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Institute for a very pleasant working environment. Thanks go out also to the secretarial
staff from both institutes for all their assistance. It was a pleasure to share offices with
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Chapter 1

Introduction and Summary

1.1 Introduction and motivation

This dissertation consists of a collection of studies on two areas in quantitative finance:

asset return volatility and the term structure of interest rates. Before describing the

contents and contributions of the different chapters in more detail, a brief introduction of

both topics is given.

Volatility is one of the crucial ingredients in many areas of finance. Examples of ar-

eas where volatility plays an important role are portfolio allocation, risk management and

derivatives pricing. Volatility can be somewhat loosely defined as the variability of the

random (or unpredictable) component of a time series variable. In finance these are typi-

cally asset returns, such as individual stocks or a stock index like the S&P 500 Index. The

problem with volatility is that, unlike returns, it cannot be observed directly and therefore

needs to be estimated. Hence, proxies need to be constructed in order to measure and

subsequently model volatility.

A still popular approach is to use daily squared return innovations to approximate

volatility. Although squared innovations are a noisy ex-post measure of the true volatility,

they do illustrate its key property: volatility is not constant but varies over time. A second,

related, property is that volatility is persistent which refers to the conditional variance

displaying momentum meaning that past volatility explains current volatility. The degree

of this persistence is important from an economic perspective as it signals whether shocks to

volatility are permanent or transitory which affects, for example, risk premia. Persistence

also suggests that unlike returns for which it is well established that these are very difficult

to predict, volatility may be predictable to a much larger degree.

A workhorse model for capturing the persistence in conditional variance empirically
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has been the generalized autoregressive conditional heteroscedasticity (GARCH) model of

Engle (1982) and Bollerslev (1986) which imposes a parametric autoregressive moving av-

erage (ARMA) structure on the squared return innovations. One drawback of the GARCH

model is that it implies that shocks to volatility die out over time at an exponential rate.

Research has shown, however, that the persistence of shocks may be better described by a

so-called “long-memory” process under which shocks die out at a slower hyperbolic rate.

It is unclear whether volatility is truly long-memory. Although modelling this feature

is certainly possible, finding a satisfactory explanation for why shocks should have such a

long-lasting effect on volatility has proven to be difficult. A possible alternative explanation

is given in for example Granger and Hyung (1999) and Diebold and Inoue (2001). These

papers show that series that undergo breaks can mimic the properties of a long-memory

series. As a result, breaks in volatility can potentially induce spurious long-memory fea-

tures. It is therefore of importance to test and allow for structural breaks when modelling

volatility.

Despite their popularity, it was long believed that models which are based on squared

returns render poor volatility forecasts. Andersen and Bollerslev (1998a) show this is due

to using an inaccurate ex-post volatility proxy. It was already shown by Merton (1980) that

using intraperiod returns theoretically leads to error-free volatility measures. Andersen and

Bollerslev (1998a) therefore suggest the use of a daily volatility measure that is based on

the sum of squared intraday returns. They showed that judged from this so-called “realized

volatility” measure the GARCH model forecasts well after all.

In addition to using it as an ex-post realization of the true observed volatility over a

certain period, realized volatility can also be used to model volatility directly. Andersen,

Bollerslev, Diebold, and Labys (2003a) show that volatility becomes virtually observable

when realized volatility is based on an ever higher intraday frequency. Consequently,

volatility can now be modelled directly using standard time-series techniques. Although

the focus in the literature has primarily been on modelling the variance of individual

asset returns, covariances between assets can similarly be modelled with high-frequency

return data. Whereas traditional approaches of modelling the covariance matrix, e.g. the

Multivariate GARCH model, have been seriously hampered by identification problems

due to the large number of parameters, by using realized covariances modelling the entire

covariance matrix becomes attainable.

Although the realized volatility literature has rapidly advanced over the last decade, var-

ious issues involving the use of realized measures are currently still under intense scrutiny.
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One of the main questions arises when the theory is brought to the data. Although theory

implies that higher sampling frequencies result in a more accurate measure of volatility,

it is known that at higher sampling frequencies, intraday returns become increasingly

contaminated with market microstructure noise due to for example bid-ask bounce and

non-synchronous trading. A trade-off emerges between accuracy, which implies that the

highest possible frequency should be used, and noise, which suggests that a lower frequency

may be more suitable. An important question is therefore which sampling frequency should

be used to construct realized variances and covariances.

The first part of this dissertation offers contributions to the literature on how to test

for sudden changes in unconditional volatility, on modelling realized volatility and on the

choice of optimal sampling frequencies for intraday returns.

The emphasis in the second part of this dissertation is on the term structure of in-

terest rates. The term structure of interest rates, or yield curve, describes the relationship

between interest rates and time to maturity. It determines the current value of future

nominal payments and therefore guides economic decisions. The importance of studying

the term structure becomes even clearer when realizing that long-term interest rates are

risk-adjusted expectations of average future short rates and therefore contain information

about future interest rates. Furthermore, the yield curve contains information about future

economic activity in general. For example, the slope of the term structure (which is the dif-

ference between long and short yields) has successfully been used to forecast GDP growth

and the occurrence of recessions. Macroeconomists are focusing more and more on trying

to understand the relationship between interest rates, monetary policy and macroeconomic

fundamentals.

The yield curve is therefore crucial for bond pricing, managing and hedging interest

rate risk, public policy and monetary policy in particular as central banks often actively

target the short end of the yield curve. Its importance explains why it is vital to first

of all accurately estimate the current term structure, as the yield curve can often not

be observed directly. Second of all, it is particularly important to be able to forecast

the future yield curve. The focus in this dissertation is primarily on an out-of-sample

forecasting perspective.

Forecasting interest rates based on past yield information only has proven to be difficult

as a simple random walk model often outperforms complex models, see e.g. Duffee (2002).

However, recent studies have shown that interest rates seem to be predictable after all, at
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least to a certain extent, mainly by incorporating macroeconomic information into models

of the term structure. Identifying a single model with a consistently accurate forecasting

performance is nevertheless still a difficult task.

The second part of this dissertation contributes to the literature by examining in greater

detail one particular class of term structure models. Furthermore, the forecasting perfor-

mance of several models of the term structure is examined for its stability and approaches

for combining the informational contents of forecasts from different models are analyzed.

1.2 Summary and conclusions

This dissertation is divided into two parts. Part A consists of Chapters 2, 3 and 4 and

focuses on volatility modelling. The main emphasis in the latter two chapters is on the

use of high-frequency intraday return data for analyzing volatility from a univariate and

multivariate perspective. Chapters 5 and 6 constitute Part B and discuss estimating and,

in particular, forecasting the term structure of interest rates.

Part A: Modeling and forecasting stock return volatility

As stated in the introduction, the volatility of financial time-series has been found to un-

dergo sudden, structural level shifts. Failing to account for these when modelling volatility

can result in biased estimates of the volatility persistence. It is therefore important to

identity the timing and size of these level shifts. Chapter 2, which is based on De Pooter

and van Dijk (2004), considers tests for sudden changes in the unconditional volatility of

conditionally heteroskedastic time series based on cumulative sums of squares (CUSUM).

A prominent conclusion from the analysis in this chapter is that applying these tests to

the raw time-series observations leads to severe size distortions, where the correct null

hypothesis of no volatility change is rejected much too frequently. It is shown that it

appears necessary, unless unrealistically large sample sizes are used, to filter the series

in order to remove the heteroskedasticity prior to applying the CUSUM test. Extensive

Monte Carlo simulations show that applying these tests to standardized residuals from an

estimated GARCH(1,1) model results in good size and reasonable power properties when

testing for a single break in the variance. The tests then also appear to be fairly robust

to different types of misspecification. The chapter develops an iterative algorithm to test

sequentially for the presence of multiple changes in volatility. The CUSUM tests appear

to have difficulty, however, to detect multiple changes.
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The application of the tests in this chapter to emerging markets stock returns confirms

the properties of the different test statistics. Although there are concerns that the tests

may be somewhat conservative, it is shown that the GARCH-filtered tests, compared to

other studies that applied the original CUSUM statistics, lead to a considerably smaller,

and much more realistic number of volatility changes.

Chapter 3 is based on Martens, van Dijk, and de Pooter (2004) and incorporates nonlin-

earities in models for realized volatility. In particular, a nonlinear autoregressive fraction-

ally integrated model (ARFI) is proposed which accommodates level shifts, day-of-the-week

and holiday effects, (pre-)announcement effects and leverage effects. The model incorpo-

rates long-memory as well as structural breaks, thus allowing for a analysis of both effects

volatility persistence separately. The full model, as well as several restricted versions, are

estimated for the S&P 500 stock index. The nonlinear model improves the in-sample de-

scription of the data with all individual nonlinearities being highly significant. The model

also produces volatility forecasts that, for horizons up to 20 days, improve upon those ob-

tained from a linear ARFI model and conventional squared return based time-series models

that treat volatility as a latent variable. Adding the nonlinearities to simpler autoregressive

models for realized volatility leads to similar improvements.

Many financial applications require estimates of not just variances but of the entire

covariance matrix, making covariances or correlations between different assets just as im-

portant. Chapter 4 focuses on the merits of using high-frequency data for measuring and

forecasting the daily covariance matrix. Whereas in Chapter 3 the popular five-minute

frequency for the intraday returns is adopted for constructing realized variance, motivated

as a trade-off between accuracy and potential market microstructure biases, this chap-

ter addresses the issue of choosing an optimal sampling frequency directly. The optimal

frequency is determined by forming and subsequently judging the performance of mean-

variance efficient stock portfolios with daily rebalancing from the individual constituents of

the S&P 100 index. Despite the fact that the S&P 100 stocks are relatively liquid, the op-

timal sampling frequency is shown to range between 30 and 65 minutes, considerably lower

than the five-minute frequency. The results are found to be robust to the use of different

bias-correction procedures, transaction costs and the portfolio rebalancing frequency. This

third and final chapter of Part A is based on De Pooter, Martens, and van Dijk (2008).
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Part B: Modeling and forecasting the term structure of interest rates

The second part of this dissertation is centered around modelling the term structure of

interest rates. Chapter 5 is based on De Pooter (2007) and examines one particular class

of term structure models in detail. The focus is on the class of Nelson-Siegel models

which are gauged on their ability to fit the term structure at specific dates as well as

on their performance in forecasting the future term structure. The chapter addresses

various estimation techniques when using these models. The results demonstrate that

it is worthwhile to extend the original Nelson and Siegel (1987) three-factor model with

additional factors and by freeing up parameters in order to improve the accuracy with which

to fit the term structure. Whereas this result is to be expected, it is further shown that a

more flexible specification, in particular through the use of a four-factor model, produces

also highly accurate forecasts. The four-factor model outperforms benchmark models across

maturities and forecast horizons. Subsample analysis reveals that the outperformance is

consistent over time.

Whereas the focus in Chapter 5 is on trying to identify a single model that forecasts fu-

ture interest rates accurately and does so consistently over time, Chapter 6 takes a different

approach and tries to forecast interest rates using a panel of models instead. This chap-

ter is based on De Pooter, Ravazzolo, and van Dijk (2007) and examines the relevance of

parameter uncertainty, model uncertainty, and macroeconomic information. The chapter

examines the forecast performance of a range of models with varying degrees of complexity.

This performance is assessed over a ten-year out-of-sample period and it is shown through

subsample analysis that the predictive ability of individual models varies considerably over

time. Trying to identify a best single model is therefore complicated which in turn provides

strong support for combining the forecasts from multiple models to mitigate this model

uncertainty. Several forecast combination techniques are therefore examined. It is demon-

strated that combining forecasts leads to substantial gains in predictability, in particular

with the use of a weighting method that is based on relative historical performance and

combining models that include macroeconomic factors. The largest gains in forecasting

performance are obtained for longer maturities in particular and these gains are shown to

be consistent over time.
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Chapter 2

Testing for Changes in Volatility in
Heteroskedastic Time Series
A further examination

2.1 Introduction

Quite soon after the interest in modelling the conditional heteroskedasticity of financial

time series variables developed in the early 1980s, the possibility was raised that these

variables experience occasional large shifts in unconditional volatility, see Diebold (1986)

and Lamoureux and Lastrapes (1990). While the issue of testing for changes in the un-

conditional variance of time series has received considerable attention in the literature,

dating back to at least Wichern et al. (1976), most of the available testing procedures

implicitly or explicitly assume constant conditional volatility, see Hsu (1977), Talwar and

Gentle (1981), Sakata (1988), Inclán and Tiao (1994), and Chen and Gupta (1997), among

others. Recently, however, Kim, Cho, and Lee (2000) and Kokoszka and Leipus (2000)

have developed tests that use cumulative sums of squares (CUSUMs) to test for breaks in

the unconditional variance of possibly heteroskedastic time series. The properties of the

CUSUM statistic of Kokoszka and Leipus (2000) were examined by Andreou and Ghysels

(2002, 2004), finding that the test has good power properties but also noting some prob-

lems, in that the test sometimes suffers from quite large size distortions. The purpose of

this paper is to examine this deficiency of these CUSUM tests in more detail. In particular,

we investigate whether we can fix the size properties by adopting the suggestion of Lee

et al. (2003) to apply the CUSUM statistic to standardized residuals from an estimated

GARCH model. An elaborate simulation analysis confirms that the tests have severe size

distortions when applied to the original series, such that the correct null hypothesis of no

change is rejected much too frequently, rendering the tests highly unreliable. However,
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when applied to standardized GARCH residuals, the tests are found to have only minor

size distortions and reasonably good power in detection volatility changes. Furthermore,

the tests appear to be quite robust to various types of misspecification. We apply the

testing procedures to examine breaks in the unconditional volatility of a set of emerging

stock market returns. Doing so allows to further assess the properties of the CUSUM tests

and to compare the obtained results with earlier studies such as Aggarwal et al. (1999).

The outline of the paper is as follows. In Section 2.2, we discuss the three CUSUM tests

that we consider in this study. In particular we demonstrate that all three tests emanate

from the same basic setup. We also pay considerable attention to testing for multiple

breaks and to the use of finite sample critical values. In Section 2.3, we use extensive

Monte Carlo experiments to assess the size of the tests and their power for detecting both

single as well as multiple breaks. We find that the tests, when applied to standardized

returns, work reasonably well under different data generating processes and have quite

good power properties. In Section 2.4 we apply the tests to daily emerging stock market

returns. We find that the tests are certainly suitable for detecting variance changes in

these series but that the results should be interpreted carefully, as two of the tests seem

to have have a tendency to be conservative and potentially underestimate the number of

actual breaks. Section 2.5 concludes.

2.2 CUSUM tests for changes in volatility

The issue that we want to address in this paper concerns testing for changes in the un-

conditional variance of a time series variable, in particular in the presence of conditional

heteroscedasticity. Let {yt}T
t=1 denote the time series of interest with T being the avail-

able sample size, and assume (for simplicity, but without loss of generality) that yt has a

constant mean equal to 0. We consider the problem of testing the null hypothesis that the

unconditional variance of yt is constant, that is H0 : σ2
t = σ2 for all t = 1, . . . , T , against

the alternative hypothesis of a single structural break, that is

Ha : σ2
t =

{
σ2

0 for t = 1, . . . , κ,

σ2
1 for t = κ+ 1, . . . , T ,

(2.1)

where the change-point κ is assumed unknown. Many different approaches for tackling

this testing problem have been developed, see the references in Section 2.1. Here we

limit ourselves to test statistics based on cumulative sums of squares (CUSUMs), as first
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proposed by Inclán and Tiao (1994) and subsequently further developed by Kim et al.

(2000), Kokoszka and Leipus (2000), and Lee and Park (2001). In this section we first

discuss the design of the CUSUM statistics for the above single break testing problem. In

particular, we demonstrate that all tests, which might appear to be quite different at first

sight, nevertheless fit into a single framework. Next, we address the problem of testing for

multiple breaks in volatility. We conclude this section with a discussion on the use of finite

sample critical values.

2.2.1 Testing for a single structural change

Our starting point is the cumulative sum of squares (CUSUM) process Cy(k) =
∑k

t=1 y
2
t .

The centered and normalized CUSUM process is then defined as

Dy(k) ≡
1√
T

k∑

t=1

y2
t −

k

T
√
T

T∑

t=1

y2
t , (2.2)

such that Dy(0) = Dy(T ) = 0. When yt satisfies the null hypothesis of constant uncon-

ditional variance, a plot of Dy(k) against k will be a horizontal line oscillating around

zero. However, under the alternative of a sudden change in the variance occurring at a

certain point κ during the sample, the value of Dy(k) will move away from zero in either

the positive or negative direction for values of k < κ. Theoretically, the absolute value of

Dy(k) will achieve its maximum at k = κ, after which it will return towards zero. For this

reason |Dy(k)| provides a natural test for a volatility change, as well as an estimate of the

change-point.

Suppose that the maximum of |Dy(k)| is attained at k = k∗, that is

|Dy(k
∗)| = max

1≤k≤T
|Dy(k)|. (2.3)

We then identify a breakpoint at k∗ if |Dy(k
∗)| is larger then some predetermined critical

value, which can be obtained from the asymptotic distribution of Dy(k). It can be shown

that under fairly mild regularity conditions, see Boswijk (2004) among others, that under

the null Dy(k) weakly converges to a (scaled) Brownian bridge, such that

1

γ
|Dy(k

∗)| d→ sup
0≤s≤1

|B(s)|, (2.4)

where γ2 is the long-run variance of the squared series y2
t , that is γ2 =

∑∞
j=−∞ γj with γj

the j-th order autocovariance of y2
t , and where B(s) is a standard Brownian bridge, defined
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as B(s) = W (s) − sW (1) with W (·) a standard Wiener process and 0 ≤ s = k/T ≤ 1. It

follows that an appropriate CUSUM test statistic is given by

Uy(k
∗) =

1

γ̂
max

1≤k≤T
|Dy(k)|, (2.5)

where γ̂2 is a consistent estimator for γ2.

Obviously, the (assumptions concerning the) distributional properties of the time series

yt determine its long-run variance γ2 and, furthermore, imply how it should be estimated.

It is in this respect that the various CUSUM statistics that have been proposed differ.

First, assuming that {yt}T
t=1 is a sequence of independent and identically distributed (iid)

normal random variables, as in Inclán and Tiao (1994), the autocovariances of y2
t are all

equal to zero, that is γj = 0, ∀j 6= 0, such that the long-run variance γ2 = γ0. Due to the

normality assumption γ in fact reduces to σ2
√

2, where σ2 is the variance of yt,
1 which can

be consistently estimated by σ̂2 = 1
T

∑T
t=1 y

2
t = 1

T
Cy(T ). It is then straightforward to show

that the CUSUM statistic Uy(k
∗) as given in (2.5) is equivalent to

√
T

2
max

1≤k≤T

∣∣∣∣
Cy(k)

Cy(T )
− k

T

∣∣∣∣ ,

which is the form used in Inclán and Tiao (1994).

Second, assuming that yt is iid but not necessarily normally distributed, the long-run

variance γ2 is still equal to γ0, but now γ0 should be estimated directly from the time series

yt as γ̂0 = 1
T

∑T
t=1(y

2
t −

∑T
t=1 y

2
t )

2 = 1
T

∑T
t=1 y

4
t − ( 1

T

∑T
t=1 y

2
t )

2.

Third, one may relax the iid assumption and allow for various forms of dependence and

heterogeneity in yt. For example, Lee and Park (2001) allow for temporal dependence by

assuming that yt follows an MA(∞) process, that is yt =
∑∞

j=1 θjεt−j + εt. Here we are

mainly interested in cases where yt displays conditional heteroskedasticity. In that respect,

Kokoszka and Leipus (2000) assume that yt follows an ARCH(∞) process,

yt = zt

√
ht,

ht = ω +
∞∑

j=1

αjy
2
t−j, (2.6)

with αj being non-negative constants and zt ∼ iid N(0, 1). Alternatively, Kim et al. (2000)

1If yt is iid normal and assuming that E[yt] = 0, the kurtosis of yt equals 3 = E[y4
t ]/((E[y2

t ])2). Conse-
quently, 3σ4 = E[y4

t ]. Given that γ0 = E[(y2
t − E[y2

t ])2] = E[y4
t ] − (E[y2

t ])2, it follows that γ0 = 2σ4.
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assume a GARCH(1,1) process for yt,
2

yt = zt

√
ht,

ht = ω + αy2
t−1 + βht−1, (2.7)

with α, β positive constants such that α+ β < 1 and again zt ∼ iid N(0, 1).

In all these cases, the squared series y2
t has non-zero autocorrelations γj, j 6= 0, at all

lags and, consequently, γ̂0 does not provide a consistent estimate of the long run variance γ2.

One possible solution to this problem is to derive an explicit expression for γj, and thereby

for γ2, based on the specific parametric structure of the process that is assumed for yt, as

is done in Kim et al. (2000) for the GARCH(1,1) case. However, one can imagine that this

procedure is rather sensitive to model misspecification.3 An alternative and more robust

approach is to use a nonparametric or data-based estimator of γ2, as advocated in both

Kokoszka and Leipus (2000) and Lee and Park (2001). There are several possibilities in this

case. Andreou and Ghysels (2002a), for example, use the autoregression heteroscedasticity

and autocorrelation consistent (ARHAC) estimator of den Haan and Levin (1997). In

our study, we use the popular Bartlett kernel estimator γ̂2 = γ̂0 + 2
∑l

j=1wj,lγ̂j where

wj,l = j/(l + 1), with automatic selection of the truncation lag or bandwidth l > 0 using

an AR(1) model, as suggested in Andrews (1991).

In sum, each of the three types of assumptions discussed above lead to test statistics

based on the same CUSUM processDy(k). Hence, they share the same limiting distribution

under the null hypothesis and under correctness of the underlying assumptions, namely

that of a (scaled) Brownian bridge. The only difference between the tests is the use of a

different scaling factor or estimate of γ. Specifically, (i) under iid normality: γ̂2 = 2σ̂4, (ii)

under iid, but not necessarily normality: γ̂2 = γ̂0, and (iii) under general dependence and

heterogeneity: γ̂2 = γ̂0 + 2
∑l

j=1wj,lγ̂j. In the Monte Carlo simulations reported below

we consider all three statistics, which are denoted as Uy,σ(k∗), Uy,γ0(k
∗), and Uy,γ(k

∗),

respectively.

It is shown in Section 2.3.1 that all tests, including Uy,γ(k
∗), suffer from severe size

distortions in finite samples when yt exhibits conditional heteroscedasticity, in particu-

2Alternative approaches to testing for parameter change in GARCH models have recently been devel-
oped by Chu (1995), Kokoszka and Teyssière (2002), and Lundbergh and Teräsvirta (2002), among others.
A comparison of these tests with the CUSUM statistics considered here is of interest, but is left for future
research.

3Lee et al. (2003) in fact observe that the parametric approach of Kim et al. (2000) does not work
satisfactorily under all circumstances even when the DGP is a GARCH(1,1) process. In particular, the
test suffers from size distortions and low power for certain parameterizations.
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lar when yt follows a GARCH(1,1) process as given in (2.7). Hence, it seems advisable

to filter the series first, in order to remove the conditional heteroskedasticity. Interest-

ingly, nonparametric or “model-free” approaches of standardizing the series yt either with

volatility estimates based on high-frequency data (such as quadratic variation) or with

Riskmetrics’ volatility estimates (obtained as ĥt = (1 − λ)y2
t−1 + λĥt−1 with λ = 0.94) do

not work well. In particular, this renders severely undersized test statistics; this corre-

sponds with the findings of Andreou and Ghysels (2003) for CUSUM-type tests in changes

in co-movement of conditionally heteroskedastic time series.4 Here we explore the sug-

gestion of Lee et al. (2003) to apply the statistic in (2.5) based on the CUSUM process

Dẑ(k) = 1√
T

∑k
t=1 ẑ

2
t − k

T
√

T

∑T
t=1 ẑ

2
t of standardized residuals ẑt ≡ yt/

√
ĥt, where ĥt is the

estimated conditional volatility of yt obtained from a GARCH(1,1) model estimated with

(quasi-)maximum likelihood ((Q)ML) assuming a normal distribution for zt. The prop-

erties of (squared) standardized (G)ARCH residuals have been studied quite intensively

in recent years, see Horváth et al. (2001), Berkes and Horváth (2003), and Berkes et al.

(2003), among others. Lee et al. (2003) prove that, given the correct conditional volatility

specification, the (scaled) CUSUM process Dẑ(k) converges to a Brownian bridge, such

that the limiting distribution result as given in (2.4) continues to hold. Indeed, in the sim-

ulations reported below we find that the associated Uẑ,·(k
∗) statistics have satisfactory size

and power properties. One may doubt the practical usefulness of this parametric approach,

as the properties of Uẑ,·(k
∗) might be very sensitive to misspecification of the conditional

volatility process. We explore this issue in depth in Section 2.3, and find that the CUSUM

statistics based on standardized GARCH(1,1)-residuals are in fact remarkably robust to

various forms of misspecification.

2.2.2 Testing for multiple structural changes

In the above we focused on testing for a single change in the unconditional variance of yt.

However, there is no reason why the volatility of a time series might not experience multiple

changes. Testing for multiple changes in volatility has been addressed in a number of recent

articles, including Chen and Gupta (1997) and Lavielle and Moulines (2000). Both studies

develop an information criterion based penalized least-squares estimation approach to test

for (and date) multiple breaks simultaneously. Similar to the testing framework developed

by Bai (1997, 1999) and Bai and Perron (1998, 2003), CUSUM statistics can be applied in

4Detailed simulation results demonstrating this result are available upon request.
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a sequential manner to test for and identify multiple volatility changes. The basic idea is

that first the entire sample is tested for the presence of a single break in volatility using the

CUSUM statistics discussed in Section 2.2.1. If a significant change is detected, the sample

is split into two segments with the split point being equal to the identified change-point.

Next, each subsample is examined separately for a volatility break, again using a CUSUM

test. This procedure continues until no more changes are detected in any of the subsamples

or until the number of identified changes reaches a pre-specified maximum. Sometimes a

final step is added in which all identified breaks are re-evaluated and/or breakpoints re-

estimated. In this context, Inclán and Tiao (1994) develop the Iterated Cumulative Sums

of Squares (ICSS) algorithm which repeatedly applies their Uy,σ(k∗) statistic.

We adopt a sequential approach here as well, based on the basic set-up discussed above.

Our procedure works as follows. Suppose that at some point in the algorithm N volatility

changes have been detected, for N < M with M being the maximum allowed number of

breaks. Consequently, the sample for yt can be split into N + 1 segments, according to

the associated change-point estimates 1 = k∗0 < k∗1 < . . . < k∗N < k∗N+1 = T . To test

whether any of the segments contains an additional volatility change, we compute one of

the CUSUM statistics Uẑ,σ(k∗), Uẑ,γ0(k
∗) or Uẑ,γ(k

∗) for each subsample separately,5 and

select the segment for which the test statistic is largest. Suppose this occurs in the i-th

segment for 1 ≤ i ≤ N + 1. If the value of the corresponding CUSUM statistic exceeds an

appropriate critical value (see Section 2.2.3), we identify the (N + 1)-th break in segment

i. We repeat this procedure until either N equals M or the maximum of the test statistics

across all segments is no longer significant. We control the overall significance level of the

sequential procedure by using a significance level of a/(N+1) when testing for the (N+1)-

th change in volatility. Finally, we re-estimate all change-points, where the location of the

i-th volatility change is re-estimated based on the segment determined by the adjacent

breakpoints k∗i−1 and k∗i+1.
6 This corresponds with the “repartitioning” step in the Bai and

Perron (1998) procedure.

Apart from a maximum allowed number of breaks, a second restriction that we impose

in the algorithm is that adjacent change-points have to be at least δ observations apart. The

latter restriction is to prevent breaks from being identified unrealistically close together.

Although the precise value of δ clearly is a subjective decision, we feel that for daily data

5Note that this includes estimating separate GARCH(1,1) models for all segments.
6For the first volatility change we use the sample from the first observation k∗0 up to and including the

second change-point k∗2 . For the last volatility change we use the sample from observation k∗N−1 until the
last observation k∗N+1.



18 Chapter 2

δ = 63 or 126 business days (three and six months, respectively) seems appropriate. We

impose the minimum distance restriction by calculating the maximum absolute value of

the CUSUM test statistic in the i-th segment only using the permitted values of k, i.e.

k∗i−1 + δ ≤ k ≤ k∗i − δ, determined so far in the algorithm. Note that in the final step of

the algorithm in which we re-estimate each change-point, we can actually not control the

minimum distance between adjacent volatility changes. This would require treating the

two adjacent change-points as fixed, whereas these can still be re-estimated at a different

location. Hence, it may occur in practice that final breakpoint estimates are less than δ

observations apart.

Our procedure as outlined above differs in a number of respects from the ICSS algorithm

of Inclán and Tiao (1994). First, after detecting a first volatility change at k = k∗1, the

ICSS algorithm examines the first subsample yt, t = 1, . . . , k∗1 exhaustively to identify the

leftmost significant breakpoint, k∗l , after which the same is done for the second subsample

yt, t = k∗1 + 1, . . . , T to identify the rightmost significant break point k∗r . If the leftmost

break point differs from the rightmost breakpoint, that is k∗l < k∗r , then the procedure is

repeated for the subsamples t = k∗l +1, . . . , k∗r until k∗l = k∗r . In our procedure, we consider

all N segments when testing for a (N + 1)-th break. Second, in the ICSS algorithm the

same significance level is applied to each subsample, irrespective of how many breaks have

already been found. Third, in the ICSS algorithm breaks can be arbitrarily close to each

other, as no minimum distance restriction is imposed. Fourth, in the final step of the ICSS

algorithm change-points are not only re-estimated, but the significance of all volatility

breaks is determined again, using only the observations from the relevant segment. Earlier

detected breaks are removed if they are no longer significant. Finally, and perhaps most

important, the ICSS algorithm is based on the Uy,σ(k∗) statistics, which does not account

for possible non-normality and conditional heteroskedasticity.

2.2.3 Finite sample critical values

One issue we have not touched upon so far is the use of critical values. Especially when

testing for multiple breaks, the length of the subsamples can quickly become quite small,

which renders the use of asymptotic critical values questionable at the least. Therefore, we

choose to use finite sample critical values. These are estimated through simulation using

the response surface approach described in MacKinnon (2000).7

7An alternative would be to consider bootstrap procedures for computing critical values or p-values, as
in Kokoszka and Teyssière (2002). Given the extent of the Monte Carlo simulations conducted in the next
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Suppose that we need the quantile of the distribution of the CUSUM test under the null

hypothesis corresponding to a certain significance level a and for a specific finite sample

length T , and denote this quantile by qa(T ). This can be obtained by simulating a large

number, R, of series of length T from the data-generating process under the null hypothesis

and calculating the test statistic for each series. The simulated test statistics can be used to

construct the appropriate finite sample distribution and the relevant quantile. Repeating

this experiment a total of E times for this specific sample length results in E observations

for qa(T ). By repeating this process for different values of T we can then estimate the

following type of response surface regressions

qa
e (T ) = θa

∞ + θa
1T

−0.5 + θa
2T

−1 + εe, (2.8)

where qa
e (T ) denotes the quantile estimate obtained in the e-th experiment for sample size

T . Subsequently, the estimated response surface regression can be used to determine the

appropriate finite sample critical value (quantile) for any sample size T . Also note that θ̂a
∞

is an estimate of the asymptotic critical value qa(∞). The parameter estimates θa
1 and θa

2

in our case typically are negative, such that finite sample quantiles are smaller than their

asymptotic counterparts. Hence, if asymptotic critical values were used, the tests would

appear to be undersized.

As discussed in the previous section we impose the restriction that two adjacent change-

points should be at least δ observations apart, reducing the effective sample size. To account

for this we modify the response surface specification by including powers of r, with r being

the fraction of observations not considered at either side of the sample when calculating

the test statistic, that is r = δ/T . Specifically, we estimate response surface regressions of

the form

qa
e (T, r) = θa

∞ + θa
1T

−0.5 + θa
2T

−1 + φa
1r + φa

2r
2 + φa

3r
3 + φa

4r
4 + φa

5r
5 + εe. (2.9)

To implement the response surface regression, we perform E = 40 experiments with

R = 50000 iidN(0, 1) replications each for sample sizes Ti ∈ {50, 60, . . . , 100, 125, . . . ,

250, 300, 350, . . . , 500, 600, . . . , 1000, 1500, . . . , 3000, 4000, 5000}, trimming percentages r ∈
{0.025, 0.05, . . . , 0.425, 0.45}, and for quantiles corresponding to significance levels a =

10%, 5% and 1%. The fit of the response surface (2.9) generally is very good, with R2

values never being below 97%. To illustrate Figure 2.1 shows the finite sample response

surface for the Uẑ,σ(k∗) test for a significance level of 5%. It is seen from the graph that

section, however, the response surface technique is more convenient.
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Figure 2.1: Response surface
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Note: Response surface for the 95% quantile qa
e (T, r) of the distribution of Uy,γ(k∗) test when applied to

a sample of length T , discarding a fraction of r observations at both ends of the sample when computing
the test statistic.

finite sample critical values differ substantially from their asymptotic counterparts when

either T is small or when r becomes close to 0.5.

2.3 Simulation design and results

In this section we report and discuss results from an extensive set of Monte Carlo simula-

tions experiments, designed to examine the small-sample properties of the CUSUM tests

and to assess their robustness to various types of misspecification. The (limited amount

of) simulation results available in the literature typically only consider the properties of

CUSUM tests for data-generating processes (DGPs) that match the assumptions under

which a particular test was developed. For example, Inclán and Tiao (1994) evaluate the

size and power properties of their test for iid normal series, while Kim et al. (2000) and Lee

et al. (2003) perform simulations using a GARCH(1,1) process with normal shocks zt as

DGP. To some extent, Andreou and Ghysels (2002, 2004) constitute an exception, as they

do consider alternative DGPs, namely GARCH(1,1) processes with possibly non-normal
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errors and with different degrees of volatility persistence, for the Uy,σ(k∗) and Uy,γ(k
∗)

tests. They find that both tests suffer from positive size distortions and their ability to

correctly identify breaks varies. Although this provides a reasonable indication of the small

sample properties of these tests, we feel that there is scope for broadening these results.

In particular, our simulation study has two purposes. First, we assess the small sample

properties of the CUSUM tests when applied to standardized GARCH(1,1) residuals ẑt.
8

Second, we examine the robustness of the CUSUM tests to various forms of misspecifica-

tion, including alternative error distributions as well as misspecification in the conditional

variance dynamics.

2.3.1 Size properties

We start our analysis by gauging possible size distortions for the three CUSUM tests. For

each DGP discussed below, we generate 10000 replications of length T = 500, 1000, 2000

and 4000. We examine rejection frequencies at nominal significance levels a = 10%, 5%

and 1%, using finite sample critical values obtained from the response surface regression

in (2.9), where we set r = 0 throughout. We consider a number of different DGPs where

we focus mainly on those that relate to different types of potential misspecification.

First, we consider four DGPs under which the variance of yt does not have conditional

dependence. To be precise, we generated iid series from (i) a standard normal distribution,

(ii) a Student-t(ν) distribution with the degrees of freedom parameter ν ranging from 4 to

8, (iii) a skewed-normal(λ) distribution, see Azzalini (1985), with the skewness parameter

λ ranging from −5 (severe negative skewness) to −1 (moderate negative skewness) and

finally (iv) normal-with-jumps. Under the latter DGP we add a jump component to the

series in such a way that yt jumps at random points in the sample, but with a fixed and

predetermined jump size and jump intensity. Detailed results of these experiments are not

shown here to save space but are available upon request. The results can be summarized

as follows. When applied to the raw series as well as the standardized residuals from

a GARCH(1,1) model, the U·,σ(k∗) test is severely oversized for all distributions except

the standard normal. This is not surprising given that this test critically depends on the

normality assumption for yt. The U·,γ0(k
∗) and U·,γ(k

∗) tests are almost always correctly

8Andreou and Ghysels (2002a) do show results for the Uz,γ(k∗) test applied to the standardized series
zt = yt/

√
ht. However, when constructing the standardized series, the true simulated conditional variance

series ht is used. As a result, they do not take into account the effects of parameter estimation uncertainty
and misspecification of the conditional volatility process.
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sized, albeit rejection frequencies tend to be somewhat below the nominal significance levels

for the Student-t distribution when the number of degrees of freedom is small (ν = 4, 5)

and the normal-with-jumps DGP when the jump size is substantial (jumps of 5 or 10 times

the standard deviation of the regular component of yt).

Second, we consider GARCH-type DGPs, such that the variance of yt exhibits condi-

tional dependence. We first employ a standard GARCH(1,1) model using various combi-

nations of α and β and with different distributions for the errors zt. We consider the same

four distributions as above, albeit for the Student-t distribution we only use ν = 5 and

for the skewed normal only λ = −5. Table 2.1 shows the results of applying the tests to

the raw series yt and to standardized GARCH(1,1) residuals ẑt for a GARCH(1,1) DGP

with normal shocks zt. The left panel shows that the Uy,σ(k∗) test is severely oversized.9

Again, this occurs because the iid normality assumption underlying the test is violated.

The Uy,γ0(k
∗) test is oversized as well, due to the fact that the nonzero (positive) autocor-

relations of y2
t are not accounted for. What is surprising though is that the Uy,γ(k

∗) test

also suffers from substantial positive size distortions, which become larger when conditional

volatility is more persistent (see also Table 1 of Andreou and Ghysels (2002a)). Hence,

although this CUSUM test theoretically is valid in the presence of heteroscedasticity, as

shown in Kokoszka and Leipus (2000), it may require unrealistically large sample sizes for

this asymptotic result to apply.10

Turning to the right panel, we observe that, when applied to GARCH(1,1) residuals,

no substantial size distortions occur for all tests across all parameterizations. Given these

results and to facilitate comparison with Andreou and Ghysels (2002a), we only report

results for the Uẑ,γ(k
∗) test in the remainder of this section. Detailed results for other

statistics are available upon request. Table 2.2 reports results for the other three distribu-

tions for zt, showing that the Uẑ,γ(k
∗) test statistic is properly sized for each of these. This

might be expected of course, given that the normal QML estimator of the parameters in

the GARCH(1,1) model is consistent. The unreported results for the other statistics show

9At first sight, it may seem odd that size distortions occur despite the use of finite sample critical values
from the response surface (2.9). However, the response surface was created assuming a homoskedastic
DGP, such that empirical rejection frequencies for heteroskedastic series can still differ from the nominal
significance levels. Using asymptotic critical values renders even worse size distortions, given that finite
sample critical values are smaller than asymptotic ones.

10The size distortion of the Uy,γ(k∗) does diminish as the sample size increases, such that the empirical
rejection frequencies converge to the nominal significance levels, albeit very slowly. Note that for the
Uy,σ(k∗) and Uy,γ0

(k∗), the empirical size actually becomes worse as T becomes larger.
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Table 2.2: Empirical rejection frequencies of the Uẑ,γ(k
∗) test for a single change in volatil-

ity when DGP is GARCH(1,1) with alternative error distributions

T=500 T=1000 T=2000 T=4000
α β a 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

GARCH(1,1)-t(5)

0.10 0.50 0.064 0.027 0.003 0.071 0.028 0.005 0.079 0.035 0.006 0.082 0.042 0.006
0.10 0.60 0.066 0.026 0.003 0.071 0.028 0.005 0.080 0.036 0.005 0.081 0.041 0.006
0.10 0.70 0.066 0.028 0.003 0.074 0.028 0.004 0.079 0.036 0.006 0.080 0.041 0.006
0.10 0.80 0.070 0.028 0.003 0.075 0.030 0.003 0.077 0.035 0.004 0.081 0.040 0.006
0.20 0.50 0.074 0.032 0.004 0.076 0.033 0.005 0.083 0.038 0.007 0.083 0.042 0.006
0.20 0.60 0.075 0.032 0.003 0.078 0.033 0.005 0.083 0.038 0.006 0.083 0.042 0.007
0.20 0.70 0.073 0.030 0.004 0.079 0.032 0.004 0.082 0.038 0.006 0.083 0.042 0.007

GARCH(1,1)-SN(-5)

0.10 0.50 0.069 0.027 0.004 0.082 0.038 0.005 0.089 0.043 0.006 0.096 0.046 0.010
0.10 0.60 0.073 0.027 0.004 0.080 0.037 0.005 0.089 0.042 0.006 0.095 0.045 0.010
0.10 0.70 0.075 0.026 0.003 0.083 0.037 0.005 0.090 0.042 0.005 0.093 0.047 0.009
0.10 0.80 0.080 0.029 0.002 0.085 0.034 0.004 0.092 0.040 0.004 0.094 0.046 0.009
0.20 0.50 0.082 0.034 0.005 0.088 0.042 0.006 0.093 0.044 0.006 0.097 0.046 0.010
0.20 0.60 0.082 0.033 0.004 0.088 0.041 0.005 0.093 0.044 0.006 0.095 0.047 0.010
0.20 0.70 0.083 0.030 0.002 0.088 0.038 0.005 0.093 0.043 0.004 0.095 0.046 0.009

GARCH(1,1)-N with jumps

0.10 0.50 0.077 0.034 0.005 0.085 0.040 0.007 0.093 0.044 0.007 0.100 0.047 0.008
0.10 0.60 0.080 0.032 0.005 0.088 0.041 0.007 0.093 0.043 0.007 0.100 0.047 0.008
0.10 0.70 0.083 0.034 0.004 0.091 0.043 0.006 0.095 0.044 0.006 0.099 0.048 0.008
0.10 0.80 0.087 0.033 0.004 0.092 0.042 0.005 0.094 0.043 0.005 0.097 0.047 0.007
0.20 0.50 0.090 0.041 0.006 0.094 0.045 0.009 0.096 0.045 0.008 0.101 0.049 0.009
0.20 0.60 0.089 0.041 0.005 0.095 0.045 0.008 0.096 0.046 0.007 0.100 0.049 0.009
0.20 0.70 0.090 0.038 0.003 0.093 0.044 0.006 0.096 0.044 0.006 0.098 0.048 0.008

Note: Table entries indicate fractions of rejection of the null hypothesis of constant volatility against
a single structural change across 10000 replications at nominal significance level a, using finite sample
critical values obtained from the response surface (2.9) with r = 0. Series of length T are generated
from (i) a GARCH(1,1)-t(5) process, yt = zt

√
ht, where

ht = ω + αy2
t−1 + βht−1,

zt ∼ iid t(5) (top panel), (ii) a GARCH(1,1)-SN(−5) process where zt ∼ iidSN(−5) (middle panel)
and (iii) a GARCH(1,1)-N -with-jumps process where yt = zt

√
ht + δDt with zt ∼ iidN(0, 1) and

Dt is a dummy variable taking the values 1 or −1 (with equal probability) at random time points
t1, t2, . . . , tτT , and 0 otherwise, where τ = 0.005 and δ = 5 (top panel). For all models ω = 1− α− β.
The Uẑ,γ(k∗) statistic is applied to standardized QML residuals ẑ from a GARCH(1,1)-N model.

that the same holds for the Uẑ,γ0(k
∗), while the Uẑ,σ(k∗) is again oversized due to the

non-normality of the shocks zt (and hence also the standardized residuals ẑt).

We now turn to different types of misspecification of the conditional variance process.

We consider first of all the asymmetric GARCH(1,1) process put forward by Glosten et al.
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(1993), where negative shocks have a different impact on conditional volatility than positive

shocks of the same magnitude. The GJR-GARCH(1,1) model is specified as

yt = zt

√
ht, (2.10)

ht = ω + αy2
t−1 + φy2

t−1I[yt−1 < 0] + βht−1, (2.11)

where we set α = 0 and ω = 1− γ/2− β, such that the unconditional variance of yt equals

1.

Second, we examine a long-memory fractionally integrated GARCH process

(FI-GARCH(1,1)), see Baillie et al. (1996),

yt = zt

√
ht, (2.12)

ht = ω + (1 − β − (1 − L)d)y2
t−1 + βht−1, (2.13)

where d is the long memory parameter.

Finally, we consider a stochastic volatility (SV-AR(1)) DGP, see Taylor (1986),

yt = zt exp(ht/2) (2.14)

ht = φ0 + φ1ht−1 + ηt (2.15)

where φ0 = −(1−φ1)/2, ηt ∼ iidN(0, σ2
η) with σ2

η = 1−φ2
1, and zt and ηt are independent.

In all three models above, zt ∼ iidN(0, 1).

Rejection frequencies of the Uẑ,γ(k
∗) statistic for the GJR-GARCH(1,1) DGP are quite

close to the nominal significance levels used, especially for larger sample sizes T ≥ 2000;

see the upper panel of Table 2.3. By contrast, for the FI-GARCH(1,1) process the test

suffers from, sometimes quite severe, positive size distortions, which worsen as the sample

size T increases. Apparently the test gets confused when volatility undergoes longer lasting

upswings and downswings which are mistakenly considered as structural breaks. Note that

this is the reverse phenomenon of mistaking structural changes for long-memory, which

has been discussed at considerably length in the literature, see Lamoureux and Lastrapes

(1990), Liu (2000), Diebold and Inoue (2001), Franses et al. (2002) and Mikosch and Starica

(2004), among others. Finally, the test is somewhat conservative for the SV-AR(1,1) DGP,

in the sense that empirical rejection frequencies are a bit below the nominal significance

levels. Nevertheless, overall the Uẑ,γ(k
∗) test appears to be quite robust to various forms

of misspecification.
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Table 2.3: Empirical rejection frequencies of the Uẑ,γ(k
∗) test for a single change in volatility

when conditional volatility model is misspecified

T=500 T=1000 T=2000 T=4000
γ / d β a 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

GJR-GARCH(1,1)-N

0.10 0.50 0.066 0.024 0.005 0.072 0.032 0.006 0.089 0.040 0.008 0.091 0.045 0.008
0.10 0.60 0.066 0.025 0.005 0.072 0.032 0.005 0.089 0.041 0.007 0.092 0.043 0.008
0.10 0.70 0.070 0.026 0.004 0.075 0.035 0.006 0.089 0.042 0.008 0.092 0.044 0.007
0.10 0.80 0.078 0.031 0.005 0.083 0.036 0.006 0.092 0.041 0.007 0.089 0.043 0.007
0.20 0.50 0.073 0.029 0.004 0.082 0.039 0.006 0.097 0.045 0.010 0.094 0.048 0.009
0.20 0.60 0.076 0.029 0.004 0.086 0.039 0.007 0.098 0.046 0.010 0.094 0.045 0.008
0.20 0.70 0.082 0.031 0.004 0.089 0.042 0.007 0.099 0.046 0.010 0.094 0.044 0.008

FI-GARCH(1,1)-N

0.40 0.10 0.320 0.186 0.040 0.480 0.351 0.136 0.583 0.461 0.243 0.682 0.560 0.342
0.40 0.30 0.203 0.079 0.009 0.328 0.184 0.029 0.417 0.281 0.095 0.493 0.359 0.160
0.60 0.30 0.251 0.123 0.016 0.393 0.256 0.066 0.484 0.355 0.154 0.574 0.446 0.235
0.60 0.50 0.176 0.057 0.002 0.266 0.128 0.014 0.352 0.220 0.057 0.428 0.303 0.128
0.80 0.50 0.169 0.074 0.009 0.258 0.146 0.032 0.314 0.209 0.075 0.377 0.264 0.122
0.80 0.70 0.138 0.043 0.005 0.181 0.077 0.016 0.259 0.157 0.069 0.381 0.292 0.190

SV-AR(1)

0.75 0.064 0.027 0.003 0.070 0.030 0.004 0.073 0.030 0.004 0.072 0.033 0.006
0.80 0.062 0.025 0.003 0.068 0.029 0.004 0.067 0.028 0.003 0.070 0.032 0.005
0.85 0.059 0.022 0.002 0.066 0.026 0.003 0.064 0.026 0.004 0.067 0.029 0.005
0.90 0.055 0.020 0.002 0.058 0.023 0.003 0.057 0.023 0.003 0.060 0.025 0.005
0.95 0.047 0.015 0.001 0.048 0.017 0.001 0.046 0.017 0.001 0.048 0.019 0.002
0.975 0.056 0.015 0.002 0.051 0.019 0.004 0.056 0.026 0.009 0.061 0.034 0.010

Note: Table entries indicate fractions of rejection of the null hypothesis of constant volatility against
a single structural change across 10000 replications at nominal significance level a, using finite sample
critical values obtained from the response surface (2.9) with r = 0. Series of length T are generated
from
(i) a GJR-GARCH(1,1)-N process, yt = zt

√
ht, where

ht = ω + αy2
t−1 + φy2

t−1I[yt−1 < 0] + βht−1,

α = 0, and ω = 1 − φ/2 − β (top panel),
(ii) a FI-GARCH(1,1)-N process, yt = zt

√
ht, where

ht = ω + (1 − β − (1 − L)d)y2
t−1 + βht−1,

ω = 0.10 (middle panel) and
(iii) a SV-AR(1) process, yt = zt exp(ht/2), where

ht = φ0 + φ1ht−1 + ηt,

φ0 = −(1 − φ1)/2, ηt ∼ iidN(0, σ2
η) with σ2

η = 1 − φ2
1, and zt and ηt are independent (bottom panel).

For all models zt ∼ iidN(0, 1). The Uẑ,γ(k∗) statistic is applied to standardized residuals ẑ from a
GARCH(1,1)-N model.
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2.3.2 Power properties

We now turn to the power properties of the Uẑ,γ(k
∗) CUSUM test.11 We first consider

the case of a single break in volatility when the DGP is a GARCH(1,1) process with

zt ∼ N(0, σ2
z). As the unconditional variance is given by σ2

y = ωσ2
z

(1−α−β)
four potential causes

for a variance change can be identified: a break in either ω, σ2
z , α or β.12 As the second

cause is observationally equivalent to the first, we only consider breaks in the parameters ω,

α and β. We allow for three different timings of the parameter change at τT for τ = 0.25,

0.50 and 0.75, again using sample sizes T = 500, 1000, 2000 and 4000.

Table 2.4 shows rejection frequencies across 1000 replications from the GARCH(1,1)

DGP with a break occurring in ω, where we only consider breaks that occur in the middle

of the sample. A number of conclusions can be drawn from this table. These generally also

hold true for subsequent tables so we discuss them in somewhat more detail here. First,

power increases both with the magnitude of the change in ω (and thus in unconditional

volatility) and with the sample size T , except when β = 0.50 and volatility after the

change in ω is very small (σ2
a = 0.50). Second, there appears to exist asymmetry in

the test’s capability of detecting volatility changes, with volatility increases being picked

up better than decreases or vice versa. The direction of the asymmetry depends on the

volatility persistence as measured by β. Power is generally higher for volatility decreases

for β = 0.80, whereas for β = 0.50 it is easier to detect volatility increases. Third, for

the smaller sample sizes T = 500 and 1000 power is higher for low volatility persistence

(β = 0.50). For the larger sample sizes T = 2000 and 4000 this continues to hold for small

volatility changes, while large breaks in volatility are easier to detect under high volatility

persistence.

Results for a single break in β are shown in Table 2.5. In addition to the increase in

power with the magnitude of the change in unconditional volatility and with the sample

size T , we observe that decreases in volatility now are easier detected under low volatility

persistence (βb = 0.50) as well. Furthermore, power is largest for breaks that occur in

the middle of the series. For decreases in volatility, early changes (τ = 0.25) are easier to

detect than late ones (τ = 0.75) while the reverse holds for volatility increases.13

Table 2.6 shows rejection frequencies when a break occurs in α. It is seen that a

11Again, detailed results for the other test statistics are available upon request.
12It can of course also happen that several parameters change at the same time. We do not consider

that possibility here.
13The latter is noted and discussed in Inclán and Tiao (1994) by considering the expected value of

DT (k).
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Table 2.4: Empirical rejection frequencies of the Uẑ,γ(k
∗) test for a single change in volatil-

ity when DGP is GARCH(1,1)-N with break in ω

T=500 T=1000 T=2000 T=4000
σ2

a β a 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
0.50 0.50 0.659 0.473 0.272 0.654 0.514 0.397 0.630 0.481 0.380 0.542 0.417 0.333
0.60 0.50 0.683 0.497 0.225 0.837 0.741 0.595 0.852 0.793 0.729 0.836 0.793 0.747
0.70 0.50 0.521 0.345 0.118 0.840 0.725 0.450 0.962 0.940 0.883 0.988 0.985 0.980
0.80 0.50 0.265 0.158 0.038 0.519 0.389 0.161 0.813 0.722 0.458 0.976 0.968 0.874
0.90 0.50 0.125 0.050 0.011 0.191 0.109 0.019 0.318 0.231 0.079 0.525 0.392 0.201
1.10 0.50 0.110 0.064 0.007 0.143 0.077 0.021 0.284 0.190 0.070 0.471 0.334 0.156
1.20 0.50 0.219 0.117 0.028 0.390 0.246 0.071 0.651 0.528 0.296 0.921 0.868 0.680
1.30 0.50 0.351 0.224 0.055 0.622 0.471 0.226 0.897 0.832 0.616 0.999 0.995 0.964
1.40 0.50 0.504 0.320 0.107 0.783 0.667 0.398 0.950 0.921 0.849 0.993 0.991 0.984
1.50 0.50 0.598 0.425 0.169 0.861 0.778 0.528 0.931 0.897 0.853 0.966 0.949 0.935
0.50 0.80 0.505 0.252 0.053 0.874 0.716 0.293 0.996 0.987 0.916 1.000 1.000 1.000
0.60 0.80 0.426 0.212 0.041 0.776 0.608 0.196 0.981 0.956 0.794 1.000 1.000 0.998
0.70 0.80 0.271 0.117 0.013 0.540 0.351 0.086 0.835 0.724 0.443 0.988 0.977 0.891
0.80 0.80 0.166 0.064 0.010 0.283 0.164 0.022 0.495 0.352 0.150 0.779 0.673 0.407
0.90 0.80 0.098 0.034 0.003 0.129 0.053 0.004 0.207 0.122 0.033 0.296 0.202 0.061
1.10 0.80 0.095 0.044 0.007 0.094 0.049 0.006 0.187 0.111 0.024 0.258 0.168 0.052
1.20 0.80 0.140 0.055 0.010 0.206 0.090 0.015 0.382 0.248 0.085 0.627 0.511 0.249
1.30 0.80 0.208 0.099 0.016 0.345 0.202 0.031 0.601 0.467 0.213 0.891 0.810 0.594
1.40 0.80 0.263 0.129 0.017 0.484 0.314 0.063 0.796 0.680 0.380 0.976 0.960 0.859
1.50 0.80 0.342 0.161 0.026 0.617 0.432 0.114 0.908 0.844 0.550 0.999 0.996 0.970

Note: Table entries indicate fractions of rejection of the null hypothesis of constant volatility against
a single structural change across 1000 replications at nominal significance level a, using finite sample
critical values obtained from the response surface (2.9) with r = 0. Series of length T are generated
from a GARCH(1,1)-N process, yt = zt

√
ht, where

ht = ωt + αy2
t−1 + βht−1,

zt ∼ iidN(0, 1), α = 0.10, ωt = ωb = 1 − α− β if t ≤ τT and ωt = σ2
aωb if t > τT , with τ = 0.50. The

Uẑ,γ(k∗) statistic is applied to standardized residuals ẑ from a GARCH(1,1)-N model.

break in α is generally more difficult to detect than a break in either ω or β leading to

the same change in unconditional volatility. Only for substantial changes and only when

volatility is lower after the change does the power of the test seem reasonable. Again,

when volatility increases, power is slightly better for breaks occurring late in the sample

compared to early breaks while the reverse holds for decreases in volatility. Finally, the

level of volatility persistence, reflected by β, is of influence with the rejection frequencies

being higher for low persistence as compared to high persistence.

We also considered breaks in ω, α and β with different distributions for the shocks

zt, including Student-t(ν) and skewed-normal(λ). Typically, power goes down somewhat



2.3 Simulation design and results 29

Table 2.5: Empirical rejection frequencies of the Uẑ,γ(k
∗) test for a single change in volatility

when DGP is GARCH(1,1)-N with break in β

T=500 T=1000 T=2000 T=4000
σ2

a βb τ a 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
0.60 0.50 0.25 0.535 0.358 0.135 0.799 0.713 0.498 0.876 0.814 0.746 0.897 0.827 0.784
0.60 0.50 0.50 0.698 0.528 0.262 0.833 0.738 0.620 0.832 0.764 0.698 0.800 0.733 0.693
0.60 0.50 0.75 0.487 0.298 0.064 0.826 0.697 0.389 0.912 0.881 0.822 0.935 0.922 0.915
0.80 0.50 0.25 0.185 0.077 0.014 0.351 0.248 0.065 0.637 0.513 0.255 0.909 0.845 0.649
0.80 0.50 0.50 0.263 0.155 0.036 0.522 0.396 0.161 0.811 0.725 0.467 0.978 0.970 0.878
0.80 0.50 0.75 0.156 0.071 0.012 0.317 0.186 0.043 0.560 0.438 0.181 0.885 0.788 0.530
1.20 0.50 0.25 0.133 0.067 0.006 0.201 0.104 0.021 0.414 0.287 0.101 0.692 0.554 0.298
1.20 0.50 0.50 0.213 0.113 0.028 0.377 0.233 0.063 0.629 0.500 0.269 0.908 0.838 0.646
1.20 0.50 0.75 0.146 0.084 0.016 0.207 0.129 0.035 0.453 0.323 0.129 0.740 0.644 0.358
1.40 0.50 0.25 0.259 0.139 0.030 0.502 0.333 0.093 0.853 0.744 0.428 0.995 0.988 0.928
1.40 0.50 0.50 0.451 0.292 0.081 0.756 0.634 0.344 0.947 0.915 0.813 0.997 0.994 0.991
1.40 0.50 0.75 0.290 0.163 0.038 0.561 0.400 0.144 0.877 0.783 0.542 0.996 0.993 0.962
0.60 0.80 0.25 0.299 0.135 0.023 0.640 0.440 0.098 0.942 0.867 0.583 1.000 0.998 0.978
0.60 0.80 0.50 0.460 0.257 0.041 0.832 0.661 0.278 0.989 0.975 0.872 1.000 1.000 1.000
0.60 0.80 0.75 0.235 0.093 0.006 0.533 0.315 0.070 0.902 0.790 0.423 0.999 0.998 0.960
0.80 0.80 0.25 0.116 0.045 0.006 0.201 0.093 0.005 0.341 0.224 0.071 0.578 0.441 0.213
0.80 0.80 0.50 0.162 0.058 0.011 0.281 0.159 0.018 0.486 0.349 0.148 0.783 0.674 0.407
0.80 0.80 0.75 0.100 0.031 0.003 0.165 0.082 0.007 0.310 0.193 0.043 0.529 0.377 0.136
1.20 0.80 0.25 0.105 0.043 0.003 0.097 0.048 0.004 0.214 0.119 0.029 0.344 0.215 0.060
1.20 0.80 0.50 0.126 0.052 0.006 0.175 0.080 0.012 0.332 0.208 0.060 0.569 0.429 0.183
1.20 0.80 0.75 0.100 0.043 0.005 0.110 0.056 0.006 0.241 0.131 0.033 0.372 0.252 0.085
1.40 0.80 0.25 0.140 0.049 0.003 0.220 0.085 0.011 0.446 0.278 0.075 0.768 0.617 0.292
1.40 0.80 0.50 0.229 0.104 0.010 0.401 0.226 0.035 0.678 0.535 0.248 0.946 0.890 0.697
1.40 0.80 0.75 0.136 0.057 0.007 0.232 0.112 0.019 0.466 0.329 0.097 0.787 0.692 0.393

Note: Table entries indicate fractions of rejection of the null hypothesis of constant volatility against a single
structural change across 1000 replications at nominal significance level a, using finite sample critical values
obtained from the response surface (2.9) with r = 0. Series of length T are generated from a GARCH(1,1)-N
process, yt = zt

√
ht, where

ht = ω + αy2
t−1 + βtht−1,

zt ∼ iidN(0, 1), βt = βb if t ≤ τT and βt = βa if t > τT , where βa is such that the unconditional volatility
after the break is equal to (ω/(1−α− βa) =) σ2

a, α = 0.10, and ω = 1−α− βb such that the unconditional
volatility before the break is equal to 1. The Uẑ,γ(k∗) statistic is applied to standardized residuals ẑ from a
GARCH(1,1)-N model.

compared to DGPs with zt being normally distributed. The same occurs when the DGP

is a GJR-GARCH(1,1) process with a break in either ω or β. Detailed results for these

experiments are available upon request.

Given that we wish to apply the CUSUM tests in the sequential procedure for multiple

volatility changes, as described in Section 2.2.2, we consider their power in detecting mul-
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Table 2.6: Empirical rejection frequencies of the Uẑ,γ(k
∗) test for a single change in volatility

when DGP is GARCH(1,1)-N with break in α

T=500 T=1000 T=2000 T=4000
σ2

a β τ a 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
0.60 0.70 0.25 0.326 0.164 0.026 0.683 0.506 0.167 0.935 0.870 0.650 0.992 0.981 0.954
0.60 0.70 0.50 0.502 0.299 0.053 0.845 0.717 0.382 0.990 0.977 0.891 0.999 0.998 0.994
0.60 0.70 0.75 0.248 0.105 0.011 0.541 0.353 0.078 0.893 0.780 0.448 0.998 0.995 0.961
0.80 0.50 0.25 0.146 0.060 0.011 0.276 0.192 0.041 0.529 0.384 0.176 0.812 0.717 0.481
0.80 0.50 0.50 0.194 0.113 0.020 0.406 0.282 0.093 0.690 0.546 0.310 0.935 0.871 0.716
0.80 0.50 0.75 0.130 0.054 0.006 0.228 0.123 0.026 0.418 0.292 0.097 0.711 0.579 0.283
0.80 0.70 0.25 0.119 0.042 0.005 0.200 0.090 0.009 0.322 0.206 0.078 0.543 0.415 0.185
0.80 0.70 0.50 0.143 0.061 0.007 0.260 0.149 0.025 0.435 0.302 0.130 0.715 0.597 0.331
0.80 0.70 0.75 0.104 0.029 0.001 0.162 0.073 0.008 0.268 0.159 0.040 0.447 0.308 0.101
1.20 0.50 0.25 0.105 0.066 0.005 0.128 0.071 0.014 0.251 0.142 0.044 0.386 0.254 0.096
1.20 0.50 0.50 0.150 0.083 0.014 0.207 0.114 0.037 0.390 0.278 0.108 0.629 0.520 0.263
1.20 0.50 0.75 0.117 0.065 0.011 0.152 0.085 0.024 0.289 0.188 0.061 0.453 0.333 0.141
1.20 0.70 0.25 0.088 0.043 0.006 0.100 0.052 0.009 0.170 0.108 0.028 0.247 0.152 0.040
1.20 0.70 0.50 0.112 0.058 0.007 0.140 0.078 0.015 0.250 0.168 0.058 0.423 0.294 0.122
1.20 0.70 0.75 0.098 0.050 0.010 0.106 0.060 0.010 0.209 0.116 0.031 0.306 0.201 0.059
1.40 0.50 0.25 0.163 0.089 0.014 0.239 0.129 0.029 0.474 0.345 0.124 0.785 0.650 0.371
1.40 0.50 0.50 0.275 0.158 0.042 0.455 0.321 0.108 0.726 0.618 0.370 0.962 0.923 0.780
1.40 0.50 0.75 0.194 0.114 0.023 0.305 0.208 0.060 0.567 0.449 0.219 0.852 0.768 0.572
1.40 0.70 0.25 0.119 0.066 0.007 0.157 0.082 0.014 0.315 0.191 0.059 0.529 0.395 0.151
1.40 0.70 0.50 0.178 0.086 0.014 0.282 0.165 0.042 0.508 0.387 0.168 0.785 0.693 0.456
1.40 0.70 0.75 0.128 0.069 0.012 0.191 0.110 0.019 0.366 0.251 0.081 0.638 0.492 0.250

Note: Table entries indicate fractions of rejection of the null hypothesis of constant volatility against a single
structural change across 1000 replications at nominal significance level a, using finite sample critical values
obtained from the response surface (2.9) with r = 0. Series of length T are generated from a GARCH(1,1)-N
process, yt = zt

√
ht, where

ht = ω + αty
2
t−1 + βht−1,

zt ∼ iidN(0, 1), αt = αb = 0.15 if t ≤ τT and αt = αa if t > τT , where αa is such that the unconditional
volatility after the break is equal to (ω/(1−αa − β) =) σ2

a, and ω = 1− αb − β such that the unconditional
volatility before the break is equal to 1. The Uẑ,γ(k∗) statistic is applied to standardized residuals ẑ from a
GARCH(1,1)-N model.

tiple breaks in the GARCH parameters. To conserve space we only discuss a GARCH(1,1)

DGP with two breaks in either ω or β. Results are reported in Tables 2.7 and 2.8, respec-

tively. First of all we observe that power is reasonable when volatility first goes down and

then jumps up again (or the reverse), but in such a way that it does not return to its initial

level. For low volatility persistence the test detects the two breaks quite well. However, for

high persistence, power is considerably lower. When volatility does return to its original

level after the second change, the test typically identifies no breaks at all. In the latter
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Table 2.7: Number of identified change points for Uẑ,γ(k
∗) test for changes in volatility when

the DGP is GARCH(1,1)-N with two breaks in ω

T=1000 T=2000 T=4000
σ2

a1 σ2
a2 β l 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3

0.70 0.40 0.50 0.627 0.282 0.088 0.003 0.701 0.086 0.200 0.013 0.746 0.004 0.180 0.070
0.80 0.60 0.50 0.245 0.725 0.030 0.000 0.101 0.727 0.163 0.009 0.063 0.327 0.551 0.059
0.90 0.80 0.50 0.724 0.260 0.016 0.000 0.482 0.493 0.025 0.000 0.160 0.790 0.049 0.001
0.80 1.00 0.50 0.915 0.070 0.015 0.000 0.782 0.099 0.115 0.004 0.528 0.064 0.385 0.023
0.80 1.20 0.50 0.639 0.266 0.095 0.000 0.256 0.330 0.403 0.011 0.022 0.111 0.824 0.043
1.20 0.80 0.50 0.570 0.318 0.112 0.000 0.167 0.458 0.365 0.010 0.010 0.290 0.670 0.030
1.20 1.00 0.50 0.938 0.048 0.014 0.000 0.850 0.081 0.068 0.001 0.722 0.084 0.182 0.012
1.10 1.20 0.50 0.835 0.155 0.010 0.000 0.616 0.371 0.013 0.000 0.320 0.650 0.028 0.002
1.20 1.40 0.50 0.494 0.489 0.017 0.000 0.150 0.820 0.029 0.001 0.009 0.836 0.144 0.011
1.30 1.60 0.50 0.277 0.700 0.023 0.000 0.079 0.806 0.111 0.004 0.042 0.474 0.439 0.045
0.70 0.40 0.80 0.377 0.567 0.055 0.001 0.036 0.703 0.252 0.009 0.000 0.218 0.715 0.067
0.80 0.60 0.80 0.556 0.424 0.020 0.000 0.166 0.783 0.049 0.002 0.006 0.839 0.138 0.017
0.90 0.80 0.80 0.881 0.106 0.012 0.001 0.742 0.243 0.014 0.001 0.502 0.470 0.028 0.000
0.80 1.00 0.80 0.959 0.034 0.007 0.000 0.910 0.060 0.029 0.001 0.819 0.083 0.093 0.005
0.80 1.20 0.80 0.886 0.096 0.018 0.000 0.639 0.244 0.113 0.004 0.264 0.293 0.415 0.028
1.20 0.80 0.80 0.834 0.146 0.020 0.000 0.581 0.315 0.098 0.006 0.199 0.495 0.302 0.004
1.20 1.00 0.80 0.964 0.032 0.004 0.000 0.919 0.068 0.013 0.000 0.886 0.073 0.040 0.001
1.10 1.20 0.80 0.933 0.065 0.002 0.000 0.812 0.181 0.007 0.000 0.638 0.334 0.025 0.003
1.20 1.40 0.80 0.782 0.211 0.007 0.000 0.509 0.481 0.010 0.000 0.170 0.780 0.046 0.004
1.30 1.60 0.80 0.605 0.378 0.017 0.000 0.220 0.756 0.021 0.003 0.021 0.862 0.110 0.007

Note: Table entries indicate fractions of replications for which l structural changes in volatility were found
across 1000 replications using the sequential procedure described in Section 2.2.2. Series are generated from
a GARCH(1,1)-N process, yt = zt

√
ht, where

ht = ω + αy2
t−1 + βtht−1,

zt ∼ iidN(0, 1), α = 0.1, ωt = ωb = 1 − α − β if t ≤ τ1T , ωt = σ2
a1ωb if τ1T ≤ t ≤ τ2T and ωt = σ2

a2ωb

if t ≥ τ2T with τ1 = 0.33 and τ1 = 0.67. The Uẑ,γ(k∗) statistic is applied to standardized residuals ẑ from
a GARCH(1,1)-N model. Finite sample critical values are obtained from the response surface (2.9) with
r = 0.15, for initial nominal significance level a = 0.05.

case, the test only starts to pick up the changes in volatility when the series is fairly long

(T = 4000). For a stepwise decrease in volatility from 1 to 0.7 to 0.4 we see that the test

has difficulty in picking up the correct number of breaks, with two breaks being detected in

only 20% of the cases for moderate samples sizes. The level of persistence again matters.

Focusing for ease of discussion on T = 2000, we see that for β = 0.50 the test typically

identifies no breaks at all, whereas for β = 0.80 a single change is identified in 70% of the

replications. For a smaller step size (1 to 0.9 to 0.8) the pictures changes. Now for low

volatility persistence either 0 or 1 break is identified equally frequent, whereas for high
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Table 2.8: Number of identified change points for the Uẑ,γ(k
∗) test for changes in volatility when

the DGP is GARCH(1,1)-N with two breaks in β

T=1000 T=2000 T=4000
σ2

a1 σ2
a2 β l 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3

0.70 0.40 0.50 0.666 0.241 0.093 0.000 0.789 0.059 0.141 0.011 0.775 0.007 0.149 0.069
0.80 0.60 0.50 0.227 0.735 0.038 0.000 0.123 0.689 0.174 0.014 0.092 0.285 0.560 0.063
0.90 0.80 0.50 0.727 0.256 0.017 0.000 0.473 0.500 0.027 0.000 0.156 0.789 0.053 0.002
0.80 1.00 0.50 0.911 0.073 0.016 0.000 0.779 0.101 0.116 0.004 0.521 0.063 0.394 0.022
0.80 1.20 0.50 0.642 0.266 0.092 0.000 0.272 0.322 0.398 0.008 0.020 0.110 0.826 0.044
1.20 0.80 0.50 0.575 0.316 0.109 0.000 0.172 0.470 0.349 0.009 0.009 0.311 0.652 0.028
1.20 1.00 0.50 0.941 0.046 0.013 0.000 0.863 0.075 0.061 0.001 0.735 0.078 0.177 0.010
1.10 1.20 0.50 0.849 0.139 0.012 0.000 0.633 0.354 0.013 0.000 0.341 0.632 0.025 0.002
1.20 1.40 0.50 0.536 0.449 0.015 0.000 0.186 0.782 0.031 0.001 0.014 0.864 0.113 0.009
1.30 1.60 0.50 0.319 0.652 0.029 0.000 0.063 0.851 0.082 0.004 0.007 0.579 0.381 0.033
0.70 0.40 0.80 0.295 0.614 0.087 0.004 0.075 0.582 0.333 0.010 0.011 0.150 0.725 0.114
0.80 0.60 0.80 0.504 0.476 0.020 0.000 0.123 0.822 0.051 0.004 0.002 0.792 0.188 0.018
0.90 0.80 0.80 0.877 0.112 0.011 0.000 0.753 0.234 0.012 0.001 0.511 0.464 0.025 0.000
0.80 1.00 0.80 0.959 0.033 0.008 0.000 0.902 0.071 0.026 0.001 0.821 0.087 0.087 0.005
0.80 1.20 0.80 0.889 0.095 0.016 0.000 0.670 0.235 0.091 0.004 0.314 0.289 0.378 0.019
1.20 0.80 0.80 0.850 0.129 0.021 0.000 0.629 0.292 0.077 0.002 0.240 0.518 0.239 0.003
1.20 1.00 0.80 0.965 0.031 0.004 0.000 0.928 0.062 0.010 0.000 0.906 0.062 0.031 0.001
1.10 1.20 0.80 0.938 0.058 0.004 0.000 0.838 0.156 0.006 0.000 0.710 0.267 0.021 0.002
1.20 1.40 0.80 0.866 0.129 0.005 0.000 0.630 0.359 0.011 0.000 0.297 0.659 0.042 0.002
1.30 1.60 0.80 0.733 0.255 0.012 0.000 0.390 0.595 0.014 0.001 0.062 0.870 0.063 0.005

Note: Table entries indicate fractions of replications for which l structural changes in volatility were found
across 1000 replications using the sequential procedure described in Section 2.2.2. Series are generated from
a GARCH(1,1)-N process, yt = zt

√
ht, where

ht = ω + αy2
t−1 + βtht−1,

zt ∼ iidN(0, 1), βt = βb if t ≤ τ1T , βt = βa1
if τ1T < t ≤ τ2T and βt = βa2

if τ2T < t, α = 0.10, and
ω = 1 − α− βb with τ1 = 0.33 and τ1 = 0.67. βa1

and βa2
are such that the unconditional volatility ω/(1 −

α− βai
) = σ2

ai
, i = 1, 2. The Uẑ,γ(k∗) statistic is applied to standardized residuals ẑ from a GARCH(1,1)-N

model. Finite sample critical values are obtained from the response surface (2.9) with r = 0.15, for initial
nominal significance level a = 0.05.

persistence zero breaks are identified most often (74%). The same result hold for small

increases (1 to 1.1 to 1.2). For larger stepwise increases, the null hypothesis of no breaks

is increasingly often rejected, but the ability to find two breaks is still quite low. Similar

to the single break DGPs, power is higher for decreases in volatility compared to increases

in volatility.
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2.4 Volatility changes in emerging stock markets

Research in emerging market finance has been rapidly expanding over the past two decades,

see Bekaert and Harvey (2002, 2003) for comprehensive surveys of the past, present and

future of this area. Among others, this growing interest stems from the fact that emerging

market assets have become increasingly important in international investment portfolios.

This has been made possible thanks to the capital market liberalizations many of these

countries experienced in the late 1980s and early 1990s. Typically, the liberalization mea-

sures that were implemented included substantial reduction or even complete removal of

barriers-to-entry for foreign investors. The financial and macroeconomic effects of these lib-

eralizations have been studied intensively, see Bekaert and Harvey (2003) for an overview.

The consequences of liberalization and the resulting (or at least hoped-for) integration with

developed markets for stock market volatility are not clear a priori. A common perception

is that the growing influence of highly mobile foreign capital (so-called “hot money”) might

lead to higher volatility in liberalized markets. However, empirical studies have found little

support for this hypothesis, but instead document either no significant changes or declines

in stock market volatility following liberalizations, see Richards (1996), Bekaert and Har-

vey (1997, 2000a), De Santis and Imrohoroglu (1997), Aggarwal et al. (1999) and Kim and

Singal (2000), and the references contained therein. The finding of lower post-liberalization

volatility typically is attributed to increased market efficiency and diversification effects.

Analyzing the effect of liberalizations on stock market volatility is not without compli-

cations, however. First, in most countries liberalization has been a gradual process, with

different measures taken at different points in time. Second, emerging markets volatility

may change for a host of reasons other than financial liberalization, including (both lo-

cal and global) social, political or economic events. Consequently, multiple sudden and

substantial changes in volatility may be observed in these markets. In this section we

aim to identify volatility changes in emerging stock market index returns by means of the

CUSUM tests. Our empirical study resembles that of Aggarwal et al. (1999), although

they analyze a considerably smaller set of countries over a shorter sample period and only

use the original Inclán-Tiao CUSUM-statistic Uy,σ(k∗). The latter difference may be most

crucial as the Uy,σ(k∗) statistic does not account for possible non-normality and conditional

heteroskedasticity, which are relevant characteristics of emerging stock market returns, see

Bekaert and Harvey (1997) and Bekaert et al. (1998), among others.

We examine daily returns on MSCI indexes for a total of 27 emerging stock markets.
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We select countries from each of the three emerging market clusters identified by MSCI:

China, India, Indonesia, Korea, Malaysia, Pakistan, Philippines, Sri Lanka, Taiwan and

Thailand (Asia), Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela (Latin

America) and Czech Republic, Egypt, Hungary, Israel, Jordan, Morocco, Poland, Russia,

South Africa and Turkey (Europe, Middle East and Africa).14 The sample period runs

from January 1, 1988 to December 31, 2003, resulting in a total of 4173 daily return

observations, although not all series start on January 1, 1988. The second column of Table

2.9 shows the starting date of the returns series for each country. The countries with the

shortest samples (Czech Republic, Egypt, Hungary, Morocco and Russia) still have over

2000 observations. Following Aggarwal et al. (1999), we consider returns measured in U.S.

dollars as well as in local currency. Unreported summary statistics confirm the importance

of non-normality (in the form of significant skewness, excess kurtosis and infrequent large

jumps, both positive and negative) and conditional heteroskedasticity for these stock return

series.

We start with the original Inclán-Tiao ICSS algorithm for detecting and dating multiple

breaks in the unconditional volatility of demeaned returns.15 Columns four and 11 of

Table 2.9 show the number of breaks thus identified by the Uy,σ(k∗) test, indicating an

unrealistically large number of volatility changes. Furthermore, sometimes the identified

change-points are only a few weeks or even days apart. It is therefore hardly justifiable to

classify these as genuine shifts in the level of volatility.

We proceed with our sequential testing algorithm as described in Section 2.2.2, allowing

for a maximum number of 10 breaks, which each have to be at least 126 (trading) days

apart16. Appropriate finite sample critical values are obtained from (2.9), using an initial

nominal significance level a = 0.05. We implement the algorithm with each of the three

CUSUM statistics Uy,σ(k∗), Uy,γ0(k
∗) and Uy,γ(k

∗) to the demeaned returns. The number

of detected volatility changes is drastically reduced, as shown by the results in columns 5-7

for US dollar returns and columns 12-14 for local currency returns. The Uy,σ(k∗) test still

often identifies the maximum number of 10 breaks, which is due to the fact that it cannot

account for the non-normality of the return series. The Uy,γ0(k
∗) test, which scales down

14In the remainder of the analysis we do not need to differentiate between countries from different
regions. Consequently, countries are given in alphabetical order in the table and graphs below.

15We used the Schwarz Information Criterion (SIC) to determine the optimal lag order p in an autore-
gressive (AR(p)) model for each return series. It turned out that in general a lag order of p = 0 was
selected and consequently we did not use any autoregressive lags when demeaning the return series.

16We also considered a minimum distance of 63 business days which resulted in the same number of
change points for all but a few countries.
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ẑ t
d
at

e
T

IC
S
S

σ
γ
0

γ
σ

γ
0

γ
IC

S
S

σ
γ
0

γ
σ

γ
0

γ
A

rg
en

ti
n
a

1/
1/

19
88

40
07

36
10

10
4

2
0

0
36

10
10

1
2

0
0

B
ra

zi
l

1/
1/

19
88

40
06

16
10

6
4

0
0

0
19

9
7

5
1

0
0

C
h
il
e

1/
1/

19
88

40
35

25
10

10
1

4
1

1
27

10
3

1
3

1
1

C
h
in

a
1/

1/
19

93
28

35
19

9
4

3
3

0
0

19
9

4
3

3
0

0
C

ol
om

b
ia

1/
1/

19
93

27
39

24
8

2
2

3
0

0
20

7
3

2
3

0
0

C
ze

ch
R

ep
u
b
li
c

1/
2/

19
95

23
25

9
7

7
5

1
0

0
16

7
7

5
1

0
0

E
gy

p
t

1/
2/

19
95

19
45

18
8

7
2

2
0

0
23

8
7

3
1

0
0

H
u
n
ga

ry
1/

2/
19

95
23

26
14

6
3

3
4

0
0

23
8

6
4

5
0

0
In

d
ia

1/
1/

19
93

27
90

13
9

6
4

2
0

0
14

10
6

4
2

0
0

In
d
on

es
ia

1/
1/

19
88

40
17

38
10

4
3

8
3

3
48

10
0

0
6

4
4

Is
ra

el
1/

1/
19

93
28

51
19

10
9

4
4

0
0

21
10

7
6

4
0

0
J
or

d
an

1/
1/

19
88

29
58

36
8

0
0

3
0

0
29

9
1

0
4

0
0

K
or

ea
1/

1/
19

88
40

12
12

9
7

7
3

2
2

15
8

6
6

3
1

1
M

al
ay

si
a

1/
1/

19
88

40
69

40
10

5
4

5
0

0
30

10
4

4
7

0
0

M
ex

ic
o

1/
1/

19
88

40
78

24
10

6
3

7
0

0
22

10
6

0
4

0
0

M
or

o
cc

o
1/

2/
19

95
23

34
20

4
2

2
3

1
1

21
9

5
1

2
1

1
P
ak

is
ta

n
1/

1/
19

93
25

06
25

9
4

4
3

0
0

25
10

4
3

0
0

0
P
er

u
1/

1/
19

93
27

85
26

10
6

1
4

1
1

32
10

2
1

2
1

1
P

h
il
ip

p
in

es
1/

1/
19

88
40

43
32

10
7

4
6

0
0

32
10

8
6

6
0

0
P
ol

an
d

1/
1/

19
93

28
22

9
9

8
5

3
0

0
10

8
8

6
3

0
0

R
u
ss

ia
1/

2/
19

95
22

88
21

10
7

4
2

2
2

21
10

7
4

2
2

2
S
ou

th
A

fr
ic

a
1/

1/
19

93
28

39
19

10
7

3
4

0
0

19
7

3
3

2
2

2
S
ri

L
an

ka
1/

1/
19

93
26

79
36

9
6

4
7

0
0

33
10

6
1

8
0

0
T
ai

w
an

1/
1/

19
88

40
06

25
10

6
4

2
0

0
18

10
6

4
2

0
0

T
h
ai

la
n
d

1/
1/

19
88

40
68

36
10

10
3

4
3

3
40

10
10

3
4

3
3

T
u
rk

ey
1/

1/
19

88
40

57
30

10
10

8
2

1
1

30
10

8
3

3
1

1
V

en
ez

u
el

a
1/

1/
19

93
27

31
31

9
0

0
7

0
0

25
10

0
0

6
0

0

N
o
te

:
T
ab

le
en

tr
ie

s
re

p
re

se
n
t

th
e

n
u
m

b
er

of
id

en
ti

fi
ed

b
re

ak
s

in
vo

la
ti

li
ty

of
d
ai

ly
em

er
gi

n
g

st
o
ck

m
ar

ke
t

re
tu

rn
s,

b
ot

h
in

U
.S

.
d
ol

la
rs

an
d

lo
ca

l
cu

rr
en

cy
.

R
es

u
lt

s
ar

e
re

p
or

te
d

fo
r

th
e

or
ig

in
al

IC
S
S

al
go

ri
th

m
of

In
cl

án
an

d
T

ia
o

(1
99

4)
,

an
d

fo
r

th
e

se
q
u
en

ti
al

p
ro

ce
d
u
re

d
es

cr
ib

ed
in

S
ec

ti
on

2.
2.

2
u
si

n
g

th
e
U
·,

σ
(k

∗
),
U
·,

γ
0
(k

∗
),

an
d
U
·,

γ
(k

∗
)

st
at

is
ti

cs
(i

n
co

lu
m

n
s

h
ea

d
ed

σ
,
γ
0

an
d
γ
,
re

sp
ec

ti
ve

ly
),

ap
p
li
ed

to
d
em

ea
n
ed

re
tu

rn
s
y t

as
w

el
l
as

G
A

R
C

H
(1

,1
)-

st
an

d
ar

d
iz

ed
re

tu
rn

s
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the centered sum of squares with the variance of the squared returns series, only hits the

upper bound for four countries (Argentina, Chile, Thailand and Turkey) for the US dollar

returns and for only two counties (Argentina and Thailand) for the local currency returns.

The Uy,γ(k
∗) statistic on the other hand is never constrained by the imposed maximum

number of breaks. The maximum number of identified breaks across all returns series is 8,

for Turkey.

Although the number of variance changes based on the Uy,γ(k
∗) test appear to be quite

reasonable, it seems only natural to apply the CUSUM tests to standardized returns in

light of the size distortions documented in Section 2.3.1. Doing so using a GARCH(1,1)

model yields the results shown in columns 8-10 and the final three columns of Table 2.9.

Compared to the results for demeaned returns, the number of breaks further declines and

to such an extent that for some countries no volatility changes are identified at all when

using either the Uẑ,γ0(k
∗) or Uẑ,γ(k

∗) statistics. Furthermore, these two tests now yield the

exact same number of breaks for all countries. The Uẑ,σ(k∗) statistic on the other hand

still always identifies a positive number of breaks (except for U.S. dollar returns in Brazil

and local currency returns in Pakistan), although considerably less than before and also

less than the number of changes identified in Aggarwal et al. (1999).

The magnitude and timing of the identified volatility changes is examined graphically in

Figure 2.4, which presents plots of the daily returns in local currency. The horizontal lines

in these graphs indicate ±3 times the unconditional standard deviation between consecutive

change-points, as identified by the Uẑ,σ(k∗) and Uẑ,γ(k
∗) statistics, in the upper and lower

panels, respectively. Thick vertical lines correspond with the “official liberalization dates”

as determined by Bekaert and Harvey (2000b) and Bekaert et al. (2003). It is seen that

most identified breaks indeed correspond with marked shifts in volatility, many of which

can be related to economic and political events such as, for example, the Asian and Russian

financial crises in 1997 and 1998, respectively. Changes close to the official liberalization

dates are found only for Chile and Indonesia, where in both cases volatility declined. What

also becomes clear from Figure 2.4 is that whereas the Uẑ,σ(k∗) test is inclined to find more,

if not too many breaks, the Uẑ,γ0(k
∗) and Uẑ,γ(k

∗) tests have a tendency to be conservative.

For example, it is surprising to see that no volatility changes are identified for Indonesia,

Korea and Malaysia around the middle of 1997 when the Asian crisis occurred. The time

series plots suggest that the stock markets in these countries experienced a substantial and

prolonged volatility increase around that time. This more or less confirms the reduced

power for the Uẑ,γ(k
∗) statistic when testing for multiple breaks, reported in Section 2.3.2.
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Figure 2.2: Break point locations

(i) Argentina

(ii) Brazil

(iii) Chile

Note: The figure shows the daily emerging stock market returns in local currency. The full sample period
is January 4, 1988 - December 31, 2003. The horizontal lines in these graphs indicate ±3 times the
unconditional standard deviation between consecutive change-points, as identified by the Uẑ,σ(k∗) and
Uẑ,γ(k∗) statistics, in the upper and lower panels, respectively. Thick vertical lines correspond with the
“official liberalization dates” as determined by Bekaert and Harvey (2000b) and Bekaert et al. (2003).
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Figure 2 (continued)

(iv) China

(v) Colombia

(vi) Czech Republic
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Figure 2 (continued)

(vii) Egypt

(viii) Hungary

(ix) India
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Figure 2 (continued)

(x) Indonesia

(xi) Israel

(xii) Jordan
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Figure 2 (continued)

(xiii) Korea

(xiv) Malaysia

(xv) Mexico
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Figure 2 (continued)

(xvi) Morocco

(xvii) Pakistan

(xviii) Peru
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Figure 2 (continued)

(xix) Philippines

(xx) Poland

(xxi) Russia
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Figure 2 (continued)

(xxii) South Africa

(xxiii) Sri Lanka

(xxiv) Taiwan
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Figure 2 (continued)

(xxv) Thailand

(xxvi) Turkey

(xxvii) Venezuela
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2.5 Concluding remarks

In this paper we have examined CUSUM-based tests for changes in the unconditional

volatility of conditionally heteroskedastic time series. A prominent conclusion from our

analysis is that application of these tests to the raw time series observations leads to severe

size distortions, rendering the tests highly unreliable. Remarkably, this was also found to be

the case for the CUSUM test of Kokoszka and Leipus (2000), which at least theoretically

allows for the presence of heteroskedasticity. Our simulation results show that it may

require unrealistically large sample sizes for this asymptotic result to apply. Consequently,

it appears necessary to filter the series in order to remove the heteroskedasticity prior to

applying the CUSUM test. As a practical way to accomplish this, we adopt the suggestion

of Lee et al. (2003) to use a GARCH(1,1)-volatility filter. Put differently, we recommend to

apply the CUSUM test to standardized residuals from an estimated GARCH(1,1) model.

Extensive Monte Carlo simulations showed that this results in correctly sized tests with

good power properties when testing for a single break. Furthermore, the tests were found

to be reasonably robust against various forms of model misspecification. The CUSUM tests

appear to have difficulty to detect multiple changes in volatility and, hence, developing a

more powerful procedure for testing for multiple breaks is an interesting topic for future

research. The general properties of the CUSUM tests were confirmed in an application

to emerging stock market returns, where the GARCH-filtered tests led to a considerably

smaller, and much more realistic number of volatility changes than the original CUSUM

statistics.







Chapter 3

Modeling and Forecasting S&P 500
Volatility
Long memory, structural breaks, announcement effects
and day-of-the-week seasonality

3.1 Introduction

Accurately measuring and forecasting financial volatility is of crucial importance for asset

and derivative pricing, asset allocation and risk management. Merton (1980) already noted

that the variance over a fixed period can be estimated arbitrarily accurately by the sum

of squared intra-period returns, provided the data are available at a sufficiently high sam-

pling frequency. With transaction prices becoming more widely available, Andersen and

Bollerslev (1997, 1998a,b) kick-started a flurry of research on the use of high-frequency

data for measuring and forecasting volatility. Andersen and Bollerslev (1998a) showed

that ex-post daily exchange rate volatility is best measured by aggregating 288 squared

five-minute returns. The five-minute frequency is a trade-off between accuracy, which is

theoretically optimized using the highest possible frequency, and noise due to, for example,

the bid-ask bounce.1 Despite the remaining small measurement error the volatility essen-

tially becomes “observable” ex-post.2 As such, volatility can be modeled directly, rather

than being treated as a latent variable as is the case in GARCH and stochastic volatility

models. The main drawback of such models is the need to make specific assumptions re-

garding the distribution of shocks and the properties of the latent volatility factor. The

1See Zhang, Mykland, and Aı̈t-Sahalia (2005), Aı̈t-Sahalia, Mykland, and Zhang (2005) and Bandi
and Russell (2005, 2006) among others for recent discussions involved in the choice of optimal sampling
frequency in the presence of market microstructure noise.

2See Andersen, Bollerslev, and Diebold (2002) and Barndorff-Nielsen and Shephard (2002a,b, 2003,
2004b,c) for formal discussions of the theoretical properties of realized volatility and the related concept
of power variation.
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sum of intraday squared returns is also a much more accurate measure of daily realized

volatility than the popular daily squared return.3

Several recent studies document the properties of realized volatilities constructed from

high-frequency data for different financial assets, including exchange rates (Andersen,

Bollerslev, Diebold, and Labys, 2001b), stock indexes and corresponding futures (Ebens,

1999; Areal and Taylor, 2002; Martens, 2002; Thomakos and Wang, 2003) and individual

stocks (Andersen, Bollerslev, Diebold, and Ebens, 2001a). One of the stylized facts to come

out of these studies is that realized volatilities are fractionally integrated of order d, where

d typically is around 0.4. This property is used for modeling and forecasting volatilities at

daily or longer horizons for both exchange rates (Andersen, Bollerslev, Diebold, and Labys,

2003a; Li, 2002; Pong, Shackleton, Taylor, and Xu, 2004 and stock indexes (Ebens, 1999;

Koopman, Jungbacker, and Hol, 2005; Martens and Zein, 2004). These studies use Au-

toregressive Fractionally Integrated Moving Average (ARFIMA) models to capture both

the long memory characteristic and any remaining short-term dynamics. The resulting

forecasts generally outperform those obtained from ARCH models (including GARCH,

EGARCH and FIGARCH), Riskmetrics’ historical volatility with exponentially declining

weights, and stochastic volatility models, and they can compete with implied volatility fore-

casts obtained from options. The latter is noteworthy as the current literature (e.g. Jorion

(1995) and Christensen and Prabhala (1998)) suggests that implied volatility forecasts are

superior to forecasts obtained from ARCH models, to the extent that ARCH forecasts do

not contain any information not already subsumed by implied volatility forecasts.

Except for Ebens (1999) all the aforementioned studies use linear models, which ignore

several empirically important aspects of financial volatility. First, linear models do not

allow for the so-called leverage effect documented by, among others, Black (1976), Pagan

and Schwert (1990) and Engle and Ng (1993). These studies show an asymmetric rela-

tion between news (as measured by lagged unexpected returns) and volatility using daily

squared returns, in that a negative return tends to increase subsequent volatility by more

than would a positive return of the same magnitude. Using realized volatility measures

it is less clear whether a leverage effect will be present as a realized volatility measure

will already contemporaneously capture negative return shocks. However, Bollerslev et al.

(2006) show evidence of a prolonged leverage effect for S&P500 futures returns which can

3More accurate in the sense that it has smaller variance. Also, of relevance to this study, estimates
of the degree of fractional integration are unbiased for daily volatility based on intraday returns, whereas
they are severely downward biased when estimated from daily squared returns, see Bollerslev and Wright
(2000).
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last up to several days. Allowing for a leverage effect seems therefore worthwhile. Second,

occasional structural breaks can spuriously suggest the presence of long memory, as shown

by Diebold and Inoue (2001), among others. However, Andersen and Bollerslev (1997)

show that long-memory is more likely to be an inherent feature of the return-generating

process than an artefact due to structural streaks. As financial volatility has been found

to experience irregular level shifts (see Lamoureux and Lastrapes, 1990, and Andreou and

Ghysels, 2002a), which will at least influence the degree of long memory, it seems impor-

tant to nevertheless consider this characteristic when modeling realized volatility. Third,

Baillie and Bollerslev (1989) and Harvey and Huang (1991), among others, find that av-

erage volatility is not constant across the different days of the week but displays a rather

pronounced U-shaped pattern with volatility being lowest on Wednesdays. Furthermore,

volatility tends to be different on and around holidays. Fourth, Andersen and Boller-

slev (1998b) explain the day-of-the-week effect in Deutsche Mark-Dollar volatility by the

clustering of macroeconomic news announcements on specific weekdays (in particular on

Fridays). Allowing for volatility to be different on days with news releases can disentangle

calendar and announcement effects. Fifth, Bomfim (2003b) allows for pre-announcement

effects as financial markets tend be relatively calm on days before important macro releases.

In this chapter, we propose a nonlinear model for realized volatilities that simulta-

neously captures long memory, leverage effects, structural breaks, day-of-the-week and

macroeconomic news announcement effects. To the best of our knowledge, we are the first

to develop such a comprehensive nonlinear model. The small number of previous studies

that have considered nonlinearities in realized volatilities all are limited in one way or

another. Ebens (1999), Oomen (2002) and Giot and Laurent (2004) incorporate leverage

effects in a long memory model for various stock indexes. Only Giot and Laurent (2004)

consider out-of-sample forecasting, but only at the one-day horizon. Maheu and McCurdy

(2002) use a regime-switching model for the DM/$ exchange rate, but do not consider any

other nonlinearities or long memory and only forecast one-day-ahead.

Our model is estimated and used to produce volatility forecasts at various horizons for

S&P 500 index-futures. The results first of all show that level shifts in S&P 500 volatility

can indeed not account for the long memory feature. The fractional integration parameter

does decline when explicitly modeling structural breaks, but remains significantly differ-

ent from zero. Second, the day-of-the-week dummies show that volatility is on average

lower on Mondays and Tuesdays and higher on Fridays. This is an interesting contrast

with the U-shaped pattern found in daily squared returns, which also attribute a higher
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volatility to Mondays and Tuesdays. Second, volatility tends to be substantially higher

on announcement days and lower on pre-announcement days. Fourth, we find convincing

evidence for the presence of a prolonged leverage effect in S&P volatility, in that negative

returns significantly increase volatility on the following day whereas positive returns do

not affect volatility at all. Incorporating these nonlinear features is important for out-of-

sample forecasting as well. We find that 1-day-ahead volatility forecasts from the best

nonlinear model improve upon those from a linear ARFIMA model on all evaluation crite-

ria considered. For example, the R2 from a regression of realized volatility on the volatility

forecast increases from 52.1% to 55.4%. We find similar improvements when looking at

simple AR models, i.e. dropping the long memory from the model. Also here adding the

non-linearities improves the volatility forecasts. The simpler AR approach performs best

for forecast horizons up to 20 days. For 10-day ahead forecasts for example. the R2 is

59.2%, compared to 56.1% for the non-linear ARFIMA model, and 53.1% for the linear

ARFIMA model.

The remainder of this chapter is structured as follows. First, we discuss the S&P 500

data in Section 3.2. The nonlinear long-memory model is developed in Section 3.3. We

discuss the estimation of the model and discuss in-sample results for the S&P 500 in Section

3.4. In Section 3.5, we focus on out-of-sample forecasting. Section 3.6 concludes.

3.2 Data

We construct our measure of daily realized volatility for the S&P 500 index using high-

frequency futures data. S&P 500 index futures trade on the Chicago Mercantile Exchange

(CME) on the trading floor from 8:30AM to 3:15PM (Eastern Standard Time minus 1

hour, EST-1). Since January 3, 1994, these contracts also trade overnight on GLOBEX,

the electronic trading system of the CME, from 3:30PM to 8:00AM (8:15AM from February

26, 1996, onwards). As a result, S&P 500 futures trade almost round the clock, providing

a similar opportunity to construct realized volatilities as for the 24-hour foreign exchange

market. Martens (2002) tested various measures of S&P 500 realized volatility, finding

that the sum of squared 30-minute intranight and 5-minute intraday returns is a more

accurate measure of volatility than using only the intraday returns, or the sum of squared

intraday returns and the squared close-to-open return, showing that it is useful to incorpo-

rate overnight trading prices. Hence, we will use the following measure of daily “realized
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volatility”,

s2
t =

nN∑

j=1

(
rN
t,j

)2
+

nD∑

j=1

(
rD
t,j

)2
, (3.1)

where rN
t,j is the intranight (30-minute) return on day t in intranight period j (j =

1, . . . , nN = 33), and rD
t,j is the intraday (five-minute) return on day t for intraday pe-

riod j (j = 1, . . . , nD = 91). Both rN
t,j and rD

t,j are continuously compounded returns.

Figure 3.1 shows a time series plot for the daily S&P 500 log realized volatility for the

sample period from January 3, 1994, until December 29, 2003 (2521 daily observations).

Table 3.1 contains descriptive statistics of the log realized volatility measure, as well as

for daily returns rt =
∑nN

j=1 r
N
t,j +

∑nD

j=1 r
D
t,j, for squared daily returns, and for daily returns

standardized with the realized standard deviation, rt/st. A number of interesting features

emerge from this table, which closely correspond with the distributional characteristics for

Figure 3.1: Realized S&P 500 volatility
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Notes: Daily log realized volatility for S&P 500 returns for the period from January 3, 1994, until
December 29, 2003 (2521 observations).
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Table 3.1: Descriptive statistics for daily S&P 500 return and realized volatility

Mean Med Min Max Std.dev. Skew Kurt

Returns 0.022 0.058 −7.811 5.737 1.193 −0.164 6.435
Standardized returns 0.086 0.060 −2.725 3.105 0.999 0.073 2.730

Squared returns 1.423 0.400 0.000 61.005 3.314 7.788 100.921
Realized variance 1.421 0.927 0.066 33.220 1.907 6.006 62.907
Log realized variance −0.107 −0.076 −2.721 3.503 0.934 0.133 3.026

Notes: The table contains summary statistics for daily S&P 500 return and realized
volatility measures. The sample period covers January 3, 1994 until December 31, 2003
(2521 observations). Standardized returns are obtained by dividing the raw returns by
the realized standard deviation.

realized exchange rate volatility documented in Andersen, Bollerslev, Diebold, and Labys

(2001b). First, comparing the daily squared returns with the realized variance shows that

these have an all but identical mean (1.423% and 1.421%, respectively). We would expect

this to be the case, as both are unbiased measures of the true volatility. However, the stan-

dard deviation of the realized variance is at 1.907 much smaller than the standard deviation

of the squared returns, which equals 3.314. It is precisely this characteristic that shows that

realized variance is a less noisy estimate of true volatility than the daily squared return.

Second, the realized variance is heavily skewed and exhibits excess kurtosis. By contrast,

the logarithm of realized volatility, log(s2
t ), is much more symmetrically distributed and

has much lower kurtosis. It is for this reason that we will consider time series models for

the log realized volatility. Third, the daily S&P 500 returns are skewed and leptokurtic.

Standardized returns rt/st, however, exhibit much less skewness and excess kurtosis and

are in fact very close to being normally distributed.

Fourth, as documented in other studies (and therefore not shown here explicitly), the

sample autocorrelation functions of the realized volatility measures exhibit a slow hyper-

bolic decay, indicative for the presence of long memory. A further point is that the persis-

tence in the autocorrelation functions is much stronger for the realized volatility measures

than for the daily squared returns.

Fifth, returning to Figure 3.1, realized volatility appears to be higher on average in

the second half of the sample period than during the first few years. It is difficult to pin
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down when exactly this level shift occurred, and it appears that it is most adequately

characterized as a gradual increase of volatility during 1996-1997. After this transition

period volatility seems to remain high until the last two years of the sample during which it

declines sharply. An alternative possibility is that multiple structural breaks have occurred,

as suggested by Andreou and Ghysels (2002a).

The scatter plot of log(s2
t ) against rt−1 in Figure 3.2 reveals a rather pronounced re-

lationship between current volatility and lagged returns beyond that already captured in

contemporaneous realized volatility. To examine the possible presence of a leverage effect,

we estimate the “news impact curve” (Engle and Ng, 1993)

log(s2
t ) = β0 + β1|rt−1| + β2I[rt−1 < 0] + β3|rt−1|I[rt−1 < 0], (3.2)

where I[A] is an indicator function for the event A, being equal to 1 if A occurs, and 0

otherwise. The fit from this regression is included in Figure 3.2 as well, along with the fit

Figure 3.2: Leverage effects in realized volatility
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Notes: Scatter plot of daily log realized variance and lagged returns, based on observations for the period
from January 3, 1994, until December 29, 2003 (2521 observations). The solid line is the fit of the news
impact curve (3.2), where log realized volatility is regressed on a constant, the lagged absolute return, a
dummy for negative returns and an interaction term of this dummy with the lagged absolute return. The
dashed line is the fit of a symmetric news impact curve, i.e. (3.2) with β2 = β3 = 0. The dot-dashed line
is the fit from a nonparametric regression of log realized volatility on the lagged return.
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from a symmetric version of this news impact curve, obtained by setting β2 = β3 = 0 in

(3.2). It is clearly seen by the solid line in the graph that the impact of negative lagged

returns is larger than the effect of positive returns of equal magnitude. Also, the parametric

form in (3.2) appears to be quite reasonable, as can be seen by comparing the fit from this

regression with a nonparametric regression of log realized volatility on the lagged return,

also shown by the dash-dotted line in Figure 3.2.

Sixth, Table 3.2 shows the overall mean for all return and volatility measures on differ-

ent types of days by distinguishing between regular days, holidays and days with macro-

economic news announcements. It is clear that returns and volatility are both higher after

holidays and that volatility during the Christmas period is only roughly half of its level

during regular days. Volatility is in particular substantially higher on announcement days,

especially on days when decisions regarding the federal funds rate are released when real-

ized variance is on average 2.379%, substantially above its non-announcement day mean

of 1.352%.

Finally, Table 3.3 shows the overall mean and the mean on different days-of-the-week.

The top panel in the table confirms the common finding based on daily returns that Mon-

days and Fridays exhibit higher volatility than other days by the S&P data. Interestingly,

Table 3.2: Descriptive statistics for daily S&P 500 return and realized volatility

ALL NONE HOL XMS ANN EMP PPI CPI FF

Returns 0.022 −0.005 0.051 0.054 0.130 0.204 0.129 0.036 0.265
Standardized returns 0.086 0.061 0.157 0.113 0.187 0.250 0.092 0.235 0.243

Squared returns 1.423 1.325 2.694 0.761 1.817 2.042 1.710 1.650 2.166
Realized variance 1.421 1.352 1.721 0.602 1.816 1.927 1.800 1.523 2.379
Log realized variance −0.107 −0.140 −0.058 −0.755 0.106 0.271 0.037 −0.031 0.156

Number of obs. 2521 1977 76 41 430 117 118 120 85

Notes: The table contains sample averages of daily S&P 500 returns and realized volatility measures.
The sample period covers January 3, 1994 until December 31, 2003 (2521 observations). ALL indicates
all days in the sample period; NONE indicates days without announcements, not following a holiday,
and not in the Christmas period. HOL indicates days following a holiday. XMS denotes days during
the Christmas period; ANN indicates all days with one or more macroeconomic announcements; EMP,
PPI, CPI and FF indicate days with an announcement of employment, PPI, CPI, and the Federal
Funds target rate, respectively. Standardized returns are obtained by dividing the raw returns by the
realized standard deviation.



3.2 Data 57

this pattern is quite different for the realized variance. Thursdays and Fridays exhibit the

highest volatility but Mondays no longer have an above average volatility. In fact, for

realized variance the mean is lowest on Mondays.

The observed patterns can to a large extent be explained by making the distinction

between days with and without macro releases, similar as in Andersen and Bollerslev

(1998b). The middle and bottom panels in Table 3.3 allow for a direct comparison. Squared

returns and realized variance are both clearly higher on announcement days. From the

Table 3.3: Day-of-the-week effects in S&P 500 return and realized volatility

Overall MON TUE WED THU FRI

All days

Returns 0.022 0.034 0.049 -0.008 0.000 0.038
Standardized returns 0.086 0.128 0.094 0.038 0.074 0.101
Squared returns 1.423 1.581 1.492 1.229 1.359 1.464
Realized variance 1.421 1.295 1.347 1.422 1.506 1.530

Non-announcement days

Returns 0.000 0.052 0.001 -0.024 -0.022 -0.013
Standardized returns 0.065 0.137 0.039 0.031 0.060 0.049
Squared returns 1.342 1.514 1.597 1.183 1.281 1.038
Realized variance 1.339 1.247 1.361 1.354 1.436 1.292

Announcement days

Returns 0.130 -2.967 0.261 0.093 0.172 0.113
Standardized returns 0.187 -1.323 0.332 0.087 0.182 0.176
Squared returns 1.817 12.276 1.035 1.534 1.946 2.089
Realized variance 1.816 8.975 1.284 1.867 2.036 1.880

Number of obs. 430 3 96 68 59 204

Notes: The table contains daily means for S&P 500 returns and realized vari-
ance. The sample period covers January 3, 1994 until December 31, 2003
(2521 observations). Standardized returns are obtained by dividing the raw
returns by the realized standard deviation. The three panels distinguish be-
tween statistics computed using all days (top panel), days without any macro
news announcements (middle panel) and days on which at least one macro
figure is released (bottom panel). The final row in the table shows the total
number of announcement days and how these are dispersed across the days of
the week.
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bottom panel it becomes clear that most macro releases occur on Fridays (204 out of the

total of 430 announcements). Squared returns and realized variance are both higher on

Friday than on other announcement days. This explains the on average higher values for

realized variance on Fridays in the top panel.

After correcting for announcement effects, squared returns are still higher at the begin-

ning of the week with averages of 1.514% and 1.597% for Mondays and Tuesdays respec-

tively, something which is not the case for realized variance.

3.3 Nonlinear Long Memory models

Following previous studies, we employ Autoregressive Fractionally Integrated Moving Aver-

age (ARFIMA) models to describe the dynamic properties of logarithmic realized volatility

yt = log(s2
t ),

φ(L)(1 − L)d(yt − µt) = εt, (3.3)

where the order of integration d is allowed to take non-integer values, φ(L) = 1−φ1L−. . .−
φpL

p is a p-th order lag polynomial assumed to have all roots outside the unit circle and εt

is a white noise process. It is common practice to set the mean µt equal to a constant, i.e.

µt = c. However, to capture the salient features of the S&P realized volatility discussed in

the previous section, we extend the model to allow for gradual level shifts, day-of-the-week

and holiday effects, announcement effects and nonlinear effects of lagged returns by setting

µt = c(t) + β1|rt−1| + β2I[rt−1 < 0] + β3|rt−1|I[rt−1 < 0]

+ δ1D
∗
1,t + δ2D

∗
2,t + δ4D

∗
4,t + δ5D

∗
5,t + δ6DHOL,t + δ7DXMS,t

+ δ8DEMP,t + δ9DPPI,t + δ10DCPI,t + δ11DFF,t

+ δ12DEMPt+1,t + δ13DPPIt+1,t + δ14DCPIt+1,t + δ15DFFt+1,t (3.4)

where D∗
s,t ≡ Ds,t − D3,t Ds,t, s = 1, 2, 4, 5 are “centered” daily dummy variables, with

Ds,t = 1 when time t corresponds with day s (1=Monday, 2=Tuesday, etc.) and Ds,t = 0

otherwise. The dummies DHOL,t and DXMS,t are 1 for days following a holiday and days

during the Christmas period respectively. In our choice of macro announcements we follow

Ederington and Lee (1993) by including daily dummies for the release of the Employment

report (DEMP,t), Consumer Price Index (DCPI,t) and Producer Price Index (DPPI,t). In

addition we include a daily dummy for FOMC meeting days on which decisions regarding
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the Federal Funds target rate are announced (DFF,t)
4. Similar to Bomfim (2003b) we

also include “calm-before-the-storm” dummies (DEMPt+1,t, DCPIt+1,t, , DPPIt+1,t, DFFt+1,t)

to allow for volatility to be depressed on pre-announcement days.5

We capture gradual level shifts in volatility by specifying the parameter c(t) as an arbi-

trary deterministic trend function on t ∈ [1, ..., T ] which is estimated semi-parametrically

using kernel regression, see Beran and Ocker (2001) and Beran (1999) for further details.6

The above ARFI model with Semi-Parametric mean (SP), holiday and day-of-the-week

Dummies (D), macro news (pre-)Announcement dummies (A), lagged Return (R) and

Leverage effects (L) will be denoted SPARFI-DARL.

We also estimate an alternative model, where (cf. Ebens, 1999) terms involving the

lagged returns are not included in the conditional mean µt, but as “exogenous regressors”

(X), leading to the model (denoted SPARFI-DAXRL)

φ(L)(1 − L)d(yt − µt) = β̃1|rt−1| + β̃2I[rt−1 < 0] + β̃3|rt−1|I[rt−1 < 0] + εt, (3.5)

where now

µt = c(t) + δ1D
∗
1,t + δ2D

∗
2,t + δ4D

∗
4,t + δ5D

∗
5,t + δ6DHOL,t + δ7DXMS,t

+ δ8DEMP,t + δ9DPPI,t + δ10DCPI,t + δ11DFF,t

+ δ12DEMPt+1,t + δ13DPPIt+1,t + δ14DCPIt+1,t + δ15DFFt+1,t (3.6)

Finally, for completeness, we examine a similar model where the (pre-)announcement dum-

mies are now also included as exogenous regressors.

φ(L)(1 − L)d(yt − µt) = β̃1|rt−1| + β̃2I[rt−1 < 0] + β̃3|rt−1|I[rt−1 < 0]

+ δ8DEMP,t + δ9DPPI,t + δ10DCPI,t + δ11DFF,t

+ δ12DEMPt+1,t + δ13DPPIt+1,t + δ14DCPIt+1,t + δ15DFFt+1,t + εt, (3.7)

4Note that as our sample starts in 1994 we are not confronted with the issue that the Federal Reserve
started to announce the decision about changing the target rate during regularly scheduled FOMC meetings
only as of 1994, see Andersen et al. (2003b) and Bomfim (2003b). Note further that as of 1994 there are
eight scheduled FOMC meetings each year and that during our sample period (1994-2003) there have been
five announced meetings: April 18, 1994; October 15, 1998; January 3, 2001; April 18, 2001 and September
17, 2001. Also for these days we set DFF,t = 1. Furthermore, for the FOMC meetings that last two days
we set DFF,t = 1 only for the second day.

5Bomfim (2003b) examines the news effect of monetary policy decisions on S&P 500 index returns
and therefore only includes a calm-before-the-storm effect surrounding FOMC meetings. Here we allow
volatility to be different on every pre-announcement day.

6More specifically we obtain the estimated function ĉt, t ∈ [1, ..., T ] by using the Nadaraya-Watson
kernel regression estimator with a Gaussian kernel and choosing the Silverman (1986) optimal bandwidth.
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and where therefore

µt = c(t) + δ1D
∗
1,t + δ2D

∗
2,t + δ4D

∗
4,t + δ5D

∗
5,t + δ6DHOL,t + δ7DXMS,t (3.8)

To gauge the relative importance of the different nonlinear features of realized volatility,

we also estimate several restricted versions of the full models. In particular, we consider (i)

a model without the leverage effect but including the lagged absolute return (β2 = β3 = 0

in (3.4) or β̃2 = β̃3 = 0 in (3.5) and (3.7); SPARFI-DA(X)R), (ii) a model without any

effect of lagged returns at all (β1 = β2 = β3 = 0 in (3.4) or β̃1 = β̃2 = β̃3 = 0 in (3.5)

and (3.7); SPARFI-DA), (iii) a model without any effect of lagged returns and without

(pre-)announcement effects (imposing in addition that δi = 0, for i = 8, ..., 15 in (3.4),

(3.6) or (3.8); SPARFI-D) and (iv) a model without any effect of lagged returns, (pre-

)announcement effects and seasonal effects (thereby also imposing δ1 = ... = δ7 = 0 in

(3.4), (3.6) or (3.8); SPARFI). Finally, we also estimate all models without allowing for

structural changes (by imposing that c(t) is equal to a constant (c(t) = c).

For estimation of the parameters in the ARFI models we use the Beran (1995) approx-

imate maximum likelihood (AML) estimator for invertible and possibly non-stationary

ARFIMA models (i.e. for d > −0.5), which amounts to minimizing the sum of squared

residuals

Qn(θ) =
T∑

t=1

e2t (θ), (3.9)

where θ = (d, γ, τ, c, β, δ, φ), T is the sample size and the residuals et(θ) are computed as

et(θ) = (yt − µt) −
t+p−1∑

j=1

πj(yt−j − µt−j) (3.10)

where the πj are the autoregressive coefficients in the infinite order AR representation of

the ARFI models

π(L)(yt − µt) = εt, (3.11)

that is π(L) = 1− π1L− π2L
2 − . . . ≡ φ(L)(1−L)d, and the πj can be computed by using

the binomial expansion of the fractional differencing operator (1 − L)d,

(1 − L)d = 1 − dL+
d(d− 1)L2

2!
− d(d− 1)(d− 2)L3

3!
+ · · · . (3.12)
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The AML estimator is asymptotically efficient if the errors εt are normally distributed.

Under less restrictive regularity conditions, it is
√
n consistent and asymptotically normal.

We employ the Akaike Information Criterion (AIC) in the full nonlinear model to

select the appropriate autoregressive order p. The selected lag order p = 2 is subsequently

imposed in the nested models, to facilitate comparison of the parameter estimates.

3.4 Estimation results

All results discussed in this section are based on estimating models over the period from

January 3, 1994 until December 31, 1997 (1011 observations). The remainder of the sample

period will be used to evaluate the out-of-sample forecast performance of the various mod-

els. Detailed full-sample estimation results are available upon request. Table 3.4 contains

estimation results for the different ARFI models in equations (3.4)-(3.8) which do not allow

for structural change in µt (c(t) = c). Table 3.5 shows results for the corresponding models

which do allow for such level shifts in realized volatility. Several conclusions can be drawn

from these tables. First, the order of integration d ranges between 0.3 and 0.5, which is

in line with estimates reported in previous studies. For some models the point estimate of

d is very close to 0.5, suggesting that log realized volatility may be non-stationary. Note

however, that in all models, the autoregressive parameters φ1 and φ2 are negative, such

that the autoregressive coefficients in the AR(∞) representation are reduced as a result of

which the model can still be considered stationary for practical purposes such as forecasting

at relatively short horizons. Comparing the estimates of d for the models with constant

c(t) in Table 3.4 with those in Table 3.5 makes clear that allowing for structural change

in µt lowers the order of integration, confirming that neglecting level shifts may spuriously

suggest fractional integration, cf. Diebold and Inoue (2001). In the ARFI-DARL model,

for example, d is estimated at 0.493, compared with 0.377 in the SPARFI-DARL model.

Note, however, that the point estimates of d are still significantly different from zero in

the models with structural change. Hence, as expected from the results in Andersen and

Bollerslev (1997), the level shift cannot fully account for the long memory feature in re-

alized volatility. It is also interesting to note that the order of integration is affected by

the way the lagged returns are treated: if these are included as exogenous regressors, the

estimate of d is substantially lower than if these are included in µt.
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Table 3.4: Estimated ARFI models for daily S&P 500 realized volatility, January
1994-December 1997

ARFI ARFI-D ARFI-DA ARFI-DAR ARFI-DARL ARFI-DAXRL ARFI-DXARL

d̂ 0.471 0.480 0.478 0.469 0.493 0.387 0.382
(0.046) (0.046) (0.046) (0.046) (0.044) (0.036) (0.035)

α̂ −0.778 −0.778 −0.786 −0.868 −0.857 −1.517 −1.654
(0.311) (0.318) (0.308) (0.285) (0.302) (0.256) (0.247)

β̂1 − − − 0.137 −0.003 0.017 0.008
(0.036) (0.041) (0.037) (0.038)

β̂2 − − − − −0.070 −0.042 −0.049
(0.044) (0.044) (0.045)

β̂3 − − − − 0.308 0.346 0.364
(0.051) (0.048) (0.049)

δ̂MON − −0.139 −0.097 −0.101 −0.101 −0.103 −0.119
(0.032) (0.032) (0.033) (0.032) (0.032) (0.033)

δ̂TUE − −0.078 −0.085 −0.089 −0.089 −0.093 −0.096
(0.032) (0.032) (0.031) (0.031) (0.031) (0.032)

δ̂THU − 0.003 0.069 0.086 0.086 0.092 0.102
(0.030) (0.032) (0.032) (0.031) (0.031) (0.031)

δ̂FRI − 0.176 0.064 0.062 0.048 0.049 0.064
(0.034) (0.035) (0.035) (0.034) (0.035) (0.034)

δ̂HOL − 0.304 0.340 0.335 0.299 0.302 0.286
(0.169) (0.158) (0.163) (0.167) (0.170) (0.173)

δ̂XMS − −0.533 −0.485 −0.457 −0.434 −0.446 −0.455
(0.184) (0.179) (0.163) (0.149) (0.144) (0.143)

δ̂PPI − − 0.182 0.169 0.134 0.118 0.080
(0.087) (0.089) (0.088) (0.088) (0.092)

δ̂EMP − − 0.539 0.564 0.568 0.568 0.587
(0.094) (0.096) (0.095) (0.095) (0.103)

δ̂CPI − − 0.089 0.100 0.090 0.084 0.064
(0.074) (0.070) (0.065) (0.063) (0.066)

δ̂FF − − 0.235 0.252 0.269 0.276 0.316
(0.109) (0.110) (0.109) (0.112) (0.121)

δ̂PPI(+1) − − −0.022 −0.016 −0.018 −0.032 −0.063
(0.075) (0.076) (0.073) (0.073) (0.077)

δ̂EMP(+1) − − −0.258 −0.265 −0.262 −0.269 −0.302
(0.078) (0.076) (0.076) (0.076) (0.079)

δ̂CPI(+1) − − 0.002 0.001 −0.002 0.003 0.018
(0.093) (0.096) (0.097) (0.098) (0.105)

δ̂FF(+1) − − −0.115 −0.105 −0.112 −0.111 −0.098
(0.090) (0.089) (0.089) (0.090) (0.095)

φ̂1 −0.104 −0.090 −0.044 −0.098 −0.193 −0.117 −0.139
(0.053) (0.053) (0.052) (0.055) (0.056) (0.046) (0.045)

φ̂2 −0.086 −0.100 −0.094 −0.073 −0.074 −0.050 −0.043
(0.041) (0.041) (0.041) (0.042) (0.043) (0.039) (0.038)

σ̂ε 0.581 0.563 0.543 0.537 0.525 0.516 0.518
AIC −1.078 −1.129 −1.187 −1.205 −1.248 −1.280 −1.272
BIC −1.059 −1.080 −1.099 −1.112 −1.146 −1.177 −1.169

LMSC(1) 0.135 0.289 0.026 0.334 0.434 11.140 0.948
(0.71) (0.59) (0.87) (0.56) (0.51) ((8.7E−4)) (0.33)

LMSC(5) 0.776 0.730 0.824 0.599 0.605 3.302 0.926
(0.57) (0.60) (0.53) (0.70) (0.70) ((5.8E−3)) (0.46)

LMSC(10) 0.875 0.489 0.837 0.635 0.514 2.223 0.999
(0.56) (0.90) (0.59) (0.79) (0.88) (0.01) (0.44)

Notes: The table presents parameter estimates, diagnostic measures and misspecification tests for estimated ARFI
models for daily S&P 500 realized volatility, over the period January 3, 1994-December 31, 1997 (1011 observations).
The column ARFI-DA(X)RL contains estimates of the model including seasonal and (pre-)announcement dummies
and leverage effects as part of µt (as exogenous variables), the column ARFI-DA(X)R contains estimates of the
model including seasonal and (pre-)announcement dummies and symmetric effects of the lagged absolute return
as part of µt (as exogenous variable), the column ARFI-DA contains estimates for the model with seasonal and
(pre-)announcement dummies but without the lagged absolute return, the column ARFI-DA contains estimates
for the model with only seasonal dummies but without (pre-)announcement dummies and the column ARFI shows
estimates for a model without dummies and without lagged absolute returns. σ̂ε is the residual standard deviation.
LMSC(q) denotes the (F variant of the) LM test of no serial correlation in the residuals up to and including order
q. The numbers in parentheses below parameter estimates and test statistics are heteroskedasticity-consistent
standard errors and p-values, respectively.
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Table 3.5: Estimated SPARFI models for daily S&P 500 realized volatility, January
1994-December 1997

SPARFI SPARFI-D SPARFI-DA SPARFI-DAR SPARFI-DARL SPARFI-DAXRL SPARFI-DXARL

d̂ 0.351 0.363 0.353 0.340 0.377 0.329 0.340
(0.053) (0.051) (0.052) (0.053) (0.051) (0.044) (0.043)

β̂1 − − − 0.141 0.001 −0.071 −0.090
(0.037) (0.041) (0.025) (0.027)

β̂2 − − − −0.069 −0.118 −0.135
(0.044) (0.032) (0.034)

β̂3 − − − 0.305 0.407 0.433
(0.050) (0.044) (0.046)

δ̂MON − −0.139 −0.098 −0.102 −0.102 −0.103 −0.126
(0.032) (0.033) (0.033) (0.032) (0.032) (0.032)

δ̂TUE − −0.077 −0.085 −0.089 −0.090 −0.092 −0.096
(0.032) (0.032) (0.032) (0.031) (0.032) (0.032)

δ̂THU − 0.004 0.071 0.087 0.088 0.089 0.102
(0.030) (0.032) (0.032) (0.031) (0.031) (0.031)

δ̂FRI − 0.176 0.064 0.062 0.048 0.048 0.067
(0.034) (0.036) (0.035) (0.034) (0.035) (0.035)

δ̂HOL − 0.310 0.344 0.341 0.305 0.306 0.286
(0.171) (0.159) (0.165) (0.169) (0.166) (0.169)

δ̂XMS − −0.550 −0.497 −0.472 −0.449 −0.460 −0.479
(0.175) (0.171) (0.156) (0.142) (0.144) (0.143)

δ̂PPI − − 0.177 0.163 0.130 0.125 0.061
(0.089) (0.091) (0.090) (0.089) (0.094)

δ̂EMP − − 0.540 0.567 0.570 0.568 0.559
(0.094) (0.096) (0.095) (0.095) (0.102)

δ̂CPI − − 0.090 0.101 0.089 0.080 0.028
(0.075) (0.071) (0.066) (0.066) (0.068)

δ̂FF − − 0.241 0.259 0.274 0.270 0.291
(0.112) (0.113) (0.112) (0.113) (0.122)

δ̂PPI(-1) − − −0.024 −0.018 −0.020 −0.025 −0.084
(0.075) (0.076) (0.073) (0.072) (0.076)

δ̂EMP(-1) − − −0.261 −0.267 −0.264 −0.266 −0.326
(0.079) (0.076) (0.077) (0.078) (0.080)

δ̂CPI(-1) − − 0.006 0.006 0.001 −0.001 0.001
(0.096) (0.099) (0.100) (0.100) (0.106)

δ̂FF(-1) − − −0.110 −0.100 −0.106 −0.118 −0.127
(0.089) (0.089) (0.089) (0.089) (0.093)

φ̂1 0.001 0.011 0.065 0.014 −0.094 −0.043 −0.077
(0.060) (0.058) (0.058) (0.059) (0.060) (0.053) (0.051)

φ̂2 −0.037 −0.054 −0.047 −0.020 −0.021 −0.020 −0.023
(0.041) (0.040) (0.041) (0.042) (0.044) (0.039) (0.039)

σ̂ε 0.577 0.559 0.539 0.533 0.521 0.516 0.519
AIC −1.093 −1.144 −1.202 −1.221 −1.264 −1.284 −1.272
BIC −1.079 −1.100 −1.119 −1.133 −1.166 −1.186 −1.174

LMSC(1) 0.686 0.447 1.009 0.404 0.313 5.666 0.007
(0.41) (0.50) (0.32) (0.53) (0.58) (0.02) (0.93)

LMSC(5) 1.572 1.275 1.487 1.056 1.239 2.271 0.692
(0.17) (0.27) (0.19) (0.38) (0.29) (0.05) (0.63)

LMSC(10) 1.587 1.274 1.725 1.756 1.098 2.610 1.550
(0.11) (0.24) (0.07) (0.06) (0.36) (0.00) (0.12)

Notes: The table presents parameter estimates, diagnostic measures and misspecification tests for estimated
SPARFI models for daily S&P 500 realized volatility, over the period January 3, 1994-December 31, 1997 (1011
observations). The column SPARFI-DA(X)RL contains estimates of the model including seasonal and (pre-)an-
nouncement dummies and leverage effects as part of µt (as exogenous variables), the column SPARFI-DA(X)R
contains estimates of the model including seasonal and (pre-)announcement dummies and symmetric effects of
the lagged absolute return as part of µt (as exogenous variable), the column SPARFI-DA contains estimates for
the model with seasonal and (pre-)announcement dummies but without the lagged absolute return, the column
SPARFI-DA contains estimates for the model with only seasonal dummies but without (pre-)announcement dum-
mies and the column SPARFI shows estimates for a model without dummies and without lagged absolute returns.
σ̂ε is the residual standard deviation. LMSC(q) denotes the (F variant of the) LM test of no serial correlation in the
residuals up to and including order q. The numbers in parentheses below parameter estimates and test statistics
are heteroskedasticity-consistent standard errors and p-values, respectively.
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Second, Figure 3.3 shows, for the full sample, that the semi-parametric c(t) captures

the structural break at the end of 1996 quite accurately as well as the downward trend in

volatility at the end of the sample.

Figure 3.3: Modeling structural change
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Notes: Plot of the daily log realized variance and the estimate of c(t) in the SPARFI model (solid
line) for the full sample from January 3, 1994 until December 29, 2003 (2521 observations).

Third, the estimates of the seasonal dummy parameters δ1, . . . , δ7 confirm the descrip-

tive statistics in Table 3.3, in that volatility is significantly higher after public holidays,

significantly lower during the Christmas and on average realized volatility is also signif-

icantly lower on Mondays and Tuesdays and higher on Fridays. The latter is, however,

for a large part due to not explicitly accounting for news announcement effects. The re-

sults for the models that include the (pre-)announcement dummy variables show that the

day-of-week pattern to a large extent disappears. On announcement days volatility is sub-

stantially higher than on non-announcement days, especially on days when news about

employment and the federal funds target rate is announced. The pre-announcement dum-

mies show that there is also a calm-before-the-storm effect with volatility nearly always

being lower on days before announcements. The effect is particularly strong on days before

an employment record release.
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Fourth, the models that include lagged returns indicate a significant relationship be-

tween log(s2
t ) and rt−1. We also find convincing evidence for the presence of a leverage

effect which corroborates the results of Bollerslev et al. (2006). The point estimates of β1

and β3 in ARFI-DA(X)RL models in fact suggest that only negative lagged returns affect

current realized volatility, as β̂1 is not significantly different from zero.

Fifth, comparing the residual standard deviation, AIC and BIC across different columns

shows that incorporating the different nonlinear features in the model enhances the in-

sample fit. Allowing for (pre-)announcement dummies and a leverage effect appears to be

most important in this respect, where the models which include the terms involving lagged

returns as exogenous regressors (cf. Ebens, 1999) are preferred over models which include

these terms in the conditional mean µt (cf. Oomen, 2002). Note that the AIC values for

ARFI and SPARFI models do not differ substantially, suggesting that accounting for the

level shift in realized volatility does not lead to much improvement of the model.

3.5 Forecasting volatility

The period from January 2, 1998 through December 29, 2003 (1510 observations) is used

to judge the relevance of modeling the nonlinearities in S&P 500 realized volatility for out-

of-sample forecasting purposes. All models are estimated recursively, using an expanding

window of data. Volatility forecasts for 1- to 20-days ahead are constructed by means of

Monte Carlo simulation, where we use the infinite order AR-representation of the ARFI

models given in (3.11), truncated after 200 lags.7 In addition to forecasts for logarithmic

realized volatility, which is the dependent variable in the ARFI models, we also construct

forecasts for the realized variance and realized standard deviation, where we ensure that

these forecasts are unbiased.8 In the forecast evaluation below, we concentrate on forecasts

7The truncated infinite order AR representation in (3.11) can be rewritten as yt = µ̂t +
∑p∗

j=1 πj(yt−j −
µ̂t−j) + et, where p∗ = 200. The 1-step ahead forecast yt+1|t is obtained by sampling B independent

random draws z
(i)
t+1, i = 1, . . . , B from a standard normal distribution, which are multiplied by the residual

standard deviation σ̂e. The resulting shocks e
(i)
t+1 = z

(i)
t+1σ̂e are fed into the model to obtain a realization

y
(i)
t+1|t = µ̂t+1 +

∑p∗

j=1 πj(yt+1−j − µ̂t+1−j) + e
(i)
t+1. Finally, the 1-step ahead forecast yt+1|t is the mean

across all B realizations, yt+1|t = 1
B

∑B
i=1 y

(i)
t+1|t. For multiple step ahead forecasts from models which

include lagged returns in µt, these returns are simulated as well, by multiplying the standard deviation in

the i-th path by another draw vt from a standard normal distribution, e.g. r
(i)
t+1 =

√
exp(y

(i)
t+1|t)vt.

8This is achieved by applying the appropriate transformation to all simulated paths of log realized
volatility individually, and then averaging. For example, the 1-step ahead forecast of the realized standard

deviation is computed as st+1|t = 1
B

∑B
i=1

√
exp(y

(i)
t+1|t).
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for the standard deviation. Results for forecasts of the (logarithmic) variance are qualita-

tively similar and are available upon request. Furthermore, h-days ahead forecasts refer

to realized standard deviations over the next h days, i.e. ŝt+h|t =
√∑h

j=1 ŝ
2
t+j|t (instead of

daily realized standard deviation h-days ahead).

3.5.1 Alternative forecasting models

For comparison purposes, forecasts were also produced for two popular models that only

use daily returns and treat volatility as a latent variable. First, Riskmetrics uses historical

volatility with exponentially declining weights,

σ2
t = λσ2

t−1 + (1 − λ)r2
t−1, (3.13)

with λ = 0.94.

Second, Glosten, Jagannathan, and Runkle (1993) (GJR) incorporated leverage effects

into the popular Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

model. Also including day-of-week dummies, calm-before-the-storm dummies and an-

nouncement dummies, the GJR-GARCH(1,1)-DA model is specified as

rt = c+ ut (3.14)

ut|Ψt−1 ∼ N(0, σ2
t ) (3.15)

σ2
t = ω + δ1D

∗
1,t + δ2D

∗
2,t + δ4D

∗
4,t + δ5D

∗
5,t + δ6DHOL,t + δ7DXMS,t

+δ8DEMP,t + δ9DPPI,t + δ10DCPI,t + δ11DFF,t

+δ12DEMPt+1,t + δ13DPPIt+1,t + δ14DCPIt+1,t + δ15DFFt+1,t

+αu2
t−1 + γu2

t−1I[ut−1 < 0] + βσ2
t−1, (3.16)

where Ψt−1 is the information set containing all daily information up to day t, and the

error terms ut are assumed to follow a conditional normal distribution with mean zero and

variance σ2
t . Restricting γ = 0 results in the GARCH(1,1)-DA model, and further imposing

δ1 = δ2 = ... = δ15 = 0 renders the standard GARCH(1,1) model.9

We analyze two additional forecasting models. In both of these realized variance is

modelled directly as in our ARFIMA model. However, standard time-series models are

used, which, contrary to the ARFIMA models, do not incorporate the long-memory filter

(1 − L)d. First, we consider an AR(p) model, given by

φ(L)(yt − µt) = εt, (3.17)

9The results for the standard GARCH models are not reported but are available upon request. See also
Koopman et al. (2005) for more results on comparing daily GARCH models with ARFIMA models.
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where φ(L) is again a p−th order lag polynomial. We use the following lag lengths; p =

1, 5, 10, 20. Using longer lag lengths allows the AR(p) model to mimic long-memory-type

behaviour.

Second, we consider the Heterogeneous Autoregressive (HAR) realized volatility model

proposed by Corsi (2004) which is given by

yt = µt + φdy
(1)
t−1 + φwy

(5)
t−1 + φmy

(20)
t−1 + εt (3.18)

where y
(1)
t−1 is the previous-day realized volatility and where y

(5)
t−1 and y

(20)
t−1 are the (sum

of) realized volatilities over the last week and month respectively. Note that the HAR-RV

can be obtained from (3.17) by imposing restrictions on the autoregressive parameters in

the lag polynomial φ(L). Both for the AR and HAR models µt can be modelled in the

same way as for the ARFIMA models, i.e. including all or some of the non-linearities as

well as specifying these as exogenous regressors. To save space and because the ARFI-

DAXRL model was shown to provide the best description of the data, we will only show

forecasting results for the versions that include all non-linearities. We use the same notation

as before, e.g. AR10-DAXRL and HAR-DAXRL for the AR(10) and HAR models with

seasonal dummies and (pre-)announcement dummies as part of µt and the terms involving

lagged returns as exogenous variables.

3.5.2 Forecast evaluation

A number of out-of-sample forecast performance measures are used to evaluate and compare

the various models. First, the quality of individual forecasts is assessed by regressing the

observed h-day realized standard deviation on the corresponding forecast,

st+h|t+1 =

√√√√
h∑

j=1

s2
t+j = b0 + b1ŝt+h|t + νt, (3.19)

where b0 and b1 should be equal to 0 and 1, respectively, for the forecast to be unbiased

and efficient.

Forecasts from two different models are compared directly by means of the encompass-

ing regression

st+h|t+1 =

√√√√
h∑

j=1

s2
t+j = b0 + b1ŝt+h|t,(1) + b2ŝt+h|t,(2) + νt, (3.20)
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where ŝt+h|t,(i) is the forecast of model i = 1, 2 for the volatility from t+1 to t+h, made at

the end of day t. In addition a number of popular error metrics are computed, namely the

Mean Squared Prediction Error (MSPE; MSPE = 1
R

∑R
i=1(st+h|t+1 − ŝt+h|t)

2 where R de-

notes the number of forecasts), the Mean Absolute Error (MAE;MAE = 1
R

∑R
i=1 |st+h|t+1−

ŝt+h|t|), and the Heteroskedasticity-adjusted MSPE (HMSPE; HMSPE = 1
R

∑R
i=1(1 −

ŝt+h|t

st+h|t+1
)2). In most cases we will focus the discussion on the MSPE results, with Patton

(2006) showing this is the most reliable metric given that the forecast target is a proxy for

volatility. Finally, we also report the Mean Error (ME; ME = 1
R

∑R
i=1 st+h|t+1 − ŝt+h|t).

10

3.5.3 Forecast comparison

To test for significant differences in forecast accuracy between competing models we apply

the Model Confidence Set approach proposed by Hansen et al. (2005a). Given a set of

forecasting models, M0, the goal of the Model Confidence Set (MCS) procedure is to

identify the MCS set M̂∗
1−α ⊂ M0 which is the set of models constructed such that it will

contain the “best” forecasting model, given a level of confidence α.

Starting with the full set of models M = M0, the MCS procedure repeatedly tests the

null hypothesis of equal forecasting accuracy

H0,M : E(dij,t) = 0, for all i, j ∈ M

where dij,t is the loss differential between models i and j in the set: dij,t = Li,t − Lj,t

with L an appropriate loss function. The MCS procedure sequentially eliminates the worst

performing model from M as long as the null is being rejected. This trimming of models

is repeated until the null is accepted and the surviving set of models then form the Model

Confidence Set, M̂∗
1−α.

Hansen et al. (2005a) discuss three different test statistics to test the null hypothesis

H0,M. We follow Hansen et al. (2003) by applying the MCS procedure with two of these;

the range statistic, TR, and the semi-quadratic statistic, TSQ. Both test statistics are based

on the following t-statistics (using d̄ij = 1
R

∑R
i=1 dij,t),

tij =
d̄ij√

v̂ar(d̄ij)
for i, j ∈ M (3.21)

10See also Andersen, Bollerslev, and Meddahi (2004, 2005) for recent discussions on issues involved in
evaluating realized volatility forecasts.
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and are given by

TR ≡ max
i,j∈M

|tij| and TSQ ≡
∑

i,j∈M
t2ij (3.22)

Following Hansen et al. (2005a) we implement the MCS procedure using the stationary

block bootstrap of Politis and Romano (1994) with an average block length of 20 days and

we choose MSPE for the loss function L.

The MCS procedure assigns p-values to each model in the initial set. For a given model

i ∈ M0, the MCS p-value, p̂i, is the threshold that determines whether the model belongs

to the MCS set or not. It hold that i ∈ M̂∗
1−α if and only if p̂i ≥ α. We report results for

confidence levels of 10% and 25%.

In addition to applying the MCS approach to identify the best performing models from

a whole set of models, we also apply it pairwise to test for significant differences between

just two competing models, like the Diebold and Mariano (1995) test of equal forecast

accuracy.11 Finally, we also use the MCS framework to test whether the forecasts from one

model encompass those of another model, in the spirit of Harvey et al. (1998). In both

cases the reported p-values are based on the TSQ test.

Note that a number of issues need to be addressed when testing for significant differences

in forecast error metrics between models. These include comparing forecast which are based

on estimated parameters, the choice of estimation window and comparing forecasts from

nested models, see West (2006) a.o. for a discussion. As noted by Hansen et al. (2005a),

the MCS procedure is also potentially affected when forecasts are compared which are

based on estimated parameters but it nevertheless seems informative to apply the MCS

procedure here.

3.5.4 Forecast results

Results for the one-day ahead forecasts for all models are presented in Table 3.6. For the

ARFI models that allow for structural change, as well as for the AR and HAR models, we

only report results for the models that include all nonlinearities. Furthermore, for the AR

11The Diebold and Mariano (1995) test, however, relies on asymptotics whereas here we evaluate test
statistics using a bootstrap methodology.
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Table 3.6: Out-of-sample forecast evaluation, January 1998-December 2003 - standard
deviation, one-day ahead

ME MSPE MAE HMSPE b0 b1 R2 R̃2

Riskmetrics −0.050 0.190 0.303 0.114 0.194 0.813 0.390 0.574
(0.011) [0.001] [0.000] [0.000] (0.040) (0.035) [0.023]

GJR-G-DA(1,1) −0.006 0.160 0.266 0.089 0.228 0.814 0.488 0.582
(0.010) [0.029] [0.000] [0.000] (0.035) (0.031) [0.016]

ARFI −0.003 0.143 0.246 0.073 −0.076 1.058 0.521 0.587
(0.010) [0.366] [0.000] [0.001] (0.045) (0.040) [0.026]

ARFI-D −0.005 0.142 0.243 0.069 −0.043 1.031 0.525 0.584
(0.010) [0.479] [0.008] [0.057] (0.045) (0.040) [0.031]

ARFI-DA −0.006 0.137 0.242 0.069 −0.017 1.009 0.538 0.585
(0.010) [0.891] [0.000] [0.017] (0.046) (0.041) [0.033]

ARFI-DAR −0.006 0.137 0.241 0.071 0.007 0.990 0.538 0.578
(0.010) [0.892] [0.002] [0.004] (0.047) (0.042) [0.028]

ARFI-DARL −0.009 0.136 0.236 0.068 0.074 0.935 0.546 0.562
(0.009) [0.930] [0.033] [0.008] (0.050) (0.044) [0.137]

ARFI-DAXRL −0.046 0.139 0.240 0.074 0.140 0.857 0.554 0.562
(0.010) [0.038] [0.000] [0.000] (0.063) (0.051) [0.441]

ARFI-DXARL −0.050 0.141 0.242 0.076 0.136 0.857 0.551 0.562
(0.010) [0.007] [0.000] [0.000] (0.065) (0.053) [0.615]

SPARFI-DAXRL −0.051 0.139 0.243 0.075 0.130 0.862 0.555 0.562
(0.010) [0.260] [0.000] [0.000] (0.057) (0.047) [0.150]

HAR-DAXRL 0.010 0.136 0.229 0.062 0.184 0.861 0.558 0.562
(0.009) [0.800] [0.330] [0.072] (0.056) (0.049) [0.031]

AR10-DAXRL −0.005 0.136 0.230 0.063 0.196 0.840 0.562
(0.010) (0.053) (0.045)

Notes: The table presents estimates of regressions of realized standard deviation for the S&P
500 on a constant and one-day ahead forecasts from different models. The regression is st+1 =
b0 + b1ŝt+1|t,(1) [ + b2ŝt+1|t,(2) ] + ut, where ŝt+1|t,(i) is the one-day ahead forecast of the realized
standard deviation from model i. The forecast evaluation period covers January 2, 1998-December
31, 2003 (R = 1510). SPARFI-DA(X)RL refers to the full ARFI model including structural change,
seasonal dummies, (pre-)announcement dummies and leverage effects as part of µt (as exogenous
variables), ARFI-DA(X)RL refers to the ARFI model without structural change but including sea-
sonal dummies, (pre-)announcement dummies and leverage effects as part of µt (as exogenous vari-
ables), ARFI-DAR refers to the model with seasonal dummies, (pre-)announcement dummies and
only symmetric effects of the lagged absolute return as part of µt, ARFI-DA to the model with
seasonal dummies, (pre-)announcement dummies but without the lagged absolute return, ARFI-
D to the model with only seasonal dummies and ARFI to the model without any dummies or
lagged absolute returns. HAR-DAXRL is the full HAR model and ARX10-DAXRL the full AR(10)
model. Figures in brackets below bj , j = 0, 1, 2 and ME are heteroskedasticity and autocorrelation-
consistent standard errors. Figures in straight brackets below MSPE, MAE and HMSPE are MCS
p-values of testing equal forecast accuracy using the TSQ test, comparing the relevant model with
the AR10-DAXRL model, where values below a certain confidence level (e.g. 5%) indicate that the
AR10-DAXRL model is more accurate. Figures in straight brackets below the R̃2 are MCS p-values
of forecast encompassing tests in encompassing regressions, testing the null that the forecasts from
the AR10-DAXRL model encompass the forecasts from the alternative model that is included in the
regression.
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models we only show the AR(10) model as it showed the best performance. We confirm

the findings of earlier work (e.g. Koopman et al., 2005), in that the ARFI models produce

volatility forecasts that are superior to popular volatility models based on daily data.

For example, the regression R2 of the “basic” ARFI model is 52.1% compared to 39.0%

for Riskmetrics. Including the leverage effect, seasonal dummies and (pre-)announcement

dummies in the standard GARCH(1,1) model increases its regression R2 to 48.8%, but this

is still short of the R2 of even the simplest ARFI model. The top panels in Figures 3.4 and

3.5 show the daily realized standard deviations for the out-of-sample period along with

the one-day-ahead forecasts from the GJR-GARCH model and the ARFI-DAXRL model,

respectively. It is seen that the GJR-GARCH forecasts track the general pattern, or low-

frequency movements in volatility quite well. The main advantage of the long memory

model is that, in addition, it captures a much larger part of the high-frequency movements

in volatility.

Among the ARFI models, the best forecast performance is attained by the SPARFI-

DAXRL model, with a regression R2 of 55.5% with the ARFI-DAXRL being a very close

second with a R2 of 55.4%, suggesting that incorporating structural changes adds little.

The R2-s clearly show an increasing pattern when adding non-linearities to the basic ARFI

model. In general, allowing for the (pre-)announcement effects contributes most of all

nonlinearities to the improvement in forecast performance over the linear ARFI model.

Similarly important is the leverage effect. Including the leverage effect exogenously slightly

improves over including the leverage effect in µt, the latter resulting in a regression R2 of

54.6%. The MSPE, MAE and HMPSE show patterns which are less clear.

Despite the good performance of the (SP)ARFI-DAXRL model, it is not the best per-

forming model overall. The HAR-DAXRL and AR10-DAXRL model both show slightly

better results with the AR10-DAXRL being the best model with a R2 of 56.2%. Figure

3.6 shows the one-day-ahead forecasts from the AR10-DAXRL model. The MCS p-values

reported in the table allow for a comparison between the forecasts of the AR10-DAXRL

model with those of all other models (on a one-to-one basis). The forecast encompass-

ing p-values reported below the R̃2 statistics in Table 3.6 show that the null that the

forecasts from the AR10-DAXRL model encompass the forecasts from the Riskmetrics,

GJR-GARCH as well as the ARFI models that do not allow for a leverage effect is rejected

at conventional significance levels. Therefore, although judging from R2 and the error

metrics it could be suggested that explicitly modelling the long-memory component does
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Figure 3.4: GJR-GARCH-DA(1,1) volatility forecasts
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Notes: Out-of-sample forecasts ŝt+h|t of 1-day, 5-day and 20-day standard deviation obtained from a GJR-
GARCH-DA(1,1) model (solid lines) and realizations st+h|t+1 (dashed lines) for the period from January
2, 1998, until December 29, 2003 (1510 observations for one-day ahead forecasts).
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Figure 3.5: ARFI-DAXRL realized volatility forecasts
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Notes: Out-of-sample forecasts ŝt+h|t of 1-day, 5-day and 20-day standard deviation obtained from the
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Figure 3.6: AR10-DAXRL realized volatility forecasts
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Notes: Out-of-sample forecasts ŝt+h|t of 1-day, 5-day and 20-day standard deviation obtained from the
AR10-DAXRL model (solid lines) and realizations st+h|t+1 (dashed lines) for the period from January 2,
1998, until December 29, 2003 (1510 observations for one-day ahead forecasts).
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not seem necessary to capture the forecasting performance of realized volatility-based mod-

els, the ARFI models do have some incremental information not already contained in the

nonlinear AR(10) model. For example, the resulting regression R2 of optimally (with

hindsight) combining the ARFI model with the AR10-DAXRL model is 58.7%.

The results for 5-day, 10-day and 20-day ahead forecasts of realized standard deviation

are summarized in Table 3.7. The benefits of modelling the nonlinearities are also explicit

for longer horizons. Comparing the ARFI and ARFI-DAXRL models, the regression R2

increases from 58.3% to 62.0% for the 5-day horizon, from 53.1% to 56.1% for the 10-day

horizon, and from 40.5% to 42.3% for the 20-day horizon. For the 20-day horizon the

GARCH model with non-linearities now has a higher R2 than the ARFI models. The

AR(10) model that includes all non-linearities remains the best forecasting model at all

horizons.

To compare forecast accuracy among multiple models simultaneously we apply the

MCS procedure to the models listed in Table 3.6 with Table 3.8 showing the results. For

all horizons, the model confidence sets consists of several models and, except for the 20-day

horizon, never include the models based on daily returns or the linear ARFI model. The

confidence sets always include models that incorporate non-linearities. Several of these,

in particular the AR10-DAXRL model, belong to the model confidence for every horizon.

Table 3.9 compares different models, all including the full array of nonlinearities, as well

as the two models that are based on daily returns. The model confidence sets contain only

a few models and always contain the AR(10) model.

3.5.5 Value-at-Risk forecasts

As an alternative method for evaluating the forecasts for the different models from a more

economic point of view, we consider Value-at-Risk (VaR) estimates which are constructed

using the volatility forecasts from the different models, see also Giot and Laurent (2004).

Under the 1998 Market Risk Amendment (MRA) to the Basle Capital Accord, commercial

banks are required to reserve capital to cover their market risk exposure. The required

market risk capital for time t+ 1 (MRCt+1) is determined by a bank’s 99% VaR estimate

calculated for a 10-day holding period (V aR10
t ) and is defined as the higher of the previous

day’s VaR estimate or the average of the estimates over the last sixty business days times

a multiplication term

MRCt+1 = max(V aR10
t , St ×

1

60

59∑

i=0

V aR10
t−i), (3.23)
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using the one-step ahead volatility forecasts from the different models.12

Under the MRA, the accuracy of a bank’s VaR estimates is judged by the accuracy

of the 1-day ahead 99% VaR estimates13. We evaluate the accuracy of these estimates

using the interval forecast evaluation techniques proposed by Christoffersen (1998) and

the method set forth by Lopez (1999) which uses regulatory loss functions. The Christof-

fersen method is a test for conditional coverage, jointly testing the hypothesis that the

percentage of times that the actual loss on a portfolio exceeds the VaR estimate (denoted

by a VaR ‘exception’) equals one minus the significance level used in the VaR calculation

(unconditional coverage) together with the hypothesis of serial independence for these VaR

exceptions (independence).

Defining the indicator variable It+1 as

It+1 =

{
1 if rt+1 < V aR1

t

0 if rt+1 ≥ V aR1
t ,

(3.24)

where rt+1 is the return over day t+1 and V aR1
t is the 100(1-α)% VaR estimate for day t+1

made on day t, a VaR exception corresponds with It+1 = 1. The likelihood of observing

x exceptions in a series of length R under the null hypothesis of accurate unconditional

coverage is given by L0 = αx(1−α)R−x. The corresponding likelihood under the alternative

is L1 = α̂x(1 − α̂)R−x, where α̂ is the “observed” probability of an exception, α̂ = x/R.

The null hypothesis of correct unconditional coverage can now be tested by means of the

standard likelihood ratio statistic

LRuc = 2[log(L1) − log(L0)], (3.25)

which has an asymptotic χ2(1) distribution.

The test statistic for the test of independence is also χ2(1) distributed and is given by

LRind = 2[log(L2) − log(L1)], (3.26)

where L1 is the likelihood function under independence as given above, and L2 is the

likelihood function under the alternative of first-order Markov dependence. The latter is

12The value of the multiplication factor St is determined by the number of times that the actual losses on
a portfolio exceed the 1-day 99% VaR estimates (so called VaR-exceptions). Three zones for an increasing
number of exceptions are distinguished and the value of St increases from a minimum value of 3 to a
possible maximum value of 4 across the different zones, see the Basle Committee on Banking Supervision
(1996) for more details. In the evaluation of the VaR estimates we, however, fix St to the value 3. Note
further that under the conditions of the MRA the VaR estimates are evaluated in dollar terms whereas we
will consider the VaR in percentage terms.

13It is suggested by the Basle committee to use an evaluation period of at least 250 business days. Here
we use the entire forecast evaluation sample.
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given by L2 = (1 − π01)
R00πR01

01 (1 − π11)
R10πR11

11 where Rij is the number of observations

with value i followed by value j.

Testing correct conditional coverage boils down to testing correct unconditional cover-

age and independence simultaneously. The likelihood functions under the null and alter-

native are given by L0 and L2, respectively and, hence, the likelihood ratio statistic for

correct conditional coverage is simply the sum of the two previous statistics,

LRcc = LRuc + LRind, (3.27)

which is asymptotically χ2(2) distributed.

The alternative method proposed by Lopez (1999) for evaluating VaR forecasts is based

on the use of loss functions that are more closely related to the regulatory VaR require-

ments. By choosing a specific loss function, one can assign a numerical score to each

individual VaR estimate that reflects specific concerns that one may have. For example, it

seems natural to not only consider the number of VaR exceptions but also the magnitude

of exceptions since the latter can be quite substantial. Therefore, we consider the loss

function14

Ct+1 =

{
1 + (rt+1 − V aR1

t )
2 if rt+1 < V aR1

t

0 if rt+1 ≥ V aR1
t ,

(3.28)

which includes the squared magnitude of the VaR exception (rt+1 − V aR1
t )

2. Given a

sample of R VaR estimates the total loss for the sample is given by C =
∑R

i=1Ct+1.

To assess the relative performance of each volatility forecasting model, we compute for

each model the average and standard deviation of the capital requirement MRCt+1 over

the forecast evaluation period. Furthermore, we determine the unconditional coverage, α̂,

together with the interval evaluation test statistics. Finally, we compute the total loss, C,

for the sample of R one-day VaR estimates as well as the average score (defined as the total

score divided by the number of exceptions) and the maximum daily score. The results are

presented in Table 3.10.

We first of all observe that the average capital requirement is comparable across the

different models. However, the long memory models typically have considerably less fluc-

tuation in the required level of capital. This is confirmed graphically by Figure 3.7,

which shows how the capital requirement evolves over time for the Riskmetrics, GJR-

GARCH(1,1)-DA and ARFI-DAXRL models.

14Lopez (1999) discusses several possible loss functions one of which is the binomial loss function given in
(3.24). The loss function given in the main text is in line with the guidelines by the Basle Committee which
states that both the number as well the magnitude of exceptions are a matter of concern to regulators.
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Table 3.10: Value-at-Risk evaluation for the out-of-sample period January 1998-
December 2003

MRC-µ MRC-σ α̂ LRuc LRind LRcc C C̄ max(Ct)

Riskmetrics 28.007 7.635 0.019 8.892 0.366 9.258 73.428 2.622 16.842
(0.003) (0.545) (0.010)

GJR-G-DA(1,1) 26.288 6.412 0.021 12.966 1.301 14.266 64.595 2.084 8.680
(0.000) (0.254) (0.001)

ARFI 27.360 5.569 0.016 4.494 0.723 5.217 53.464 2.228 11.584
(0.034) (0.395) (0.074)

ARFI-D 27.389 5.617 0.015 3.599 0.712 4.311 54.869 2.386 14.121
(0.058) (0.399) (0.116)

ARFI-DA 27.430 5.619 0.016 4.494 0.776 5.270 54.353 2.265 12.763
(0.034) (0.378) (0.072)

ARFI-DAR 27.411 5.590 0.017 6.537 0.912 7.448 61.123 2.351 17.095
(0.011) (0.340) (0.024)

ARFI-DARL 27.657 5.796 0.018 7.677 0.984 8.661 63.079 2.336 19.891
(0.006) (0.321) (0.013)

ARFI-DAXRL 29.697 6.585 0.015 3.599 0.712 4.311 50.652 2.202 15.244
(0.058) (0.399) (0.116)

ARFI-DXARL 29.870 6.538 0.016 4.494 0.776 5.270 52.049 2.169 15.902
(0.034) (0.378) (0.072)

HAR-DAXRL 29.619 5.881 0.017 6.537 0.912 7.448 55.398 2.131 16.339
(0.011) (0.340) (0.024)

ARX10-DAXRL 27.591 6.701 0.019 8.892 1.059 9.951 57.782 2.064 14.629
(0.003) (0.303) (0.007)

Notes: The table presents results for VaR estimates generated under the conditions of the Basle
Committee MRA for the forecast evaluation period January 2, 1998-December 31, 2003 (R = 1510).
The first two columns show the average and standard deviation of the required capital to cover
market risk exposure (in percentage terms). Column 3 shows the average percentage number of
exceptions defined as α̂ = x/R where x is the number of exceptions. Columns 4-6 show the interval
forecast evaluation test statistics of correct unconditional coverage (uc), independence (ind) and
correct conditional coverage (cc) (p-values are between brackets). Columns 7-9 give the total score
C based on (3.28), the average score, C̄ = C/x and the maximum individual score (all in percentage
terms).

All models have a higher unconditional coverage than expected, leading to strong re-

jections of the null of correct unconditional coverage in all cases. By contrast, the null

of independence is not rejected for any of the models under consideration. Based on the

quadratic magnitude loss function, the nonlinear realized volatility models again perform
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Figure 3.7: Market Risk Capital
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Notes: The graph shows the required capital (in percentage terms) to cover market risk exposure
which is calculated as MRCt+1 = max(V aR10

t , St× 1
60

∑59
i=0 V aR

10
t−i) based on volatility forecasts

from the Riskmetrics, GJR-GARCH(1,1)-DA and ARFI-DAXRL models from January 2, 1998,
until December 29, 2003 (1510 observations). V aR10

t is the 99% VaR estimate for a 10-day holding
period. The first sixty 1-day VaR estimates were used to construct the initial history needed to
calculate MRCt+1.

well when compared to the GARCH type models. Figure 3.8 shows the 1-day VaR estimates

from the latter two models together with the AR10-DAXRL model.

3.6 Concluding remarks

In this chapter we propose a nonlinear long-memory time series model for realized volatility

that incorporates all well-known stylized facts from the (GARCH) volatility literature,

in particular level shifts, day-of-the-week and holiday effects, announcement effects and

leverage effects. The model, as well as several restricted versions, are estimated for the

S&P 500 index.

The in-sample results show that all nonlinearities are highly significant and improve
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Figure 3.8: Value-at-Risk estimates
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(c) AR10-DAXRL

Notes: Realized returns (solid line) and 1-day 99% Value-at-Risk estimates based on volatility
forecasts for the Riskmetrics, GJR-GARCH(1,1)-DA and AR10-DAXRL models (dotted lines)
for the period from January 2, 1998, until December 29, 2003 (1510 observations). Black dots
indicate VAR exceptions.
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the description of the data. The out-of-sample results show that for forecasting horizons

of up to 20 days, accounting for these nonlinearities improves the forecast performance

compared to a linear ARFI model. Adding the same non-linearities to simpler autore-

gressive models is shown to lead to similar improvements for short horizons and more

substantial improvements for longer horizons, indicating that incorporating nonlinearities

has considerable benefits.

The most important nonlinearities for the S&P 500 index are (pre-)announcement ef-

fects and the leverage effect. The best way to incorporate the effects of lagged daily returns

is to include them as exogenous regressors, i.e. outside the long memory filter in the case

of the ARFI model. Not important for the forecast performance is to model the level shifts

for the S&P 500 index.







Chapter 4

Predicting the Daily Covariance
Matrix for S&P 100 Stocks Using
Intraday Data
But which frequency to use?

4.1 Introduction

The work of Andersen and Bollerslev (1998a) has triggered a vast amount of research on

the use of high-frequency data to measure, model and forecast volatility of financial asset

returns. Most empirical studies on this topic of ‘realized volatility’ focus exclusively on the

variance of individual asset returns, see Andersen et al. (2001a), Andersen et al. (2001b),

Areal and Taylor (2002), Thomakos and Wang (2003), Martens et al. (2004), Pong et al.

(2004), and Koopman et al. (2005), among others. Many financial applications such as

risk management and portfolio construction, however, require estimates or forecasts of the

entire covariance matrix, making covariances or correlations between returns on different

assets at least as important. Yet only limited (empirical) research has addressed the

merits of high-frequency data for potential economic or forecasting gains in a multivariate

context. Andersen et al. (2003a) use a vector autoregressive (VAR) framework for the

daily realized variances and covariance of two exchange rates (DEM/USD and YEN/USD)

based on 30-minute returns, but they only consider the statistical accuracy of (co-)variance

forecasts. Fleming et al. (2003) use five-minute returns on three actively traded futures

contracts (S&P 500 index, Treasury bonds, and gold) to show that a mean-variance efficient

investor would be willing to pay 50 to 200 basis points per annum for being able to use

daily covariance matrix forecasts based on high-frequency intraday returns instead of daily

returns. Similarly, Liu (2004) constructs and assesses the performance of the minimum
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variance portfolio and the minimum tracking error portfolio (tracking the S&P 500 index)

using five-minute returns for the 30 Dow Jones index constituents.

These three studies have in common that they motivate the selected intraday sampling

frequency as a trade-off between accuracy and potential biases due to market microstruc-

ture effects. The sensitivity of the results to the choice of sampling frequency used in

constructing realized covariances is not investigated though. Martens (2004) demonstrates

that non-trading, non-synchronous trading, and bid-ask bounce are indeed crucial deter-

minants of the optimal sampling frequency that minimizes the Mean Squared Error (MSE)

for measuring, and hence forecasting, the covariance matrix. The MSE is the sum of the

squared bias and the variance of the realized (co-)variance. High sampling frequencies lead

to a potentially large upward bias in realized variances due to bid-ask bounce and to a

substantial downward bias in realized covariances due to non-synchronous trading. On the

other hand, the variance of both realized variances and realized covariances usually de-

creases with higher sampling frequencies. As the degree of non-trading, non-synchronous

trading, and bid-ask bounce varies widely across assets, the appropriate sampling frequency

in a particular application needs to be investigated carefully.

In this chapter we examine the economic significance of determining the optimal sam-

pling frequency, in the context of constructing mean-variance efficient portfolios from the

individual constituents of the S&P 100 index. Our analysis builds on the framework devel-

oped in Fleming et al. (2001, 2003). In particular, we consider a risk-averse investor who

constructs minimum variance portfolios and minimum tracking error portfolios with daily

rebalancing, where portfolio risk is minimized either globally or subject to a fixed target

return. We focus on pure volatility-timing strategies, in the sense that the portfolio weights

are determined exclusively by forecasts of the daily conditional covariance matrix, which

in turn is constructed using the realized covariance matrix with the sampling frequency of

intraday returns ranging from one minute to 130 minutes. The economic value of using

the optimal sampling frequency is assessed by comparing portfolio performance across this

range of sampling frequencies. In particular, we consider the fee that the investor would

be willing to pay to switch from one frequency to another.

We also examine how different bias- and variance-reduction techniques affect the choice

of sampling frequency. First, we explore the usefulness of the two time-scales estimator pro-

posed by Zhang et al. (2005),1 which combines the realized covariance matrix constructed

1Zhang et al. (2005) focus solely on estimating the variance but here we apply their approach to
covariances as well, as suggested by Zhang (2006).
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using subsampling at a certain frequency and the realized covariance matrix constructed

using the highest possible sampling frequency. Subsampling makes use of the fact that,

for example, five-minute returns for a trading session starting at 9:30 could not only be

measured using the intervals 9:30-9:35, 9:35-9:40, . . ., but also using 9:31-9:36, 9:36-9:41,

. . ., etc. As explained in more detail below, subsampling can be used to reduce the vari-

ance of the realized covariance estimator. However, subsampling still renders a biased

estimate of the true integrated covariance matrix with the bias being a function of the

covariance matrix of the microstructure noise component in the intraday returns. The

two time-scales estimator attempts to correct for this bias. Second, following the idea of

Scholes and Williams (1977) for estimating (illiquid) stock betas, we investigate the merits

of using leads and lags in measuring the realized covariances. For all these methods we

also consider the effects of transaction costs and the holding period or portfolio rebalancing

frequency.

Our main findings are as follows. For both minimum variance and minimum tracking

error portfolios, using daily conditional covariance matrix forecasts based on high-frequency

intraday returns instead of daily returns considerably improves portfolio performance. For

the global minimum risk portfolios, the optimal sampling frequency for the S&P 100 con-

stituents ranges between 30 and 65 minutes, considerably lower than the popular five-

minute frequency. The same result occurs for minimum variance portfolios subject to a

target return. Here, the Sharpe ratio increases from 0.6 to 0.8 going from daily to intra-

day returns, and a risk-averse investor would be willing to pay between 150 and 400 basis

points per year to capture this gain in portfolio performance. In contrast, for the minimum

tracking error portfolio subject to a target return the optimal sampling frequency appears

to be much higher at one to two minutes. The performance gains compared to the use of

daily returns are substantial, with the information ratio increasing from 0.1 to 0.4. The

fee a risk-averse investor might pay for this enhanced performance ranges between 100 and

180 basis points per year.

The above findings are robust to the use of the two time-scales estimator and the

lead-lag bias correction procedure. Both of these techniques marginally improve the per-

formance for the minimum variance portfolios and the minimum tracking error portfolios.

However, selecting the appropriate sampling frequency appears to be much more important

than choosing between different bias- and variance-reduction techniques for the realized

covariance matrices.

For the target return portfolios we find that turnover is lower when using intraday
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data, hence in the presence of transaction costs an investor is willing to pay even more

for covariance matrix forecasts based on high-frequency data. The opposite is true for

the target excess return portfolios. Lowering the rebalancing frequency from daily to

weekly or monthly obviously reduces transaction costs, while at the same time having a

similar or even better performance. Reducing the rebalancing frequency in the presence of

transaction costs is especially beneficial for the minimum tracking error portfolios based

on high-frequency data.

The issue of sampling frequency in the presence of market microstructure noise has been

investigated quite heavily, but in the context of univariate realized volatility measurement,

see Aı̈t-Sahalia et al. (2005), Bandi and Russell (2005, 2006), Zhang et al. (2005), and

Hansen and Lunde (2006), among others. In concurrent and independent work Bandi

et al. (2008) derive the optimal sampling frequency to compute realized covariances that

minimize the MSE. Applying this expression to our data we find an average optimal sam-

pling frequency of 1.4 minutes, quite different from the 65-minute frequency that we find

optimal with our approach. There are several differences between the approach of Bandi

et al. (2008) and ours that might explain the large differences in results, and that make

a direct comparison difficult. The most important difference is the fact that the optimal

sampling frequencies optimize rather different criteria. Our optimal sampling frequencies

aim to optimize economic criteria, including minimizing the risk or maximizing the return

of stock portfolios. By contrast, the optimal sampling frequencies of Bandi et al. (2008)

are designed to minimize the (daily) MSE of the realized (co-)variance estimator. Bandi

et al. (2008) also allow their optimal sampling frequency to vary across (co-)variances and

over time. This is convenient to handle the situation where the (relative) importance of

microstructure noise displays cross-sectional and temporal variation. Within our approach,

we aim for a single optimal sampling frequency that is the same for all (co-)variances and

constant over time. The latter, however, can be relaxed by shortening the sampling period

that is used to determine the optimal sampling frequency although selecting the appropri-

ate period will necessarily be a subjective choice. A final explanation for the differences

in optimal sampling frequencies that we find compared to Bandi et al. (2008) is discussed

in Sheppard (2006) who shows that realized covariances can be substantially downward

biased if the order of observation of prices is only weakly related to the order of price gen-

eration. Sheppard (2006) shows that due to this ‘scrambling’ effect the optimal sampling

frequencies for realized covariances will be lower than the popular five-minute frequency.

Bandi et al. (2008) derive their optimal sampling frequency under the assumption that
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observed returns are equal to the true returns plus noise, with the noise being independent

of the true return process. The same assumption is also used by Zhang et al. (2005)

and Bandi and Russell (2005) to analyze the realized variance. This assumption may

be considered somewhat restrictive in the context of measuring realized covariances using

calendar time sampling, given that different stocks trade at different times. In that case,

the noise term may contain previous true returns thereby violating the assumption that

the noise is independent of the return process, see Lo and MacKinlay (1990) for extensive

discussion. It would be interesting to examine whether an MSE-optimal sampling frequency

can still be derived in a more general case where the noise is allowed to be correlated with

the latent price process.2

The remainder of this chapter is organized as follows. Section 4.2 describes the data and

the construction of the realized covariances. The mean-variance methodology is presented

in Section 4.3. Results are discussed in Section 4.4. Section 4.5 concludes.

4.2 Data

The data set was obtained from Price-Data.com3 and consists of open, high, low, and close

transaction prices at the one-minute sampling frequency for the June 2004 S&P 100 index

constituents, covering the period from April 16, 1997 until June 18, 2004 (1804 trading

days). We disregard stocks for which the price series start at a later date, leaving 78 stocks

for the analysis. The appendix provides a list of ticker symbols and company names. The

data also comprise all (tick-by-tick) transaction prices of the S&P 500 index futures from

April 16, 1997, through May 27, 2004. We follow the conventional practice of using the

futures contract with the largest trading volume. This typically is the contract nearest to

maturity, until a week before maturity when the next nearest contract takes over. Since

the stock files miss April 9, 2003, and the futures files miss March 30, 2003 and May 3,

2004, this leaves 1788 common trading days from April 16, 1997, through May 27, 2004.

For each day t, we divide the trading session on the NYSE, which runs from 9:30

EST until 16:00 EST (390 minutes), into I intervals of equal length h ≡ 1/I, normalizing

the daily interval to unity for ease of notation. For example, I = 78 for the five-minute

2We should note that the two time-scales estimator of Zhang et al. (2005) is derived under the same
model assumptions (see equation (4) in Zhang et al. (2005). By using it in the same format for covariances
we acknowledge that for example the weights for the covariance matrices at two frequencies may be
suboptimal and that the estimator may be biased. Of course in our empirical work we can see whether
despite these reservations the idea itself is useful for predicting covariances.

3http://www.price-data.com/
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sampling frequency. Let pt−1+ih denote the (N × 1) vector of log close transaction prices

and let rt−1+ih,h ≡ pt−1+ih − pt−1+(i−1)h denote the (N × 1) vector of returns for the ith

intraday period on day t, for i = 2, . . . , I, where N = 78 is the number of stocks. The

return for the first intraday period, rt−1+h,h, is defined as the difference between the log

close and open transaction prices during that interval. The realized covariance matrix Vt,h

is defined as

Vt,h = rt,c−or
′
t,c−o +

I∑

i=1

rt−1+ih,hr
′
t−1+ih,h (4.1)

where rt,c−o is the (N × 1) vector of close-to-open (overnight) returns from day t − 1

(close) to day t (open).4 Martens (2002) documents that the overnight volatility represents

an important fraction of total daily volatility, hence incorporating the cross-product of

overnight returns as in (4.1) is important for accurately measuring (co-)variances, see also

Fleming et al. (2003) and Hansen and Lunde (2005) for discussion. For the daily frequency

the realized (co-)variance matrix Vt is defined as the outer product of the daily (close-to-

close) returns, denoted by rt, that is Vt = rtr
′
t.

Table 4.1, Panel A, illustrates some characteristic features of the daily realized variances

and covariances by showing the mean (across stocks and across trading days) and variance

for sampling frequencies of 390h = 1, 2, 3, 5, 10, 15, 30, 65 and 130 minutes, such that in all

cases the corresponding I intra-day intervals completely cover the 390-minute trading day.

Several familiar patterns arise. First, the average realized variance increases with the sam-

pling frequency (except for frequencies below 30 minutes). Bid-ask bounce induces negative

autocorrelations in returns when prices are sampled more frequently leading to an upward

bias in the realized variance. For example, the average variance using daily returns is 7.386

(corresponding to an annualized standard deviation of about 43%), whereas it is 9.494 for

one-minute returns. Second, the average realized covariance decreases monotonically with

the sampling frequency, where this downward bias can be attributed to non-synchronous

trading, i.e. not every stock trades in each (intraday) interval or exactly at the end of each

interval. The average covariance using one-minute returns is 0.826, whereas for daily data

it is almost double at 1.568. Third, the variance of the realized (co-)variances becomes

smaller for higher frequencies, simply because more data points are used. Hence in general

for realized (co-)variances the bias increases and the variance decreases for higher sampling

4For obvious reasons the overnight return from 10 to 17 September, 2001 (the first trading day after
9/11) has been dropped.
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Table 4.1: Mean and variance of the realized (co-)variance

Frequency Realized Variance Realized Covariance
Mean Variance Mean Variance

Daily 7.386 1763 1.568 93.58

Panel A: Standard
130 minutes 7.369 689.7 1.394 31.94
65 minutes 7.324 624.3 1.357 22.46
30 minutes 7.311 563.5 1.316 16.48
15 minutes 7.463 545.8 1.307 14.46
10 minutes 7.614 547.2 1.305 13.25
5 minutes 7.912 531.7 1.239 11.49
3 minutes 8.193 527.6 1.136 10.34
2 minutes 8.525 537.1 1.025 9.60
1 minute 9.494 597.0 0.826 8.73

Panel B: Two time-scales
130 minutes 7.836 1090.6 1.462 37.05
65 minutes 7.295 760.9 1.418 22.94
30 minutes 7.150 606.4 1.414 16.82
15 minutes 7.233 570.1 1.420 14.97
10 minutes 7.315 562.8 1.407 13.90
5 minutes 7.446 554.9 1.361 12.24
3 minutes 7.500 534.5 1.297 11.32
2 minutes 7.524 521.4 1.231 10.80

Panel C: 1 lead and 1 lag

130 minutes 7.422 758.6 1.418 36.73
65 minutes 7.368 667.0 1.389 26.27
30 minutes 7.329 595.6 1.351 18.97
15 minutes 7.342 552.7 1.332 15.51
10 minutes 7.420 545.6 1.334 14.23
5 minutes 7.611 532.3 1.300 12.67
3 minutes 7.812 538.3 1.257 11.56
2 minutes 8.020 536.3 1.193 10.70
1 minute 8.525 533.4 1.025 9.47

Notes: The table shows mean and variance of the realized (co-)variances at various
sampling frequencies for 78 constituents of the S&P100 index from April 16, 1997,
through May 27, 2004 (1788 trading days). For the realized variance the mean reflects
the average taken over all 78 stocks and over all 1788 trading days. The variance is the
average taken over the 78 sample variances of the realized variances. For the realized
covariance the mean reflects the average taken over all 3003 pairs of stocks and over all
1788 trading days. The variance is the average taken over the 3003 sample variances of
the realized covariances. In Panel A the “standard” realized covariance matrix Vt−1,h

given in (4.1) is used. Panel B is based on the two time-scales estimator V TTS
t−1,h given

in (4.2), while Panel C shows results for the lead-lag corrected estimator V LL
t−1,h given

in (4.3), with Bartlett-kernel weights dl = 1 − l/(q + 1) and q = 1.
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frequencies.5

One way to reduce the variance of realized covariances, given a particular sampling

frequency, is to employ subsampling as first suggested in Zhang et al. (2005) in this context.

In particular, the grid of x-minute intervals can be laid over the trading day in x different

ways. For example, for the three-minute frequency rather than starting with the interval

9:30-9:33 one could also start with 9:31-9:34 or 9:32-9:35. In this way three ‘subsamples’

are created and each of these can be used to compute the realized covariance matrix. The

final realized covariance matrix is then taken to be the average across subsamples. A

practical problem with this procedure is how to treat the loose ends at the start and the

end of the trading session. Here the start of the day is added to the overnight return, while

the end of the day is omitted. The covariances measured during the trading session are

proportionally inflated for the missing part of the trading session. Unreported summary

statistics for the realized (co-)variances that are obtained with this procedure show that,

in general, the effects of subsampling are ambiguous. There is a minor reduction in the

variance of the realized covariances for the two- to 30-minute frequencies, but an increase

in the variance of the realized variances, which becomes quite substantial for the lower

sampling frequencies.

Zhang et al. (2005) suggest a bias-correction procedure for the subsampling estimator as

described above using the realized covariance matrix obtained with the highest available

sampling frequency. The essential argument is that subsampling still renders a biased

estimate of the true integrated volatility with the bias being a function of the (co-)variance

of the noise in the return processes. In fact, the realized (co-)variance estimator using the

highest possible frequency consistently estimates this noise (co-)variance and can therefore

be used to reduce and potentially even eliminate the bias of the subsampling estimator.

Based on this idea, the two time-scales estimator V TTS
t,h is obtained as

V TTS
t,h =

IMax

IMax − I

(
V SubS

t,h − I

IMax

V Max
t,h

)
, (4.2)

where V SubS
t,h is the subsampling estimator using I returns over intervals of 390h minutes as

described above, and V Max
t,h is the realized covariance matrix based on the highest possible

sampling frequency with IMax intraday return observations. In our case this is the one-

minute frequency such that IMax = 390.

5An exception is the realized variance at the one- and two-minute frequencies, where also the variance
increases due to the increased importance of bid-ask bounce.
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Summary statistics for the realized (co-)variances that are obtained with the two time-

scales estimator are presented in Panel B of Table 4.1. The bias-correction procedure

appears to work quite well, especially for the higher sampling frequencies, in the sense

that the mean realized (co)variances get much closer to the mean values obtained with

daily return observations. Note that this comes at the cost of increased variance of the

realized (co)variances though, except for the realized variances at the one- and two-minute

frequencies.

Finally, we examine whether the downward bias in the realized covariances can be

reduced by adding lead and lagged covariances to the contemporaneous cross-product of

returns in the spirit of Scholes and Williams (1977) and Cohen et al. (1983). Similarly, this

might reduce the upward bias in the realized variance due to the negative autocorrelations

in high-frequency returns, see Hansen and Lunde (2005, 2006). In particular, let Γt,h,l

denote the l-th order cross-covariance matrix of intraday h-period returns, that is

Γt,h,l =
I−l∑

i=1

rt−1+ih,hr
′
t−1+(i−l)h,h.

The realized covariance matrix with lead and lags is then obtained as

V LL
t,h = Vt,h +

q∑

l=1

dl

(
Γt,h,l + Γ′

t,h,l

)
, (4.3)

where Vt,h is given by (4.1) and the weights dl for the leads and lags are taken to be

dl = 1 − l/(q + 1). The use of these Bartlett-kernel weights guarantees that the realized

covariance matrix V LL
t,h is positive definite, see Newey and West (1987) and Andrews (1991)

for discussion of alternative weighting schemes that also achieve this objective. Precisely

for this reason we do not consider the equal-weighting scheme (dl = 1 for all l = 1, . . . , q), as

commonly used for estimating market betas of illiquid stocks and suggested by Zhou (1996)

and Hansen et al. (2005b) in the context of realized variance and covariances, respectively.

Barndorff-Nielsen et al. (2004) demonstrate that for realized variances the Bartlett-kernel

estimator (4.3) and the subsampling estimator of Zhang et al. (2005) are almost identical.

Panel C of Table 4.1 present characteristics of V LL
t,h with q = 1.6 As expected, the bias

in both realized variances and realized covariances is reduced for all frequencies, although

to a lesser extent compared to the two time-scales estimator. For example, the average

6We experimented with alternative values for q, which led to qualitatively similar findings. Detailed
results are available upon request. The issue of determining the optimal value of q is beyond the scope of
this chapter and is left for future research.



96 Chapter 4

realized variance based on one-minute returns is reduced to 8.525, still considerably higher

than the average daily squared return of 7.386. Similarly, the average realized covariance

at the one-minute frequency is increased to 1.025, which comes closer to the average cross-

product of daily returns (1.568) than the standard case. Note, however, that again the

reduction in bias generally comes at the cost of increased variance. An exception is the

one-minute frequency where not only the average realized variance is reduced and closer

to the average daily squared return, but at the same time the variance is reduced from 597

to 533.

4.3 Methodology

4.3.1 Volatility-timing strategies

The benefits of high-frequency intraday data and the optimal way to employ these will

be gauged by their economic value in the context of portfolio construction. In particular,

we consider volatility timing strategies within the framework of conditional mean-variance

analysis. We construct the minimum variance portfolio as well as the portfolio that mini-

mizes variance given a set target return, which is denoted µP , allowing for daily rebalancing.

To be precise, we solve the following two optimization problems for each day t:

min
wt

w′
tΣtwt (4.4)

s.t. w′
tι = 1

and

min
wt

w′
tΣtwt (4.5)

s.t. w′
tµt =µP and w′

tι = 1

where wt is the (N × 1) vector of portfolio weights, and ι denotes an (N × 1) vector

of ones. In addition, µt is the (N × 1) vector with conditional expected returns for the

individual stocks, that is µt ≡ E[rt|It−1], where It−1 denotes the information set available

at the end of day t− 1. Similarly, Σt is the (N ×N) conditional covariance matrix, that is

Σt ≡ E[(rt−µt)(rt−µt)
′|It−1]. In order to concentrate on the use of high-frequency data for

estimating and forecasting (co-)variances, we assume that µt is constant and, moreover, set

it equal to the average returns in the complete out-of-sample period. Hence, we consider

pure volatility-timing strategies, in the sense that the portfolio weights are determined
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exclusively by forecasts of the daily conditional covariance matrix Σt
7. We return to these

in Section 4.3.4 below8.

The solution to the problem in (4.4), the weights for the fully invested minimum variance

portfolio, is given by

wt,MVP =
Σ−1

t ι

ι′Σ−1
t ι

. (4.6)

For the solution of the problem in (4.5) first weights for the maximum Sharpe ratio portfolio

are computed as

wt,MSR =
Σ−1

t µt

ι′Σ−1
t µt

(4.7)

and the weights for the target return portfolio are then provided by

wt,P =
µt,MSR − µP

µt,MSR − µt,MVP

wt,MVP +
µP − µt,MVP

µt,MSR − µt,MVP

wt,MSR (4.8)

where µt,MVP = w′
t,MVPµt and µt,MSR = w′

t,MSRµt are the expected returns on the minimum

variance portfolio and the maximum Sharpe ratio portfolio, respectively.

In addition the above analysis is repeated using the conditional mean and covariance

matrix for stock returns in excess of the S&P 500 futures returns. The solution to the

problem in (4.4) then determines the minimum tracking error portfolio, i.e. the portfolio of

the 78 S&P 100 stocks that tracks the S&P 500 index most closely. Similarly the solution to

the problem in equation (4.5) then minimizes the tracking error given a certain target level

of active return (i.e. portfolio return in excess of the S&P 500 return). The use of minimum

tracking error portfolios is motivated by the analysis in Chan et al. (1999) who demonstrate

that based on minimum variance portfolios it is difficult to distinguish between different

covariance matrix estimates in the presence of a dominant (market) factor. Eliminating

the dominant factor, in this case by switching to tracking error portfolios, largely solves

this problem.

7In practice, an investor faces uncertainty about the vector of expected returns when constructing
optimal portfolios. Fleming et al. (2001, 2003) examine the risk involved when estimating expected returns.
See also Colacito and Engle (2006) for results on the ranking of different covariance matrix estimates,
conditional on any vector of expected returns.

8As explained below, we require part of the sample period to initialize the conditional covariance matrix
estimates, which in our case equals 122 trading days. This implies that the effective sample period available
for portfolio construction and evaluation runs from October 8, 1997 until May 27, 2004 (1666 trading days).
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4.3.2 The economic value of volatility timing

The performance of the portfolios in the different volatility timing strategies is evaluated

using the ex-post daily stock returns rt. For the minimum variance portfolio we consider

the standard deviation, and for the target return portfolios we monitor the mean return,

standard deviation, and Sharpe ratio, all based on ex-post returns. Similarly, for the

minimum tracking error portfolio we consider the tracking error, and for the target active

return portfolios we monitor the mean excess return, tracking error, and information ratio

(excess return divided by tracking error), based on the ex-post daily excess returns.

Following Fleming et al. (2001, 2003), for the target return portfolios we assess the

economic value of the different covariance matrix estimators in volatility timing strategies

by determining the maximum performance fee a risk-averse investor would be willing to

pay to switch from using one covariance matrix estimator to another. In particular, we

assume the investor has a quadratic utility function given by

U(rt,P ) = W0

(
1 + rt,P − γ

2(1 + γ)
(1 + rt,P )2

)
, (4.9)

where rt,P = w′
t,P rt is the ex-post portfolio return, γ is the investor’s relative risk aversion

and W0 is initial wealth. In order to compare two volatility timing strategies based on

different covariance matrix estimators with portfolio returns denoted as rt,P1 and rt,P2 , we

determine the maximum amount the investor is willing to pay to switch from the first

strategy to the second. That is, we determine the value of ∆γ such that

T∑

t=1

U(rt,P1) =
T∑

t=1

U(rt,P2 − ∆γ). (4.10)

We interpret ∆γ as a performance fee and report estimates in terms of basis points on an

annual basis for γ = 1 and 10.

4.3.3 Transaction costs and rebalancing frequency

With daily rebalancing, the turnover of the volatility timing strategies is considerable,

as shown in detail below. Hence, transaction costs play a non-trivial role and should be

considered in evaluating the (relative) performance of different strategies. We handle this

issue as follows. After rebalancing on day t − 1, the i-th stock has been given a weight

wi,t−1 in the portfolio, i = 1, . . . , N . The return on the i-th stock on day t is denoted

as ri,t such that the portfolio return is rt,P =
∑N

i=1wi,t−1ri,t. At the moment just before
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rebalancing, denoted as t−, the actual weight of the i-th stock in the portfolio therefore has

changed to wi,t− = wi,t−1
1+ri,t

1+rt,P
. The new weight wi,t for stock i follows from solving the

investor’s optimization problem, using time t information. The change in weight, or the

required rebalancing, at time t is thus equal to wi,t − wi,t− . We assume that transaction

costs amount to a fixed percentage c on each traded dollar for any stock. Setting the initial

wealth W0 equal to 1 for simplicity, total transaction costs at time t are equal to

ct = c
N∑

i=1

|wi,t − wi,t−|,

such that the net portfolio return is given by rt,P − ct.

We report results for transaction cost levels between 2% and 20%, expressed in annual-

ized percentage points. Note that this would be the reduction in the annualized portfolio

return if the entire portfolio would have to be traded every day during a whole year, that

is
∑N

i=1 |wi,t − wi,t−| = 1 for all days t in a given year.9

A closely related issue is that of the portfolio rebalancing frequency. If daily turnover

is substantial, transaction costs may eat away a considerable part of the portfolio perfor-

mance and it may be better to rebalance the portfolio less frequently. In fact, given a

certain level of transaction costs c one may attempt to determine the optimal rebalancing

frequency, where a trade-off has to be made between updating the portfolio weights using

the most recent covariance matrix information and incurring higher transaction costs. We

consider this challenging problem to be beyond the scope of this chapter, though. We do

provide some insight into the effect of the rebalancing frequency, by considering the port-

folio performance if the holding period is set equal to a week or a month (or five and 21

trading days, respectively), as follows. We construct a new portfolio every day, but this is

held on to for the next five (21) days. Hence, at any point in time the strategies effectively

hold five (21) minimum variance portfolios, for example, each formed one day apart. To

handle the problems concerned with overlapping returns, we calculate the overall return

on day t as the average of all the portfolios that are held at that time.10

9Fleming et al. (2003) use a similar approach when assessing the effect of transaction costs.
10Note that our approach here differs from Fleming et al. (2003). Our method of holding multiple

portfolios simultaneously is commonly applied in the literature on stock selection, see Jegadeesh and
Titman (1993) and Rouwenvorst (1998), among many others.
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4.3.4 Conditional covariance matrix estimators

Implementation of the portfolio construction methods discussed above requires estimates

or forecasts of the conditional covariance matrix Σt. We closely follow Fleming et al.

(2001, 2003) by using rolling volatility estimators for Σt, building on the work by Foster

and Nelson (1996) and Andreou and Ghysels (2002b). The general rolling conditional

covariance matrix estimator based on daily data is of the form

Σ̂t =
∞∑

k=1

Ωt−k � rt−kr
′
t−k (4.11)

where Ωt−k is a symmetric (N ×N) matrix of weights, and � denotes element-by-element

multiplication. The weighting scheme is taken to be Ωt−k = α exp(−αk)ιι′, such that (4.11)

can be rewritten as

Σ̂t = exp(−α)Σ̂t−1 + α exp(−α)rt−1r
′
t−1. (4.12)

This choice is consistent with Foster and Nelson (1996) in that exponentially weighted

estimators generally produce the smallest asymptotic MSE. In addition, using a single pa-

rameter (α) to control the rate at which the weights decay with lag length guarantees that

Σ̂t is positive definite. One way of interpreting this weighting scheme is as a restricted mul-

tivariate GARCH model.11 The optimal in-sample decay rate can therefore be estimated

using (quasi) maximum likelihood for the model

rt = Σ̂
1/2
t zt (4.13)

where zt ∼ NID(0, I) and Σ̂t is given by (4.12). We estimate α using observations for

the sample period October 8, 1997 until May 27, 2004 (1666 trading days). The reason

for not using the sample from the first available day, April 16, 1997, onwards is that the

covariance matrix estimate Σ̂t needs to be initialized. We use the first 122 observations as

‘burn-in’ period.

Given that the portfolios that subsequently are constructed using the weights wMVP,t

from (4.6) and wP,t from (4.8) are evaluated over the same period that is used for estimating

α, this raises the issue of data snooping. However, as noted by Fleming et al. (2001), the

11Fleming et al. (2003) show that actually using the (unrestricted) multivariate GARCH model leads
to a better fit of the data as expected, but the covariance matrix forecasts result in worse portfolios than
those obtained from the rolling covariance estimator. They cite the smoothness of the rolling estimator as
the main reason for this.
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statistical loss function used to estimate the decay parameter is rather different from the

methods used to evaluate the performance of the various portfolios. Hence, look-ahead

bias probably is not too big a problem. We return to this issue in Section 4.4.4.

Andersen et al. (2003a) and Barndorff-Nielsen and Shephard (2004a) show that intraday

returns can be used to construct (co-)variance estimates that are more efficient than those

based on daily returns. Sticking to the concept of rolling estimators and facilitating a

direct comparison between daily and intraday data, it is most natural to replace the daily

update rt−1r
′
t−1 in (4.12) by the realized covariance matrix Vt−1,h, that is, the conditional

covariance matrix is estimated using high-frequency data as

Σ̂t,h = exp(−αh)Σ̂t−1,h + αh exp(−αh)Vt−1,h (4.14)

where αh can again be estimated by means of maximum likelihood for the model (4.13),

but now using Σ̂t,h instead of Σ̂t. In addition to the realized covariance matrix Vt−1,h

obtained from the ‘basic’ form given in (4.1), we implement (4.14) using the two time-

scales estimator V TTS
t−1,h given in (4.2) and the lead-lag corrected estimator V LL

t−1,h given

in (4.3). As mentioned before, we examine different sampling frequencies to construct

the realized covariance matrix Vt−1,h, dividing the 390-minute NYSE trading session in

(nonoverlapping) intervals of 1, 2, 3, 5, 10, 15, 30, 65 or 130 minutes.

We close this section by noting that the conditional covariance matrix estimate Σ̂t,h

obtained from (4.14) may suffer from the biases in the realized covariance matrix Vt−1,h

due to market microstructure effects. For that reason, Fleming et al. (2003) propose a bias-

correction method based on scaling the elements of Σ̂t,h with factors determined from the

contemporaneous estimates of the daily-returns-based rolling estimator Σ̂t obtained from

(4.12), see also Hansen and Lunde (2005, 2006). Although we considered this approach in

our analysis, we were unable to obtain satisfactory results. The key problem with this bias

adjustment procedure is that it adjusts each individual element in the covariance matrix

separately, with a possibly different correction factor. Hence, whereas the unadjusted

covariance matrix Σ̂t,h obtained from (4.14) is guaranteed to be positive definite, this does

not hold for the bias-adjusted matrix. In the empirical application considered in Fleming

et al. (2003) concerning three highly-liquid future contracts, this issue turns out not to be

relevant, but for our application to the 78 S&P 100 stocks we ran into this problem quite

frequently due to the large number of stocks. We tried to address this in several different

ways but to no avail.



102 Chapter 4

4.4 Results

4.4.1 Optimal decay rates

Table 4.2 shows the optimal decay rates α and αh that maximize the likelihood of the

model in equations (4.13) with (4.12) for daily returns and with (4.14) for intraday returns

at the different sampling frequencies considered. Starting with total returns (as opposed

Table 4.2: Optimal decay parameters

Frequency Standard Two time-scales 1 lead, 1 lag
α LogL α LogL α LogL

Panel A: Total Returns
Daily 0.0070 −300, 492 0.0070 −300, 492 0.0070 −300, 492

130 minutes 0.0119 −276, 376 0.0129 −275, 476 0.0111 −276, 939
65 minutes 0.0149 −274, 580 0.0156 −273, 578 0.0137 −274, 782
30 minutes 0.0204 −273, 747 0.0200 −272, 644 0.0179 −273, 519
15 minutes 0.0273 −273, 802 0.0256 −272, 707 0.0231 −273, 186
10 minutes 0.0329 −274, 121 0.0293 −273, 071 0.0273 −273, 261
5 minutes 0.0481 −275, 004 0.0356 −274, 024 0.0375 −273, 774
3 minutes 0.0678 −275, 975 0.0386 −274, 939 0.0493 −274, 407
2 minutes 0.1025 −276, 985 0.0385 −275, 729 0.0643 −275, 164
1 minute 0.2106 −278, 971 0.1255 −276, 723

Panel B: Excess Returns
Daily 0.0070 −298, 480 0.0070 −298, 480 0.0070 −298, 480

130 minutes 0.0119 −274, 455 0.0130 −273, 449 0.0112 −275, 033
65 minutes 0.0151 −272, 712 0.0158 −271, 507 0.0138 −272, 907
30 minutes 0.0208 −271, 926 0.0204 −270, 572 0.0183 −271, 669
15 minutes 0.0282 −272, 100 0.0263 −270, 702 0.0238 −271, 381
10 minutes 0.0342 −272, 516 0.0304 −271, 133 0.0282 −271, 522
5 minutes 0.0514 −273, 562 0.0373 −272, 238 0.0393 −272, 157
3 minutes 0.0757 −274, 663 0.0406 −273, 293 0.0529 −272, 925
2 minutes 0.1178 −275, 675 0.0402 −274, 192 0.0713 −273, 751
1 minute 0.2468 −277, 537 0.1440 −275, 393

Notes: The table shows the decay rates (α) that maximize the likelihood of the model in (4.13)
and (4.12) for daily data and (4.13) and (4.14) for intraday data. In Panel A the model is
estimated for total returns, whereas in Panel B the model is estimated for excess returns (stock
returns minus S&P500 returns). The second and third column show the optimal decay rates
and accompanying log-likelihood values when the covariance updates are based on the standard
realized (co-)variances, the fourth and fifth column when the updates are based on the two time-
scales estimator, and the final two columns when 1 lead and 1 lag of the (co-)variances are added
to the contemporaneous (realized) covariances.
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to returns in excess of the S&P 500 return) and the standard case (no two time-scales, no

lead-lag correction), the optimal decay parameter increases monotonically from 0.0070 for

daily data to 0.2106 for the one-minute frequency. This pattern implies that the update

Vt−1,h in (4.14) is given more weight when it is measured, presumably more accurately, at

higher sampling frequencies. Fleming et al. (2003) report decay parameters of 0.031 and

0.064 for daily returns and five-minute returns, respectively, for the three liquid futures

contracts they consider. The lower decay parameters at these frequencies obtained here

for the 78 S&P 100 stocks are likely to be caused by having relatively more noise in the

intra-day returns data and a well-known phenomenon in multivariate GARCH models (for

daily returns) that the larger the number of assets, the lower the decay parameter, see

Engle and Sheppard (2001) and Hafner and Franses (2003) for discussion.

The two time-scales estimator and the lead-lag correction reduce the bias but increase

the variance of the realized covariance matrix for a particular sampling frequency. It

appears that for both methods the latter is more important here, given that the decay

parameters are lower for the corrected covariance matrices compared to the standard case.

Note that the log-likelihood is improved, however, except when using the lead-lag correction

for the lowest sampling frequencies. The decay parameters in Panel B, considering excess

returns, are in general slightly higher in all instances, but otherwise the findings correspond

to those for the total returns.

4.4.2 Portfolio performance

Table 4.3 shows the performance of the overall minimum variance portfolio, with weights

defined in (4.6), and the minimum variance portfolio given an annualized target return of

10%,12 with weights given by (4.8). For the overall minimum variance portfolio the optimal

sampling frequency turns out to be 65 minutes in the standard case. The annualized stan-

dard deviation of 12.16% compares favorably to the 14.00% for daily data. For the popular

five-minute frequency the standard deviation is 12.68%, clearly above the minimum. Also

for the target return portfolios the 65-minute frequency is optimal, resulting in a Sharpe

ratio of 0.786 compared to 0.596 for daily returns and 0.626 for five-minute returns. In

terms of the performance fees (∆γ), an investor with low relative risk aversion (γ = 1)

would be willing to pay 155 basis points per year to switch from the covariance matrix

12We examined the sensitivity of our results to the target return level by varying µP between 2% and
18%. These alternative target return levels led to qualitatively similar conclusions as those reported below.
Detailed results are therefore not shown here, but are available on request.
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Table 4.3: Out-of-sample performance - total returns

Min. variance
Target return portfolio portfolio

Frequency µP σP SR ∆1 ∆10 TO σMVP TO

Daily 8.84 14.83 0.596 16.8 14.00 16.4

Panel A: Standard
130 minutes 10.24 13.13 0.780 163.3 376.9 13.5 12.46 12.9
65 minutes 10.12 12.87 0.786 154.5 399.1 13.2 12.16 12.5
30 minutes 8.16 12.99 0.628 −42.8 187.4 13.4 12.17 12.7
15 minutes 8.82 13.12 0.673 22.0 237.3 13.8 12.21 13.0
10 minutes 8.29 13.30 0.623 −33.9 160.1 14.2 12.38 13.4
5 minutes 8.56 13.69 0.626 −11.5 135.4 15.6 12.68 14.7
3 minutes 8.48 13.92 0.610 −22.7 95.6 17.4 12.84 16.5
2 minutes 7.67 14.18 0.541 −107.6 −22.3 21.1 13.06 20.0
1 minute 7.89 14.44 0.546 −89.6 −38.3 28.6 13.33 26.9

Panel B: Two time-scales
130 minutes 9.27 13.04 0.711 67.8 292.6 13.2 12.26 12.7
65 minutes 8.82 12.88 0.685 25.0 268.3 12.4 12.10 11.9
30 minutes 8.16 12.88 0.633 −41.4 201.8 12.1 12.13 11.6
15 minutes 8.42 13.04 0.646 −17.3 208.0 12.4 12.24 11.8
10 minutes 8.78 13.17 0.667 17.3 226.2 12.6 12.33 12.0
5 minutes 9.18 13.49 0.680 52.1 222.5 12.9 12.57 12.2
3 minutes 9.14 13.73 0.665 44.9 186.2 12.8 12.73 12.0
2 minutes 9.21 13.91 0.662 49.8 168.3 12.4 12.88 11.6
1 minute

Panel C: 1 lead and 1 lag

130 minutes 10.23 13.11 0.780 162.8 378.8 13.6 12.44 13.0
65 minutes 10.25 12.87 0.797 168.0 412.9 13.3 12.16 12.6
30 minutes 9.07 12.81 0.708 50.8 302.7 13.2 12.01 12.6
15 minutes 8.41 12.89 0.653 −16.3 226.3 13.4 12.05 12.7
10 minutes 7.81 13.01 0.600 −78.2 149.6 13.7 12.15 12.9
5 minutes 8.54 13.28 0.643 −8.9 187.0 14.4 12.35 13.6
3 minutes 8.50 13.55 0.627 −15.9 147.6 15.6 12.57 14.8
2 minutes 8.05 13.80 0.583 −64.6 68.6 17.1 12.75 16.2
1 minute 8.06 14.10 0.571 −68.2 27.0 23.2 12.99 22.0

Notes: The table shows the out-of-sample performance of the overall minimum variance portfolio,
with weights given in (4.6), and the minimum variance portfolio given a target level of return
of 10%, with weights given in (4.8), constructed using rolling covariance matrix forecasts based
on various sampling frequencies and based on different ways of measuring the realized covariance
matrix (standard, two time-scales, and 1 lead and 1 lag). For the target return portfolios, we
report the mean return (µP ) and standard deviation (σP ) in annualized percentage points, the
Sharpe ratio (SR), the annualized basis points fee (∆γ) an investor with quadratic utility and
constant relative risk aversion of γ would pay to switch from the daily returns covariance matrix
estimate to the intraday returns of the optimal portfolios, and average daily turnover (TO) in
percentage points. For the minimum variance portfolios, we report the standard deviation (σMVP)
in annualized percentage points average daily turnover (TO) in percentage points.
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estimate based on daily returns to the realized covariance matrix obtained with 65-minute

returns. An investor with high relative risk aversion (γ = 10) would be willing to pay as

much as 399 basis points.

The results in Panel B of Table 4.3, using the two time-scales estimator, show only a

marginal improvement for the overall minimum variance portfolio with a standard deviation

of 12.10% compared to 12.16% before, both at the 65-minute sampling frequency. The

same conclusion holds for all other frequencies except 15 minutes. For the target return

portfolios, however, the results are ambiguous, in the sense that for sampling frequencies

of 10 minutes and higher the two time-scales estimator leads to a higher Sharpe ratio but

for lower sampling frequencies portfolio performance worsens. At the optimal frequency

of 130 minutes the Sharpe ratio is lower at 0.711, compared to 0.786 for the 65-minute

frequency in the standard case. The performance fees ∆γ show the same pattern.

The lead-lag correction in (4.3) leads to a higher optimal sampling frequency of 30

minutes for the minimum variance portfolio. The 12.01% annualized standard deviation

is slightly better than the 12.16% and 12.10% at the optimal 65-minute frequency in the

standard and two time-scales cases, respectively. In fact, the lead-lag bias-correction leads

to a reduction in volatility of the minimum variance portfolio at all frequencies, such that

the 10-minute sampling frequency now leads to approximately the same level of volatility as

the optimal 65-minute frequency in the standard case. Hence, using the lead-lag correction

allows for a substantially higher sampling frequency before the increased noise level due

to the use of leads and lags offsets this advantage. For the target return portfolios, the

optimal sampling frequency remains at 65 minutes as in the standard case, although the

corresponding Sharpe ratio is somewhat higher (0.797 compared to 0.786). The same

applies to the performance fees ∆γ, which increase to 168 and 412 basis points per year

for low and high relative risk aversion, respectively (compared to 155 and 399).

The performance of the minimum tracking error portfolios is shown in Table 4.4. Using

the standard realized covariance matrix, the tracking error is minimized at 4.43% using

the 30-minute frequency compared to 4.75% for daily data and 4.92% at the popular five-

minute frequency. The two time-scales estimator provides a further improvement with the

minimum tracking error equal to 4.18% at the 65-minute frequency. Finally, using one lead

and lag results in a higher optimal sampling frequency of 15 minutes as for the minimum

variance portfolio, with a marginally lower tracking error at 4.35%. Hence here we do

observe that bias-correction further improves the performance.
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Table 4.4: Out-of-sample performance - excess returns

Min. TE
Target active return portfolio portfolio

Frequency µP TEP IR ∆1 ∆10 TO TEMTE TO

Daily 0.52 4.77 0.110 5.2 4.75 5.2

Panel A: Standard
130 minutes 0.45 4.55 0.099 −6.4 3.0 6.2 4.53 6.2
65 minutes 0.28 4.51 0.063 −22.7 −11.9 6.7 4.48 6.7
30 minutes 0.09 4.48 0.019 −42.4 −30.1 7.6 4.43 7.5
15 minutes 0.57 4.52 0.127 6.2 16.9 8.8 4.46 8.8
10 minutes 0.75 4.67 0.161 23.2 27.8 9.8 4.59 9.8
5 minutes 0.89 4.99 0.179 35.7 26.3 12.6 4.92 12.6
3 minutes 1.85 5.23 0.353 129.9 109.3 16.6 5.18 16.6
2 minutes 2.36 5.42 0.436 180.5 150.8 22.4 5.40 22.5
1 minute 1.39 5.79 0.241 81.7 33.3 36.2 5.78 36.3

Panel B: Two time-scales
130 minutes 0.54 4.26 0.126 3.7 24.4 4.4 4.24 4.4
65 minutes 0.44 4.21 0.105 −5.7 17.1 4.4 4.18 4.3
30 minutes 0.49 4.22 0.116 −0.9 21.5 4.7 4.19 4.6
15 minutes 0.20 4.32 0.046 −30.4 −11.8 5.5 4.28 5.4
10 minutes 0.56 4.43 0.126 5.0 19.1 6.2 4.38 6.1
5 minutes 1.13 4.78 0.236 60.5 60.1 7.9 4.72 7.9
3 minutes 1.81 5.16 0.351 126.9 109.6 9.5 5.11 9.5
2 minutes 2.28 5.51 0.414 172.1 138.0 11.1 5.45 11.1
1 minute

Panel C: 1 lead and 1 lag

130 minutes 0.18 4.58 0.038 −34.0 −25.9 6.2 4.56 6.1
65 minutes 0.32 4.50 0.071 −19.0 −7.8 6.3 4.48 6.3
30 minutes 0.41 4.44 0.092 −9.9 3.9 6.8 4.40 6.8
15 minutes 0.62 4.40 0.141 11.4 26.8 7.5 4.35 7.5
10 minutes 0.63 4.48 0.140 11.7 24.1 8.1 4.42 8.0
5 minutes 0.72 4.58 0.156 20.1 28.1 9.4 4.51 9.4
3 minutes 1.57 4.77 0.329 104.7 104.7 11.4 4.71 11.3
2 minutes 1.95 4.97 0.394 142.2 133.7 13.7 4.91 13.7
1 minute 2.16 5.33 0.406 161.3 135.9 22.2 5.31 22.3

Notes: The table shows the out-of-sample performance of the overall minimum tracking error
portfolio, with weights given in (4.6), and the minimum tracking error portfolio given a target
level of return of 1%, with weights given in (4.8), constructed using rolling covariance matrix
forecasts based on various sampling frequencies and based on different ways of measuring the
realized covariance matrix (standard, two time-scales, and 1 lead and 1 lag). For the target active
return portfolios, we report the mean active return (µP ) and tracking error (TEP ) in annualized
percentage points, the information ratio (IR), the annualized basis points fee (∆γ) an investor
with quadratic utility and constant relative risk aversion of γ would pay to switch from the
daily returns covariance matrix estimate to the intraday returns of the optimal portfolios, and
average daily turnover (TO) in percentage points. For the minimum tracking error portfolios,
we report the tracking error (TEMTE) in annualized percentage points average daily turnover
(TO) in percentage points.
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Table 4.4 also demonstrates that for the active portfolio manager with an annualized

target excess return of five percent the optimal sampling frequency is much higher than

for total returns. The ex-post information ratio (excess return divided by tracking error)

is optimal for the two-minute frequency in the standard case at 0.436 compared to an

information ratio of 0.110 at the daily frequency. Risk-averse investors would be willing to

pay between 151 and 181 basis points per year to make use of the two-minute frequency

realized covariance matrix. The optimal frequency using one lead and one lag is even

the one-minute frequency, but it results in a slightly lower information ratio of 0.406 and

slightly lower performance fees of 136 and 161 basis points. The two time-scales estimator

also results in an optimal frequency of two minutes but with an information ratio of 0.414

and performance fees of 138 and 172 basis points, below the optimum in the standard case.

Comparing the information ratios at other frequencies with the corresponding results in the

standard case, again we find ambiguous results. The information ratio declines for sampling

frequencies of 15 minutes and higher, but it increases for lower sampling frequencies, while

the same is observed for the performance fees ∆γ. Note that this pattern is the complete

opposite of that found for the target return portfolios in Panel B of Table 4.3.

In sum, the general conclusion from Tables 4.3 and 4.4 when computing the minimum

variance portfolio or minimum tracking error portfolio is that the two time-scales estimator

and the lead-lag bias correction marginally improve the out-of-sample performance. We

emphasize, however, that selecting the appropriate sampling frequency appears to be much

more important than choosing between different bias- and variance-reduction techniques for

the realized covariance matrices. For example, the reduction in volatility of the minimum

variance portfolio when going from the popular five-minute frequency to the optimal 65-

minute frequency in the standard case (from 12.68% to 12.16%) is more than three times

as large as the additional reduction achieved by applying the lead-lag bias correction at

the 30-minute frequency (which further reduces volatility to 12.01%).

In general we would like to express a warning note on the target return results in Tables

4.3 and 4.4. The actual return pattern at the various frequencies is anything but smooth

and hence subject to a certain degree of ‘luck’. Obviously these results depend both on

the quality of the expected (excess) returns and the covariance matrix forecasts, making a

direct comparison of the quality of the covariance forecasts more difficult than is the case

for the minimum variance and minimum tracking error portfolios.
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4.4.3 Transaction costs and rebalancing frequency

Table 4.3 shows that daily turnover in the volatility timing strategies is considerable,

ranging between 12 and 17 percent for most sampling frequencies. In case the ‘standard’

realized covariance matrix or the lead-lag correction is used at the one-minute sampling

frequency, turnover increases even to around 25%. For the tracking error portfolios in

Table 4.4, turnover is below 10% for sampling frequencies below five minutes, but rapidly

increases when returns are sampled more frequently. Given that the optimal sampling

frequency for the target excess return portfolios was found to be two minutes, transaction

costs may be substantial and should be taken into account when assessing the portfolio

performance.

Panel A of Table 4.5 shows the performance of the target return portfolios with daily

rebalancing for transaction cost levels (c in the first column) between 2% and 20%, in

annualized percentage points as explained before. Results are shown for portfolios based

on covariance matrix estimates obtained with daily returns and with intraday returns at the

optimal frequency, which turns out to be 65 minutes irrespective of the transaction costs

level. No bias-corrections are applied to the realized covariance matrix in this case. As

expected, transaction costs reduce the portfolio return while the portfolio variance is largely

unaffected, leading to a monotonic decline of the Sharpe ratio as the level of transaction

costs increases. Note that the reduction in returns and Sharpe ratio is larger for the

portfolios based on covariance matrix estimates obtained with daily returns. Therefore the

difference in Sharpe ratios with the portfolios based on high-frequency intraday returns

actually becomes larger, such that the performance fees increase to 245 and 487 basis

points for γ = 1 and 10 in case transaction costs amount to 20%. This is not surprising of

course, given that daily turnover for these portfolios equals 16.8 and 13.2%, respectively

(see Table 4.3).

Panel A of Table 4.6 reveals that transaction costs have more dramatic effects for the

target excess return portfolios. Daily turnover for the portfolio based on covariance matrix

estimates obtained with the optimal two-minute returns is more than four times as high as

for the portfolio based on daily returns, at 22.4% compared to 5.2%. The reduction in the

mean active return and the information ratio therefore is much more pronounced for the

intraday returns based strategy, such that the performance fee actually becomes negative

for transaction costs in excess of 10%. Hence, if transaction cost levels are considerable, it

does not pay off to use high-frequency intraday returns to estimate the covariance matrix.
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Table 4.5: Transaction costs and rebalancing frequency - total returns

Daily returns Intraday returns
c µP σP SR µP σP SR h ∆1 ∆10

Panel A: Daily rebalancing
0 8.84 14.83 0.596 10.12 12.87 0.786 65 154.5 399.1
2 8.49 14.83 0.572 9.84 12.87 0.765 65 162.7 407.0
4 8.12 14.83 0.548 9.56 12.87 0.743 65 171.0 415.1
6 7.75 14.82 0.523 9.27 12.87 0.720 65 179.6 423.5
8 7.37 14.82 0.497 8.98 12.87 0.698 65 188.3 431.9

10 6.98 14.82 0.471 8.68 12.87 0.674 65 197.2 440.6
12 6.58 14.82 0.444 8.37 12.87 0.651 65 206.3 449.5
14 6.18 14.82 0.417 8.06 12.87 0.626 65 215.6 458.6
16 5.76 14.82 0.389 7.74 12.87 0.601 65 225.1 467.9
18 5.33 14.82 0.360 7.41 12.87 0.576 65 234.9 477.4
20 4.90 14.81 0.330 7.08 12.87 0.550 65 244.9 487.2

Panel B: Weekly rebalancing
0 9.62 14.88 0.646 10.36 13.17 0.787 130 98.4 314.8
2 9.43 14.88 0.634 10.22 13.17 0.776 130 103.1 319.4
4 9.25 14.88 0.621 10.08 13.17 0.766 130 107.9 324.2
6 9.05 14.88 0.608 9.94 13.17 0.755 130 112.8 329.0
8 8.86 14.88 0.595 9.80 13.17 0.744 130 117.8 333.9

10 8.66 14.88 0.582 9.65 13.17 0.732 130 122.9 339.0
12 8.45 14.88 0.568 9.49 13.17 0.721 130 128.1 344.1
14 8.24 14.88 0.554 9.34 13.17 0.709 130 133.5 349.4
16 8.03 14.88 0.540 9.18 13.17 0.697 130 138.9 354.8
18 7.81 14.88 0.525 9.01 13.17 0.684 130 144.5 360.3
20 7.58 14.88 0.510 8.85 13.17 0.672 130 150.3 366.0

Panel C: Monthly rebalancing
0 10.53 14.95 0.704 10.36 13.31 0.779 130 7.0 217.1
2 10.43 14.95 0.698 10.29 13.31 0.774 130 9.3 219.4
4 10.34 14.95 0.691 10.22 13.31 0.768 130 11.6 221.7
6 10.24 14.95 0.685 10.15 13.31 0.763 130 14.0 224.1
8 10.14 14.95 0.678 10.07 13.31 0.757 130 16.4 226.5

10 10.04 14.95 0.671 9.99 13.31 0.751 130 18.9 229.0
12 9.93 14.95 0.664 9.91 13.31 0.745 130 21.5 231.5
14 9.83 14.95 0.657 9.83 13.30 0.739 130 24.1 234.1
16 9.72 14.95 0.650 9.75 13.30 0.733 130 26.7 236.7
18 9.60 14.95 0.642 9.67 13.30 0.727 130 29.5 239.4
20 9.49 14.95 0.635 9.58 13.30 0.720 130 32.3 242.2

Notes: The table shows the out-of-sample performance of the minimum variance portfolio
given a target level of return of 10%, with weights given in (4.8), constructed using
rolling covariance matrix forecasts based on daily returns and on intraday returns at
the sampling frequency that maximized the information ratio, based on the ‘standard’
way of measuring the realized covariance matrix. We report the mean return (µP ) and
standard deviation (σP ) in annualized percentage points, the Sharpe ratio (SR), and the
annualized basis points fee (∆γ) an investor with quadratic utility and constant relative
risk aversion of γ would pay to switch from the daily returns covariance matrix estimate
to the intraday returns of the optimal portfolios. The column headed c indicates the
level of transaction costs, expressed in annualized percentage points, which correspond
with the reduction in the annualized portfolio return if the entire portfolio would have
to be traded every day during the whole year. The column headed h indicates the
optimal sampling frequency, expressed as the length of the corresponding return interval
in minutes.
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Table 4.6: Transaction costs and rebalancing frequency - excess returns

Daily returns Intraday returns
c µP TEP IR µP TEP IR h ∆1 ∆10

Panel A: Daily rebalancing
0 0.52 4.77 0.110 2.36 5.42 0.436 2 180.5 150.8
2 0.41 4.77 0.085 1.91 5.42 0.352 2 146.6 116.7
4 0.29 4.77 0.061 1.44 5.42 0.266 2 111.9 81.9
6 0.17 4.77 0.035 0.97 5.42 0.178 2 76.5 46.4
8 0.05 4.77 0.010 0.48 5.43 0.089 2 40.3 10.1

10 −0.08 4.76 −0.017 0.08 5.24 0.015 3 13.5 −7.7
12 −0.21 4.76 −0.044 −0.30 5.24 −0.057 3 −11.3 −32.7
14 −0.34 4.76 −0.072 −0.68 5.24 −0.131 3 −36.7 −58.2
16 −0.48 4.76 −0.100 −1.08 5.24 −0.206 3 −62.7 −84.3
18 −0.61 4.76 −0.129 −1.48 5.24 −0.283 3 −89.3 −111.1
20 −0.76 4.76 −0.159 −1.90 5.24 −0.362 3 −116.6 −138.5

Panel B: Weekly rebalancing
0 0.23 4.81 0.048 2.36 5.29 0.447 2 211.0 189.3
2 0.17 4.81 0.035 2.16 5.29 0.408 2 196.6 174.9
4 0.11 4.81 0.023 1.96 5.29 0.369 2 182.0 160.2
6 0.05 4.81 0.010 1.74 5.29 0.330 2 167.0 145.2
8 −0.01 4.81 −0.002 1.53 5.29 0.289 2 151.7 129.9

10 −0.08 4.81 −0.016 1.30 5.18 0.251 3 135.8 119.5
12 −0.14 4.81 −0.029 1.13 5.18 0.217 3 124.7 108.3
14 −0.21 4.81 −0.043 0.95 5.18 0.183 3 113.3 96.9
16 −0.27 4.81 −0.057 0.76 5.18 0.147 3 101.7 85.3
18 −0.34 4.81 −0.071 0.57 5.18 0.111 3 89.8 73.3
20 −0.42 4.81 −0.086 0.38 5.18 0.073 3 77.5 61.1

Panel C: Monthly rebalancing
0 0.22 4.88 0.044 3.45 5.28 0.654 1 321.5 303.0
2 0.19 4.88 0.038 3.36 5.28 0.636 1 315.2 296.7
4 0.16 4.88 0.032 3.27 5.28 0.619 1 308.8 290.3
6 0.13 4.88 0.026 3.17 5.28 0.601 1 302.3 283.8
8 0.10 4.87 0.020 3.07 5.28 0.582 1 295.6 277.1

10 0.07 4.87 0.013 2.97 5.28 0.563 1 288.8 270.3
12 0.03 4.87 0.007 2.87 5.28 0.544 1 281.8 263.3
14 0.00 4.87 0.000 2.77 5.28 0.524 1 274.7 256.2
16 −0.03 4.87 −0.007 2.66 5.28 0.504 1 267.4 248.9
18 −0.07 4.87 −0.014 2.55 5.28 0.483 1 259.9 241.4
20 −0.10 4.87 −0.021 2.44 5.28 0.462 1 252.3 233.7

Notes: The table shows the out-of-sample performance of the minimum tracking error portfolio
given a target level of return of 1%, with weights given in (4.8), constructed using rolling
covariance matrix forecasts based on daily returns and on intraday returns at the sampling
frequency that maximized the information ratio, based on the ‘standard’ way of measuring the
realized covariance matrix. We report the mean active return (µP ) and tracking error (TEP )
in annualized percentage points, the information ratio (IR), the annualized basis points fee
(∆γ) an investor with quadratic utility and constant relative risk aversion of γ would pay
to switch from the daily returns covariance matrix estimate to the intraday returns of the
optimal portfolios. The column headed c indicates the level of transaction costs, expressed in
annualized percentage points, which correspond with the reduction in the annualized portfolio
return if the entire portfolio would have to be traded every day during the whole year. The
column headed h indicates the optimal sampling frequency, expressed as the length of the
corresponding return interval in minutes.
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Also note that the optimal sampling frequency becomes lower at three minutes for high

levels of transaction costs.

Transaction costs may be reduced by rebalancing the portfolio less frequently. The

effects on portfolio performance are shown in Panels B and C of Table 4.5 for the target

return portfolios. First note that, as expected, the volatility of the portfolio increases

when the portfolio holding period increases, but only slightly. Somewhat surprisingly, the

portfolio return increases considerably and comes much closer to the target return of 10%

when the rebalancing frequency decreases. This corresponds with the findings of Fleming

et al. (2003). Turning to the effects of transaction costs, we find that the reduction in

returns and Sharpe ratio is indeed much less pronounced when rebalancing the portfolio

weekly or monthly rather than daily. Again, turnover is higher for the portfolios based

on covariance matrix estimates obtained with daily returns, such that the maximum fee

investors are willing to pay to switch to covariance matrix estimates obtained with intraday

returns increases with the level of transaction costs. Also note that the magnitude of the

performance fee ∆γ declines when the rebalancing frequency becomes lower. This is due to

the fact that the improvement in performance when going from daily to weekly or monthly

rebalancing is relatively larger for the portfolio based on daily returns.

In order to assess the economic value of rebalancing less frequently more directly, we

compute the performance fee ∆γ that an investor is willing to pay to switch from daily re-

balancing to weekly (or monthly) rebalancing for a given level of transaction costs. For the

daily and weekly rebalanced portfolios based on intraday returns at the optimal sampling

frequencies and annualized transaction costs equal to 10%, we find that ∆γ is equal to 94

and 47 basis points for γ = 1 and 10, respectively. These performance fees even increase

to 128 and 64 points when comparing the daily and monthly rebalancing frequencies.

Finally, the benefits of rebalancing less frequently become very clear from Panels B

and C of Table 4.6 for the target excess return portfolio. Although the active return is

still reduced due to transaction costs in case of weekly or monthly rebalancing, it remains

higher for the portfolio based on intraday returns than for the daily returns portfolio even

in case of transaction costs up to 20%. Given that the levels of ex-post tracking error

do not differ very much, the IR remains higher as well, and investors are willing to pay

considerable fees to make use of the high-frequency returns portfolio.

Again we compute the performance fee ∆γ using portfolios with daily and weekly (or

monthly) holding periods for a given level of transaction costs to evaluate the economic

gains from rebalancing less frequently directly. With annualized transaction costs equal
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to 10%, we find that an investor is willing to pay 200 basis points to switch from daily to

weekly rebalancing for both low and high relative risk aversion. Comparing the daily and

monthly rebalancing frequencies, ∆γ is equal to 280 and 276 basis points for γ = 1 and 10,

respectively. It would be interesting to include the rebalancing frequency in the portfolio

optimization problem. Obviously this is difficult to achieve and beyond the scope of this

chapter.

4.4.4 Genuine out-of-sample forecasting

Fleming et al. (2001, 2003) suggest that determining the decay parameters α and αh in

(4.12) and (4.14), respectively, using maximum likelihood on the full sample does not lead

to serious data snooping problems because the final evaluation criterion (maximizing return

or minimizing risk) differs from the likelihood objective function. To test the validity of

this argument, and to test a true out-of-sample strategy, we proceed as follows. First we

find the decay parameters that maximize the performance of the various portfolios over

the first 250 days following the initial burn-in period, i.e. the values of α and αh that

minimize the (relative) variance or maximizes the Sharpe (or information) ratio. These

decay parameters are then used to estimate the conditional covariance matrices Σ̂t and

Σ̂t,h for the first day following the in-sample period, for which optimal portfolio weights

are then constructed using (4.6) and (4.8). This procedure is repeated using an expanding

in-sample estimation window where each time a new observation is added. This not only

implies that the decay parameter varies over time, but also that the portfolio performance

thus obtained is truly out-of-sample. Since we lose an additional 250 days at the start of

the sample, for comparison we re-estimated the decay parameter using maximum likelihood

for the shorter sample of 1416 trading days and constructed the corresponding portfolio

weights and performance.

The results are presented in Table 4.7. For both the minimum variance and minimum

tracking error portfolios the results are re-assuring, in the sense that the optimal sampling

frequency is still 65 and 30 minutes, respectively. Also the performance itself is similar

to that of the standard case. By contrast, for the target return portfolios the results do

change considerably. In the total return case the optimal sampling frequency is now 10

minutes instead of 65, and the Sharpe ratio has deteriorated from 0.640 to 0.554. In the

excess return case the optimal sampling frequency is now one minute instead of two, but

with a better information ratio at 0.457 versus 0.373. Perhaps most revealing, the optimal

decay parameters are much lower when determined using in-sample portfolio performance
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Table 4.7: Out-of-sample α’s

Target return portfolio Minimum risk portfolio
αh SR/IR αh σP /TEP

Frequency Mean St.Dev Perf. LogL Mean St.Dev Perf. LogL

Panel A: Total Returns
Daily 0.001 0.003 0.507 0.482 0.004 0.002 13.770 13.669

130 minutes 0.069 0.037 0.534 0.626 0.014 0.002 12.534 12.229
65 minutes 0.087 0.107 0.262 0.640 0.018 0.003 11.937 11.945
30 minutes 0.035 0.020 0.436 0.519 0.024 0.003 11.986 11.972
15 minutes 0.097 0.130 0.261 0.603 0.034 0.005 12.061 12.034
10 minutes 0.352 0.034 0.554 0.561 0.042 0.006 12.220 12.207
5 minutes 0.312 0.086 0.434 0.597 0.047 0.005 12.471 12.466
3 minutes 0.223 0.189 0.471 0.578 0.080 0.030 12.592 12.556
2 minutes 0.215 0.194 0.452 0.526 0.107 0.076 12.797 12.755
1 minute 0.361 0.116 0.478 0.516 0.124 0.076 13.002 12.971

Panel B: Excess returns
Daily 0.041 0.004 0.357 −0.031 0.006 0.001 4.858 4.871

130 minutes 0.004 0.006 0.167 0.122 0.008 0.003 4.593 4.581
65 minutes 0.002 0.002 0.298 0.161 0.008 0.004 4.595 4.554
30 minutes 0.002 0.009 0.181 0.096 0.011 0.005 4.512 4.477
15 minutes 0.001 0.001 0.376 0.198 0.012 0.006 4.516 4.483
10 minutes 0.004 0.012 0.203 0.312 0.012 0.006 4.630 4.629
5 minutes 0.001 0.002 0.395 0.234 0.010 0.005 4.814 4.949
3 minutes 0.009 0.010 0.239 0.348 0.010 0.005 4.970 5.220
2 minutes 0.024 0.041 0.269 0.373 0.011 0.005 5.095 5.514
1 minute 0.031 0.028 0.453 0.184 0.015 0.006 5.249 5.864

Notes: The table shows the out-of-sample performance of the overall minimum volatility (tracking
error) portfolio, with weights given in (4.6), and the minimum variance portfolio given an annualized
target level of (active) return of 10% (1%), with weights given in (4.8), constructed using rolling
covariance matrix forecasts based on various sampling frequencies and based on the ‘standard’ real-
ized covariance matrix. Panel A shows results for total returns and Panel B for excess returns (stock
returns minus S&P 500 returns). The optimal decay parameters are determined by optimizing port-
folio performance using an expanding window period (starting with 250 days). Columns 2 and 3,
and 6 and 7, report the mean and standard deviation of the resulting estimates of αh. Columns 4
and 8, headed ‘Perf.’, show the Sharpe ratio and volatility (panel A) or the information ratio and
tracking error (panel (B) for the resulting portfolios. Columns 5 and 9, headed ‘LogL’, show the
SR/IR and σP /TEP for portfolios constructed with decay parameters for the conditional covariance
matrix that are estimated by maximizing the log-likelihood over the complete out-of-sample period.

than when estimated with maximum likelihood (except for the target return portfolios,

when performance is measured by the Sharpe ratio). This holds especially for the higher

sampling frequencies. To verify that this is not an artefact of using different decay rates
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over time, we also did a datasnooping exercise with a constant decay parameter equal to

the value that maximizes performance (rather than the log-likelihood) over the entire out-

of-sample period. These results (not reported here) confirm that performance-based decay

rates are much lower than the ones based on the log-likelihood. In addition, this enhances

the performance at those frequencies. Hence the log-likelihood procedure tends to give too

much weight to the updates. A logical explanation for this is that the noise pattern of the

updates suits the log-likelihood when standardizing equally noise daily returns, but more

smoothing is needed (lower decay parameters) for forecasting the covariance matrices.

4.5 Concluding remarks

Existing studies that use high-frequency intra-day data to measure and forecast the daily

covariance matrix make ad-hoc choices with regard to the sampling frequency. The presence

of bid-ask bounce and non-synchronous trading creates a trade-off between higher sampling

frequencies leading to lower variances of the (co-)variance measures due to having more

data, and lower sampling frequencies reducing the impact of these market microstructure

effects. Popular ad-hoc choices to strike a balance between the resulting bias and variance

of the realized covariance estimates are the five- and 30-minute sampling frequencies.

In this chapter we show that choosing the optimal sampling frequency is crucial for the

out-of-sample performance of portfolios constructed using realized covariances. Even for

the relatively liquid stocks that comprise the S&P 100 index the optimum is more likely

to be in the neighbourhood of an hour rather than five or 30 minutes.

We also investigated the use of bias- and variance-reduction methods for computing the

realized covariances. Both the two time-scales estimator and the lead-lag bias-correction

procedure result in a marginal improvement over the standard realized covariance matrix

estimator at the same frequency. Transaction costs were shown to affect portfolio per-

formance considerably, and in particular they imply that rebalancing the portfolio less

frequently may be beneficial.

Several interesting topics for further research come to mind. First, it would be in-

teresting to explore other ways to correct for biases in realized covariances due to non-

synchronous trading. Second, it may be worthwhile to allow the sampling frequency to

vary over time, to take into account changes in trading intensity. The S&P stocks con-

sidered here, for example, were traded much more frequently at the end of the sample

period than in the beginning, see also Bandi et al. (2008). Third, Andersen et al. (2003a)
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suggest that with more and more assets eventually a factor model will be needed, see

Andersen et al. (2001a) and Hafner et al. (2006) for additional motivation and discussion

and Bollerslev and Zhang (2003) for an application using the Fama-French three-factor

model. Fourth, it would be interesting to examine the effects of restrictions on the port-

folio weights, which we did not consider here. As shown by Jagannathan and Ma (2003),

imposing short-selling constraints and a maximum weight constraint, for example, may

enhance portfolio performance, even if the restrictions are wrong. Finally, in this chapter

we considered the popular approach that makes use of artificially constructed equidistant

prices in calendar time, in part because the empirical data set was constrained to the close

of each minute rather than all transaction prices. It would be interesting to see empirical

work on the scale of this chapter with many stocks that considers transaction time sampling

rather than calendar time sampling, for example using the covariance estimators of Harris

et al. (1995), De Jong and Nijman (1997) and Hayashi and Yoshida (2005). Martens (2004)

provides an overview and comparison in a simulation setting, while Hansen et al. (2005b)

discuss theoretical issues related to such estimators including bias correction procedures.



116 Chapter 4

Appendix

4A S&P 100 constituents on June 18, 2004

The 100 constituents of the S&P 100 index on June 18, 2004. The 78 stocks marked with

a ∗ are included in the analysis. For these stocks there is a complete set of one-minute

open-high-low-close prices from April 16, 1997, through May 27, 2004 (1788 trading days).

Table 4.8: S&P 100 constituents
Symbol Issue name Symbol Issue name
AA* ALCOA INC IBM* INTL BUS MACHINE
AEP* AMER ELEC PWR INTC* INTEL CORP
AES* THE AES CORP IP INTL PAPER CO
AIG* AMER INTL GROUP JNJ* JOHNSON&JOHNSON
ALL* ALLSTATE CP JPM* JP MORGAN CHASE
AMGN* AMGEN KO* COCA COLA CO
AOL AOL TIME WARNER LEH* LEHMAN BROS
ATI ALLEGHENY TECH LTD* LIMITED BRANDS
AVP AVON PRODS INC LU* LUCENT TECH
AXP* AMER EXPRESS CO MAY* MAY DEPT STORES
BA* BOEING CO MCD* MCDONALDS CORP
BAC* BANK OF AMERICA MDT* MEDTRONIC INC
BAX* BAXTER INTL INC MEDI MEDIMMUNE INC
BCC* BOISE CASCADE MER* MERRILL LYNCH
BDK* BLACK & DECKER MMM* 3M COMPANY
BHI* BAKER HUGHES INC MO* ALTRIA GROUP
BMY* BRISTOL MYERS SQ MRK* MERCK & CO
BNI* BURL NTHN SANTA MSFT* MICROSOFT CP
BUD* ANHEUSER BUSCH MWD MORGAN STANLEY
C* CITIGROUP NSC* NORFOLK SOUTHERN
CCU* CLEAR CHANNEL NSM* NATL SEMICONDUCT
CI* CIGNA CORP NXTL* NEXTEL COMMS
CL* COLGATE PALMOLIV ONE* BANK ONE CORP
CPB* CAMPBELL SOUP CO ORCL* ORACLE CORP
CSC COMPUTER SCIENCE PEP* PEPSICO INC
CSCO* CISCO SYSTEMS PFE* PFIZER INC
DAL* DELTA AIR LINES PG PROCTER & GAMBLE
DD* DU PONT CO ROK* ROCKWELL AUTOMAT
DIS* WALT DISNEY CO RSH RADIOSHACK
DOW DOW CHEMICAL CO RTN RAYTHEON CO
EK* EASTMAN KODAK S* SEARS ROEBUCK
EMC* EMC CORP SBC* SBC COMMS
EP EL PASO CORP SLB* SCHLUMBERGER LTD
ETR* ENTERGY CP SLE* SARA LEE CORP
EXC EXELON CORP SO* SOUTHERN CO
F FORD MOTOR CO T* AT&T CORP
FDX FEDEX CORP TOY* TOYS R US CORP
G* GILLETTE CO TXN* TEXAS INSTRUMENT
GD* GENERAL DYNAMICS TYC* TYCO INTL
GE* GENERAL ELEC CO UIS* UNISYS CORP
GM* GENERAL MOTORS USB US BANCORP
GS GOLDM SACHS GRP UTX* UNITED TECH CP
HAL* HALLIBURTON CO VIAb VIACOM CL B
HCA HCA INC VZ VERIZON COMMS
HD* HOME DEPOT INC WFC* WELLS FARGO & CO
HET* HARRAHS ENTER WMB* WILLIAMS COS INC
HIG* HARTFORD FINL WMT* WAL-MART STORES
HNZ* H J HEINZ CO WY WEYERHAEUSER CO
HON* HONEYWELL INTL XOM EXXON MOBIL
HPQ* HEWLETT-PACKARD XRX* XEROX CORP
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Chapter 5

Examining the Nelson-Siegel Class of
Term Structure Models
In-sample fit versus out-of-sample forecasting
performance

5.1 Introduction

Accurate estimates of the current term structure of interest are of crucial importance

in many areas of finance. Equally important is the ability to forecast the future term

structure. It is not surprising therefore that substantial research effort has been devoted

to the questions of how to optimally estimate, model and forecast the term structure of

interest rates. One class of models that has the potential of providing satisfactory answers

to these questions is that of the Nelson-Siegel models.

Nelson and Siegel (1987) proposed to fit the term structure using a flexible, smooth

parametric function. They demonstrated that their proposed model is capable of capturing

many of the typically observed shapes that the yield curve assumes over time. Since then

various extensions have been proposed that incorporate additional flexibility with a popular

extension being the Svensson (1994) model. Despite the drawback that they lack theoretical

underpinnings, the Bank of International Settlements (BIS, 2005) reports that currently

nine out of thirteen central banks which report their curve estimation methods to the BIS

use either the Nelson-Siegel or the Svensson model to construct zero-coupon yield curves.

As the Nelson-Siegel model is also widely used among practitioners, this ranks it among

the most popular term structure estimation methods.

Recently, Diebold and Li (2006) have shown that the three-factor Nelson-Siegel model

can also be used to construct accurate term structure forecasts. By using a straightforward

two-step estimation procedure they demonstrate that the model performs well, relative to
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competing models, especially for longer forecast horizons. Mönch (2006a) partially confirms

these results and Fabozzi, Martellini, and Priaulet (2005) show that the Nelson-Siegel

model produces forecasts that are not only statistically accurate but also economically

meaningful as these can be used to generate substantial investment returns.

Due to these successes it is not surprising that the Nelson-Siegel model is increasingly

being used in other applications as well. For example, Diebold, Rudebusch, and Aruoba

(2006b) use the model to study the interactions between the macro economy and the

yield curve (see also Diebold, Piazzesi, and Rudebusch, 2005) whereas Diebold, Ji, and Li

(2006a) apply it to identify systematic risk sources and to construct a generalized duration

measure.

Much of this research focuses, however, solely on the original three-factor Nelson-Siegel

model. Extensions such as the Svensson model have not yet been investigated for their out-

of-sample performance whereas extensions like those of Björk and Christensen (1999) have

been left nearly unexamined altogether. This chapter tries to fill this gap. In particular, I

examine several models within the Nelson-Siegel class for their in-sample fitting and out-of-

sample forecasting performance. Diebold and Li (2006) show that the dynamic three-factor

Nelson-Siegel model had the potential of performing well in both areas. This motivates a

closer examination of the various extended Nelson-Siegel models. It is unclear, however,

if, or to what extent, models that are capable of parsimoniously fitting the term structure

in-sample should also necessarily render accurate out-of-sample forecasts. No-arbitrage

models for example typically fit the term structure quite accurately but forecast poorly

(Duffee, 2002). An important task is therefore to try and evaluate the trade-off between

in-sample fit and out-of-sample forecasting performance. More flexible models will most

likely improve the in-sample fit but the question thus is to what extent these can also

produce better out-of-sample results. In order to address this question for the class of

Nelson-Siegel models I use a sample of U.S. Treasury zero-coupon bond yields consisting of

twenty years of monthly data. I determine which features of the extended models help to

improve the term structure fit. To gauge the out-of-sample performance I construct yield

forecasts for short and long-term horizons and compare these with forecasts from several

competitor models. In addition to looking at different Nelson-Siegel specifications I also

examine in detail the benefits of alternative model estimation techniques, discuss several

potential estimation and identification issues and propose solutions on how to tackle these.

The results can be summarized as follows. First of all I show that the more flexible

models fit the term structure more accurately than the three-factor Nelson and Siegel
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(1987) model. This is not a surprising result in itself. What is interesting though is that

a similar fit can be obtained as that of the popular Svensson (1994) model by extending

the three-factor model with a second slope factor as in Björk and Christensen (1999). The

advantage of the four-factor model is that it is easier to estimate than the Svensson model

as it is less hampered by potential non-identification issues when estimating the factors.

In addition to an improved in-sample fit, I also demonstrate that the four-factor model

produces accurate out-of-sample forecasts. In fact, the four-factor model outperforms the

random walk benchmark and AR and VAR competitor models as well as all other Nelson-

Siegel specifications, including the three-factor model. The best results are obtained by

simultaneously taking into account cross-sectional and time-series information about yields

when estimating the model and using an AR specification for the factor dynamics. The

four-factor model forecasts increasingly well for all maturities when the forecast horizon

lengthens. The outperformance relative to the random walk is substantial as it reduces

the RMSPE by often as much as 10% or more. Subsample analysis shows that, unlike the

performance of for example the three-factor model, the four-factor model is consistently

producing highly accurate forecasts.

The remainder of this chapter is structured as follows. In Section 5.2 I give a short re-

view of term structure estimation methods. Section 5.3 discusses the various Nelson-Siegel

models in detail and Section 5.4 is devoted to the estimation of these models. Section 5.5

describes the data. The in-sample results are presented in Section 5.6 whereas Section 5.7

shows the out-of-sample forecast results. Section 5.8 concludes and offers some directions

for further research.

5.2 Term structure estimation methods

The term structure of interest rates describes the relationship between interest rates and

time to maturity. The standard way of measuring the term structure of interest rates is by

means of the spot rate curve, or yield curve1, on zero-coupon bonds. The reason behind

this is that yields-to-maturity on coupon-bearing bonds suffer from the ‘coupon-effect’ (see

Caks, 1977) which implies that two bonds which are identical in every respect except for

bearing different coupon-rates can have a different yield-to-maturity. The problem with

zero-coupon yields on the other hand, is that these can only be directly observed from

1The yield-to-maturity and the spot rate on a zero-coupon bond are the same. Because in this chapter
I focus solely on zero-coupon bond interest rates I use both terms interchangeably.
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Treasury Bills which have maturities of twelve months or less. Longer maturity zero-

coupon yields need to be derived from coupon-bearing Treasury Notes and Bonds. In

practice, we can therefore not observe the entire term structure of interest rates directly.

We need to estimate it using approximation methods2 Term structure estimation methods

are designed for the purpose of approximating one of three equivalent representations of the

term structure: the spot rate curve, discount curve and forward rate curve. Once we have

a representation for one of these we can automatically derive the other representations.

In the remainder of this section I briefly discuss the three curves and fix notation3. For

convenience, I assume throughout that all rates are continuously compounded.

The forward rate curve characterizes forward rates as a function of maturity. A forward

rate ft(τ, τ
∗) is the interest rate of a forward contract on an investment which is initiated τ

periods in the future and which matures τ ∗ periods beyond the start date of the contract.

We obtain the instantaneous forward rate ft(τ) by letting the maturity of such a forward

contract go to zero:

lim
τ∗↓0

ft(τ, τ
∗) = ft(τ) (5.1)

The instantaneous-maturity forward rate curve represent forward rates on infinitesimal-

maturity forward contracts which are initiated τ periods in the future for τ ∈ [0,∞).

Given the forward curve, we can determine the spot rate (or yield) on a zero-coupon

bond with τ periods to maturity, denoted by yt(τ), by taking the equally weighted average

over the forward rates:

yt(τ) =
1

τ

∫ τ

0

ft(m)dm (5.2)

The discount curve, Pt(τ), which denotes the present value of a zero-coupon bond that

pays out a nominal amount of $1 after τ periods, can in turn be obtained from the spot

rate curve by

Pt(τ) = exp [−τyt(τ)] (5.3)

2. In the U.S. zero-coupon rates are to a certain extent more directly available through the use of
STRIPS. The Treasury STRIPS program, which started in 1985, allows an investor to split coupon-bearing
Treasury Notes and Bonds into a basket of zero-coupon securities, see Sack (2000) for a discussion. Due
to a limited investor demand for short- and medium-term zero-coupon securities there are some concerns,
however, about the liquidity of shorter-term STRIPS and it is therefore still more common practice to
estimate the yield curve using coupon-bearing bonds.

3For a more elaborate discussion see, e.g., Svensson (1994).



5.3 Nelson-Siegel class of models 125

The final relationship we have links forward rates directly to the discount curve and is

given by

ft(τ) = − 1

Pt(τ)

dPt(τ)

dτ
= yt(τ) + τ

dyt(τ)

dτ
(5.4)

We can move from one curve to the other by using the relationships specified in (5.2)-(5.4).

Various methods have been proposed to estimate the term structure from (quoted)

bond prices. A popular approach is the bootstrapping procedure by Fama and Bliss (1987)

which consists of sequentially extracting forward rates from bond prices with successively

longer maturities. The Fama and Bliss (1987) approach exactly prices all bonds included

in the procedure and assumes that the forward rate between observed maturities is con-

stant. The dataset I analyze in this chapter consists of Fama-Bliss interest rates. Other

term structure estimation methods use for example cubic splines (McCulloch, 1975), expo-

nential splines (Vasicek and Fong, 1982), polynomials functions (Chambers et al., 1984),

parametric methods (Nelson-Siegel, see e.g. Bliss, 1997) or non-parametric methods (Lin-

ton et al., 2001). Studies such as Bliss (1997), Ferguson and Raymar (1998) and Jeffrey

et al. (2006) compare several different estimation methods and demonstrate the pros and

cons of the various methods.

Once the decision has been made as to which method to use to construct an estimate of

the term structure, the next step is to build a model to describe the evolution of the term

structure over time. Popular models are no-arbitrage affine models, e.g. the one-factor

models by Vasicek (1977) and Cox et al. (1985) or multi-factor models as specified and

analyzed in Duffie and Kan (1996), Dai and Singleton (2000) and De Jong (2000). In this

study I focus solely on the class of Nelson-Siegel models. Diebold and Li (2006) show that

the Nelson-Siegel model not only provides a good in-sample fit of the term structure but

also produces accurate out-of-sample interest rate forecasts for a 6 and 12-month forecast

horizon. Diebold and Li (2006) only consider the original three-factor Nelson and Siegel

(1987) model, however. The purpose of this chapter is to examine a broader class of

Nelson-Siegel models. This includes for example the four-factor specifications proposed by

Svensson (1994) and Björk and Christensen (1999).

5.3 Nelson-Siegel class of models

5.3.1 Three-factor base model

Nelson and Siegel (1987) suggest to fit the forward rate curve at a given date with a
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mathematical class of approximating functions. The functional form they advocate uses

Laguerre functions which consist of the product between a polynomial and an exponential

decay term. The resulting Nelson-Siegel approximating forward curve can be assumed to

be the solution to a second order differential equation with equal roots for spot rates4

ft(τ) = β1,t + β2,t exp

(
− τ

λt

)
+ β3,t

(
τ

λt

)
exp

(
− τ

λt

)
(5.5)

The parameters βt,1, βt,2 and βt,3 are determined by initial conditions and λt is a constant

associated with the equation. By averaging over forward rates, as in (5.2), we obtain the

spot rate curve

yt(τ) = β1,t + β2,t




1 − exp

(
− τ

λt

)

(
τ
λt

)



+ β3,t




1 − exp

(
− τ

λt

)

(
τ
λt

) − exp

(
− τ

λt

)

 (5.6)

There are several reasons why the Nelson-Siegel model is such a popular term structure

estimation method. First of all, it provides a parsimonious approximation of the yield

curve using only a small number of parameters (contrary to for example spline methods).

Together, the three components [1, 1−exp(−τ/λt)
(τ/λt)

, 1−exp(−τ/λt)
(τ/λt)

−exp (−τ/λt)], give the model

enough flexibility to capture a range of monotonic, humped and S-type shapes typically

observed in yield data. Second of all, the model produces forward and yield curves which

have the desirable property of starting off from an easily computed instantaneous short

rate value of β1,t + β2,t and levelling off at a finite infinite-maturity value of β1,t, that is

constant5:

lim
τ↓0

yt(τ) = β1,t + β2,t; lim
τ→∞

yt(τ) = β1,t (5.7)

Finally, the three Nelson-Siegel components have a clear interpretation as short, medium

and long-term components. These labels are the result of each element’s contribution to

the yield curve. Figure 5.1[a] depicts the value of each component as a function of maturity.

The long-term component is the component on β1,t because it is constant at 1 and therefore

4For the specification of the Nelson-Siegel model I follow Fabozzi et al. (2005), Diebold and Li (2006)
and Diebold, Rudebusch, and Aruoba (2006b) although I specify the decay parameter(s) the same way as
in Nelson and Siegel (1987).

5The limiting behavior of the spot curve and the forward curve are the same. The Nelson-Siegel discount
curve, which follows from combining (5.6) with (5.3) is given by

Pt(τ) = exp
{
(−β1,tτ − β2,t[1 − exp (−λtτ)] − β3,t[1 − exp (−λtτ) − τ exp (−λtτ)]

}
,

The discount curve starts at 1 and converges to zero for infinite maturities as required.
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Figure 5.1: Nelson-Siegel factor loadings
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[a] three-factor model [b] four-factor model
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[c] Svensson model [d] Adjusted Svensson model

Notes: The graph depicts the factor loadings for β1 (dotted line), β2 (dashed line), β3

(solid line) and β4 (dash-dotted line) for the [a] three-factor, [b] four-factor, [c] Svensson and
[d] Adjusted Svensson Nelson-Siegel model. The factor loadings are plotted using λ = 16.42 for
the 3-factor and 4-factor models. For the (Adjusted) Svensson model it holds that λ1 = 16.42
and λ2 = 9.73 which ensures that the maturities at which the two curvature factors reach their
maximum is at least twelve months apart.

the same for every maturity. The component on β2,t is
[

1−exp(−τ/λt)
(τ/λt)

]
and is designated

as the short-term component. It starts at 1 but then decays to zero at an exponential

rate. The rate of decay is determined by the parameter λt. Smaller values for λt induce a
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faster decay to zero. The medium-term component is
[

1−exp(−τ/λt)
(τ/λt)

− exp (−τ/λt)
]

which

starts at 0, increases for medium maturities and then decays to zero again thereby creating

a hump-shape. The decay parameter λt determines at which maturity this component

reaches its maximum.

Although the Nelson-Siegel model was in essence designed to be a static model which

does not account for the intertemporal evolution of the term structure, Diebold and Li

(2006) show that the coefficients β1,t, β2,t and β3,t can be interpreted as three latent dy-

namic factors6. Moreover, the authors show that the labels level, slope and curvature are

appropriate for these factors. The long-term factor β1,t governs the level of the yield curve

whereas β2,t and β3,t govern its slope and curvature respectively.

By casting the Nelson-Siegel model into a dynamic framework, Diebold and Li (2006)

further show that the model is capable of replicating the main empirical facts of the term

structure of interest rates over time: the average curve is upward sloping and concave,

yield dynamics are highly persistent with long maturity rates being more persistent than

short-maturity rates, and interest rate volatility is decreasing for longer maturities. Due to

its attractive properties and its widespread use by central banks and practitioners I regard

the three-factor model in (5.6) as the Nelson-Siegel base model. Note that Diebold and

Li (2006) as well as for example Dolan (1999), Fabozzi et al. (2005) and Mönch (2006a)

first fix λt to a pre-specified value and then proceed with analyzing the three-factor model.

Here, I estimate λt as well as fixing it.

Although the base model can already capture a wide range of shapes, it cannot handle

all the shapes that the term structure assumes over time. As an attempt to remedy

this problem, several more flexible Nelson-Siegel specifications have been proposed in the

literature to better fit more complicated shapes, mainly shapes with multiple minima

and/or maxima. These extended Nelson-Siegel models achieve the increase in flexibility

by introducing either additional factors, further decay parameters, or by a combination of

both. In the remainder of this section I discuss which of these specifications I will examine

for their in-sample fit and out-of-sample predictive accuracy.

6The short, medium and long-term components can therefore also be interpreted as factor loadings.
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5.3.2 Alternative Nelson-Siegel specifications

5.3.3 Two-factor model

The first model I consider is a restriction rather than an extension of the three-factor model.

Litterman and Scheinkman (1991), among many other studies, show that the variation in

interest rates can be explained by only a small number of underlying common factors. Typ-

ically, the first three principal component factors are already sufficient since these explain

the bulk of interest rate variance but also because they have the intuitive interpretation

as level, slope and curvature factors from the manner in which these factors affect the

yield curve. The third factor has usually very little to add, however, (typically only a

few percentage points) to the amount of interest rate variance that is already captured by

the first two factors7. For this reason, authors such as Bomfim (2003a) and Rudebusch

and Wu (2003) consider two-factor affine models to explain interest rate dynamics whereas

Diebold, Piazzesi, and Rudebusch (2005) examine a two-factor Nelson-Siegel model. Com-

pared to the three-factor Nelson-Siegel model, the two-factor model only contains the level

and slope factor:

yt(τ) = β1,t + β2,t




1 − exp

(
− τ

λt

)

(
τ
λt

)



 (5.8)

Diebold, Piazzesi, and Rudebusch (2005) argue that since the first two principal com-

ponents explain nearly all variation in interest rates, a two-factor model may suffice to

forecast the term structure. They also argue, however, that two factors will most likely

not be enough to accurately fit the entire yield curve8.

5.3.4 Björk and Christensen (1999) four-factor model

The three-factor Nelson-Siegel model can be extended in various ways to increase its flex-

ibility. From an estimation point of view, the easiest approach is to introduce additional

factors. Björk and Christensen (1999) propose to add a fourth factor to the approximating

7For the dataset I use here, the first and second factor explain 95.6% and 4% each of the variance in
yield levels. The third factor explains only an additional 0.23%.

8Diebold, Piazzesi, and Rudebusch (2005) show how to impose no-arbitrage restrictions on this two-
factor Nelson-Siegel model. As argued by Diebold et al. (2006b) no-arbitrage restrictions are likely to be,
at least approximately, satisfied in the U.S. Treasury data analyzed here. Therefore, imposing no-arbitrage
restrictions are unlikely to improve the performance of the two-factor model reported in Section 5.6 and
5.7. Its poor performance seems primarily due to the limited number of only two factors.
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forward curve in (5.5):

ft(τ) = β1,t + β2,t exp

(
− τ

λt

)
+ β3,t

(
τ

λt

)
exp

(
− τ

λt

)
+ β4,t exp

(
−2τ

λt

)
(5.9)

The four-factor Nelson-Siegel yield curve is then given by

yt(τ)=β1,t+β2,t




1−exp

(
−τ

λt

)

(
τ
λt

)



+β3,t




1−exp

(
−τ

λt

)

(
τ
λt

) − exp

(
−τ
λt

)

+β4,t




1−exp

(
−2τ

λt

)

(
2τ
λt

)





(5.10)

The fourth component,
[

1−exp(−2τ/λt)
(2τ/λt)

]
, resembles the second component as it also mainly

affects short-term maturities. The difference is that it decays to zero at a faster rate which

can be seen from Figure 5.1[b]. The factor β4,t can therefore be interpreted as a second

slope factor. As a result, the four-factor Nelson-Siegel model captures the slope of the term

structure by the (weighted) sum of β2,t and β4,t. The instantaneous short rate in (5.7) is

for the four-factor model therefore equal to yt(0) = β1,t + β2,t + β4,t. Diebold, Rudebusch,

and Aruoba (2006b) report that the four-factor model marginally improves the in-sample

fit of the term structure but they do not consider out-of-sample forecasting.

Björk and Christensen (1999) also consider a five-factor model:

ft(τ) = β1,t + β2,t

(
τ

λt

)
+ β3,t exp

(
− τ

λt

)
+ β4,t

(
τ

λt

)
exp

(
− τ

λt

)
+ β5,t exp

(
−2τ

λt

)

yt(τ) = β1,t + β2,t

(
τ

2λt

)
+ β3,t

[
1−exp

(
− τ

λt

)

(
τ
λt

)

]
+ β4,t

[
1−exp

(
− τ

λt

)

(
τ
λt

) − exp
(
− τ

λt

)]
+ β5,t

[
1−exp

(
−2τ

λt

)

(
2τ
λt

)

]

and Diebold, Rudebusch, and Aruoba (2006b) report that adding two additional factors

again only leads to a negligible improvement in in-sample fit. The problem with the five-

factor model, however, is that it contains a component which is linear in τ . Consequently,

the model implies linearly increasing long-maturity spot and forward rates. This is prob-

lematic and I therefore do not consider the five-factor model here.

5.3.5 Bliss (1997) three-factor model

A second option to make the Nelson-Siegel more flexible is through relaxing the restriction

that the slope and curvature component should be governed by the same decay parameter
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λt. Bliss (1997) estimates the term structure of interest rates with the three-factor Nelson-

Siegel model but allows for two different decay parameters λ1,t and λ2,t
9. The forward

curve and spot rate curves are then given by

ft(τ) = β1,t + β2,t exp

(
− τ

λ1,t

)
+ β3,t

(
τ

λ2,t

)
exp

(
− τ

λ2,t

)
(5.11)

and

yt(τ) = β1,t + β2,t




1 − exp

(
− τ

λ1,t

)

(
τ

λ1,t

)



+ β3,t




1 − exp

(
− τ

λ2,t

)

(
τ

λ2,t

) − exp

(
− τ

λ2,t

)

 (5.12)

Obviously, the Bliss Nelson-Siegel model will only be different from the base model if

λ1,t 6= λ2,t.

Nelson and Siegel (1987) also consider an approximating forward curve with different

decay parameters10. The forward curve is again derived as the solution to a second-order

differential equation but now with real and unequal roots. Their forward rate curve is

given by

ft(τ) = β1,t + β2,t exp

(
− τ

λ1,t

)
+ β3,texp

(
− τ

λ2,t

)

We need the additional factor
(

τ
λ2,t

)
in (5.11) to obtain the curvature factor. Otherwise,

the model contains two slope factors which are different only if the decay parameters are

different. The model would then closely resemble the two-factor model.

5.3.6 Svensson (1994) four-factor model

A popular term-structure estimation method among central banks (see BIS, 2005) is the

four-factor Svensson (1994) model. Svensson (1994) proposes to increase the flexibility and

fit of the Nelson-Siegel model by adding a second hump-shape factor with its own separate

decay parameter. The resulting four-factor forward curve is given by:

ft(τ) = β1,t+β2,t exp

(
− τ

λ1,t

)
+β3,t

(
τ

λ1,t

)
exp

(
− τ

λ1,t

)
+β4,t

(
τ

λ2,t

)
exp

(
− τ

λ2,t

)
(5.13)

9Bliss (1997) calls this the ‘Extended Nelson-Siegel’ but as several more extensions are considered here
as well I simply refer to it as the ‘Bliss’ model.

10Nelson and Siegel (1987) try to fit this model to their sample of yields which only consists of maturities
up until one year. They report that the model is over-parameterized and therefore use the forward curve
in (5.5). Bliss (1997) remarks that over-parametrization should not pose any problem when also longer-
maturity yields are fitted, which is also the case here.
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The resulting equation for the zero-coupon yield curve is then

yt(τ)=β1,t + β2,t




1−exp

(
− τ

λ1,t

)

(
τ

λ1,t

)



+ β3,t




1−exp

(
− τ

λ1,t

)

(
τ

λ1,t

) −exp
(
− τ

λ1,t
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+ β4,t




1−exp

(
− τ

λ2,t

)

(
τ

λ2,t

) −exp
(
− τ

λ2,t
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(5.14)

The fourth component,
[

1−exp(−τ/λ2,t)

(τ/λ2,t)
−exp(−τ/λ2,t)

]
, introduces a second medium-term

component to the model which is depicted by the dash-dotted line in Figure 5.1[c]. The

Svensson Nelson-Siegel model can more easily fit term structure shapes with more that one

local maximum or minimum along the maturity spectrum. As the fourth component mainly

affects medium-term maturities, the limiting results in (5.7) also hold for the Svensson

model.

5.3.7 Adjusted Svensson (1994) four-factor model

A potential problem with the Svensson model is that it is highly non-linear which can

make the estimation of the model difficult, see Bolder and Stréliski (1999) for a discussion.

A multicolinearity problem arises when the decay parameters λ1,t and λ2,t assume similar

values. When this happens, the Svensson model reduces to the three-factor base model but

with a curvature factor equal to the sum of β3,t and β4,t. Only the sum of these parameters

can then still be estimated efficiently, not the individual parameters11.

One way to try and cure this multicolinearity problem is to make sure that the two

medium-term components are different when λ1,t ' λ2,t. I therefore propose an ‘Adjusted’

Svensson model which is given by the following forward and zero curves:

ft(τ) = β1,t + β2,t exp
(
− τ

λ1,t

)
+ β3,t

(
τ
λt

)
exp

(
− τ

λ1,t

)
+ β4,t

[
exp

(
− τ

λ2,t

)
+
(

2τ
λ2,t

− 1
)

exp
(
− 2τ

λ2,t

)]

(5.15)

and

yt(τ)=β1,t + β2,t
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τ
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+ β3,t
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− τ
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(
τ

λ1,t

) −exp
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+ β4,t




1−exp
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)
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) −exp
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11One example of this multicolinearity effect can be seen in Gimeno and Nave (2006). When applying
the Svensson model to estimate the zero-yield curve from Spanish Treasury Bonds, Gimeno and Nave
report that β3,t and β4,t display clear structural streaks and often take on large values but with opposite
signs. The sum of the two parameters is stable across time, however (see Figure 3[a] in Gimeno and Nave,
2006). The reason for this becomes apparent from their Figure 2 in which it is shown that the extreme
factor estimates correspond to samples for which the estimated values for λ1,t and λ2,t are very similar.
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(5.16)

The adjustment to the second curvature component ensures that multicolinearity is no

longer an issue. The adjusted component also starts at 0 but then increases for medium

maturities at a faster rate than the first curvature component and returns to zero faster as

well. The dash-dotted line in Figure 5.1[d] depicts the fourth component as a function of

maturity. The difference between the two additional curvature components in the Svensson

and Adjusted Svensson model can be seen by comparing Figure 5.1[c] with Figure 5.1[d].

5.3.8 General specification

The different Nelson-Siegel specifications that I examine are all nested and can therefore

be captured in one general model set-up. In particular, consider the following state-space

representation:

Yt = Xtβt + εt (5.17)

βt = µ+ Φβt−1 + νt (5.18)

The measurement equations in (5.17) specify the vector of yields, which containsN different

maturities, Yt = [yt(τ1) . . . yt(τN)]′, as the sum of a Nelson-Siegel spot rate curve, Xtβt, plus

a vector of yield errors which are assumed to be independent across maturities but with

different variance terms, σ2(τi). The Nelson-Siegel spot rate curves are those discussed

in the previous sections with βt being the (K × 1) vector of factors and Xt the (N ×K)

matrix of factor loadings which are potentially time-varying if the decay parameter(s) are

estimated alongside the factors. Each of the Nelson-Siegel models in sections 5.1-5.7 is a

special case of (5.17) with a different number of factors and/or a different specification for

the factor loadings.

If we are only interested in fitting the term structure then the measurement equations

are sufficient. However, in order to construct term structure forecasts we also need a model

for the factor dynamics. I follow the dynamic frame-work of Diebold and Li (2006) and

Diebold, Rudebusch, and Aruoba (2006b) by specifying first-order autoregressive processes

for the factors as in the state equations (5.18). These can be either individual AR(1) pro-

cesses or one multivariate VAR(1) process12. The vector µ and matrix Φ have dimensions

12Here I use a straightforward linear specification of the measurement and state equations. More complex
specifications, such as a Markov Switching approach, are used in for example Bernadell et al. (2005).
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(K×1) and (K×K) respectively. The model is completed by assuming that the measure-

ment equation and state equation error vectors are orthogonal and normally distributed:

[
εt

νt

]
∼ N

([
0N×1

0K×1

]
,

[
H 0
0 Q

])
(5.19)

where H is a N × N matrix which I assume to be diagonal throughout the analysis. For

the state equation covariance matrix Q I make the assumption that it is either a diagonal

(K ×K) matrix or a full matrix, depending on the estimation procedure which I discuss

next.

5.4 Estimation procedures

There are several approaches to estimating the latent factors and parameters in the Nelson-

Siegel state-space representation. These approaches depend crucially on whether the mea-

surement and state equations are estimated separately or simultaneously and on the as-

sumptions regarding the decay parameters13.

The most straightforward approach is used in for example Fabozzi et al. (2005) and

Diebold and Li (2006) and consists of a two-step procedure. In the first step the mea-

surement equations are treated as a cross-sectional model and Least Squares is used to

estimate the parameters for every month separately. In the second step time series models

are specified and fitted for the factors. A second, somewhat more demanding estimation

approach is a one-step procedure in which all the parameters in the state-space system are

estimated simultaneously. This approach uses the Kalman filter to estimate the factors

and is proposed in Diebold, Rudebusch, and Aruoba (2006b). Here I use the one-step as

well as the two-step estimation procedures and in this section I discuss both techniques in

detail. Specific details regarding the estimation are given in Appendix A.

5.4.1 Two-step approach with a fixed decay parameter

Diebold and Li (2006) suggest to fix λt in the three-factor model to a pre-specified value

which is the same for every t, instead of treating it as an unknown parameter. By doing so,

the nonlinear measurement equations become linear in the state vector which can then be

13I only use frequentist maximum likelihood techniques to estimate parameters. Mönch (2006b) and
De Pooter et al. (2007) consider Bayesian estimation of the three-factor model. Whereas a Bayesian
approach would also account for parameter uncertainty, I do not pursue it here and leave this for further
research.
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estimated using straightforward cross-sectional OLS. The decay parameter λt determines

the (medium-term) maturity at which the factor loading on the curvature factor β3,t is at

its maximum. The value of 16.42 that Diebold and Li (2006) use for λt is such that this

maximum is reached at a 30-month maturity. Larger values for λt produces slower decaying

factor loadings with the curvature factor achieving it maximum at a longer maturity and

vice versa. Although other authors have used different values as well, I follow Diebold and

Li (2006) and set λt equal to 16.42.

The first step of the estimation produces time-series of estimated values for each of the

K factors; {βi,t}T
t=1 for i = 1, . . . , K. The next step is to estimate the factor dynamics of

the state equations. I estimate separate AR(1) models for each factor, thus assuming that

Φ and Q are both diagonal, as well as a joint VAR(1) by assuming that Φ and Q are full

matrices instead.

I apply the two-step estimation approach with a fixed decay parameter only to estimate

the two, three and four-factor Nelson-Siegel specifications. The remaining models have two

decay parameters and would therefore require finding two appropriate values to choose

for λ1,t and λ2,t, which is difficult. I use the notation ‘NS2’ to indicate the two-step

estimation procedure. I denote the two, three and four-factor models by NS2-2, NS2-

3 and NS2-4 respectively and add suffixes ‘-AR’ and ‘-VAR’ to indicate the time-series

model specification for the state equations.

5.4.2 Two-step approach with estimated decay parameters

When the decay parameters are estimated alongside the factors, the estimation of the now

nonlinear measurement equations in the first step becomes more challenging and requires

nonlinear least squares. However, the increased flexibility of the model as a result of

the additional parameter can nevertheless make this a worthwhile exercise to undertake.

I therefore also estimate the two, three and four-factor models when treating λt as a

parameter and I denote these by NS2-2-λ, NS2-3-λ and NS2-4-λ with suffixes ‘-AR’

and ‘-VAR’. The Bliss and (Adjusted) Svensson models all have two decay parameters, λ1,t

and λ2,t which should even further improve the fit of the Nelson-Siegel model due to the

increased flexibility of the factor loadings. The two-step estimation procedure can also be

applied to these models and I use the notation NS2-B, NS2-S and NS2-AS for the Bliss,

Svensson and Adjusted Svensson model respectively. Note that in the second step I do

not model the dynamics of the decay parameters explicitely. Instead, in order to construct

forecasts I use the median of their in-sample estimated values, see Section 5.7.1 for further
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details.

5.4.3 Restrictions on the decay parameters

The nonlinear estimation procedure can result in factor estimates which can sometimes

be very extreme. An example is shown and discussed in Gimeno and Nave (2006) for the

Svensson model. Gimeno and Nave report extreme (and often offsetting) values for factor

estimates. Bolder and Stréliski (1999) also address numerical problems and estimation

issues when estimating the Svensson model.

The nonlinear model structure seems to pose serious difficulties for optimization pro-

cedures to arrive at reasonable estimates. An additional reason, which to my knowledge

seems to have been overlooked in the literature surprisingly, is the behavior of the factor

loadings when the decay parameters take on extreme values. When this happens multicol-

inearity problems can occur and some of the factors are then no longer uniquely identified.

To understand why this is the case we need to examine the factor loadings as functions of

λt. We have the following straightforward limiting results

lim
λt↓0

[
1 − exp(−τ/λt)

(τ/λt)

]
= 0; lim

λt↓0

[
1 − exp(−τ/λt)

(τ/λt)
− exp(−τ/λt)

]
= 0 (5.20)

lim
λt→∞

[
1 − exp(−τ/λt)

(τ/λt)

]
= 1; lim

λt→∞

[
1 − exp(−τ/λt)

(τ/λt)
− exp(−τ/λt)

]
= 0 (5.21)

The results in (5.20) imply that for very small values of λt the slope and curvature factors

will be near non-identification which can result in extreme estimates14. For large values

of λt, as indicated by (5.21), curvature factors are nearly non-identified. Furthermore, the

level and slope factors are jointly identified, but no longer identified separately and can

therefore take on extreme, offsetting, values15.

If we are only interested in fitting the term structure at a given point in time in step

one, these non-identification issues do not necessarily cause problems. Although the factor

estimates can be extreme, the models still accurately fit the term structure. The real

problem occurs when estimating dynamics in step two as the time-series of the factors can

potentially be plagued by outliers. In order to prevent extreme factor estimates, I impose

restrictions on the decay parameters. By only allowing the curvature factor loading to

14Note that in the Bliss and (Adjusted) Svensson models non-identification issues arise when either λ1,t

or λ2,t tends to zero and even more so when both parameters tend to zero.
15This explains the peaks with opposite signs in the level and slope estimates in Figure 1 of Gimeno and

Nave (2006).
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reach its maximum for maturities between one and five years, the decay parameters are

restricted to lie in the interval [6.69, 33.46]16. I impose one additional restriction on the

Svensson and Adjusted Svensson models separately.

For the Svensson model I restrict the loading on the second curvature factor, β4,t,

to reach its maximum for a maturity which is at least twelve months shorter than the

corresponding maturity for the first curvature loading. Specifically it comes down to the

following minimum distance restriction: λ1,t ≥ λ2,t + 6.69. This restriction prevents the

case where β3,t and β4,t are only jointly identified but not individually. Note that the two

curvature components in the Svensson model, and therefore λ1,t and λ2,t, as well as their

role in the restriction, are interchangeable. In the Adjusted Svensson model the curvature

factor loadings are different so there is no need to impose any minimum distance between

the two decay parameters. I do, however, again force the first curvature hump to be to the

right of the second curvature hump by imposing the restriction λ1,t ≥ λ2,t.

5.4.4 One-step state-space approach

The alternative to the two-step approach is to estimate all parameters simultaneously. By

using the prediction-error decomposition of the likelihood we can estimate parameters by

maximum likelihood and apply the Kalman filter to obtain optimal factor estimates. The

likelihood for the state-space system in (5.17)-(5.18) is given by

L =
T∑

t=1

[
−1

2
ln (2Π) − 1

2
ln (|ft|t−1|) −

1

2
η′t|t−1f

−1
t|t−1ηt|t−1

]
(5.22)

which is a function of the parameter set Θ = (λ1, λ2, βt, µ,Φ, H,Q). The likelihood is

comprised of the (N × 1) yield prediction error vector; ηt|t−1 ≡ yt − yt|t−1 where yt|t−1

is the vector of in-sample yield forecasts given information up to time t − 1, and of the

(N ×N) conditional covariance matrix of the prediction errors; ft|t−1 ≡ E[ηt|t−1η
′
t|t−1], see

Kim and Nelson (1999) for further details. Note that the decay parameters are assumed

16Recall that Diebold and Li (2006) fix the decay parameter such that the maximum is reached at a
maturity of two and a half years. Note that Gürkanyak, Sack, and Wright (2006) do not impose restrictions
on the Svensson model when estimating the U.S. Treasury yield curve. They find that the second hump is
located at much longer maturities (beyond twenty years). However, Gürkanyak et al. (2006) estimate the
term structure using bonds with maturities up to thirty years. I only use maturities up to ten years and
the domain of the curvature humps of one to five years seems therefore reasonable and sufficiently wide in
order not to be too restrictive. Some experimentation with using wider domains indeed resulted in factor
estimates that were more ‘extreme’.



138 Chapter 5

to be constant over time17. As these can now be estimated using information from both

the cross-section as well as the time-series of yields it is much less likely that they will

take on extreme values. Furthermore, because the dynamics of the factors are explicitly

taken into account when optimizing the likelihood, it does not seem necessary anymore to

impose the earlier restrictions on the decay parameters. I estimate all the models using

this one-step procedure with the decay parameters being estimated alongside the factors

and the remaining parameters and allowing for Q to be a full matrix. I denote the results

for the different models using this approach by NS1-2, NS1-3, NS1-4, NS1-B, NS1-S

and NS1-AS.

Diebold, Rudebusch, and Aruoba (2006b) favor the one-step over the two-step estima-

tion approach because parameters are estimated simultaneously which ensures that the

uncertainty of all parameters is taken into account at the same time. The drawback, how-

ever, is that the number of parameters to estimate is substantial in the state-space model.

For example, for the four-factor Svensson model with a VAR(1) specification for the state

equations, the total number of parameters for the dataset used here equals 49 (two decay

parameters, four parameters in µ, 16 parameters in Φ, N = 17 parameters in H, four

variance and six covariance terms in Q). In order to reduce the number of parameters I

therefore also try two alternative specifications for the system of state equations in (5.18).

Apart from specifying VAR(1) dynamics for the factors by assuming Φ to be a full matrix

as in Diebold, Rudebusch, and Aruoba (2006b) I also consider AR(1) dynamics using a

diagonal Φ. Additionally I specify random walk factor dynamics by setting µ equal to

zero and Φ equal to the identity matrix18. I distinguish the different dynamics by using

the suffixes ‘-VAR’, ‘-AR’ and ‘-RW’ for respectively VAR(1), AR(1) and random walk

dynamics. An overview of all model abbreviations used is given in Table 5.1.

5.5 Data

The dataset available here consists of end-of-month continuously compounded U.S. zero-

coupon bond forward rates. I compute constant maturity spot rates by averaging these

forwards rates as in (5.2). The forward rates are constructed from filtered average bid-ask

17Huse (2007), on the contrary, argues that for the three-factor model the decay parameter should also
be treated as a dynamic factor and that it should be modelled accordingly. I do not consider this approach
here.

18Diebold and Li (2006) find for the three-factor model that the null of a unit root in the factor dynamics
cannot be rejected for β1,t and β2,t. Fabozzi et al. (2005) find similar results and therefore model first
differences of the level and slope factors.
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Table 5.1: Model abbreviations

Two-step models model description factor dynamics

NS2-2-AR 2-factor NS model with λ fixed to 16.42 AR(1) per factor
NS2-2-VAR 2-factor NS model with λ fixed to 16.42 VAR(1) for factors
NS2-3-AR 3-factor NS model with λ fixed to 16.42 AR(1) per factor
NS2-3-VAR 3-factor NS model with λ fixed to 16.42 VAR(1) for factors
NS2-4-AR 4-factor NS model with λ fixed to 16.42 AR(1) per factor
NS2-4-VAR 4-factor NS model with λ fixed to 16.42 VAR(1) for factors
NS2-2-λ-AR 2-factor NS model treating λ as parameter AR(1) per factor
NS2-2-λ-VAR 2-factor NS model treating λ as parameter VAR(1) for factors
NS2-3-λ-AR 3-factor NS model treating λ as parameter AR(1) per factor
NS2-3-λ-VAR 3-factor NS model treating λ as parameter VAR(1) for factors
NS2-4-λ-AR 4-factor NS model treating λ as parameter AR(1) per factor
NS2-4-λ-VAR 4-factor NS model treating λ as parameter VAR(1) for factors
NS2-B-AR 3-factor Bliss NS model treating λ1, λ2 as parameters AR(1) per factor
NS2-B-VAR 3-factor Bliss NS model treating λ1, λ2 as parameters VAR(1) for factors
NS2-S-AR 4-factor Svensson NS model treating λ1, λ2 as parameters AR(1) per factor
NS2-S-VAR 4-factor Svensson NS model treating λ1, λ2 as parameters VAR(1) for factors
NS2-AS-AR 4-factor Adjusted Svensson model treating λ1, λ2 as parameters AR(1) per factor
NS2-AS-VAR 4-factor Adjusted Svensson model treating λ1, λ2 as parameters VAR(1) for factors

One-step models model description factor dynamics

NS1-2-RW 2-factor NS model random walk per factor
NS1-2-AR 2-factor NS model AR(1) per factor
NS1-2-VAR 2-factor NS model VAR(1) for factors
NS1-3-RW 3-factor NS model random walk per factor
NS1-3-AR 3-factor NS model AR(1) per factor
NS1-3-VAR 3-factor NS model VAR(1) for factors
NS1-4-RW 4-factor NS model random walk per factor
NS1-4-AR 4-factor NS model AR(1) per factor
NS1-4-VAR 4-factor NS model VAR(1) for factors
NS1-B-RW 3-factor Bliss NS model random walk per factor
NS1-B-AR 3-factor Bliss NS model AR(1) per factor
NS1-B-VAR 3-factor Bliss NS model VAR(1) for factors
NS1-S-RW 4-factor Svensson NS model random walk per factor
NS1-S-AR 4-factor Svensson NS model AR(1) per factor
NS1-S-VAR 4-factor Svensson NS model VAR(1) for factors
NS1-AS-RW 4-factor Adjusted Svensson NS model random walk per factor
NS1-AS-AR 4-factor Adjusted Svensson NS model AR(1) per factor
NS1-AS-VAR 4-factor Adjusted Svensson NS model VAR(1) for factors

Notes: The table gives model abbreviations used in the subsequent tables and graphs. ‘NS’ stands
for Nelson-Siegel model. For the two-step models (top panel), the factors are estimated in a first
step using least squared applied to the cross-section of yields in each month. In the second step, the
dynamics of the estimated factors from the first step are estimated. For the one-step models (bottom
panel), all parameters are estimated simultaneously as a state-space model using the Kalman filter.
The table shows model abbreviations in the first column, model descriptions in the second column
and the specification for the factor dynamics in the third column.
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price quotes on U.S. Treasury securities using the Fama and Bliss (1987) bootstrap method

as outlined in Bliss (1997)19. The price quotes are taken from the CRSP government bond

files. CRSP filters the available quotes by taking out illiquid bonds and bonds with option

features. Similar to Diebold and Li (2006), Diebold, Rudebusch, and Aruoba (2006b) and

Mönch (2006a), I use unsmoothed Fama-Bliss yields20.

I estimate the class of Nelson-Siegel models using data for the sample period 1984:1 -

2003:12 (T = 240 observations) and I use the followingN = 17 maturities in the estimation:

τ = 3, 6, 9, 12, 15, 18, 21, 24 and 30 months as well as 3, 4,..., 10 years. I start my dataset

after the Volcker period to allow for a fair comparison with the results in Diebold and

Li (2006) and Mönch (2006a). Note that the forecasting results reported by De Pooter

et al. (2007) for the three-factor Nelson-Siegel model with both the two-step and one-step

estimation procedure are based on a much longer span of data (1970:1 - 2003:12).

Figure 5.2: U.S. zero-coupon yields
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Notes: The figure shows time-series plots for a subset of maturities of end-of-month U.S. zero
coupon yields constructed using the unsmoothed Fama and Bliss (1987) bootstrap method.
Sample period is January 1984 - December 2003 (240 observations). The solid vertical line
indicates the start of the forecasting sample (January 1994 - December 2003). The dotted line
divides the forecast sample into two subsamples (January 1994 - December 2000 and January
2001 - December 2003).

19I kindly thank Robert Bliss for providing me with the unsmoothed Fama-Bliss forward rates and the
programs to construct the spot rates.

20The reason for using unsmoothed Fama-Bliss yields is that Bliss (1997) finds, using parametric and
nonparametric tests, that the Fama-Bliss method does best overall in terms of estimating the term structure
in comparison with other popular estimation methods.
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Figure 5.3: U.S. zero-coupon yields
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Notes: The figure shows a 3-dimension plot of the panel of end-of-month U.S. zero coupon yields
constructed using the unsmoothed Fama and Bliss (1987) bootstrap method. Sample period is
January 1984 - December 2003 (240 observations).

Table 5.2: Summary statistics

maturity mean stdev skew kurt min max JB-p ρ1 ρ12 ρ24

1-month 5.051 2.090 0.045 2.864 0.794 10.727 0.845 0.968 0.552 0.121
3-month 5.286 2.175 -0.005 2.843 0.876 10.905 0.849 0.977 0.563 0.148
6-month 5.434 2.226 0.024 2.951 0.958 11.169 0.962 0.977 0.559 0.162

1-year 5.707 2.290 0.051 3.056 1.040 11.928 0.946 0.976 0.562 0.190
2-year 6.083 2.281 0.234 3.351 1.299 12.777 0.201 0.974 0.555 0.229
3-year 6.365 2.211 0.357 3.465 1.618 13.115 0.031 0.973 0.561 0.268
4-year 6.589 2.168 0.481 3.524 1.999 13.268 0.003 0.972 0.572 0.297
5-year 6.711 2.125 0.599 3.613 2.351 13.410 0.000 0.972 0.574 0.319
6-year 6.878 2.108 0.666 3.574 2.663 13.493 0.000 0.973 0.589 0.335
7-year 6.967 2.061 0.761 3.727 3.003 13.554 0.000 0.972 0.577 0.333
8-year 7.058 2.019 0.751 3.650 3.221 13.596 0.000 0.972 0.590 0.359
9-year 7.106 2.001 0.753 3.584 3.389 13.529 0.000 0.973 0.599 0.371

10-year 7.102 1.982 0.783 3.598 3.483 13.595 0.000 0.973 0.600 0.373

Notes: The table shows summary statistics for end-of-month unsmoothed continuously com-
pounded U.S. zero-coupon yields. The results shown are for annualized yields (expressed in
precentages). The sample period is January 1984 - December 2003 (240 observations). Reported
are the mean, standard deviation, skewness, kurtosis, minimum, maximum, the p-value of the
Jarque-Bera test statistic for normality and the 1st, 12th and 24th sample autocorrelation.
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Figure 5.2 shows time-series plots for a subset of the maturities and illustrates how

yield levels and spreads vary substantially throughout the sample. For example, for the

period from 1994 onwards, which is the period I use to evaluate the models’ forecasting

performance, we can distinguish a stable period (mid 1990s till the end of 2000) but also a

period where short term interest rates fell by roughly 4%, resulting in a sharp increase in

the term spread (the last three years of the sample). It is clear from Figure 5.3 that not

only the level of the term structure fluctuates over time but also its slope and curvature.

The curve takes on various forms ranging from nearly flat to (inverted) S-type shapes.

Table 5.2 reports summary statistics for yield levels for various maturities. The stylized

facts common to yield curve data are clearly present: the sample average curve is upward

sloping and concave, volatility is decreasing with maturity, autocorrelations are very high

and increasing with maturity. The null of normality is rejected for medium and longer term

maturities due to positive skewness and excess kurtosis but can be accepted for shorter

maturities. Correlations between yields of different maturities are high (80% or above),

especially for close-together maturities.

5.6 In-sample fit results

5.6.1 In-sample fit

In this section I discuss the results of fitting the term structure using the class of Nelson-

Siegel models. I only focus on the fit from step one of the two-step estimation procedure due

to the fact that the one-step procedure potentially also uses (future) time-series information

which is unavailable if we want to fit the term structure at a given point in time. We can

expect that more flexible models result in a better fit. However, as the increased flexibility

can be obtained both by additional decay parameters as well as by additional factors, the

question is which of the two modelling options improves the fit more.

Figure 5.4 shows that all models accurately fit the average curve. The only exception is

the two-factor model with fixed decay parameter, shown in Panel [a], most likely because it

lacks a curvature component. Nevertheless, freeing up the decay parameter seems to pro-

vide sufficient additional flexibility as the two-factor average curve now becomes virtually

indistinguishable from the three and four-factor models (Panel [b]).

Whereas the average fit may be nearly identical across the different models, Figure 5.5

on the other hand shows that the fit in individual months can be quite different. Shown in
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Figure 5.4: Fitted average yield curve
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[b] NS2-2-λ, NS2-3-λ, NS2-4-λ
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Notes: The graph shows the average fitted curve for different Nelson-Siegel models. Panel [a]
shows the estimated average curve for the two-factor, three-factor and four-factor. Panel [b] shows
the average curve for the same models but where now λ is estimated alongside (β1 β2 β3 β4).
Finally, Panel [c] depicts the average curve for the three-factor Bliss model, the four-factor model
Svensson extension (second column) and the Adjusted Svensson model. The dots in each graph
are the actual sample averages. The solid and (dash-)dotted lines depict the fitted lines. The
sample period is 1984:1 - 2003:12 (240 observations).
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Figure 5.5: Fitted yield curve for specific months
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[a] June 30, 1989 [b] November 30, 1995
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Notes: The graph depicts the actual yield curve (black dots) and the fitted yield curve
for a subset of models. Shown are four months from the full sample 1984:1 - 2003:12 (240
observations): [a] June 30, 1989, [b] November 30, 1995, [c] August 31, 1998 and [d] September
29, 2000. The fitted curve is shown for the two-factor, three-factor and four-factor model with
fixed λ, the two-factor model where λ is estimated alongside β1 and β2, the Svensson model and
the Adjusted Svensson model.
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Figure 5.5 are the actual term structures in four specific months of the sample. These

four months are an example of the various different term structure shapes that occur in the

data. Whereas for November 1995 and September 2000 the shape is respectively S-shaped

and downward sloping, for June 1989 and August 1998 the shapes are more difficult to

describe. The lines in each panel show the fit of various models. The two-factor model in

particular has difficulties fitting the more complex curves, but the three-factor model also

does not seem flexible enough judging from, for example, Panel [c]. Graphically, the best

fit is obtained with the four-factor model and the (Adjusted) Svensson models which give

very similar fitted curves.

Table 5.3 reports detailed in-sample results for all models, which have been estimated

with the restrictions on the decay parameters in place. The best fitting models, as judged

by a number of standard criteria given in the table (standard deviation of yield errors,

root mean squared fit error, mean absolute fit error, minimum and maximum fit error) are

represented by the bold numbers. The results can be summarized by making the following

observations.

The models that achieve the best fit overall are indeed the most flexible models, in

particular the (Adjusted) Svensson model. For nearly every maturity shown in the table,

the Svensson models are the most accurate on all criteria, including having the lowest

persistence in yield errors. Except from the two-factor model, all models perform relatively

similar, however, which agrees with the results in Dahlquist and Svensson (1996) and

Diebold, Rudebusch, and Aruoba (2006b) who demonstrate that the three-factor model fits

the term structure well compared to more elaborate models. It is nonetheless interesting

to examine how the results of the remaining models compare to those of the Svensson

models, but in particular how they compare amongst each other. For the two and three-

factor models we can judge which extension yields the largest gain; estimating λt or adding

a factor. From columns two to six in Table 5.3 it becomes clear that for the two-factor model

adding a (curvature) factor improves the in-sample fit much more than by estimating λt

alongside the level and slope factors. The results for the three-factor model lead to the same

conclusion although the improvement when going from the three to the four-factor model

is much less substantial than going from the two to the three-factor model. Estimating

λt instead of using the fixed value of 16.42 improves the fit for each model although in

absolute terms the benefits are minor (tens of basis points). Another comparison to make

is that between the three-factor model with estimated λt and the Bliss model as the latter

does not impose that the slope and curvature factor are determined by the same decay
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Table 5.3: In-sample fit: restricted decay parameters

maturity NS2-2 NS2-3 NS2-4 NS2-2-λ NS2-3-λ NS2-4-λ NS2-B NS2-S NS2-AS

Mean Error

3-month 6.55 -0.97 1.47 5.06 -0.26 1.65 1.09 1.50 1.36
6-month 3.06 -0.93 -0.86 1.67 -0.75 -0.97 -0.86 -0.92 -0.93

1-year -0.23 0.50 -0.98 -0.52 0.22 -1.07 -0.70 -0.98 -0.87
2-year -6.52 -2.17 -2.34 -4.30 -2.42 -2.23 -2.34 -2.31 -2.28
5-year -5.50 -4.36 -2.86 -3.55 -4.13 -2.95 -3.10 -2.92 -3.12

10-year 2.53 -2.40 -3.97 -2.82 -2.44 -3.87 -3.75 -3.94 -3.69

Standard Deviation

3-month 32.06 8.59 3.12 17.09 5.25 2.74 3.98 2.59 2.23

6-month 15.88 4.12 4.11 9.07 4.20 3.94 4.05 3.96 3.91

1-year 9.23 8.11 5.49 8.26 6.70 5.46 6.17 5.42 5.33

2-year 16.53 4.72 4.70 8.57 4.77 4.45 4.57 4.40 4.45
5-year 7.21 5.90 4.74 6.14 5.40 4.62 5.11 4.67 4.60

10-year 20.07 7.12 5.15 10.26 6.08 4.93 5.30 4.73 4.89

Root Mean Squared Error

3-month 32.72 8.64 3.45 17.82 5.26 3.20 4.12 3.00 2.62

6-month 16.17 4.23 4.19 9.22 4.27 4.06 4.14 4.07 4.02

1-year 9.24 8.12 5.58 8.28 6.70 5.56 6.21 5.51 5.40

2-year 17.77 5.20 5.25 9.59 5.35 4.98 5.14 4.96 5.00
5-year 9.07 7.34 5.54 7.09 6.80 5.48 5.98 5.50 5.55

10-year 20.23 7.52 6.50 10.64 6.55 6.27 6.50 6.16 6.12

Mean Absolute Error

3-month 25.56 6.39 2.76 12.64 3.71 2.55 3.06 2.34 1.93

6-month 12.19 3.06 3.03 6.19 3.10 2.95 3.00 2.94 2.97
1-year 7.45 6.37 4.51 6.58 5.24 4.42 4.84 4.35 4.25

2-year 13.71 3.70 3.75 6.81 3.75 3.58 3.63 3.56 3.64
5-year 7.45 6.13 4.33 5.88 5.53 4.21 4.75 4.19 4.29

10-year 15.71 5.91 5.25 8.31 5.21 5.06 5.14 4.98 4.94

Minimum Error

3-month -86.81 -34.51 -11.65 -49.15 -22.38 -7.83 -16.67 -5.98 -4.13

6-month -40.00 -14.11 -13.82 -20.69 -13.29 -12.66 -13.02 -12.63 -12.72
1-year -20.74 -18.33 -17.91 -20.75 -16.61 -20.70 -20.31 -20.07 -19.69

2-year -46.90 -19.05 -20.10 -27.83 -21.67 -18.32 -19.22 -17.15 -16.75

5-year -27.39 -19.89 -20.23 -18.38 -17.20 -23.54 -17.20 -23.59 -23.46
10-year -37.58 -25.57 -18.38 -41.31 -18.39 -18.37 -18.39 -19.09 -19.28

Maximum Error

3-month 75.52 21.75 10.60 54.67 12.43 9.03 12.44 8.97 8.97

6-month 44.64 21.81 22.10 34.28 22.16 22.09 22.20 21.22 18.55

1-year 28.83 26.69 13.48 22.14 21.99 12.03 17.86 11.96 11.89

2-year 36.97 16.64 16.97 22.28 18.98 16.98 18.67 18.91 18.33
5-year 20.39 18.62 12.37 19.48 13.39 10.20 13.39 10.87 11.53

10-year 53.93 16.41 7.96 24.75 17.02 7.97 9.25 8.05 7.45

ρ̂1

3-month 0.907 0.754 0.483 0.817 0.689 0.483 0.473 0.417 0.435
6-month 0.875 0.276 0.270 0.688 0.248 0.278 0.271 0.244 0.322

1-year 0.659 0.582 0.386 0.615 0.510 0.390 0.417 0.378 0.369
2-year 0.913 0.649 0.628 0.759 0.613 0.615 0.625 0.597 0.622
5-year 0.805 0.740 0.644 0.746 0.696 0.642 0.606 0.602 0.609

10-year 0.889 0.627 0.488 0.706 0.550 0.442 0.408 0.405 0.438

ρ̂12

3-month 0.347 0.087 0.102 0.281 0.023 0.192 0.052 0.174 0.119
6-month 0.430 0.203 0.188 0.304 0.159 0.239 0.215 0.220 0.240

1-year 0.347 0.296 0.370 0.311 0.338 0.356 0.330 0.353 0.356
2-year 0.295 0.129 0.132 0.091 0.129 0.100 0.104 0.102 0.108
5-year 0.099 0.046 -0.092 -0.060 -0.099 -0.112 -0.116 -0.122 -0.121

10-year 0.394 0.297 0.305 0.190 0.205 0.298 0.215 0.264 0.250

Notes: The table show in-sample fit error statistics for the full sample 1984:1-2003:12
(240 observations). The statistics are expressed in basis points. Results are shown for
the models with λt fixed to 16.42 [NS2-2, NS2-3, NS-4], with λ estimated (but restricted)
[NS-2-λ, NS-3-λ, NS-4-λ], the Bliss extension [NS2-B] and the adjusted Svensson model
[NS2-(A)S]. The statistics ρ̂1 and ρ̂12 represent the 1st and 12th autocorrelation of the
yield errors. For selected statistics, bold numbers indicate the best performing model.



5.6 In-sample fit results 147

Table 5.4: In-sample fit: unrestricted decay parameters

maturity NS2-2-λ NS2-3-λ NS2-4-λ NS2-B NS2-S NS2-AS

Mean Error

3-month 4.36 -0.41 1.67 1.52 1.33 0.85
6-month 0.34 -0.82 -0.98 -0.88 -0.37 0.10

1-year -1.30 0.27 -1.10 -0.99 -1.15 -1.10
2-year -3.45 -2.33 -2.23 -2.31 -2.31 -2.43
5-year -1.95 -4.32 -2.91 -2.91 -2.94 -2.83

10-year -5.42 -2.15 -3.93 -3.82 -3.49 -3.63

Standard Deviation

3-month 11.18 5.12 2.82 2.96 2.32 2.29

6-month 6.03 4.14 3.97 3.93 3.70 3.45

1-year 8.14 6.57 5.41 5.65 5.33 5.15

2-year 6.43 4.67 4.55 4.40 4.40 4.37

5-year 6.37 5.11 4.55 4.52 4.37 4.39
10-year 8.63 5.67 4.94 4.38 4.20 4.33

Root Mean Squared Error

3-month 12.00 5.13 3.28 3.33 2.67 2.45

6-month 6.04 4.22 4.09 4.03 3.72 3.45

1-year 8.25 6.58 5.52 5.73 5.45 5.27

2-year 7.30 5.22 5.06 4.96 4.96 5.00
5-year 6.66 6.69 5.41 5.38 5.26 5.22

10-year 10.19 6.07 6.31 5.81 5.46 5.65

Mean Absolute Error

3-month 8.72 3.58 2.62 2.58 1.91 1.58

6-month 4.54 3.03 2.97 2.90 2.75 2.59

1-year 6.73 5.16 4.46 4.57 4.24 4.14

2-year 5.42 3.67 3.65 3.56 3.56 3.67
5-year 5.40 5.39 4.21 4.16 3.95 3.96

10-year 7.89 4.88 5.12 4.79 4.45 4.63

Minimum Error

3-month -41.06 -22.44 -8.14 -7.63 -3.96 -12.38
6-month -19.68 -13.33 -12.80 -12.90 -12.72 -12.77

1-year -20.75 -16.69 -20.78 -20.40 -20.32 -20.27
2-year -21.66 -21.67 -18.01 -17.15 -17.15 -17.17
5-year -17.24 -17.25 -23.13 -16.94 -23.46 -23.31

10-year -41.02 -17.03 -16.49 -17.09 -15.66 -18.51

Maximum Error

3-month 36.29 11.32 9.15 9.58 9.02 9.17
6-month 17.93 22.18 22.03 22.19 15.79 9.46

1-year 21.98 22.00 11.81 12.01 19.90 11.90
2-year 18.08 18.89 17.32 18.91 18.91 19.20
5-year 19.47 9.32 8.84 9.37 8.62 8.66

10-year 20.54 16.97 7.79 7.86 7.93 8.32

ρ̂1

3-month 0.748 0.654 0.477 0.505 0.385 0.346
6-month 0.483 0.242 0.270 0.283 0.241 0.245

1-year 0.609 0.510 0.393 0.389 0.399 0.416
2-year 0.688 0.607 0.617 0.603 0.618 0.614
5-year 0.769 0.692 0.644 0.638 0.601 0.608

10-year 0.668 0.551 0.483 0.402 0.389 0.398

ρ̂12

3-month 0.305 0.010 0.139 0.146 0.100 0.122
6-month 0.266 0.154 0.216 0.236 0.241 0.230

1-year 0.343 0.339 0.358 0.349 0.354 0.360
2-year 0.058 0.127 0.109 0.090 0.061 0.080
5-year 0.136 -0.133 -0.099 -0.175 -0.181 -0.182

10-year 0.231 0.217 0.264 0.243 0.241 0.215

Notes: The table show in-sample fit error statistics for the full sample 1984:1-
2003:12 (240 observations). The statistics are expressed in basis points. Re-
sults are shown for models with unrestricted decay parameter(s) [λ(s)]. Error
statistics are given for the two, three and four-factor specification [NS2-2-
λ, NS2-3-λ, NS-4-λ], the Bliss extension [NS2-B] and the adjusted Svensson
model [NS2-(A)S]. The statistics ρ̂1 and ρ̂12 represent the 1st and 12th auto-
correlation of the yield errors. For selected statistics, bold numbers indicate
the best performing model.
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parameter. For every maturity the Bliss model marginally improves the fit. However,

the four-factor model with estimated λt is always more accurate than the Bliss model,

showing that it is more beneficial to introduce the second slope factor than separate decay

parameters.

In fact, the four-factor model with an estimated λt fits the term structure only marginally

worse than the best fitting model with the maximum overall difference being no larger than

0.6 basis points (for a 3-month maturity based on both the root mean squared error and

the mean absolute error). This means that, compared to the three-factor base model, it

does not seem to make much difference whether a second curvature factor with a separate

decay parameter is added (the Svensson model) or just a second slope factor which has

the same λt as the first three factors. Comparing the Svensson model with its Adjusted

alternative shows that the latter fits marginally better.

To summarize, the best fitting models in an absolute sense are indeed the models which

allow for the most amount of flexibility which are the Svensson and Adjusted Svensson

models. However, the four-factor model provides a fit which is nearly as accurate and has

the benefit of being easier to estimate because the nonlinearities in the model are due to

only one decay parameter instead of two. The interesting question now is whether the

additional slope factor, in addition to improving the in-sample fit, can also help to improve

the out-of-sample performance.

Before I turn to discussing the forecast results I first address the effect of imposing the

restrictions on the decay parameters. Restricting these will most likely mean that some

of the in-sample fit performance is sacrificed. The question is, however, to what extent

this actually is the case. To assess the effect on in-sample fit I report in Table 5.4 the in-

sample fit of those specifications that require estimating one or two decay parameters when

no restrictions are imposed. Comparing Table 5.3 and Table 5.4 shows that in absolute

terms the unrestricted models indeed fit the term structure more accurately. However, the

differences are only substantial for the two-factor model which is explainable as with only

two factors, having an additional parameter can make quite a difference. For example, for

the 3-month maturity, the root mean squared error goes down from 18 to 12 basis points.

For all other models, differences are, however, marginal with criteria such as standard

deviation and mean absolute error being only 0.5 basis points worse for the restricted

models. Furthermore, the bold numbers in each panel, which highlight the best fitting

models per maturity, show almost negligible differences.

The results indicate that whether or not imposing restrictions does not matter much
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in terms of in-sample fit. Nevertheless, the reason why the restrictions are useful becomes

apparent when we examine the time-series of the estimated factors. As these are modelled

in the second step of the two-step procedure it is important that these series are relatively

‘well-behaved’. That this not necessarily needs to be the case using the unrestricted es-

timation procedure is due to potential non-identification issues, as discussed earlier. Not

imposing restrictions can result in extreme factor estimates. An example is given in Figure

5.6 in which the solid and dotted lines represent respectively the restricted and unrestricted

estimates of the level, slope and curvature factors in the three-factor model. For most of

the sample the restricted and unrestricted estimates are all but identical, except for a small

number of months. For each of these months the unrestricted λt is substantially higher

than the upper limit of 33.46. In particular for May 1986 this is the case with λ̂t equaling

65.61 as a result of which the level and slope factors are estimated at β̂1,t = 2.94 and

β̂2,t = 3.26. Only the sum of these is somewhat close to the true level of the curve of 7.86%

(using as proxy the 10-year yield) whereas with the restrictions in place the level estimate

is β̂1,t = 7.34.

5.6.2 Factor estimates

Time-series of the factor estimates, obtained with the two-step procedures are represented

by the solid lines in Figures 5.7-5.9. Comparing the subgraphs within each row and across

figures shows that the different models all give rather similar estimates for the level, slope

and curvature factors. The estimates differ nevertheless in magnitude, mainly for the four-

factor model. The time-series for the latter seems to suffer somewhat from outliers, in

particular when the decay parameter is fixed (Figure 5.7) with some of the spikes in the

slope and curvature factors disappearing when the decay parameter is estimated as well

(Figure 5.8). Panels [h]-[k] of Figure 5.9 show that the two curvature factor estimates for

the Adjusted Svensson model are more stable than those for the Svensson model. The

latter still exhibit severe spikes, despite the restrictions on λ1,t and λ2,t.

As an indication of the differences in the resulting factor estimates between the one

and two-step estimation methods, Figures 5.8 and 5.9 also show the Kalman filter factor

estimates for the full sample by means of the dotted lines. Whereas in general the time-

series are quite close, there are certainly differences, mainly for the more complex models

like the Svensson models. Using cross-sectional yield data as well as information concerning

the evolution of yields over time smoothes out the factor estimates.
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Figure 5.6: Nelson-Siegel factors with and without restrictions on λt
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Notes: The graph shows time-series plots of the estimated Nelson-Siegel factors for the
three-factor base model where λt is estimated alongside the factors (β1,t β2,t β3,t). Shown are
the estimate of the first factor in Panel [a], the second factor in Panel [b] and the third and
last factor in Panel [c]. The solid line is the factor estimate when λt is restricted to the domain
[6.69, 33.46]. The dotted line represented each factor when estimated without the restriction on
λ. The sample period is 1984:1 - 2003:12 (240 observations).
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Figure 5.7: Time-series of Nelson-Siegel factors with a fixed value for λt
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Notes: The graph shows time-series plots of the estimated Nelson-Siegel factors for the two-factor
model (first column), the three-factor model (second column) and the four-factor model (fourth
column). The factors are estimated using OLS given a fixed λt which is set to 16.42. The sample
period is 1984:1 - 2003:12 (240 observations).
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Figure 5.8: Time-series of Nelson-Siegel factors with estimated λ
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Notes: The graph shows time-series plots of the estimated Nelson-Siegel factors for the two-factor
model (first column), the three-factor model (second column) and the four-factor model (fourth
column) where λ is estimated alongside (β1 β2 β3 β4). Shown are the factors estimates from the
two-step NLS (solid lines) and the one-step Kalman Filter (dotted lines) estimation methods.
The sample period is 1984:1 - 2003:12 (240 observations).



5.6 In-sample fit results 153

Figure 5.9: Time-series of Nelson-Siegel factors with estimated λs
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Notes: The graph shows time-series plots of the estimated Nelson-Siegel factors for the three-
factor Bliss model (first column), the four-factor model Svensson extension (second column) and
the four-factor model Adjusted Svensson model (fourth column) where λ1 and λ2 are estimated
alongside (β1 β2 β3 β4). Shown are the factors resulting from the two-step NLS and the one-step
Kalman Filter estimation methods. The sample period is 1984:1 - 2003:12 (240 observations).
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Table 5.5: Factor summary statistics

correlations correlations

summary statistics estimated factors yield factors

factor mean stdev ρ1 ρ12 β1 β2 β3 β4 L S C

NS2-2 β1 7.403 2.115 0.970 0.571 1 - - - 0.996 -0.195 0.544
β2 -2.387 1.625 0.966 0.420 -0.144 1 - - -0.089 0.990 0.472

NS2-3 β1 7.531 1.896 0.972 0.635 1 - - - 0.973 -0.324 0.353
β2 -2.394 1.639 0.967 0.426 -0.280 1 - - -0.079 0.988 0.485
β3 -0.571 2.171 0.923 0.376 0.347 0.510 1 - 0.539 0.415 0.992

NS2-4 β1 7.599 1.911 0.971 0.620 1 - - - 0.978 -0.312 0.390
β2 -1.103 4.774 0.857 0.291 0.022 1 - - 0.063 0.409 0.470
β3 -1.536 3.199 0.831 0.178 0.136 -0.615 1 - 0.264 0.204 0.335

β4 -1.426 4.591 0.816 0.202 -0.125 -0.942 0.763 1 -0.104 -0.080 -0.348

NS2-2-λ β1 7.610 1.944 0.969 0.616 1 - - - 0.974 -0.326 0.379
β2 -2.585 1.766 0.965 0.446 -0.253 1 - - -0.050 0.983 0.509

NS2-3-λ β1 7.534 1.861 0.962 0.632 1 - - - 0.968 -0.318 0.351
β2 -2.414 1.599 0.944 0.445 -0.280 1 - - -0.074 0.981 0.467
β3 -0.686 2.362 0.856 0.454 0.349 0.515 1 - 0.534 0.441 0.861

NS2-4-λ β1 7.586 1.871 0.969 0.613 1 - - - 0.969 -0.318 0.380
β2 -1.115 4.505 0.868 0.306 0.045 1 - - 0.080 0.431 0.490
β3 -1.420 3.284 0.796 0.185 0.140 -0.558 1 - 0.304 0.199 0.339

β4 -1.412 4.348 0.828 0.197 -0.156 -0.933 0.724 1 -0.115 -0.082 -0.358

NS2-B β1 7.599 1.888 0.961 0.627 1 - - - 0.967 -0.326 0.363
β2 -2.519 1.649 0.937 0.405 -0.315 1 - - -0.103 0.978 0.413
β3 -0.412 2.685 0.880 0.352 0.394 0.349 1 - 0.571 0.307 0.937

NS2-S β1 7.596 1.864 0.955 0.605 1 - - - 0.962 -0.321 0.366
β2 -2.530 1.634 0.931 0.382 -0.294 1 - - -0.074 0.966 0.412
β3 -0.961 2.818 0.746 0.288 0.236 0.450 1 - 0.449 0.270 0.586

β4 0.679 1.968 0.721 0.199 0.172 -0.132 -0.474 1 0.113 0.042 0.345

NS2-AS β1 7.585 1.883 0.962 0.617 1 - - - 0.963 -0.321 0.358
β2 -2.515 1.643 0.937 0.381 -0.298 1 - - -0.083 0.968 0.409
β3 -0.895 2.593 0.805 0.329 0.284 0.500 1 - 0.487 0.372 0.703

β4 0.277 0.946 0.715 0.099 0.113 -0.221 -0.330 1 0.077 -0.073 0.250

yield factors L 7.102 1.982 0.973 0.600 - - - - - - -
S -1.815 1.217 0.958 0.387 - - - - - - -
C -0.222 0.823 0.922 0.417 - - - - - - -

Notes: The table shows summary statistics of estimated factors for different Nelson-Siegel
specifications. Statistics are shown for the two, three and four-factor model specification with
λt fixed to 16.42 [NS2-2, NS2-3, NS-4], with λt estimated (but restricted) [NS-2-λ, NS-3-λ,
NS-4-λ], the Bliss extension [NS2-B] and the adjusted Svensson model [NS2-(A)S]. Columns
1-4 represent the mean and standard deviation of the factors and their 1st and 12th order
sample autocorrelation. Columns 5-8 show the correlation matrix of the factors within a given
model whereas the final columns give the correlation of each factor with the empirical level (L,
[10-year yield]), (negative of the) slope (S, -[10-year yield - 3-month yield]) and curvature (C,
[2*2-year yield-10-year yield-3-month yield]). Statistics are calculated over the sample 1984:1
- 2003:12 (408 observations).
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Table 5.5 presents detailed full-sample summary statistics for the two-step factor es-

timates. Statistics for empirical level, slope, curvature estimates, which have been con-

structed from the yields directly, are shown in the last rows of the table. The estimated

factors mimic the empirical factors quite closely which is also clear from the italicized

numbers in the last three columns showing the correlations between the estimated and

empirical factors. All factors are highly autocorrelated and there is also substantial cross-

correlation across factors21. The importance of accounting for this cross correlation from

a forecasting perspective will be assessed by comparing the results between the AR and

VAR specifications for the factor dynamics.

5.7 Out-of-sample forecasting results

For the out-of-sample performance I run a similar horse-race between the different models

as for the in-sample fit. However, now there is no clear-cut conjecture how models will

perform as there may be a trade-off between in-sample and out-of-sample performance.

The models that provide a better in-sample do not necessary have to perform well out-of-

sample because of the risk of overfitting. This will especially be the case when the models

are estimated with the two-step procedure as the fitting process in the first step does not

take into account the dynamics of the factors in the second step, the latter being crucial

for the out-of-sample performance.

5.7.1 Forecast procedure

I assess the forecasting performance of the Nelson-Siegel models by dividing the full data

sample into the initial estimation period 1984:1 - 1993:12 (120 observations) and the fore-

casting period 1994:1 - 2003:12 (120 observations). Next to gauging the models’ predictive

accuracy over the full sample I also consider two subsamples: 1994:1 - 2000:12 (84 obser-

vations) and 2001:1 - 2003:12 (36 observations). The first subsample is the out-of-sample

period used by Diebold and Li (2006) and allows me to directly compare the performance

of the alternative Nelson-Siegel specifications with that of the three-factor factor model

results of Diebold and Li (2006). The second subsample starts in 2001 when the Federal

21Especially the two slope factors in the four-factor model are very strongly, negatively, correlated.
Panels [f] and [i] of Figures 5.7 and 5.8 also indicate that to a certain extent the slope factors seem to
offset each other, giving rise to a potential multicolinearity problem. However, the results in this and the
following section show that adding the second slope factor helps to improve not only the in-sample fit but
also the out-of-sample forecasting accuracy.
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Reserve lowered the target rate from 6.5% to 6% in a first of eleven subsequent decreases,

resulting in a drop of short-term interest rates by 4% and a strong widening of spreads.

Mönch (2006a) and De Pooter et al. (2007) both show that predictability is scarce in

2001-2003 and it will be interesting to see how the Nelson-Siegel models perform in this

period.

All the models are estimated recursively with an expanding data window. Interest rate

forecasting is carried out by constructing factor predictions using the state equations and

subsequently substituting these predictions in the measurement equations to obtain the

interest rate forecasts. I consider four forecast horizons, h = 1 month as well as 3, 6 and

12 months ahead. The h-month ahead factor forecasts, β̂T+h, are iterated forecasts which

follow from forward iteration of the state equations in (5.18) as follows

β̂T+h =
[
IK − Φ̂h

] [
IK − Φ̂

]−1

µ̂+ Φ̂hβT

where IK is the (K×K) identity matrix, µ̂ and Φ̂ the state equation estimates and βT the

last available factor estimates. With the one-step estimation method I use the in-sample

decay parameter estimates to compute the factor loadings. With the two-step method I

use the median value of the time-series of decay parameter estimates22.

5.7.2 Competitor models

Random walk

I consider three competitor models against which to judge the predictive accuracy of the

Nelson-Siegel models. The first is the benchmark Random Walk model

yt(τi) = yt−1(τi) + εt(τi), εt(τi) ∼ N
(
0, σ2(τi)

)
(5.23)

Many other studies that consider interest rate forecasting all show that consistently out-

performing the random walk is difficult. The Random Walk h-month ahead forecast is

equal to the last observed value; ŷ
T+h

(τi) = y
T
(τi).

22Experimentation with alternative choices (using the most recent decay parameter estimate and using
the mean estimate) revealed that using the median gives more stable results. Note that Nelson and Siegel
(1987) who estimate λt alongside the factors in the three-factor model also report fit results when imposing
the median λt estimate. They find that the in-sample fit is not degraded much when doing so.
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AR(1) model

The second competitor model is a first-order univariate autoregressive model which allows

for mean-reversion

yt(τi) = µ(τi) + φ(τi)yt−1(τi) + εt(τi), εt(τi) ∼ N
(
0, σ2(τi)

)
(5.24)

VAR(1) model

The third and final competitor model is an unrestricted VAR(1) model for yield levels. A

well-known shortcoming of using VAR models for yield forecasting is that only maturities

that are included in the model can be forecasted. To keep down the number of parameters

I therefore estimate a VAR(1) model in which the lagged yields are replaced by their

first three common factors. The reason is that these factors explain over 99% of the

total variation and also because of their Litterman and Scheinkman (1991) interpretation

as level, slope and curvature factors. I extract the factor matrix, denoted by Ft−1, by

applying static principal component analysis on the panel of lagged yields (using data up

until month t−1) which consist of 13 maturities: τ = 1, 3 and 6 months and 1, 2, . . . , 10

years23. The VAR(1) model is then given by

Yt = µ+ ΦFt−1 + εt, εt ∼ N (0,Σ) (5.25)

with Yt = [y
(1m)
t , ..., y

(10y)
t ]′, µ a (13× 1) vector, Φ a (13× 3) matrix and Σ a full (13× 13)

matrix.

One important difference between the Nelson-Siegel and VAR models is that the latter

does not impose a specific parametric form on the right hand side of the measurement

equations. The VAR(1) model can therefore be used to determine whether the exponential

factor loading structure of the Nelson-Siegel class of model is beneficial for forecasting

yields. For the AR and VAR model I similarly construct iterated forecasts.

5.7.3 Forecast evaluation

I use a number of standard forecast error evaluation criteria to assess the quality of the

out-of-sample forecasts. In particular, I report the Root Mean Squared Prediction Error

(RMSPE) for the individual maturities as well as the Trace Root Mean Squared Prediction

Error (TRMSPE). The latter combines the forecast errors of all maturities and summarizes

23Note that similar to Diebold and Li (2006), I do not use the 1-month maturity in the Nelson-Siegel
models. I do include it here in order to also assess the forecasts for this short maturity.
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the performance per model, thereby allowing for a direct comparison between models24.

Significant differences between the forecast performance of the random walk and each of the

models are tested for using the White (2000) ‘reality check’ test which I implement using

the stationary bootstrap method of Politis and Romano (1994) with 1000 block-bootstraps

of the forecast error series and an average block-length of 12 months.

5.7.4 Forecast results

The results for the full sample period 1994:1 - 2003:12 are presented in Tables 5.6-5.9.

The first line in each table show the (T)RMSPEs for the random walk. All other entries

are relative (T)RMSPEs with respect to the random walk, including those in lines two

and three which show the results for the competitor AR(1) and VAR(1) models. Bold

numbers indicate outperformance with respect to the random walk. The results for this

sample are directly comparable to those of Mönch (2006a) as he uses an almost identical

forecasting sample (1994:1 - 2003:9) and also reports results for the NS2-3-AR and NS2-

3-VAR specifications. Although the random walk statistics are all but identical, for the

Nelson-Siegel three factor model I find somewhat better statistics for longer forecast hori-

zons than Mönch. This is most likely caused by my use of iterated forecasts whereas Mönch

uses direct forecasts, the different sets of maturities used and by the small differences in

estimation and forecast periods.

For a 1-month horizon there only seems to be a certain degree of predictability for

maturities of less than one year. With the two-step estimation method it is mainly the

four-factor model that does well for the one and three-month maturities. The 19% out-

performance for the one-month maturity relative to the random walk is significant at the

5% level according to the White reality check test. A VAR(1) specification for the factor

dynamics clearly works better than separate AR(1) models per factor. For the one-step

models, it is in terms of TRMSPE less clear which specification for the factor dynamics is

to be preferred. However, allowing for a full coefficient matrix clearly produces the most

accurate short-maturity forecasts, although the best model is NS1-4-AR with a TRMSPE

of 0.98.

24Results of other evaluation criteria such as the Mean Prediction Error (MPE), Mean Absolute Pre-
diction Error (MAPE) and forecast regression R2-s are not reported here but are available upon request.
For more details regarding the TRMSPE, see Christoffersen and Diebold (1998). I compute the TRMSPE
over the following maturities for which I compute forecasts: τ = 1, 3, 6 and 12 months and 2,. . . ,10 years.
Tables 5.6-5.13 show results for individual maturities for only a subset of these thirteen maturities.
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Table 5.6: Forecast results for the sample 1994:1 - 2003:12, 1-month horizon

TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 101.59 30.12 21.18 21.82 25.71 29.12 30.48 29.30 27.95

AR 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00
VAR 1.01 0.81 0.9510 0.99 1.03 1.07 1.01 1.02 1.07

Panel A: two-step models

NS2-2-AR 1.18 1.55 1.44 1.05 1.07 1.27 1.04 1.05 1.26
NS2-2-VAR 1.19 1.62 1.55 1.12 1.05 1.24 1.03 1.07 1.28

NS2-3-AR 1.02 0.97 0.98 1.07 1.07 1.07 1.02 1.01 1.03
NS2-3-VAR 1.01 0.955 0.875 0.9710 1.02 1.06 1.03 1.03 1.03

NS2-4-AR 1.07 0.97 1.26 1.23 1.18 1.13 1.04 1.03 1.01
NS2-4-VAR 0.99 0.815 0.85 0.94 0.98 1.06 1.02 1.03 1.03

NS2-2-λ-AR 1.68 1.00 1.01 1.38 1.88 2.17 1.85 1.58 1.45
NS2-2-λ-VAR 1.66 1.05 1.05 1.34 1.83 2.12 1.82 1.57 1.44

NS2-3-λ-AR 1.23 1.01 1.26 1.41 1.36 1.33 1.25 1.19 1.15
NS2-3-λ-VAR 1.21 0.8710 1.05 1.26 1.30 1.33 1.26 1.21 1.19

NS2-4-λ-AR 1.10 0.97 1.26 1.26 1.20 1.18 1.09 1.06 1.06
NS2-4-λ-VAR 1.00 0.835 0.90 0.97 1.00 1.08 1.03 1.02 1.06

NS2-B-AR 1.18 1.04 1.30 1.36 1.23 1.16 1.22 1.20 1.19
NS2-B-VAR 1.14 0.90 1.06 1.16 1.12 1.12 1.19 1.20 1.21

NS2-S-AR 1.30 1.04 1.36 1.53 1.47 1.40 1.32 1.27 1.30
NS2-S-VAR 1.11 0.845 0.98 1.12 1.12 1.13 1.14 1.16 1.22

NS2-AS-AR 1.29 1.08 1.42 1.52 1.45 1.40 1.31 1.25 1.20
NS2-AS-VAR 1.24 0.92 1.18 1.30 1.30 1.33 1.28 1.25 1.22

Panel B: one-step models

NS1-2-RW 1.29 2.22 2.31 1.67 1.06 1.05 1.00 1.02 1.09
NS1-2-AR 1.30 2.23 2.31 1.68 1.09 1.09 1.04 1.03 1.11
NS1-2-VAR 1.32 2.25 2.35 1.72 1.10 1.08 1.05 1.04 1.13

NS1-3-RW 1.01 1.07 1.00 0.99 1.01 1.04 1.01 1.01 1.01
NS1-3-AR 1.02 1.09 1.04 1.05 1.06 1.07 1.02 1.01 1.02
NS1-3-VAR 1.04 1.07 0.975 0.985 1.01 1.07 1.07 1.05 1.07

NS1-4-RW 1.00 0.93 1.01 1.01 0.97 1.04 1.01 1.01 1.02
NS1-4-AR 0.98 0.89 0.97 0.97 0.96 1.03 1.00 1.00 1.02
NS1-4-VAR 0.99 0.8210 0.86 0.9010 0.9410 1.04 1.02 1.03 1.08

NS1-B-RW 1.01 1.05 1.05 1.01 0.98 1.03 1.01 1.01 1.04
NS1-B-AR 1.02 1.05 1.07 1.04 1.01 1.05 1.02 1.01 1.04
NS1-B-VAR 1.02 0.925 0.885 0.965 1.00 1.06 1.06 1.05 1.10

NS1-S-RW 1.01 1.01 1.06 1.01 0.97 1.04 1.01 1.02 1.01
NS1-S-AR 1.02 1.02 1.10 1.04 1.00 1.07 1.02 1.02 1.04
NS1-S-VAR 0.99 0.84 0.87 0.9010 0.9410 1.03 1.02 1.03 1.07

NS1-AS-RW 1.00 1.00 1.06 1.01 0.97 1.04 1.01 1.02 1.01
NS1-AS-AR 1.02 1.01 1.09 1.03 0.99 1.06 1.02 1.01 1.03
NS1-AS-VAR 0.99 0.84 0.87 0.9010 0.9410 1.03 1.02 1.03 1.07

Notes: Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5

and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively according
to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.
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Table 5.7: Forecast results for the sample 1994:1 - 2003:12, 3-month horizon

TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 197.03 54.05 48.59 51.06 55.68 60.20 57.56 53.78 50.08

AR 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
VAR 1.01 0.7410 0.89 0.98 1.05 1.07 1.03 1.03 1.08

Panel A: two-step models

NS2-2-AR 1.03 0.901 0.891 0.975 1.05 1.10 1.02 1.03 1.13
NS2-2-VAR 1.04 0.975 0.965 0.9910 1.03 1.08 1.03 1.05 1.16

NS2-3-AR 1.01 0.93 1.01 1.07 1.08 1.06 1.02 1.00 1.00
NS2-3-VAR 1.00 0.801 0.851 0.9610 1.03 1.06 1.04 1.03 1.03

NS2-4-AR 1.08 1.05 1.22 1.20 1.18 1.13 1.04 1.01 1.00
NS2-4-VAR 0.99 0.721 0.815 0.9210 0.99 1.04 1.03 1.03 1.05

NS2-2-λ-AR 1.20 0.821 0.95 1.13 1.29 1.38 1.27 1.17 1.15
NS2-2-λ-VAR 1.18 0.861 0.9610 1.11 1.25 1.33 1.25 1.17 1.16

NS2-3-λ-AR 1.07 1.04 1.17 1.22 1.20 1.13 1.05 1.01 1.02
NS2-3-λ-VAR 0.99 0.821 0.93 1.03 1.06 1.03 0.99 1.00 1.05

NS2-4-λ-AR 1.08 1.01 1.16 1.17 1.17 1.14 1.06 1.03 1.02
NS2-4-λ-VAR 0.95 0.715 0.79 0.89 0.96 1.01 0.99 0.99 1.04

NS2-B-AR 1.11 1.06 1.19 1.23 1.19 1.13 1.11 1.09 1.10
NS2-B-VAR 1.03 0.8210 0.91 1.00 1.03 1.03 1.06 1.08 1.14

NS2-S-AR 1.27 1.14 1.32 1.41 1.43 1.37 1.25 1.20 1.22
NS2-S-VAR 1.00 0.771 0.8510 0.95 0.99 1.02 1.02 1.05 1.14

NS2-AS-AR 1.16 1.11 1.26 1.31 1.29 1.22 1.13 1.08 1.08
NS2-AS-VAR 1.00 0.84 0.94 1.01 1.04 1.03 1.01 1.02 1.08

Panel B: one-step models

NS1-2-RW 1.03 1.20 1.11 1.04 0.99 1.02 1.00 1.01 1.06
NS1-2-AR 1.07 1.25 1.15 1.10 1.04 1.06 1.04 1.04 1.10
NS1-2-VAR 1.09 1.26 1.18 1.11 1.04 1.06 1.06 1.06 1.13

NS1-3-RW 0.99 0.915 0.9410 0.99 1.00 1.02 1.01 1.00 1.00
NS1-3-AR 1.00 0.95 0.99 1.05 1.06 1.05 1.01 0.99 0.99

NS1-3-VAR 1.05 0.851 0.891 0.995 1.04 1.09 1.11 1.10 1.12

NS1-4-RW 1.00 0.94 0.99 1.00 0.99 1.02 1.01 1.01 1.01
NS1-4-AR 0.96 0.81 0.88 0.93 0.95 0.99 0.99 0.98 0.99

NS1-4-VAR 0.99 0.681 0.765 0.875 0.9410 1.02 1.05 1.06 1.11

NS1-B-RW 1.00 0.98 1.00 1.00 0.99 1.02 1.00 1.00 1.02
NS1-B-AR 1.01 0.99 1.03 1.05 1.03 1.04 1.00 1.00 1.02
NS1-B-VAR 1.04 0.781 0.841 0.965 1.03 1.09 1.10 1.10 1.14

NS1-S-RW 1.00 0.99 1.01 1.00 0.99 1.02 1.01 1.01 1.00
NS1-S-AR 1.01 1.01 1.04 1.04 1.02 1.05 1.02 1.00 1.01
NS1-S-VAR 0.99 0.695 0.775 0.875 0.9410 1.02 1.05 1.06 1.10

NS1-AS-RW 1.00 0.99 1.01 1.00 0.99 1.02 1.01 1.01 1.00
NS1-AS-AR 1.01 1.00 1.04 1.03 1.01 1.04 1.01 0.99 1.00
NS1-AS-VAR 0.99 0.70 0.77 0.87 0.94 1.02 1.05 1.06 1.11

Notes: Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5

and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively according
to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.
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Table 5.8: Forecast results for the sample 1994:1 - 2003:12, 6-month horizon

TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 295.47 84.53 82.84 84.95 87.81 90.76 84.03 77.10 70.68

AR 1.01 1.02 1.00 1.00 1.01 1.01 1.01 1.01 1.02
VAR 1.12 0.92 1.03 1.10 1.17 1.16 1.11 1.12 1.19

Panel A: two-step models

NS2-2-AR 1.02 0.891 0.921 1.00 1.05 1.06 1.03 1.03 1.11
NS2-2-VAR 1.03 0.915 0.935 0.99 1.03 1.05 1.05 1.06 1.15

NS2-3-AR 1.02 0.99 1.02 1.07 1.08 1.05 1.01 0.99 1.01
NS2-3-VAR 1.02 0.861 0.891 0.9810 1.05 1.07 1.05 1.04 1.06

NS2-4-AR 1.04 1.02 1.09 1.10 1.13 1.09 1.02 0.99 1.00
NS2-4-VAR 0.99 0.781 0.845 0.9310 1.00 1.04 1.04 1.04 1.08

NS2-2-λ-AR 1.09 0.921 0.99 1.08 1.16 1.18 1.12 1.08 1.10
NS2-2-λ-VAR 1.08 0.931 0.98 1.06 1.13 1.15 1.11 1.09 1.12

NS2-3-λ-AR 1.09 1.06 1.12 1.17 1.18 1.13 1.06 1.04 1.07
NS2-3-λ-VAR 0.97 0.851 0.92 0.99 1.02 0.99 0.96 0.99 1.08

NS2-4-λ-AR 1.05 0.98 1.05 1.08 1.12 1.10 1.05 1.03 1.06
NS2-4-λ-VAR 0.96 0.751 0.8110 0.89 0.95 0.98 0.99 1.02 1.09

NS2-B-AR 1.13 1.07 1.13 1.17 1.19 1.15 1.13 1.12 1.16
NS2-B-VAR 1.02 0.8210 0.89 0.97 1.02 1.02 1.05 1.09 1.18

NS2-S-AR 1.27 1.14 1.24 1.32 1.38 1.34 1.26 1.23 1.28
NS2-S-VAR 1.02 0.801 0.8610 0.95 1.01 1.02 1.04 1.09 1.20

NS2-AS-AR 1.15 1.10 1.18 1.24 1.27 1.21 1.12 1.09 1.12
NS2-AS-VAR 0.97 0.85 0.91 0.97 1.00 0.98 0.96 0.99 1.09

Panel B: one-step models

NS1-2-RW 1.00 0.971 0.951 0.981 1.00 1.00 0.99 1.01 1.06
NS1-2-AR 1.06 1.07 1.04 1.07 1.08 1.07 1.05 1.05 1.12
NS1-2-VAR 1.08 1.06 1.02 1.06 1.06 1.07 1.08 1.10 1.19

NS1-3-RW 1.00 0.965 0.965 0.9910 1.01 1.01 1.01 1.00 1.01
NS1-3-AR 1.00 1.00 1.01 1.05 1.06 1.03 0.98 0.97 0.98

NS1-3-VAR 1.10 0.921 0.941 1.03 1.09 1.13 1.16 1.16 1.21

NS1-4-RW 1.00 0.99 0.99 1.00 1.00 1.01 1.01 1.00 1.02
NS1-4-AR 0.93 0.8310 0.86 0.91 0.93 0.95 0.95 0.95 0.98

NS1-4-VAR 1.01 0.731 0.791 0.885 0.97 1.03 1.08 1.10 1.18

NS1-B-RW 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.03
NS1-B-AR 1.01 1.03 1.03 1.05 1.05 1.03 0.99 0.99 1.02
NS1-B-VAR 1.10 0.861 0.901 1.01 1.09 1.14 1.16 1.17 1.24

NS1-S-RW 1.01 1.02 1.00 1.00 1.00 1.01 1.01 1.01 1.01
NS1-S-AR 1.00 1.04 1.03 1.03 1.03 1.02 0.98 0.97 0.99

NS1-S-VAR 1.01 0.741 0.791 0.885 0.96 1.03 1.08 1.10 1.18

NS1-AS-RW 1.00 1.02 1.00 1.00 1.00 1.01 1.01 1.01 1.01
NS1-AS-AR 0.99 1.03 1.02 1.02 1.01 1.01 0.97 0.96 0.99

NS1-AS-VAR 1.01 0.741 0.791 0.885 0.96 1.03 1.08 1.10 1.18

Notes: Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5

and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively according
to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.
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Table 5.9: Forecast results for the sample 1994:1 - 2003:12, 12-month horizon

TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 435.08 138.26 140.53 142.35 140.73 133.83 114.30 103.36 94.12

AR 1.01 1.00 0.99 0.99 0.99 1.01 1.03 1.03 1.05
VAR 1.37 1.17 1.23 1.26 1.32 1.36 1.41 1.47 1.60

Panel A: two-step models

NS2-2-AR 1.04 0.995 0.99 1.02 1.05 1.06 1.06 1.06 1.11
NS2-2-VAR 1.04 0.975 0.975 0.99 1.02 1.04 1.07 1.09 1.15

NS2-3-AR 1.03 1.01 1.01 1.03 1.05 1.06 1.04 1.02 1.04
NS2-3-VAR 1.05 0.965 0.97 1.01 1.05 1.08 1.08 1.07 1.10

NS2-4-AR 1.00 0.88 0.92 0.95 1.01 1.04 1.03 1.02 1.06
NS2-4-VAR 1.02 0.891 0.925 0.97 1.01 1.04 1.05 1.07 1.13

NS2-2-λ-AR 1.08 0.99 1.00 1.03 1.07 1.11 1.11 1.10 1.14
NS2-2-λ-VAR 1.06 0.995 0.99 1.02 1.05 1.07 1.10 1.10 1.15

NS2-3-λ-AR 1.09 1.01 1.02 1.05 1.09 1.11 1.12 1.12 1.17
NS2-3-λ-VAR 0.96 0.9110 0.93 0.95 0.97 0.95 0.945 0.985 1.08

NS2-4-λ-AR 1.03 0.86 0.90 0.94 1.00 1.05 1.09 1.10 1.17
NS2-4-λ-VAR 0.98 0.851 0.885 0.92 0.96 0.99 1.02 1.06 1.16

NS2-B-AR 1.14 1.00 1.03 1.06 1.11 1.15 1.20 1.21 1.29
NS2-B-VAR 1.05 0.90 0.94 0.97 1.02 1.05 1.10 1.14 1.25

NS2-S-AR 1.24 1.06 1.10 1.15 1.22 1.26 1.30 1.32 1.41
NS2-S-VAR 1.04 0.905 0.92 0.97 1.01 1.03 1.08 1.13 1.25

NS2-AS-AR 1.13 1.02 1.05 1.09 1.13 1.15 1.16 1.16 1.22
NS2-AS-VAR 0.97 0.90 0.92 0.95 0.98 0.97 0.9710 1.01 1.12

Panel B: one-step models

NS1-2-RW 1.00 1.01 0.99 1.01 1.01 1.00 0.99 1.01 1.06
NS1-2-AR 1.10 1.12 1.09 1.10 1.10 1.10 1.08 1.09 1.17
NS1-2-VAR 1.11 1.08 1.05 1.07 1.07 1.08 1.13 1.16 1.27

NS1-3-RW 1.00 1.00 0.99 1.00 1.00 1.01 1.00 1.00 1.01
NS1-3-AR 1.00 1.02 1.01 1.02 1.03 1.02 0.98 0.96 0.98

NS1-3-VAR 1.16 1.03 1.03 1.07 1.12 1.17 1.22 1.24 1.32

NS1-4-RW 1.00 1.02 1.00 1.00 1.00 1.01 1.00 1.00 1.02
NS1-4-AR 0.90 0.855 0.865 0.885 0.9010 0.9010 0.915 0.925 0.98

NS1-4-VAR 1.06 0.861 0.881 0.945 1.00 1.06 1.14 1.19 1.31

NS1-B-RW 1.00 1.03 1.00 1.00 1.00 1.01 0.99 1.00 1.03
NS1-B-AR 1.02 1.03 1.02 1.03 1.04 1.04 1.00 0.99 1.02
NS1-B-VAR 1.18 1.00 1.02 1.08 1.14 1.21 1.26 1.28 1.37

NS1-S-RW 1.01 1.03 1.00 1.00 1.00 1.01 1.01 1.00 1.01
NS1-S-AR 0.98 1.02 1.00 0.99 1.00 0.99 0.95 0.94 0.98

NS1-S-VAR 1.05 0.851 0.871 0.935 0.99 1.05 1.13 1.18 1.30

NS1-AS-RW 1.01 1.03 1.00 1.00 1.00 1.01 1.00 1.00 1.01
NS1-AS-AR 0.96 1.01 0.99 0.98 0.98 0.97 0.94 0.9310 0.97

NS1-AS-VAR 1.05 0.851 0.871 0.935 0.99 1.05 1.13 1.18 1.30

Notes: Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5

and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively according
to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.
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Table 5.7 shows for the 3-month horizon that for all models the best results are obtained

for short maturities using a VAR specification for the factors, instead of using an AR or

RW specification. The second and third line of the table shows this to hold also for

the VAR model using yield levels directly. From Panel B is it clear that the one-step

estimation procedure yields the most accurate results. It is interesting that the four-factor

and (Adjusted) Svensson models not only fit the term structure very well, but that they

also produce accurate short-maturity forecasts. For the one, three, six and twelve-month

maturity they all outperform the random walk by 30%, 23%, 13% and 6% respectively.

The four-factor model yields the most accurate results with the one-step procedure. The

four-factor model is also the most accurate using the two-step procedure, with NS2-4-

λ-VAR doing marginally better than NS2-4-VAR due to being more accurate for long

maturities. The TRMSPEs of NS2-4-λ-VAR and NS1-4-AR are very similar but the latter

model outperforms the random walk also for long maturities. In fact, from Panel B it seems

that whereas the VAR specification works well for short maturities, the AR specification

in general produces better forecasts for long maturities.

This pattern becomes more evident for the 6-month horizon. For the one-step proce-

dure the VAR specification outperforms the random walk for short maturities, with the

outperformance being strongly statistically significant, but for long maturities the perfor-

mance is poor whereas the exact opposite pattern is visible for the AR specification. The

NS1-4-AR again is the only model that forecasts well across the entire maturity spectrum,

clearly giving it the lowest TRMSPE of 0.93. The closest competitor with the two-step

procedure is still the NS2-4-λ-VAR model although the NS2-3-λ-VAR is a close second

with a relative TRMSPE with is only 1% lower.

Finally, for the 12-month horizon, shown in Table 5.9, all the two-step VAR specifi-

cations outperform the random walk by up to 15% for short maturities but at the same

time produce very poor forecasts for long maturities. Only the NS2-3-λ-VAR model is

more accurate than the random walk for all maturities except the 10-year maturity. The

VAR model for yield levels has an increasingly worse performance for longer maturities and

the relative RMSPEs I report in the third row of the table are higher than those given in

Mönch (2006a). This is most likely due to my use of a larger set of maturities and because I

construct iterated forecasts. The Svensson and Adjusted Svensson models are again able to

forecast both short and long maturities with the one-step estimation procedure, although

not consistently with either AR or VAR factor dynamics. The NS1-4-AR model is still the

most accurate model with a relative TRMSPE of 0.90 and significant outperformance for
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individual maturities up to ten years.

Overall the full-sample results can be summarized as follows. With both the one-step

and two-step estimation procedures, using VAR factor dynamics is typically optimal for

constructing short-maturity forecasts, irrespective of the forecast horizon. It is, however,

only the one-step estimation procedure that also produces increasingly accurate forecasts

when the forecast horizon lengthens, more specifically with the assumption of AR factor

dynamics. With the two-step procedure such an improvement is lacking. This strongly

suggests to simultaneously use cross-sectional and time-series information when the purpose

of using the Nelson-Siegel model is that of forecasting the term structure. The best overall

performing model is the four-factor model which is the only model that accurately forecasts

the entire maturity spectrum, especially for the 6 and 12-month horizons. It is interesting

that adding a second slope factor not only improves the in-sample fit but also the out-

of-sample performance. In fact, adding factors in general seems to benefit the forecasting

performance as the (Adjusted) Svensson model also predicts reasonably well compared to

for the example the three-factor model. Whether freeing up decay parameters is helpful is

somewhat ambiguous for the three and four-factor model. The Bliss model, however, does

not forecast well.

Although in general it holds that imposing the Nelson-Siegel exponential structure

on the factor loadings certainly helps compared to the AR(1) and VAR(1) yield level

models, the three-factor model, and in particular the two-factor model, forecasts rather

disappointingly. As Diebold and Li (2006) report very accurate forecasts for the NS2-AR

model it will be interesting to see how well the performance of the four-factor model holds

up for the 1994-2000 period.

5.7.5 Subsample results

Sample 1994:1 - 2000:12

Except from an initial surge during 1994, interest rates are fairly stable during this period

which is characterized by a substantial amount of predictability as shown in Tables 5.10

and 5.11. Although for a one-month horizon this is not case, it is certainly true for longer

horizons. The results I find for the NS2-AR and NS2-VAR are very similar to those reported

in Diebold and Li (2006) and Mönch (2006b). For the 3-month horizon, the two-step NS2-

3-AR model produces accurate forecasts and performs better than the NS2-3-VAR model.

Although NS2-2-λ-AR, NS2-3-λ-AR and NS2-AS-AR have a lower TRMSPEs (0.91 vs
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0.94) all these models forecast well mainly for medium and long maturities whereas the

NS2-3-AR model outperforms the random walk for all maturities. The same holds for

the NS1-3-AR model which for short maturities is outperformed by the NS1-4-AR model

which is the best one-step model. The VAR specifications still deliver the more accurate

short-maturity forecasts but the AR specifications now also do well for short maturities as

well as reasonably well for longer maturities.

The relative TRMSPE numbers for the 6 and 12-month horizons in Table 5.11 show that

AR dynamics, either in the two-step or one-step estimation approach, clearly outperform

VAR dynamics. The two-step three-factor model with the Diebold and Li (2006) approach

of fixing λt indeed forecasts well. However, estimating the decay parameter alongside the

factors seems worthwhile. The results for the NS2-3-λ-AR show that doing so improves

forecasts for short and medium maturities, with strong statistical outperformance relative

to the random walk, but that is also leads to a decrease in accuracy for long maturities.

With the one-step approach, however, the random walk is outperformed fairly evenly for

each maturity. The results for the one-step four-factor, Bliss and (Adjusted) Svensson

models are all very similar.

Sample 2001:1 - 2003:12

Mönch (2006b) examines the performance of the NS2-AR and NS2-VAR models for the

sample 2000:1 - 2003:9 and finds that it is much worse than for the Diebold and Li (2006)

out-of-sample period 1994:1 - 2000:12. This leads him to conclude that “...some of the

strong forecast performance of the Nelson-Siegel model documented by Diebold and Li

may be due to their choice of forecast period”. The results for the second subsample that I

examine shed more light on this claim. In fact, the results in Tables 5.12 and 5.13 support

Mönch’s conclusion as the NS2-AR and NS2-VAR models are shown to forecast poorly for

all horizons25. For the 1 and 3-month horizon there is some predictability again for short

maturities using the one-step estimation methods with VAR dynamics for the factors. The

four-factor performance is reasonable for the 3-month horizon with RMSPEs below one for

short and long maturities although medium maturities are predicted poorly. For the 6 and

12-month horizon the VAR specification again beats the AR specification due to accurate

short-maturity forecasts.

25See also the subsample analysis in De Pooter et al. (2007) who arrive at the same conclusion that the
forecasting performance of the three-factor Nelson-Siegel varies substantially across subperiods.
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The only model that forecasts well in this period with its downward trend in short term

interest rates and strong increase in interest spreads is the NS1-4-AR model. For the 1 and

3-month horizon the model has difficulties forecasting the two and five-year maturities.

However, for longer horizons, the model produces increasingly accurate forecasts and does

so consistently across all maturities. Especially for the 12-month horizon NS1-4-AR reduces

RMSPEs relative to the random walk by at least 11% for maturities up to seven years

resulting in an overall relative TRMSPE of 0.85. Mönch (2006a) compares the forecasting

performance of a number of competing models, among which are the NS2-3-AR and NS2-3-

VAR specifications, for a very similar period (2000:1 - 2003:9) and finds that his proposed

Factor Augmented VAR model is the only model capable of accurately forecasting the

term structure for longer forecast horizons. However, Table 5.13 shows that the four-factor

model is a strong competitor for Mönch’s FAVAR model.

5.8 Concluding remarks

In this chapter I compare the in-sample fit and out-of-sample performance of a range

of different Nelson-Siegel specifications. The in-sample results show that more elaborate

models which incorporate multiple decay parameters and additional slope or curvature

factors improve the fit of the original Nelson and Siegel (1987) three-factor functional

form. The four-factor model performs qualitatively similar as the popular Svensson (1994)

model but has the advantage that it is easier to estimate as is it less affected by potential

multicolinearity problems.

Besides an improved in-sample fit relative to the three-factor model I also document

a better out-of-sample performance with the four-factor model. More specifically, using

the Kalman filter to estimate the latent factors over time and assuming AR(1) factor

dynamics produces forecasts which consistently outperform those of benchmark models

such as the random walk and unrestricted VAR models. This outperformance holds across

the maturity spectrum and is most prominent for longer forecast horizons.

The analysis of this chapter can be extended in a number of ways. Firstly, I have only

judged the forecast performance of the various Nelson-Siegel models by considering statisti-

cal accuracy by means of the (T)RMSPE. Fabozzi et al. (2005) use the slope and curvature

forecasts of the three-factor model to implement systematic trading strategies and assess

the returns of these strategies. It will be interesting to conduct a similar type of analysis

for the models used here to evaluate forecasts from an economic point of view. Secondly,
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the use of Bayesian inference techniques will be interesting to examine. Mönch (2006a) and

De Pooter et al. (2007) both use MCMC methods to draw inference on the parameters and

latent factors in the three-factor model. Explicitly taking into account parameter uncer-

tainty may further improve the predictive accuracy of especially the more complex models.

Finally, the use of macroeconomic variables and/or macroeconomic factors as in Diebold,

Rudebusch, and Aruoba (2006b) can potentially further improve forecasts compared to the

yields-only approach that I have used here. All these topics are part of ongoing research.
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5A Appendix A: Estimation details

General specification

The general specification which captures all the different Nelson-Siegel specifications is given by

Yt = Xtβt + εt (5A.1)

βt = µ+ Φβt−1 + νt (5A.2)

with Yt the (N×1) vector of yields, Xtβt the Nelson-Siegel spot rate curve, βt the (K×1) vector of factors
and Xt the (N ×K) matrix of factor loadings. The latter are time-varying if the decay parameter(s) are
estimated alongside the factors in the two-step procedure

Two-step procedure

I estimate the parameters in step one of the two-step estimation procedure by minimizing the sum of
squared yield errors,

∑N
i=1 [yt(τi) − ŷt(τi)]

2
. When the decay parameter is fixed in the two, three and

four-factor models I apply OLS. When decay parameters are estimated alongside the factors I use NLS
to find optimal parameter estimates. In the latter case, the parameters of the two, three and four-factor
models are initialized at the Diebold and Li (2006) value for λt and the OLS estimates for the factors. For
the Bliss model both λ1,t and λ2,t are initialized at 16.42. Determining starting values for the (Adjusted)
Svensson model is somewhat more complex as there is the additional restriction on λ1,t and λ2,t. As
starting values for the level, slope, curvature factor and λ1,t I use the optimal factor and λt estimates

from the three-factor model. The fourth factor, β4,t, is initialized to zero. If λ̂1,t is larger than twice the

minimum allowed value of 6.69 then λ2,t is initialized to 0.5λ̂1,t. When λ̂1,t is smaller than 13.38 then
λ1,t and λ2,t are initialized to 13.38 and 6.69 respectively. By doing so all the restrictions on λ1,t and
λ2,t are satisfied. Because the minimum distance restriction is only imposed for the Svensson model, I

initialize λ2,t in the Adjusted Svensson model to 1
2 (6.69 + λ̂1,t). As the two-step estimation procedure

is numerically challenging because of the nonlinearity in the factor loadings, whenever possible I use the
analytical gradient and hessian which are given in the Appendix to this paper26.

One-step procedure

For the one-step state-space estimation method, which is only used when constructing forecasts, I maximize
the likelihood given in (5.22). It is of particular importance to start the optimization procedure with
accurate starting values because of the large number of parameters. For the two, three and four-factor and
Bliss models I initialize the parameters as follows. The decay parameters are set to 16.42 and the factors
to their two-step OLS estimates. The equation parameters µ and Φ in the state equations are initialized
with the estimates from either a VAR model or AR models for the factors. The variance parameters in
H and Q are initialized to one and the optimization is performed using standard deviations to ensure
positive variance estimates. The covariance parameters in Q are initially set to zero. The Kalman filter is
started with the unconditional mean and variance of the factor estimates and the first twelve observations
are discarded when computing the likelihood in (5.22). The approach for the (Adjusted) Svensson model
is the same except for the fact that I use the optimal factor estimates from the two-step procedure as
starting values. Furthermore, λ1,t and λ2,t are initialized by using the median of the two-step estimates.

26The Appendix is available on http://www.depooter.net
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5B Appendix: Derivations for gradient and hessian

5B.1 Two-factor Nelson-Siegel model

In this appendix I specify the gradient and Hessian for the two-factor Nelson-Siegel model where λ is
estimated alongside with β1 and β2 (when λ is fixed, only the terms related to βs remain). First, define
the objective function as

F (β1,t, β2,t, λ) ≡
N∑

i=1

{y(τi) − ŷ(τi)}2
=

N∑

i=1

{E(τi, β1,t, β2,t, λ)}2

=

N∑

i=1




y(τi)−β1,t−β2,t




1 − exp

(
− τi

λt

)

(
τi

λt

)










2

In the remainder of this appendix I drop the time subscript t from the β’s and λ. Also, define

K(τi) ≡ ∂E(τi)

∂λ
= β2

[
1 − exp(− τi

λ )

τi
− exp(− τi

λ )

λ

]

∂K(τi)

∂λ
= β2 exp

(
−τi
λ

)( τi
λ3

)

Gradient

The elements of the gradient G ≡
(

∂F (·)
∂β1

∂F (·)
∂β2

∂F (·)
∂λ

)
are defined as follows

∂F (·)
∂β1

= −2
∑N

i=1 {E(τi)}
∂F (·)
∂β2

= −2
∑N

i=1

{
E(τi)

[
1−exp(− τi

λ )
( τi

λ )

]}

∂F (·)
∂λ = −2

∑N
i=1 {E(τi)K(τi)}

Hessian

The elements of the Hessian H ≡




∂2F (·)
(∂β1)2

∂2F (·)
∂β2∂β1

∂2F (·)
∂λ∂β1

∂2F (·)
(∂β2)2

∂2F (·)
∂λ∂β2

∂2F (·)
(∂λ)2


 are given by

∂2F (·)
(∂β1)2

= 2N

∂2F (·)
∂β2∂β1

= 2
∑N

i=1

{
1−exp(− τi

λ )
( τi

λ )

}

∂2F (·)
∂λ∂β1

= −2
∑N

i=1K(τi)

∂2F (·)
(∂β2)2

= 2
∑N

i=1

{[
1−exp(− τi

λ )
( τi

λ )

]2}

∂2F (·)
∂λ∂β2

= −2
∑N

i=1

{
K(τi)

[
1−exp(− τi

λ )
( τi

λ )

]
+ E(τi)

[
1−exp(− τi

λ )
τi

− exp(− τi

λ )
λ

]}

∂2F (·)
(∂λ)2 = 2

∑N
i=1

{
[K(τi)]

2
+ E(τi)

∂K(·)
∂λ

}
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5B.2 Three-factor Nelson-Siegel model

I specify the gradient and Hessian for the three-factor Nelson-Siegel model where λ is estimated alongside
with β1, β2 and β3. The objective function is defined as

F (β1, β2, β3, λ) ≡
N∑

i=1

{y(τi) − ŷ(τi)}2
=

N∑

i=1

{E(τi, β1, β2, β3, λ)}2

=
N∑

i=1

{
y(τi)−β1−β2

[
1 − exp

(
− τi

λ

)
(

τi

λ

)
]
−β3

[
1 − exp

(
− τi

λ

)
(

τi

λ

) − exp
(
−τi
λ

)]}2

Also, define

K(τi) ≡ ∂E(τi)

∂λ
= −(β2 + β3)

[
1 − exp(− τi

λ )

τi
− exp(− τi

λ )

λ

]
+ β3 exp

(
−τi
λ

)( τi
λ2

)

∂K(τi)

∂λ
=

[
β2 +

(τi
λ

− 1
)
β3

]
exp

(
−τi
λ

)( τi
λ3

)

Gradient

The elements of the gradient G ≡
(

∂F (·)
∂β1

∂F (·)
∂β2

∂F (·)
∂β3

∂F (·)
∂λ

)
are defined as follows

∂F (·)
∂β1

= −2
∑N

i=1 {E(τi)}
∂F (·)
∂β2

= −2
∑N

i=1

{
E(τi)

[
1−exp(− τi

λ )
( τi

λ )

]}

∂F (·)
∂β3

= −2
∑N

i=1

{
E(τi)

[
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]}

∂F (·)
∂λ = −2

∑N
i=1 {E(τi)K(τi)}

Hessian

The elements of the Hessian H ≡




∂2F (·)
(∂β1)2

∂2F (·)
∂β2∂β1

∂2F (·)
∂β3∂β1

∂2F (·)
∂λ∂β1

∂2F (·)
(∂β2)2

∂2F (·)
∂β3∂β2

∂2F (·)
∂λ∂β2

∂2F (·)
(∂β3)2

∂2F (·)
∂λ∂β3

∂2F (·)
(∂λ)2




are given by

∂2F (·)
(∂β1)2

= 2N

∂2F (·)
∂β2∂β1

= 2
∑N

i=1

{
1−exp(− τi

λ )
( τi

λ )

}

∂2F (·)
∂β3∂β1

= 2
∑N

i=1

{
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)}

∂2F (·)
∂λ∂β1

= −2
∑N

i=1K(τi)

∂2F (·)
(∂β2)2

= 2
∑N

i=1

{[
1−exp(− τi

λ )
( τi

λ )

]2}

∂2F (·)
∂β3∂β2

= 2
∑N

i=1

{[
1−exp(− τi

λ )
( τi

λ )

] [
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]}

∂2F (·)
∂λ∂β2

= −2
∑N

i=1

{
K(τi)

[
1−exp(− τi

λ )
( τi

λ )

]
+ E(τi)

[
1−exp(− τi

λ )
τi

− exp(− τi

λ )
λ

]}
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∂2F (·)
(∂β3)2

= 2
∑N

i=1

{[
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]2
}

∂2F (·)
∂λ∂β3

= −2
∑N

i=1

{
K(τi)

[
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]
+ E(τi)

[
1−exp(− τi

λ )
τi

− exp(− τi

λ )
λ − exp

(
− τi

λ

) (
τi

λ2

)]}

∂2F (·)
(∂λ)2 = 2

∑N
i=1

{
[K(τi)]

2
+ E(τi)

∂K(τi)
∂λ

}

5B.3 Four-factor Nelson-Siegel model

I specify the gradient and Hessian for the four-factor Nelson-Siegel model where λ is estimated alongside
with β1, β2, β3 and β4. The objective function is defined as

F (β1, β2, β3, β4, λ) ≡
N∑

i=1

{y(τi) − ŷ(τi)}2
=

N∑

i=1

{E(τi, β1, β2, β3, β4, λ)}2

=

N∑

i=1

{
y(τi)−β1−β2

[
1−exp

(
−τi

λ

)
(

τi

λ

)
]
−β3

[
1−exp

(
−τi

λ

)
(

τi

λ

) −exp
(
−τi
λ

)]
−β4

[
1−exp

(
−2τi

λ

)
(

2τi

λ

)
]}2

Also, define

K(τi)≡
∂E(τi)

∂λ
= −(β2+β3)

[
1 − exp(− τi

λ )

τi
− exp(− τi

λ )

λ

]
+β3 exp

(
−τi
λ

)( τi
λ2

)
−β4

[
1 − exp

(
− 2τi

λ

)

2τi
− exp

(
−2τi

λ

)

λ

]

∂K(τi)

∂λ
=
[
β2 +

(τi
λ

− 1
)
β3

]
exp

(
−τi
λ

)( τi
λ3

)
+ β4 exp

(
−2τi
λ

)(
2τi
λ3

)

Gradient

The elements of the gradient G ≡
(

∂F (·)
∂β1

∂F (·)
∂β2

∂F (·)
∂β3

∂F (·)
∂β4

∂F (·
∂λ

)
are defined as follows

∂F (·)
∂β1

= −2
∑N

i=1 {E(τi)}
∂F (·)
∂β2

= −2
∑N

i=1

{
E(τi)

[
1−exp(− τi

λ )
( τi

λ )

]}

∂F (·)
∂β3

= −2
∑N

i=1

{
E(τi)

[
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]}

∂F (·)
∂β4

= −2
∑N

i=1

{
E(τi)

[
1−exp(− 2τi

λ )
( 2τi

λ )

]}

∂F (·)
∂λ = −2

∑N
i=1 {E(τi)K(τi)}

Hessian

The elements of the Hessian H ≡




∂2F (·)
(∂β1)2

∂2F (·)
∂β2∂β1

∂2F (·)
∂β3∂β1

∂2F (·)
∂β4∂β1

∂2F (·)
∂λ∂β1

∂2F (·)
(∂β2)2

∂2F (·)
∂β3∂β2

∂2F (·)
∂β4∂β2

∂2F (·)
∂λ∂β2

∂2F (·)
(∂β3)2

∂2F (·)
∂β4∂β3

∂2F (·)
∂λ∂β3

∂2F (·)
(∂β4)2

∂2F (·)
∂λ∂β4

∂2F (·)
(∂λ)2




are given by
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∂2F (·)
(∂β1)2

= 2N

∂2F (·)
∂β2∂β1

= 2
∑N

i=1

{
1−exp(− τi

λ )
( τi

λ )

}

∂2F (·)
∂β3∂β1

= 2
∑N

i=1

{
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)}

∂2F (·)
∂β4∂β1

= 2
∑N

i=1

{
1−exp(− 2τi

λ )
( 2τi

λ )

}

∂2F (·)
∂λ∂β1

= −2
∑N

i=1K(τi)

∂2F (·)
(∂β2)2

= 2
∑N

i=1

{[
1−exp(− τi

λ )
( τi

λ )

]2}

∂2F (·)
∂β3∂β2

= 2
∑N

i=1

{[
1−exp(− τi

λ )
( τi

λ )

] [
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]}

∂2F (·)
∂β4∂β2

= 2
∑N

i=1

{[
1−exp(− τi

λ )
( τi

λ )

] [
1−exp(− 2τi

λ )
( 2τi

λ )

]}

∂2F (·)
∂λ∂β2

= −2
∑N

i=1

{
K(τi)

[
1−exp(− τi

λ )
( τi

λ )

]
+ E(τi)

[
1−exp(− τi

λ )
τi

− exp(− τi

λ )
λ

]}

∂2F (·)
(∂β3)2

= 2
∑N

i=1

{[
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]2
}

∂2F (·)
∂β4∂β3

= 2
∑N

i=1

{[
1−exp(− 2τi

λ )
( 2τi

λ )

] [
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]}

∂2F (·)
∂λ∂β3

= −2
∑N

i=1

{
K(τi)

[
1−exp(− τi

λ )
( τi

λ )
− exp

(
− τi

λ

)]
+E(τi)

[
1−exp(− τi

λ )
τi

− exp(− τi

λ )
λ − exp

(
− τi

λ

) (
τi

λ2

)]}

∂2F (·)
(∂β4)2

= 2
∑N

i=1

{[
1−exp(− 2τi

λ )
( 2τi

λ )

]2}

∂2F (·)
∂λ∂β4

= −2
∑N

i=1

{
K(τi)

[
1−exp(− 2τi

λ )
( 2τi

λ )

]
+ E(τi)

[
1−exp(− 2τi

λ )
2τi

− exp(− 2τi

λ )
λ

]}

∂2F (·)
(∂λ)2 = 2

∑N
i=1

{
[K(τi)]

2
+ E(τi)

∂K(τi)
∂λ

}

5B.4 Bliss (1997) Nelson-Siegel model

I specify the gradient and the Hessian for the three-factor Nelson-Siegel model with the Bliss (1997)
extension where λ1 and λ2 are estimated alongside with β1, β2 and β3. The objective function is defined
as

F (β1, β2, β3, λ1, λ2) ≡
N∑

i=1

{y(τi) − ŷ(τi)}2
=

N∑

i=1

{E(τi, β1, β2, β3, λ1, λ2)}2

=
N∑

i=1




y(τi) − β1 − β2




1 − exp

(
− τi

λ1

)

(
τi

λ1

)



− β3




1 − exp

(
− τi

λ2

)

(
τi

λ2

) − exp

(
− τi
λ2

)








2

Define

K1(τi) ≡ ∂E(τi)

∂λ1
≡ −β2




1 − exp

(
− τi

λ1

)

τi
−

exp
(
− τi

λ1

)

λ1
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∂K1(τi)

∂λ1
= β2 exp

(
− τi
λ1

)(
τi
λ3

1

)

K2(τi) ≡ ∂E(τi)

∂λ2
≡ −β3




1 − exp

(
− τi

λ2

)

τi
−

exp
(
− τi

λ2

)

λ2
− exp

(
− τi
λ2

)(
τi
λ2

2

)



∂K2(τi)

∂λ2
= β3

[
exp

(
− τi
λ2

)(
τi(τi − λ2)

λ4
2

)]

Gradient

The elements of the gradient

G ≡
(
∂F (·)
∂β1

∂F (·)
∂β2

∂F (·)
∂β3

∂F (·)
∂λ1

∂F (·)
∂λ2

)

are defined as follows

∂F (·)
∂β1

= −2
∑N

i=1 {E(τi)}
∂F (·)
∂β2

= −2
∑N

i=1

{
E(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]}

∂F (·)
∂β3

= −2
∑N

i=1

{
E(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)]}

∂F (·)
∂λ1

= −2
∑N

i=1 {E(τi)K1(τi)}
∂F (·)
∂λ2

= −2
∑N

i=1 {E(τi)K2(τi)}

Hessian

The elements of the Hessian

H ≡




∂2F (·)
(∂β1)2

∂2F (·)
∂β2∂β1

∂2F (·)
∂β3∂β1

∂2F (·)
∂λ1∂β1

∂2F (·)
∂λ2∂β1

∂2F (·)
(∂β2)2

∂2F (·)
∂β3∂β2

∂2F (·)
∂λ1∂β2

∂2F (·)
∂λ2∂β2

∂2F (·)
(∂β3)2

∂2F (·)
∂λ1∂β3

∂2F (·)
∂λ2∂β3

∂2F (·)
(∂λ1)2

∂2F (·)
∂λ2∂λ1

∂2F (·)
(∂λ2)2




are given by

∂2F (·)
(∂β1)2

= 2N

∂2F (·)
∂β2∂β1

= 2
∑N

i=1

{
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

}

∂2F (·)
∂β3∂β1

= 2
∑N

i=1

{
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)}

∂2F (·)
∂λ1∂β1

= −2
∑N

i=1K1(τi)

∂2F (·)
∂λ2∂β1

= −2
∑N

i=1K2(τi)

∂2F (·)
(∂β2)2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]2}
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∂2F (·)
∂β3∂β2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

] [
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)]}

∂2F (·)
∂λ1∂β2

= −2
∑N

i=1

{
K1(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]
+ E(τi)

[
1−exp

(
−

τi

λ1

)

τi

− exp
(
−

τi

λ1

)

λ1

]}

∂2F (·)
∂λ2∂β2

= −2
∑N

i=1

{
K2(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]}

∂2F (·)
(∂β3)2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)]2}

∂2F (·)
∂λ1∂β3

= −2
∑N

i=1

{
K1(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) −exp
(
− τi

λ2

)]}

∂2F (·)
∂λ2∂β3

= −2
∑N

i=1

{
K2(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) −exp
(
− τi

λ2

)]
+E(τi)

[
1−exp

(
−

τi

λ2

)

τi

− exp
(
−

τi

λ2

)

λ2

−exp
(
− τi

λ2

)(
τi

λ2

2

)]}

∂2F (·)
(∂λ1)2

= 2
∑N

i=1

{
[K1(τi)]

2
+ E(τi)

∂K1(τi)
∂λ1

}

∂2F (·)
∂λ2∂λ1

= 2
∑N

i=1 {K1(τi)K2(τi)}
∂2F (·)
(∂λ2)2

= 2
∑N

i=1

{
[K2(τi)]

2
+ E(τi)

∂K2(τi)
∂λ2

}

5B.5 Svensson (1994) Nelson-Siegel model

I specify the gradient and Hessian for the four-factor Nelson-Siegel model with the Svensson (1994) ex-
tension where λ1 and λ2 are estimated alongside with β1, β2, β3 and β4. The objective function is defined
as

F (β1, β2, β3, β4, λ1, λ2) ≡
N∑

i=1

{y(τi) − ŷ(τi)}2
=

N∑

i=1

{E(τi, β1, β2, β3, β4, λ1, λ2)}2

=

N∑

i=1




y(τi)−β1−β2




1−exp

(
−τi

λ1

)

(
τi

λ1

)



−β3




1−exp

(
−τi

λ1

)

(
τi

λ1

) −exp

(
−τi
λ1

)

−β4




1−exp

(
−τi

λ2

)

(
τi

λ2

) −exp

(
−τi
λ2

)








2

Also, define

K1(τi) ≡ ∂E(τi)

∂λ1
= −(β2 + β3)

[
1 − exp(− τi

λ1

)

τi
−

exp(− τi

λ1

)

λ1

]
− β3 exp

(
− τi
λ1

)(
τi
λ2

1

)

∂K1(τi)

∂λ1
= (β2 − β3) exp

(
− τi
λ1

)(
τi
λ3

1

)
− β3 exp

(
− τi
λ1

)(
τ2
i

λ4
1

)

K2(τi) ≡ ∂E(τi)

∂λ2
= −β4

[
1 − exp(− τi

λ2

)

τi
−

exp(− τi

λ2

)

λ2
− exp

(
− τi
λ2

)(
τi
λ2

2

)]

∂K2(τi)

∂λ2
= −β4

[
exp

(
− τi
λ2

)(
τi
λ3

2

)
− exp

(
− τi
λ2

)(
τ2
i

λ4
2

)]

Gradient

The elements of the gradient G ≡
(

∂F (·)
∂β1

∂F (·)
∂β2

∂F (·)
∂β3

∂F (·)
∂β4

∂F (·)
∂λ1

∂F (·)
∂λ2

)
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are defined as follows

∂F (·)
∂β1

= −2
∑N

i=1 {E(τi)}
∂F (·)
∂β2

= −2
∑N

i=1

{
E(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]}

∂F (·)
∂β3

= −2
∑N

i=1

{
E(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)]}

∂F (·)
∂β4

= −2
∑N

i=1

{
E(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)]}

∂F (·)
∂λ1

= −2
∑N

i=1 {E(τi)K1(τi)}
∂F (·)
∂λ2

= −2
∑N

i=1 {E(τi)K2(τi)}

Hessian

The elements of the Hessian H ≡




∂2F (·)
(∂β1)2

∂2F (·)
∂β2∂β1

∂2F (·)
∂β3∂β1

∂2F (·)
∂β4∂β1

∂2F (·)
∂λ1∂β1

∂2F (·)
∂λ2∂β1

∂2F (·)
(∂β2)2

∂2F (·)
∂β3∂β2

∂2F (·)
∂β4∂β2

∂2F (·)
∂λ1∂β2

∂2F (·)
∂λ2∂β2

∂2F (·)
(∂β3)2

∂2F (·)
∂β4∂β3

∂2F (·)
∂λ1∂β3

∂2F (·)
∂λ2∂β3

∂2F (·)
(∂β4)2

∂2F (·)
∂λ1∂β4

∂2F (·)
∂λ2∂β4

∂2F (·)
(∂λ1)2

∂2F (·)
∂λ2∂λ1

∂2F (·)
(∂λ2)2




are given by

∂2F (·)
(∂β1)2

= 2N

∂2F (·)
∂β2∂β1

= 2
∑N

i=1

{
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

}

∂2F (·)
∂β3∂β1

= 2
∑N

i=1

{
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)}

∂2F (·)
∂β4∂β1

= 2
∑N

i=1

{
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)}

∂2F (·)
∂λ1∂β1

= −2
∑N

i=1K1(τi)

∂2F (·)
∂λ2∂β1

= −2
∑N

i=1K2(τi)

∂2F (·)
(∂β2)2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]2}

∂2F (·)
∂β3∂β2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)] [
1−exp(− τi

λ )(
τi

λ1

)

]}

∂2F (·)
∂β4∂β2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)] [
1−exp(− τi

λ )(
τi

λ1

)

]}

∂2F (·)
∂λ1∂β2

= −2
∑N

i=1

{
K1(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]
+ E(τi)

[
1−exp

(
−

τi

λ1

)

τi

− exp
(
−

τi

λ1

)

λ1

]}

∂2F (·)
∂λ2∂β2

= −2
∑N

i=1

{
K2(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]}

∂2F (·)
(∂β3)2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)]2}
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∂2F (·)
∂β4∂β3

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)] [ 1−exp
(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)]}

∂2F (·)
∂λ1∂β3

= −2
∑N

i=1

{
K(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)]
+E(τi)

[
1−exp

(
−

τi

λ1

)

τi

− exp
(
−

τi

λ1

)

λ1

− exp
(
− τi

λ1

)(
τi

λ2

1

)]}

∂2F (·)
∂λ2∂β3

= −2
∑N

i=1

{
K2(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)]}

∂2F (·)
(∂β4)2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)]2}

∂2F (·)
∂λ1∂β4

= −2
∑N

i=1

{
K1(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)]}

∂2F (·)
∂λ2∂β4

= −2
∑N

i=1

{
K2(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− τi

λ2

)]
+ E(τi)

[
1−exp

(
−

τi

λ2

)

τi

− exp
(
−

τi

λ2

)

λ2

− exp
(
− τi

λ2

)(
τi

λ2

2

)]}

∂2F (·)
(∂λ1)2

= 2
∑N

i=1

{
[K1(τi)]

2
+ E(τi)

∂K1(τi)
∂λ1

}

∂2F (·)
∂λ2∂λ1

= 2
∑N

i=1 {K1(τi)K2(τi)}
∂2F (·)
(∂λ1)2

= 2
∑N

i=1

{
[K2(τi)]

2
+ E(τi)

∂K2(τi)
∂λ1

}

5B.6 Adjusted Svensson (1994) Nelson-Siegel model

I specify the gradient and Hessian for the four-factor Nelson-Siegel model with the adjusted Svensson
(1994) extension where λ1 and λ2 are estimated alongside with β1, β2, β3 and β4. The objective function
is defined as

F (β1, β2, β3, β4, λ1, λ2) ≡
N∑

i=1

{y(τi) − ŷ(τi)}2
=

N∑

i=1

{E(τi, β1, β2, β3, β4, λ1, λ2)}2

=

N∑

i=1




y(τi)−β1−β2




1−exp

(
−τi

λ1

)

(
τi

λ1

)



−β3




1−exp

(
−τi

λ1

)

(
τi

λ1

) −exp

(
−τi
λ1

)

−β4




1−exp

(
−τi

λ2

)

(
τi

λ2

) −exp

(
−2τi
λ2

)








2

Also, define

K1(τi) ≡ ∂E(τi)

∂λ1
= −(β2 + β3)

[
1 − exp(− τi

λ1

)

τi
−

exp(− τi

λ1

)

λ1

]
− β3 exp

(
− τi
λ1

)(
τi
λ2

1

)

∂K1(τi)

∂λ1
= (β2 − β3) exp

(
− τi
λ1

)(
τi
λ3

1

)
− β3 exp

(
− τi
λ1

)(
τi
λ4

1

)

K2(τi) ≡ ∂E(τi)

∂λ2
= −β4

[
1 − exp(− τi

λ2

)

τi
−

exp(− τi

λ2

)

λ2
− exp

(
−2τi
λ2

)(
2τi
λ2

2

)]

∂K2(τi)

∂λ2
= −β4

[
exp

(
−2τi
λ2

)(
−4τ2

i

λ4
2

)
+ exp

(
−2τi
λ2

)(
4τi
λ3

2

)
− exp

(
− τi
λ2

)(
τi
λ3

2

)]

Gradient

The elements of the gradient G ≡
(

∂F (·)
∂β1

∂F (·)
∂β2

∂F (·)
∂β3

∂F (·)
∂β4

∂F (·)
∂λ1

∂F (·)
∂λ2

)
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are defined as follows

∂F (·)
∂β1

= −2
∑N

i=1 {E(τi)}
∂F (·)
∂β2

= −2
∑N

i=1

{
E(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]}

∂F (·)
∂β3

= −2
∑N

i=1

{
E(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)]}

∂F (·)
∂β4

= −2
∑N

i=1

{
E(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− 2τi

λ2

)]}

∂F (·)
∂λ1

= −2
∑N

i=1 {E(τi)K1(τi)}
∂F (·)
∂λ2

= −2
∑N

i=1 {E(τi)K2(τi)}

Hessian

The elements of the Hessian H ≡




∂2F (·)
(∂β1)2

∂2F (·)
∂β2∂β1

∂2F (·)
∂β3∂β1

∂2F (·)
∂β4∂β1

∂2F (·)
∂λ1∂β1

∂2F (·)
∂λ2∂β1

∂2F (·)
(∂β2)2

∂2F (·)
∂β3∂β2

∂2F (·)
∂β4∂β2

∂2F (·)
∂λ1∂β2

∂2F (·)
∂λ2∂β2

∂2F (·)
(∂β3)2

∂2F (·)
∂β4∂β3

∂2F (·)
∂λ1∂β3

∂2F (·)
∂λ2∂β3

∂2F (·)
(∂β4)2

∂2F (·)
∂λ1∂β4

∂2F (·)
∂λ2∂β4

∂2F (·)
(∂λ1)2

∂2F (·)
∂λ2∂λ1

∂2F (·)
(∂λ2)2




are given by

∂2F (·)
(∂β1)2

= 2N

∂2F (·)
∂β2∂β1

= 2
∑N

i=1

{
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

}

∂2F (·)
∂β3∂β1

= 2
∑N

i=1

{
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)}

∂2F (·)
∂β4∂β1

= 2
∑N

i=1

{
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− 2τi

λ2

)}

∂2F (·)
∂λ1∂β1

= −2
∑N

i=1K1(τi)

∂2F (·)
∂λ2∂β1

= −2
∑N

i=1K2(τi)

∂2F (·)
(∂β2)2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]2}

∂2F (·)
∂β3∂β2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)] [
1−exp(− τi

λ )(
τi

λ1

)

]}

∂2F (·)
∂β4∂β2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− 2τi

λ2

)] [
1−exp(− τi

λ )(
τi

λ1

)

]}

∂2F (·)
∂λ1∂β2

= −2
∑N

i=1

{
K1(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)

]
+ E(τi)

[
1−exp

(
−

τi

λ1

)

τi

− exp
(
−

τi

λ1

)

λ1

]}

∂2F (·)
∂λ2∂β2

= −2
∑N

i=1

{
K2(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

)
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∂2F (·)
(∂β3)2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)]2}

∂2F (·)
∂β4∂β3

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)] [ 1−exp
(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− 2τi

λ2

)]}

∂2F (·)
∂λ1∂β3

= −2
∑N

i=1

{
K(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)]
+E(τi)

[
1−exp

(
−

τi

λ1

)

τi

− exp
(
−

τi

λ1

)

λ1

− exp
(
− τi

λ1

)(
τi

λ2

1

)]}

∂2F (·)
∂λ2∂β3

= −2
∑N

i=1

{
K2(τi)

[
1−exp

(
−

τi

λ1

)

(
τi

λ1

) − exp
(
− τi

λ1

)]}

∂2F (·)
(∂β4)2

= 2
∑N

i=1

{[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− 2τi

λ2

)]2}

∂2F (·)
∂λ1∂β4

= −2
∑N

i=1

{
K1(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− 2τi

λ2

)]}

∂2F (·)
∂λ2∂β4

= −2
∑N

i=1

{
K2(τi)

[
1−exp

(
−

τi

λ2

)

(
τi

λ2

) − exp
(
− 2τi

λ2

)]
+ E(τi)

[
1−exp

(
−

τi

λ2

)

τi

− exp
(
−

τi

λ2

)

λ2

− exp
(
− 2τi

λ2

)(
2τi

λ2

2

)]}

∂2F (·)
(∂λ1)2

= 2
∑N

i=1

{
[K1(τi)]

2
+ E(τi)

∂K1(τi)
∂λ1

}

∂2F (·)
∂λ2∂λ1

= 2
∑N

i=1 {K1(τi)K2(τi)}
∂2F (·)
(∂λ1)2

= 2
∑N

i=1

{
[K2(τi)]

2
+ E(τi)

∂K2(τi)
∂λ1

}







Chapter 6

Predicting the Term Structure of
Interest Rates
Incorporating parameter uncertainty, model
uncertainty and macroeconomic information

6.1 Introduction

Modelling and forecasting the term structure of interest rates is by no means an easy

endeavor. As long yields are risk-adjusted averages of expected future short rates, yields of

different maturities are intimately related and therefore tend to move together, in the cross-

section as well as over time. Long and short maturities are known to react quite differently,

however, to shocks hitting the economy. Furthermore, monetary policy authorities such

as the Federal Reserve are actively targeting the short end of the term structure to help

achieve their macroeconomic goals. Many forces are at work at moving interest rates.

Identifying these forces and understanding their impact is of crucial importance.

During the last decades significant progress has been made in modelling the term struc-

ture, which has come about mainly through the development of no-arbitrage factor models.

The literature on these so-called affine models was originated by seminal papers of Vasicek

(1977) and Cox et al. (1985), characterized by Duffie and Kan (1996) and classified by Dai

and Singleton (2000)1. Affine models explain yields by a small number of latent factors

that can be extracted from the panel of yields for different maturities and impose cross-

equation restrictions which rule out arbitrage opportunities. Affine models, provided they

are properly specified, have been shown to accurately fit the term structure, see for exam-

ple Dai and Singleton (2000). The models are silent, however, about the links between the

1An excellent survey of issues involving the specification and estimation of affine models set in contin-
uous time is Piazzesi (2003), whereas discrete models are discussed in Backus et al. (1999).
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latent factors and macroeconomic forces.

The current term structure literature is actively progressing to resolve this missing

link. Recent studies have yielded interesting approaches for studying the joint behavior of

interest rates and macroeconomic variables. One approach that has been undertaken is to

extend existing term structure models by adding in observed macroeconomic variables and

to study their interactions with the latent factors. A key contribution to this strand of the

literature is Ang and Piazzesi (2003) who were the first to extend a standard three-factor

affine model with macroeconomic variables. Studies such as Bikbov and Chernov (2005),

Kim and Wright (2005), Ang et al. (2006a), Dai and Philippon (2006) and DeWachter and

Lyrio (2006) also include various macroeconomic variables and study their explanatory

power for yield movements. Studies that take a more structural approach are, amongst

others, Rudebusch and Wu (2003), Wu (2005) and Hordahl et al. (2006) who all combine

a model for the macro economy with an arbitrage-free specification for the term structure.

Moving away from the realm of no-arbitrage interest rate models to that of more ad-hoc

models, in particular the Nelson and Siegel (1987) model, studies such as Diebold et al.

(2006b) and Mönch (2006b) also show that adding information that reflects the state of

the economy is beneficial2.

Whereas modelling interest rate movements over time is already a strenuous task, accu-

rately forecasting future rates is an equally difficult challenge. Yields of all maturities are

close to being non-stationary, which makes it hard for any model to outperform the sim-

ple random walk-based no-change forecast. Several studies have documented that beating

the random walk is indeed difficult, in particular for unrestricted yields-only based vector

autoregressive (VAR) and standard affine models, see Duffee (2002) and Ang and Pi-

azzesi (2003). However, recently more favorable evidence for predictability of yields has

been reported. Whereas Duffee (2002) shows that more flexible affine specifications3 can

beat the random walk, Krippner (2005) and Diebold and Li (2006) show that a dynamic

Nelson-Siegel factor model forecasts particularly well. Results are even more promising

with models that incorporate macroeconomic information. Ang and Piazzesi (2003) and

2Macro variables mainly seem to help in capturing the dynamics of short rates. Modelling long-term
bonds remains difficult, however. Dai and Philippon (2006) show that fiscal policy can account for some
of the unexplained long rate dynamics whereas DeWachter and Lyrio (2006) show that long-run inflation
expectations are important for modelling long-term bond yields.

3Duffee (2002) denotes his preferred class of models “essentially affine” by allowing risk premia to
depend on the entire state vector instead of being a multiple of volatility which is the assumption in
standard affine models. Ang and Piazzesi (2003) remark that the essentially affine risk premia are not
linear in the state vector and that using linear risk premia results in better forecasts.
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Mönch (2006a) report improved forecasts for U.S. zero-coupon yields at various horizons

using affine models augmented with principal component-extracted macro factors. Hordahl

et al. (2006) report similar results for German zero-coupon yields.

In spite of the powerful advances in term structure modelling and forecasting, a num-

ber of issues regarding estimation and forecasting have sofar been left nearly unaddressed.

This chapter tries to fill in some of these gaps by investigating the relevance of parameter

uncertainty and, in particular, model uncertainty. Especially for VAR and affine models,

which are highly parameterized if we attempt to model the complete term structure, pa-

rameter uncertainty is likely to be substantial and should be accounted for. Regarding

model uncertainty, when looking at the historical time series of (U.S.) interest rates we can

easily identify subperiods across which yield dynamics are quite different. Likely reasons

are for example the reigns of different Fed Chairmen, most notably that of Paul Volcker, or

the strong decline in interest rate levels accompanied by a pronounced widening of spreads

in the early 1990’s and after the burst of the Internet bubble. It will be unlikely that any

individual model is capable of consistently producing accurate forecasts in each of these

subperiods. As we demonstrate below, the forecasting performance of various popular term

structure models does indeed vary substantially over time. In these situations, combin-

ing forecasts yields diversification gains and can therefore be an attractive alternative to

relying on forecasts from a single model.

In addition to these two focal points, we also further examine the use of macroeconomic

diffusion indices in term structure models. Mönch (2006a) documents that using factors,

extracted from a large panel of macro series instead of individual series works well, in

both affine models and the Nelson-Siegel model. We extend the evidence by examining

the use of diffusion indices also in simpler AR and VAR models. To summarize, the aim

of this chapter is threefold and consists of examining (i) parameter uncertainty, (ii) model

uncertainty and (iii) the use of macro diffusion indices.

We analyze these objectives in the following manner. Using a relatively long time-series

of U.S. zero-coupon bond yields, we examine the forecasting performance of a range of mod-

els that have been used in the literature. We estimate each model and generate forecasts

by applying frequentist maximum likelihood techniques as well as Bayesian techniques to

gauge the effects of explicitly taking into account parameter uncertainty. Furthermore, we

analyze each model both with and without macro factors to assess the benefits of adding

macroeconomic information. Finally, after showing the instability of the forecasting per-

formance of the different models through subsample analysis, we consider several forecast
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combination approaches.

Our results can be summarized as follows. For the out-of-sample period covering 1994-

2003 we show that the predictive ability of individual models varies considerably over time,

irrespective of using frequentist or Bayesian estimation methods. A prime example is the

Nelson and Siegel (1987) model, which predicts interest rates accurately in the 1990s but

rather poorly in the early 2000s. We find that models that incorporate macroeconomic

variables seem more accurate in subperiods during which the future path of interest rates

is more uncertain. This is especially the case for the early 2000s with the pronounced

drop in interest rates and the widening of spreads. Models without macro information do

particularly well in subperiods where interest rate dynamics are more stable. An example

is the early 1990s, where these models outperform the random walk RMSPE by sometimes

well over 30%.

That different models forecast well in different subperiods confirms ex-post that alter-

native model specifications play a complementary role in approximating the interest rate

data generating process. This provides strong support for the use of forecast combination

techniques as opposed to believing in a single model. Our forecast combination results

confirm this conjecture. We show that combined forecasts are consistently more accurate

than the random walk benchmark across maturities and subperiods. We find that combin-

ing individual models that incorporate macro factors using Bayesian estimation techniques

works extremely well, especially when using a weighting scheme that takes into account

relative historical performance using a long window of forecasts. We obtain the largest

gains in forecast performance for long maturities where the forecast combinations outper-

form the random walk by sometimes as much as 20% and the best individual model by

more than 10%.

The remainder of the chapter is organized as follows. In Section 6.2 we discuss the

set of U.S. Treasury yields we analyze, and we provide details about the panel of macro

series that we employ to obtain our macro factors. We devote Section 6.3 to present

the different models we use to construct forecasts. In Section 6.4 we discuss results of the

individual models whereas in Section 6.5 we outline and discuss results of several forecasting

combination schemes. Finally, in Section 6.6 we conclude. The Appendix provides details

on the frequentist and Bayesian techniques that we use for estimating model parameters

and for constructing forecasts.



6.2 Data 189

6.2 Data

6.2.1 Yield data

The term structure data we use consists of end-of-month continuously compounded yields

on U.S. zero-coupon bonds. These yields have been constructed from average bid-ask price

quotes on U.S. Treasuries from the CRSP government bond files. CRSP filters the available

quotes by taking out illiquid bonds and bonds with option features. The remaining quotes

are used to construct forward rates using the Fama and Bliss (1987) bootstrap method as

outlined in Bliss (1997). The forward rates are averaged to construct constant maturity

spot rates4. Similar to Diebold and Li (2006) and Mönch (2006a), our dataset consists of

unsmoothed Fama-Bliss yields. These unsmoothed yields exactly price the included U.S.

Treasury securities. Smoothed yields on the other hand, which can be obtained by fitting a

Nelson-Siegel curve on the unsmoothed yields (see Bliss, 1997 for details), do not have this

property, and, moreover, using these may give the Nelson-Siegel model an unfair advantage

over the other models in terms of fitting and forecasting the term structure.

Throughout our analysis we use yields with N = 13 different maturities of τ = 1, 3 and

6 months and 1, 2,..., 10 years. We denote yields by y(τi) for i = 1, . . . , N . To estimate

the Nelson-Siegel models we follow Diebold and Li (2006) and Diebold et al. (2006b) by

including additional maturities of 9, 15, 18, 21 and 30 months in order to increase the

number of observations at the short end of the curve.

Our sample period covers January 1970 till December 2003 for a total of 408 monthly

observations. Similar to Duffee (2002) and Ang and Piazzesi (2003) we include data from

well before the Volcker period, despite the reservations expressed in Rudebusch and Wu

(2003) that it is likely that the pricing of interest rate risk and the relationship between

yields and macroeconomic variables have changed during such a long time span. We do so

for two main reasons: (i) to have enough observations to sufficiently accurately identify the

parameters of the models we consider, some of which are highly parameterized, and (ii) to

assess forecasting performance over (sub-)periods with strikingly different characteristics.

Figure 6.1 shows time-series plots for a subsample of the 13 maturities whereas Table

6.1 reports summary statistics. The stylized facts common to yield curve data are clearly

visible: the sample average curve is upward sloping and concave, volatility is decreasing

with maturity, autocorrelations are very high and increasing with maturity and the null of

4We kindly thank Robert Bliss for providing us with the unsmoothed Fama-Bliss forward rates and the
programs to construct the spot rates.
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Figure 6.1: U.S. zero-coupon yields
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Notes: The figure shows time series plots for end-of-month U.S. zero coupon yields for a subset of matu-
rities. The yields have been constructed using the Fama and Bliss (1987) bootstrap method. The sample
period is January 1970 - December 2003 (408 observations). The vertical lines indicate the three forecasting
subsamples (1989:1 - 1993:12, 1994:1 - 1998:12 and 1999:1 - 2003:12).

Table 6.1: Summary statistics

maturity mean stdev skew kurt min max JB ρ1 ρ12 ρ24

1-month 6.049 2.797 0.913 4.336 0.794 16.162 85.671 0.968 0.690 0.402
3-month 6.334 2.896 0.871 4.237 0.876 16.020 76.380 0.974 0.708 0.415
6-month 6.543 2.927 0.788 4.016 0.958 16.481 58.796 0.976 0.723 0.444

1-year 6.755 2.860 0.661 3.763 1.040 15.822 38.907 0.975 0.733 0.474
2-year 7.032 2.724 0.644 3.672 1.299 15.650 35.240 0.978 0.748 0.526
3-year 7.233 2.594 0.685 3.663 1.618 15.765 38.796 0.979 0.763 0.560
4-year 7.392 2.510 0.728 3.607 1.999 15.821 41.640 0.980 0.771 0.582
5-year 7.483 2.449 0.759 3.478 2.351 15.005 42.454 0.982 0.786 0.607
6-year 7.611 2.406 0.791 3.437 2.663 14.979 45.236 0.983 0.797 0.626
7-year 7.659 2.344 0.841 3.488 3.003 14.975 51.562 0.983 0.787 0.623
8-year 7.728 2.320 0.841 3.365 3.221 14.936 49.798 0.984 0.809 0.651
9-year 7.767 2.317 0.877 3.427 3.389 15.018 54.765 0.985 0.813 0.656

10-year 7.745 2.266 0.888 3.496 3.483 14.925 57.117 0.985 0.796 0.647

Notes: The table shows summary statistics for our sample of end-of-month continuously compounded U.S.
zero-coupon yields. Reported are the mean, standard deviation, skewness, kurtosis, minimum, maximum,
the Jarque-Bera test statistic for normality and the 1st, 12th and 24th sample autocorrelation. The results
shown are for annualized yields (in %). The sample period is January 1970 - December 2003 (408 monthly
observations).



6.2 Data 191

normality is rejected due to positive skewness and excess kurtosis. Correlations between

yields of different maturities are high, especially for close-together maturities. Even the

maturities which are furthest apart (1 month and 10 years) still have a correlation of 86%.

6.2.2 Macroeconomic data

Our macroeconomic dataset originates from Stock and Watson (2005) and consists of 116

series5. The macro variables are classified in 15 categories: (1) output and income, (2)

employment and hours, (3) retail, (4) manufacturing and trade sales, (5) consumption, (6)

housing starts and sales, (7) inventories, (8) orders, (9) stock prices, (10) exchange rates,

(11) federal funds rate, (12) money and credit quantity aggregates, (13) price indexes, (14)

average hourly earnings and (15) miscellaneous. Table 6.2 lists the series included in the

macro dataset and their designated category.

We transform the monthly recorded macro series, whenever necessary, to ensure sta-

tionarity by using log levels, annual differences or annual log differences. Column 2 of

Table 6.2 lists the applied transformations. We follow Ang and Piazzesi (2003), Mönch

(2006a) and Diebold et al. (2006b) in our use of annual growth rates. Monthly growth rates

series are very noisy and are therefore expected to add little information when included in

the various term structure models. Outliers in each individual series are replaced by the

median value of the previous five observations, see Stock and Watson (2005) for details.

We need to be careful about the timing of the macro series relative to the interest rate

series to prevent the use of information that has not been released yet at the time when a

forecast is made. The interest rates we use are recorded at the end of the month. Although

macro figures tend to be released at the beginning or in the middle of the month, they

are usually released with a lag of one to sometimes several months. We accommodate

for a potential look-ahead bias by lagging all macro series by one month, except for S&P

variables, exchange rates and the federal funds rate which are all monthly averages6.

5We exclude all interest and spread related series from the original 132 series in the panel dataset (we
discarded 16 series in total). We do include the fed funds rate because it closely follows the fed funds target
rate. The latter is the key monetary policy instrument of the Federal Reserve. The federal funds rate will
therefore be important for capturing the movements of (especially) the short end of the term structure.

6Note that Ang and Piazzesi (2003) and Mönch (2006a) use contemporaneous macro information to
construct their term structure forecasts. Using contemporaneous information may exaggerate the benefits
from using macroeconomic series when forecasting yields. Note, however, that we are only able to fully
mimic the information available to the econometrician at the time of making forecasts by using ’vintage
data’. Croushore (2006) provides a discussion of the use of vintage data and shows that data revisions
can lead to an improvement in perceived forecastability. Here we use only revised macroeconomic series
meaning that this may effect out results as well.
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We extract a small number of common factors from our dataset, similar to Mönch

(2006a) who, based on the work of Bernanke et al. (2005), builds a no-arbitrage Factor-

Augmented VAR with four factors from a large panel of macroeconomic variables. To this

end we apply static principal component analysis, see Stock and Watson (2002a,b), to the

full panel of macro series which we standardize to have zero mean and unit variance. The

use of common factors instead of individual macro series allows us to incorporate informa-

tion beyond that contained in commonly used variables such as CPI, PPI, employment,

output gap or capacity utilization, while at the same time ensuring that the number of

model parameters remains manageable.

For the full sample period, the first common factor explains 35% of the variation in the

macro panel. The second and third factors explain an additional 19% and 8%, whereas

the first 10 factors together explain an impressive 85%. Figure 6.2 shows the R2 when

regressing each individual macro series on each of first three factors separately, which

allows us to attach economic labels to these factors. The first factor closely resembles the

series in the real output and employment categories (categories 1 and 2) and can therefore

be labelled business cycle or real activity factor. The second factor loads mostly on inflation

measures (category 13) which allows for the designation inflation factor. The third factor,

although the correlations are much lower than for factors one and two, is mostly related to

money stock and reserves (category 12) and could thus be labelled a monetary aggregates

or money stock factor. Figure 6.3 corroborates these interpretations graphically through

time-series plots of the three macro factors with Industrial Production (total), Consumer

Price Index (all items) and Money Stock (M1) respectively.

We have chosen to include the first three factors as additional explanatory variables in

the term structure model because, together, these factors explain over 60% of the variation

in the macro panel7. Given that we want to construct interest rate forecasts we also need

to forecast the macro factors. We explain in Section 3.1 in detail how we do so.

6.3 Models

We assess the individual and combined forecasting performance of a range of models that

are commonly used in the literature and in practice. Since previous studies have shown that

more parsimonious models often outperform sophisticated models we consider models with

7We also examined using more factors but the forecasting results were very similar. With only one or
two factors we obtained worse results.
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different levels of complexity. Our models range from unrestricted linear specifications

for yield levels (AR and VAR models), models that impose a parametric structure on

factor loadings (the Nelson-Siegel class of models) to models that impose cross-sectional

restrictions to rule out arbitrage opportunities (affine models). In this section we present

the different models. We defer to the appendix all specific details regarding the frequentist

and Bayesian techniques to draw inference and to generate (multi-step ahead) forecasts.

6.3.1 Adding macro factors

The approach we use to incorporate the three macro factors is the following. Denote

Mt as the (3 × 1) vector containing the time t values of the macro factors, which have

been extracted from the full panel of macro series. We add the factors to each of the

term structure models, contemporaneously8 as well as lagged by one month to capture any

delayed effects of macroeconomic news on the term structure. The exogenous explanatory

macro information that we add to the models is denoted by Xt, and is thus given by

Xt = (M ′
t M

′
t−1)

′.

Our approach implies that when we forecast yields, we also need to model and forecast

the macro factors. We tackle this issue by following Ang and Piazzesi (2003) in only

allowing for a unidirectional link from macro variables to yields. Although this can be

argued to be a restrictive assumption as it does not allow for a potentially rich bidirectional

feedback9, it enables us to model the time-series behavior of the macro factors separately,

which considerably facilitates estimation. In particular, information criteria suggest to

model and forecast Mt using a VAR(3) model:

Mt = c+ Φ1Mt−1 + Φ2Mt−2 + Φ3Mt−3 +Hξt, εt ∼ N (0, I) (6.1)

where c is a (3 × 1) vector, Φi for i = 1, ..., 3 is a (3 × 3) matrix and H a (3 × 3) lower

triangular Cholesky matrix. We estimate the macro VAR using both frequentist and

Bayesian techniques as we also use both types of inference for the term structure models.

8Contemporaneous in the sense of same-month values for stock prices, exchange rates and the federal
funds rate but one-month lagged values for the remaining macro series, see Section 2.2 for further details.

9In a forecasting exercise using German zero-coupon yields, Hordahl et al. (2006) show that term-
structure information helps little in forecasting macro-economic variables (more specifically (i) inflation
and (ii) the output gap) which is a justification for forecasting macro variables outside the term structure
models. The authors note, however, that this might be due to the fact that their proposed macroeconomic
model has an imperfect ability to describe the joint dynamics of German macroeconomic variables. Diebold
et al. (2006b) and Ang et al. (2006a) allow for bi-directional effects between macro and latent yield factors
but both studies find that the causality from macro variables to yields is much higher than vice versa.
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Figure 6.2: R2 in regressions of individual macro series on PCA factors
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Notes: The figure shows R2s when regressing the individual series in the macro panel on each of the first
three macro factors. The macro dataset consists of 116 series (transformed to ensure stationarity) and
the sample period is January 1970 - December 2003 (408 monthly observations). Panels (a), (b) and (c)
show the results for the first, second and third macro factor respectively. In each panel the macro series
are grouped according to the 15 categories as indicated on the horizontal axis. The group categories
are (1) real output and income, (2) employment and hours, (3) real retail, (4) manufacturing and trade
sales, (5) consumption, (6) housing starts and sales, (7) real inventories, (8) orders, (9) stock prices, (10)
exchange rates, (11) federal funds rate, (12) money and credit quantity aggregates, (13) prices indexes,
(14) average hourly earnings and (15) miscellaneous.
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Figure 6.3: Macro factors compared to individual macro series

1974 1978 1982 1986 1990 1994 1998 20021970

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0
PCA: factor 1

IP: total

(a) PCA factor #1 - IP:total

1974 1978 1982 1986 1990 1994 1998 20021970

PCA: factor 2

CPI-U: all items

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8
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Notes: The figure shows timeseries plots of the first three macro factors and the main individual macro
series within the category to which the factor is most related. The first factor is plotted together with
Industrial Production Index: Total Index (R2 is 0.88), the second factor is plotted with the Consumer
Price Index: All Items (R2 is 0.77) and the third factor is plotted with Money Stock: M1 (R2 is 0.44).
The macro dataset consists of 116 (transformed to ensure stationarity) series and the sample period
used is January 1970 - December 2003 (408 monthly observations). The group categories are (1) real
output and income, (2) employment and hours, (3) real retail, (4) manufacturing and trade sales, (5)
consumption, (6) housing starts and sales, (7) real inventories, (8) orders, (9) stock prices, (10) exchange
rates, (11) federal funds rate, (12) money and credit quantity aggregates, (13) prices indexes, (14) average
hourly earnings and (15) miscellaneous.
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6.3.2 Models

Random walk

The first model that we consider is a random walk for each maturity τi, i = 1, . . . , N ,

y
(τi)
t = y

(τi)
t−1 + σ(τi)ε

(τi)
t , ε

(τi)
t ∼ N (0, 1) (6.2)

In this model any h-step ahead forecast ŷ
(τi)
T+h is equal to the most recent observed value

y
(τi)
T . It is natural to qualify this no-change model as the benchmark against which to

judge the predictive power of other models. Duffee (2002), Ang and Piazzesi (2003),

Mönch (2006a) and Diebold and Li (2006) all show, using different models and different

forecast periods, that beating the random walk is quite an arduous task. The reported

first order autocorrelation coefficients in Table 6.1 indeed confirm that yields are potentially

non-stationary as these are all very close to unity. We denote the Random Walk by RW.

AR model

Although unreported results indicate that the null of a unit root for yield levels cannot

be rejected statistically, the assumption of a random walk is difficult to interpret from an

economic point of view. The random walk assumption implies that interest rates can roam

around freely and do not revert back to a long-term mean, something which contradicts the

Federal Reserve’s monetary policy targets. The second model that we therefore consider

is a first-order univariate autoregressive model which allows for mean-reversion

y
(τi)
t = c(τi) + φ(τi)y

(τi)
t−1 + ψ(τi)

′
Xt + σ(τi)ε

(τi)
t , ε

(τi)
t ∼ N (0, 1) (6.3)

where c(τi), φ(τi) and σ(τi) are scalar parameters and ψ(τi) is a (6× 1) vector containing the

coefficients on the macro factors. We construct forecasts both with and without macro

factors by setting ψ(τi) = 0. We denote the yield-only model by AR and the model with

macro factors by AR-X. For this and all other models we construct iterated forecasts10.

VAR model

Vector autoregressive (VAR) models create the possibility to use the history of other matu-

rities on top of any maturity’s own history as additional information. We use the following

10Another approach is to construct direct forecasts by regressing y
(τi)
t directly on its h-month lagged

value y
(τi)
t−h as in Diebold and Li (2006). For the state-space form of the Nelson-Siegel model and the affine

model, such an approach is, however, infeasible. Therefore, and for matters of consistency, we choose to
construct iterated forecasts for all the models. Whether iterated forecasts are more accurate than direct
forecasts is a matter of ongoing debate, see the discussion in e.g. Marcellino et al. (2006).
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first-order VAR specification11,

Yt = c+ ΦYt−1 + ΨXt +Hεt, εt ∼ N (0, I) (6.4)

where Yt contains the yields for all 13 maturities; Yt = [y
(1m)
t , ..., y

(10y)
t ]′, c is a (13 × 1)

vector, Φ a (13 × 13) matrix, Ψ a (13 × 6) matrix and H is the lower triangular Cholesky

decomposition of the (unrestricted) residual variance matrix S = HH ′ containing 1
2
N(N +

1) = 91 free parameters. As noted in the introduction, our approach is similar in spirit to

the VAR models used in Evans and Marshall (1998, 2001) and Ang and Piazzesi (2003) in

the sense that we impose exogeneity of macroeconomic variables with respect to yields.

A well-known drawback of using an unrestricted VAR model for yields is that forecasts

can only be constructed for those maturities used in the estimation of the model. As

we want to construct forecasts for 13 maturities, this results in a considerable number

of parameters that need to be estimated. As an attempt to mitigate estimation error,

and subsequently, to reduce the forecast error variance, we summarize the information

contained in the explanatory vector Yt−1 by replacing it with a small number of common

factors that drive yield curve dynamics. Similar to Litterman and Scheinkman (1991) and

many other studies, we find that the first 3 principal components explain almost all the

variation in yields (over 99%). We replace Yt−1 in (6.4) accordingly with the (13×3) factor

matrix Ft−1
12:

Yt = c+ ΦFt−1 + ΨXt +Hεt, εt ∼ N (0, I) (6.5)

where Φ is now a (13 × 3) matrix. The VAR model without and with macroeconomic

variables is denoted by VAR and VAR-X respectively.

Nelson-Siegel model

Diebold and Li (2006) show that using the in essence static Nelson and Siegel (1987) model

as a dynamic factor model generates highly accurate interest rate forecasts13 The Nelson-

Siegel model differs from the unrestricted VAR model in (6.5) by imposing a parametric

11For both the AR and VAR models we examined the benefits of including more lags by analyzing AR(p)
and VAR(p) models with p = 2, . . . , 12. We found that using multiple lags resulted in nearly identical
forecasts compared to the AR(1) and VAR(1) models and these results are therefore not reported nor were
they included in the forecasting combination procedures in Sections 4 and 5.

12The time subscript ’t− 1’ indicates that we extract the common factors using the history of yields up
until t− 1, thereby not using the vector of observations for time t.

13De Pooter (2007) examines several extensions of the Nelson and Siegel (1987) three-factor model and
shows that adding a second slope factor to the model improves its forecasting performance. However, here
we only consider the original three-factor model as this is more commonly used.
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structure on the factor loadings. The factor loadings Φ are specified as exponential func-

tions of maturity and a single parameter λ. Following Diebold et al. (2006b), the state-space

representation of the three-factor model, with a first-order autoregressive representation

for the dynamics of the state vector, is given by

y
(τi)
t = β1,t + β2,t

[
1−exp(−τi/λ)

τi/λ

]
+ β3,t

[
1−exp(−τi/λ)

τi/λ
−exp(−τi/λ)

]
+ ε

(τi)
t (6.6)

βt = a+ Γβt−1 + ut (6.7)

The state vector βt = (β1,t, β2,t, β3,t)
′ contains the latent factors at time t which can be

interpreted as level, slope and curvature factors (see Diebold and Li, 2006 for details). The

parameter λ governs the exponential decay towards zero of the factor loadings on β2,t and

β3,t, a is a (3 × 1) vector of parameters and Γ a (3 × 3) matrix of parameters. We assume

that the measurement equation and state equation errors in (6.6) and (6.7) are normally

distributed and mutually uncorrelated,

[
εt

ut

]
∼ N

([
018×1

03×1

]
,

[
H 0
0 Q

])
(6.8)

where H is a diagonal (18 × 18) matrix and Q a full (3 × 3) matrix. We follow Diebold

and Li (2006) by adding five maturities (τ = 9, 15, 18, 21 and 30 months) to the short

end of the yield curve to estimate the Nelson-Siegel model in (6.6)-(6.8). We use two

different estimation procedures: a two-step approach and a one-step approach. With

the frequentist approach we apply both the two-step and one-step estimation procedure

whereas with Bayesian analysis we consider only the one-step procedure.

The two-step approach is discussed in Diebold and Li (2006) and involves fixing λ and

estimating the factors βt in a first step using the cross-section of yields for each month t.

Given the estimated time-series for the factors from the first step, the second step consists

of modelling the factors in (6.7) by fitting either separate AR(1) models, thereby assuming

that both Γ and Q are diagonal, or a single VAR(1) model. We denote these approaches

by NS2-AR and NS2-VAR respectively.

The one-step approach follows from Diebold et al. (2006b) and involves jointly esti-

mating (6.6)-(6.8) as a state space model using the Kalman filter. In this approach we

assume that Γ and Q are both full matrices and that λ is now estimated alongside the

other parameters. We denote the one-step model by NS1.

Diebold et al. (2006b) show that the Nelson-Siegel can be extended to incorporate

macroeconomic variables by adding these as observable factors to the state vector and
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writing the model in companion form:

y
(τi)
t = β1,t + β2,t

[
1−exp(−τi/λ)

τi/λ

]
+ β3,t

[
1−exp(−τi/λ)

τi/λ
−exp(−τi/λ)

]
+ ε

(τi)
t (6.9)

ft = a+ Γft−1 + ηt (6.10)[
εt

ηt

]
∼ N

([
018×1

012×1

]
,

[
H 0
0 Q

])
(6.11)

The state vector now also contains observable factors, ft = (β1,t, β2,t, β3,t,Mt,Mt−1,Mt−2).

The dimensions of a, Γ andQ are increased appropriately and ηt is given by ηt = (u′t, ξ
′
t, 0, ..., 0)′.

The companion form enables us to incorporate the VAR(3) specification for the macro fac-

tors. We impose structure on Γ and Q to accommodate for the effects of macro factors

while maintaining the unidirectional causality from macro factors to yields14. In particu-

lar, the lower left (9 × 3) block of Γ consists of zeros whereas Q is block diagonal with a

non-zero (3×3) block Q1 for the yield factors and a non-zero (3×3) block Q2 for the macro

factors. All other blocks on the diagonal contain only zeros. The Nelson-Siegel model with

macro factors can again be estimated using either a two-step approach with AR or VAR

dynamics for the yield factors, denoted by NS2-AR-X and NS2-VAR-X, or using the

one-step approach, denoted by NS1-X.

Affine model

Models that impose no-arbitrage restrictions have been examined for their forecast ac-

curacy in for example Duffee (2002), Ang and Piazzesi (2003) and Mönch (2006a). The

attractive property of the class of no-arbitrage models is that sound theoretical cross-

sectional restrictions are imposed on factor loadings to rule out arbitrage opportunities. In

this chapter we consider a Gaussian-type discrete time affine no-arbitrage model using the

set-up from Ang and Piazzesi (2003).

In particular, we assume that the vector of K underlying latent factors, or state vari-

ables, Zt, which are assumed to drive movements in the yield curve, follow a Gaussian

VAR(1) process

Zt = µ+ ΨZt−1 + ut (6.12)

14Note that the macro factors are prevented from entering the measurement equations directly by only
allowing the factor loadings of βt to be non-zero in (6.9). Diebold et al. (2006b) impose this restriction
to maintain the assumption that three factors are sufficient for describing the dynamics of interest rates.
Relaxing this restriction would result in a substantial number of additional parameters.
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where ut ∼ N (0,ΣΣ′) with Σ a lower triangular Choleski matrix, µ a (K × 1) vector and

Ψ a (K × K) matrix. The short interest rate is assumed to be an affine function of the

factors

rt = δ0 + δ′1Zt (6.13)

where δ0 is a scalar and δ1 a (K × 1) vector. Furthermore, we adopt a standard form for

the pricing kernel, which is assumed to price all assets in the economy,

mt+1 = exp
(
−rt −

1

2
λ′tλt − λ′tut+1

)

We specify market prices of risk to be time-varying and affine in the state variables

λt = λ0 + λ1Zt (6.14)

with λ0 a (K × 1) vector and λ1 a (K × K) matrix15. Under the assumption that bond

prices are an exponentially-affine function of the state variables,

P
(τ)
t = exp[A(τ) +B(τ)′Zt] (6.15)

we can recursively estimate the price of a τ−period bond using

P
(τ)
t = Et[mt+1P

(τ−1)
t+1 ] (6.16)

where the expectation is taken under the risk-neutral measure. Ang and Piazzesi (2003)

show that this results in the following recursive formulas for the bond pricing coefficients

A(τ) and B(τ):

A(τ+1) = A(τ) +B(τ)′[µ− Σλ0] +
1

2
B(τ)′ΣΣ′B(τ) − δ0 (6.17)

B(τ+1)′ = B(τ)′[Ψ − Σλ1] − δ′1 (6.18)

when starting from A(0) = 0 and B(0) = 0. If bond prices are exponentially affine in

the state variables then yields are affine in the state variables since P
(τ)
t = exp[−y(τ)

t τ ].

Consequently, it follows that y
(τ)
t = a(τ) + b(τ)′Zt with a(τ) = −A(τ)/τ and b(τ) = −B(τ)/τ .

To estimate the model we deviate from the popular Chen and Scott (1993) approach and

assume that every yield is contaminated with measurement error.

15Risk premia are constant over time if λ1 equals zero. With λ0 also equal to zero, risk premia are
absent.
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To summarize, we specify the following affine model

y
(τi)
t = a(τi) + b(τi)Zt + ε

(τi)
t (6.19)

Zt = µ+ ΨZt−1 + ut (6.20)[
εt

ut

]
∼ N

([
013×1

03×1

]
,

[
H 0
0 Q

])
(6.21)

where Q = ΣΣ′ and a(τi) and b(τi) are recursive functions of the parameters that govern the

dynamics of the state variables and of the risk premia parameters. We denote this model

by ATSM.

We extend the model to include observable macroeconomic factors in a similar way as

for the Nelson-Siegel model

y
(τi)
t = a(τi) + b(τi)ft + ε

(τi)
t (6.22)

ft = µ+ Ψft−1 + ηt (6.23)[
εt

ηt

]
∼ N

([
013×1

012×1

]
,

[
H 0
0 Q

])
(6.24)

with ft = (Zt,Mt,Mt−1,Mt−2). The dimensions of a(τi), b(τi), µ, Ψ and Q are again

increased as appropriate and the state equation (6.23) is written in companion form. As

in the Nelson-Siegel model, Q is block diagonal with only two non-zero blocks, Q1 and Q2.

We denote the affine model with macroeconomic factors by ATSM-X.

Adding macroeconomic variables to affine models can cause estimation problems as it

further increases the number of parameters in these already highly parameterized models16.

To speed up and to facilitate the estimation procedure, we therefore use the two-step

approach of Ang et al. (2006b) by making the latent yield factors observable. Contrary

to Ang et al. (2006b) who directly use the observed short rate and the term-spread as

measures of the level and slope of the yield curve, we use principal component analysis

to extract the first three common factors from the full set of yields and use these as our

observable state variables.

16Contrary to the reduced form affine model of Ang and Piazzesi (2003), Hordahl et al. (2006) use a
structural affine model with macroeconomic variables in which the number of parameters can be kept
down. They show that their model leads to better longer horizon forecasts compared to the Ang-Piazzesi
model, which indicates that instead of only imposing no-arbitrage restrictions, which is the case in affine
models, imposing also structural equations seems to mitigate overparameterization.
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6.4 Forecasting

6.4.1 Forecast procedure

We divide our dataset into an initial estimation sample which covers the period 1970:1 -

1988:12 (228 observations) and a forecasting sample which is comprised of the remaining

period 1989:1 - 2003:12 (180 observations). The forecasting period is further divided in

three 60-month subperiods; 1989:1 - 1993:12, 1994:1 - 1998:12 and 1999:1 - 2003:12. The

initial subperiod is primarily used as a training sample to start up the forecast combinations

which we discuss in Section 5. Consequently, we report forecast results for the sample

1994:1 - 2003:12 (120 observations) and the last two subsamples (60 observations each).

The vertical lines in Figure 6.1 serve to identify the subperiods.

We recursively estimate all models using an expanding window of all data from 1970:1

onwards. We construct point forecasts for four different horizons: h = 1, 3, 6 and 12

months ahead. As mentioned in the previous section, for horizons beyond h = 1 month

we compute iterated forecasts when using frequentist techniques whereas for Bayesian

inference we compute the mean of each model’s h-month ahead predictive density.

6.4.2 Forecast evaluation

To evaluate the out-of-sample forecasts we compute a number of different popular error

metrics per maturity and forecast horizon. We focus in particular on the Root Mean

Squared Prediction Error (RMSPE)17. Similar to Hordahl et al. (2006) we also summarize

the forecasting performance of each model over all maturities by computing the Trace

Root Mean Squared Prediction Error (TRMSPE), see Christoffersen and Diebold (1998)

for details.

To test the statistical accuracy of (combined) forecasts of all models relative to our

random walk benchmark model, we apply, like Hordahl et al. (2006) and Mönch (2006a),

the White (2000) “reality check” test with the stationary bootstrap approach of Politis

and Romano (1994). We carry out the test using 1000 block-bootstraps of the forecast

17Other forecast performance statistics such as the Mean Prediction Error (MPE), Mean Absolute
Prediction Error (MAPE) and the R2 when regressing observed h-month ahead yields on the corresponding
forecasts are not reported but are available upon request. It would be interesting to evaluate the different
forecasting models from a truly economic point of view by gauging the performance of bond portfolios but
such an analysis is beyond the scope of this chapter and is therefore left for further research. Results that
can give an indication of the likely economic profitability of interest forecasts are available upon request.
In particular, we have analyzed the Hit Rate which we compute as the percentage of correctly predicted
signs of changes in interest rates with values about 50% indicating sign predictability.



204 Chapter 6

error series with an average block-length of 12 months.

6.4.3 Forecasting results: individual models

Tables 6.3-6.6 report out-of-sample results for the period 1994:1-2003:12 for the four se-

lected forecast horizons. Panels A and B of each table contain results for the models with

and without macro factors. The results with the frequentist approach are shown in the left

hand side panels whereas those with Bayesian inference are given in the right hand side

panels. Subsample results are reported in Tables 6.7-6.10 for the period 1994:1-1999:12

and Tables 6.11-6.14 for the period 1999:1-2003:12.

The first row in each table shows the values of the different forecast evaluation metrics

for the random walk (reported in basis point errors) whereas all other rows show values

relative to the random walk. Relative values for any forecast that are below one are

highlighted in bold to indicate that these forecasts are on average more accurate than

those of the random walk. Stars indicate statistically significant outperformance according

to White’s reality check test.

Full sample results

Sample 1994:1 - 2003:12

The results for the 1-month horizon are not very encouraging. For nearly all maturities

the random walk shows better statistics than any of the models based on yields only, even

when parameter uncertainty is incorporated. The results are in line, however, with other

studies showing that it is very difficult to outperform the RW for short horizon forecasts.

Especially for short horizons the near unit root behavior of yields seems to dominate and

model-based yield forecasts add little.

Incorporating macroeconomic information as an additional source of information im-

proves forecasts for the AR and VAR models. The (T)RMSPE statistics are now very close

and often marginally better than those of the RW. The largest improvements are shown

for the shortest maturities, in particular the 3-month maturity where the relative RMPSE

is now 0.95. Detailed inspection of the forecasts reveals that macroeconomic information

helps especially to reduce the forecast bias. However, the improvements do not appear

substantial enough for the AR-X model to produce significantly better forecasts, as judged

by the White reality check test. The evidence for more complex model specifications is
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mixed but, in general, adding macroeconomic information worsens accuracy. For example,

for the 6-month maturity the relative RMSPE increases from 1.10 to 1.71 for the Nelson-

Siegel model when including macro factors.

The results for the 3-month forecast horizon are very similar to those for the 1-month

horizon, although the RMSPE is now higher in absolute terms. The latter is expected since

the yield curve is subject to more new information when the forecast horizon lengthens. It

still proves very difficult for any of the models to provide forecasts that are more accurate

than the random walk. The AR-X model is again the only model that shows promising

results, which can again be attributed to the macro factors, as it gives a lower TRMSPE

statistic than that of the random walk. The improvement is, however, not statistically

significant. What is striking though is that whereas with the frequentist approach without

macro factors the RMSPE goes up for h = 3 compared to h = 1, with the Bayesian

approach the RMSPE actually goes down for some models, in particular the Nelson-Siegel

model.

For a 6-month horizon more models start to outperform the random walk for more

maturities, as indicated by a larger number of relative RMSPEs below 1, although the

results are still by no means impressive, and the best model only improves the random

walk by a few percentage points. Taking into account macroeconomic information as well

as parameter uncertainty results in reasonably accurate forecasts although there is still

no significant outperformance. Incorporating parameter uncertainty is very beneficial for

the Nelson-Siegel model. The Bayesian estimation of the state-space form of the model

substantially reduces the relative RMSPE compared to the frequentist approach. Models

that keep struggling are the VAR and affine models. In both cases this is most likely due

to the large number of yields (compared to for example Duffee, 2002 and Ang and Piazzesi,

2003) that we use in estimation, resulting in a large number of parameters18. Note that

the VAR model with Bayesian inference does worse than when estimated using maximum

likelihood. This can be explained by realizing that Bayesian analysis requires drawing

inference on the variance parameters of each of the 13 maturities in addition to doing so

for all the other parameters. With maximum likelihood this is not necessary as we only

generate point forecasts.

The longest horizon that we consider is h = 12. Two models produce forecasts that

consistently outperform the random walk across all maturities: the frequentist VAR-X

18An obvious solution to this problem would be to estimate the affine models using a smaller set of
yields. The reason we do not follow this strategy here is because we want to use a similar number of yields
as in Mönch (2006a).
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model and the Bayesian NS1-X model. For both models, the TRMSPEs are smaller com-

pared to the random walk. RMSPEs are on average 5% lower, although for the NS1-X the

differences are not significant. For all other models, the benefits of adding macro factors

are evident with all relative MSPE going down considerably. Compared to the frequentist

results, the Bayesian VAR model still struggles.

It is interesting to compare our results with those of Mönch (2006a) as he uses an almost

identical forecasting sample (1994:1 - 2003:9) but a much shorter estimation period (1983:1

- 1993:12) for the VAR, NS2-AR and NS2-VAR model. Our results for the RW are identical,

as they should be, which is a convenient check on our results. The RMSPEs we find for

the VAR(1) on yields and a 1-month horizon are somewhat higher for maturities below

five years whereas for longer maturities they are very similar. For a 12-month horizon the

differences are larger as Mönch reports RMPSEs which are roughly 20% lower than ours.

The differences will partly be due to using a slightly different set of maturities and our use

of yield-factors when estimating the VAR instead of using lagged yields directly. The main

reason for the different sets of results will, however, be due to our much longer estimation

sample. It seems that including the 1970s and beginning of 1980s leads to poorer yield

forecasts compared to those obtained when starting the sample after the Volcker period.

For the NS2-AR and NS2-VAR the 1-month ahead results are again very similar. However,

whereas Mönch finds that NS2-AR outperforms NS2-VAR for a 6- and 12-month horizon

we find that NS2-VAR is usually more accurate. Our affine model without macro variables

provides similar results as for the A0(3) model that Mönch considers for h = 1 but less

accurate results for h = 6 and h = 12. However, we forecast the 1-month maturity

much more accurately which is most likely due to the fact that we estimate the short rate

parameters δ0 and δ1 using only data on the 1-month yield instead of estimating these

simultaneously with the other model parameters. It is interesting to note that none of the

models we consider here have an out-of-sample performance which is as good as that of the

FAVAR model advocated by Mönch. It would therefore be worthwhile to add this model

to the model consideration set but we leave this for further research.

As an overall summary for the 1994:1-2003:12 period we can remark that our results for

the individual models are not very encouraging as interest rate predictability appears to be

rather low. This may be attributed to a number of possible causes with one main reason

being the out-of-sample period we select. Except for Mönch (2006a) who reports very

promising out-of-sample results for his FAVAR model for nearly the same period, Duffee

(2002), Ang and Piazzesi (2003), Diebold and Li (2006) and Hordahl et al. (2006) all use an
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out-of-sample period that ranges from roughly the mid 1990s till 2000. As we also include

the period from 2000 onwards, a possible explanation for our poor forecasting results seems

to be associated with period. Figure 6.1 surely indicates that the interest rate behavior

during that period with its pronounced widening of spreads is rather different from the

stable second half of the 1990s. The subsample results reported in Mönch (2006a) for

the period 2000:1-2003:9 indicate that the VAR, NS2-AR and NS2-VAR models perform

poorly compared to the RW which is evidence that forecastability is indeed low during that

period. Through analyzing the subsamples 1994:1-1998:12 and 1999:1-2003:12 we hope get

more insight on this issue.

Subsample results

Sample 1994:1 - 1998:12

This five year subsample is the period that has been most heavily investigated in other

forecasting studies, with positive results found for different models. For example, Duffee

(2002) reports forecast results for affine models that hold up favorably against the random

walk for the period 1995:1-1998:12. Similarly, Ang and Piazzesi (2003) show that a no-

arbitrage Gaussian VAR model predicts well 1-month ahead for the period 1996:1-2000:12

while Diebold and Li (2006) report outperforming forecasts for the Nelson-Siegel model

for the period 1994:1-2000:1219. These studies suggest that there should be a high degree

of predictability for this subperiod. Tables 6.7-6.10 confirm this claim. Even for a 1-

month horizon it is already possible to outperform the random walk. The AR-X model

in particular performs well across all maturities with results for the frequentist approach

being slightly better than for the Bayesian approach. The latter is most likely due to the

fact that the prior information based solely on the initial sample does not fit well with

this period of smooth interest rates. The TRMSPEs are lower than for the random walk

but the White test does not indicate significant improvements. The NS2-AR and VAR-

X models also do well although the 2-year and 10-year maturities still seem difficult to

forecast. The affine models render poor forecasts in this subsample, except for the 5- and

7-year maturities. This differs from Ang and Piazzesi (2003) who show that an affine model

augmented with an inflation and a real activity factor forecasts better than the random

19Hordahl et al. (2006) construct 1 through 12-months ahead forecasts for the period 1995:1-1998:12 but
these authors apply their structural model to German zero-coupon data and their results might therefore
not be directly comparable to the results for U.S. data.
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walk for maturities up to and including five years. This difference in results could be due

to the substantially larger number of yields that we use in estimation. Furthermore, Ang

and Piazzesi (2003) do not forecast beyond a 1-month horizon.

For the 3-month horizon other models also start to predict well, but especially for

6- and 12-months ahead predictability is evident. The VAR-X model and the NS2-AR

model in particular now produce forecasts that are significantly better than the no-change

forecast with relative RMSPE being lower by sometimes as much as 30-40%. Adding macro

factors seems to reduce forecast accuracy. Except for the VAR-X model, incorporating

parameter uncertainty does not seem to help either. The performance of the affine models

also improves. Interestingly, for shorter maturities simple affine models do better than

their counterparts with macro information, but the evidence is just the opposite for longer

forecast horizons. However, the affine models are never the best performing models for any

maturity, which is a result also found by Diebold and Li (2006).

Comparing our results to those of Diebold and Li (2006) makes sense, since that study

has the largest overlap in the set of models considered20. Results for h = 1 for the RW, AR,

VAR and NS2-AR models are nearly identical in terms of RMSPE although we find slightly

different MPEs (in our case the MPE is in general positive whereas Diebold and Li report

mainly negative values). For h = 6 we find lower RMSPEs for the maturities below five

years whereas for the AR and VAR models results are very similar, despite the different way

in which we estimate the VAR model. We find MPEs (not reported) that are positive, as

opposed to negative values in Diebold and Li. A detailed analysis of the prediction errors

reveals that for the sample period 1999:1-2000:12, during the yield hike, all the models

are consistently producing forecasts that are too low resulting in substantially negative

forecasting errors, which explains why Diebold and Li find negative MPEs. For the 12-

month horizon we also find that the NS2-AR model substantially outperforms the RW,

AR and VAR model. Contrary to Diebold and Li we find that the forecast performance

of NS2-VAR is at least similar to that of the AR and VAR models. We do confirm the

superior performance of the NS2-AR model for this subsample.

20Note that the forecast period of Diebold and Li (2006) does contains 24 months more.
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Sample 1999:1 - 2003:12

During this subperiod, interest rates initially go up until the end of 2000 after which

they decline sharply by roughly 5% to a level of 1% for the short rate accompanied by a

substantial widening of spreads between long and short rates. Forecasts results are shown

in Table 6.11 - 6.14. Although adding macro factors again improves forecasts, the only

model that seems to be able to compete with the RW is the Bayesian NS1-X model and

only consistently so for the longest horizons. The frequentist AR-X model does well for

shorter maturities. The VAR model shows a strikingly poor performance with very large

positive MPEs indicating that the VAR model cannot cope with the downward trend in

interest rates. The Bayesian ATSM-X model does better than the Bayesian VAR and

predicts the short end of the curve reasonably well. This shows that imposing no-arbitrage

restrictions helps but not enough to beat simple univariate models.

Rolling TRMSPE

The subsample results clearly show that different models perform well during different

subsamples. An obvious example is the NS2-AR model which comfortably outperforms all

other models for the first subsample but produces disappointing forecasts for the second

subsample. Similar conclusions can be drawn for other models. To further illustrate how

the forecasting performance of different models varies over time we compute TRMSPEs

using a 60-month rolling window. Figures 6.4-6.7 show results for all forecast horizons

considered and for a subset of models21. Each graph shows the rolling TRMSPE of the

RW, AR, VAR, NS1 and ATSM models, either without (left panels) or with macro factors

(right panels)

The patterns for the two five year subsamples reappear. TRMSPEs are fairly stable

until 1997 after which a decreasing trend sets in lasting until mid 2000. The high degree of

interest rate predictability during the 1994-1998 subperiod is the cause of the decreasingly

low TRMSPEs for the period 1998-2001. From 2001 onwards a sharp increase is visible

in TRMSPEs indicating large forecasting errors due to the sharp decline in interest rate

levels and the widening of spreads during this period. Zooming in on the performance

of individual models, we notice that the random walk is one of the best models at the

beginning and at the end of the forecasting period. During the 1998-2001 period the

21Note that the graphs only depict model specifications that were estimated using both frequentist and
Bayesian inference. As a result, the NS2-AR and NS2-VAR are not included but these graphs are available
on request.
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Figure 6.4: 60-month moving TRMSPE: 1-month horizon

1994 1996 1998 2000 2002
80

90

100

110

120

130

140

TR
MS

PE

RW

AR

VAR

NS1

ATSM

2004

(a) classical inference

1994 1996 1998 2000 2002
80

90

100

110

120

130

140

TR
MS

PE

RW

AR-X

VAR-X

NS1-X

ATSM-X

2004

(b) classical inference

1994 1996 1998 2000 2002
80

90

100

110

120

130

140

TR
MS

PE

RW

AR

VAR

NS1

ATSM

2004

(c) Bayesian inference

1994 1996 1998 2000 2002
80

90

100

110

120

130

140

TR
MS

PE
RW

AR-X

VAR-X

NS1-X

ATSM-X

2004

(d) Bayesian inference

Figure 6.5: 60-month moving TRMSPE: 3-month horizon
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(d) Bayesian inference

Notes: The figure presents the 60-month rolling window TRMSPE for individual models in the left panels
and for individual models augmented with macro factors in the right panels. The TRMSPE is shown for
the out-of-sample period 1994:1-2003:12 for a 1-month horizon in Figure 6.4 and a 3-month horizon in
Figure 6.5. The models depicted are the Random Walk [RW], first order (Vector) Autoregressive [(V)AR],
State-Space Nelson-Siegel [NS1] and the affine [ATSM] model. The affix ’X’ indicates that macro factors
have been added as additional explanatory variables.
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Figure 6.6: 60-month moving TRMSPE: 6-month horizon
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Figure 6.7: 60-month moving TRMSPE: 12-month horizon
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(d) Bayesian inference

Notes: The figure presents the 60-month rolling window TRMSPE for individual models in the left panels
and for individual models augmented with macro factors in the right panels. The TRMSPE is shown for
the out-of-sample period 1994:1-2003:12 for a 6-month horizon in Figure 6.6 and a 12-month horizon in
Figure 6.7. The models depicted are the Random Walk [RW], first order (Vector) Autoregressive [(V)AR],
State-Space Nelson-Siegel [NS1] and the affine [ATSM] model. The affix ’X’ indicates that macro factors
have been added as additional explanatory variables.
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random walk tends to be outperformed by the AR-X, VAR-X and NS1-X models. An

opposite pattern is visible for the ATSM model which performs well only in the middle of

the out-of-sample period.

The main point to take from these graphs is that the performance of individual models

varies substantially over time and establishing a clear-cut ordering of the models which

holds across the entire 1994-2003 period seems infeasible. Therefore, believing in a single

forecasting model may be dangerous. In the next section, we therefore discuss several

forecast combination techniques.

6.5 Forecast combination

Our subsample and rolling TRMPSE analysis reveals that it is seems impossible to identify

a single model that consistently outperforms the random walk across all subperiods. The

forecasting ability of individual models varies considerably over time. It seems that each

model may play a complementary role in approximating the data generating process, at

least during subperiods. Model uncertainty is troublesome if one has hopes of obtaining a

single model for forecasting or portfolio construction. A worthwhile endeavor for cushion-

ing the effects of model uncertainty is to combine the forecasts of different models. In this

section we examine several forecast combination schemes. Two combination methods are

standard approaches and can be applied to combine frequentist as well as Bayesian fore-

casts. We also investigate a third combination method which is a truly Bayesian approach

that can only be applied to Bayesian forecasts. We first discuss the different methods and

then move on to examine the forecast combination results in comparison to the results of

the individual models.

6.5.1 Forecast combination: schemes

Scheme 1: Equally weighted forecasts

The first forecast combination method assigns an equal weight to the forecasts from all

individual models. Assuming we are combining forecasts from M different models, each

weight is the same and equal to w
(τi)
T+h,m = 1/M for m = 1, . . . ,M . The equally weighted

combined forecast for a h-month horizon for any maturity τi is therefore given by ŷ
(τi)
T+h =

∑M
m=1w

(τi)
T+h,mŷ

(τi)
T+h,m which we denote as Forecast Combination - Equally Weighted (FC-

EW). As explained in Timmermann (2006) this method is likely to work well if forecast
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errors from different models have similar variances and are highly correlated, which is

certainly the case here.

Scheme 2: Inverted MSPE-weighted forecasts

The second forecast combination scheme we examine uses weights that take into account

historical relative performance. Model weights are based on each model’s (inverted) MSPE

relative to those of all other models, computed over a window of the previous υ months and

we denote these by Forecast Combination - MSPE (FC-MSPE)22. The weight for model

m is computed as w
(τi)
T+h,m =

1/MSPE
(τi)

T+h,m
∑M

m=1(1/MSPE
(τi)

T+h,m
)
where MSPE

(τi)
T+h,m = 1

υ

∑υ
r=1(ŷ

(τi)
T+h−r|T−r,m−

y
(τi)
T+h−r)

2. A model with a lower MSPE is given a relatively larger weight than a worse

performing model, see Timmermann (2006) for discussion and Stock and Watson (2004)

for an application to forecasting GDP growth23. Which value should be used for υ is

difficult to determine a priori. Using a smaller window will make weights more responsive

to changes in models’ forecasting accuracy but it will also make them more noisy. The

optimal choice of υ will therefore need to be determined empirically. Here we use four

different windows to compute model weights. We use an expanding window where υ is

initially set equal to 60 months but which increases with every new yield realization that

becomes available and we denote the resulting combination forecast as FC-MSPE-exp.

We also apply moving windows of different length, in particular υ = 12, 24 and 60 months.

We denote these by FC-MSPE-12, FC-MSPE-24 and FC-MSPE-60 respectively.

Scheme 3: Bayesian predictive likelihood

The third and final combination scheme we consider is a purely Bayesian model averaging

scheme, which we denote by BMA24, and is based on the predictive likelihood approach

proposed by Geweke and Whiteman (2006). The probability of the realized value at time

T + h is evaluated under the Bayesian predictive density for T + h for a given model

22Note that whereas in the tables we report results for the Root MSPE, Timmermann (2006) argue that
it is better to use the MSPE to construct model weights.

23The weights applied in this and the previous forecast combination scheme are always bounded between
zero and one. Other approaches for which this does not necessarily need to be the case, in particular OLS-
based weights (see again Timmermann, 2006), proved to be problematic here due to multicollinearity
problems between the different forecasts. This resulted in often extreme (offsetting) weights we therefore
did not further pursue these approaches.

24In the remainder of the text, we often refer to this third scheme as forecast combination. With a slight
abuse of denotation we share BMA in the class of forecast combination methods which, strictly speaking,
is incorrect since BMA averages models instead of combining models.
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conditional on the information at time T . The resulting probability is called predictive

likelihood. Geweke and Whiteman (2006) apply these probabilities to average individual

models. The realized value will fall near the center of the predictive density of a given

model if this density is accurate. The particular model then receives a large weight relative

to a model for which the realization ends up far out in the tail of its predictive density.

The approach of Geweke and Whiteman (2006) is an alternative to the most commonly

used BMA method based on the marginal likelihood, see for example Madigan and Raftery

(1994). We choose the predictive likelihood BMA for three reasons. Firstly, the predictive

likelihood is an out-of-sample performance measure, on contrary the marginal likelihood is

an in-sample fitting measure. Secondly, the marginal likelihood of highly nonlinear models,

such as the Nelson-Siegel and affine models, cannot be derived analytically and may be

very difficult to compute by Monte Carlo simulation. Thirdly, Eklund and Karlsson (2007)

show, in a simulation setting and in an empirical application to Swedish inflation, that

model weights based on the predictive likelihood have better small sample properties and

result in better out-of-sample performance than weights based on the traditional marginal

likelihood measure.

Whereas we refer to the appendix for specific details, we do want to briefly discuss

a major difference between our forecast combination approach and that of Eklund and

Karlsson (2007). Unlike in their study, we do not apply the system of updating and

probability forecasting prequential, as defined by Dawid (1984). We compute the predictive

density for month T + h using information up until month T and we evaluate the realized

value for time T + h using the same density. The resulting probability is then used to

compute the weight for model m in constructing the forecast for T+2h made at time T+h.

Eklund and Karlsson (2007) evaluate the fit of the predictive density over a small number

of observations, by means of the predictive likelihood, and then update the probability

density for the forecasts. The latter approach results in weights which are based more on

the fit of the model, even when using out-of-sample data, than on the probability of out-

of-sample realized values. In an unreported simulation exercise we find that our approach

reacts faster to out-of-sample uncertainty and instability since it is not constrained to give

more probability to the model which provide the best fit of predicted values.

6.5.2 Forecast combination results

A important question to answer when combining forecasts is which models should be

included. Here we combine forecasts using three different sets of models. First we include
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only those specifications that do not incorporate macro factors (M = 7 for the models

estimated with frequentist methods and M = 5 for the Bayesian counterpart); second, we

use only those model specifications that do incorporate macro factors (again M = 7 for

the models estimated with frequentist methods and M = 5 for the Bayesian counterpart)

and finally, we simply combine all specifications (M = 13 and M = 9 respectively)25. By

again making the distinction between models with and without macro factors we can assess

the added value of including macroeconomic information also for the combined forecasts,

just like we did for the individual models. The only model that is always included in the

forecast combinations is the random walk.

Full sample 1994:1 - 2003:12

The results of the forecast combination methods for the 1994-2003 period are reported in

Panels C-E of Tables 6.3-6.6. The following main overall conclusions can be drawn. Firstly,

it holds for all horizons that forecast combinations methods are a valuable alternative

compared to selecting any individual model, especially when combining forecasts from

models estimated with Bayesian methods. The reported TRMSPE numbers show that

the best combination scheme always outperforms the best individual model as well as the

random walk, although the differences are not statistically significant. Secondly, Panels

C-E show that combining forecasts works increasingly well for longer forecast horizons.

Indeed, for the 6-month and 12-month horizons, the best combination scheme outperforms

the random walk and the best individual model by several percentage points in terms

of relative RMSPEs. Thirdly, results are particularly encouraging for long maturities.

All the individual models tend to forecast maturities beyond 5 years rather poorly, with

some exceptions such as the VAR-X and NS1-X models. This is not the case, however,

for the combination schemes which outperform the random walk by up to 7% for the

6-month horizon (FC-MSPE-X) and 8-9% for the 12-month forecast horizon (again FC-

MSPE-X). This is an important result as other studies have documented the difficulty of

accurately forecasting long maturities with individual models. The claim that individual

models provide complementary information definitely seems to hold for longer maturities.

25Many other subsets can of course be selected. Aiolfi and Timmermann (2006) suggest filtering out the
worst performing model(s) in an initial step. Preliminary analysis suggests that doing so does not lead to
much improvement in forecasting performance in our case. However, a more thorough selection procedure
than simply including all available models as applied here, will most likely lead to better results for the
forecast combination methods. Although this is a very interesting issue to examine in more detail, our
main point here is that want to show the benefits of combining forecasts as an alternative to putting all
one’s eggs in a single model basket.
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Fourthly, averaging models with macro factors is the superior combination approach. When

we compare the forecast combinations with different model sets, in particular models with

and without macro factors, there seems to be no doubt that combining forecasts from only

the models that include macro factors provides the most accurate results. When models

with macro factors are averaged (Panels D), the resulting statistics are almost always

below those of the Random Walk, irrespective of the considered horizon, and this is true

independently of the averaging scheme used. On contrary, forecasts from combining models

without macro factors (Panels C) always have relative RMSPEs above one. Including all

models in the averaging strategy therefore also does not seem to be the most favorable

approach in particular not with a longer forecast horizon. Finally, comparing the different

forecast combination schemes in more detail, we observe that MSPE-based weights work

better than giving each model an equal weight. Differences are most pronounced for long

maturities and a long forecast horizon. For example, for a 12-month horizon with the 10-

year maturity using Bayesian inference, the relative MSPE of FC-EW-X is 0.98 whereas

that of FC-MSPE-X-exp is 6% lower at 0.92. With respect to the length of window that

should be used to compute the MSPE weights, we find that weights that are based on

the relative performance over a long history give the most accurate forecasts. Using an

expanding window or a 60-month rolling window works very well whereas using a shorter

history deteriorates the combination results.

The BMA scheme gives very similar results as the equal weight scheme. Bayesian model

averaging has the attractive feature of being able to assign near-zero weights to, and thereby

effectively eliminating, the worst performing models. Although BMA outperforms the FC-

MSPE with υ = 12 and 24, like these schemes it assigns probability to models using only

the very recent historical performance. Our results indicate that a long history is important

to accurately assign weights to models.

By analyzing the forecast combination results for the two five-year sub periods we can

judge the robustness of the above conclusions.

Subsample 1994:1 - 1998:12

For this period, which is characterized by a high level of predictability in general and with

some individual models performing particularly well, forecast combinations are still attrac-

tive as reported in Tables 6.7-6.10. Improvements with respect to the random walk are

statistically significant, often even at the 99% confidence level. For short forecast horizons,

some individual models, mainly the NS2-AR, outperform the forecast combination schemes.
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For the 6-month and 12-month horizons, forecast combinations with macroeconomic infor-

mation, based on the MSPE-weights using a long historical window are the most accurate

forecasting methods. It is interesting that whereas for the individual models (except for

the VAR model) adding macro factors worsens forecasting performance, for the forecast

combination methods adding macro factors is very beneficial.

Panel E of Table 6.9 and 6.10 shows that for this subsample combining all models seems

to work somewhat better than just the macro models, as judged by the TRMSPE. However,

this outperformance is achieved through the short and medium maturities which, for the

frequentist results, can be explained by the stellar performance of the NS2-AR model.

Nevertheless, the combination methods that average only over models with macro factors

are by far the most accurate for long maturities. We find that the MSPE decreases by

around 20% compared to the random walk and over 10% compared to the best individual

model for the 12-month forecast horizon.

Subample 1999:1 - 2003:12

Our analysis in section 5.2.1 shows that the Bayesian Nelson Siegel model with macro

factors forecasts very accurately in this subsample. Forecast combinations provide similar

results for short horizons, but results are worse for h = 6 and h = 12. The MSPE

combination scheme with only macro factors and a long history to base the weights on still

is the best forecast combination approach. It again outperforms nearly all the individual

models but is still less accurate than the random walk. The somewhat disappointing results

for this forecast combination scheme can, however, be explained by the way model weights

are determined. One of the best performing individual models in the 1994-1998 subsample

is the VAR-X model. With either an expanding window or a 60-month moving window,

the VAR-X model will initially receive a large weight relative to other models during the

1999-2003 period with the MSPE combination scheme. However, the VAR-X model has low

predictability in this subsample which negatively influences the results of the combination

methods. As the MSPE combination scheme is solely based on past performance, it cannot

account for structural changes in the forecasting performance of individual models. Using a

smaller moving window υ = 12, 24 does not help although the results for BMA do suggest

that a shorter history may be worthwhile. More accurate combination schemes would
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Figure 6.8: 60-month moving TRMSPE: 1-month horizon
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Figure 6.9: 60-month moving TRMSPE: 3-month horizon
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(d) Bayesian inference

Notes: The figure presents the 60-month moving average TRMSPE for forecast combination methods
using individual models without macro factors (left panel) and with macro factors (right panel). The
TRMSPE is shown for the out-of-sample period 1999:1-2003:12 for a 1-month horizon in Figure 6.8 and
a 3-month horizon in Figure 6.9. Results are depicted for the Random Walk [RW], combined forecasts
using equal weights [FC-EW], MSPE-based weights based on a moving window of the last 60 forecasts
[FC-MSPE-60] and combined forecasts using the Bayesian model averaging approach [BMA]. The affix ’X’
indicates that only individual models with macro factors are combined whereas otherwise only individual
models without macro factors are considered in the forecast combination approaches.
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Figure 6.10: 60-month moving TRMSPE: 6-month horizon
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Figure 6.11: 60-month moving TRMSPE: 12-month horizon
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(d) Bayesian inference

Notes: The figure presents the 60-month moving average TRMSPE for forecast combination methods
using individual models without macro factors (left panel) and with macro factors (right panel). The
TRMSPE is shown for the out-of-sample period 1999:1-2003:12 for a 6-month horizon in Figure 6.10 and
a 12-month horizon in Figure 6.11. Results are depicted for the Random Walk [RW], combined forecasts
using equal weights [FC-EW], MSPE-based weights based on a moving window of the last 60 forecasts
[FC-MSPE-60] and combined forecasts using the Bayesian model averaging approach [BMA]. The affix ’X’
indicates that only individual models with macro factors are combined whereas otherwise only individual
models without macro factors are considered in the forecast combination approaches.
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ideally be able to account for structural changes26.

Rolling TRSMPE

A valid question to ask is to what extent our results for the forecast combination schemes

are also sample specific. An answer to this question can be given by considering Figures

6.8-6.10. These graphs show the 60-month rolling TRMSPE for the equally-weighted and

MSPE-weighted combination schemes for the period 1999-200327, without macro factors

(left panels) and with macro factors (right panels) and for frequentist (Panels [a] and [b])

as well as Bayesian estimation methods (Panels [c] and [d]).

The graphs show that the forecast combination schemes which incorporate macro fac-

tors always outperform the schemes that do not incorporate macroeconomic information,

irrespective of the forecast horizon and the estimation method28. What is most striking

though is that the averaging schemes with macro factors outperform the random walk

for nearly every five-year subperiod, except for a few samples ending in either the second

half of 2000 or at the end of 2003. This is particularly true when model forecasts are

constructed with Bayesian techniques. The random walk TRMSPE lines in panel (d) of

Figures 6.9-6.11 are clearly above those of the FC-MSPE-X-60 scheme which is the best

performing combination method. Consequently, the performance of the forecast combina-

tions is very stable across time and indeed much more stable than for individual models.

In that respect, our choice of the second subsample is even somewhat unfortunate as the

reported results for this sample do not do justice to the combination schemes.

6.6 Concluding remarks

This chapter addresses the task of forecasting the term structure of interest rates. Several

recent studies have shown that significant steps forward are being made in this area. We

26The potential problem with the MSPE-based weight scheme is that the squared forecasts errors are
all given a weight of one when summing these to compute the MSPE. To assign more weight to the most
recent forecast errors we therefore experimented with a weighted MSPE as suggested by Diebold and Pauly

(1987) and we computed the weighted MSPE as follows: WMSPE = 1
υ

∑υ
r=1 λ

r−1(ŷ
(τi)
T+h−r|T−r−y

(τi)
T+h−r)

2.

The factor λr−1 introduces exponentially decreasing weights as 1, λ, λ2, . . ., starting from the most recent
forecast error. We set λ = 0.9439 such that the 12 most recent forecasts receive 50% of the total weight
given. Although this method does indeed give smaller weights to the VAR-X model, the overall forecasting
performance of the MSPE-weighted scheme did not improve.

27We need the forecasts of the first subsample to initialized the rolling TRMSPE statistics.
28Note that the rolling TMSPEs seem to be more stable over time when the forecast horizon lengthens

which is counterintuitive. However, this is only due to the scaling of the vertical axes in the graphs.
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contribute to the existing literature by assessing the importance of incorporating macro-

economic information, parameter uncertainty, and, in particular, model uncertainty. Our

results show that these issues are worth addressing since they improve interest rate fore-

casts.

We examine the forecast accuracy of a range of models with varying degrees of com-

plexity. We assess model forecasts over a ten-year out-of-sample period, using the entire

period as well as several subperiods to show that the predictive ability of individual mod-

els varies over time considerably. Models that incorporate macroeconomic variables seem

more accurate in subperiods during which the uncertainty about the future path of interest

rates is substantial. As an example we mention the period 2000-2003 when spreads were

high. Models without macro information do particularly well in subperiods where the term

structure has a more stable pattern such as in the early 1990s.

The fact that different models forecast well in different subperiods confirms ex-post

that alternative model specifications play a complementary role in approximating the data

generating process. Our subsample results provides strong support for the use of forecast

combination techniques as opposed to believing in a single model. Our model combination

results show that recognizing model uncertainty and mitigating the likely effects, leads to

substantial gains in interest rate forecastability. We show that combining forecasts of mod-

els that incorporate macro factors are superior to forecasts of any individual model as well

as the random walk benchmark. Additionally, the outperformance of the optimal combina-

tion scheme which assigns weights to models based on the relative historical performance

over a long sample is very stable over time. We obtain the largest gains in forecastability

for long maturities.

We feel that our results open up exciting avenues for further research. In this chapter we

have only considered very generic models, in particular in our use of a three-factor Gaussian

affine model. It would therefore be interesting to expand the model consideration set with

more sophisticated models such as the FAVAR models of Mönch (2006a) or the structural

model by Hordahl et al. (2006) both of which have been found to forecast well. More

sophisticated ways of combining forecasts are worth addressing as well, see e.g. Guidolin

and Timmermann (2007) who use a combination scheme with time-varying weights where

weights have regime switching dynamics. In terms of incorporating parameter uncertainty,

much more work can be done on the use of sensible informative priors. As an example

we mention the use of adaptive priors that could take into account likely changes in yield

dynamics due to clear political or economic reasons. Other, technical, issues that could
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be addressed are more specifically related to estimation and forecasting procedures. For

example, changes in yield dynamics could also be accounted for by using rolling estimation

windows instead of the expanding window which we have used here.
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Appendix: Estimation details

6A Individual models

In this appendix we provide details on how we perform inference on the parameters of the models in Section
3. We discuss each model separately and we distinguish between frequentist and Bayesian inference.

6A.1 AR model

Frequentist Inference

We estimate the parameters (c(τi), φ(τi), ψ(τi)) using standard OLS. Given the parameter estimates we
construct iterated forecasts as

ŷ
(τi)
T+h = ĉ(τi) + φ̂(τi)ŷ

(τi)
T+h−1 + ψ̂(τi)

′

X̂T+h (6A.1)

with ŷ
(τi)
T = y

(τi)
T . We construct forecast both with and without the macroeconomic factors. The forecasts

of the macro factors, X̂T+h, are iterated forecasts constructed from the VAR(3) macro model.

Bayesian Inference

For the Bayesian inference, we use a Normal-Gamma conjugate prior for the parameters

(c(τi), φ(τi), ψ(τi), σ2(τi)),

(c(τi), φ(τi), ψ(τi), σ2(τi)
)′ ∼ NG(b, v, s2, ν) (6A.2)

The marginal posterior densities of the parameters and the predictive density of y
(τi)
T+h, conditional on y

(τi)
T

and XT+h, can be derived using standard Bayesian results, see for example Koop (2003).

6A.2 VAR model

Frequentist Inference

We estimate the equation parameters (c,Φ,Ψ) in (6.5) using equation-by-equation OLS. Forecasts are
obtained as

ŶT+h = ĉ+ Φ̂F̂T+h−1 + Ψ̂X̂T+h (6A.3)

We construct the yield factor forecasts, F̂T+h−1, by first calculating the principal component factor loadings
using data only up until month T and then multiplying these with the iterated yields forecasts.

Bayesian Inference

We apply direct simulation to draw inference on VAR model. Note that this is a novel approach as the
literature commonly uses MCMC simulation algorithms. Direct simulation is faster and more precise since
truly independent draws are used. Our derivation is based on Zellner (1971), who provides all the necessary
computations with diffuse priors, and we extend the analysis to include informative priors29.

29We present the main results. Details of the derivations are available upon request.
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Prior Specification We apply informative prior densities for the parameter matrices Π = [c Φ Ψ]
and S in (6.5). For computational tractability we select the following conjugate priors:

Π|S ∼MN(B,S ⊗ V ) (6A.4)

and

S ∼ IW (S, µ) (6A.5)

where MN indicates the mactrivariate normal distribution with mean B and variance matrix S ⊗ V , and
where IW indicates the Inverted Wishart distribution.

Posterior Simulation The likelihood function of YT for the VAR is given by

p(YT |FT−1,XT ,Π, S) = (2π)−TN/2|S|−T/2 exp[−1

2
tr(S−1(YT − ZT Π)′(YT − ZT Π))] (6A.6)

where ZT = (eN , F
′

T−1,X
′

T ) and eN is a (N × 1) vector of ones. If we combine (6A.6) with the prior
densities in (6A.4)–(6A.5) we obtain the joint posterior density for (Π, S) as

p(Π, S|YT , FT−1,XT ) = p(YT |FT−1,XT ,Π, S)p(Π|S)p(S)

∝ |S|−(T+N+ν+1)/2 exp(− 1
2 tr(S

−1(S + (YT − ZT Π)′(YT − ZT Π) + (Π −B)′V −1(Π −B))))
(6A.7)

where ν = G+ν with G the number of columns of Π. If we define WT = (YT , V
−1/2B)′, VT = (ZT , V

−1/2)
and apply the decomposition rule and the Inverted Wishart integration step, the posterior density for
Π, conditional on (YT , FT−1,XT ), will be a generalized t-distribution with location parameter Π̂ =

(V ′V )−1V ′W , scale parameters S + (WT − VT Π̂)′(WT − VT Π̂) and (Z
′

TZT + V −1) and T + ν degrees
of freedom. That is,

p(Π|YT , FT−1,XT ) ∝ |S+(WT −VT Π̂)′(WT −VT Π̂)+(Π− Π̂)′(Z
′

TZT +V −1)(Π− Π̂)|−(T+ν)/2 (6A.8)

The posterior density of S conditional on (YT , FT−1,XT ) is:

S|YT , FT−1,XT ∼ IW (S + (WT − VT Π̂)′(WT − VT Π̂), T + ν) (6A.9)

Forecasting The predictive density conditional on (YT ,XT ) and (FT+h−1,XT+h) is defined as:

p(YT+h|YT ,XT , FT+h−1,XT+h) =
∫ ∫

p(YT+h,Π, S|YT ,XT , FT+h−1,XT+h)dΠdS

=
∫ ∫

p(YT+h|FT+h−1,XT+h,Π, S)p(Π, S|YT ,XT )dΠdS
(6A.10)

By applying the inverted Wishart step to (6A.10), and integrating with respect to Π, we have:

p(YT+h|YT ,XT , FT+h−1,XT+h) ∝ [S + (WT − VT Π̂)′(WT − VT Π̂)+

(YT+h − ZT+hΠ̂)′(I − ZT+hL
−1Z ′

T+h)(YT+h − ZT+hΠ̂)]−(T+ν+h)/2

(6A.11)

where L = (Z
′

T+hZT+h + Z
′

TZT + V −1), ZT+h = (Ih, FT+h−1,XT ) with Ih a (h× h) identity matrix.
The predictive density of YT+h conditional on (YT ,XT , FT+h−1,XT+h) is thus a generalized t-distribution

with location parameter ZT+hΠ̂, scale parameters S+(WT −VT Π̂)′(WT −VT Π̂) and (IN −ZT+hL
−1Z ′

T+h),
and T + ν degrees of freedom. Following Zellner (1971) we rewrite (6A.11) as:

p(YT+h|YT ,XT , FT+h−1,XT+h) = p(YT+1|FT ,XT+1)×. . .×p(YT+h|FT ,XT+1, ..., FT+H−1,XT+h) (6A.12)
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FT+h−1 and XT+h are generated from their predictive densities conditional on past values, independently
from YT+h. Therefore, we substitute these densities in (6A.12) and we apply direct simulation to draw
the predictive density of YT+h, conditional on YT and XT ,

p(YT+h|YT ,XT ) =

∫∫
p(YT+h|YT ,XT , FT+h−1,XT+h)p(FT+h−1|FT+h−2)p(XT+h|XT+h−1)dFT+h−1dXT+h

(6A.13)

Note that we integrate with respect to the predictive density of the macroeconomic factors XT+h given
XT .

6A.3 Nelson-Siegel model

Frequentist Inference

With the frequentist approach we estimate the Nelson-Siegel model using the two-step approach of Diebold
and Li (2006) and the one-step approach of Diebold et al. (2006b).

In the two-step approach we fix λ to 16.42, which, as shown in Diebold and Li (2006), maximizes the
curvature factor loading at a 30-month maturity. For every month we then estimate the vector of β’s by
applying OLS on the cross-section of 18 maturities. From this first step we obtain time-series for the three
factors, {βt}T

t=1. The second step consists of modelling the factors in (6.7) by fitting either separate AR(1)
models or a single VAR(1) model.

In the one-step approach we estimate the unknown parameters and latent factors by means of the
Kalman Filter using the prediction error decomposition for the State-Space model in (6.6)-(6.7). For
each sample in the recursive estimation procedure, we first run the two-step approach with a VAR(1)
specification for the state vector to obtain starting values. The unconditional mean and covariance matrix
of {βt}T

t=1 are used to start the Kalman Filter. We discard the first 12 observations when evaluating the
likelihood. All variance parameters of the diagonal matrix H and the full matrix Q are initialized to 1. The
covariance terms in Q are initialized to 0. In the optimization procedure, we maximize the likelihood using
the standard deviations as parameters to ensure positive estimates for the variance parameters. Finally, λ
is initialized to 16.42.

Iterated forecasts for the factors are obtained as

f̂T+h = â+ Γ̂f̂T+h−1 (6A.14)

where f̂T+h = (β̂1,T+h, β̂2,T+h, β̂3,T+h, M̂T+h, M̂T+h−1, M̂T+h−2). These are then inserted in the measure-
ment equation to compute interest rate forecasts:

ŷ
(τi)
T+h = β̂1,T+h + β̂2,T+h

(
1−exp(−τi/λ̂)

τi/λ̂

)
+ β̂3,T+h

(
1−exp(−τi/λ̂)

τi/λ̂
−exp(−τi/λ̂)

)
(6A.15)

Bayesian Inference

The joint posterior densities for parameters of the Nelson-Siegel and affine models do not have a known
closed-form expression. Therefore, we cannot analytically compute marginal densities for model parameters
nor marginal predictive densities. We use Monte Carlo methods instead.

Prior Specification The model parameters are summarized by θ = (λ, σ2, a,Γ, Q), where σ2 is a
(18 × 1) vector containing the diagonal elements of the measurement equation covariance matrix H. To
facilitate the posterior simulation we use independent conjugate priors for the model parameters. For the
variance parameters σ(τi) we take the Inverted Gamma-2 prior

σ2(τi) ∼ IG-2(ν(τi), δ(τi)) (6A.16)
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For the non-zero blocks in the state equation covariance matrix, Q1 and Q2, we assume Inverted Wishart
distributions,

Q1 ∼ IW(µ
1
,∆1) (6A.17)

Q2 ∼ IW(µ
2
,∆2) (6A.18)

For the linear regression parameters we assume a matricvariate Normal distribution,

[a,Γ] ∼MN(Γ, Q⊗ V Γ) (6A.19)

Finally for λ we assume a uniform distribution,

λ ∼ U(aλ, bλ) (6A.20)

We choose the parameters aλ and bλ to reflect the prior belief about the shape of the loading factors.

Posterior Simulation We obtain posterior results by using the Gibbs sampler of Geman and Geman
(1984) with the data augmentation technique of Tanner and Wong (1987). The latent variables BT =
{β1,t, β2,t, β3,t}T

t=1 are simulated alongside the model parameters θ.
The complete data likelihood function is given by

p(YT , FT |θ) =

T∏

t=1

18∏

i=1

p(y
(τi)
t |ft, λ, σ

2(τi)
)p(ft|ft−1, a,Γ, Q) (6A.21)

where YT = {y(τ1)
t , . . . , y

(τN )
t }T

t=1 and where FT = {β1,t, β2,t, β3,t,Mt,Mt−1,Mt−2}T
t=1. The terms

p(y
(τi)
t |ft, λ, σ

2(τi)), and p(ft|ft−1, a,Γ, Q) are Normal density functions which follow directly from (6.6)–
(6.7). When we combine (6A.21) with the prior densities p(θ) in (6A.16)–(6A.20) we obtain the posterior
density

p(θ,BT |YT ,MT ,MT−1,MT−2) ∝ p(YT , FT |θ)p(θ) (6A.22)

We compute the full conditional posterior density for the latent regression parameters BT using the
simulation smoother as in Carter and Kohn (1994, Section 3) and we use the Kalman smoother to derive
the conditional mean and variance of the latent factors. For the initial value β0 we choose a multivariate
normal prior with mean zero.

To sample the θ parameters (excluding λ), we use standard results. Hence, the variance parameters
σ(τi) are sampled from inverted Gamma-2 distributions, the matrixQ1 is sampled from an Inverted Wishart
distribution, and the parameters (a1, Γ1) are sampled from matricvariate Normal distributions, where
(a1,Γ1) are the non-zero blocks of a and Γ respectively. In our framework the macro variables have a
VAR(3) structure independent from the latent factors. Therefore, we simulate a2, Γ2, and Q2 from their
marginal densities, respectively generalized t-distributions and an Inverted Wishart distribution to improve
the speed of convergence.

Finally, the posterior density for λ, conditional on (YT , FT ,H) is:

p(λ|YT , FT ,H) ∝
T∏

t=1

N∏

i=1

p(y
(τi)
t |ft, λ, σ

2(τi)
)p(λ) (6A.23)

Equation (6A.23) is not proportional to any known density. Therefore, λ has to be drawn by applying
MCMC methods. We use the Griddy Gibbs algorithm. The Griddy Gibbs sampler was developed by
Ritter and Tanner (1992) and is based on the idea to construct a simple approximation of the inverse
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cumulative distribution function of the target density on a grid of points30. More formally and referring
to equation (6A.23), we perform the following steps:

• We evaluate p(λ|YT , FT ,H) at points Vi = v1, ..., vn to obtain w1, ..., wn;

• We use w1, ..., wn to obtain an approximation to the inverse cdf of p(λ|YT , FT ,H);

• We sample a uniform (0,1) deviate and we transform the observation via the approximate inverse
cumulative density function.

Forecasting The h-step ahead predictive density of YT+h, conditional on YT and FT , is given by

p(YT+h|YT , FT ) =

∫∫
p(y

(τi)
T+h|fT+h, λ, σ

2(τi)
)p(fT+h|fT+h−1, a,Γ, Q)×

p(θ,BT |YT ,MT ,MT−1,MT−2)dfT+h dθ (6A.24)

where p(y
(τi)
T+h|fT+h, λ, σ

2(τi)) and p(fT+h|fT+h−1, a,Γ, Q) follow directly from the state space system and
where p(θ,BT |YT ,MT ,MT−1,MT−2) is the posterior density.

Simulating YT+h from the h-step ahead distribution (6A.24) is straightforward. In each step of the
Gibbs sampler, we use the simulated values of (a,Γ, Q) to draw the out-of-sample values of fT+h. Then,

fT+h, in combination with the current Gibbs draws of H and λ, provides a simulated value for y
(τi)
T+h.

6A.4 Affine model

Frequentist Inference

To estimate the affine model we assume that yields of every maturity are contaminated with measurement
error. We estimate the parameters in the resulting State-Space model by applying the two-step approach
used in Ang et al. (2006b). We make the latent factors Zt observable by extracting the first three principal
components from the panel of yields of different maturities. The first step of the estimation procedure
consists of estimating the equation and variance parameters of the state equations (6.23). In the second
step we estimate the remaining parameters (δ0, δ1, λ0, λ1). We first estimate (δ0, δ1) by applying OLS
to the short rate equation (6.13) where we use the 1-month yield as the observable short rate. We
then estimate the risk premia parameters (λ0, λ1) by minimizing the sum of squared yields errors in the

measurement equations (6.22), giving the parameter estimates from the first step, (µ̂, Ψ̂, Σ̂) and the short

rate parameters (δ̂0, δ̂1). In the second step we initialize all risk premia parameters to zero. Common
approaches for obtaining starting values for the risk premia parameters by first estimating either λ0 or λ1

in a separate step yielded unsatisfactory results.

Yield forecasts are generated by forward iteration of the state equations

f̂T+h = µ̂+ Ψ̂f̂T+h−1 (6A.25)

where f̂T+h = (Ẑ1,T+h, M̂T+h−1, M̂T+h−2). With the estimated parameters substituted in a(τi) and b(τi)

we then construct interest rate forecasts as

ŷ
(τi)
T+h = â(τi) + b̂(τi)f̂T+h (6A.26)

30Mönch (2006b) applies a random walk Metropolis Hastings algorithm to draw λ. We choose the
Griddy-Gibbs since the space of λ is well defined and only the cumulative density function needs to be
estimated in these grid points.
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Bayesian Inference

Bayesian inference on model (22)-(23) is very complex due to the high degree of nonlinearity and, above
all, the large set of yields we model. It is particularly difficult to define the space of the short rate
parameters. The likelihood is very sensitive to these parameters and small perturbations give very different
and unrealistic results. Therefore, an estimation approach similar to Ang et al. (2006a) may not be the
optimal solution. We opt for a normal approximation of the full posterior density around frequentist
parameter estimates. This choice implies that the predictive density of YT+h, conditional on YT and
Ft = {ft}T

t=1, can be derived without having to compute posterior densities.

Forecasting The h-step ahead predictive density of y
(τi)
T+h, conditional on YT and FT , is given by

p(y
(τi)
T+h|YT , FT ) =

∫∫
p(y

(τi)
T+h|fT+h, a

(τi), b(τi), σ2(τi)
)p(fT+h|fT+h−1, µ,Ψ, Q)p(θ|YT , FT )dfT+h dθ

(6A.27)

where p(y
(τi)
T+h|xT+h, a

(τi), b(τi), σ2(τi)), and p(fT+h|fT+h−1, µ,Ψ, Q) are the conditional predictive densities
and where p(θ|YT ,XT ) is the posterior density for the parameter vector θ = (µ,Ψ,H,Q, a, b, λ0, λ1). As
we discussed in the previous paragraph we approximate p(θ|YT ,XT ) in (6A.27), with a normal distribution

around frequentist estimates: q(θ̂|YT ,XT ). Since fT+h can be drawn independently of YT+h, we use direct
simulation to compute the predictive density of YT+h conditional on (YT , FT ):

p(y
(τi)
T+h|YT ,XT ) =

∫∫
p(y

(τi)
T+h|fT+h, â

(τi), b̂(τi), σ̂2
(τi)

)p(fT+h|fT+h−1, µ̂, Ψ̂, Q̂)dfT+hdθ (6A.28)

6B Bayesian Model Averaging

We denote the predictive density of y
(τi)
T+h, given M individual models and conditional on the time T

information set, by DT . This density is given by

p(y
(τi)
T+h|YT ,DT ) =

M∑

i=1

P (m
(τi)
j |YT ,DT )p(y

(τi)
T+h|YT ,DT ,m

(τi)
j ) (6B.1)

for j = 1, ...,M and where P (m
(τi)
j |YT ,DT ) is the posterior probability of model mj for maturity τi,

conditional on data at time T , and where p(y
(τi)
T+h|YT ,DT ,m

(τi)
j ) is the model mj predictive density of

y
(τi)
T+h, conditional on YT and DT . The posterior probability of model mj for maturity τi is computed as:

P (m
(τi)
j |YT ,DT ) =

p(y
(τi)
T,o |YT ,DT ,m

(τi)
j )P (m

(τi)
j )

∑k
s=1 p(y

(τi)
T,o |YT ,DT ,m

(τi)
s )P (m

(τi)
s )

(6B.2)

where P (m
(τi)
j ) is the prior probability of model mj for maturity τi. The predictive likelihood value for

model mj , p(y
τi

T,o|YT ,DT ,m
(τi)
j ), is computed by substituting the realized value y

(τi)
T,o in the predictive

density p(y
(τi)
T |YT ,DT ,m

(τi)
j ). We average individual models independently for every maturity.

6C Prior specification

In the literature uninformative priors or diffuse informative priors are often chosen to derive posterior
densities that depend only on data information (the likelihood). We do not follow this approach as we
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apply informative priors in our estimation and forecasting procedures. There are several motivations to
do so. Firstly, for nonlinear models such as the Nelson-Siegel and affine models, it is very difficult to
determine when a prior is non-informative. Secondly, the simulation algorithm might get stuck in some
(nonsensical) regions of the parameter space and it may require a substantial number of simulations to
converge, thereby enormously increasing estimation time. Thirdly, we believe that market agents will
to some degree always have prior information which can be partially incorporated in our models when
forecasting interest rates. Finally, we want to study and underline differences between frequentist and
Bayesian inference in forecasting yields, and the use of priors is one, if not the main difference between
the two approaches.

We briefly discuss the specification of the prior densities for the parameters of the models presented in
Appendix A. We start with the AR model and the Normal-Gamma conjugate prior in (6A.2) for parameters
(c(τi), φ(τi), ψ(τi), σ(τi)). We choose v = 0.01 to have a prior density for the vector (c(τi), φ(τi), ψ(τi))
concentrated around the mean value. We choose the mean vector value b by calibrating it to the initial in-
sample data (1970:1-1993:12) and to prevent unit root type behavior. The prior for σ(τi) is less informative
with ν fixed to 20 and s2 again calibrated to in-sample data.

The calibration of the prior for the VAR model is more complex due to the high dimensionality of Π
and S. Therefore, we relax our prior assumption and we choose a wider region for V and ν in (6A.4)–
(6A.5). B is again calibrated with initial in-sample data and the resulting values imply plausible factor
loadings of the yield factors.

The order of prior information in the Nelson-Siegel model is comparable to the VAR model. For the
parameter λ we choose the following prior density:

λ ∼ U(3.34, 33.45) (6C.1)

By restricting λ in the interval [3.34, 33.45] we can make sure that the loading on the curvature factor β3,t

is at its maximum for a maturity between 6 months and 5 years.
For the ATSM model we do not apply prior densities. We use a normal approximation of the condi-

tional predictive density around maximum likelihood parameter estimates. Indeed, because we consider
a large number of maturities, which results in a substantial number of parameters that need to be esti-
mated, the speed of convergence of MCMC algorithms such as the Gibbs sampler is very slow. Moreover,
some parameters do not converge at all, and unrealistic values are simulated. However, we believe the
approximation is satisfactory. We therefore still account for parameter uncertainty in the affine models.

Finally, in Bayesian model averaging we apply the same uninformative prior probability to each model,

P (m
(τi)
j ) = 1/M .





Nederlandse Samenvatting
(Summary in Dutch)

Inleiding

Dit proefschrift bestaat uit een bundel van studies op het gebied van twee belangrijke

onderwerpen binnen de kwantitatieve financiële analyse: de volatiliteit van rendementen

op financiële waarden en de rente termijn structuur. Alvorens een meer gedetailleerde

beschrijving van de inhoud en contributies van de verschillende hoofdstukken te geven

wordt eerst een beknopte introductie gegeven van beide onderwerpen.

Onzekerheid, of ‘volatiliteit’, is één van de meest cruciale ingrediënten in vele gebieden

binnen de financiële wetenschap. Voorbeelden van gebieden waarbij volatiliteit een belan-

grijke rol speelt zijn bijvoorbeeld het construeren van aandelenportefeuilles, risicomanage-

ment en het prijzen van derivaten. Een ietwat losse definitie van volatiliteit kan gegeven

worden als zijnde de beweeglijkheid van de stochastische, of onvoorspelbare, component van

een variabele die varieert door de tijd heen. Een dergelijke variabele komt in de financiële

wereld meestal neer op het rendement van een financiële waarde zoals een individueel aan-

deel of een samengestelde index zoals de Standard & Poor’s 500 Index. Volatiliteit is, in

tegenstelling tot rendementen, niet rechtstreeks waarneembaar en moet derhalve geschat

worden. Het is daarom noodzakelijk om schattingen van de volatiliteit te construeren,

allereerst met als doel om volatiliteit te meten en om deze vervolgens daarna te mod-

elleren.

Een nog steeds erg populaire aanpak om volatiliteit te meten is door middel van het

gebruik van gekwadrateerde dagrendementen. Ondanks het feit dat het kwadrateerde

rendement een inefficiënte ex-post maatstaf is voor de daadwerkelijke volatiliteit geeft het

wel duidelijk de meest belangrijke eigenschap van volatiliteit weer: namelijk dat zij niet

constant is door de tijd heen maar dat zij tijdsvariërend is. Een tweede, hieraan gerelateerde

eigenschap, is dat volatiliteit een grote mate van persistentie vertoont: volatiliteit in het

verleden verklaart volatiliteit in het heden. De mate van persistentie is belangrijk vanuit
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economisch oogpunt omdat het aangeeft of schokken in volatiliteit oftewel permanent dan

wel tijdelijk zijn hetgeen bijvoorbeeld de hoogte van risico premies zal bëınvloeden. De

aanwezigheid van persistentie suggereert eveneens dat, in tegenstelling tot de rendementen

welke erg moeilijk voorspelbaar zijn, volatiliteit tot op zekere hoogte veel beter voorspelbaar

is.

Een in de praktijk veelgebruikt model voor het modelleren van de conditionele variantie

van tijdreeksen is het Generalized Conditional Heteroscedasticity (GARCH) model van

Engle (1982) en Bollerslev (1986). Dit model legt een parametrische Autoregressive Moving

Average (ARMA) structuur op voor de gekwadrateerde rendementen. Een nadeel van

het GARCH model is dat het impliceert dat schokken in het rendement een exponentieel

uitdovend effect hebben op de volatiliteit. Onderzoek heeft aangetoond dat de persistentie

van schokken mogelijk beter beschreven kan worden door middel van een zogeheten “long-

memory” proces waarbij het effect van schokken uitdooft met een langzamer hyperbolisch

tempo.

Het is echter nog onduidelijk of volatiliteit daadwerkelijk de long-memory eigenschap

bezit. Alhoewel het modelleren hiervan wel degelijk mogelijk is, is het vinden van een

bevredigend antwoord op de vraag waarom schokken een dergelijk langdurend effect op

volatiliteit hebben, tot nu toe moeilijk gebleken. Een mogelijk alternatief antwoord wordt

aangedragen door Granger en Hyung (1999) en Diebold en Inoue (2001). Deze auteurs

tonen aan dat tijdreeksen die structurele breuken in het niveau van de volatiliteit vertonen,

soortgelijke eigenschappen bevatten als tijdreeksen die daadwerkelijk long-memory zijn.

Het gevolg hiervan is dat structurele breuken in de volatiliteit mogelijk long-memory-

achtige kenmerken in tijdreeksen kunnen introduceren. Het is daarom van belang om bij

het modelleren van volatiliteit te toetsen op de aanwezigheid van structurele breuken en

om deze op te nemen in volatiliteitsmodellen.

Ondanks hun populariteit werd er lange tijd aangenomen dat volatiliteitsmodellen

die gebaseerd zijn op gekwadrateerde rendementen teleurstellende voorspellingen voor de

toekomstige volatiliteit opleveren. Andersen en Bollerslev (1998) laten echter zien dat

dit het gevolg is van het gebruik van een onnauwkeurige schatting van de daadwerkeli-

jke ex-post volatiliteit. Merton (1980) toonde eerder al aan dat het gebruik van intradag

rendementsobservaties theoretisch leidt tot een schatting van de volatiliteit die geen on-

nauwkeurigheid meer bevat. Andersen en Bollerslev (1998) doen als gevolg hiervan de

aanbeveling om een maatstaf voor de dagelijkse volatiliteit te construeren die gebaseerd

is op de som van gekwadrateerde intradag rendementen. Zij laten zien dat wanneer de
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voorspellingen van GARCH modellen geëvalueerd worden met deze nieuwe maatstaf, “ge-

realiseerde volatiliteit” genaamd, de voorspelkracht van dergelijke modellen veel groter

blijkt te zijn.

Gerealiseerde volatiliteit kan niet alleen als maatstaf gebruikt worden om voorspellin-

gen van volatiliteitsmodellen te evalueren, maar kan tevens gebruikt worden om volatiliteit

rechtstreeks te modelleren. Andersen, Bollerslev, Diebold en Labys (2003) laten zien dat

gerealiseerde volatiliteit, naarmate deze gebaseerd is op intradag rendementen die met een

steeds hoger wordende frequentie gemeten worden, een maatstaf is voor volatiliteit die vri-

jwel geen meetfout meer bevat. Het gevolg hiervan is dat volatiliteit als “observeerbaar”

beschouwd kan worden en dat zij dus nu rechtstreeks gemodelleerd kan worden met be-

hulp van standaard technieken voor het modelleren van financiële tijdreeksen. Alhoewel

de nadruk in de literatuur vooral ligt op het modelleren van de volatiliteit van individu-

ele tijdreeksen is het tevens mogelijk om de covarianties tussen verschillende tijdreeksen

eveneens rechtstreeks te modelleren. Het gebruik van traditionele modellen zoals het mul-

tivariate GARCH model werd bemoeilijkt door het grote aantal te schatten parameters in

dergelijke modellen. Door het gebruik van gerealiseerde covarianties is het nu echter veel

beter mogelijk om een gehele covariantie matrix te modelleren.

De literatuur op het gebied van gerealiseerde volatiliteit heeft zich in het afgelopen de-

cennium sterk ontwikkeld. Echter, een aantal aandachtspunten betreffende het gebruik van

gerealiseerde volatiliteitsmaatstaven wordt op dit moment nog grondig onderzocht. Een

van de belangrijkste vragen komt naar voren wanneer de theorie toegepast wordt in de

praktijk. De theorie impliceert dat de hoogst mogelijke intradag frequentie gebruikt dient

te worden om een zo accuraat mogelijk gerealiseerde volatiliteitsschatter te construeren.

Echter, het is bekend dat wanneer in de praktijk rendementen waargenomen worden met

een hoger wordende frequentie deze in toenemende mate ruis zullen bevatten. Dit is bi-

jvoorbeeld het gevolg van het niet synchroon handelen van verschillende aandelen. Er dient

dus een afweging gemaakt te worden tussen nauwkeurigheid enerzijds, hetgeen impliceert

dat rendementen bij een zo hoog mogelijke frequentie waargenomen dienen te worden en

ruis anderzijds, hetgeen impliceert dat het gebruik van een lagere frequentie mogelijkerwijs

een betere volatiliteitsschatter oplevert. Een belangrijke vraag die beantwoord moet wor-

den is daarom ook welke frequentie het beste gebruikt kan worden voor het construeren

van gerealiseerde variantie en covariantieschatters.

Het eerste deel van dit proefschrift levert bijdragen aan de literatuur op het gebied

van het toetsen op structurele breuken in het niveau van de volatiliteit, het modelleren
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van gerealiseerde volatiliteit en op het gebied van het kiezen van de optimale intradag

frequentie voor het construeren van gerealiseerde volatiliteitsmaatstaven.

In het tweede deel van dit proefschrift ligt de nadruk op het analyseren van de renteter-

mijnstructuur. De rentetermijnstructuur, of ook wel rentecurve genoemd, geeft de relatie

weer tussen rentestanden die gelden voor verschillende looptijden. De rentecurve bepaalt

de huidige waarde van toekomstige inkomsten en dient daarom als richtlijn voor het nemen

van economische besluiten. De noodzaak om de rentetermijnstructuur te bestuderen wordt

verder duidelijk wanneer men zich realiseert dat lange-termijn rentestanden, na een correc-

tie voor risico, opgebouwd zijn uit verwachtingen voor toekomstige korte-termijn rentes.

Hierdoor bevatten lange-termijn rentes informatie over korte-termijn rentes in de toekomst.

Tevens bevat de rentecurve meer in zijn algemeenheid informatie over de toekomstige stand

van de economie. De helling van de rentecurve (welke het verschil tussen lange- en korte-

termijn rentestanden weergeeft) is met succes gebruikt voor het voorspellen van de groei

van het Bruto Binnenlands Product en voor het voorspellen van economische recessies.

Macro-economen richten zich derhalve meer en meer op het trachten te doorgronden van

de verbanden tussen rentestanden, monetair beleid en macro-economische indicatoren.

Samenvattend is het duidelijk dat de rentetermijnstructuur van cruciaal belang is bij

het waarderen van obligaties, het meten en beheren van renterisicos en monetair beleid.

Het is daarom van groot belang dat de rentetermijnstructuur nauwkeurig geschat kan

worden, daar deze niet eenduidig waarneembaar is. Als mede is het van belang dat zij

accuraat voorspeld kan worden. Dit proefschrift richt zich met name op het tweede punt:

het voorspellen van de toekomstige rentetermijnstructuur.

Het voorspellen van de rentecurve waarbij alleen gebruik gemaakt wordt van historische

rente-informatie is erg moeilijk doordat eenvoudige modellen, met name het ‘random walk’

model betere voorspellingen genereren dan meer complexe modellen (zie bijv Duffee, 2002).

Recente studies laten echter zien dat de rentecurve tot op zekere hoogte wel degelijk voor-

spelbaar is, vooral door het toevoegen van macro-economische variabelen aan modellen

voor de rentetermijnstructuur. Echter, het kunnen identificeren van een enkel model dat

in staat is om consistent toekomstige rentes accuraat te voorspellen blijft een lastige taak.

Het tweede deel van dit proefschrift draagt allereerst bij aan de literatuur door het

verder onderzoeken van één klasse van rentemodellen in het bijzonder. Vervolgens wordt

de voorspelkwaliteit van een veelvoud aan termijnstructuurmodellen onderzocht met als

doel het vaststellen van de stabiliteit van de voorspelkracht van deze modellen. Tevens

worden technieken geanalyseerd voor het combineren van voorspellingen van verschillende
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modellen.

Resultaten

Dit proefschrift is opgebouwd uit twee delen. De hoofdstukken 2, 3, en 4 vormen samen

deel A en richten zich op het modelleren van de volatiliteit van financiële tijdreeksen.

In hoofdstuk 3 en 4 ligt de nadruk vooral op het gebruik van hoge-frequentie intradag

rendementen voor het analyseren van volatiliteiten en covarianties. Deel B bestaat uit

de hoofdstukken 5 en 6 en de analyses die hierin uitgevoerd worden richten zich op het

schatten en voorspellen van de rentetermijnstructuur.

Deel A: Modelleren en voorspellen van de volatiliteit van aandelen rendementen

Aangetoond is dat de volatiliteit van financiële tijdreeksen sporadische niveauveranderin-

gen ondergaat. Als deze structurele breuken buiten beschouwing gelaten worden bij het

modelleren van de volatiliteit kan dit leiden tot een verkeerde inschatting van de persistentie

in volatiliteit. Het is daarom van belang dat gëıdentificeerd kan worden wanneer breuken

hebben plaatsgevonden. Hoofdstuk 2 beschouwt Cumulative Sums of Squares (CUSUM)

toetsen voor het identificeren van structurele breuken in het gemiddelde niveau van de

volatiliteit van tijdreeksen die conditionele heteroscedasticiteit vertonen. Een belangrijke

conclusie van het onderzoek in dit hoofdstuk is dat het toepassen van dergelijke toetsen

rechtstreeks op rendement reeksen tot een substantiële overschatting van het aantal breuken

kan leiden. Aangetoond wordt dat het noodzakelijk lijkt om eerst de heteroscedasticiteit

uit deze reeksen te filteren alvorens de CUSUM toetsen toe te passen. Een uitgebreide

Monte Carlo simulatie analyse toont aan dat wanneer de toetsen uitgevoerd worden op

rendement reeksen die gestandaardiseerd zijn met behulp van een door een GARCH model

verkregen schatting van de volatiliteit, dit leidt tot een gemiddelde correcte identificatie

van het gemiddeld correct aantal structurele breuken. Eveneens wordt aangetoond dat

het op deze manier toepassen van de CUSUM toetsen een robuuste aanpak blijkt als het

volatiliteitsproces afwijkt van het veronderstelde GARCH proces. In dit hoofdstuk wordt

tevens een algoritme ontwikkeld voor het sequentieel toepassen van de CUSUM toetsen

met als doel het identificeren van meerdere structurele breuken.

Een empirische toepassing van het sequentiële algoritme op rendement reeksen van

verschillende groei economieën bevestigt de theoretische eigenschappen van de CUSUM

toetsen. Met het aangedragen toetsalgoritme en het toetsen op GARCH gefilterde rende-
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menten worden aanzienlijk minder breuken in de volatiliteit gevonden voor de beschouwde

groei economiën in vergelijking met eerdere studies.

Hoofdstuk 3 analyseert een niet-lineair model voor gerealiseerde volatiliteit. In het

bijzonder wordt een niet-lineair autoregressive fractionally integrated model (ARFI) on-

twikkeld met niveauveranderingen, dag-van-de-week effecten, effecten van nieuwsaankondigin-

gen en leverage effecten. Het model omvat zowel structurele breuken als long-memory

waardoor het effect van beide op volatiliteit onderzocht kan worden. Het volledige model,

alsmede verscheidene gerestricteerde versies hiervan, worden geschat voor de volatiliteit van

de S&P 500 index. Het niet-lineaire model leidt tot een betere beschrijving van de geob-

serveerde data en alle individuele niet-lineairiteiten zijn duidelijk significant. Het model

levert voorspellingen op die, voor voorspelhorizons tot 20 dagen, beter zijn dan voorspellin-

gen van een lineair ARFI model en eveneens beter dan die van GARCH-type modellen.

Het toevoegen van de niet-lineariteiten aan meer eenvoudige modellen voor gerealiseerde

volatiliteit leidt tot soortgelijke verbeteringen in voorspelkracht.

Bij veel financiële toepassingen worden niet alleen schattingen van de volatiliteit vereist

maar schattingen van de gehele covariantie matrix. Hierdoor zijn nauwkeurige schattingen

voor covarianties en correlaties van even groot belang als voor volatiliteit. Hoofdstuk 4 richt

zich op de voordelen van het gebruik van hoge frequentie intradag rendementen voor het

meten en voorspellen van de dagelijkse covariantiematrix. In tegenstelling tot hoofdstuk 3

waarin alleen de populaire intradag frequentie van 5 minuten gebruikt wordt voor het con-

strueren van de gerealiseerde volatiliteit, onderzoekt dit hoofdstuk rechtstreeks de optimale

keuze voor de te gebruiken intradag frequentie. Deze optimale frequentie wordt vastgesteld

door middel van het construeren van mean-variance efficiënte aandelenportefeuilles en het

vervolgens evalueren van de performance van deze portefeuilles. De portefeuilles worden

samengesteld uit de aandelen die samen de S&P 100 Index vormen. Ondanks het feit dat

deze aandelen tot de klasse van meest liquide aandelen behoren blijkt de optimale intradag

frequentie veel lager te liggen dan de populaire 5 minuten frequentie; eerder tussen 30 en

65 minuten. De gevonden resultaten worden aangetoond robuust te zijn voor verschillende

transactiekosten niveaus en de frequentie waarmee de portefeuille geherbalanceerd wordt.

Deel B: Modelleren en voorspellen van de rente termijn structuur

In Deel B staat het modelleren van de rentetermijnstructuur centraal. In hoofdstuk 5

wordt een specifieke klasse van rentetermijnstructuur modellen beschouwd: de klasse van

Nelson-Siegel modellen. Dit hoofdstuk analyseert hoe nauwkeurig deze modellen de ter-
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mijnstructuur kunnen schatten alsmede hoe goed zij in staat zijn om toekomstige rente-

standen te voorspellen. Verscheidene schattingstechnieken worden tevens onderzocht. De

resultaten van hoofdstuk 5 tonen aan dat het waardevol is om het oorspronkelijke Nelson

en Siegel (1987) model, welke de rentetermijnstructuur modelleert met behulp van drie

factoren, uit te breiden met extra factoren waardoor het model beter in staat is om de

rentecurve te benaderen. Er wordt tevens aangetoond dat een dergelijke uitbreiding, met

name het toevoegen van een vierde factor, eveneens de voorspelkracht van het model ver-

betert. De voorspelkracht wordt daartoe vergeleken met verschillende benchmarkmodellen.

Daarnaast worden voorspellingen in verschillende subperioden geanalyseerd.

Waar in hoofdstuk 5 de nadruk ligt op het identificeren van een enkel model dat in staat

is om de termijnstructuur consistent nauwkeurig te voorspellen, wordt in hoofdstuk 6 voor

een andere aanpak gekozen. In dit hoofdstuk wordt getracht toekomstige rentestanden

te voorspellen aan de hand van een panel van verschillende modellen. In het bijzonder

worden verschillende aandachtspunten beschouwd: parameteronzekerheid, modelonzeker-

heid en het gebruik van macro-economische informatie. Modellen met verschillende com-

plexiteitsniveaus worden beoordeeld op hun voorspelkracht. Dit wordt gedaan door de

voorspellingen van de verschillende modellen te vergelijken aan de hand van een 10-jaars

voorspelperiode. Door de voorspelkracht te analyseren in verschillende subperioden wordt

aangetoond dat de voorspelkracht sterk variëert door de tijd heen. Dit toont aan dat het

een moeilijke opgave is om een enkel succesvol voorspelmodel te identificeren. De mogeli-

jke oplossing hiervoor. welke aangedragen wordt in hoofdstuk 6, is om voorspellingen van

meerdere modellen te combineren. Verschillende technieken om dit te doen worden onder-

zocht en er wordt aangetoond dat gecombineerde voorspellingen nauwkeurig en eveneens

stabiel zijn door de tijd heen. Een methode waarbij modelgewichten gebaseerd worden op

getoonde voorspelkracht in het verleden, lijkt in het bijzonder erg waardevol te zijn.
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