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A geometric algorithm to solve the NI/G/NI/ND capacitated

lot-sizing problem in O(T 2) time
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P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

Abstract

In this paper we consider the capacitated lot-sizing problem (CLSP) with linear costs. It

is known that this problem is NP-hard, but there exist special cases that can be solved in

polynomial time. We derive a backward algorithm, based on the forward algorithm by Chen

et al. (1994), to solve the general CLSP. By adapting this backward algorithm, we arrive at

a new O(T 2) algorithm for the CLSP with non-increasing setup cost, general holding cost,

non-increasing production cost and non-decreasing capacities over time. Numerical tests show

the superior performance of our algorithm compared to the algorithm proposed by Chung and

Lin (1988). We also analyze why this is the case.

Keywords: Production; Capacitated lot-sizing problem; Inventory

1 Introduction

In this paper the capacitated lot-sizing problem (CLSP) is considered. The problem can be

described as follows. For a finite time horizon, there is a known demand for a single product.

This demand has to be satisfied each period by producing in this period or in previous periods,

i.e., back-logging is not allowed. When production occurs in a period, setup cost and marginal

production cost per unit production are incurred. In contrast to the uncapacitated lot-sizing

problem, production in each period is limited by a certain capacity. Finally, holding costs are

incurred for carrying ending inventory from one period to the next period and it is assumed that

all cost functions are non-decreasing.

Florian et al. (1980) show that the CLSP with general cost functions is NP hard and they

suggest a pseudo-polynomial algorithm with time complexity O(T 2cd), where c and d denote the
∗Corresponding author. Tel.: +31-10-4081321, Email: wvandenheuvel@few.eur.nl
†Email: wagelmans@few.eur.nl
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average capacity and the average demand, respectively, and T denotes the model horizon. If

marginal production costs are linear, Shaw and Wagelmans (1998) show that the complexity can

be improved to O(Tcd).

In this paper we consider a special case of the CLSP, namely the case where holding costs and

marginal production costs are assumed to be linear. In the remainder of the paper we restrict

ourselves to this special case. Although the uncapacitated version of this lot-sizing problem can

be solved in polynomial time (Wagner and Whitin (1958), Federgruen and Tzur (1991), Wagel-

mans et al. (1992) and Aggarwal and Park (1993)), Bitran and Yanasse (1982) showed that the

CLSP with linear costs is NP hard, even in many special cases. These authors introduced the

notation α/β/γ/δ for the CLSP, where α, β, γ, δ specify a certain structure for respectively setup

costs, holding costs, production costs and capacity. The parameters can have values equal to the

letters Z, C, NI, ND and G, which stand for zero, constant over time, non-increasing over time,

non-decreasing over time and no prespecified pattern, respectively. For example a NI/ND/Z/G

problem consists of non-increasing setup costs, non-decreasing holding costs, no production costs

and general capacities.

We now briefly summarize some complexity results. Bitran and Yanasse (1982) show that the

following cases are NP hard: (1) C/Z/NI/NI, (2) C/Z/ND/ND, (3) ND/Z/Z/ND, (4) NI/Z/Z/NI,

(5) C/G/Z/NI, (6) C/C/ND/NI. Florian and Klein (1971) provided an O(T 4) algorithm for the

G/G/G/C case and Van Hoesel and Wagelmans (1996) improved this result to O(T 3). Bitran

and Yanasse (1982) formulated an O(T 4), O(T 3), O(T log T ) and O(T ) algorithm for the cases

NI/G/NI/ND, NI/G/NI/C, C/Z/ND/NI and ND/Z/ND/NI, respectively. Chung and Lin (1988)

reduced the time complexity of the NI/G/NI/ND problem by presenting an O(T 2) algorithm.

Chen et al. (1994) introduced a new algorithm to solve G/G/G/G cases of the CLSP. On

their test problems, this forward dynamic programming (DP) algorithm has an empirical running

time that increases quadratically relative to the time horizon T for C/C/Z/C problem instances.

Furthermore, they show that computation time is not much effected by changing the problem

instances into C/C/C/G and G/G/G/G cases, which both are NP hard. Their algorithm mainly

consists of updating a piecewise linear minimum cost function by efficiently finding the lower

envelope of a piecewise linear function and a number of linear line segments.

In this paper we derive a backward algorithm that uses similar ideas as the forward DP al-

gorithm by Chen et al. (1994). By adapting this backward algorithm, we arrive at a new O(T 2)

algorithm for the NI/G/NI/ND problem. The remainder of the paper is organized as follows.

In section 2 the backward algorithm to solve the G/G/G/G problem is introduced. In section 3

we come up with a problem instance that requires exponential running time using this backward

algorithm. In section 4 we introduce the new algorithm which solves the NI/G/NI/ND problem

in time complexity O(T 2). Chung and Lin (1988) proposed an algorithm with the same time
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complexity, but we show that our algorithm is at least as fast. The paper ends with the conclusion

in section 5.

2 Backward algorithm to solve the G/G/G/G problem

2.1 Problem description

The following notation is used to describe the lot-sizing problem. If we denote

T = model horizon

dt = demand in period t

ct = capacity in period t

Kt = setup costs in period t

pt = unit production costs in period t

ht = unit holding costs in period t

xt = production quantity in period t

Invt = ending inventory in period t

Dt = cumulative demand in period t, Dt =
∑t

i=1 di

Ct = cumulative capacity in period t, Ct =
∑t

i=1 ci

then the problem can be formulated as

(P) min
∑T

t=1 Ktδ(xt) + ptxt + Invtht

s.t. Invt = Invt−1 − dt + xt t = 1, . . . , T

xt ≤ ct t = 1, . . . , T

xt, Invt ≥ 0, t = 1, . . . , T

Inv0 = 0

where

δ(x) =





0 for x = 0

1 for x > 0.

The assumption that starting inventory is zero can be made without loss of generality. Further-

more, it has been proven by Bitran and Yanasse (1982) that a G/G/G/G problem can always be

reformulated to a problem with the property dt ≤ ct (t = 1, . . . , T ) by transforming demand into

d′t =





ct + maxτ=1,...,t−1

{
0,

∑t+τ
l=t+1(dl − cl)

}

−maxτ=1,...,t−1

{
0, ct − dt,

∑t+τ
l=t+1(dl − cl)

}
for t = 1, . . . , T − 1

min{dt, ct} for t = T

and adding the term
T∑

t=1

ht max
τ=1,...,T−1

{
0,

t+τ∑

l=t+1

(dl − cl)

}
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to the objective function. Finally, we may also assume that holding costs equal zero. This can

easily be derived by substituting Invt =
∑t

i=1(xi− di) in (P) (see for example Chen et al. (1994).

Then problem (P) can be written as

min
T∑

t=1

Ktδ(xt) + p′txt − htDt (1)

s.t.
t∑

i=1

xt ≥ Dt t = 1, . . . , T (2)

xt ≤ ct t = 1, . . . , T (3)

xt ≥ 0 t = 1, . . . , T (4)

where

p′t = pt +
T∑

i=t

hi, t = 1, . . . , T. (5)

2.2 The backward algorithm

In Chen et al. (1994) the CLSP is solved by a forward DP algorithm. In this section the backward

version of this algorithm is examined. Although the derivation of the algorithm is almost similar

to the derivation of the forward algorithm by Chen et al. (1994), we present the algorithm in full

detail in order to build on this in the remainder of this paper. We define a minimum cost function

Ft(X), where X equals cumulative production of the first t − 1 periods, i.e. X =
∑t−1

i=1 xi. It is

clear that cumulative production X should at least equal Dt−1, otherwise demand constraints (2)

are violated. It follows from (3) that the maximum number of units produced up to period t−1 will

never exceed Ct−1. It is also clear that cumulative production X will not exceed DT . This means

that the minimum cost function Ft(X) is defined on the interval It = [At, Bt], with At = Dt−1

and Bt = min{Ct−1, DT }. For t = 1, . . . , T we define the minimum cost function Ft as

Ft(X) =





minimum cost for the period t, . . . , T production plan when total

production in the first t− 1 periods equals X =
∑t−1

i=1 xi

for X ∈ It

∞ otherwise

and let

FT+1(X) =





0 X = DT

∞ X 6= DT ,

IT+1 = {DT }.

The first stage corresponds to the computation of Ft(X) for t = T and we end up at recursion

step t = 1, so that in recursion step t demand equals dt. Now the minimum cost function Ft(X)

can be determined recursively by the recursion formula

Ft(X) = min
Y ∈It+1

{Ft+1(Y ) + Pt(Y −X)}, (6)
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where

Pt(x) =





0 for x = 0

Kt + ptx for 0 < x ≤ ct

∞ otherwise

for t = 1, . . . , T and X ∈ It. The interpretation of recursion formula (6) is as follows. Given the

optimal production plan Ft+1(Y ) for periods t+1, . . . , T , we can find the optimal production plan

for some X ∈ It by taking the minimum of Ft+1(Y )+Pt(Y −X) for Y ∈ It+1, i.e. produce Y −X

units in period t. Note that the restriction 0 ≤ Y −X ≤ ct is implicit in the definition of Pt(x).

The minimal cost of the overall optimal production plan can be found by calculating z∗ = F1(0).

We will call the execution of recursion formula (6) for a certain t a recursion step or an iteration.

So the algorithm consists of T recursion steps or iterations.

Traditionally the variables are stored as discrete variables for the CLSP with general cost

functions, but as in Chen et al. (1994) we consider continuous variables. We can show that Ft(X)

is actually a piecewise non-increasing linear function with a finite number of pieces. This means

that for every piece of Ft(X) the vertical interception, the slope and the interval have to be stored.

Federgruen and Tzur (1991) and Van Hoesel et al. (1994) use this idea for the uncapacitated lot-

sizing problem. In the appendix (theorem 8) it is shown that Ft(X) is non-increasing. The

following theorem shows that Ft(X) is piecewise linear.

Theorem 1 The minimum cost function Ft(X) is piecewise linear for t = 1, . . . , T + 1.

Proof The theorem will be proven by induction. The proof for the backward algorithm is almost

similar to the proof for the forward algorithm in Chen et al. (1994). For t = T + 1 the function

FT+1(X) consists of one point. So the theorem is true for t = T + 1. Assume now that Ft+1(X)

is a piecewise linear function for some t ≤ T . We will show that Ft(X) is also a piecewise linear

function. First note that

Ft(X) = min
Y ∈It+1

{Ft+1(Y ) + Pt(Y −X)} (7)

= min{ min
Y ∈It+1,Y =X

Ft+1(Y ) + Pt(Y −X), min
Y ∈It+1,Y 6=X

Ft+1(Y ) + Pt(Y −X)} (8)

= min{Ft+1(X), min
Y ∈It+1,X<Y

Ft+1(Y ) + Pt(Y −X)}. (9)

Now it is sufficient to show that the second term in (9) is a piecewise linear function, because the

lower envelope of two piecewise linear functions is also a piecewise linear function and Ft+1(X) is

piecewise linear by assumption.

Assume now that Ft+1(X) consists of mt+1 line segments F i
t+1(x) = αi − βix defined on the

intervals Domi = [ai, bi〉 for i = 1, . . . ,mt+1− 1 and on the interval Domi = [ai, bi] for i = mt+1.1

1It is not difficult to show by induction that Ft(X) is right continuous.
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Then the second term in (9) can be written as

min
1≤i≤mt+1

min
Y ∈ Domi

X < Y

F i
t+1(Y ) + Pt(Y −X)

such that for a single line segment i the minimum can be written as

Gi
t(X) = min

Y ∈ Domi

X < Y

F i
t+1(Y ) + Pt(Y −X)

where X ∈ It. The shape of Gi
t(X) depends on the slopes of F i

t+1 and Pt(x). This is illustrated

in figures 1 and 2. The lines with slope −pt represent the lines F i
t+1(Y ) + Pt(Y − X) over

Y − ct ≤ X < Y for Y ∈ Domi. The numbered lines represent the lower envelopes of the thin

lines. Four different line types are distinguished: type 1, 2, 3 and 4.

-

6

- 2

ai − ct ai bi

F

X, Y

−βi

F i
t+1(Y )

−pt

Kt

1

F i
t+1(Y ) + Pt(Y −X)

Figure 1: Case pt > βi

It follows now that for t = 1, . . . , T and for i = 1, . . . ,mt+1 if pt > βi then

Gi
t(X) =





G1i
t (X) = F i

t+1(X) + Kt for ai ≤ X < bi, X ∈ It

G2i
t (X) = F i

t+1(ai) + Kt − pt(X − ai) for ai − ct ≤ X < ai, X ∈ It

(10)

and if pt ≤ βi then

Gi
t(X) =





G3i
t (X) = F i

t+1(bi) + Kt − pt(X − bi) for bi − ct ≤ X < bi, X ∈ It

G4i
t (X) = F i

t+1(X + ct) + Kt − ptct for ai − ct ≤ X < bi − ct, X ∈ It,
(11)

where we define

F i
t+1(bi) = lim

x↑bi

F i
t+1(x).
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-

6

ai − ct ai bi − ct bi

F

X, Y

−βi

F i
t+1(Y )

−pt

Kt

4
F i

t+1(Y ) + Pt(Y −X)
- 3

Figure 2: Case pt ≤ βi

This means that Gi
t(X) is piecewise linear, which implies that the second term in (9) is piecewise

linear, which completes the proof. ¤

It follows from the previous paragraphs that the recursion formula consists of updating a piecewise

linear function by adding new linear line segments. But not all line segments in (10) and (11)

need to be considered. This is shown by propositions 9 and 10 in the Appendix. It follows from

these propositions that Gi
t(X) can be simplified to

Gi
t(X) =





G2i
t (X) if pt > βi

G4i
t (X) if pt ≤ βi and i = 1, . . . ,mt+1 − 1

G4i
t (X)

⋃
G3i

t (X) if pt ≤ βi and i = mt+1.

In this way the minimum cost function can be constructed recursively. But we also have to keep

track of the production quantities corresponding to the line segments. It follows from figures 1

and 2 that for type 2 and type 3 line segments production is below capacity and that for type 4

line segments production is at full capacity. Furthermore, if in some period t+1 a line segment i in

Ft+1(X) is not replaced by some line segment in period t (i.e. Ft+1(X) is the minimum in (9)) pro-

duction will be zero. Therefore we construct a function Qt(X) which keeps track of the production

quantities in each period. For each period t we define

Qt(X) =





−DT if line segment i is in Ft+1(X)

ai if line segment i is of type 2

bi if line segment i is of type 3

DT + ct if line segment i is of type 4

(12)

and X is in the domain of line segment i. The production quantities corresponding to the pro-

duction lines can then be found as follows. If cumulative production in period 1, . . . , t− 1 equals
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X =
∑t−1

i=1 xi, then production in period t equals

xt =





0 if Qt(X) < 0

ct if Qt(X)−X ≥ ct

Qt(X)−X otherwise.

Note that in the dynamic programming algorithm the line segments of Ft(X) and Qt(X) have to

be stored, but that storage space can be saved by noting that consecutive line segments of Ft(X)

with the same value in (12) will require only one segment of Qt(X).

3 A NI/Z/Z/NI problem that requires exponential running

time

Because the DP algorithm solves the G/G/G/G problem (which is an NP hard problem), we

expect that there exist problem instances on which the algorithm requires exponential time. Chen

et al. (1994) do not carry out a detailed complexity analysis, but they show empirically that their

algorithm works reasonably well. In this section we present an NI/Z/Z/NI problem instance that

requires at least 2T−1 line segments to be solved by the backward algorithm, which implies that

the running time is exponential.

Consider a problem instance with

dt = 2T−t−1 for t = 1, . . . , T − 1

dT = 1

Kt = 2T−t−1 for t = 1, . . . , T − 1

KT = 1

ht = 0 for t = 1, . . . , T

pt = 0 for t = 1, . . . , T

c1 = 2T−1

ct = dt for t = 2, . . . , T

so that

At =
t−1∑

i=1

di =
t−1∑

i=1

2T−i−1 = 2T−1 − 2T−t

and

Bt = min{Ct−1, DT } = DT = 2T−1

for t = 2, . . . , T , because

DT =
T∑

t=1

dt = c1 ≤
t−1∑

i=1

ci = Ct−1.
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This implies that the lengths of the intervals, denoted by Lt, double in each iteration, because

Lt = Bt −At = 2T−t = 2 · 2T−(t+1) = 2Lt+1.

For t = 1 we have A1 = B1 = 0.

It may be clear that for t = T the minimum cost function FT consists of two line segments

f0(x) = 0 for x = DT = 2T−1

f1(x) = KT = 1 for 2T−1 − 1 ≤ x < 2T−1,

because one type 3 line segment is added to FT+1. In the remainder of this section we number the

line segments from the right to the left for notational convenience and we start with line segment 0.

The following proposition states that Ft consists of 2T−t + 1 line segments for t = 2, . . . , T .

Proposition 2 The minimum cost function Ft(x) consists of the line segments

f0(x) = 0 for x = 2T−1

fi(x) = i for 2T−1 − i ≤ x < 2T−1 − i + 1, i = 1, . . . , 2T−t

for t = 2, . . . , T .

Proof We will prove the proposition by induction. We have already shown that the proposition

holds for t = T . Assume now that the proposition holds for some t ≤ T . We will show that the

proposition also holds for t− 1.

Denote gi(x) by a line segment created from line segment fi(x). It follows from section 2

equation (11) that one type 3 and one type 4 line segment are created from line segment 0, so that

g0(x) = Kt−1 = 2T−t for 2T−1 − 2T−t ≤ x ≤ 2T−1,

because the lines coincide because of equal slopes. This means that g0(x) = 2T−t ≥ fi(x) for

i = 1, . . . , 2T−t and consequently, g0(x) will not contribute to Ft−1(x).

Now 2T−t type 4 line segments are created from line segments i = 1, . . . , 2T−t and gi(x) is

defined on [a′i, b
′
i〉 = [ai − ct−1, bi − ct−1〉 = [2T−1 − i− 2T−t, 2T−1 − i + 1− 2T−t〉, so that

gi(x) = Kt−1 + i = 2T−t + i for a′i ≤ x < b′i, i = 1, . . . , 2T−t.

Note that [a′i, b
′
i〉 ∩ [a′i+1, b

′
i+1〉 = Ø for i = 1, . . . , 2T−t − 1, [a′i, b

′
i〉 ⊂ [At−1, Bt−1] and [a′i, b

′
i〉 ∩

[At, Bt] = Ø for i = 1, . . . , 2T−t. This means that all line segments gi(x) will contribute to Ft−1(x).

Furthermore, line segments fi(x) for i = 0, . . . , 2T−t (these are the line segments of Ft(x)) remain

in the minimum cost function Ft−1(x), because Bt = DT . If we now define

fi+2T−t(x) = gi(x) = i + 2T−t, for a′i ≤ x < b′i, i = 1, . . . , 2T−1,

9



then
f0(x) = 0 for x = 2T−1

fi(x) = i for 2T−1 − i ≤ x < 2T−1 − i + 1, i = 1, . . . , 2T−(t−1),

which completes the proof. ¤

A graphical representation of the proof is shown in figure 3. We see that in the first recur-

sion step FT consists of 2 = 1 + 20 line segments, in the second recursion step FT−1 consists of

3 = 1 + 21 line segments, in the third recursion step FT−2 consists of 5 = 1 + 22 line segments

and in the fourth recursion step FT−3 consists of 9 = 1 + 23 line segments. This means that the

number of line segments increases at an exponential rate and the backward algorithm requires an

exponential running time to solve the problem. So we can state the following theorem.

-

6
1
0 x

FT

f0

f1

-

6
2

0 x

FT−1

f0

f1

f2

-

6
4

0 x

FT−2

f0

f1

f2

f3

f4

-

6
8

0 x

FT−3

f0

f1

f2

f3

f4

f5

f6

f7

f8

Figure 3: The first 4 recursion steps for the NI/Z/Z/NI problem
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Theorem 3 The total number of line segments required in the backward algorithm to solve the

NI/Z/Z/NI problem is exponential in T .

Note that the above CLSP is actually an easy problem to solve by hand. Because c1 = DT , it is

easy to verify that the optimal solution for the above problem is to produce all demand in the first

period. It is also interesting to note that the forward algorithm solves this problem in O(T ) time.

This means that it does make a difference which algorithm is used to solve a CLSP. However, for

the forward algorithm we can also find problem instances that are solved in exponential time.

4 A new O(T 2) algorithm to solve the NI/G/NI/ND

problem

4.1 The algorithm

In this section we present a new algorithm to solve the NI/G/NI/ND problem based on the back-

ward algorithm presented in section 2. Bitran and Yanasse (1982) developed an O(T 4) algorithm

to solve this problem class and Chung and Lin (1988) improved the time complexity to O(T 2).

Our algorithm has the same time complexity, but we can show it requires less operations than

Chung and Lin’s. It is based on the following geometric argument.

Proposition 4 In a NI/G/NI/ND problem line segments in Ft(X) are not replaced by new line

segments.

Proof Let fi(x) be a line segment of Ft(X). Because pt is non-increasing and ht ≥ 0, it follows

from (5) that p′t is non-increasing. Because only type 2 line segments are created in each recursion

step (see section 2), line segments created from fi(x) in recursion step r and s with r < s < t are

defined as

gr
i (x) = fi(ai) + Kr + p′r(ai − x) for ai − cr ≤ x < ai

gs
i (x) = fi(ai) + Ks + p′s(ai − x) for ai − cs ≤ x < ai.

Note that the domain of gr is a subset of gs because cr ≤ cs. Furthermore, gr(x) ≥ gs(x) because

Kr ≥ Ks and p′r ≥ p′s. This shows that an existing line segment will not be replaced by a line

segment created in a previous iteration.

It remains to show that a line segment created from gt
j(x) will not replace gt

i(x), where gt
k(x)

denotes a line segment created in iteration t with domain [ak, bk〉. We will prove this by induction.

Assume that an existing line segment will not be replaced. It is clear that the assumption holds

for t = T . Furthermore, we may assume without loss of generality that bi ≤ aj . Note that it is
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sufficient to show that the line segment created from gt
j(x) lies above the point gt

i(bi), because

pt is non-increasing. Assume that line segment gt
i(x) is created from some line segment fk(x)

in iteration t. Because it holds by the induction assumption that existing line segments are not

replaced, it must hold that

gt
j(aj) ≥ fk(ak) + (ak − aj)pt.

Furthermore, because line segment gt
i(x) is created from line segment fk(x)

gt
i(bi) = fk(ak) + Kt + (ak − bi)pt.

But the line segment created from gt
j(x) in iteration t′ < t is defined as

ht′
j (x) = gt

j(aj) + Kt′ + (aj − x)pt′ ,

so that

ht′
j (bi) = gt

j(aj) + Kt′ + (aj − bi)pt′

≥ fk(ak) + (ak − aj)pt + Kt′ + (aj − bi)pt′

= gt
i(bi)−Kt − (ak − bi)pt + (ak − aj)pt + Kt′ + (aj − bi)pt′

= gt
i(bi) + (Kt′ −Kt) + (aj − bi)(pt′ − pt)

≥ gt
i(bi).

This means that line segment gt
i(x) will not be replaced by gt

j(x). ¤

Proposition 4 implies that only line segments are added to the left of Ft+1 in each recursion

step in the case of a NI/G/NI/ND problem. Using this property we can reduce the length of

the intervals. This is the key point of the algorithm. Because line segments are added to the

left of an existing line segment and the domain length of the newly created lines is at most ct,

only line segments created from lines in the domain [At+1, At+1 + ct] may contribute to Ft in

recursion step t. This implies that line segments in the interval [At+1 + ct, Bt+1] do not have to

be considered and that Bt can be changed into B′
t = min{At+1, DT , Ct−1} = min{Dt, Ct−1} so

that Lt = B′
t −At ≤ dt ≤ ct. This reduces the domain length of Ft considerably.

Note that for this algorithm we do not have to store the slopes of the line segments. Because

we know that only type 2 line segments are created, we only have to keep track of the points

fi(ai) for i = 1, . . . ,mt in recursion step t. This will save storage space and running time. We

can also use the line segments of Ft(X) to determine the optimal production quantities and not

the back-tracking method presented in section 2.2. The former back-tracking method saves some

storage space, but by the observed linear behavior of storage space in the new algorithm, it is not

necessary to use this method.
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4.2 Numerical example

In this section we give a numerical example of our algorithm. Consider the following 4-period

example which has been taken from Chung and Lin (1988):

d = (30, 40, 70, 30)

c = (60, 70, 80, 90)

K = (50, 40, 30, 20)

p = (5, 5, 5, 4)

h = (1, 2, 3, 4).

After rewriting this problem as a problem without holding cost (see section 2.1), we have

p′ = (14, 14, 12, 8), D = (30, 70, 140, 170) and
T∑

t=1

htDt = 1270.

So after solving the problem with the new production cost, we have to subtract 1270 from the

optimal value to obtain the minimal cost for the original problem.

A graphical representation of our algorithm applied to this problem instance is shown in fig-

ure 4. In the first iteration (t = 4) we start with one line piece. The setup cost of 20 plus the

production of 30 items (x4 = 30) at a cost of 8 leads to a total cost of 260. In the second iteration

(t = 3) line piece (2) created from line piece (1) covers the whole interval [70, 140]. However,

there is another line piece which may contribute to (part) of this interval. This is line (3) which

corresponds to full production in period 3. (Note that this line is created from the point (170,0).)

We see that this line does not contribute to the minimum cost function. So production of 50 units

in period 3 (x3 = 50) and 30 units in period 4 (x4 = 30) with total cost 890 is preferred over full

production in period 3 (x3 = 80), which has cost 30 + 80 · 12 = 990.

In the third iteration (t = 2) only line (4), which is created from line (2), contributes to the

interval [30,70]. The line created from line (1) is not considered, because it can not contribute to

this interval since production capacity is too small. In the last iteration the same happens and

line (5) (created from line (4)) is the only line which contributes to the minimum cost function.

Now the total costs equal 2230 corresponding to production plan x = (30, 40, 70, 30). So the costs

of the original problem equal 2230− 1270 = 960, which is equal to the solution found in the paper

by Chung and Lin (1988).

4.3 Time complexity of the algorithm

In this section we examine the time complexity of the algorithm. Note that in each recursion

step we have to create a line segment from an existing line segment, we have to check if this line

segment will contribute to Ft and we have to add it to Ft if necessary. The above steps will require
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Figure 4: Numerical example

constant time, so by determining the total number of line segments considered in each recursion

step we can find the time complexity of the algorithm. Note that for the algorithm in section 2

which solves G/G/G/G problems, we have to search where a new line segment is added and/or if

the line intersects other lines of Ft. For the NI/G/NI/ND problem, we know exactly that a new
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line segment is added to the left and that it does not intersect other lines. Therefore, adding a

line segment requires constant time in our algorithm. Define

q = min{t :
T∑

i=T−t

di ≥ cT−t}.

This means that q is the smallest number for which the sum of last q+1 demands exceeds capacity

in period T − q. This implies for t = T − q + 1, . . . , T that

T∑

i=t

di < ct.

We use the following two lemmas to derive the complexity of the algorithm.

Lemma 5 In the first q iterations the number of line segments to be considered will increase by

at most one in each iteration.

Proof First note that in iterations t = T − q + 1, . . . , T (these are the first q iterations) Bt =

min{Dt, Ct−1} ≤ DT . This means that in the first q iterations [At, Bt] ⊂ [Dt−1, DT ]. Now in

recursion step t the new line segments are created from line segments in the interval [Dt, DT ] and

new line segments end up in the interval [Dt−1, Dt], because line segments are added to the left

of Ft+1. Assume there is some line segment i in Ft+1 defined on [ai, bi〉 with Dt ≤ ai < bi ≤ DT .

Now the type 2 line segment created from this line is defined on [ai − ct, ai〉. Note that ai − ct <

DT − ct < DT −
∑T

i=t di = Dt−1 and ai ≥ Dt so that [Dt−1, Dt] ⊂ [ai− ct, ai〉 for all lines created

from line i = 1, . . . ,mt+1. Because all new type 2 line segments have the same slope, the lines

do not intersect, which implies that exactly one line segment is added to Ft+1. If dt = 0 then

the interval is not extended to the left and the number of line segments does not increase. This

means that at most one new line segment is added to the existing minimum cost function Ft+1

and the number of line segments to be considered increases at most by one in each iteration, which

completes the proof. ¤

Lemma 6 In the last T − q iterations the number of line segments to be considered will increase

by at most one in each iteration.

Proof We show that the number of line segments to be considered in iteration t and t − 1 does

not differ more than one for t = 1, . . . , T − q. Note that it is sufficient to show that the number

of line segments in the interval [At, At + ct−1] = [Dt−1, Dt−1 + ct−1] is at most one more than the

number of line segments in the interval [At+1, At+1 + ct] = [Dt, Dt + ct].

Define s = Dt + ct − dt and note that s ∈ [Dt, Dt + ct] because dt ≤ ct. Furthermore, line

segments with ai ≤ s are denoted by 1, . . . , ns and line segments with ai > s are denoted by

ns +1, . . . , mt. A type 2 line segment created from some line segment i ∈ {1, . . . , ns} is defined on
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[ai − ct, ai〉 with ai − ct ≤ s− ct = Dt − dt = Dt−1 and ai ≥ Dt, so that [Dt−1, Dt] ⊂ [ai − ct, ai〉.
So if there is some new line segment created from some line segment i = 1, . . . , ns, exactly one

line segment is added to the left of Ft, because the slopes are equal. Note that here we use the

same argument as in lemma 5.

Now assume that some line segment is added to Ft, which is created from some line segment i ∈
{ns + 1, . . . , mt}. This line segment is defined on [ai − ct, ai〉 with ai − ct > Dt − dt = Dt−1 and

ai > Dt. This means that the interval [Dt−1, Dt] can not be totally covered by line segments

created from line segments i = ns + 1, . . . , mt and at most mt − ns line segments are created

from those lines. This also implies that there must be a line segment created from lines i with

1 ≤ i ≤ ns which contributes to Ft. But it follows from the previous paragraph that exactly one

line segment is created from these line segments. This implies that the number of line segments

added to Ft in the interval [Dt−1, Dt] will not exceed mt − ns + 1.

Now we look at the line segments that are considered in iteration t − 1. These are the line

segments in the interval [At, At + ct−1] = [Dt−1, Dt−1 + ct−1] ⊂ [Dt−1, Dt−1 + ct] = [Dt−1, s] =

[Dt−1, Dt] ∪ [Dt, s], because ct−1 ≤ ct. But line segments 1, . . . , ns lie in the interval [Dt, s].

This means that the total number of line segments considered in iteration t − 1 equals at most

(mt − ns + 1) + ns = mt + 1, which completes the proof. ¤

A visual representation of the proof is shown in figure 5. The horizontal lines represent the

AtFt At + ct−1

At−1Ft−1 At−1 + ct−2

At−2Ft−2 At−2 + ct−3

dt−1

dt−2

dt−1

s
dt−2

s

Figure 5: Visual representation of Lemma 6

intervals on which Ft is defined, so Ft consists of five line segments. In recursion step t− 1 a part

of length dt−1 (consisting of two line segments) is ‘copied’ from Ft to Ft−1. Note that in the worst

case at most two line segments are added to the left of Ft in iteration t− 1. We also see that the

number of line segments to be considered in iteration t− 2 has increased by one.

In the next iteration we see that a part consisting of two line segments is copied from Ft−1 to

Ft−2. Because ct−3 < ct−2, the interval to be considered in iteration t − 3 (that is the interval

[At−2, At−2 + ct−3]) has decreased relative to the interval in iteration t − 2 (that is the interval

[At−1, At−1 + ct−2]). In this example the number of line segments to be considered in those two
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iterations is equal. So if ct is strictly increasing, it is more likely that the number of line segments

will not increase. Note that if ct−3 = ct−2, the number of line segments could have increased by

one again.

Now we can state our main theorem.

Theorem 7 The time complexity of the algorithm for solving a NI/G/NI/ND problem is O(T 2).

Proof By the previous lemmas it follows that the number of line segments considered in each

recursion step increases by at most one. This means that mt ≤ mt+1 + 1 for t = 1, . . . , T − 1.

Furthermore, we know that mT = 1, so that mt ≤ T − t + 1 for t = 1, . . . , T . Summing up all line

segments yields
T∑

t=1

mt ≤
T∑

t=1

T − t + 1 =
T∑

t=1

t =
1
2
T (T + 1),

which implies that the time complexity of the algorithm is O(T 2). ¤

We can also prove that this result cannot be improved upon. To this end we can show that

the following problem instance requires a quadratic number of line segments to be solved. Let

ct = C = 2T

d1 = 1

dt = 2T − 1 = C − 1 for t = 2, . . . , T − 1

dT = T = 1
2C

Kt = T − t + 1 for t = 1, . . . , T

pt = 0

ht = 0.

We will briefly describe why this problem instance needs a quadratic number of line segments. In

the first iteration (t = T ) a line segment with domain length T = 1
2C is created. Furthermore,

it can be shown that AT = Dt−1 and Bt = min{At+1, Ct−1} = At+1 = Dt for t = 2, . . . , T − 1,

so that the interval [Dt, Dt + ct] is considered in iteration t. Because demand is almost equal

to capacity in the following iterations, the point s is forced to be in the domain of the left most

line segment, so that all line segments of the previous iteration are potential candidates for the

minimum cost function. Because Kt is strictly decreasing all candidates are added to the minimum

cost function and the number of line segments increases by one in each iteration. The minimum

cost function Ft looks like a step function as in section 3.

If we denote the number of line segments created in iteration t by nt, then it can be shown that

nT+1 = 1, nT = 1 and nt = nt+1 + 1 = T − t + 1 for t = 2, . . . , T − 1. In the last iteration (t = 1)

only one line segment is added, because [A1, B1] = {0} so that n1 = 1. This is the maximum
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number of line segments which can be created in each recursion step. Now the total number of

line segments required to solve the above problem instance equals

T+1∑
t=1

nt = 2 +
T∑

t=2

(T − t + 1) = 2 +
T−1∑
t=1

t =
1
2
T (T − 1) + 2,

which is clearly of quadratic order.

4.4 Computational tests

We have tested our new algorithm empirically using the same problem instances as in Chen et al.

(1994). That is, the demand pattern is generated by the formula

dt = µ + σεt + a sin
[
2π

c
(t + c/2)

]

for t = 1, . . . , T , where

µ = average demand

σ = standard deviation of demand

εt = i.d.d. standard normal random variable

a = amplitude of the seasonal component

c = cycle length of the seasonal component.

If demand is negative for some period, demand is set to zero and only feasible problem instances

are generated, i.e.,
∑t

i=1 ci ≥
∑t

i=1 di for t = 1, . . . , T .

Four different types of demand are generated: (1) σ = 67, a = 0, (2) σ = 237, a = 0, (3) σ = 67,

a = 125, c = T , (4) σ = 67, a = 125, c = 12 and for each type of demand µ = 200. For each type of

demand 5 problem instances are generated, so that we have 20 test instances for some parameter

setting of Kt, ct, pt and ht. Furthermore, we set Kt = K = 100, 900 and 3600, ht = h = 1,

pt = p = 0 and ct = C = 250, 700 and 1200 and the time horizon T is set to 96, 192, 384 and 768

periods. So in total we generated 720 test problems.

We do not present running times of the new algorithm, because all problem instances are

solved within less than 0.02 seconds. Table 1 shows the total number of line segments used in

the algorithm (worst case in parentheses). Note that the number of line segments determines the

running time (see also Chen et al. (1994)). If the total number of line segments increases in a

linear way, then the running time will also increase in a linear way. We observe that the behavior

of the total number of line segments is almost linear relative to T . In particular for small values

of K this linear behavior is observable. In the paper of Chen et al. (1994) a quadratic behavior

is observed for the same problem instances. This is not surprising, because their algorithm solves

more general instances of the CLSP. The reason why their algorithm is slower than ours for

NI/G/NI/ND problem instances, is that larger intervals are considered as already mentioned in
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Table 1: Total number of line segments required

K C T = 96 T = 192 T = 384 T = 768

1
2
T (T − 1) + 2 4562 18338 73538 294530

100 250 98 196 388 780

(103) (206) (401) (808)

700 91 182 361 721

(97) (193) (385) (769)

1200 91 182 360 721

(97) (193) (385) (768)

900 250 231 455 914 1897

(416) (744) (1424) (3178)

700 116 240 480 960

(127) (262) (515) (992)

1200 91 181 362 724

(97) (193) (385) (769)

3600 250 467 1036 2263 4672

(1059) (2145) (4582) (9319)

700 269 558 1158 2342

(294) (621) (1315) (2490)

1200 135 271 547 1089

(145) (291) (589) (1150)

section 4.1. Furthermore, we observe that the total number of line segments is considerably smaller

than the worst possible number of line segments 1
2T (T − 1) + 2.

We also implemented the algorithm proposed by Chung and Lin (1988) and we found that their

algorithm also exhibits a quadratic behavior. We will now explain why this quadratic behavior is

observed. To this end we will first briefly describe the main ideas of their algorithm. Chung and

Lin (1988) define a subplan suv (1 ≤ u ≤ v ≤ T ) as the portion of the solution that covers period u

trough v. Here periods u−1 and v are two consecutive regeneration points, i.e., Invu−1 = Invv = 0.

Because a NI/G/NI/ND problem satisfies the property Invt−1xt(xt−Ct) = 0 for all t (see Bitran

and Yanasse (1982)), it must hold that in each period of a subplan suv there is full or zero

production except for period u.

Now Chung and Lin (1988) show that the following subplans are candidates for the optimal

solution. If a subplan is denoted by sut = (i1, . . . , ik) where ij (j = 2, . . . , k) is a period with

capacity production and 1 ≤ u = i1 < i2 < · · · < ik ≤ t, then a candidate subplan for demand in

periods u, . . . , t satisfies the property

in = max{i : i < in+1 and ci < Mn −Di−1},

where Mn = Dt− (cin+1 + . . .+ cik
) and ik+1 = t+1. So in is the largest period for which demand
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in periods in, . . . , t cannot be satisfied by cin , . . . , cik
. This demand will be satisfied by a previous

production period. If we denote the set of candidate subplans sut with 1 ≤ u ≤ t by Vt, the cost

associated with candidate subplan sut by C(sut) and the minimal cost for period 1 through t by

f(t), then

f(t) = min
u=1,...,t

{f(u− 1) + C(sut) : sut ∈ Vt},

with f(0) = 0.

Chung and Lin (1988) show that all candidate subplans in Vt can be constructed in O(t) time

starting in period t and ending in period 1. Candidate subplans are constructed by building on

previous constructed ones. If we look at the numerical example, there are two candidate subplans

for t = 4: s44 = (4) (i.e., x4 = 30) and s24 = (2, 3) (i.e., x2 = 60 and x3 = 80). In the example s44

has been constructed in the first iteration (line (1) in figure 4). Whereas Chung and Lin’s algorithm

also finds s24, our algorithm detects in an early stage that this is not an optimal candidate subplan.

Namely, in iteration 2 of our algorithm we find that line (3) does not contribute to the minimum

cost function and this is exactly the line that corresponds to the full production in period 3. In

this way some candidate subplans will not be found in our algorithm, whereas Chung and Lin’s

algorithm does find these non-optimal candidate subplans.

To summarize, the algorithm of Chung and Lin (1988) exhibits a quadratic behavior, because

in each period t they search for candidate subplans sut for all values of u = 1, . . . , t, whereas our

algorithm eliminates some candidate subplans in an early stage. This means that both algorithms

have the same time complexity, but our algorithm performs better empirically.

5 Conclusion

In this paper we have presented a new O(T 2) algorithm to solve the capacitated lot-sizing problem

(CLSP) with non-increasing setup cost, general holding cost, non-increasing production cost and

non-decreasing capacities. Our algorithm is based on the algorithm proposed by Chen et al. (1994)

which solves general cases of the CLSP. Chung and Lin (1988) also proposed an O(T 2) to solve this

problem, but we can show that our algorithm performs at least equally well. In fact, numerical

tests show that our algorithm has a linear running time, whereas Chung and Lin’s algorithm

behaves quadratically.

A Theorems and propositions

Theorem 8 For t = 1, . . . , T and X ∈ It, Ft(X) is a non-increasing function.

Proof Assume some cumulative production levels X,X ′ ∈ It with X < X ′. Let Ft(X) the

minimum cost corresponding to production level X and let δ = X ′ −X. Let x∗t , . . . , x
∗
T the op-
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timal production plan corresponding to cumulative production before t equal to X. From this

production plan we construct a production plan corresponding to cumulative production before t

equal to X ′ in the following way. Let m = {min s :
∑s

i=t x∗t − δ ≥ 0 and let the new produc-

tion program equal 0, . . . , 0,
∑m

i=t x∗i − δ, x∗m+1, . . . , x
∗
T . This is a feasible production plan because

starting inventory in period t (equal to δ) is large enough to cover demand in period t, . . . ,m− 1

and
∑m

i=t x∗i − δ < x∗m ≤ cm. But this production plan has less production costs because Pt is

non-decreasing, which implies that Ft(X) ≥ Ft(X ′). This completes the proof. ¤

Note that this theorem holds for all non-decreasing production functions Pt.

Proposition 9 Line segment G1i
t (X) will not contribute to F i

t (X) for t = 1, . . . , T and i =

1, . . . ,mt.

Proof This is easily seen by the fact that

G1i
t (X) = F i

t+1(X) + Kt ≥ F i
t+1(X),

which means that G1i
t (X) will not contribute to F i

t (X) according to (9). ¤

Proposition 10 Line segment G3i
t (X) will not contribute to F i

t (X) for t = 1, . . . , T and i =

1, . . . ,mt − 1.

Proof This can be seen by the fact that

G3i
t (X) = F i

t+1(bi) + Kt − pt(X − bi)

≥ F i
t+1(ai+1) + Kt − pt(X − ai+1) (because F i

t+1(X) is non-increasing)

= G2,i+1
t (X) ≥ F i

t (X).

This means that for i = 1, . . . , mt − 1, G3i
t (X) will never contribute to F i

t (X), which completes

the proof. ¤

B Pseudocode

Input:

A NI/G/NI/ND CLSP instance with dt ≤ ct and ht = 0

Initialize:

AT+1 := DT

Add(DT , 0)
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Algorithm:

For t = T, . . . , 1 do

Set the domain:

Bt := min{At+1, Ct−1}
At := Dt−1

Line segment that covers the interval [At, Bt]:

j := arg mink=1,...,mt+1{f(ak) + St + pt(ak −At)|ak − ct ≤ At}
Add(At, f(aj) + St + pt(aj −At))

Line segments that cover part of the interval [At, Bt]:

For k = {1, . . . , mt+1|ak − ct < Bt} do

If f(ak) + St + pt(ak −Bt) < f(aj)− pt(Bt − aj) then

Add(ak − ct, f(ak) + St + ptct)

j:=k

End if

End for

End for

Optimal solution:

z∗ = f(0)

This function adds a line segment to the minimum cost function:

Function Add(a, f)

i := i + 1

ai := a

f(ai) := f

End function
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