are shown in figure 2B. FPD's for HFA­
BDP lung dose were 24.1 (1.9)%,24.5 (2.7)% and 28.7 (0.5)% compared with 5.8 
(1.0)%,4.4 (0.6)% and 1.9 (0.1)% for CFC-BDP at tidal volumes 50,100 and 200 
ml, respectively. The differences between HFA-BDP and CFC-BDP were highly 
significant for all Vt's (p<O.OOl). Furthermore, FPD of HFA-BDP did not 
significandy depend on tidal volume (R=0.6, p=O.l), whereas FPD ofCFC-BDP showed 
a significant decrease with increasing tidal volume (R=-0.9, p=0.003). 

Results for EFPD (particles <2.1 jlltl) are shown in figure 2C. EFPD's for HFA­
BDP lung dosewere 23.6 (1.9)%, 23.5 (3.1)% and 2S.3 (0.5)% compared with O.S 
(0.2)%, 0.6 (0.3)% and 0.6 (0.1)% of CFC-BDP at tidal volumes 50, 100 and 200 
respectively. The differences between HFA-BDP and CFC-BDP were highly 
significant (p<O.OO1). EFPD ofHFA-BDP and ofCFC-BDP showed no significant 
correlation with tidal volume (resp. R=0.6, p=O.l and R=-0.3, p=0.5). 

Results for MMAD oflung dose are shown in figure 2D. MMAD's ofHFA­
BDP were 1.3 (0.03), 1.1 (0.1) and 1.1 (0.05) pm compared with 3.3 (0.01), 3.1 
(0.05) and 2.6 (0.02) of CFC-BDP at Vt = 50, 100 and 200 respectively. The 
differences between HFA-BDP and CFC-BDP were highly significant (p<O.OOl). 
MMAD of CFC-BDP showed a significant decline with increasing Vt (R=-0.9, 
p<O.OOl), wheres this decline small and borderline significant for the HFA-BDP 
(R=-0.6, p=0.052) 

Calculations of the separate regression lines for both HFA-BDP and CFC-BDp, 
showed that the slopes were significandy different (p,s;O.OOS), for lung dose, FPD and 
MMAD, bur not for EFPD. This means that the relationships with Vt significandy 
differed between HFA-BDP and CFC-BDP except for EFPD. 



Deposition of HFA-BDP in infant airway mOdeli151 

~401 B)40.0 l. 
c.::....:=::J 

~30 T ~ 
: ~ R= 0.6,p=: 0.1 -

"N" 30.0 -

~ 

!- I~I· 
_
[ 10 ... 10.0 

_____ .... ~ ___ R_O_.0_.9_. '_= 0.002 l~~~:===:====::===~-
-\--__ ~--~--~---e_- '.0.. ~ 

R= -0.9, p=O.003 

C) 
40.0 

"N" 30.0 
o 
~ .. 
" ] 20.0 

t 
~ tt 10.0 

" '00 '" 200 

tidal volume (mil 

~.1 

R= -0.3. p= 0.5 

" '" "0 200 

tidal volume (mil 

D) 35 1 
_ "' 1 
E I 
2- I 

Flj 
'-' 

R '" -0.9, p< 0.001 

R=-O.7. p= 0.05 

L~===---=--==!:' ======~ 0.0 -i--~~-'lT'==="'T======~- 1.0 ,...---.-,. 

" 100 150 200 50 100 150 200 

tidal volumo (mil 
tidal volume (mil 

FIGURE 2. Comparison of aerosol deposition measurements in SAINT-model with HFA-BDP (,,) 

and CFC-BDP (e) in relation to tidal volume. Results are mean (SEM) of 3 measurements. A. Lung 

dose: B. Fine (<4.7 urn) Particle Dose (FPD): C. Extra Fine «2.1 um) Particle Dose (EFPD) D. 

Median Mass Aerodynamic Diameter (MMAD). A, B, C. D: p<O.OOI for differences between HFA­

BDP and CFC-BDP at all Vt's. 

DISCUSSION 

We studied the relation between lung dose and particle size for HFA-BDP and 
CFC-BDP delivered by Aerocharnber at different tieW volumes in an anatomically correct 
upper airway model of an infant. Lung dose ofHFA-BDP was 3.5 to almost 15 fold 
higber compared with CFC-BDP for different tieW volumes. Furthermore, lung dose 
ofHFA-BDP was independent of tieW volume, whereas lung dose ofCFC-BDP showed 
a significant decrease with increasing tidal volume. Lung dose ofHFA-BDP consisted 
mainly of particles smaller than 2.1 )lm, whereas lung dose of CFC-BDP consisted 

mainly of particles between 4.7 )lID and 2.1 )lm. 
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Our study is in agreement with previous radiolabelled studies using radiolabelled 
aerosols in adults, where lung deposition was up to10 fold higher with HFA-BDP pMDI 
compared with CFC-BDp, when used without spacer [7]. The lung dose found using 
the SAINT-model of around 30% for HFA-BDP is in line with a recent study, measuring 
lung deposition of radiolabelled HFA-BDP in children. Lung deposition of 41 %, 45%, 
and 54% of metered dose was found for children resp. 5-7 years, 8-10 years and 11-
14 years old, respectively, when inhaling HFA-BDP via an Autohaler® (3M 
Pharmaceuricals) [23J. That we found a lower dose can be explained first by the fact 
that we used a spacer and second by the younger age of the child used for the model 
compared with the age of the children in the deposition study. The model inhaled through 
the nose during tidal breathing which is the usual situation for a 9-month-old child, 
whereas the older children inhaled with a single breath via the mouth. Inhalation through 
the nose reduces the amount of drug delivered to the lungs [8]. In addition, with tidal 
breathing some of the aerosol is lost with exhalation, as there is no breath-hold. 
Furthermore, the expression oflung deposition as a percentage of metered dose (or ex­
valve dose) is likely to result in a slightly higher value than when expressed as a percenrage 
of nominal dose (or label claim). Studies testing radiolabelled CFC-salburamol pMDI 
(Ventolin®, Glaxo Wellcome) used with an Aerochanlber found lung depositions of 0.67% 
for preterm infants [3J and 1.97% for children under 5 years of age [4J. Our results 
indicate that the HFA-BDp, due to smaller particles, will give a much higher lung dose 
in inf.mts than CFC-formulations with the Sanle spacer. 

Lung dose ofHFA-BDP was not dependent on tidal volume, whereas lung dose 
of CFC-BDP decreased rapidly with increasing tidal volume. With increasing tidal 
volume, peak inspiratory flow rate increases. It has been shown in adults that fast 
inhalation leads to lower lung deposition compared with slow inhalation [24]. Flow 
will have a turbulent pattern with high inspiratory flow rate in the narrow upper airways. 
As a result, coarse particles are more likely to deposit in the upper airways by inertial 
impaction and thus lung dose will be lower. This appears not to be the case for the EFPD 
ofCFC-BDP and HFA-BDP, which is largely independent of breathing pattern. Since 
90% of the lung dose ofHFA-BDP consists of particles smaller than 2.1 ]lm, the lung 
dose is much less dependent on breathing pattern compared with CFC-BDP. Only 13% 
of the lung dose of CFC-BDP has particles smaller than 2.1 ]lm. 

The lungdose in our model indicates the dose delivered beyond the subglottic 
level. It does not give information on the disuibution of drug in the lower airways. 
However, particle size gives an indication on where the aerosol may deposit as it has 

been shown in several theoretical and clinical aerosol deposition models that small 
panicles deposit more peripherally in the airways than larger particles [25]. A lung 
deposition study in adults showed that the distribution ofHFA-BDP was more peripheral 
in the lungs compared with CFC-BDP [7] The relation between particle size and 
deposition pattern is not known for infants. It is likely that the high EFPD of the HFA­
BDP will improve peripheral deposition in infants. 
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The clinical consequences of the improved aerosol characteristics might be 
considerable. A high lung dose which is independent of inspiratory flow may be an 
advantage for children who are not co-operative during the administration of aerosoL 
It has been shown that crying reduces lung deposition from a pMDI/spacer to almost 
zero [10]. Almost 500/0 of young children are not cooperative during the 
administration procedure [5]. These children might benefit from HFA-BDP for 
control of asthma symptoms. With the increased lung dose in infants and potential 
for improved lung distrubution, it is expected that the daily dose ofHFA-BDP needed 
to control asthma symptoms will be substantially reduced compared with CFC-BDP. 
In adults with asthma it was shown that the dose of HFA-BDP could be reduced 
2.6 times to obtain the sarne improvement in lung function as with CFC-BDP [26]. 
Clinical efficacy srudies are needed to assess the lowest effective dose ofHFA-BDP 
in infants. 

In conclusion, Aerosol deposition tests using the SAlNT-model and simulated 
breathing show that HFA-BOP with spacer gives substantially higher lung doses than 
CFC-BDP with spacer. Furthermore, the large proportion of extra fine particles in HFA­
BOP results in reduced variability in lung doses related to breahing pattern compared 
with CFC-BDP. Further research is needed to show that HFA-BDP improves treatment 
efficacy in infants. 
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10.1 SUMMARY 

Aerosol therapy is an established means for treatment of asthma. The pressurized 
metered dose inhaler (pMDI) combined with spacer is the recommended aerosol delivery 
system for maintenance asthma therapy in children. The addition of a &cemask makes 
the pMDIIspacer also applicable for young children, who cannot inhale through the 
mouth on command. There are many different spacer designs, each with its own 
characteristics that may work out positively or negatively for the efficiency to deliver 

aerosols to children. However, little is known on the performance of pMDIIspacers 
in young children. Knowledge about the inhaled dose and factors affecting this dose 
is necessary for optimal application of aerosol therapy. The aim of this thesis was to 

increase the knowledge of aerosol therapy in young children in order to improve clinical 
practice. 

The studies presented in this thesis focus on the efficiency of different 
pMDIIspacers to deliver therapeutic aerosols to young children and the factors that 

may affect the dose delivered to the patient. 

Chapter 1 gives a general introduction on the rationale of this thesis and explains 
the outlines and aims of the studies. 

Chapter 2 provides extensive background information on the scientific and 
practical aspects of aerosol therapy in children. Indications for aerosol therapy, the basic 
principles of aerosol deposition and the methods to investigate the aerosol deposition 

are discussed. Finally, the currendy available aerosol delivery systems are discussed, with 
respect to the use in children. 

Chapter 3 presents a randomized cross-over study in which we assessed and 
compared within-subject dose variabiliry of aerosol delivery of metal and plastic spacers 
in children in daily life. Seventeen children aged 1-4 years (group I) and sixteen children 
aged 5-8 years (group II) with stable asthma participated in the study. Dose ofbudesonide 
from the spacer was measured by means of filters placed between spacer and facemask 

(group 1) or between spacer and mouth (group II). The dose on the filter represented 
the total dose delivered to the mouth. Each of the spacers was tested for One week at 

home in a randomized order. The dose delivered was 2 fold higher for the metal­

compared with the plastic spacer in both groups. This could be ""l'lained by the presence 
of electrostatic charge in plastic spacers which reduced the dose delivered. A considerable 
within-subject dose variabiliry was found, which was highest in the younger children. 
This means that dose reproducibiliry is poor when children use a pMD II spacer at home, 
especially in the younger age group. This variability was lower for the metal than for 

the plastic spacer in children 5-8 yrs of age, but not different in younger children using 
a facemask. 

Since dose variabiliry seemed to be highest in young children, and few children 
under the age of 2 had been included in the first srudy, a second study was performed 
with this age group. This study, presented in chapter 4, further investigated dose 
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delivery, dose variabiliry and factors affecting tbese variables in 25 wheezy children 
aged 5-26 montbs in daily life. The dose of budesonide from a metal spacer, and 
the dose of fluticasone from a plastic spacer were measured by filters in a randomized 
order. We also examined tbe dose from the spacer when electrostatic charge (ESC) 
of the plastic spacers was reduced by coating the spacer with household detergent. 
This study confirmed that dose variability is high in young children using 
pMDI/spacers at home. Dose variability of the metal spacer was significandy higher 
compared witb botb static and non-static plastic spacers, of which dose variabilities 
were similar. Poor co-operation during the administration procedure was the mOst 
important reason for a high dose-variability in all spacers. Detergent coating was 
effective to reduce ESC, and to increase dose delivery, but had no effect on dose 
variabiliry. We speculated tbat tbe relatively high dose variabiliry in tbe metal spacer 
could be explained by a suboptimal fit of tbe face mask, which was observed on video 
recordings. Despite repeated instructions, many mistakes were made in the 
administration procedure, which resulted in reduced or no drug on the filters. Good 
co-operation was observed in only half of tbe children. Hence, tbe study shows tbat 
lack of co-operation during the administration procedure is an important problem 
for almost 50% of young children treated witb aerosol tberapy. 

In filter studies the dose from a spacer which is delivered to the mouth is 
measured. This does not give information on the distribution in the airvvays and the 
amount of drug delivered to the lung. We tberefore did a lung deposition study, which 
is described in Chapter 5. Lung deposition in astbmatic children aged 1-12 years was 
assessed using radiolabelled salburamol delivered by a pMDI arrached to a plastic spacer. 
The spacers were detergent-coated to minimize electrostatic charge on the surface. Mean 
lung deposition, expressed as a percentage of the actuated dose was 16.4 to 41.8% in 
children aged 1-12 years. Lung deposition increased witb age, but tbe dose per kilogram 
bodyweight was equal for all ages. It was concluded tbat plastic spacers witb reduced 
electrostatic charge by detergent coating produced much higher lung deposition than 
was previously found by others, who used electrostatic spacers. 

To study in detail how breathing patterns affect aerosol deposition in young 
children we developed an upper airway model of an infant. Chaptet 6 describes tbe 
making of tbe Sophia Anatomical Infant Nose-Throat (SAlNT)-model; an 
anatomically correct upper airvvay model of an infant, which can be used as a tool to 
study aerosol deposition mechanisms in infants. The model was made witb a 
stereolithographic technique using a 'IN-sensitive resin. The SAINT-model is made 
from a 3D-CT-scan of tbe head of a 9-montbs-old child. It includes tbe face, the 
nasopharynx and larynx down to tbe subglottic region. The nasal airway of tbe model 
is open for air passage and tbe oral airway is closed. The CT-scan of tbe model matched 
the original in-vivo CT-scan closely. Aerosol deposition measurements showed that the 
dose leaving the subglottic region of the model or 'lung dose' was comparable with in 
vivo lung deposition data. 
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Chapter 7 presents a study with the SAINT-model investigating the influence 
of tidal volume and respiratory rate on aerosol deposition from 4 pMDl/spacet 
combinations, which are used for infants. Budesonide pMDI and fluticasone pMDI 
were each tested with DNO different spacers. Spacer output and lung dose were measured 

using fIlters. Particle size distribution of the lung dose -was assessed with an impactor 
during simulated breathing. Spacer output increased with increasing tidal volume, but 
was not affected by changing respiratory rate. The lung dose increased with increasing 

tidal volume, from tidal volumes of25 up to 50 orlOO mI, depending on which spacer 
was used. However, the lung dose decreased with further increase in tidal volume. 
Furthermore, lung dose decreased with increasing respiratory rates. The results could 

be explained by the higher inspiratory flows with increasing tidal volume and tespiratory 
rate. High flow rates cause increased deposition oflarge particles in the upper airways 

and subsequendy produced a lower dose into the lungs. Deposition of particles <2.1 
)lffi was largely independent of flow. Furthermore, we found that lung dose was 
dependent of pMDI and independent of spacers if electrostatic charge of plastic spacers 
was reduced. 

As was shown in chapter 3, co-operation during the adminsrration of aerosols 
is a major problem in young children, and may cause failure of treatment. To overcome 
this problem, it has been suggested to adminster the aerosols during sleep. However, 
the efficiency of administration during sleep is not known. In chapter 8 the dose 
delivered to the lungs from a pMDI/spacer was measured using the SAINT-model and 
simulated breathing patterns, which were recorded during sleep and wakefulness in 18 
children under 2 years of age. The lung dose was significandy higher for the sleep 
breathing patterns compared with the wake breathing patterns. This could be explained 
by the irregularity of the wake breathing patterns. Administration of aerosols during 
sleep might, therefore, be an efficient alternative to treat unco-operative toddlers. Further 
research is needed to study the clinical efficacy of administration duting sleep. 

In chapter 9 lung dose of a new hydrofluoroalkane-134a beclomethasone 
dipropionate (HFA-BDP) pMDI, containing a high proportion of particles <2.1 )lffi, 

was compared with lung dose of a conventional chlorofluorocarbon (CFC)-BDP pMDI, 
which mainly contains particles between 2.1 and 4.7 }lm. This was studied with the 
SAlNT-model connected to an impactor during simulated tidal breathing. A small 
volume detergent coated plastic spacer was used. It was found that HFA-BDP delivered 
a 4 to 14 fold higher dose to the lungs compared with CFC-BDP. Furthermore it was 
found that lungdose with HFA-BDP did not alter significandy with tidal volume, 
whereas lung dose with CFC-BDP decreased with increasing tidal volume. The results 
implicate that the use ofHFA-BDP with a high dose of extra fine particles increases 
the dose delivered to the lungs and reduces the variability related to the breailiing pattern, 
compared with a CFC-BDP pMDI with larger particles in infants. We speculate that 
the daily dose of HFA-BDP necessary to treat asthma in young children will be 
substantially teduced compared with CFC-BDP. 
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10.2 GENERAL DISCUSSION 

In our studies we investigated many factors that can affect the aerosol delivery 
from pMDIIspacers in young children. In the following section we will discuss these 
factors and the implications for clinical practice. Doses mentioned in the te>..'t below 
are expressed as a percentage of the nominal dose unless stated otherwise. 

10.2.1 FACTORS AFFEmNG AEROSOL DELIVERY FROM PMDljSPACERS IN YOUNG 
CHILDREN 

PATIENT-RELATED FACTORS 
Co-operation 
Within subject dose variability was found to be high in young children when using 

a pMDUspacer at home. Co-operation during the administration procedure was the major 
factor for children under 2 years of age causing high within-subject dose variability. 

Our study showed that almost 50% of children under 2 years of age did not 
co-operate sufficiently during the adminstration of aerosol. This is in agreement with 
other srudieswhere it was shown that crying resulted in decteased lung dose [1.2]. Clearly, 
we have to consider the fighting toddler as an important risk factor for failure of aerosol 
therapy. It is impOrtant for the clinician to be aware of any co-operation problems when 
prescribing aerosol therapy in young children. Parents have to be instructed that good 
co-operation during the administration procedure is crucial. To date no methods have 
been developed to improve the acceptibilityof pMDIIspacer treatment in young children. 

In search for a method to treat Ullco-operative infants, we examined the possibility 
to deliver aerosol to the lungs during sleep. To study this we made use of the SAINT­
model. Inhalation from a pMDIIspacer during sleep breathing resulted in a higher lung 
dose compared with wake breathing. Therefore, aerosol delivery during sleep may be 
a good alternative to treat fighting toddlers. However, the feasibility and effectiveness 
of this method should be studied in vivo. 

Breathing pattern 
Young children have variable breathing paaerns during inhalation of aerosol [3]. 

The breathing pattern has important influence on the dose reaching the lungs. This 
was shown in several studies in adults, where fast inhalation results in lower lung 
deposition compared with slow inhalation [4-6]. To our knowledge we were the first 

to study the relation bervveen tidal breathing paaerns and lung dose for young children. 
In our SAINT-model, the lung dose was found to increase with increasing tidal volume, 
up to a tidal volume of around 50 ml. However, the lung dose decreased with further 
increase in tidal volume. Furthermore, lung dose decreased with increasing respiratory 
rates. The results could be explained by the higher inspiratoty flow rates with increasing 
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tidal volume and respiratory rate. This causes increased impaction of coarse panicles 
in the upper airways and subsequently a lower lung dose. The differences in inspiratOry 

flow rates also explain why the lung dose with sleep breathing patterns is higher compared 

with wake breathing patterns. Inspiratory flow rates were significantly higher for the 
wake breathing patterns. 

Consequently, in case a child has a tidal volume smaller than 50 ml, or is tachypnoeic 

a lower dose may reach the lungs and a higher dose is deposited in the upper airvvays. 

Administra60n technique 
The spacer was introduced to simplifY the inhalation of aerosol from a pMDI. 

However, we and others showed that many mistakes are made during the 
administration procedure using a pMDIlspacer, even after repeated instructions [7-
9]. Some mistakes can substantially influence the dose delivered to the patient [8]. In 

our srudywe found spacer-oupurs of zero, caused by leaving the cap on the pMDI and 

doses of more than 100% suggesting that more than the subscribed dose was actuated 

into the spacer. Aspects of inhalation technique requiring good co-operation of the child, 

like inhaling for 30 seconds through the spacer, or keeping the facemask on the face 
during the inhalation were scored correctly in only half of the study group. The 
pMDIlspacer was often not shaken before use. This may result in variations in dose 
up to 25% [10]. Therefore, mistakes in the administration procedure contribute to high 
dose variabiliry and can even result in no drug being inhaled. To achieve Optimal aerosol 

delivery it is first of all important that the clinician prescribing the aerosol therapy is 
well aware of the optimal administration technique. In addition, the adminstration 
technique should be carefully instructed, checked and corrected regularly. 

Age 
We and others found that spacer-output does not depend on age in children 

0.5 years and older [11-13]. An age dependent spacer-output was found when a large 

volume plastic spacer with a high resistance valve was used in children 0.5-4 years of 

age [14]. Our lung deposition srudy showed that the total lung dose increased with 

age, but that the amount of drug per kilogram bodyweight was about equal for all age 

groups. This is in suppOrt of the idea that the same nominal doses can be prescribed 

for all ages as bas been suggested by other authors. However, in our radiolabelled aerosol 
srudy we found that a greater proportion of the dose inhaled is deposited in the upper 

airways of young children compared with older children. 

DEVICE RELATED FACTORS 
Electrosta6c charge 
It has been shown that electrostatic charge on the inner surface of a plastic spacer 

attracts aerosol to the spacer wall, thus reducing spacer output [15-17]. We hypothesized 

that electrostatic charge of the spacer would be a major factor for dose variabiliry in 
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daily life use. Though electrostatic charge reduced spacer-ouput, it appeared to play 
only a minor role in dose variability. Other factOrs, like co-operation of the child, 
appeared to be more important for dose variability. We and others showed that the spacer­
output from a static (non-detergent coated) plastic spacer was reduced twO fold compared 
with a non-static (detergent coated) plastic spacer or a metal spacer [11,14]. On the 
other hand, we showed that the dose of a bronchodilator delivered to the lungs in young 
children by using non-staric plastic spacers was up to 10 fold higher compared with 
previous lung deposition studies using static spacers [2,18]. Furthermore, it has been 
shown that the use of a non-static plastic spacer increases the bioavailability of salbutamol 
by 2.4-4 fold in children 7-12 years of age [l9].The clinical significance of this finding 
with regard to bronchodilators is not clear. A study in children aged 4-8 years comparing 
the efficacy of a bronchodilator delivered by static plastic spacers with non-static plastic 
spacers or the metal spacer showed no differences in post-bronchodilatOr peak expiratory 
flows [20J. For inhaled corticosteroids we found a 5-fold increase in lung dose using 
a non-static plastic spacer compared with a static spacer. It is likely that a higher lung 
dose of inhaled corticosteroids will results in a better clinical effect. In a number of studies 
a significant dose-response relation for inhaled corticosteroids has been shown [21-25]. 
Therefore, for efficient use of a pMDI/spacerwe recommend that electrostatic charge 
should be avoided as much as possible by using a metal spacer or by coating a plastic 
spacer with detergent once a week. 

Face mask 
A face mask attached to the spacer is necessary to enable young children, who 

cannot breath through a mouth piece, to inhale the aerosol [26-29]. It is important 
to keep the face mask airtight on the face during inhalation. An incomplete seal of the 
face mask on the face can lead to air entrainment from the side of the face mask, which 
results in decreased spacer-output. In nebulizers it has been shown that holding the 
face mask 1 or 2 em from the face reduced the dose delivered to the patient 2 to 6 fold 
[30]. Therefore, in the instructions of parents in the use of pMDI/spacers, the imponance 
of an optimal seal of the face mask should be stressed. We speculated that the effect 
of poor co-operation on dose variability was pardy caused by the incomplete seal of 
the face mask to the face. In video observations, interruption of the seal was observed 
many times in relation to movements of the head. In addition many children showed 

a sub-optimal fit of the face-mask itself The shape and flexibility of the facemask seemed 
to be important to obtain a good Scal' The face mask of the metal Nebuchamber is 
preshaped to the facial contours, has a flar rim and is rather stiff (figure 1). The face 
mask of the plastic Babyhaler is round, has an inward curled tim and is soft and flexible 

(figure 2). In many children, we observed a suboptimal fir of the facemask of the metal 
spacer, which also had the highest dose variability. Furthermore, both dose delivery and 
dose variability of the metal spacer were correlated to co-operation. The round face mask 
appeared to have a berrer seal on the face. Therefore, we think it likely that for 



FIGURE 1. Nebuhaler® with detail of mask and valves. 
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FIGU'RE 2. Babyhaler® with detail of mask and valves. 
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uncooperative children with a sub-optimal fitting facemask on the Nebuchamber, aerosol 
delivery can be approved by using a round flexible facemask with an inward curled rim. 
This should be investigated in further studies. 

Particle size 
The respirable range of particle size is considered to be 1 to 5 rro. However, 

this range is based on studies in adults. The respirable particle size for children is not 
known, and likely to be dependent on age and size of the child. Even in adults, it is 
likely that the respirable range of an aerosol will vary from patient to patient. 
Furthermore, the optimal particle size for an aerosol will also depend on the target area 
in the bronchial tree. It has been shown that with a particle size of around 2.8 ]lm for 
a ~ragonist an optimal dose-response relation is achieved in asthmatic adults [31 ,32J. 
Taking into account the small airway diameters and relatively high flow rates in the 
central airways of children [33J, we hypothesize that the optimal particle size for young 
children will be substantially smaller compared with adults. Simulation experiments 
with the SAINT-model showed that the lung dose from all pMDIIspacers tested 
consisted mainly of particles smaller than 4.7 ]lm. This implicates that particles from 
4.7]lm and smaller were able to pass the upper airways ofa child of9-month-old, and 
can be considered 'respirable'. However, when inspiratory flow rate increased the MMAD 
of the lung dose decreased. In other words, only small particles were able to pass the 
upper airways. Interestingly, deposition of particles smaller than 2.1 jlffi was largely 
independent of breathing pattern. Therefore it was not surprising that the lung dose 
of the HFA-BDP (MMAD = 1.1 ]lm) was independent of the breathing patrern. 
Furthermore, the torallung dose of pMDI's with smaller particles (fluticasone, HFA­
BDP) were found to be higher compared with pMDI's with larger particles (budesonide, 
CFC-BDP), The lung dose appeared to be independent of the spacer used. We did not 
measure the regional deposition in the lungs in relation to different particle sizes, but 
it has been shown that smaller particle are more likely to deposit in the peripheral airways 
[34-36J. In addition, it has been shown that in asthma CF and BPD morphological 
changes are more severe in peripheral compared with central airways [37-40]. Therefore, 
it makes sense that for the delivery of inhaled corticosteroids in young children pMDI's 
should be used with a low MMAD of around 1 ]lm. This is likely to improve lung 
deposition and reduce variability related to breathing pattern. We hypothesize that the 
use of these types of aerosols will improve clinical efficacy. This should be further 
investigated in clinical studies. 

Spacer-design 
There are 4 types of spacers commercially available in the Netherlands. The plastic 

spacers: Volumatic' (GlaxoWellcome, Zeist, the Netherlands), Babyhaler' 
(GlaxoWellcome) and Aerochamber" (Boerhinger lngelheim, Alkmaar, the Netherlands) 
and the metal spacer: Nebuchamber" (AstraZeneca, Zoetecrneer, the Netherlands). Each 
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FIGURE 3. VoLumatic~ with detaiL of vaLve. 

spacer can only be used with the pMDI's of its manufacturer, excepr for the Aerocbamber, 
which has a universal inlet fitting all pMDI's. All 4 types of spacers were rested in our 
studies. Eacb spacer has its own properties which affect the dose delivered in a particular 
patient positively or negatively. As discussed previously, electrostatic charge is an 
important facror that can reduce dose delivery. However, we found that when electrostatic 
charge of spacers is optimally reduced the lung dose is dependent on the particle size 
distribution of the pMDI and relatively independent of the spacer. In the following 
section each spacer is discussed seperately. 

The Volumatic (~oure 3) is the only large volume (750 mI) polycarbonate spacer. 
It is a conical spacer with one round hard plastic inspiratory valve. Exhaled air flows 
through holes in the mouthpiece. The relatively high ~esistance valve needs sufficient 
flow to function properly, which can often not be acbieved by young cbildren or 
dyspneic adults [41,42]. The Volumatic is only available with a mouthpiece. The spacer 
is made of polycarbonate plastic, therefore it can accumulate electrostatic charge. We 
found a relatively low spacer outpur and high dose variability when the Volumatic was 
used at home, without detergent coating and with a Pulmicoft® 200 pg pMDL 
However, lung deposition of280/0 up to 41.8% of metered dose from a Ventolin® 100 
fIg pMDI could be achieved in children 5-12 years of age. In this srudy the spacer was 
detergent coated and used with tidal breathing, or a single deep breath and breath­
hold. The Volumatic can only be used for children of 4 years and older who are able 
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to breath through the mouth, because of the large volume, the high resistance valve 

and the inability to use it with a face mask this spacer. 
The Babyhaler (figure 2) is a small volume (350 ml) polycarbonate tube-shaped 

spacer, with separate round in~ and expiratory valves. The valves are fixed in the centre, 
allowing the aerosol to pass along the sides. The Babyhaler is provided with a round 
facemask. Our study showed that with the Babyhaler facemask it is relatively easy to 
obtain a good seal on the faces of young children. A disadvantage of the face~mask is 
that it is quite large and adds 20-30 ml dead space to the system. In addition, the dead­
space between the valves is 35 ml. Therefore, the total dead space of the Bayhaler is 
quite large. This explains the relatively low spacer output and low lung doses which 
we found when small tidal volumes were used in the SAINT-model. Another 
disadvantage of the Babyhaler is that it can get electrostatically charged. We found a 
5 fold reduction in lung dose for both fine and ""ua fine particles using a static Babyhaler 
compared with a non-static Babyhaler. However, if the Babyhaler is detergent coated 
and tidal volumes larger than 50 ml are used, the spacer output can increase to 60%, 
providing a lung dose up to 20% of metered dose. Because of the relatively large dead 
space we do not recommend the Babyhaler for children with tidal volumes smaller than 
50 ml. The Babyhaler is suitable for children of 1 to 4 years of age. 

The Aerochamber (figure 4A) is the smallest volume (150 ml) spacer available. 
It is a tube shaped spacer with a low resistance inspiratory valve. Expiratory flow goes 
through a valve integrated in the facemask or through holes in the mouthpiece. The 
Aerochamber has an inspiratoty valve which consists of four flaps. The aerosol passes 
through the centre of these 4 flaps. Malfuncrioning of the spacer valves are frequendy 
observed in the out-patient clinic of the Sophia Children's Hospital. The 
Aerochamber is available with 3 different sizes of facemasks (infant, child and adult) 
or with a mouth piece. The facemask of the Aerochamber looks similar to the facemask 
of the Babyhaler, but is also available in smaller sizes. The dead space of the Aerochamber 
is small. It is made ofEktar~) plastic and electrostatic charge can also build up on the 
surface. It should be detergent coated at least once a week. Spacer-ouput from the 
Aerochamber was lower with both Flixotide and Pulmicort compared with the other 
spacers. However, the lung dose of these pMDI's with the derergent coated Aerochamber 
were equal to the lung doses of the Flixotide with detergent coated Babyhaler and the 
Pulmicort with the Nebuchamber. This explains why the upper airway deposition was 
lowest for the Aerochamber. The Aerochamber is suitable for children of all ages because 
of the small volume, small dead space and low resistance valves, and the availability 
of different sized face masks and a mouthpiece. Recently a new design of the 
Aerochamberwas introduced (AerOchamber Plus" (fi"oure 4B». The new Aerochamber 
Plus has a low resistance annular valve, which allows the aerosol to pass from the side. 
The facemask of rhe Aerochamber Plus is smaller compared with the old one, with 
a smaller dead space and a droplet-like shape. There is srilllittle information available 
on the functioning of this new spacer. 



FIGURE 4. A. Aerochamber® with detail of infant and child masks, and valves (old design). 
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FIGURE 4. B. Aerochamber Plus® with detail of infant and child masks, and valves (new design). 
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The Nebuchamber (figure 1) is a small volwne (250 ml) pear shaped meta! spacer 
with separate low resistance in- and expiratory valves. The inspiratory valve consists of 
two flaps which form a slit allowing the aerosol to pass centrally. The in- and expiratory 
valves are integrated in the mouthpiece and this needs to be replaced about every 6 months, 
because the valves wear out. There is no dead space between the valves [43]. It can be used 

with or without facemask. The facemask was designed to minimize the dead space added 
to the pMDI/spacer. As discussed previously, it is difficult to obtain a good seal between 
the faces of young children and the facemask of the Nebuchamber. In our study we showed 
a high dose variability in young children using the face mask, but significantly lower dose 
variabilirywhen used without face mask in children 5-8 years old. An important positive 
point of the Nebuchamber is that electrostatic charge is no issue because it is made of 
stainless steel. This makes the Nebuchamber less complicated to use and also less fragile. 
Using the SAINT-model we found a spacer-ouput from 30% at a tidal volume of25 ml 
up to 45% at a tidal volume of200 ml with Pulmicorr"-pMDI. The maximwn lung dose 
found with the Pu!micort"-pMDI was I 0.6% at a tidal volwne of 50 ml. The upper airway 
deposition was higher for the Nebuchamberwith the Pulmicorr"-pMDI compared with 
the Aerochamber with Pulmicort"-pMDI. The Nebuchamber is suitable for children of 
all ages, because of the small volume, small dead space and low resistance valves. 

In conclusion, each spacer design has its own advantages and disadvantages, making 
it suitable or less suitable for certain ages. Obviously there is room for improvement for 
the face mask and valve design. Electrostatic charge need to be avoided at all times. 

10.3 CONCLUSIONS 

The use of pMD II spacers for aerosol therapy in young children requires special 
attention for those factors that may cause failure of treatment. Aerosol therapy in young 
children can be improved by good co-operation during the administration procedure, 
quiet breathing, a good fitting face mask, avoidance of electrostatic charge of the spacer 
and aerosols with a high proportion of small particles. 
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10.4 DIRECTIONS FOR FUTURE RESEARCH 

OUf study showed that there are many toddlers who do nOt co-operate during 
the adminstration of aerosols, resulting in inefficienr dose delivery from the pMDI/spacer. 
Future research should focus on optimizing aerosol therapy in the group of fighting 
toddlers. This may be accomplished by: 
• Development of a face mask that fits ainight on the face and is less sensitive 

for movements of the head. 

• Studying feasibiliry and clinical efficacy of administration during sleep. 
• Development of training programs for children and their parents to increase the 

number of children that accept the aerosol therapy with pMDI/spacer. 

Furthermote, we showed that the optimal particle size for young children to inhale 
therapeutic aerosols is probably substantially smaller than what is produced by most 
pMDI's. The optimal particle size of therapeutic aerosols will also depend on the site 
of action of the drug. Inhaled steroids may need to be deposited as far as the alveoli, 
whereas bronchodilators may be deposited more centrally in the lung. Also the use of 
new agents like antibiotics, inhaled insuline, vacans, requires knowledge about the area 
where the aerosol should be deposited Future reasearch should focus on: 
• Defining the target of the inhaled drug: Where in the lung should the drug be 

deposited? 
• Determination of the optimal particle size for different inhaled drugs and for 

children of different ages. 

The SAINT-model appeared to be a useful tool to study the influence of differenr 
parameters on aerosol deposition in children. However, our results provide only 

information on the total lung dose and the particle size distribution, but not on the 
deposition location of the aerosol in the lungs. It is difficult to study this in vivo. 
Therefore, there is need for a model of the bronchial tree of a child to study lung 
deposition in children in detail. Detailed knowledge of airway geometry at different 
ages is required to develop adequate bronchial airway models of children. 
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SAMENVAmNG 

Her inhaleren van medicamenten In a vorm wordt vee! gebruikt voor de 
behandeling van astma. Bij kinderen wordt vooral de dosisaerosol (pMDI) met een 
voorzetkamer als toedieningsvorm gebruikt om onderhoudstherapie te geven. Om jonge 
kinderen anti-astma medicijnen toe te dienen wordt gebruik gemaakt van een 
voorzerkamer uitgerust met een kapje. Jonge kinderen ademen immers voora! door de 

neus en kunnen meestal nier be\Vllsr via de mond inhaleren. Ef zijn vee! verschillende 
soonen voorzetkamers op de marh. De efficiencie van deze voorzetkamers is onderling 
verschillend en elke voorzetkamer heeft zijn VOOI- en nadelen. Over her functioneren 

van voorzetkamers bij jonge kinderen is sleclltS zeer weinig bekend. Om optimale rhetapie 
te geven is her belangrijk te weten hoeveel medicament er uit de pMDI-voorzetkamer 

door het kind wotdt geinhaleetd (dosisafgifte). Tevens, moet men de variabelen kennen 
die de hoogre van de geYnhaleerde dosis b~lnvloeden. De studies in dit proefschrifr 
concenueren zich met name op de efficientie waarmee verschillende dosisaerosollvoor­

zetkamer combinaties aerosol afgeven aan jonge kinderen en de factoren die daarop 
van invloed zijn. De bevindingen uit dit proefSchrift l:unnen bijdragen aan het verbeteren 

van de astmatherapie voor jonge kinderen. 
Hoofdstuk 1 geeft een algemene inleiding van het proefschrift en worden de 

doelen van de studies uitgelegd. 
Hoofdstuk 2 geeft uitgebreide achtergrond infurmatie over de wetenschappelijke 

en praktische aspecten van aerosoltherapie bij kinderen. Verder worden de indicaties 

voor aerosoltherapie, de basis principes van aerosoldepositie en de methoden om 

aerosoldepositie te onderzoeken besproken. Tevens worden de huiclige methoden om 

aerosoltherapie aan kinderen te geven besproken. 

REPROOUCEERBAARHEID VAN DE OOSIS 
Een voorspelbare en reproduceerbare dosisafgifte van de pMDI-voorzetkamer 

is belangrijk om de goede dosis te kunnen voorschrijven. Hierbij sueeft men naar een 

ma.ximum aan therapeutisch effect en een minimum aan bijwerkingen. Vreemd genoeg 
is de reproduceerbaarheid van de dosisafgifte van de pMDI-voorzetkamers bij kinderen 
niet bekend. Er zijn vele factoren die de dosisafgifte van voorzetkamers kunnen 

belnvloeden. Een belangrijke factor is de elektrostatische lading die aanwezig kan zijn 
op het oppervlak van plastic voorzetkamers. Het is aangetoond clat ele1.-trosratische lading 
de dosisafgifte van een voorzetkamer aanzienlijk kan vedagen. Een metalen 

voorzetkamer is niet elektrostatisch geladen. In verscheidene studies bij kinderen werd 

aangetoond dat een metalen voorzetkamer een hogere dosis afgeeft dan een statische 

plastic voorzetkamer. Echter deze studies werden gedaan onder goed gecontroleerde 

omstandigheden in een labotatorium. Het mag duidelijk zijn clat dit waarschijnlijk niet 
de thuissituaue reflecteert. In hoofdstuk 3 wordt een gerandomiseerde cross-over srudie 

beschreven waarin de reproduceerbaarheid van de dosisafgifte werd gemeten in de 
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thuissituatie. Deze reproduceerbaarheid wordt uitgedrukt als (binnen-persoons) 
dosisvariabiliteit door de variatiecoefficient van de dosisafgifte te bepalen. Deze werd 

bepaald voor een metalen voorzetkamer en twee plastic voorzetkamers bij kinderen in 
de thuissituatie. Zeventien kinderen van 1-4 jaar (groep I) en 16 kinderen van 5-8 jaar 
(groep II) met stabiel asana namen aan de studie deel. Her medicament dat werd 
onderzocht was het inhalatiesteroYd budesonide. De dosisafgifte van budesonide uit 
de pMDI-voorzetk:amerwerd gemeten door een fliter te plaatsen russen voorzetkamer 
en masker (groep I), of russen voorzetkamer en mond (groep II). De dosis op her filter 
was representatief voor de torne dosis die in het lichaam zou zijn gekomen als de filter 
er niet had gezeten. Elke proefpersoon gebruikre de metalen en een van de twee plastic 
voorzetkamers twee keer per dag, elk gedurende 1 week. De volgorde waarin de 
verschillende voorzetkamers werden gebruikt was gerandomiseerd. De dosisafgifte van 
de metalen voorzetkamer bleek 2 keer w hoog te zijn in vergelijking met de beide plastic 
voorzetkamers. Dit kon worden verklaard door de aanwezigheid van elektrostatische 
lading in de plastic voorzetkamers. De dosisvariabiliteit bleek aanzienlijk te zijn voor 
alIe drie de voorzetkamers. Deze variabiliteit was het hoogst voor de jonge kinderen 
in groep I voor zowel de meralen als de plastic voorzetkamer en het laagst voor kinderen 
in groep II v~~r de metalen voorzetkamer. Dit betekent dus dat bij met name de jonge 
kinderen die de pMDI-voorzetkamer thuis gebruiken de reproduceerbaarheid van de 
dosisafgifte slecht is. De dosisvariabiliteit leek bovendien toe te nemen naarmate de 

kinderen jonger waren. Dit vormde de reden om een tweede smdie op te zetten naar 
de dosis variabiliteit bij kinderen jonger dan 2 jaar. Deze studie, die beschreven is in 
hoofdstuk 4, had ror doel de dosisafgifte en dosisvariabilireit van voorzetkamers van 
kinderen 0-2 jaar nader te onderzoeken en te bestuderen welke factoren daarop van 
invloed zijn in de thuissituatie. In deze smdie werden 25 kinderen g6ncludeerd in de 
leeftijd van 5-26 maanden die allen behandeld werden met anti-asana medicatie. In 
een gerandomizeerde cross-over studie werd de dosisafgifte van een budesonide-pMDI 
met metalen voorzetkamer en van een fluticasone-pMDI met plastic voorzetkamer 
gemeten met behulp van filters. De invloed van elektrostatische lading werd gemeten 
door een (elektro)statische met een niet-(elekrro)statische plastic voorzetkamer te 
vergelijken. Een plastic voorzetkamer werd ontdaan van elektrostatische lading door 
deze af te wassen in een sopje met huishoud.af\;vasmiddel vervolgens niet af te spoelen 
en daarna aan de lucht te laten drogen. Als de voorzetkamer wel werd afgespoeld met 

water, was er wel electrostatische lading aanwezig. Opmerkelijk was dat de 
dosisvariabiliteit van de metalen voorzetkamer significant hoger was dan die van zowel 
de statische als de niet-statische plastic voorzetkamers. De dosisvariabiliteit tussen de 
statische en niet statische plastic voorzetkamers verschilde niet. De belangrijkste factor 
voor de dosisvariabiliteit van alle voorzetkamers bleek de cooperatie van het kind te 
zijn. Het 'coaten' van de voorzetkamer met afWasmiddel bleek effectief om de 

elektrostatische lading voor een week te reduceren en dientengevolge de dosisafgifte 
te verhogen. Er was echter geen meetbaar effect op de dosisvariabiliteit bij deze jonge 
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kinderen. De relatief hogere dosisvariabiliteit van de metalen voorzetkamer werd 
waarschijnlijk veroorzaakt door het onvoldoende aansluiten van het masker op her gezicht 
van met name de niet-cooperatieve kinderen. Uit analyse van video-opnamen bleek 
namelijk dat ongeveer de helli van de kinderen niet goed meewerkte tijdens de 
aerosoltoediening en dat daarbij het maskervaak ruet goed aansloot op het gezicht. Tevens 
bleek uit deze opnamen dat er veel fouten werden gemaakt tijdens de 
toedieningsprocedure wat resulteerde in een verminderde dosisafgifte. Deze studie laat 
zien dat cooperatie tijdens het toedienen van een aerosol essentieel is. Het niet goed 
meewerken van bijna de helft van deze kinderen van 0 tot 2 jaar resulteerde in een 
onvoorspelbare dosisafgifte. 

LONGDEPOSITIE 
De twee bovenstaande studies zijn filterstudies, waarin de dosisafgifte van een 

pMDI-voorzetkamer wordt gemeten aan de mond. Dit geeft geen informatie over de 
hoeveelbeid medicament die uiteindelijk in de longen tereehtkomt of de distriburie van 
de dosis over de luchtwegen. Om dit te onderzoeken werd een longdepositiestudie 
opgezet, die beschreven wordt in hoofdstuk 5. De longdepositie in asunatische kinderen 
van 1 tot 12 jaar werd gemeten door middel van radio-aerief gelabeld salbutamol, 
toegediend via een plastic voorzetkamer. De voorzetkamers waren met afwasmidde! 
behandeld om de elektrostatische lading te verminderen. De gemiddelde longdeposirie, 
uitgedrukt als een percentage van de afgevuurde dosis, was 16.4 tot 41.S % in kinderen 
van 1 tot 12 jaar oud. De longdepositie nam toe met de leefrijd, maar de dosis per 
kilogram lichaamsgewicht was gelijk voor aile leeftijden. Er kon worden geconcludeerd 
dat de gebruikte plastic voorzet.kamers die met afWasmiddel waren gecoat een vee! hogere 
longdepositie gaven dan voorheen werd aangetoond in andere studies, waarin statische 
voorzetkamers gebruikt werden. 

ADEMHAUNGSPATRONEN EN DEPOSITIE 
Om in derail de invloed van ademhalingspatronen op aerosoldeposirie in kinderen 

te kunnen bestuderen ontwikkelden we een model van de bovenste luchtwegen van 
een jongkind. HoolStuk 6 besehrijft her ontwikkelen en het maken van het "Sophia 
Anatomical Infant Nose-Throat (SAlNT)" -model: een anatomiseh correct bovenste 
luchtweg model van een kind. Dit model is een belangrijk hulpmiddel om in-vitro 
mechanismen van aerosoldepositie in kinderen te besruderen. Het SAINT-model werd 
gemaakt met behulp van een driedimensionale CT-scan van het hoofd van een 9 
maanden oud kind. Deze scan werd met met een stereolithografische techniek, dat 
gebruik maakt van een UV-gevoelig kunsthars, omgezet in een model. Het model is 
een kopie van een deel van het gezicht en de bovenste luchtwegen van de neus tot net 
onder de stembanden. De ademweg via de neus is open, maar via de mond gesloten. 
De CT-scan van het model en de originele CT-scan l."Wamen nauwkeurig overeen met 
elkaar. Aerosoldepositie metingen met het SAlNT model toonden aan dat de aerosol 
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dosis die net onder de stembanden werd gemeten ("de longdosis") vergelijkbaar was 
met in-vivo longdepositie waarden ill! andere studies. 

In hoofdtsuk 7 wordt een srudie met het SAINT-mode! beschreven waarin de 
invloed van teugvolume en ademhalingsfrequentie op de bovenste luchtweg- en 
longdeposirie wordt besrudeerd van vier verschillende pMDI-voorzetkamer combinaties. 
De budesonide pMDI werd getest in de Nebuhaler® en de Aerochamber" en de 
fluticasone pMDI werd getest in de Babyhaler" en de Aerochamber". Dosisafgifte van 
de voorzetkamers en longdosis werden gemeten door middel van filters. 
Deeltjesgrootteverdeling van de longdosis werd bepaald met een impactor tijdens 
gesimuleerde ademhaling. De dosisafgifte van alle voorzetkamers nam toe met her 
te~ovolume. maar werd nier belnvloed door de ademhalingsfrequentie. De longdosis 
nam toe met her teugvolume, voor volumes van 25 tot 50 m}, afhankelijk van de 
gebruikte voorzetkamer. Echter bij verdere tOename van het teugvolume, nam de 
longdosis weer a£ De longdosis nam ook af met een snellere ademhalingsfrequentie. 
De resultaten h.."Ull.llen worden verklaard door de hogere inspiratoire flows bij toenemend 
teugvolume en ademhalingsfrequentie. Bij hoge inspiratOire flows neemt de depositie 
door impactie van met name grotere deeltjes toe in de bovenste luchtwegen. Dit resulteert 
in een hoge bovenste luchtweg depositie en een lage longdosis. De deposirie van deeltjes 
kleiner dan 2.1 pm was onathankelijk van het gebruikte adempatroon. De fluticasone 
pMDI had een wat hoger percentage dee!tjes < 2.1 flll1 dan de budesonide pMDL De 
longdosis bleek vooral afhanke!ijk te zijn van de pMDI en in vee! mindere mate door 
de voorzetkamer mits de elektrostarische lading van de plastic voorzetkamers was 
gereduceerd door middel van een af\vasmiddel coating. 

In hoofdsruk 3 werd aangetoond dat de cooperatie rijdens de toediening van een 
aerosol een be!a.n"orijk probleem vormt bij jonge kinderen. AIs oplossing voor dit probleem 
wordt wel gesuggereerd dat bij deze kinderen aerosol toediening beter tijdens slaap kan 
plaatsvinden. Het is echter nooit onderzocht of er voldoende aerosol in de longen 
terechtkomt bij toediening tijdens slaap. In hoofdstuk 8, wordt de longdosis van een 

pMD I -voorzetkamer gemeten tijdens gesimuleerde waakademhaling en slaapademhaling, 
gebruikmakend van het SAINT-modeL De adempatronen werden opgenomen bij 18 
kinderen onder de 2 jaar rijdens slaap en in wakkere toestand. De longdosis voor de 
slaapademhaling was significant hoger vergeleken met de longdosis tijdens 
waakademhaling. Dit kon worden verklaard doordat de waakademhaling vee! 
onregelmariger was ten opzichte van de slaapademhaling. Toediening van een aerosol 
tijdens slaap zou dus een efficient altematiefkunnen zijn voor de tegensttibbe!ende peuter. 
Verder onderzoek is nodig om de praktische toepasbaarheid hiervan te onderzoeken. 

DEELTJESGROOTTE EN DEPOSmE 
Het drijfgas van de pMDI's bevarren chloorfluorkarbonen (CFK's). Deze gassen 

tasten de ozonlaag aan. Daarom moeten alle CFK's vervangen worden v~~r 
milieuvriende!ijker alternatieven, zoals de hydrofluoralkanen (HFA). Een nieuw 
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onrwikke!de HFA-pMOI met beclomethasondipropionaat (BOP) heeli: ruet aileen een 
ander drijfgas maar produceert ook vee! meer kleine deeltjes « 2.1 J.lm) vergeleken met 
de conventione!e CFK-BOP pMOI, die voomamelijk deeltjes van 2.1 tot 4.7 J.lm bevat. 
In hoofdstuk 9 wordt de longdosis van de nieuwe HFA-BOP vergeleken met de 
longdosis van de oude CFK-BOP bij verschillende teugvolumes. Oit werd onderzocht 
door her SAINT-model te bevestigen aan een impactor en een ademhalingssimulator. 
Een gecoate Aerochamber® met masker werd gebruikt voor de toediening van 
beclomethason. De HFA-BOP-Aerochamber® gar een 4 tot 15 maal hogere longdosis 

vergeleken met de CFK-BOP-Aerochamber®. Oaarbij veranderde de longdosis van 
de HFA-BOP niet significant met het teugvolume, terwijl de longdosis van de CFK­
BOP afuam met toenernend teugvolume. De studie toom aan dat het gebruik van HFA­
BDP dosisaerosol met veel extra kleine deelrjes de longdosis aanzienlijk verhoogt en 
de dosisvariabiliteit door adempatronen vermindert bij jonge kinderen vergeleken met 
CFK-BOP dosisaerosol met relatief grotere deeltjes. Waarschijnlijk zal de benodigde 
dagelijkse dosis om asnna te behandelen met HFA-BOP aanzienlijk lager zijn dan met 
CFC-BOP. Dit moet in een klinische studie nader worden onderzocht. 

Hoofdtuk 10 geeft een samenvatting van her proefschrift en gaat in een disrussie 
in op de gevonden resultaten. Factoren die van invloed zijn op de dosisafgifte van pMOI­
voorzetkamers bij jonge kinderen worden besproken en er werde ingegaan op hoe de 
efficientie van aerosoltherapie bij deze kinderen verbeterd ZQll kunnen worden. Patient 
gerelateerde factoren komen aan bod zoals: cooperatie; adempatronen; 
toedieningstechniek; en leeftijd. Tevens worden facroren besproken die gerdateerd zijn 
aan het toedieningssysteem zoals: electrostatische lading; masker; deeltjesgrootte; en 
ontwerp van de voorzetkamer. Tevens worden de v~~r en nadelen van de in Nederland 
beschikbare voorzetkamers besproken. Als laatste worden er suggesties gedaan voor verder 
onderzoek om meer inzicht te krijgen in aerosoltherapie bij jonge kinderen. 

CONCLUSIES 
Aerosol therapie bij jonge kinderen kan aanzienlijk worden verbeterd door het 

stimuleren van goede cooperacie en ruscige ademhaling cijdens de toediening. Een goed 
passend maskertje, vermijden van elektrostatische lading van de voorzetkamer en het 
gebruik van een aerosol met een voldoende hoog percentage aan kleine deeltjes zijn 
eveneens belangrijk. Toediening van een aerosol tijdens slaap kan een alternatiefzijn 
v~~r niet cooperatieve kinderen. Verder onderzoek zou zich moeten richten op het 
onrwikkelen van een goed passend maskertje, de klinische toepasbaarheid van toedierung 
tijdens slaap en het bepalen van de optimale dee!tjesgroorte voor ieder specifiek 
inhalatiemedicijn v~~r kinderen. 
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Het proefschrift is at! Het is het resultaat van vele uren eenzaam zwoegen, 
maar ook van de onmisbare medewerking van vele mensen. Zonder hen was het 
dan ook nooit zover gekomen. Bij deze wil ik een aanral van hen speciaal bedanken: 

Dr. H.A.WM Tiddens, besre Harm, jij was de moror en iniriaror van dit 
onderzoek. Je bent een onuitputtelijke bron van energie en ideeen, waar zelfs het 
Sophia soms te klein voor is. En wie heeft er nou een co-promotor die op elk feest 
met een swingende band komt spelen? Bedankt voor je leerzame en inspirerende 
begeleiding, v~~r de letterlijk onbegrensde mogelijkheden die je me geboden hebt, 
en bovenal je vriendschap. 

Prof. dr. J.C. de Jongste, beste Johan, promotor en hoofd van de afdeling, 
jij bent zo' n zelclzame geniale professor die ook nog heel gewoon is gebleven en 
bovendien ook nog een prettig mens is. Bedankt Yoor de mogelijkheid om 4 jaar 
te mogen werken in een prettige werksfeer, je laagdrempelige toegankelijkheid, je 
snelle correcties van manuscripten en je constructieve commentaren. 

Het onderzoek was niet mogelijk geweest zonder de financiele steun van 
AstraZeneca Nederland. Ik wil AstraZeneca graag hartelijk bedanken voor het 
beschikbaar stellen van geld voor dit de volledige sponsoring van het onderzoek , 
met zoveel wetenschappelijke vrijheid en jullie enorrne bijdrage aanen voor de bijdrage 
aan de drukkosten van het proefscbrift. Dankzij de wetenschappelijke vrijheid die 
jullie ons gegeven hebben zijn we in Staat gesteld om de k"Waliteit van de 
aerosolbehandeling van jonge kinderen met luchtwegaandoeningen aanzienlijk te 
verbeteren. Met name Henk Rijnders, Marjo Tieleman en Joke Eggermont wil ik 
graag persoonlijk bedanken voor hun logistieke ondersteuning van de afgdopen jaren. 

Prof. dr. P.N. LeSouef, dear Peter, thank you very much for giving me the 
opponunity to come to your department, and to teach me about research in medical 
aerosols. The time in Perth was wonderful, and if ever possible I really would like 
ro come back some time (and Joost as well). I feel very honoured that you want ro 
be part of the committee, while having such an overbooked agenda. 

During my time in Perth I gOt to know many people, who were very helpful 
and also very hospitable. I would like ro thank all of them. In particular, I would 
like ro thank Dr. Sunalene Devadason, who helped me ro start up the whole first 
project and with so many other things. I also would like ro thank Dr. Hannes 
Wddhaber: Thanks for teaching me how to radiolabel aerosols, letting me participate 
in the lung deposition study and all the nice evenings at Vic's and at your house 
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(with swimming pool!). Thanks, Nigel, Frederic, Inge, Veena and Lyle for making 
our stay in Australia unforgetably enjoyable. 

I am very grateful to the Australian parents and children who participated 
in the study. De Nederlandse ouders en kinderen die meegedaan hebben aan de 
studies wil ik graag hartelijk bedanken voor hun deelname. 

Pro£ dr. ].M. Bogaard, Pro£ dr. H.c. Hoogsteden en Pro£ dr. EJ. Duiverman 
wi! ik graag bedanken voor de bereidbeid om in de kleine commissie zitting te nemen 
en voor de beoordeling van het manuscript. Pro£ dr. H.W. Frijlink dank ik voor 
zijn kornst naar Rotterdam en zijn bijdrage aan de oppositieom dee! uit te maken 
van de grote commissie. Ook Pro£ dr. H.A. Billler dank ik voor zijn deelname aan 
de grote commissie. 

Mijn paranimfen Laurens Koopman en Rachel Bakkum: beste Laurens, 
bedankt voor aile onmisbare hulp van de afgelopen maanden, voor dar je zo'n lieve 
collega bent en dat je me bij wilt staan als paranimf, en beste Rachel, ik vind het 
gezellig dar ik je regelmatig regen korn in her Sophia, bedankt voor het helpen 
organiseren van mijn promotiedag en her optreden als paranimf en zangeres die dag. 

De kinderlongafdeling is de leukste afdeling van het Sophia! Dat komt door 
al die leuke mensen: Els van der Wiel (bedanktvoor je bijdrage aan het onderzoek), 
Mmijn karnergenoot Marielle Pijnenburg (bedank:t voor alle pepta!ks), Ward Hofbuis 
Cbedankt voor her thuisbrengen), Josee Esposito (succes met het vervolg van her 
onderzoek), Karin Corver (bedankt voor je hulp bij de laatste loodjes!), Peter Merkus, 
Rijn ]obsis, Maartje ten Berge, Govert Brinkhorst, Irma Beckers (bedankt voor de 
secretariele ondersteuning, m.n. de laatste maanden), Pro£ dr. H.]. Neijens, en Astrid, 
Aafke, Edith, Evelien, Saskia, Sylvia, Annelies, Maaike, Marieke Anita en Simone. 
Allen bedankt voer de gezelligheid en de prettige samenwerking. 

Elna Berg from AstraZeneca in Lund, Sweden, dear Elna, you have been 
indispensable for the completion of the studies in this thesis. Thank you very much 
for sharing your expertise on aerosol research with me, for the opportunity to come 
to visit your lab and learn HPLC analysis, for providing me with the analytical 
equipment and substances and for your hospitality during my Stays in Sweden. I also 
would like to thank the other members of the lab in Lund: Camilla Rossborg for 
the analysis of more than a thousand filters and her help during my stay in the lab 
and]an OlofSvensson for the explanation and the use of his experimental set-up. 

Dr. A.EM. Verbraak, beste Ton hartelijk bedanJ..."t voor het beschikbaar stellen 
van jouw longsimulator en al je hulp bij her gebruik ervan. Ook jouw studenten 
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Robert Brown, Marrijn HoI en Bastiaan Kruijt zijn onmisbaar geweest bij de 
computerondersteuning. Bedankt v~~r alle mooie programma's die jullie voor me 
geschreven hebben. 

Tijdens mijn uren boven de alcoholdampen. worstelend met het HPLC­
apparaat, wetd ik bijgesraan door Leo Scheek. Hartelijk dank voor al je hulp. Ook 
de andere medewerkers van het lab Biochemie, Rinus, Teus en Paul wil ik bedanken 
voor hun hulp. Pro£ Koster wi! ik graag bedanken voor het belangeloos beschikbaar 
stellen van de apparatuur en de faciliteiten. 

Dr. W.C.]. Hop, beste Wim, bedankt voor je hulp bij de statistiek. Ik heb 
vee! van je geleerd. 

Ir. w.P.J. Holland, de "Wtilie Wortel" van de Centrale Intrumentele Dienst 
(CID), hartelijk dank voor het meedenken met verSchillende projecten en het 
ontwikkelen van de electrometer. De overige medewerkers van het CID wil ik 
bedanken voor hun onmisbare technische ondersteuning. 

Dr. Wytske Fokkens, Dr. Simon Robben en Kris Wouters wil ik graag 
bedanken voor het meedenken bij het ontwikkelen van het SAINT-model. 

De radiologie laboranten van de afdeling Radiologie wil ik bedanken voor 
het alert zijn op geschikte CT-scans voor het model en hun technische hulp bij de 
verwerking van de CT-scans, met name wil ik bier noemen: Arnoud, Danielle, Carla, 
Tineke, Anneke en Esther. 

Bij enkele projecten werd ik bijgestaan door studenten, die onderzoek deden 
in het kader van hun afStudeerprojecr: Ester Heijnen, Vincent de long, Arno 
Krijgsman, bedankt voor jullie bijdrage aan dit proefschrift. Ik hoop dat julIie eennet 
zo'n leerzame periode gehad hebben als ik. Vee! succes in jullie verdere loopbaan! 

Beste collega -onderzoekers, Ester, Annemarie (R), Edwin, Pieter, .Annemarie 
(F), Jan-Erik, Saskia, Hestien, Daphne, Nicolerte, Venje, Rianne, Carola, Sascha, 
Barbara, Margriet, Geert, Hannerieke, Leon, Sophia, Jessie, Theo, Diek, Inge, Yvonne, 
Debbie, Jeroen, Clementine, Robbert zonder julIie was het allemaal maar een saaie 
boel geweest, bedankt voor de gezelligheid, steun, goede tips, leuke weekenden, 
lunches en borrels. 

Marjolein, Siemen, Lars en Daan jullie waren fantastische fotomodellen! 

Mijn ouders, lieve pappa en mamma, zonder jullie had ik het nooit zover 
kunnen schoppen. Het feit dat Soe en ik allebei dokter zijn geworden heeft vast en 
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zeker te maken met het merusche nest waarin wij opgroeiden, ook al hebben jullie 
ons altijd vrij gelaten in onze srudiekeuze (alleen geen "niet-westerse sociologie"). 
Bedankt voor jullie onvoorwaardelijke steun en liefde. Lieve Soe, wij zijn zusjes en 
dar zullen ze weten ook! 

Lieve Joost, woorden schieten te korr voor alles war je voor me betekent. 
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ANaVA 
BDP 
BW 
CFC 
CT-scan 
CV 
DC 
non-DC 
DPI 
EFPD 
ESC 

F; 
F", 
FEVl 

FPD 
GSD 
HFA 
HPLC 
MMAD 
MSLI 

P 
P:C ratio 

pMDI 
SAINT-model 
SD 
SEM 
R 
RR 
Vt 

: analysis of variance 

: beclomethasone dipropionate 
: body weight 
: chlorofluorocarbon 
: computer tomography scan 
: coefficient of variation 
: detergent coated 
: non detergent coated 
: dry powder inhaler 
: extra fine panicle dose (panicles < 2.1 f1II1) 
: electrostatic charge 
: balanced inflow 
: flow to Anderson impactor 
: forced expiratory volume in 1 second 
: fine particle dose (particles < 4.7 flm) 
: geometric standard deviation 
: hydrofluoroalkane 
: high performance liquid chromatography 
: median mass aerodynamic diameter 
: multistage liquid impinger 
: level of significance 
: peripheral: central lung deposition ratio 
: pressurized metered dose inhaler 
: Sophia Anatomical Infant Nose-Throat model 
: standard deviation 
: standard error of the mean 
: Spearman's correlation coefficient 
: resplratory rate 
: tidal volume 
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