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Immunotherapy of cancer 

The immunotherapy of cancer is based on the assumption that the immune 

system can be stimulated to recognize cancer and eradicate tumor. The course of 

most human cancers indicates that natural protective immunity against cancer 

either is non existent or fails. Theoretical models of immune activation propose 

that the immune system has evolved to recognize self from non-self [Langman et 

al, 2000], and that immune activation is initiated when the immune system 

senses or recognizes danger [Matzinger, 2001]. According to these models, the 

immune tolerance that may exists for cancer cells has been hypothesized to 

develop due to predominant expression of self antigens on tumors or lack of 

recognition of non-self on tumors. Alternatively, tolerance may be due to lack of 

"danger" signals during the early development of cancer. The goal of cancer 

immunotherapy is to exploit the immune system in the battle against cancer. 

One of the approaches of immunotherapy consists of systemic administration 

of cytokines. Cytokines are soluble proteins involved in cellular communication, 

initially identified as products of cells of the immune system. Large scale 

production of cytokines by recombinant DNA technology has enabled the study of 

their anti-tumor efficacy. Interleukin (IL-)12 is a cytokine with important 

immunoregulatory functions and strong anti-tumor effects in animal models. 

Renal cell cancer is one of the few malignancies that has shown susceptibility 

to cytokine immunotherapy. While conventional chemotherapy has a low 

efficacy, with response rates of 15% at the best [reviewed by Ruiz et al, 2000], 

therapy with interferon (IFN) a., or the combination of IL-2 and IFN-a., with or 

without 5-fluorouracil, has resulted in response rates between 15 and 36%. 

[reviewed by Motzer et al, 2000; Atzpodien et al, 2000]. Still, effective treatment 

is not available for the majority of patients with metastatic disease, and 

therefore, new treatment strategies must be developed. 

Il-12: structure, production and receptors 

IL-12 was discovered 1989, and initially called "cytotoxic lymphocyte 

maturation factor" [Stern et al, 1990] or "natural killer (NK) cell stimulating 

factor" [Kobayashi et al, 1989]. IL-12 is composed of two disulfide-linked sub­

units with molecular weights of 35kDa (p35) and 40kDa (p40), respectively 

[Podlaski et al, 1992]. P35 and p40 are structurally unrelated and their genes 

have been mapped to separate chromosomes, i.e. 3p12-3q13.2 and 5q31-q33 
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[Sieburth et al, 1992]. The p40 sequence is not homologous to any other known 

cytokine and has sequence homology with the extra-cellular domain of the Il-6 

receptor [Gearing et al, 1991], whereas the p35 sub-unit has structural 

similarities with IL-6 itself and granulocyte-colony- stimulating factor (G-CSF) 

[Merberg et al, 1992]. Therefore it has been proposed that Il-12 resembles a 

secreted, disulfide-linked complex of a cytokine with its own receptor. Various 

cells produce Il-12, such as phagocytic cells, dendritic cells and B lymphocytes 

[reviewed by Trinchieri 1996; Heuf/er eta/, 1996; Schultze eta/, 1999]. 

The production of Il-12 is strongly stimulated by infectious pathogens and 

their products [D'Andrea et al, 1992; Sato et a/, 1996]. Additionally, CD40 

ligand-receptor interactions, between T lymphocytes and antigen presenting 

cells, result in the production of IL-12 by the latter [Shu eta/, 1995]. 

High affinity receptors for ll-12 are composed of two sub-units, designated 

~1 and ~2 [Presky et al, 1996]. In humans, each subunit binds Il-12 with only 

low affinity, while co-expression is required for the generation of high affinity 

binding. The ~2 subunit is more restricted in its distribution [Presky eta/, 1996]. 

Dual expression of the sub-units has been shown on NK- and T cells. Several 

other cells, such as neutrophils, dendritic cells, B lymphocytes and eosinophils, 

express the ~1 sub-unit and were shown to respond to Il-12 in-vitro [Desai eta/, 

1992; Nutku et al, 2001; Nagayama et a/, 2000; Airoldi et al, 2000]. Signal 

transduction through the high affinity receptors on lymphocytes involves tyrosine 

phosphorylation of the Tyk2 and Jak2 kinases and of the transcription factors 

STAT3 and STAT4 [Bacon et al, 1995a and 1995b; Jacobson eta/, 1995]. 

Biological activities in vitro 

IL-12 has several biological properties that may have anti-tumor effects, but 

the most important one is probably enhancement of the cellular immune 

reactivity by directing T helper cell differentiation in favor of T helper type 1 

(Th1) responses [Germann et al, 1993; Trinchieri, 1996; Heufler eta/, 1996]. 

Th1 cells produce IFN-y and IL-2 and promote the cell mediated immune 

response, that is considered the most important effector mechanism in the 

eradication of tumors. IL-12 promotes the commitment of naive T cells, during 

their encounter with antigen, into Thl cells, and in addition, stimulates maximum 

secretion of IFN-y by Thl cells and promotes the activation of memory Th1 cells 

[Manetti et al, 1993; Germann et al, 1993; Heufler et a/, 1996]. Another 

important property of ll-12 is the ability to strongly stimulate activated T and NK 
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cells to produce IFN-y. In fact, IFN-y is considered the most important mediator 

of the biological effects of Il-12 administration in vivo [Wu et al, 1993; Brunda 

et al, 1995a; Nastala et al, 1994]. In addition, Il-12 induces other cytokines, 

such as tumor necrosis factor-a (TNF-a), granulocyte-macrophage-colony­

stimulating factor (GM-CSF), Il-2, Il-3, Il-8 and Il-10, that can regulate 

activation and migration of various immune cells [Trinchieri, 1996]. In vitro, Il-

12 also stimulates NK- and lymphokine activated killer cell non-specific lytic 

activity against tumor cells in culture [Kobayashi et al, 1989] and promotes 

activation of specific cytolytic T cells [Gately et al, 1992]. 

Animal studies 

IL-12 administration had potent anti-tumor effects in several murine tumor 

models, including murine renal cell cancer [reviewed by Brunda et al, 1996]. IL-

12 was administered either systemically by intra-peritoneal injection or locally, 

by fibroblasts genetically engineered to produce IL-12. IL-12 administration 

resulted in complete tumor regression of established tumors and their 

metastases, reduced spontaneous metastases and induced resistance to re­

challenge with the same tumor after initial cure. In distinct tumor models, the 

mechanisms responsible for the anti-tumor effect were different, i.e. depended 

on the model studied. Cellular depletion studies and studies in knockout mice 

have demonstrated that NK cells , CD8+ and CD4+ T cells, or a combination of 

these are most frequently involved in the anti-tumor effect in animal models 

[Brunda et al, 1996]. In addition, it was shown, that although IFN-y was required 

for optimal anti-tumor responses in most models, IFN-y in itself was not sufficient 

to mediate the anti-tumor effects [Brunda et al, 1995a]. IL-12 was also shown to 

inhibit tumor associated angiogenesis [Voest et al, 1995; Sgadari et al, 1996]. 

Pre-clinical studies with human IL-12 were performed in severe combined 

immunodeficiency (SCID) mice. Transfer of human effector cells, such as NK and 

cytotoxic T cells, in combination with treatment with human IL-12 resulted in 

prolonged survival of tumor bearing mice [Cesano et al, 1994, 1995]. The anti­

tumor efficacy of IL-12 has been compared with other cytokines with established 

efficacy in cancer. IL-12 had greater activity than IL-2 and IFN-a in mouse 

models of renal cell cancer as IL-2 and IFN-a only induced growth retardation, 

while IL-12 actually induced tumor regression [Brunda et al, 1995b] 
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Outline of the thesis 

Il-12 has a number of immunoregulatory properties indicating its therapeutic 

potential against cancer. The encouraging anti-tumor effects, observed in a 

variety of animal tumor models, have stimulated the development of Il-12 as a 

single agent for systemic cytokine therapy of cancer in humans. Metastatic renal 

cell cancer is one of the few human cancers that are more responsive to 

immunotherapy than to conventional cytotoxic therapies. Therefore, a phase I 

study of Il-12 was performed in patients with advanced renal cell cancer. The 

choice of schedule and route of administration were based on experiments in 

cynomolgus monkeys. Il-12 in s.c. doses of 0.1 to 1.0 Jlg /kg /day, three times a 

week, was shown to modulate immune activity without provoking substantial 

toxicity in these animals. 

The objective of the study described in chapter 2 was to evaluate the safety 

and tolerability of subcutaneous IL-12 in humans and establish the 

pharmacokinetic profile. The observation of a non-linear relationship between 

dose and drug exposure in animal models formed the rationale to study the 

effects of a single and multiple doses of Il-12. In chapter 3 the 

immunomodulatory activities of IL-12 in humans are described in detail, with 

emphasis on the induction of secondary cytokines and the effects on circulating 

leucocyte subset counts. Based on the observation that side effects decreased 

upon repeated injections of IL-12, we specifically studied whether or not 

immunomodulatory effects were downregulated in the course of multiple IL-12 

injections with special attention for the role of the immunosuppressive cytokine 

IL-10. 

Chapter 4 describes a study of the effect of IL-12 on fibrinolysis and 

coagulation in humans. This study was performed because several bleeding 

episodes were reported in simultaneously performed clinical studies, whereas 

studies in mice and non-human primates had shown that IL-12 induced 

activation of coagulation and fibrinolysis. 

Il-12 is a strong pro-inflammatory cytokine. Studies in patients and 

experimental animals have demonstrated that endogenously produced IL-12 

plays an important role in the toxic sequel of sepsis and endotoxemia. In these 

situations, excessive activation of various components of the inflammatory 

cascade contributes to the development of tissue injury and mortality. In chapter 

5 we describe the in-vivo effects of different doses of subcutaneous Il-12 on 

components of the inflammatory cascade. We specifically addressed the 
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degranulation of neutrophils and the formation of secretory phospholipase Az, a 

regulatory enzyme in the formation of eicosanoids. 

The study described in chapter 2 was one of four phase I studies, that were 

simultaneously performed in Europe and the US. Subsequent phase II studies in 

patients with advanced renal cell cancer and ovarian cancer demonstrated 

disappointing anti-tumor effects. The results described in chapter 3, together 

with other pharmacodynamic studies, indicate that the lack of efficacy was 

accompanied by, and probably related to, declining biological effects of IL-12 in 

the course of repeated administrations at doses approaching the maximum 

tolerated dose (MTD). Nevertheless, IL-12 remains a promising immuno­

therapeutic agent because recent cancer vaccination studies in animal models 

and humans have demonstrated its powerful adjuvant properties. Chapter 6 

reviews the adjuvant properties of IL-12 and delineates how the immune­

regulatory properties of IL-12 described in the previous chapters may contribute 

to the adjuvant effects. In addition, it is discussed how the studies presented in 

this paper, together with other clinical studies of systemic IL-12, indicate that IL-

12 may exert optimal adjuvant effects only at low dose levels. Finally, the future 

perspectives of IL-12 in the treatment of cancer are addressed. 





Chapter 2 

A phase I study of subcutaneously administered recombinant 

human Il-12 in patients with advanced renal cell cancer 



Adapted from: 

Phase I study of subcutaneously administered recombinant human interleukin 12 

in patients with advanced renal cell cancer 

Johanna E. A. Portielje, Wim H. J. Kruit, Martin Schuler, Joachim Seck, Cor H. J. 

Lamers, Gerrit Stater, Christoph Huber, Maureen de Boer-Dennert, Ashok Rakhit, 

Reinder L. H. Solhuis and Walter E. Aulitzky 

Clinical Cancer Research 1999; 5: 3983-3989 
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Abstract 

A phase I study was conducted to characterize the maximum tolerated dose 

(MTD), dose limiting toxicity (DLT) and pharmacokinetics of a single dose 

followed by three times weekly subcutaneous (s.c.) injections of recombinant 

human interleukin 12 (rHuiL-12). 

The study encompassed 28 patients with advanced renal cell carcinoma. 

RHuiL-12 was administered on day 1, followed by an observation period of 7 

days. Starting on day 8, repeated s.c. injections were administered 3 times a 

week, for 2 weeks. 

The MTD of the initial injection was evaluated at dose levels of 0.1, 0.5 and 

1.0 ug/kg. DLT was observed at 1.0 ug/kg and consisted of fever, perivasculitis 

of the skin and leucopenia. The MTD of the subsequent repeated injections after 

1 week of rest was studied at dose levels 0.5, 1.0 and 1.25 ug/kg. DLT at 1.25 

ug/kg comprised deterioration of performance status, fever, vomiting, mental 

depression and leucopenia. Other notable toxicities were oral mucositis and 

elevation of hepatic enzymes. Fever, leucopenia and elevation of hepatic 

enzymes were more severe after the initial injection than after repeated injecti­

ons at the same dose level. 

At dose level 0.5 ug/kg, the mean area under the plasma concentration-time 

curve decreased from 7.4 ng x h/ml after the first injection to 3.3 ng x h/ml 

(p=0.034) after repeated administrations, and at dose level 1.0 ug/kg, from 31.8 

ng x h/ml to 6.0 ng x h/ml (p=0.041). One patient had a partial response and 

seven patients had stable disease. 

Conclusion: The MTD of a single s.c. injection of rHuiL-12 was 0.5 ug/kg and 

the MTD of 3 subsequent administrations per week was 1.0 ug/kg. In comparison 

with a single administration, the 3 times weekly administrations at the same 

dose level were accompanied with a milder pattern of side effects and a 

reduction of the area under the plasma concentration-time curve. 
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Introduction 

Interleukin 12 (IL-12) is a heterodimeric cytokine with immunoregulatory 

functions. It stimulates the proliferation and activation of T lymphocytes and 

natural killer cells [Kobayashi et al, 1989; Perussia et al, 1992] and induces the 

production of IFN-y by these cells [Kobayashi et al, 1989; Chan et al, 1991]. IL-

12 promotes T- helper type 1 responses [Manetti et al, 1993; Wu et al, 1993], 

including the commitment of naive helper T cells to the T- helper type 1 deve­

lopmental pathway, while inhibiting T-helper type 2 development and function, 

thereby promoting cellular immunity [Scott, 1993]. Additionally, IL-12 can inhibit 

tumor-associated angiogenesis [Voest et al, 1995; Sgadari et al, 1996]. The 

antitumor effects of IL-12 have been evaluated in a large number of murine tu­

mor models and more recently in nonhuman primate tumor models [Brunda et 

al, 1993; Nastala et al, 1994; Fujiwara et al, 1996; Sarmiento et al, 1994; Bree 

et al, 1994]. Cures and long term survival were seen in murine renal cell 

carcinoma (RCC) at doses that resulted in mild toxicities. These results show that 

IL-12 has important immunomodulatory and anti-tumor effects in animal models. 

Clinical experience with IL-12 in humans is limited. Metastatic RCC appears to be 

more responsive to immunomodulatory treatment than to conventional cytotoxic 

chemotherapy. However, despite progress in treatment, overall prognosis 

remains poor and effective immunotherapies are needed [Motzer et al, 1996]. 

Therefore, we performed a Phase I study of subcutaneous (s.c.) administration of 

recombinant human interleukin 12 (rHuiL-12) in patients with RCC. 

The choice of schedule and route of administration were based on 

experiments in cynomolgus monkeys (Hoffmann La Roche, personal 

communication). IL-12 in s.c. doses of 0.1 to 1.0 ;.tg/kg per day, three times a 

week, were shown to modulate immune activity without provoking substantial 

toxicity in these animals. The observation of a nonlinear relationship between 

dose and drug exposure formed the rationale to study the effects of a single and 

multiple doses of IL-12. The purpose of the study was to investigate the toxicity 

and pharmacokinetics of a single s.c. administration of rHuiL-12 and of a 

schedule of 3 s.c. administrations per week for 2 weeks, started one week after 

this single s.c. injection. 
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Patients and Methods 

Patient selection 

Patients had histologic proof of RCC with measurable locally advanced or 

metastatic disease. Patients were between 18 and 75 years of age, had a WHO 

performance score of 0 to 1, a life expectancy > 4 months, adequate renal 

function (serum creatinine < 1.5 times normal), adequate hepatic function 

(normal serum bilirubine, serum ALT and/or aspartate-aminotransferase < 2.5 

times normal, serum alkaline phosphatase < 2.5 times normal ), normal serum 

calcium, serum hemoglobin > 10 g/dl, white blood count > 3x109/liter, gra­

nulocytes > 2x109/liter, platelets > 75x109/liter and normal pulmonary function. 

They had not received more than one previous immunotherapy. All former 

therapies were ended at least 6 weeks prior to start of treatment with rHuiL-12. 

Patients did not use systemic corticosteroids. Patients with brain or leptome­

ningeal metastases or major fluid effusions (e.g. ascites, pleural effusions) were 

excluded. Patients with major concurrent systemic disease, an organ graft or a 

prior history of other malignancy were excluded as were patients known to be 

seropositive for HIV or Hepatitis B surface antigen. All patients gave written 

informed consent. 

rHuiL-12 

rHuiL-12 (Ro 24-7472) was supplied by Hoffmann La Roche, Nutley, NJ, 

U.S.A and administered by s.c. injection. The first injection was an in-hospital 

treatment. Subsequent injections were given on an outpatient basis. 

Study design 

The study was an open label non-randomized Phase I dose escalation trial 

carried out in two European cancer centers to evaluate the safety and tolerability 

of an initial single injection of rHuiL-12 as well as the safety and tolerability of 

repeated s.c. injections administered in treatment cycles of 2 weeks with three 

injections per week. Pharmacokinetics and pharmacodynamics were studied 

simultaneously. The treatment protocol was approved by the ethics board of the 

participating institutions. 

Treatment schedule and follow up 

On day 1 a single s.c. injection of rHuiL-12 was given, followed by an 

observation period of 7 days. Subsequently, on day 8 repeated injections were 

started, with rHuiL-12 s.c., three times a week, for 2 weeks. After a 2-week rest 

period repeated injections were resumed with an identical schedule. Tumor 
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volume was assessed after 2 months of treatment. Patients who did not 

experience tumor progression or DLT could be treated with additional cycles. The 

dose of rHull-12 was calculated per kilogram (kg) body-weight, where 80 kg 

was taken as the maximum multiplication factor. 

The MTD was defined as one dose level below the dose that causes DLT, i.e. 

the dose that causes drug-related grade 3 or 4 toxicity, with the exception of 

lymphopenia, in one third of patients. Dose escalation for the initial single 

injection was decided upon the toxicity encountered during the week of observa­

tion that followed, until repeated dosing was started from day 8 onwards. Toxi­

city was assessed using the National Cancer Institute Common Toxicity Criteria. 

To define the MTD, cohorts of three patients were entered at each dose level 

until a grade 3 or 4 toxicity occurred; for these and subsequent dose escalation 

levels, three more patients were entered. If more than one patient experienced 

drug-related grade 3 or 4 toxicity, three more patients were entered at the 

previous dose level. As long as the MTD for the initial single injection had not 

been reached, the dose of rHuiL-12 for repetitive administrations was identical 

with the initial dose. 

Once the MTD was reached for the initial single dose, this dose was fixed in 

all subsequent patients. To define the MTD for repeated injections, the toxicity 

encountered during the first two cycles (8th until 64th day) were evaluated. 

Further dose escalation steps were carried out as previously described. 

Before start of the study, all considered patients underwent a complete 

medical history and physical examination, electrocardiography, hematology and 

blood chemistry tests, dipstick urinalysis, pulmonary function test with carbon 

monoxide (CO) diffusion capacity and measurements of study parameters by 

chest X-ray and Computerized tomography scan. 

After the single initial injection, patients had physical examination and 

complete blood counts daily and serum chemistry and urinalysis were repeated 

on days 1 and 2. During the repetitive injections, vital signs and complete blood 

counts were assessed after all drug administrations and serum chemistry and 

urinalysis were repeated twice a week. Pulmonary function tests were performed 

on days 12, 19 and 26. Study parameters were measured by chest X-ray and 

Computerized tomography scan after each treatment period of 2 months. 

Pharmacokinetic sampling and data analysis 

Pharmacokinetic parameters were calculated from serum concentrations of 

rHuiL-12 in blood samples taken before and 4, 6, 8, 10, 12, 18, 24, 30, 36, 48, 

72 and 96 hours after the single initial injection. During the repetitive injections, 
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blood samples were taken on day 15 and 17 prior to drug administration, on day 

19, prior to and 4, 6, 8, 10, 12, 18, 24, and 36 hours after drug administration 

and on day 26. 

Serum concentrations of rHuiL-12 were measured by a method of antibody 

capture followed by a cell proliferation assay [Motzer et al, 1998]. This assay has 

a lower limit of detection of 50 pg/ml. 

Individual patients' plasma concentration-time data were analysed using the 

Siphar software package (version 4.0; SIMED, Creteil, France) by 

noncompartmental analysis. The area under the plasma concentration-time curve 

(AUC) for rHuiL-12 was calculated by the linear trapezoidal rule up to the last 

sampling point with detectable levels (C), with extrapolation to infinity 

(AUCa-'ooefio~to) by the equation AUC + Cjk,, , where ke1 represents the terminal 

disposition rate constant. The latter term was calculated from the slope of the 

data points in the final log-linear part of the concentration-time curve by weighed 

(1/y) least-squares linear regression analysis. Maximum plasma concentrations 

(Cm,J and the time to maximum concentration (T mox) were estimated by visual 

inspection of the semilogarithmic plot of the concentration-time curve. The 

terminal disposition half-life (tv,) was calculated by dividing ln2 by ke1 • 

To test parameter differences for statistical significance among treatment 

courses, a two-tailed paired Student's t-test was performed. Probability values of 

less than 0.05 were regarded as statistically significant. All statistical calculations 

were performed using Number Cruncher Statistical System (NCSS, version S.X; 

Dr. Jerry Hintze, Kayesville, UT, USA) and STATGRAPHICS Plus (version 2; 

Manugistics Inc., Rockville, MD, USA). 

Results 

Patient population 

The characteristics of the 28 patients who participated in the study are 

given in Table 1. Twenty patients were male. The median age was 56 years. 

Twenty-seven patients had undergone nephrectomy and 13 of them received 

surgical treatment only. There were nine patients pretreated with immu­

notherapy (IFN-y, IL-2 or a combination of IFN-()( and IL-2 with or without 

lymphokine-activated killer cells), two patients with chemotherapy and four 

patients with immunotherapy and chemotherapy. The results of three patients 

were excluded from analysis: One patient erroneously received an overdose at 

the first injection without major sequela. In two patients, both with a history of 



24 • Chapter 2 • 

atrial fibrillation, this arrhythmia recurred after the first single injection. These 

patients were removed from the study. Twelve patients received one treatment 

cycle, nine patients received two cycles and four patients had more than two 

cycles with a maximum of six. 

Table 1. Patient characteristics 

Number of patients 28 

Median age (years) 56 (41-70') 

Gender (male/female) 20/8 

Performance status 

Karnofsky 100% 15 

90% 9 

80% 4 

Previous therapy 

Surgical only 13 

Immunotherapy 9 

Chemotherapy 2 

Chemo- and immunotherapy 4 

Median duration of disease (months) 38 (1-264) 

Disease status 

Locally advanced 1 

Metastatic 27 

¥ Results are given in numbers; a range is shown in parentheses. 

Side effects and laboratory abnormalities 

Common side effects and laboratory abnormalities observed after the first, as 

well as after repeated injections of rHulL-12, were fever and flu-like symptoms 

(chills, sweating, headache, myalgia), anorexia1 nausea, vomiting, fatigue, 

leucopenia, lymphopenia, granulopenia, anemia, thrombopenia, hypocalcemia 

and elevation of hepatic enzymes. Oral mucositis, reduction of pulmonary CO 

diffusion capacity and hyponatremia mainly occurred after repeated injections. 

Fever sometimes persisted for several days after discontinuation of rHu!L-12. 



Table 2. Toxicity profile initial single injection (part 1) 

Dose level Hemoglobin Leukopenia Granulopenia Lymphopenia Thrombopenia 

(no of patients) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0.1 ~g/kg (3) 0 0 0 0 1 1 0 0 1 0 0 0 0 2 1 0 0 0 0 0 

0.5 [tg/kg {6) 3 0 0 0 0 1 1 0 0 1 0 0 1 5 0 0 0 0 0 0 

1.0 [tg/kg (4) 3 0 0 0 0 3 1 0 1 2 0 0 1 2 0 1 4 0 0 0 

0.5 ~g/kg (12)* 2 0 0 0 3 2 3 0 3 2 3 0 3 5 2 1 2 0 0 0 

*After defining MTD for the initial Injection, the additional patients enrolled to define MTD for repeated injections received 

their initial injection at a dose of 0.5 rtg/kg 

Table 3. Toxicity profile initial single injection (part 2) 

Dose level Fever Fatigue Headache Nausea Vomiting 

(no of patients) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0.1 ~g/kg (3) 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0.5 [tg/kg (6) 1 5 0 0 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

1.0 ~g/kg (4) 0 3 1 0 1 3 0 0 2 0 0 0 3 0 0 0 2 0 0 0 

0.5 [tg/kg (12)* 3 9 0 0 1 1 0 0 6 0 0 0 4 0 0 0 2 1 0 0 

*After defining MTD for the Initial injection, the additional patients enrolled to define MTD for repeated injections received 

their initial injection at a dose of 0.5 ~g/kg 



Table 4. Toxicity profile initial single injection (part 3) 

Liver Hypo-

Dose level Mucositis Skin Diarrhea Pulmonary enzyems natremia 

(no of patients) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

0.1 fl9/kg (3) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0.5 fl9/kg (6) 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 2 0 0 

l.Oflg/kg (4) 0 1 0 0 0 1 0 0 0 0 0 0 2 2 0 0 0 0 

0.5 !19/kg (12)* 0 0 0 0 0 0 0 1 0 0 0 0 2 1 0 0 2 0 

*After defining MTD for the initial injection, the additional patients enrolled to define MTD for repeated injections received 

their initial injection at a dose of 0.5 ft9/kg 



• Phase I Study of s.c. IL-12 • 27 

Determination of the MTD for the single initial dose 

The dose levels studied for the initial single dose were: 0.1 ~g/kg, 0.5 ~g/kg 

and 1.0 ~g/kg. Tables 2-4 present the side effects and their grading at these 

dose levels. 

Three patients received a single initial rHuiL-12 dose of 0.1 ~g/kg. No grade 

3 toxicities were observed. On dose level 0.5 ~g/kg, six patients were treated 

and one developed a grade 3 leucopenia. 

Of the four patients who received 1.0 ~g/kg, three developed DLT. One 

patient had a grade 3 leucopenia with grade 3 fever and one experienced a grade 

2 leukopenia that lasted 10 days, necessitating delay of the repetitive injection 

cycle. The third patient developed an erythema of the skin, which persisted for 8 

days. Histology of the lesions showed a perivasculitis. Consequently, 0.5 ~g/kg of 

rHu!L-12 was regarded as MTD for the initial single dose. 

Therefore, the 12 patients, who were subsequently enrolled to define the 

MTD of repetitive injections, had their first injections fixed at a dose of 0.5 ~g/kg. 

The side effects of these 12 patients are displayed in the bottom lines of Table 2. 

Of note, three of 12 patients experienced grade 3 leuco- and granulopenia. 

Determination of the MTD for the repetitive administration cycles 

The dose levels studied for the repetitive administration cycles were: 0.5 

~g/kg, 1.0 ~g/kg and 1.25 ~g/kg. In Tables 5-7, the toxicities according to these 

dose levels are shown. The worst observed toxicities observed in the first two 

treatment cycles were analysed. 

Six patients, who had received a single initial dose of rHuiL-12 at 0.5 ~g/kg 

received the same dose from day 8 onwards, three times a week. Because three 

of the 12 additional patients at the initial single dose of 0.5 ~g/kg experienced 

grade 3 leuko- and granulopenia, we decided to extend our experience at this 

dose level with repeated injections. Hence, nine patients received repeated 

injections, three times per week, at 0.5 ~g/kg. Only one developed a grade 3 

granulopenia during repeated administrations. These nine patients had a 

reduction of certain side effects and laboratory abnormalities (fever, leucopenia 

and elevation of hepatic enzymes) when the single initial injection was compared 

with the repeated injections (tables 5-7). This effect was also observed at 

consecutive higher dose levels. The next three patients received repeated 

injections at 1.0 ~g/kg without grade 3 or 4 toxicities. However, at a dose of 

1.25 ~g/kg, four of four patients exhibited DLT: All had grade 3 progressive 

fatigue with deterioration of performance status. 



Table 5. Toxicity profile repeated injections, worst of cycles 1 and 2 (part 1) 

Dose level Hemoglobin Leukopenia Granulopenia Lymphopenia Thrombopenia 
(no of patients) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0.5 flQ/kg {9) 3 0 0 0 5 3 0 0 3 2 1 0 4 3 1 0 0 0 0 0 
1.0 flQ/kg {5) 2 0 0 0 2 1 0 0 3 0 0 0 0 5 0 0 0 0 0 0 
1.25 flQ/kg (4) 4 0 0 0 1 1 1 0 1 2 0 0 0 2 2 0 0 1 0 0 

Table 6. Toxicity profile repeated injections, worst of cycles 1 and 2 (part 2) 

Dose level Fever Fatigue Headache Nausea Vomiting 
(no of patients) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0.5 flQ/kg {9) 3 4 0 0 5 0 0 0 3 1 0 0 4 0 0 0 4 0 0 0 
1.0 flQ/kg {5) 0 3 0 0 2 3 0 0 1 0 0 0 1 1 0 0 1 1 0 0 
1. 25 flQ/kg ( 4) 0 2 0 1 0 0 4 0 1 1 0 0 1 1 1 0 1 1 1 0 

Table 7. Toxicity profile repeated injections, worst of cycles 1 and 2 (part 3) 

Dose level Mucositis Pulmonary Liver enzymes Hyponatremia Hypocalcemia 
(no of patients) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0.5 flQ/kg (9) 2 1 0 0 1 0 0 0 2 0 0 0 4 1 0 0 1 0 0 0 
1.0 flQ/kg (5) 2 1 0 0 2 1 0 0 4 0 0 0 2 1 0 0 1 1 0 0 
1.25 f!Q/kg (4) 2 2 0 0 1 1 0 0 2 1 0 0 2 2 0 0 1 0 0 0 



• Phase I Study of s.c. Il-12 • 29 

One patient had grade 3 leucopenia and grade 4 fever, one patient had grade 

3 vomiting and nausea and one patient developed grade 3 psycho-neurotoxicity 

(a mental depression persisting for weeks after discontinuation of rHuil-12). As 

indicated in the protocol, more patients were subsequently entered at the 

previous dose level of 1.0 ~g/kg. In two additional patients no grade 3 or 4 

toxicity was observed. Added to the 3 patients earlier enrolled on this dose level, 

a total of five patients were treated with repeated injections at 1.0 ~g/kg. 

Because none suffered grade 3 or 4 adverse event, we declined from 

entering a sixth patient. Consequently, 1.0 ~g/kg of rHuil-12 was regarded as 

MTD for the repeated injections. 

Unrelated side effects 

Five patients developed complications unrelated to the study medication. In a 

patient that died of ventricular fibrillation, 11 days after the last rHull-12 

administration, autopsy showed extensive coronary atherosclerosis. 

A patient with a history of myocardial infarction had congestive heart failure. 

Of two patients with retroperitoneal lymphnode metastasis, one developed 

hydronephrosis and renal insufficiency and the other developed extensive deep 

venous thromoosis. Finally, a patient had gastrointestinal bleeding, due to 

duodenal tumor invasion. 

Tumor response 

Tumor response could be evaluated in 22 patients. A partial response, which 

lasted 4 months, was observed in a patient treated with repeated injections at 

dose level 0.5 ~g/kg. At study entry, the patient had local tumor recurrence and 

bone metastasis, 5 months after diagnosis of RCC and nephrectomy. He had not 

received prior systemic treatment. Seven Patients had stable disease that lasted 

between 2 and 6 months. All other patients had progressive disease. Sudden 

death and cardiac failure impeded evaluation of response in two patients and in 

another patient who only received a first dose of ll-12, evaluation was omitted. 

Pharmacokinetics 

Results of the pharmacokinetic studies are shown in Table 8. Samples for 

pharmacokinetic analysis, after the initial injection and subsequent injections, 

could be obtained from all 13 patients that were enrolled to define the MTD for 

the initial injection. From 6 additional patients, entered to define the MTD of 

repeated injections, samples after the initial injection at 0.5 ~g/kg could be 

analysed. At the 0.1 ~g/kg dose level, serum concentrations of rHull-12 were 
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below the assay's detection limit, after the initial single injection as well as after 

repeated injections. After an initial injection of 0.5 ~g/kg, serum rHuiL-12 increa­

sed to a mean level of 362 pgjml (Cmaxl- Peak levels of rHuiL-12 were reached at 

a mean of 9.67 hours (Tmax) after administration. 

Table 8. Pharmacokinetic data 

Mean (± SD) pharmacokinetic parameters at dose levels 0,5 ~g/kg and 

1.0 ~g/kg on days 1 and 19 

0.5/0.5 

Unit Day 1 Day 19 

n = 12 n=4 

Tmax h 9.7 (5) 9.5 (2.2) 

TY2 h 9.4 (3.5) 7.9 (1.6) 

Cmax pg/ml 362 (214) 255 (200) 

AUC ng x t/ml 7.4 (5.4)* 3.3 (1.6)* 

* Pvalue: 0.034 
# Pvalue: 0.041 
¥ n = 1 

Cmax: maximum plasma concentration 
T max: time to maximum concentration 

1.0/1.0 

Day 1 Day 19 

n=4 n=2 

17 (7) 4 (0) 

12.1 (3.6) 4.9 (-)' 

1131 (1051) 376 (49) 

31.8 (22.3) # 6 (2.4)' 

AUC: Area under the plasma concentration-time curve extrapolated to infinity 
Tv,: terminal disposition half life 

The mean half life (T,h) of rHull-12 was 9.36 hours. Mean Cmax, Tmax and T,h 

for repeated administrations at the 0,5 ~g/kg dose level did not differ 

significantly from the results after the initial injection. However, after repeated 

dosing of rHuiL-12, a considerable decrease of 55% in serum AUC was observed. 

The mean AUC of 7.43 ng x h/ml after the initial injection dropped to a mean 

AUC of 3.33 ng x h/ml after the last injection of the first cycle of repeated 

administration. This difference was highly significant (p=0.034). After an initial 

injection of 1.0 ~g/kg, mean Cmax was 1131 pg/ml, with a mean Tmax of 17 hours 

and a mean Tv, of 12.1 hours. These values did not differ significantly when 

measured after repeated injections. However, at this dose level, a significant 

decrease of 80% in serum AUC could be demonstrated as well, when comparing 
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the AUC after repeated injections with the AUC after the initial injection 

(p;0.041). In none of the patients could the development of antibodies to rHu­

IL-12 be detected during treatment. 

Discussion 

The primary objective of this Phase I study was to define the MTD of an initial 

single s.c. administration of rHuiL12 and of subsequent repeated doses and to 

study pharmacokinetics. The MTD of the initial single injection was 0.5 !!g/kg, 

whereas the MTD of the repeated administrations was 1.0 !!g/kg. DLTs of the 

single injection consisted of fever, perivasculitis of the skin and leucopenia. DLTs 

of repeated injections were progressive fatigue and deterioration of performance 

status, mental depression/ nausea, vomiting and leucopenia. 

The MTDs are comparable with those reported in other Phase I studies 

[Motzer et al, 1998; Atkins et al, 1997]. In a trial that compared a fixed, s.c., 

once a week dose scheme with an up-titration schedule of IL-12, the MTD's were 

1.0 and 1.5 !!g/kg, respectively and DLTs were elevation of transaminase 

concentration, pulmonary toxicity and leucopenia [Motzer et al, 1998]. In 

another trial, with IL-12 administered by i.v. injection for 5 days a week, after an 

initial injection 2 weeks earlier, DLT consisted of liver function abnormalities and 

oral mucositis and MTD was 0.5 !!g/kg [Atkins et al, 1997]. In contrast, we did 

not encounter hepatotoxicity as a dose limiting adverse event. 

The toxicity profile that we observed resembles that encountered in other studies 

[Motzer et al, 1998; Atkins et al, 1997; Bajetta et al, 1998], but two patients 

suffered side effects not earlier described in association with IL-12 therapy. One 

patient, who had no psychiatric history, experienced mental depression, 

necessitating antidepressive medication. Although similar complaints have not 

been attributed to treatment with IL-12 thusfar, the use of other cytokines, such 

as IL-2 [Denicoff et al, 1987] and IFN-a [Renault et al, 1987], has induced 

mental depression and a variety of other neuropsychiatric complaints. Another 

patient developed erythema of the skin and histological examination showed a 

perivasculitis. In a pilot study at 0.5 ~g/kg, a skin rash was observed in 2 

patients, for whom no biopsies were available [Bajetta et al, 1998]. Extreme 

progressive fatigue with severe deterioration of performance status was dose 

limiting for all patients treated at 1.25 ~g/kg. Fatigue was not described as dose 

limiting in other Phase I studies. It was however a consistent observation in 

murine and primate models [Bree et al, 1994; Coughlin et al, 1997]. 
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Furthermore, in an early terminated Phase II study, one third of patients suffered 

grade 3 to 4 fatigue [Leonard et al, 1997]. 

We observed a reduction of 55 to 80% of the mean AUC when repeated 

injections of IL-12 were compared with the initial injection at the same dose 

level. This was accompanied by reduction of side effects and resultant increase of 

the MTD. Motzer [Motzer et al, 1998] observed an AUC after up-titration dose 

escalation that was lower than the AUC of the first injection at the same dose. 

We could not attribute the decrease of the AUC with repeated injections to 

inhibited resorption or greater clearance from the peripheral blood of free IL-12, 

because T mox and T, did not change significantly. Neither did we observe the 

development of IL-12 antibodies. However, a possible explanation, which we 

have not investigated, would be that concentrations of soluble IL-12 receptors 

increase in the course of IL-12 treatment. IL-12 has been shown to upregulate 

its own receptors in peripheral blood CD56+ NK cells [Naume et al, 1993a]. Also, 

IL-12 enhances the expression of mRNA transcripts of one of the subunits of the 

IL-12 receptor in naive T-cells [Rogge et al, 1997]. For other cytokines, a 

negative feedback mechanism operates at persistent high cytokine levels, by the 

increased release of soluble cytokine receptor fragments that inhibit the effects 

of the cytokines. The eventual existence of such a mechanism in IL-12 requires 

additional research. 

Recently, it was shown in humans that the insertion of a treatment free 

period of a week after the first administration of IL-12 reduces the toxicity of 

subsequent injections [Leonard et al, 1997; Cohen, 1995]. In a study that used a 

dose of IL-12 that was previously well tolerated in a schedule that was identical 

except for the omission of a treatment free period after the first dose, severe 

toxicity and deaths occurred and necessitated early cessation of the study 

[Atkins et al, 1997; Leonard et al, 1997]. Subsequently it was shown in murine 

and primate models that a single injection of IL-12 before consecutive daily 

dosing protected the animals from toxicity and mortality and was accompanied 

by reduced IFN-y levels [Coughlin et al, 1997; Leonard et al, 1997; Sacco et al, 

1997]. Reduced IFN-y production seems an important feature of the down­

regulation of the toxic effects of ll-12 in the course of treatment [Sacco et al, 

1997]. Many of the side effects that accompany Il-12 therapy are considered to 

be IFNI' dependent because they are also encountered in studies with IFN-y 

[Quesada, 1995; Thompson et al, 1987]. In a pilot study of s.c. IL-12, 0.5 

J.Lg/kg/week, a decrease of IFN-y peak levels was demonstrated with subsequent 

injections [Bajetta et al, 1998]. Although Atkins et al report higher IFNI' peak 

levels during the first 5-day treatment course than after the initial dose, peak 
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levels thereafter declined during subsequent cycles [Atkins et al, 1997]. IL-10 

may be another cytokine that contributes to the counter regulation of the 

biological effects of IL-12. We have observed a decrease of IFN-y peak levels 

together with increased levels of IL-10 in the course of treatment [Portielje et al, 

2002a]. 

Our results raise the question whether the anti-tumor activity of IL-12 is 

downregulated in the course of treatment as well. An unfortunate correlation 

may exist between IL-12 induced toxicity and anti-tumor efficacy. 

Antibody neutralization of endogeneous IFN-y was shown to suppress 

antitumor effectiveness of IL-12 in murine models. Therefore, part of the anti­

tumor effects of IL-12 seems due to induction of IFN-y. However, exogeneous 

administration of IFN-y is not as effective as IL-12 [Nasta Ia et al, 1994; Fujiwara 

et al, 1996; Coughlin et al, 1995]. Additionally, it was shown in an animal model 

that giving a single dose of IL-12, a week prior to daily administration, did 

diminish IFN-y induction and toxic effects but left the anti-tumor activity largely 

unaffected [Coughlin et al, 1997]. 

In conclusion, the s.c. administration of rHuiL-12 as an initial injection at a 

dose of 0.5 ~g/kg, followed after a week rest by repeated injections at a dose of 

1.0 ~g/kg, 3 times a week, was well tolerated. A decrease of toxicities and a 

reduction in the AUC of IL-12 was observed with repeated injections. 
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Abstract 

Repeated administrations of recombinant human IL-12 (rHuiL-12) to cancer 

patients is characterized by a reduction of side effects during treatment. 

Induction of IFN-y, considered a key mediator of anti-tumor effects of IL-12, is 

known to decline upon repeated administrations. We studied whether other 

immunological effects of rHulL-12 are tapered in the course of treatment. 

In a phase I study of 26 patients with advanced renal cell cancer, rHulL-12 

was administered s.c. on day 1, followed by 7 days rest and 6 injections 

administered over a 2-week time period. Plasma concentrations of various 

cytokines were monitored, as well as absolute counts of circulating leukocyte and 

lymphocyte subsets. 

The first injection of IL-12 was accompanied by rapid, transient and dose 

dependent increments of plasma levels IFN-y, TNF-a, IL-10, IL-6, IL-8, but not 

IL-4, as well as rapid, transient and dose dependent reductions of lymphocyte, 

monocyte and neutrophil counts. The major lymphocyte subsets, i.e., CD4+ and 

CDS+ T cells, 6 cells and NK cells, followed this pattern. Upon repeated rHuiL-12 

injections, IL-10 concentrations increased further, whilst the transient 

increments of IFN-y, TNF-a, IL-6 and IL-8 concentrations, as well as the 

fluctuations of the leukocyte subset counts were tapered. Dose escalation of IL-

12 within clinically tolerable margins did not reduce the decline of these 

immunological effects. 

Conclusion: Induction of pro-inflammatory cytokines and associated 

fluctuations in leucocyte subset counts decrease upon repeated administrations 

of rHuiL-12. The steady increment of IL-10 plasma levels may mediate the 

observed down-regulation of clinical and immunological effects. 
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Introduction 

Interleukin 12 (IL-12) is a cytokine with an important function in the 

regulation of the cell-mediated immune response. In animal and in vitro models, 

IL-12 stimulates CD4+ Th-1 responses and promotes the proliferation and 

activation of natural killer (NK) cells and stimulates them to produce interferon­

gamma (IFN-y) [Trinchieri, 1995]. IL-12 also stimulates antigen specific CDS+ T 

cell responses [Mortarini et al, 2000; Curtsinger et al, 1999]. Additionally, IL-12 

has anti-angiogenic properties [Gee et al, 1999] and a direct growth inhibitory 

effect on tumor cells [Su et al, 2001]. The promising anti-tumor effects that were 

observed in murine and non-human primate models [Brunda et al, 1993] 

prompted clinical studies in patients with cancer. Efficacy studies of recombinant 

human IL-12 (rHuiL-12) have now been performed in patients with ovarian 

cancer and renal cell cancer, but anti-tumor responses have been disappointing 

[Motzer et al, 2001; Hurteau et al, 2001]. During Phase I testing of recombinant 

human IL-12, we and others have observed a decrease of side effects upon 

repeated administrations in conjunction with a reduction of IFN-')' release 

[Portielje et al, 1999; Coughlin et al, 1997; Leonard et al, 1997; Sacco et al, 

1997;]. Because IFN-y is considered to be a key mediator of anti-tumor effects of 

IL-12 [Fujiwara et al; 1997], the down-regulation of IFN-y release observed upon 

repeated IL-12 administrations may be related to the lack of anti-tumor effects 

of IL-12. 

Here we assessed whether or not the down-regulation of IFN-y production 

that occurs upon repeated rHuiL-12 administrations: (a) comprised other 

immunological effects, (b) was accompanied by up-regulation of an inhibitory 

immune regulatory mechanism or cytokine, and (c) could be prevented by dose 

escalation of rHuiL-12. To this end, we studied the in vivo effects of rHuiL-12 in 

26 patients with advanced renal cell cancer, treated in a phase I study [Portielje 

et al, 1999]. We studied: (a) plasma levels of cytokines: IFN-y, TNF-o:, IL-10, IL­

S, IL-6 and IL-4; (b) absolute numbers of circulating neutrophils, lymphocytes 

and monocytes, and (c) the major lymphocyte subsets: CD4+ and CDS+ T cells, 

B cells and NK cells. We compared the effects of the first rHulL-12 dose with 

effects of subsequent repeated administrations at the same or escalated doses. 
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Patients and Methods 

Study design 

We studied 26 patients with locally advanced or metastatic renal cell cancer 

who participated in an open-label, non-randomized phase I dose escalation trial. 

This trial was carried out in the Rotterdam and Mainz cancer centers to evaluate 

the safety and tolerability of an initial single s.c. injection of rHuiL-12, followed 

by repeated injections. Patients had a median age of 56 years (range 41 to 70 

years). They had not received more than one previous immunotherapeutic 

intervention and all former therapies were terminated at least 6 weeks prior to 

start of treatment with rHulL-12. Inclusion criteria were a World Health 

Organization (WHO) performance score of 0 or 1 and adequate hematological, 

renal, hepatic, cardiovascular and pulmonary functions. None of the patients 

received systemic corticosteroid therapy. All patients had given written informed 

consent. 
RHuiL-12 (Ro 24-7472) was supplied by Hoffmann-La Roche (Nutley, N.J.) 

and administered by s.c. injections. On day 1 a single injection of rHuiL-12 was 

given, followed by an observation period of 7 days. Subsequently, on day 8, a 2-

week cycle was started, with 3 injections per week. Immuno-modulatory effects 

of the first administration of rHu!L-12 were studied in 26 patients after a dose of 

0.1 ~g/kg (n~3), 0.5 ~g/kg (n=19) or 1.0 ~g/kg (n~4). The immunological 

effects of repeated injections were studied in 18 patients who received all 7 

injections each. Twelve of these patients received the same dose of rHuiL-12 for 

the initial as well as the repeated injections: 0.1 ~g/kg (n=3), 0.5 ~g/kg (n~7) or 

1.0 ~g/kg (n~2). The remaining 6 patients started with an initial dose of 0.5 

~g/kg rHuiL-12 and repeated injections were administered at a dose of 1.0 ~g/kg 

(n=4) or 1.25 ~g/kg (n=2). 

Cytokines 

EDTA-anticoagulated venous blood samples for measurement of cytokines 

were obtained directly before and 4, 8, 12, 24, 48 and 72 hours after the first 

and seventh administration of rHuiL-12. In 12 patients blood was also obtained 

96 and 168 hours after the first injection. Plasma was obtained after 

centrifugation of blood for 10 minutes at 1300g. Plasma samples were stored at 

-70°C until tested. Serum concentrations of bio-active IL-12 were measured by a 

method of antibody capture followed by a cell proliferation assay with a lower 

limit of detection of 50 pg/ml [Motzer et al, 1998]. IFN-y, TN F-a, IL-10, IL-8, and 

IL-6 concentrations were determined with commercially available enzyme 
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amplified sensitivity immunoassays (Medgenix EASIA, Biosource Europe, Fleurus, 

Belgium). The lower limits of detection of the assays were: IFN""')': 0.03 IU/ml; 

TNF-a: 3 pg(ml; IL-10: 1 pg(ml; IL-S: 1 pg(ml; IL-6: 2 pg/ml and IL-4: 0.2 

pg/ml. 

Determination of absolute numbers of peripheral-blood leukocyte subsets 

Blood samples for determination of absolute numbers of peripheral blood 

leukocyte subsets were obtained from 22 patients after an initial dose of 0.1 

)lg/kg (n~3), 0.5 Jlg/kg (n~15) or 1.0 )lg/kg (n~4). Samples were obtained 

directly before and 1, 2, 3, 4 and 7 days after the first administration of rHu!L-

12, before every subsequent administration, and 7 days after the last 

administration. Leukocyte concentrations and differential counts were 

determined in EDTA anticoagulated blood samples using a Technicon H1 

automated cell counter (Technicon, Tarrytown, NY). 

Lymphocyte Immunophenotyping 

Immunophenotyping was performed on blood specimens from 9 patients. All 

patients studied received an initial injection of 0.5 )lg/kg rHulL-12. The repeated 

injections were dosed at 0.5 )lg/kg (n~4), 1.0 Jl9/kg (n~3) or 1.25 )lg/kg (n~2). 

Heparinized venous blood samples for immunophenotyping were obtained 

directly before (day 0) and one day after the first administration (day 1), and 

directly before (day 19) and one week after (day 26) the last administration of 

rHu!L-12. For immunostaining the erythrocytes were lysed by ammonium­

chloride. The remaining leukocytes were washed and stained using the following 

mixtures of monoclonal antibodies (mAb) conjugated either with fluorescein 

isothiocyanate (FITC) or phycoerythrin (PE): CD45 FITC + CD14 PE; CD3 FITC + 
CD16 PE + CD56 PE; CD3 FITC + CD4 PE; CD3 me + CDS PE; CD19 PE. 

Isotype control mAb (mouse IgG2, FITC, mouse IgG1 me and mouse IgG1 PE) 

were used to visualize non-specific antibody binding. The CDS PE mAb was 

obtained from DAKO (Giostrup, Denmark). All other mAbs were purchased from 

BD Biosciences (San Jose, CA). Sample processing and flow cytometry were 

performed as described elsewhere [Gratama et al, 1996]. 

Statistical analyses 

To test differences for any parameter between paired samples, for statistical 

significance, two-tailed paired Student's t-tests were performed. To test 

differences for any parameter between non-paired samples, two-tailed non-



• Immunological effects of repeated IL-12 injections • 41 

paired Student's t-tests were performed. P values <0.05 were considered 

statistically significant. 

Results 

Cytokines 

The first administration of rHull-12 was followed by increments in plasma 

concentrations of IFN-y, TNF-a, IL-6, IL-8 and IL-10, whereas virtually no 

elevation of IL-4 concentrations was observed (Figure 1). Table 1 shows the 

baseline and peak levels of cytokines as measured in individual patients during 7 

days following the first rHull-12 injection, stratified by rHuiL-12 dose level. The 

pharmacokinetics of rHuiL-12 in this study has been reported previously 

[Portielje et al, 1999]. Samples from 25 patients were available for IL-12 

assessments. 

After 0.5 ~g/kg rHuiL-12, increments of plasma IL-12 were observed in 10 

out of 18 patients and after 1.0 ~g/kg rHuiL-12, increments were observed in all 

four patients. At the lowest dose, i.e. 0.1 ~g/kg rHull-12, plasma concentrations 

of !L-12 remained undetectable in all 3 patients. After 0.5 ~g/kg, IL-12 became 

detectable in 10 of 18 patients and after 1.0 ~g/kg, ll-12 became detectable in 

all 4 patients. 

The initial induction of IFN-y, TN F-a, ll-6, IL-8 and ll-10 occurred in a rHull-

12 dose-dependent way. Following administration of the lowest dose, i.e. 0.1 

~g/kg, only a significant increment of TN F-a plasma levels was observed. Upon 

administration of 0.5 ~g/kg, peak levels of !FN-y, TNF-a, !L-6, IL-8 and ll-10 

were significantly higher than the corresponding levels prior to therapy. At the 

highest rHull-12 dose level, i.e. 1.0 ~g/kg, peak levels of IFN-y, TN F-a, IL-8 and 

IL-10 were even higher than those observed after administration of 0.5 ~g/kg. Of 

note, no increments of IL -4 plasma levels were observed at the 0.1 and 0.5 

~g/kg dose levels, whilst these became just detectable within 24 h after 

administration of 1.0 ~g/kg rHuiL-12. 

The first rHuil-12 injection resulted in increments of plasma concentrations 

of IFN-y and TNF-a in all patients, whereas increments of IL-10 were 

demonstrated at the 0.1 ~g/kg dose level in 1 of 3 patients (33%), at the 0.5 

~g/kg dose level in 11 out of 19 patients (58%), and at the 1.0 ~g/kg dose level 

in all 4 patients (100%). The first rHu!L-12 injection resulted in increments of IL-

8 in all but 5 patients, 3 of whom already had elevated baseline levels of IL-8 

(between 26 and 58 pg/ml). 
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Figure 1. Plasma concentrations of IFN-y, IL-10, TN F-a, n.-8, Il-6, Il-4 and n.-
12 after the first s.c. injection of IL-12. 
Median plasma concentrations of IFN-,; IL-10, TNF-a, IL-8, IL-6 and IL-4 

during a period of seven days after the first s.c. administration of 0.1 pgjkg 

rHuiL-12 (•, 3 patients), 0.5 pg/kg (0, 19 patients) or 1.0 pg/kg (A, 4 

patients). Dotted lines indicate the upper limit of the normal range. 



Table 1. Baseline and maximum cytokine concentrations after the first subcutaneous administration of rHuiL-12 

0.1J19/kg o.s 1,9;k9 1.0 pgjkg 

(n=3) (n=19) (n=4) 

Baseline Maximum Baseline Maximum Baseline Maximum 
Median Range Median Range Median Range Median Range Median Range Median Range 

IL-12 (pg/ml) <50 <50 <50" 298 ** 116- 830 <50 548 475-2630 

IFN-y {IU/ml) <0.03 <0.03- 0.4 2.6° 1.4- 2.9 <0.03 <0.03 - 1.4 13 .. 1.5 - 41 0.4 <0.03- 0.5 55 12 - 184 

IL-10(pg/ml) <1 # 15 <1' <1 - 6 22 ** 4- 49 <1 37. 27- 81 

TNF-cx(pg/ml) 26 21-40 84' 73 - 108 25 8- 83 95 n 60 - 143 25 7- 33 168' 149 - 223 

IL-8 (pg/ml) 5 <1 - 15 24 11 -53 11' <1 - 35 38' 14 - 223 < 1 <1 - 8 53' 32- 87 

IL-6 (pg/ml) 6' <2- 10 25 22- 27 16 ' <2- 79 82 ** 17 - 280 <2 83 * 42 - 137 

* = p< 0.05, ** = p<0.001; Paired comparison between maximum levels and baseline levels. 

As described in the results, induction of the various cytokines did not occur in all patients. In this table only data from patients with 

Increments of cytokine concentrations post IL-12 are shown. Symbols denote the numbers of patients in which Increments of 

cytokine plasma levels have been observed: # n=1; § n= 14; £ n=13; ¥ n=2; * n=16; ~ n=10. 
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Increments of IL-6 levels were observed in all but 4 patients, 1 of whom 

already had a strongly elevated base-line level of 91 pg/ml. IL-6 plasma 

concentrations were the first to peak at a median of 12 hours post injection 

(range 8-72 hours in individual patients), followed at 24 hours by IFN-y (range 

12-72 hours) and at 48 hours by TNF-a (range 24-72 hours), IL-10 (range 8-72 

hours) and IL-8 (range 8-168 hours) (Figure 1). 

Thereafter, levels of TNF-a, IFN-y, IL-10, IL-8 and IL-6 gradually declined. 

IFN-y and IL-10 became undetectable at 7 days after rHu!L-12 injection, whilst 

TN F-a, IL-6 and IL-8 remained detectable around the upper limits of their normal 

ranges. 

Comparison of the effects of the first and seventh injection of rHuiL-12 on 

cytokine plasma levels revealed that IL-10 still showed a significant increment 

after 7 injections at the same dose level (i.e., 0.5 ~g/kg; Figure 2, Panels A and 

B). In contrast, IFN-y showed only a marginally significant increment after the 

seventh rHuiL-12 injection (Panels G and H), whilst TN F-a (Panels D and E), IL-8 

and IL-6 (data not shown) showed hardly any increments as compared with the 

corresponding increments after the first injection of the same dose of rHuiL-12. 

The reduced increments of plasma levels of these cytokines were not only 

observed at the 0.5 ~g/kg dose level, but also at the 0.1 and 1.0 ~g/kg dose 

levels (results not shown). 

The effect of IL-12 dose escalation was further studied in 6 patients who 

received, after the initial injection of 0.5 ~g/kg rHuiL-12, subsequent injections 

at doses of 1.0 or 1.25 ~g/kg rHuiL-12. These dose escalations resulted in an 

even stronger increment of IL-10 plasma levels as compared to the 0.5 ~g/kg 

dose level (Figure 2, Panels A to C). However, increments of IFN-y (Panels G to 

I), TN F-a (Panels D to F), IL-6 and IL-8 plasma levels (data not shown) remained 

clearly less after the seventh than after the first rHu!L-12 injection. 

Leukocyte subsets 

The administration of rHuiL-12 was followed by a rapid and transient 

decrease of absolute numbers of lymphocytes, monocytes and neutrophils in the 

peripheral blood (figure 3). Table 2 shows the baseline values and nadirs of these 

cell counts after the first injection of rHuiL-12. The reduction of lymphocytes, 

monocytes and neutrophils occurred in a rHuiL-12 dose dependent way. The 

lymphocytes reached their nadir at 1 to 2 days after rHu!L-12 administration, 

followed by the monocytes at 2 to 3 days, and the neutrophils at 3 to 4 days. At 

the 0.1 ~g/kg dose level, all leucocyte subsets had returned to their baseline 

levels within 7 days. 
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Figure 2. Cytoklne concentrations after the first injection of IL-12 (A), compared to concentrations after the seventh 
injection at the same (B), or escalated dose of IL-12 (C). Median plasma concentrations of IL-10, TNF-a and IFN-y 
were measured during a period of 7 days after the first and after the seventh administration of rHuiL-12. 13 Patients 
received a first s.c. injection of 0,5 pg/kg (panels A, D and G), Subsequently, 7 of them received, starting on day 8, repeated 
administrations at the same dose level (panels B, E and H) and 6 of them received subsequent administrations at dose levels 
1.0 or 1.25 pg/kg rHuiL-12 (panel C, F and I). Significant differences between concentrations before and after IL-12 injection 
are Indicated by an asterlx (p< 0.05, paired samples). Dotted lines Indicate the upper limit of the normal range. 
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Figure 3. leukocyte sub-populations after repeated administrations of IL-12. 

Absolute numbers of lymphocytes, monocytes and neutrophils in the 

peripheral blood during 26-days following the first rHuiL-12 injection. Arrows 

depict rHuiL-12 administrations. Patients were treated with multiple doses of 

0.1 pg/kg (~: 3 patients), 0.5 pg/kg (0: 7 patients) or 1.0 pgjkg rHuiL-12 

(A: 2 patients). For each time point, the median result of each dose group is 

shown. Dotted lines indicate the lower and upper limits of the normal range. 



Table 2. Leukocyte subsets after the first subcutaneous administration of rHuiL-12 

O.lpg/kg 0.5pg/kg 
(n=3) (n=15) 

Baseline"' Nadir"' Baseline'¥ 
cell count cell count 

Median Range Median Range Median Range 

Lymphocytes 1.8 1.5- 1.9 0.8 .. 0.5 - 0.8 1.3 0.5- 2.9 

Neutrophlls 4.0 3.5-4.1 0.9 4.2 2.7 - 6.8 

Monocytes 0.53 0.46 - 0.66 0.21 0.17-0.38 0.30 0.17- 0.58 

* = p< 0.05; ** = p<0.001; nadirs compared to paired baseline counts. 

'I' Absolute numbers shown are x 109 I L 

Nadir'~' 

Median Range 

o.s·· 0.1 - 1.1 

1.5 .. 0.7- 4.7 

0.15" 0.03- 0.43 

1.0 pg/kg 
(n=4) 

Basellne9 Nadir"' 
cell count 

Median Range Median Range 

1.4 1.0 - 2.3 0.3· 0.2 - 0.5 

3.7 2.9 - 5.3 1.4' 1.1- 1.7 

0.35 0.29- 0.5 0.11' 0.02-0.16 
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However, at the 0.5 and 1.0 !19/kg dose levels, neutrophils were still below 

baseline in 18 of 19 patients at 7 days post injection, whilst monocytes and 

lymphocytes were still below baseline levels in 10 out of 19 patients at that time 

(data not shown). 

Repeated injections of rHuiL-12 had only minor effects on the numbers of 

circulating leucocyte subsets as compared to the first injection. 

The subsequent injections at the 0.1 !19/kg dose level had no significant 

effects. At the 0.5 and 1.0 !J.g/kg dose levels, neutrophil counts were still below 

baseline levels, yet within normal ranges at 48 h after the 6th rHuiL-12 injection. 

However, at the highest dose levels, i.e. 1.0 and 1.25 !J.g/kg, a marked 

lymphopenia persisted during the entire period of follow-up (data not shown). 

CD3-, 16+ and/or 56+ NK lymphocytes CD19+ B lymphocytes 
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Figure 4. lymphocyte sub-populations after repeated administrations of Il-12. 
Absolute numbers of natural killer cells (CD3-,16+ and/or 56+), 8-/ymphocytes 
(CD19+), T-he/per cells (CD3+,4+) and cytotoxic T-ee/Is (CD3+,8+) during 
26-days following the first rHuiL-12 injection. Arrows depict rHuiL-12 
administrations. Patients either received a first injection of 0.5 pg/kg and 
subsequent injections either at the same dose level {n=4) or higher dose level 
(1.0 pg/kg (n=3); 1.25 pg/kg (n=2)). For each time point, the median result 
is shown. Dotted lines indicate the lower and (for CD3+, 8+ T cells) upper 
limits of the normal range. Significant differences between base-line cefl 
counts and cell counts after IL-12 injection are indicated by an asterix (p< 
0.05, paired samples). 
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Lymphocyte subsets 

Figure 4 shows the absolute numbers of NK lymphocytes (CD3-, 16+ and/or 

56+), B lymphocytes (CD19+), T-helper cells (CD3+, 4+) and cytotoxic T cells 

(CD3+, 8+) before and after treatment with rl-luil-12. 

Prior to treatment, all lymphocyte subsets were in the normal range. The first 

administration of 0.5 ~g/kg rHuil-12 induced significant reductions of all 

lymphocyte subset counts to levels below their normal ranges. 

At 24 h after rHuil-12 injection, NK cells had decreased from a median of 

123 (range 38-314) to 16 (3-42) cells per mm3 B cells from a median of 90 

(range 21-240) to 36 (3-178) cells per mm3 T-helper cells from a median of 569 

(range 66-1262) to 219 (22-637) cells per mm3 and cytotoxic T cells from a 

median of 193 (range 240-854) to 59 (8-261) cells per mm3 Immediately before 

and 7 days after the last injection of rHuiL-12, NK and cytotoxic T cells had 

returned to their baseline levels, whereas T-helper cell and, in particular, B-cell 

counts were still below these levels. 

Discussion 

Clinical side effects and IFN-y induction decrease in the course of repeated 

IL-12 administrations to humans [Portielje et al, 1999; Leonard et al, 1997; 

Robertson et al, 1999; Bajetta et al, 1998; Rakhit et al, 1999; Haicheur et al, 

2000; Gollob et al, 2000]. Here, we show that other immunological effects of Il-

12 are also down-regulated in the course of systemic Il-12 treatment, such as 

declining TNF-o:, IL-8 and IL-6 responses and diminishing effects on leucocyte 

subsets, and that maintenance of detectable concentrations of IFN-y, as well as 

TNF-a, IL-8 and Il-6, can not be achieved by dose escalation of Il-12. A 

previous phase I study has shown an association between antitumor response 

and the maintenance of IFN-y concentrations after repeated injections [Gollob et 

al, 2000]. These combined results indicate that a generalized down-regulation of 

immunological effects, possibly including anti-tumor effects, occurs upon 

repeated administrations of ll-12. 

We showed that the plasma levels of the inhibitory cytokine Il-10 remained 

elevated or further increased upon repeated ll-12 injections. This observation 

has also been made in other clinical trials [Bajetta et al, 1998; Haicheur et al, 

2000; Zeuzem et al, 2000]. An important role has been proposed for IL-10 in the 

down-regulation of IFN-y production, as anti-IL-10 antibodies neutralized the 
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down-regulation of side effects upon repeated Il-12 administrations to mice, and 

Il-10 inhibited Il-12-mediated production of IFN-y by human lymphoid cells 

[Sacco et al, 1997; Bajetta et al, 1998; Haicheur et al, 2000; D'Andrea et al, 

1993; Pai et al, 1998]. Based on our results we suggest that Il-10 down­

regulates the Il-12-mediated production of other cytokines as well. Indeed, in 
vitro studies have shown that Il-10 inhibits TNF-a production by lymphocytes 

[D'Andrea et al, 1993], Il-6 and IL-8 production by monocytes and macro phages 

[Fiorentino et al, 1991; Hodge-Dufour et al, 1998], and IL-8 production by 

neutrophils [Wang et al, 1994]. In various pathological states, endogenously 

produced IL-10 has an important function in the abrogation of ongoing 

inflammatory responses by inhibiting the effects mediated by endogenously 

produced IL-12 [Meyaard et al, 1996; Van der Poll et al, 1997; De Waal Malefyt 

et al, 1991; Jansen et al, 1996]. Hence, IL-12-induced IL-10 production appears 

to be a protective feedback mechanism. The induction of IL-10 seems to be 

independent of IFN-y as neutralizing anti-IFN-y antibodies had no effect on IL-12 

induced IL-10 synthesis in vitro [Windhagen et al, 1996]. On the other hand, 

TNF-a possibly plays a role in the increased Il-10 production after IL-12 

administration, as it induced high levels of Il-10 mRNA expression and release of 

IL-10 by human peripheral blood monocytes [Wanidworanun et al, 1993]. 

Moreover, TNF-a was shown to inhibit IFN-y-mediated effects on human 

macrophages, and the inhibition of these effects by anti-Il-10 antibodies 

confirmed the intermediate role of Il-10 [Hodge-Dufour et al, 1998]. 

IL-18 is a pleiotropic cytokine that initially was discovered as IFN-y inducing 

factor derived from liver cells [Okamura et al, 1995]. IL-18 synergizes with Il-12 

to stimulate IFN-y production by T cells [Mikallef et al, 1996]. In a phase I study 

of Il-12 to cancer patients, induction of Il-18 and IFN-y were not correlated; 

upon repeated IL-12 administrations, IL-18 induction was sustained, whilst IFN-y 

induction was downregulated [Gollob et al, 2000]. In addition, IL-18 plasma 

levels peaked later than those of IFN-y [Gollob et al, 2000]. Extrapolation of 

these observations to our results would therefore suggest that the kinetics of 

IFN-y plasma levels in our study are independent of IL-18. 

Finally, the downregulation of IL-12-mediated effects upon repeated IL-12 

administration may be due to the specific downregulation of its own signaling 

[Wang et al, 2001]. In vitro, prolonged stimulation ofT cells by IL-12 results in 

depletion of the signal transducer and activator of transcription 4 (STAT4) 

protein. Downregulation of STAT4, a critical IL-12 signaling component, resulted 

in decreased IFN-y production [Wang et al, 2001]. In line with these findings, we 

observed a generalized reduction of biological effects in vivo upon repeated 
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adminstration of IL-12 at doses approximating the maximum tolerated dose 

[Portielje et al, 1999]. 

We have shown that the administration of IL-12 to humans resulted in the 

release of TN F-a, IL-8 and IL-6, in addition to that of IFN-y and IL-10. The dose­

dependent induction of multiple cytokines after the first injection of ll-12 is 

probably a combination of direct and indirect IL-12 mediated effects. Activated T 

and NK cells and, as shown recently, neutrophils, eosinophils and dendritic cells 

[Desai et al, 1992; Collison et al, 1998; Nutku et al, 2001, Nagayama et al, 

2000] express ll-12 receptors and IL-12 potentially mediates the production of 

secondary cytokines by binding to these cell populations. With respect to TN F-a, 

our results are in accordance with previous reports of elevated plasma TNF-a 

concentrations and increased TNF-a mRNA expression in peripheral blood 

mononuclear cells of patients with advanced cancer treated with IL-12 [Ohno et 

al, 2000; Haicheur et al, 2000]. In vitro, IL-12 stimulates the production of TN F­

a by activated T cells and NK cells [Naume et al, 1992; Aste-Amezaga et al, 

1994]. As monoclonal antibodies to TNF-a abrogate IL-12 mediated IFN-y 

production in response to various stimuli in-vitro [D'Andrea et al, 1993; Tripp et 

al, 1993], TNF-a may be an essential co-stimulator of IFN-y production and 

therefore an important intermediate in the anti-tumor effects of IL-12. 

One study has addressed the issue of IL-8 concentrations after IL-12 in 

humans and described inconsistent patterns of stimulation [Bajetta et al, 1998]. 

In contrast, we observed induction of IL-8 in the vast majority of patients. TN F-a 

is a physiological stimulant of IL-8 production in humans [Van der Poll et al, 

1992], and therefore, the induction of IL-8 may be secondary to TN F-a induction 

by rHuiL-12 in our study. Cells from the monocyte and macrophage 

compartment, endothelial cells and neutrophils are among the cells that can be 

stimulated by TN F-a to produce ll-8 [Baggiolini et al, 2000; Ethuin et al, 2001]. 

Alternatively, IL-8 induction may be a direct effect of rHuiL-12, as this cytokine 

was shown to induce the production of IL-8 from purified NK-cells [Naume et al, 

1993b]. 

We also demonstrated that IL-6 peaks within 12 hours after s.c. IL-12 

administration. Previous studies that addressed IL-6 reported large variation of 

plasma concentrations among patients and lack of IL-12 dose dependency 

[Bajetta et al, 1998; Ohno et al, 2000]. IL-6 peak levels may have been missed 

in these studies as the the first blood samples were not taken until 24 hours after 

ll-12 administration. Although TNF-a can stimulate IL-6 induction in humans 

[Van Snick, 1990], it probably had no major impact on IL-6 production in our 

patients, since IL-6 already reached peak levels 36 hours before TNF-a. Rather, 
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stimulation of IL-6 production may be directly mediated by IL-12, as binding of 

IL-12 to its receptors on dendritic cells has been shown to stimulate the 

production of IFN-y, TNF-a and IL-6 at the transcription level [Nagayama et al, 

2000]. IL-6 may also be considered as a natural feedback inhibitor of IL-12 

production, as IL-6 inhibits both T-cell dependent and independent induction of 

IL-12 production in humans [Takenaka et al, 1997]. 

The transient reduction of lymphocyte, monocyte and neutrophil counts 

following the first IL-12 injection confirms previous observations [Robertson et 

al, 1999; Bajetta et al, 1998; Atkins et al, 1997]. We consider this pattern to 

reflect the transient redistribution of leukocytes, which adhere to endothelium 

and migrate into the tissues. Indeed, postmortem examination of animals treated 

with IL-12 showed massive infiltrates of leucocytes in lymph nodes, lungs, liver 

and spleen [Car et al, 1999]. The accumulation of NK and T cells in tumor 

nodules after IL-12 administration seems relevant to explain the putative anti­

tumor effects of IL-12 [Mortarini et al, 2000; Allavena et al, 1994; Fogler et al, 

1998]. Although in-vitro studies have demonstrated that IL-12 directly promotes 

interactions between endothelial cells and T cells, NK cells and neutrophils 

[AIIavena et al, 1994; Colantonio et al, 1999], secondary cytokines such as IFN­

y, TNF-a and IL-8 may also contribute to the redistribution of leukocytes, as 

these cytokines enhance the expression of a wide range of molecules that 

regulate leukocyte adhesion and migration [Male, 1995]. In addition, chemokines 

induced by IFN-y, such as IFN-y-inducible protein 10 (IP-10) and monokine 

induced by IFN-y (MIG) have potent chemotactic effects on T cells and may have 

contributed to their distribution [Haicheur et al, 2000]. As with IFN-y, induction 

of these chemokines declines upon repeated IL-12 administrations [Haicheur et 

al, 2000]. 

In patients with advanced melanoma treated with s.c. IL-12, serum levels of 

the soluble endothelial adhesion molecules E-selectin, vascular cell adhesion 

molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 were 

transiently increased after IL-12 administration [Mortarini et al, 2000]. In 

parallel, the expression of their respective ligands, i.e., cutaneous lymphocyte 

antigen (CLA), very late antigen (VLA)-4 and lymphocyte function associated 

antigen (LFA)-1, were increased on circulating T cells. Thus, the enhanced 

expression of both receptors and ligands on endothelial cells and T lymphocytes 

may have promoted the marked infiltration of the melanoma lesions by tumor­

specific CDS+ T cells observed in this study [Mortarini et al, 2000]. 

The development of IL-12 as a cancer therapeutic has followed the classical 

approach, starting with phase I studies, followed by efficacy studies with the 
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maximum tolerated dose that was previously defined. Our results indicate that 

the disappointing anti-tumor effects observed in phase II studies are possibly 

due to a generalized reduction of biological effects that occurs when Il-12 is 

repeatedly administered at doses and in schedules that approximate the 

maximum tolerated dose. 

We conclude that the systemic administration of Il-12 results in direct and 

indirect induction of multiple cytokines. Upon repeated Il-12 administration, 

levels of pro-inflammatory cytokines diminish as well as effects on peripheral 

blood leucocyte subsets, while Il-10 production increases and likely contributes 

to the down-regulation. Dose escalation of ll-12, within tolerable margins, does 

not prevent the down-regulation of immunological effects. At present, Il-12 is 

being studied as an adjuvant for cancer vaccination. The present study indicates 

that the effects of ll-12 are down regulated when it is administered at dose levels 

near the maximum tolerated dose. Therefore, further investigations are required 

to define the dose and schedule of ll-12 with optimal immunological effects in 

the vaccination setting. 
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Abstract 

Interleukin 12 has potential efficacy in malignant, infectious and allergic 

diseases. Its side-effects include activation of coagulation and fibrinolysis as 

documented in chimpanzees. We assessed the coagulative and fibrinolytic 

response in 18 patients with renal cell carcinoma after subcutaneous injection of 

0.5 !19/kg recombinant human IL-12. 

Il-12 induced a fibrinolytic response in 17 patients (94%): Plasmin-a2-

antiplasmin complexes (PAPc) increased from 11.8 ± 6.6 nmol/1 (mean± SD) to a 

maximum of 18.8 ± 7.4 nmol/1 at 72 hours. Baseline levels of tissue plasminogen 

activator (tPA) and plasminogen-activator inhibitor-I (PAl) were elevated in eight 

and 14 patients, respectively. tPA Increased from 12.6 ± 5.2 ng/ml to a 

maximum of 19.0 ± 6.7 ng/ml at 72 hours. PAI decreased from 111 ± 69 ng/ml 

to a minimum of 65 ± 53 ng/ml at 8 hours, thereafter remaining below baseline. 

Elevation of PAPc correlated with elevation of tPA and reduction of PAI. 

A coagulative response occurred in nine patients (50%): Thrombin-anti-thrombin 

III complexes increased from 29 ± 53 ng/ml to a maximum of 460 ± 322 ng/ml 

at 12 hours. Patients with and without a coagulative response had similar levels 

of rHull-12, IFN-y or TN F-a. 

Conclusion: IL-12 can activate both fibrinolysis and coagulation in a 

significant proportion of patients with cancer. The time-frame and sequence of 

these activation processes differ from those known for other cytokines. 
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Introduction 

Interleukin 12 (IL-12) is a cytokine with an important function in the 

regulation of the cell-mediated immune response. It stimulates the cellular 

immunity by promoting T-helper 1 responses while inhibiting T-helper 2 deve­

lopment and function and, therefore, may be used to restore dysbalances 

between Th-1 and Th-2 cells as may occur in malignant, infectious or allergic 

diseases [Manetti et al, 1993; Wu et al, 1993; Scott et al, 1993]. Additionally, 

IL-12 can inhibit tumor-associated angiogenesis [Voest et al, 1995; Sgadari et al, 

1996; Coughlin et al, 1998]. In animal models it was demonstrated that IL-12 

affects coagulation and fibrinolysis [Ozmen et al, 1994; Lauw et al, 1999]. In 

mice, IL-12 is an important mediator of the generalized Shwartzman reaction, a 

systemic inflammation with widespread thrombosis and disseminated 

intravascular coagulation [Ozmen et al, 1994]. Several cases of disseminated 

intravascular coagulation were observed after the administration of 5 ~g/kg IL-12 

to chimpanzees with viral hepatitis (personal communication T. Man, Roche). In 

healthy chimpanzees, the intravenous administration of 1 ~g/kg IL-12 induced 

activation of coagulation and fibrinolysis [Lauw et al, 1999]. Whether the 

administration of IL-12 in humans is also associated with changes in coagulation 

or fibrinolysis is unknown. 

An important immune-regulatory effect of IL-12 is the production of IFN"""f by 

T-lymphocytes and natural killer cells and many of the biological effects of IL-12 

therapy in humans are attributed to the induction of this cytokine [Kobayashi et 

al, 1989; Chan et al, 1991]. IFN"""f, in turn, stimulates monocytes and 

macrophages to secrete tumor necrosis factor-alfa (TN F-a) that has been shown 

to activate the common pathway of coagulation in humans [Van der Poll et al, 

1990]. 

To evaluate the involvement of IL-12 on coagulation and fibrinolysis, 

markers of coagulation and fibrinolysis were studied in patients with advanced 

renal cell carcinoma (RCC), treated in a phase I study with subcutaneous 

recombinant human IL-12 (rHuiL-12) at the maximum tolerated dose. 

Additionally, the pharmacokinetics of rHuiL-12 were studied and levels of IFN"""f 

and TN F-a were measured. 
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Materials and Methods 

Patients 

Patients had advanced renal cell cancer and participated in an open label 

non-randomized phase I dose escalation trial carried out in two European cancer 

centers to evaluate the safety and tolerability of an initial single injection of 

rHuiL-12 as well as the safety and tolerability of repeated s.c. injections. Toxicity 

analysis of the phase I study had indicated that 0.5 ~g/kg was the maximum 

tolerated dose of a first s.c. injection of rHuiL-12 [Portielje et al, 1999]. 

Parameters of coagulation and fibrinolysis were studied in 18 patients after the 

first subcutaneous injection of rHuiL-12 at a dose of 0.5 ~g/kg. The group 

consisted of 12 males and 6 females with a mean age of 57 years (range 42-70). 

Patients had a World Health Organization (WHO) performance score of 0 to 1, a 

life expectancy ;, 4 months, adequate hematological status and normal renal, 

hepatic, cardiovascular and pulmonary function. Results of routine coagulation 

assays (prothrombin time and activated partial thromboplastin time) were 

normal. All former therapies were ended at least 6 weeks prior to start of treat­

ment with rHuiL-12. Patients did not use systemic corticosteroids or anti­

coagulant drugs. Patients with major concurrent systemic disease were excluded. 

Patients gave informed consent and the ethics committees of participating 

hospitals approved of the protocol. Recombinant human IL-12 (rHuiL-12, Ro 24-

7472) was supplied by Hoffmann La Roche, Nutley, U.S.A, and administered by 

s.c. injection. All patients received the injection at 8.00 a.m. Acetaminophen was 

prescribed to alleviate fever, headache and myalgia. Metoclopramide was 

prescribed in case of nausea and vomiting. No other medications were given 
routinely. 

Collection of blood 

Blood samples for coagulation and cytokine assays and platelet counts were 

obtained directly before and 4, 8, 12, 24, 48 and 72 hours after the first rHuiL-

12 administration (0.5 ~g/kg subcutaneously). In 12 patients blood was also 

obtained after 96 and 168 hours. Blood was drawn through an indwelling 

intravenous infusion needle (Venflon, 16 gauge). Blood for coagulation assays 

was collected in 5 ml siliconized glass tubes containing 10 mM EDTA, 10 mM 

benzamidine and 100 ~g of soybean trypsin inhibitor (type I-S, Sigma chemicals, 

St Louis, USA) (final concentrations) to prevent activation of the complement 

and contact coagulation system. Plasma was obtained by centrifugation of blood 

for 10 minutes at 1300 g. Plasma samples were stored at -70°C until tested. 
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Cytokines and platelet counts were determined in EDTA anticoagulated plasma. 

Blood samples for measurement of prothrombin time (PT) and activated partial 

thromboplastin time (APTT) were obtained before and 24 and 168 hours after 

rHull-12 injection and collected in siliconized glass tubes containing 0.105 M 

sodium-citrate. 

Coagulation and fibrinolysis assays 

Plasmin-a2-antiplasmin (PAP) complexes, reflecting the activation of 

plasminogen, were measured as parameter of fibrinolysis. PAP complexes were 

determined with a radio-immuno assay described elsewhere in detail [Levi et al, 

1992]. Normal values are less than 7 nmol/1. Antigenic levels of tissue type 

plasminogen (tpA) were measured with a previously described sandwich EUSA 

[Zonneveld et al, 1987]. The results of tPA measurements were related to 

standard curves of recombinant tPA, with normal values for tPA below 11 ng/ml. 

Levels of plasminogen-activator inhibitor-! (PAI-I) were assessed with an EUSA, 

that had been modified from a sandwich type radio-immunoassays and has been 

described elsewhere in detail [Boer et al, 1991]. In short, monoclonal anti-PAI-l 

antibody (mAb CLB-2C8) was used as the coating antibody and biotinylated 

polyclonal rabbit anti-PAI-l antibodies as the conjugate. Results were related to 

a standard curve of human PAI-l and normal values were between 30 and 60 

ng/ml. Thrombin-antithrombin III (TAT) complexes were measured with an 

enzyme linked immunosorbent assay described elsewhere in detail [Boermeester 

et al, 1995]. Normal values in this assay were less than 4 ng/ml. 

PT and APTT were measured with a commercially available kit (PT-fibrinogen 

recombinant and APTT-SP (liquid) kit, Instrumentation laboratory, Barcelona, 

Spain). 

Cytokine assays 

Serum concentrations of bio-active IL-12 are measured by a method of 

antibody capture followed by a cell proliferation assay with a lower limit of 

detection of 50 pg/ml [Motzer et al, 1998]. IFN-y and TN F-a concentrations were 

determined with commercially available enzyme amplified sensitivity 

immunoassays (Medgenic EASIA, Biosource Europe, Fleurus, Belgium). Normal 

values of IFN-y are less than 0.2 IU/ml and normal values of TN F-a are less than 

20 pg/ml. The lower limit of detection of the IFN-y assay is 0.03 IU/ml and the 

lower limit of detection of the TN F-a assay is 3 pg/ml. 
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Pharmacologic data analyses 

Individual plasma concentration-time data of cytokines were analysed by 

non-compartmental methods using the Siphar software package (version 4.0; 

SIMED, Creteil, France). Pharmacodynamic analysis of coagulation and 

fibrinolysis modulation by rHu!L-12 was also performed using the Siphar 

software. Total area under the effect curve (AUEC,0,.1 ) for PAP complexes, tPA, 

PAl and TAT complexes were calculated for each patient using the trapezoidal 

rule. The AUECnet , the area under the effect curve above baseline values, was 

calculated by [AUEC,"'' minus AUECoet ]. The baseline levels of PAP complexes, 

tPA, PAl and TAT complexes were obtained from measured predose levels, 

assuming that baseline values would have been maintained for the duration of 

the study in the absence of rHull-12 administration. 

Relationships between the various AUEC," values and between concentration­

time profiles of PAP complexes, tPA, PAl and TAT complexes were evaluated by 

multiple regression analysis. To test parameter differences for statistical 

significance, a two-tailed unpaired Student's t-test was performed. Probability 

values of less than 0.05 were regarded as statistically significant. All calculations 

were performed using Number Cruncher Statistical System (NCSS, version 5.X; 

Dr. Jerry Hintze, Kayesville, UT, USA. 

Results 

Side effects 

Common rHull-12 related side effects and laboratory abnormalities were 

fever, other flu-like symptoms/ nausea, vomiting, fatigue, anemia, leucopenia, 

and hyponatremia. Liver enzymes increased in 7 patients, the maximum increase 

being 5 times the normal level. A more detailed decription of the clinical side 

effects has been given in our report of the phase I study [Portielje et al, 1999]. 

No hemorrhagic or thrombotic complications occurred within the first week after 

administration of the first dose of rHull-12. 

Plasmin-0'2-antiplasmin (PAP) complexes 

Fourteen patients had elevated PAP complexes before rHull-12 

administration with values ranging from 8.7 to 31 nmol/1 (Table 1). After rHull-

12, PAP complexes increased in 17 patients with individual peak concentrations 

reached between 12 and 168 hours (median 72). 
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Figure 1. The effect of IL-12 on the fibrinolytic and coagulation systems. 

Mean ± standard error of the mean {SEM) plasma concentrations of 

plasmin-a2-antiplasmin complexes {A), tissue plasminogen activator (B), 

plasminogen activator inhibitor-1 (C) and thrombin-anti-thrombin III 

complexes (D) during a period of 168 hours after a single subcutaneous 

injection of 0.5 pg/kg IL-12 in 18 patients with advanced renal cell 

carcinoma. Significant differences between base-line concentrations and 

concentrations after IL-12 injection are indicated by an asterix (p< 0.05). 
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The mean concentration of PAP complexes increased from a baseline level of 

11.8 ± 6.6 nmol/1 to a maximum of 18.8 ± 7.4 nmolfl (p=O.OOS). levels slowly 

declined without returning to baseline within the 7 days period of monitoring. 

Figure 1A shows the mean concentration of PAP complexes after rHuiL-12 

injection. PAP levels remained constant in one patient. 

Tissue plasminogen activator (tPA) and plasminogen-activator inhibitor-! (PAl) 

At baseline, tPA levels were increased in 8 patients (range 12 - 24 ng/ml) 

and PAl levels were elevated in 14 patients (range 64 - 278 ng/ml) (Table 1). 

Seven out of 8 patients with baseline elevated tPA levels also had increased 

baseline PAl levels (Table 1). 

The administration of rHuiL-12 induced an increase of circulating tPA in all 

patients, with individual peak concentrations reached between 48 and 168 hours 

(median 72). The mean concentration of tPA increased from a baseline level of 

12.6 ± 5.2 ng/ml to a maximum of 19.0 ± 6.7 ng/ml (p=O.OOS). Thereafter, 

levels slowly decreased but had not reached baseline at 168 hours. At 168 hours, 

with samples available from 12 patients, mean tPA level was 18.3 ± 10.2 ng/ml 

versus a paired mean level of 11.7 ± 4.0 ng/ml (p=0.059) before therapy. 

Notably, in 6 out of 8 patients with increased baseline tPA levels, tPA initially 

decreased after rHull-12, from a mean baseline concentration of 17.7 ± 3.8 

ng/ml to a minimum 9. 7 ± 3.8 ng/ml, but then started to rise at 4 to 12 hours 

(median 8). 

Table 1. Number of patients with elevated baseline levels of 

coagulative and fibrinolytic parameters, IFNy or TNFa and 

median values. 

Parameter 

(normal value*) No. of patients (%) Median value 

TATe ( <4 ng(ml) 4 (22) 56 ng/ml 

PAPc ( <7 nmol/1) 14 (78) 12 nmol(l 

tPA ( <11 ng/ml) 8 (44) 16 ng/ml 

PAI ( 30 - 60 ng(ml) 14 (78) 117 ng/ml 

IFNy ( <0.2 IU/ml) 8 (44) 1.0 IU/ml 

TN Fa ( <20 pg/ml) 14 (78) 31 pg/ml 

*Plasma concentration measured in healthy individuals. 

Range 

30- 189 

8.7- 31 

12-24 

64-278 

0.4- 3.6 

22-83 
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In all 14 patiens with elevated PAI at baseline, levels decreased after rHull-

12, with individual minimum concentrations reached after 4 to 168 hours 

(median 8). PAI levels did not change in the 4 patients with normal levels at 

baseline. The mean concentration of PAl decreased from a baseline level of 111 ± 
69 ng/ml to a minimum of 65 ± 53 ng/ml (p=0.031). After the nadir, PAl levels 

slowly increased but remained below baseline during the whole period of 

monitoring. Figures 16 and c show the mean concentrations of tPA and PAl after 

rHu!L-12 injection. 

Elevation of PAP complexes after rHuiL-12 injection correlated significantly 

with elevation of tPA and reduction of PAI (p=0.0042). 

Thrombin-anti-thrombin III (TAT) complexes 

TAT complexes were measured to assess thrombin generation induced by IL-

12. RHu!L-12 induced a coagulative response in 9 patients (50%), with individual 

peak levels reached between 4 to 72 hours (median 12). The mean concentration 

of TAT complexes increased from a baseline level of 29 ± 53 ng/ml to a 

maximum of 460 ± 322 ng/ml (p=O.OOOl). Four patients had strongly elevated 

levels of TAT complexes before injection of rHu!L-12, with values between 30 

and 189 ng/ml (Table 1). Within 4 hours after administration of rHu!L-12 to 

these patients, TAT complexes further increased, to reach maximal 

concentrations between 551 and 816 ng/ml. Of 14 patients with normal baseline 

levels of TAT complexes, 5 showed increasing levels upon rHull-12 

administration with maximal concentrations of TAT complexes between 19 and 

605 ng/ml. Levels of TAT complexes had normalized in all patients at 24 to 168 

hours (median 48). Notably, although the patients had indwelling catheters, an 

artefactual increase of TAT complexes by these catheters can not explain the 

course of TAT levels, since such an artefactual increase is expected to occur 

immediately after insertion of the catheters. Figure 10 shows the mean 

concentration of TAT complexes after rHull-12 injection. 

In all patients with detectable thrombin generation, peak levels of TAT complexes 

preceded peak levels of PAP complexes. 

Routine clotting parameters 

PT and APTT as well as platelets were measured in all patients. No significant 

changes were noted in PT or APTT values upon rHulL-12 administration. In 

contrast, mean platelet count decreased after rHuiL-12 injection, from 295 ± 99 

at baseline to a minimum of 203 ± 88 million per ml (p=0.008). Individual 

minimum counts were reached after 24 to 96 hours (median 72). Platelet counts 
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had returned to baseline levels at 168 hours. Two patients experienced grade 1 

thrombocytopenia, with platelet counts between 75 and 100 million per mi. 
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Figure 2. Plasma concentrations of IL-12, IFN-r and TNF-a after IL-12 
injection. 
Mean ± standard error of the mean (SEM) plasma concentrations of rHuiL-
12 (A), IFNr (B) and TNFa (C) during a period of 168 hours after a single 
subcutaneous injection of 0.5 pgjkg IL -12 in 18 patients with advanced renal 
cell carcinoma. Significant differences between base-line concentrations and 
concentrations after IL-12 injection are indicated by an asterix (p< 0.05). 
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Cytokines 

Blood samples for IL-12 measurements were available from 17 patients. 

Before injection, serum IL-12 levels were below the detection limit in all patients. 

After injection, the mean concentration of IL-12 increased to 269 ± 291 pg/ml. 

Individual peak levels of rHuiL-12 were reached after 4 to 24 hours (median 12). 

Figure 2A shows mean levels of IL-12. 

At base-line IFN-y concentrations were increased in 8 patients with values 

between 0.4 and 3.6 IU/ml (table 1). IFN-y increased in all patients, with 

individual maximum concentrations reached after 12 to 48 hours (median 24). 

The mean concentration increased from 0.8 ± 0.9 IU/ml to a maximum of 8.7 ± 

12.4 IU/ml (p= 0.025). Thereafter IFN-y slowly decreased to reach baseline 

levels at day 7 of observation. Base-line TN F-a concentrations were increased in 

14 patients with values between 22 and 83 pg/ml (table 1). 

In response to rHulL-12, TNF-a levels increased in all patients with individual 

maximum levels reached after 24 to 72 hours (median 48). The mean plasma 

concentration increased from 33.5 ± 20.7 pg/ml to a maximum of 92.9 ± 21.8 

pgjml (p< 0.00001). Figures 2B and C show mean levels of IFN-y and TNF-a 

after rHuiL-12 administration. 

Serum concentrations of rHulL-12 and pattern and height of IFN-y and TN F-a 

induction were not different for patients with and without detectable thrombin 

response. 

Discussion 

IL-12 induced sustained activation of fibrinolysis in the majority and 

substantial thrombin generation in half of the patients. While the endothelium 

was stimulated to produce tPA, secretion of its natural inhibitor PAI-l decreased. 

This opposite behaviour of tPA and PAI-l, as far as we know unique for IL12, 

probably explained the observed plasminogen activation. The fibrinolytic 

response continued at the time thrombin generation had already abated and, 

therefore, occurred independently, as has previously been observed in 

experimental endotoxemia [Van der Poll et al, 1991]. 

Coagulative and fibrinolytic responses to IL-12 have only been studied in 

chimpanzees. There, TAT complexes reached a plateau between 8 to 48 hours 

after intravenous administration and PAP complexes were maximal at the last 

sampling point at 48 hours, indicating a similar sustained response. 
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The mechanism by which IL-12 influences coagulation and fibrinolysis 

remains to be elucidated. Although many biological effects can be attributed to 

the induction of IFN-y, this seems not a key mediator here. Not only were IFN-y 

levels the same for patients with and without thrombin generation, the peak of 

the coagulative response preceded maximal IFN-y levels by 12 hours. In in-vitro 

models, IFN-y inhibited PAI-l production by endothelial cells and suppressed PAI­

l mRNA expression [Gallacchio et al, 1996; Siren et al, 1994]. The literature 

yields conflicting reports on the in-vivo effects of IFN-y: In dermatitis patients, 

IFN-y inhibited fibrinolysis by suppressing the release of tPA and stimulating PAL 

Concomitantly TAT complexes increased [Musial et al, 1998]. In patients with 

severe injuries, with baseline elevation of markers of both coagulation and 

fibrinolysis, IFN-y did not further affect these systems [Dries et al, 1998]. Neither 

seems TNF-a the mediator of the observed effects. The height of TNF-a levels 

and the coagulative response were not correlated, and TNF-a peaked when 

thrombin response had completely extinguished. With regard to fibrinolysis, TNF­

a administration was associated with a rapid early activation, unlike the response 

we observed [Van der Poll et al, 1991]. Also, in chimpanzees, induction of 

coagulation and fibrinolysis after IL-12 occurred without detectable TNF-a 

induction [Lauw et al, 1999]. Furthermore, in experimental endotoxemia in 

humans, thrombin generation was not affected by anti-TNF [Van der Poll et al, 

1994a]. Apparently TN F-a does not always induce a coagulative response in vivo 

[Van der Poll et al, 1990]. 

Compatible with the observation that patients with malignancies frequently 

have activation of systemic coagulation and fibrinolysis [Zacharski et al, 1992], 

the majority of our patients had elevated baseline levels of the markers of 

fibrinolysis and coagulation. Moreover, alterations in the plasminogen activator­

plasmin proteolytic systems appear to be essential events in tumor progression 

[Mignatti and Rifkin, 1993]. In a study with IL-6, patients with metastatic RCC 

had comparable elevated baseline levels of PAP complexes, PAl and tPA 

[Stouthard et al, 1996]. However, baseline levels of TAT complexes were 

considerably lower. Whether this difference refiects different tumor load is 

unclear. 

IL-12 induced fibrinolytic and coagulative responses that are completely 

different from those induced by other cytokines. As opposed to other cytokines, 

thrombin generation preceded maximal fibrinolysis [Van der Poll et al, 1990 and 

1991; Baars et al, 1992; Levi et al, 1993 and 1994]. Additionally, the coagulative 

and fibrinolytic responses were delayed and the duration of the fibrinolytic 

response was exceptionally long. For example, interleukin-2 and TNF-a caused 
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activation of coagulation and fibrinolysis within 6 hours after administration 

[Baars et al, 1992; Fleischmann et al, 1991; Van der Poll et al, 1990; 

Boermeester et al, 1995]. The subcutaneous route of administration may in part 

explain the delayed effects of IL-12, but intravenous administration also induced 

a prolonged activation of fibrinolysis [Lauw et al, 1999]. This protracted effect of 

IL-12 may be related to its relatively long half-life. While cytokines 

characteristically have a plasma half-life of less than 30 minutes, IL-12 has a 

half-life of more than 5 hours [Atkins et al, 1997; Portielje et al, 1999]. 

The clinical relevance of the observed effects of IL-12 on fibrinolysis and 

coagulation cannot be distilled from our data. No hemorrhagic or thrombotic 

complications occurred in our study. However, in previous studies several 

bleeding episodes were mentioned. When 0.5 11g/kg of intravenous IL-12 was 

administered on 5 consecutive days as part of a phase II study, 2 patients had 

gastrointestinal bleeding that complicated ulceration of the large intestine and 

died [Leonard et al, 1997]. In the preceding phase I study, 2 out of 12 patients 

treated with the same dose experienced severe gastrointestinal hemorrhage 

[Atkins et al, 1997]. An additional gastrointestinal bleeding episode was 

observed in a study with subcutaneous IL-12 [Motzer et al, 1998]. No details 

were provided concerning coagulation tests or platelet counts. Although 

inflammation and ulceration of the lining of the gastrointestinal tract are 

considered to be IL-12 related side effects, it can not be excluded that coexisting 

coagulation abnormalities prompted hemorrhage from the damaged mucosa. 

We can only speculate whether stimulation of fibrinolysis contributes to the anti­

tumor effect of IL-12. IL-12 is supposed to have an inhibitory effect on tumor­

angiogenesis, though the underlying mechanism is yet unknown [Voest et al, 

1995; Sgadari et al, 1996] Our results indicate that IL-12 inhibits PAI-l 

production. Tumor-angiogenesis has recently been shown to be PAI-l dependent 

and the increased PAI-l levels in cancer patients appear to be causally 

contributing to tumor invasion [Bajou et al, 1998]. Further studies should reveal 

whether the observed fibrinolytic responses may result in inhibition of tumor 

angiogenesis. 

In conclusion, we have shown that administration of IL-12 can induce 

sustained activation of the fibrinolytic system and a substantial thrombin 

generation. The timing and duration of these processes differ from those 

observed with other cytokines. Further investigations are needed to elucidate the 

mechanism behind these changes and the relation to anti-tumor and side effects. 
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Abstract 

IL-12 is a cytokine with important regulatory functions bridging innate and 

adaptive immunity. IL-12 has been proposed as an immune adjuvant for 

vaccination therapy of infectious diseases and malignancies. The inflammatory 

signals mediated by IL-12 can play an important role in the adjuvant effect, but 

at the same time may constitute a risk for side effects. 

In the setting of a phase I study, we studied the effect of different doses of 

s.c. administered recombinant human IL-12 in 26 patients with advanced renal 

cell carcinoma, and now demonstrate that IL-12 induces dose-dependent 

systemic activation of multiple inflammatory mediator systems in humans. 

Previously we have shown that the maximum tolerated dose of IL-12, i.e. 0.5 

!lg/kg, induced a significant coagulative response, here we demonstrate that this 

dose also induces degranulation of neutrophils: plasma levels of elastase 

(azurophilic granules) and lactoferrin (specific granules) increased from 48 ± 17 

ng/ml (mean± standard deviation) to 117 ± 136 ng/ml (p < 0.05) and from 124 

±51 ng/ml to 181 ±82 ng/ml (p;O.Ol), respectively, at 24 hours. Additionally, IL-

12 injection mediated the release of lipid mediators: Plasma concentrations of 

secretory phospholipase A2 (sPLA2) increased from 17 ± 20 ng/ml to 97 ± 113 

ng/ml (p;0.003). Systemic activation of inflammation and coagulation by IL-12 

occurred in a dose dependent way. At 0.1 !lg/kg of IL-12, systemic responses 

were minimal: Although mild activation of neutrophils was already detectable, 

activation of the coagulative response did not yet occur, and activation of 

fibrinolysis and formation of sPLA2 were limited. Because s.c. injection is a 

common route of administration for immune adjuvants, we suggest that IL-12 as 

adjuvant should not be given at doses higher than 0.1 Jlg per kg in order to avoid 

severe systemic inflammatory responses. 
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Introduction 

lnterleukin 12 (IL-12) is a cytokine with important immune-regulatory 

functions. IL-12 stimulates T-cells and NK-cells to produce IFN-y and increases 

cytotoxic activity by NK-cells. Additionally IL-12 stimulates the helper activity of 

CD4 T-cells towards cellular immune responses and enhances antigen specific 

CDS+ T cell responses [Trinchieri, 1998]. As a stimulator of the cellular immune 

response, IL-12 has potential efficacy in malignant, infectious and allergic 

diseases. Studies of systemic cytokine therapy with IL-12 have been performed 

in different types of cancer, asthma and viral hepatitis [Carreno et al, 2000; 

Hurteau et al, 2001; Bryan et al, 2000; Portielje et al, 1999; Atkins et al, 1997; 

Motzer et al, 1998 and 2001; Leonard et al, 1997]. However, IL-12, administered 

either intravenously or subcutaneously, had disappointing efficacy but substantial 

toxicity. Recently, it was proposed that IL-12 may be an effective immune 

adjuvant for vaccination therapy of infectious diseases and malignancies 

[Gherardi et al, 2001; Rodolfo et al, 1999; Buchanan et al, 2001]. The 

immunological mechanisms underlying the adjuvant efficacy of IL-12 are not 

fully defined. Classical adjuvant substances are strong stimulators of local 

inflammation and the pro-inflammatory characteristics of IL-12 are thought to 

contribute to its adjuvant effects. Similar to other adjuvants, the subcutaneous 

route also appears appropriate for IL-12 for this purpose. 

Polymorphonuclear neutrophils (PMN) are important effectors of the 

inflammatory response since they release toxic compounds such as proteases 

upon activation, that damage the microenvironment. We do not know whether or 

not IL-12 activates neutrophils in humans. Few preclinical studies have 

addressed the effects of IL-12 on PMN. Following administration of IL-12 to 

chimpanzees, degranulation of PMN was observed [Lauw et al, 1999]. In-vitro 

studies have revealed that PMN express IL-12 ~1 receptors and that binding of 

IL-12 results in actin polymerization and a concentration dependent increase in 

reactive oxygen metabolites in PMN [Collison et al, 1998]. In addition to potential 

direct effects through IL-12 receptor engagement, IL-12 could also exert indirect 

effects on PMN through the induction of other pro-inflammatory cytokines such 

as TNF-a, IL-6 or IL-8. The degranulation of PMN in various physiological 

situations is appropriately reflected by levels of elastase-a1-antitrypsin 

complexes and lactoferrin in the peripheral blood [Van der Poll et al, 1994a 

1994b; Nuijens et al, 1992; Suffredini et al, 1989]. Elastase is a proteinase 

released from azurophilic granules of neutrophils that rapidly forms complexes 
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with its natural inhibitor a1-antitrypsin, while lactoferrin is derived from the 

specific granules [Weiss, 1989]. 

The increased release of secretory phospholipase A2 (sPlA2) from endothelial 

and other cells is considered as another component of the inflammatory cascade 

[Pruzanski & Vadas, 1991]. PLA2 is a lipolytic enzyme that releases fatty acids, 

often arachidonic acid, from membrane phospholipids for production of important 

lipid mediators such as tromboxane A2, prostaglandins, leukotriens and platelet 

activating factor [Crowl et al, 1991]. PlA2 is thought to promote phagocytosis of 

injured cells and tissue debris, thereby enhancing inflammation [Pruzanski & 

Vadas, 1991; Hack et al, 1997]. During inflammatory reactions plasma levels of 

sPlA2 may markedly increase up to 100-fold over base-line. 

At present there are no data regarding the potential of locally injected IL-12 to 

induce systemic inflammatory responses in humans. We performed a phase I 

study with Il-12 in patients with advanced renal cell cancer [Portielje et al, 

1999]. In the present analysis, we address systemic inflammatory and 

coagulation responses in these patients. Our results show that Il-12 dose­

dependently triggers these responses. These data may be useful for the design 

of studies in which Il-12 is used as an adjuvant. 

Materials and Methods 

Patients 

We studied 26 patients with advanced renal cell cancer which participated in 

a phase I dose escalation trial carried out in the Rotterdam and Mainz cancer 

centers to evaluate the safety and tolerability of s.c. administered rHuiL-12. 

Toxicity analysis of the phase I study indicated that 0.5 ~g/kg was the maximum 

tolerated dose of the first s.c. injection of rHuiL-12 [Portielje et al, 1999]. We 

studied markers of PMN degranulation in these patients after the first s.c. 

injection of rHuiL-12 at a dose of 0.1 ~g/kg (n=3), 0.5 ~g/kg (n=19) or 1.0 

~g/kg (n=4). Prior to treatment, patients had a World Health Organization 

(WHO) performance score of 0 to 1, and adequate hematological, renal, hepatic, 

cardiovascular and pulmonary functions. All former therapies were terminated at 

least 6 weeks prior to start of treatment with rHuiL-12. The patients did not use 

systemic corticosteroids. Patients with concurrent systemic disease were ex­

cluded. Patients gave informed consent and the ethics committees approved of 

the protocol. Recombinant human IL-12 (rHuiL-12, Ro 24-7472) was supplied by 

Hoffmann La Roche (Nutley, NJ) and administered by s.c. injection. All injections 
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were given at 8.00 a.m. Acetaminophen was prescribed to alleviate fever, 

headache and myalgia. Metoclopramide was prescribed in case of nausea and 

vomiting. No other medications were given routinely. 

Blood sampling and assays 

Blood samples for elastase-a1-antitrypsin complexes, lactoferrin and sPlA2 
measurement were obtained directly before and 4, 8, 12, 24, 48 and 72 hours 

after the first rHuiL-12 administration. In 12 patients blood was also obtained 

after 96 and 168 hours. Blood was drawn through an indwelling intravenous 

infusion needle (Venflon, 16 gauge). Plasma was obtained by centrifugation of 

blood for 10 minutes at 1300g. Plasma samples were stored at -70°C until 

tested. All assays were done with EDTA anti-coagulated plasma. Plasma levels of 

elastase-a1-antitrypsin complexes and lactoferrin were assayed by RIA as 

described in detail previously [Nuijens et al, 1992]. Briefly, sepharose beads, to 

which polyclonal antibodies against human elastase or a mAb against human 

lactoferrin were coupled, were incubated with the samples to be tested. Elastase­

a1-antitrypsin or lactoferrin bound to the beads was quantitated by incubation 

with 1251-mAb against complexed a1-antitrypsin (RIA for elastase-a1-antitrypsin) 

or polyclonal 125I-antilactoferrin (RIA for lactoferrin). Results were expressed as 

nanograms of elastase complexes or lactoferrin per mi. by reference to standard 

curves. The lower limit of detection of elastase-a1-antitrypsin complexes is 25 

ngjml; normal values are less than 100 ng/ml. The lower limit of detection of 

lactoferrin is 100 ng/ml; normal values are less than 400 ng/ml. 

Secretory phospholipase A2 (sPlA2) concentrations in plasma were 

determined with an ELISA that was modified from that reported by Smith [Smith 

et al, 1992]. MAbs against human sPlA2 type II (provided by Dr. F.B. Taylor Jr., 

Oklahoma Medical Research Foundation, Oklahoma City, OK, USA) were used as 

the coating and catching antibodies, respectively. Results are expressed by 

reference to a standard curve consisting of a dilution of culture supernatant of 

HepG2 cells stimulated with IL-6, in which the amount of sPlA2 was assessed by 

comparison with recombinant human secretory-type PlA2 (sPlA2; courtesy of 

Prof. H .M. Verheij, Department of Enzymology and Protein Engineering, 

University of Utrecht, Utrecht, The Netherlands). The lower limit of detection of 

this assay is 0.2 ng/ml. Normal values are less than 5 ng/ml. 

Serum concentrations of bio-active IL-12 were measured by a method of 

antibody capture followed by a cell proliferation assay with a lower limit of 

detection of 50 pg/ml [Motzer et al, 1998]. Samples for IL-12 determination 

were available from 25 patients [Portielje et al, 1999]. IFN-y, TNF-a, IL-10, IL-8, 
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and Il-6 concentrations were detenmined with commercially available enzyme 

amplified sensitivity immunoassays (Medgenic EASIA, Biosource Europe, Fleurus, 

Belgium). The lower limits of detection of the assays were: IFN-y: 0.03 IU/ml; 

TNF-a: 3 pg/ml; Il-10: 1 pg/ml; Il-8: 1 pg/ml; Il-6: 2 pg/ml and Il-4: 0.2 

pg/ml. Cytokine concentrations were measured as part of previous [Portielje et 

al, 1999] and ongoing studies and results from patients treated at dose level 0.5 

fig/kg rHuiL-12 are presented here to enable definition of the relationship 

between cytokine concentrations and inflammatory parameters. Blood samples 

for determination of absolute numbers of peripheral-blood polymorphonuclear 

neutrophils (PMN's) were available from 20 patients and collected directly before 

and 1, 2, 3, 4 and 7 days after the first administration of rHull-12. PMN counts 

were detenmined in EDTA anti-coagulated blood samples using a Technicon H1 

automated cell counter (Technicon, Tarrytown, NY, USA). 

Plasmin-a2-antiplasmin (PAP) complexes, were measured as parameter of 

fibrinolysis. PAP complexes were determined with a radio-immuno assay 

described elsewhere in detail [levi et al, 1992]. Normal values are less than 7 

nmoljl. Thrombin-antithrombin III (TAT) complexes were measured with an 

enzyme linked immunosorbent assay described elsewhere in detail [Boermeester 

et al, 1995]. Normal values in this assay were less than 4 ng/ml. 

Pharmacologic data analyses 

Individual plasma concentration-time data of cytokines were analysed by 

non-compartmental methods using the Siphar software package (version 4.0; 

Inna Phase, Philadelphia, PA, USA). Pharmacodynamic analysis of the modulation 

of leucocyte counts, PMN degranulation products and sPLA2 induction by rHuil-

12 was also performed using the Siphar software. Total area under the effect 

curve (AUECtotol ) for elastase-a1-antitrypsin complexes, lactoferrin, and sPLA2 
was calculated for each patient using the trapezoidal rule. The AUEC,,,, the area 

under the effect curve above baseline values, was calculated by [AUECeotal minus 

AUEC,,]. The baseline levels of elastase-a1-antitrypsin complexes, lactoferrin 

and sPLA2 and the baseline leucocyte counts were obtained from measured pre­

dose levels and counts, assuming that baseline values would have been 

maintained for the duration of the study in the absence of rHuil-12 

administration. 

Relationships between the various AUEC,, values and between concentration­

time profiles of elastase-al-antitrypsin complexes, lactoferrin and sPLA2 were 

evaluated by multiple regression analysis. To test parameter differences for 

statistical significance in the paired samples, a two-tailed paired Student's t-test 
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was performed. To test parameter differences for statistical significance in the 

unpaired samples, a two-tailed unpaired Student's t-test was performed. 

Probability values of less than 0.05 were regarded as statistically significant. All 

calculations were performed using Number Cruncher Statistical System (NCSS, 

version 5.X; Dr. Jerry Hintze, Kayesville, UT, USA). 

Results 

Neutrophil numbers 

RHuiL-12 induced depression of the number of peripheral blood PMN in all 

patients. After injection of 0.1 [.lg/kg rHu!L-12, PMN decreased from 4.0 x 109/1 
to 0.94 x 109/1 (n~1). Figure 1 shows that after injection of 0.5 [.lQ/kg rHuiL-12 

(n~15), PMN decreased from 4.55 ± 1.32 x 109/1 (mean ±standard deviation) to 

1.74 ± 0.84 X 109/1 (p < 0.001). 
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Figure 1. Neutrophil counts after subcutaneous Il-12. 

Mean ± standard error of the mean {SEM) neutroPhil counts during a period 

of 168 hours after a single subcutaneous injection of 0.5 pg/kg IL-12 in 14 

patients with advanced renal cell carcinoma. Significant differences between 

base-line concentrations and concentrations after IL-12 injection are 
indicated by an asterix (p<O.OS). 
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Finally, after injection of 1.0 ll9/kg rHull-12 (n=4), PMN decreased from 

3.9 ± 1.14 x 109/1 to 1.45 ± 0.33 x 109/1. After 0.5 llg/kg rHull-12, PMN nadir 

occurred after a median of 3 days (range: 2-4) while after 1.0 llg/kg rHull-12, 

PMN nadir occurred after a median of 4 days (range: 4-7). At dose levels 0.5 and 

1.0 llg/kg rHull-12, PMN remained significantly below baseline values (p< 

0.001) during the whole 7- day observation period. 

PMN degranulation 

RHull-12 administration resulted in degranulation of PMN, reflected by (i) 

increased plasma levels of elastase-a1-antitrypsin complexes, which reflect the 

degranulation of azurophilic granules and (ii) increased plasma levels of 

lactoferrin, which reflect the degranulation of specific granules (figure 2). 

Elastase-a1-antitrypsin complexes increased in all patients and increases 

were rHull-12-dose dependent (table 1). At doses of 0.1 and 0.5 llg/kg rHull-

12, elastase-al-antitrypsin complexes peaked after a median of 48 hours 

(range: 8-72), whereas at doses of 1.0 llQ/kg rHull-12, maximum 

concentrations were reached after a median of 60 hours (range: 48-72). Plasma 

concentrations of lactoferrin increased in 23 out of 26 patients (89%). Individual 

maximum plasma concentrations of lactoferrin varied considerably among 

patients and patients with low baseline levels tended to have relatively low peak 

levels as well. 

At doses of 0.1 and 0.5 ll9/kg rHull-12, lactoferrin peaked after a median of 

24 hours (range: 4-96), whereas at doses of 1.0 ll9/kg rHull-12, maximum 

concentrations of lactoferrin were reached after a median of 60 hours (range: 

48-72). Elevation of elastase-a1-antitrypsin complexes after rHull-12 injection 

correlated significantly with elevation of lactoferrin levels (r = 0.24, p=0.03). 

Plasma concentrations of sPLA2 

Levels of circulating sPI.A2 were measured as an indirect parameter for the 

formation of lipid mediators such as tromboxane A2, prostaglandins, leukotriens 

and platelet activating factor. 

RHull-12 induced an increase of circulating sPLA, in 25 of 26 patients and 

elevation was Il-12 dose dependent (table 1). Nine patients had elevated sPI.A, 

concentrations before rHull-12 administration, with values ranging from 6.9 to 

63 ng/ml. Patients with elevated baseline concentrations had significantly higher 

peak levels than patients with normal baseline levels (205 ± 149 (mean ± 
standard deviation) versus 31 ± 17, p < 0.01). Figure 3 shows the mean 

concentration of sPI.A2 complexes after 0.5 llg/kg rHu!l-12. 
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The median time to peak concentration was 48 hours after a dose of 0.1 and 

0.5 Jl9/kg rHulL-12, and 72 hours after a dose of 1.0 Jl9/kg. Individual peak 

concentrations were reached between 48 and 168 hours. Levels slowly declined 

to baseline within the 7 days of observation. 
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Figure 2. Neutrophil degranulation after subcutaneous n.-12. 

Mean ± standard error of the mean (SEM) plasma concentrations of 

elastase-al.-antitrypsin complexes (A) and lactoferrin (B) during a period of 

168 hours after a single subcutaneous injection of 0.5 pg/kg IL -12 in 19 

patients with advanced renal cell carcinoma. Significant differences between 

base-fine concentrab"ons and concentrations after IL -12 injection are 

indicated by an asterix (p<0.05). 
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Figure 3. Plasma concentrations of secretory phospholipase A2 (sPLA2) after 

subcutaneous IL-12. 
Mean ± standard error of the mean (SEM) plasma concentrations of sPLA2 

during a period of 168 hours after a single subcutaneous injection of 0.5 

pg/kg IL-12 in 19 patients with advanced renal cefl carcinoma. Significant 

differences between base-line concentrations and concentrations after IL -12 

injection are indicated by an asterix (p<O.OS). 

Coagulation and fibrinolysis 

Plasmin-a2-anti-plasmin (PAP) complexes were measured as a parameter for 

the activation of plasminogen. Rhull-12 administration resulted in activation of 

fibrinolysis in all patients with ll-12 dose dependent elevation of plasma 

concentrations of PAP complexes (table 1). PAP complexes peaked after a 

median of 72 hours (range: 12-168). Thereafter, levels slowly declined, but did 

not reach baseline within the first week after rHull-12 administration. 



Table 1. Circulating inflammatory parameters after subcutaneous administration of rHuiL-12 

Elastase-al-ATe 

(<lOOng/ml) 

Lactoferrin ( <400ng/ml) 

sPLA, ( <5ng/ml ) 

PAPc ( <7nmol/l} 

TATe ( <4ng/ml) 

Baseline 

(all) 

Mean 

46 

122 

14 

10.5 

29 

ot. Maximum mean values are shown. 

* p < 0.05, versus baseline 

SD 

16 

45 

18 

6.2 

66 

0.1 ~g/kg 

(n=3} 

Mean"' 

87 

197 

23 

15 

# 

#No TATe responses occurred at a dose of 0.1 rtg/kg rHuiL-12 

SD 

35 

85 

17 

4.0 

0.5 flQ/kg 

(n=19) 

Mean"' 

117* 

181* 

97* 

18.8* 

460* 

SD 

136 

82 

113 

7.4 

322 

1.0 ~g/kg 

(n=4) 

Mean"' 

202* 

248 

144 

27* 

571 

SD 

79 

112 

99 

7.5 

554 
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Elevated thrombin-anti-thrombin Ill (TAT) complexes reflect activation of 

coagulative pathways. A coagulative response was not observed at 0.1 ~g/kg 

rHull-12. However, at 0.5 ~g/kg and 1.0 ~g/kg rHull-12, half of patients had a 

coagulative response (table 1), with TAT complexes reaching mamimum values 

after a median of 12 hours (range: 4-72). 

Table 1 shows maximum mean concentrations of PAP- and TAT complexes 

after different doses of rHull-12. The results of measurement of PAP- and TAT 

complexes of 19 patients that received 0.5 ~g/kg rHIL-12 have been reported 

previously [Portielje et al, 2001]. Because the hemostatic mechanism is tightly 

linked to the inflammatory cascade, we now provide data from patients treated 

at other dose levels as well, in order to gain insight in the dose response 

relationship beween rHull-12 and parameters of systemic fibrinolysis and 

coagulation. 

Cytokines 

Plasma concentrations ol IL-12, TNF-a, IL-6 and IL-8 after IL-12 are shown 

in figure 4. 

Blood samples for IL-12 measurements were available from 18 patients 

treated at dose level 0.5 ~g/kg rHull-12. Serum IL-12 levels were below the 

detection limit in all patients before injection. After administration of rHull-12, 

plasma concentrations increased in 10 patients, with individual peak levels 

reached after 4 to 24 hours (median 12). Mean plasma IL-12 increased to 294 ± 

218 pg/1. After administration of 0.5 ~g/kg rHull-12, TN F-a levels increased in all 

patients, from a mean plasma concentration of 34 ± 20 pg/ml to a maximum of 

93 ± 22 pg/ml (p< 0.00001). Baseline TN F-a concentrations were increased in 15 

out of 19 patients with values between 22 and 83 pg/ml. Individual maximum 

levels were reached after 24 to 72 hours (median 48). The mean plasma 

concentration of IL-8 increased from 17 ± 18 pg/ml to a maximum of 34 ± 27 

pg/ml (p< 0.01) at 48 hours. The mean concentration of IL-6 increased from 24 

± 28 pg/ml to a maximum of 84 ± 72 pg/ml (p< 0.01) at 12 hours. 
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Figure 4. Plasma concentrations of IL-12, TNF-a:, n.-6 and n.-8 after 

subcutaneous ll-12. Mean ± standard error of the mean (SEM) plasma 

concentrations of rHuiL-12, TNFa, IL-6 and IL-8 during a period of 168 

hours after a single subcutaneous injection of 0.5 pg/kg IL-12 in 19 patients 

with advanced renal cell carcinoma. Significant differences between base­

line concentrations and concentrations after IL -12 injection are indicated by 

an asterix (p<O.OS). 
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Discussion 

The present results demonstrate that s.c. Il-12 induces a dose dependent 

systemic activation of multiple inflammatory mediator systems in humans. Il-12 

induced activation and degranulation of PMN in a dose dependent way in patients 

with advanced renal cell cancer. The activation of PMN was sustained, with 

ultimate normalization of plasma levels of degranulation products after 7 days. 

The effect of Il-12 on PMN degranulation is consistent with a study in 

chimpanzees that described PMN activation with maximum elastase-o:1-

antitrypsin complex concentrations at the last plasma sampling time-point of 48 

hours [lauw et al, 1999]. 

Since PMN express functional Il-12 receptors, degranulation may result from 

direct interaction with Il-12. This is supported by in vitro experiments showing 

that Il-12 upon binding increases intracellular free calcium, and induces actin 

polymerization, tyrosine phosphorylation and production of reactive oxygen 

radicals and platelet activating factor in PMN [Collison et al, 1998; Bussolati et 

al, 1998]. In our study, maximal concentrations of products of PMN 

degranulation in the peripheral blood coincided with peak levels of Il-12, i.e. at 

24 hours post injection. In addition, Il-12 may activate PMN indirectly. We 

observed a dose-dependent induction of Il-6, Il-8 and TNF-o: after IL-12 

administration, and these cytokines all have known PMN-activating effects. 

However, our results suggest that PMN degranulation after Il-12 administration 

in vivo is probably not mediated by TNF-o: or IL-8. In humans, TNF-o: induces a 

very rapid degranulation of PMN, with maximum blood levels of elastase-o:1-

antitrypsin complexes and lactoferrin, 3 hours after TNF-o: administration [Van 

der Poll et al, 1992]. In the present study maximum levels of both elastase-o:1-

antitrypsin complexes and lactoferrin were however reached at 24 hours, whilst 

TN F-a: peaked at 48 hours, following injection of Il-12. Similarly, Il-8 is a strong 

PMN activator [Peveri et al 1994; Schroder et al, 1987; Downey, 1994] but 

again, peak plasma concentrations of Il-8 were observed 24 hours after levels of 

the degranulation products elastase-o:1-antitrypsin complexes and lactoferrin 

reached their maximum. The assumption that Il-8 induction did not contribute to 

PMN degranulation is further supported by the observation that, whilst 

administration of IL-1~ to humans induced elevation of Il-8 to levels similar to 

those observed in the present study, degranulation of PMN did not occur [Ogilvie 

et al, 1996]. Il-6 is another potential in vivo mediator of PMN activation after Il-

12. PMN express IL-6 receptors [Keller et al, 1996] and Il-6 exposure has 

previously been shown to induce elastase and lactoferrin release and production 



84 • Chapter 5 • 

of platelet activating factor and oxygen-free radicals by PMN in vitro [Borish et al, 

1989; Biffi et al, 1996]. In our study, peak levels of Il-6 at 12 hours post 

injection preceded peak levels of lactoferrin and elastase-a1-antitrypsin 

complexes at 24 hours post Il-12 injection. This result is consistent with the 

possibility that IL-6, formed in response to Il-12 injection in turn contributes to 

rhe release of elastase-a1-antitrypsin complexes and lactoferrin into the 

circulation. However/ in a chimpanzee model of endotoxemia, in which IL-12 is 

an important mediator of the inflammatory response, PMN degranulation occurs 

independently of TNF-a, Il-8 and Il-6 synthesis [Kuipers et al, 1994]. These 

results indicate that IL-12 potentially activates PMN directly as well as indirectly. 

Il-12 was also a powerful stimulus for the synthesis of the secretory 

phospholipase A2 (sPLA2 ), the enzyme that generates arachidonic acid and thus 

catalyzes the rate limiting step in the formation of lipid mediators. Endothelial 

cells, considered the most important source of sPLA2 in the peripheral blood, 

have not been shown to express Il-12 receptors. IL-6 and TN F-a are the possible 

mediators of sPLA2 synthesis after Il-12 injection, since either cytokine 

stimulates the production and release of sPLA2 in-vitro by various cell types, 

including liver cells, endothelial cells and macrophages [PFeilschifter et al, 1993; 

Redl et al 1993]. In healthy volunteers, TNF-a infusion resulted in increased 

sPLA2 , with maximum plasma levels after 6 hours [Van Dullemen et al, 1989]. 

Interestingly, the anti-tumor effect of TNF-a in a variety of tumor cell models 

depends on cytolysis that requires the activation of sPLA2 by TN F-a [Mutch et al, 

1992]. Furthermore, increased sPLA2 synthesis after Il-12 may play an 

important role in inflammatory colitis, a life threatening side effect observed with 

systemic Il-12 administration [leonard et al, 1997], as can be concluded from 

the observation that IL-12 does not cause gastrointestinal toxicity in a sPLA2 

deficient strain of mice [Car et al, 1999]. Presumably, this lack of toxicity in 

deficient mice is due to the lack of prostanoid contribution to tissue injury. 

In accordance with previous clinical results [Atkins et al, 1997; Bajetta et al, 

1998] we observed a rapid, Il-12-dose dependent, decrease of PMN in the 

peripheral circulation, with protracted depression of cell counts during the whole 

7-day period of observation. Similar to humans, Il-12 administration to mice 

caused decreased numbers of circulating leucocytes and neutrophils [Eng et al, 

1995; Romani et al, 1995]. The decreased PMN counts in the peripheral blood 

after Il-12 administration to humans is thought to occur due to compartmental 

cellular shift with accumulation of cells in liver, spleen and tumor sites. In vitro, 

Il-12 serves as a chemotactic stimulus for human PMN's [AIIavena et al, 1994] 

and Il-12-induced platelet activating factor is thought to play a critical role in 
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this effect [Bussolati et al, 1998]. Il-12 potentially mediates PMN chemotaxis 

through the induction of TN F-a and Il-8. TN F-a upregulates adhesion molecules 

on endothelial cells and can mediate the migration of PMN's [Carlos et al, 1997; 

Bevilacqua et al, 1989; Pober et al, 1986]. In healthy individuals, intravenous 

TNF-o; administration results in short-lived neutropenia, followed within an hour 

by a 24-hour lasting neutrophilia [Van de Poll et al, 1992]. Il-8 is a member of 

the a-chemokine family and an important PMN chemotactic factor [Schroder et 

al, 1987; Van Damme, 1991]. Intravenous injection of Il-8 in mice, resulted in 

an instant neutropenia, followed by profound neutrophilia for several hours 

[Pruijt et al, 1999]. The protracted elevation of TN F-a and Il-8 levels observed 

after Il-12 injection, i.e. lasting for more than 7 and more than 2 days, 

respectively, may well be responsible for the protracted neutropenia observed in 

our patients. 

Clinical studies have addressed the systemic administration of Il-12 in 

patients with asthma, infectious diseases and cancer, but associated toxicity in 

combination with a lack of encouraging clinical results hamper further 

development of Il-12 in this line [Carreno et al, 2000; Hurteau et al, 2001; 

Bryan et al, 2000; Motzer et al, 2001]. More recently, the therapeutic application 

of IL-12 as an immune adjuvant in cancer and infectious diseases has received 

attention. Preclinical results have demonstrated that Il-12 provides a critical 

third signal along with antigen and Il-2 to activate CDS+ T cells [Curtsinger et 

al, 1999]. In addition, Il-12 has an adjuvant effect in the activation of CDS+ T 

cell responses to antigenic peptides in mice [Fallarino et al, 1999]. The 

immunological mechanisms underlying the adjuvant efficacy of Il-12 are 

incompletely understood. Here we show that locally injected Il-12 can activate 

PMN's which are thought to be engaged in a complex cross-talk, with immune 

and endothelial cells that bridges innate and adaptive immunity [Colombo et al, 

1992; DiCarlo et al, 2001]. In particular, Il-12 has strong inflammatory effects 

in-vivo and may be a potent adjuvant by providing inflammatory signals which 

may optimize adequate antigen presentation. Indeed, most if not all, classical 

adjuvant substances promote local inflammation. However, the stimulation of 

excessive systemic inflammatory responses seems undesirable for an immune 

adjuvant. Although the number of patients treated at doses other than 0.5 J.Lg/kg 

of Il-12 is, due to the original phase I design of the study, rather small, our 

results may give an indication of the dose of rHuiL-12 to be used as immune 

adjuvant in humans. At s.c. doses of 0.5 and 1.0 J.Lg/kg, rHuiL-12 is a strong 

stimulator of systemic inflammatory mediator systems. However, after a dose of 

0.1 J.Lg/kg rHuiL-12, i.e. one fifth of the maximum tolerated dose, the systemic 
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inflammatory responses were only limited. Previously we have shown that at a 

dose of 0.5 f!gfkg IL-12 induces activation of fibrinolysis and coagulation in 

humans [Portielje et al, 2001]. These side effects may have contributed to the 

hemorrhagic events, which complicated administration of IL-12 in other clinical 

phase I and II studies [Atkins et al, 1997; Motzer et al, 1998; Leonard et al, 

1997]. In view of our current results that at 0.1 f!g/kg rHuiL-12, PMN are 

activated, whilst only small amounts of systemic sPLA2 are formed and activation 

of fibrinolysis is minimal, in the absence of activation of the coagulative 

response, we suggest that IL-12 as an adjuvant should not be used at doses 

higher than 0.1 f!g per kg in order to prevent serious systemic inflammatory 

responses. 
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Abstract 

The clinical development of interleukin 12 (IL-12) as a single agent for 

systemic cancer therapy has been hindered by significant toxicity and 

disappointing anti-tumor effects. The lack of efficacy was accompanied by, and 

probably related to, declining biological effects of IL-12 in the course of repeated 

administrations at doses approaching the maximum tolerated dose (MTD). 

Nevertheless, IL-12 remains a very promising immunotherapeutic agent because 

recent cancer vaccination studies in animal models and humans have 

demonstrated its powerful adjuvant properties. Therefore, IL-12 may re-enter 

the arena of cancer therapy. 

Here we review the immune modulating characteristics of IL-12 considered 

responsible for the adjuvant effects, as well as the results of animal and human 

cancer vaccination studies with IL-12 applied as an adjuvant. In addition, we 

discuss how studies with systemic IL-12 in cancer patients, and several other 

lines of evidence indicate that IL-12 may exert optimal adjuvant effects only at 

low dose levels. Therefore, the MTD may not constitute the maximum effective 

dose of IL-12 for adjuvant application. 
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Introduction 

Specific immunity against cancer, if present, is usually not effective, as 

shown by the course of most human cancers. Therefore, the discovery of tumor 

associated antigens for an increasing number of human malignancies [Boon et al, 

1997; Rosenberg et al, 1999], has raised expectations of effective vaccination 

therapy of cancer, with the goal to induce immunity against cancer. Apparently, 

an effective immune response is not elicited by the tumor antigens that are 

expressed by cancers that have become clinically manifest. Indeed, in animal 

models, antigenic tumor cells have been shown to grow in immune-competent 

hosts without stimulating an acute or memory T cell response [Wicket al, 1997; 

Speiser et al, 1997]. An important role in the ineffective immune responses to 

cancer is thought to be played by the mechanism of immune tolerance. Some 

tumors are capable of in vitro tolerance induction in T lymphocytes that are 

specific for their tumor antigens [Staveley-O'Carroll et al, 1998]. The reversal of 

immune tolerance into immune activation may be one of the mechanisms by 

which cancer vaccination can become an effective treatment modality. 

Among the strategies to stimulate an effective immune response against 

tumor antigens is the presentation of antigens together with an appropriate 

immune adjuvant. Recently, Il-12 has been identified as a powerful adjuvant 

substance in a variety of vaccination models of infectious disease. Promising 

results have also been obtained in animal cancer vaccination studies using either 

local or systemic co-administration of Il-12, or Il-12 gene-transduced cellular 

vaccines. The first results in humans clearly demonstrate that IL-12 enhances 

tumor specific cellular responses [Lee et al, 2001; Gajewski et al 2001]. IL-12 

has several characteristics that seem essential for its adjuvant effects. In the 

vaccination area, IL-12 activates innate immune cells and promotes production 

of cytokines and chemokines, thereby mediating the attraction of other innate as 

well as specific immune cells to this region. We hypothesize that the co­

administration of tumor antigens together with the strong pro-inflammatory 

cytokine IL-12, provides the environment with inflammatory danger signals 

required to activate antigen presenting dendritic cells (DC) and prevents 

tolerance induction towards the tumor antigens. In addition, IL-12 directs the 

development ofT-helper lymphocytes towards the type 1 (Th1) functional profile 

that promotes cellular immune responses, and stimulates the proliferation of 

antigen specific cytotoxic T lymphocytes (CTL) and thereby establishment of 

immune memory. 
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The beneficial adjuvant properties of IL-12 that were demonstrated in 

infectious disease models [Gherardi et al, 2001], may not apply to tumor 

immunology. Various theoretical models of immune activation share the view, 

that tumor cells and infectious pathogens are differently recognized by the 

immune system. The "danger model" hypothesizes that specific immune 

activation, as opposed to tolerance, is initiated when innate immune cells 

recognize danger signals [Matzinger et al, 2001]. Invasion of pathogens is 

usually accompanied by local inflammation and tissue destruction, resulting in 

danger signals and activation of antigen presenting cells (APC) which then 

provide co-stimulatory signals to initiate specific immune responses. In contrast, 

when tumor antigens arise during malignant transformation, tissue destruction is 

initially minimal. The consequent absence of adequate danger signals is thought 

to result in immune tolerance towards the antigen. The "innate immune 

recognition model" assumes that specific immune responses are only activated 

when innate immune cells recognize conserved microbial structures with their 

pattern recognition receptors (PRR) [Medzhitov et al, 2000]. Once the PRR 

identify a pathogen-associated molecular pattern, the innate immune cells are 

triggered to perform their effector functions and activate specific immune cells. 

Tumor cells are unable to activate PRR, and hence do not trigger innate immune 

cells to activate specific immune cells. Because of these essential differences 

between the immune recognition of tumor cells and infectious pathogens, the 

present discussion is restricted to results obtained in experimental tumor models 

and cancer patients. 

Molecular structure, production and cellular receptors 

Interleukin 12 is composed of two disulfide-linked sub-units with molecular 

weights of 40kDa (p40) and 35kDa (p35) [Kobayashi et al, 1989; Podlaski et al, 

1992]. The human p35 and p40 sub-units are structurally unrelated and have 

been mapped to chromosomes 3p12-3q13.2 and Sq31-q33 respectively 

[Sieburth et al, 1992]. Cells require co-expression of both genes to secrete 

biologically active IL-12 [Wolf et al, 1991]. IL-12 is primarily produced by 

phagocytic cells and antigen presenting cells (APC) such as monocytes, DC and 

activated B lymphocytes [Trinchieri et al, 1998; Heufler et al, 1996; Schultze et 

al, 1999], and production is strongly stimulated by infectious pathogens and 

their products [D'Andrea et al, 1992; Sato et al, 1996]. The other important 
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stimulus for IL-12 synthesis are interactions between CD40 and its ligand 

(CD154), on B cells or T cells and APC, respectively [Shu et al, 1995]. 

Natural killer- (NK) and T cells were first shown to express high affinity 

receptors for IL-12 composed of two sub-units, designated ~1 and ~2 [Presky et 

al, 1996]. Subsequently, several other cell types, such as neutrophils, DC, B 

lymphocytes and eosinophils, were shown to respond to IL-12 in vitro [Desai et 

al, 1992; Nutku et al, 2001; Nagayama et al, 2000; Vogel et al, 1996; Bussolati 

et al, 1998; Bryan et al, 2000; Airoldi et al, 2000]. Signal transduction through 

the high affinity receptors on lymphocytes involves tyrosine phosphorylation of 

the Tyk2 and Jak2 kinases and of the transcription factors STAT3 and STAT4 

[Bacon et al, 1995a; Bacon et al, 1995b; Jacobson et al, 1995]. 

Clinical studies of systemic Il-12 as a single therapeutic anti­

tumor agent 

Recombinant human IL-12 has been studied as a single agent for systemic 

treatment in patients with various types of cancer. The development of IL-12 has 

proceeded along usual, FDA required lines, with initial phase I studies to 

determine tolerability and safety [Atkins et al, 1997; Motzer et al, 1998; Portielje 

et al, 1999; Gollob et al, 2000, Ohno et al, 2000] and subsequent efficacy 

studies [Leonard et al, 1997;Motzer et al, 2001; Hurteau et al, 2001]. The 

maximum tolerated dose (MTD) of IL-12, i.e., one dose level below the dose that 

caused dose limiting toxicity, was defined between 200 and 500 ng/kg, 

in several intravenous (i.v.) and subcutaneous (s.c.) schedules consisting of 3 to 

6 injections per 3 weeks. Common side effects consisted of fever and flu like 

symptoms, nausea, fatigue, mucositis and elevation of liver enzymes. IL-12 

appeared to have an exceptionally long elimination half life, estimated between 9 

to 25 hours, in comparison with other cytokines, [Portielje et al, 1999; Atkins et 

al, 1997; Motzer et al, 1998; Bajetta et al, 1998; Ohno et al, 2000]. A 

remarkable decrease of the area under the plasma concentration time curve 

(AUC) occurred after repeated injections of IL-12 [Portielje et al, 1999; Rakhit et 

al, 1999; Bajetta et al, 1998]. This reduction in AUC was possibly due to up­

regulation of IL-12 receptors on lymphocytes in the course of treatment, in 

accordance with results obtained in a mouse model, and unrelated to anti-IL-12 

antibody production [Thibodeaux et al, 1999]. 

The first phase II study unexpectedly resulted in severe toxicity and deaths. 

IL-12 was administered at the MTD defined in a previous phase I study [Atkins et 
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al, 1997], and the schedule was identical except for the omission of a treatment 

free period after the first dose [leonard et al, 1997; Cohen, 1995]. Subsequent 

animal studies revealed that insertion of a treatment free period of a week after 

the first administration of Il-12, conform most phase I studies, reduced the 

toxicity of subsequent injections [leonard et al, 1997; Sacco et al, 1997]. 

Moreover, these phase I studies also revealed that the reduction of side effects 

that occurred upon repeated injections [Portielje et al, 1999; Motzer et al, 1998] 

was accompanied by reduced IFN-y induction [Sacco et al, 1997; leonard et al, 

1997; Bajetta et al, 1998; Portielje et al, 2002a; Rakhit et al, 1999; Gollob et al, 

2000; Atkins et al, 1997]. In vitro, decreased IFN-y secretion by T cells was 

related to cellular depletion of the signaling component STAT4 after prolonged 

Il-12 stimulation [Wang et al, 2001]. Since IFN-y is considered to be the key 

regulator of Il-12 mediated anti-tumor effects, the down-regulation of its 

induction in the course of Il-12 treatment raised concerns [Brunda et al, 1995a; 

Nastala et al, 1994; Fujiwara et al, 1997;. In addition, our group showed that the 

down-regulation of biological effects also comprises the induction of TN F-a, Il-8 

and ll-6 and the effect on leukocyte subset counts in the circulation. The 

concentrations of ll-10 remained elevated upon repeated Il-12 administrations 

[Portielje et al, 2002a; Bajetta et al, 1998; Ohno et al, 2000; Motzer et al, 

2001]. It has been hypothesized that Il-10, as an endogenous counter regulator 

of many ll-12 mediated effects, is produced during ll-12 therapy to protect the 

body from the resultant ongoing and damaging inflammatory activity [Meyaard 

et al, 1996]. This hypothesis was supported by in vitro results demonstrating ll-

12 to induce high levels of inhibitory ll-10 production by lymphocytes [Gerosa et 

al, 1996; Windhagen et al, 1996]. The results of Phase II studies, performed in 

patients with advanced renal cell and ovarian cancer, were disappointing, with 

overall response rates of only 7% and 4%, respectively [Motzer et al, 2001; 

Hurteau et al, 2001]. The lack of efficacy in these studies may be due to down­

regulation of biological effects, including potential anti-tumor effects, due to 

endogenous Il-10 induction, that occurs at relatively high dose levels of Il-12. 

In the development of Il-12 as a vaccine adjuvant, strategies that do not 

result in long-term systemic exposure to high concentrations of Il-12, such as 

administration of low doses or infrequent administrations, may therefore be 

necessary to prevent down-regulation of effects. 
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Properties of Il-12 that can mediate adjuvant effects 

Effects on the innate immune svstem 

Inflammation 

As a strong pro-inflammatory cytokine, IL-12 induces the production of 

multiple other cytokines. Although the induction of IFN-y predominates, it also 

enhances production of other pro-inflammatory cytokines such as GM-CSF, TNF­

a, IL-8, IL-6, IL-15 and IL-18 in humans [Portielje et al, 2002a; Ohno et al, 

2000; Gollob et al, 2000]. Importantly, IFN-y operates in a positive feedback 

mechanism, as IFN-y in turn stimulates IL-12 synthesis by phagocytic cells 

[Cassatella et al, 1995]. In accordance with previous results in non-human 

primates [Lauw et al, 1999], we have shown activation of multiple inflammatory 

mediator systems in patients with advanced renal cell cancer after s.c. IL-12 

[Portielje et al, 2002b]. 

In vitro, binding of IL-12 to receptors on neutrophils results in activation of 

Ca2+ and tyrosine signaling pathways [Collison et al, 1998]. We also observed 

activation and degranulation of neutrophils in humans. The activation of 

neutrophils might be a prominent adjuvant property of IL-12, as neutrophils can 

operate as intermediates between innate and adaptive immunity, not only 

responding to cytokines, but also producing cytokines and chemokines that 

enable the attraction of other immune effector cells [Colombo et al, 1992; Ethuin 

et al, 2001]. For example, platelet activating factor, released from human 

neutrophils in response to IL-12, attracts other neutrophils and NK cells via 

chemotaxis [Bussolati et al, 1998]. The potentially important role played by 

neutrophils in cancer immune surveillance was demonstrated with tumor cells 

engineered to produce pro-inflammatory cytokines, such as IFN-y and TNF-a. 

Vaccination with these cells resulted in anti-tumor immunity against wild-type 

parental tumor depending on neutrophils and CTL [Musiani et al, 1996]. 

Another inflammatory effect observed in humans after IL-12 administration, 

was an increase in serum concentrations of secretory phospholipase A2 (sPLA2) 

[Portielje et al, 2002b]. Secretory phospholipase A2 may be released from 

endothelial cells in response to IL-12 mediated TNF-a and IL-6 synthesis, both 

known pro motors of sPLA2 production. This lipolytic enzyme releases fatty acids, 

often arachidonic acid, from membrane phospholipids [Crowl et al, 1991]. These 

are considered strong mediators of the inflammatory response. 

Fibrinolysis and coagulation were also activated by IL-12 in humans [Portielje et 

al, 2001]. The coagulation system is integrally related to the innate immune 
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response and its activation promotes other inflammatory responses [Opal, 

2000]. Thrombin formation occurred in 50% of patients after IL-12. Thrombin 

induces up-regulation of P-selectin and E-selectin; as a result aggregation of 

platelets with neutrophils, and interactions of neutrophils and monocytes with 

endothelial cells are promoted [Drake et al 1992; An rather et al, 1997]. 

In conclusion, the pro-inflammatory properties of IL-12 can mediate 

activation and attraction of innate immune cells, resulting in the recruitment of 
specific immune cells. 

ll-12 may also promote immune activation against tumor antigens because 

the activation of multiple inflammatory systems results in danger signals 

[Matzinger, 2001]. IL-12 production by phagocytic cells and APC is an early 

event shared by a variety of pathological states that evoke activation of the 

innate and, subsequently, antigen-specific immune responses [Sousa et al, 

1997]. During sepsis and endotoxemia, IL-12 is produced [Heinzel et al, 1994; 

Jansen et al, 1996; Hazelzet et al, 1997], and the inflammatory response in 

these situations seems dependent on ll-12, as neutralizing antibodies against IL-

12 can arrest the inflammatory cascade following bacterial lipopolysacharide 

administration [Wysocka et al, 1995]. Therefore, we propose, that co­

administration of ll-12 and tumor antigens results in a local inflammatory 

response, with release of neutrophil elastase and other proteases, and synthesis 

of thrombin and lipid mediators, resulting in micro environmental damage 

[Weiss, 1989; Okrent et al, 1990; Kuipers et al, 1994]. This provides danger 

signals required for immune activation. As a result, local APC are activated, and 

can provide co-stimulatory signals and activate T cells. 

Notably, stimulation of Il-12 production is also considered an important 

working mechanism in vaccination, whereby classical adjuvant substances exert 

their effects. This was shown for example for immune stimulating complexes 

containing saponin Quil A, and nucleic acid vaccines containing unmethylated 

CpG tracts [Smith et al, 1999; Sate et al, 1996; Chace et al, 1997]. 

Natural killer cells 

NK lymphocytes are also activated by IL-12, in fact, it was initially 

discovered in 1989 as NK cell stimulatory factor [Kobayashi et al, 1989]. IL-12 

promotes NK cell cytotoxicity, cytokine production, in particular high levels of 

IFN-y [Aste-Amegaza et al, 1994; Naume et al, 1992; Robertson et al, 1992], 

and mediates NK cell chemotaxis [AIIavena et al, 1994; Fogler et al, 1998]. In 

cancer patients, ll-12 indeed enhances the cytolytic activity of NK cells and 

increases the expression of C02, LFA-1 and CD56 molecules, that mediate NK 
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cell migration [Robertson et al, 1999]. In a mice leishmania infection model, NK 

cells were shown to exert an intermediate function between the innate and 

specific immune responses. The strong Th1 response, obtained after 

administration of leishmania/ antigens in combination with ll-12 to mice, 

depended on NK cells and could be completely abrogated by in vivo depletion of 

NK cells [Afonso et al, 1994]. NK cells also have direct cytotoxic effects against 

MHC class 1 deficient tumors [Trinchieri, 1989]. Tumor eradication after 

vaccinations supported by adjuvant IL-12 is dependent on NK cells in several 

animal models [Jyothi et al, 2000; Smyth et al, 2001; Kodama et al, 1999]. In 

this context it is of interest that IL-12 deficient mice are more sensitive to 

chemical carcinogens and develop increased numbers of metastases following 

injection of transplantable tumor, as compared to wild-type controls, and that 

this immune surveillance defect is related to sub-optimal NK-cell function [Smyth 

et al, 2000]. 

Dendritic cells 

Moreover, IL-12 enhances the function of DC, which are professional APC 

capable to process antigen in the setting of vaccination, as they provide high 

concentrations of peptide /MHC ligands forT cell receptor engagement, required 

to activate specific immunity. DC express IL-12 receptors, and their occupation 

initiates nuclear localization of members of the NF-KB family of transcription 

factors [Grohmann et al, 1998]. They are supposed to increase the maturation of 

be and enhance their capability to present antigen [Pettit et al, 1997], e.g., by 

up-regulation of class II MHC expression [Grohmann et al, 2000]. Furthermore, 

IL-12 promotes the differentiation and maturation of DC indirectly, via the 

induction of pro-inflammatory cytokines. The pro-inflammatory cytokines TNF-a, 

Il-6, and GM-CSF have been shown to mediate migration of DC to T-cell rich 

areas of lymphoid organs in order to form clusters with antigen-specific T cells, 

creating the appropriate environment for T helper cell differentiation [Austyn, 

1996; Jonuleit et al, 1997]. In addition, IFN")' enhances antigen processing by 

DC and their MHC class !-presentation of antigen [Brossart et al, 1997; Fruh et 

al, 1999]. 

In recent years, DC based vaccines have received intense interest [Reid, 

1998]. DC can be generated in vitro [Young, 1999] and loaded with tumor cell 

lysates or tumor peptides before administration to the patient. In this way the 

physiological process that recruits antigen specific T cells is mimicked to some 

degree. Although mature DC themselves are potent producers of IL-12, co-
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administration of Il-12 improves the results of DC based vaccines. In vitro, CTL 

responses, triggered by autologous human monocyte-derived DC that were 

modified to express melanoma antigens, could be enhanced by co-transfecting 

these DC with IL-12 genes [TOting et al, 1998]. In situations where antigen 

presentation by DC without IL-12 co-administration induced T cell anergy, IL-12 

could reverse or prevent development of tolerance in favor of immune activation 

[Grohmann et al, 1997]. Similarly, IL-12 was shown to be able to convert DC 

from a state of tolerance to activity. In patients that presented simultaneously 

with progressing and regressing metastases, tissue DC from progressing 

metastases appeared unable to induce T cell proliferation and did not produce 

Th1 cytokines, in contrast to DC from regressing metastases, and this defect 

could be overcome by Il-12 addition [Enk et al, 1997]. 

In conclusion, IL-12 plays an important role in the activation of innate 

immunity and potentially provides tumor antigens with a background of 

inflammatory effects with resultant "danger" signals that can promote activation 

of specific immunity. 

Effects on specific immune cells 

Cellular immune response 

The cytokines present in the micro-environment at the time of initial antigen 

stimulation direct the differentiation of naive T cells into effector T cell subsets. 

MHC-restricted, Ag-specific T lymphocytes are considered to be an important 

effector mechanism against cancer. 

In the presence of IL-12 naive T cells differentiate into the functionally 

defined Th1 subset [Hsieh et al, 1993] that is involved in cell mediated 

immunity. Subsequently, IL-12 is an important co-stimulus for proliferation and 

further activation of fully differentiated Th1 cells and their secretion of IFN-y 

[Manetti et al, 1993; Germann et al, 1993]. 

T lymphocytes respond to IL-12 through high affinity receptors, which are 

composed of two sub-units, termed ~1 and ~2 [Presky et al, 1996]. Th1 cells 

express both sub-units. However, if T helper cells differentiate along the Th2 

pathway, supporting humoral immune responses, they selectively lose IL-12R~2 

and thereby become unresponsive to IL-12 [Szabo et al, 1997]. Th1 commitment 

is enhanced by IFN-y, which further up-regulates the IL-12 receptor [O'Garra, 

1998; Trinchieri, 1996]. Once a Th1 response is induced in vivo, Il-12 is in most 

cases not necessary for maintaining this response [Gazzinelli et al, 1994]. This 

observation is important for vaccination strategies, as it implies that addition of 
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IL-12 to the vaccine only would be sufficient to induce and maintain the desired 

response. 

In addition, IL-12 modulates a number of genes involved in Th1 trafficking 

and regulates the migration and homing of these cells. IL-12 can attract and 

maintain Th1 cells to the site of administration by the up-regulation of Th1 

specific adhesion molecules and their ligands. For example, IL-12 selectively 

increases the expression of integrin-0<6/~1 and chemokine receptor CCR1 on Th1 

cells in vitro [Colantonio et al, 1999]. Also, IL-12 upregulates the expression of 

glucosyltransferase enzymes that increase the expression of P-selectin and E 

selectin ligand on Th1 cells which enables their recruitment to inflamed tissues 

[White et al, 2001]. Finally, IL-12 strongly induces the expression of IP-10 in 

various cell types in vitro [Sgadari et al, 1996]. IP-10 is the ligand of chemokine 

receptor CXCR3, selectively expressed on Th1 cells [Mantovani, 1999]. In 

accordance, peripheral blood mononuclear cells [PBMC) and tumor biopsies from 

cancer patients showed increased expression of IP-10 after IL-12 treatment 

[Haicheur et al, 2000; Bukowski et al, 1999]. 

DC play an essential intermediate function in the facilitating interaction 

between T helper cells and antigen specific cytotoxic CDS+ T lymphocytes (CTL). 

Priming of CTL is enabled by the ligation of CD40 on DC and its ligand CD154 on 

activated CD4+ cells [Schoenberger et al, 199S; Bennett et al, 199S]. The strong 

induction of IL-12 synthesis that occurs as a result of CD40 ligation, suggests an 

important role for IL-12 in the molecular mechanisms responsible for the CTL 

priming. This contention is further supported by studies using latex microspheres 

coated with various combinations of class I MHC-peptide complexes and co­

stimulatory molecules, thus avoiding the use of APCs whose function may be 

affected by cytokines. It was hence shown that IL-12, in the presence of antigen, 

acts directly on the naive CDS+ CTL to promote clonal expansion and 

differentiation [Curtsinger et al, 1999]. 

That IL-12 plays an important role in the establishment of immunological 

memory was demonstrated in an experimental system, in which a small number 

of antigen-specific CDS+ CTL were adoptively transferred into naive, syngeneic 

mice, in order to monitor responses to peptide immunization in the absence or 

presence of IL-12. Peptide immunization without simultaneous IL-12 

administration induced a weak and transient expansion of CDS+ CTL, whereas in 

the presence of IL-12, a large clonal expansion of CDS+ T cells was induced in 

the draining lymph nodes. These cells were capable of antigen specific killing in 

in vitro assays. Additionally, a stable memory T cell population was generated 

that responded to a second challenge with IL-12 and peptide [Schmidt et al, 
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1999]. A strong specific CTL response was observed in patients with advanced 

melanoma after administration of IL-12. Numbers of tumor specific CTL 

increased in the circulation and influx of specific memory CDS+ T cells into 

metastasized lesions was documented [Mortarini et al, 2000]. 

Humoral immune response 

With respect to humoral immunity, addition of IL-12 to protein and hapten 

vaccinations strongly up-regulates the synthesis of Ag-specific, complement 

fixing IgG2a, IgG2b and IgG3 antibody subclasses [Germann et al, 1995; 

Buchanan et al, 1995]. Further experiments in mice revealed that the elevation 

of these antibody isotypes is dependent on IFN-y induction [Metzger et al, 1997]. 

However, in IFN-y knock-out mice, IL-12 still significantly enhances the synthesis 

of specific IgG1 and IgG2b. Therefore a two step model of humoral immune 

enhancement by IL-12 was proposed [Metzger et al, 1997]. Initially, the IL-12 

induced production of IFN-y by Th1 and NK cells, would mediate early switching 

of B cells towards IgG2 immunoglobulin secretion with temporal suppression of 

IgG1 production. Subsequently, IL-12 would stimulate the switched B cells to 

secrete increased amounts of antibody, regardless of their isotype [Metzger et al, 

1996]. 

IL-12 was also identified as a pivotal molecule secreted by activated human 

DC that promote the differentiation of naive B cells into IgM secreting plasma 

cells and hence plays an important role in generation of primary antibody 

responses that are initiated by DC [Dubois et al, 1998]. Finally, IL-12 may exert 

indirect effects on B cells via the induction of other cytokines than IFN-y. We 

have shown in patients with renal cell cancer, that IL-12 induces elevation of 

serum levels of IL-6 [Portielje et al, 2002a], which is a prominent stimulator of B 

cell differentiation and immunoglobulin synthesis [Van Snick, 1990]. 

Adjuvant effects of Il-12 in animal studies 

The addition of IL-12 to different types of cancer vaccines has been 

extensively studied in animal (mostly murine-) models. The first vaccination 

protocol addressed the co-administration of IL-12 with tumor derived peptide 

and resulted in the induction of peptide specific CTL in naive, tumor bearing mice 

and the eradication of established tumors [Noguchi et al, 1995]. Several studies 

used cancer cells as vaccines, that had been transduced to express IL-12 [Tahara 

et al, 1995 and 1996; Rodolfo et al, 1996; Fallarino et al, 1997 and 1999; 
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Schmitt et al, 1997; Cavallo et al, 1997; Chen et al, 1997; Popovic et al, 1998; 

Hoshino et al, 1998, Lode et al, 1998, Myers et al, 1998; Fuji et al, 1999; 

Dunussi-Joannopoulos et al, 1999; Carr-Brendel et al, 1999; Adris et al, 2000; 

Lechanteur et al, 2000, Nagai et al, 2000]. Alternative approaches also resulted 

in the presence of Il-12 at the site of tumor antigen. Recombinant viral vectors, 

encoding Il-12 [Bramson et al, 1996] Caruso et al, 1996; Puissieux et al, 1998; 

Rakhmilevich et al, 1997; Fernandez et al, 1999], or fibroblasts, transfected for 

Il-12 production, were injected near the tumor [Tahara et al, 1994; Matsumoto 

et al, 1999]. More recently, studies have applied co-administration of genes 

encoding for Il-12 and various tumor antigens [Tan et al, 1999; Amici et al, 

2000; Song et al, 2000; Kim et al, 2001]. The addition of Il-12 to these vaccines 

clearly enhanced the anti-tumor effects, with resultant inhibition of tumor growth 

and eradication of established tumors. Additionally, immune memory was 

established with rejection of tumor cells at a subsequent challenge. In several 

studies, separate analyses have demonstrated that ll-12 plus vaccine was more 

effective than either component alone [Pulaski et al, 2000; Rodolfo et al, 1996; 

Lechanteur et al, 2000; Fuji et al, 1999; Hoshino et al, 1998; Jean et al, 1998; 

Adris et al, 2000; Cavallo et al, 1997; Dunussi-Joannopoulos et al, 1999; 

Fallarino et al, 1997 and 1999]. In vivo depletion of cellular subsets [Adris et al, 

2000; Dunussi-Joannopoulos et al, 1999; Lode et al, 1998; Musiani et al, 1996; 

Pulaski et al, 2000; Weber et al, 1999; Puisieux et al, 1998] and knockout mice 

[Hunter et al, 1997; Puisieux et al, 1998; Song et al, 2000] have been used to 

investigate the anti-tumor mechanism of IL-12. Additionally, the cellular infiltrate 

in tumor metastases after vaccination has been characterized [Hunter et al, 

1997; Fernandez et al, 1999; Nanni et al, 2001]. In most studies, lymphocytes 

were pivotal effector cells. The lymphocyte subsets involved, such as CD 8+ T 

cells, CD4+ T cells, NK cells or a combination of these, varied with the specific 

vaccine and the tumor model studied. Infrequently, other immune effector cells 

such as macrophages have been implicated in the anti-tumor effects of ll-12 

[Tsung et al, 1997]. Additionally, 11-12 was shown to stimulate humoral 

immunity. In a model of colon carcinoma, vaccination with Il-12 transduced 

tumor cells cured 40°/o of tumor bearing mice. Favorable anti-tumor responses 

were related to the synthesis of antibodies against tumor associated antigens 

that induced tumor cell lysis in a complement dependent cytotoxicity assay 

[Rodolfo et al, 1996]. Moreover, ll-12 increased anti-neu antibody synthesis, in 

a model in HER-2/neu transgenic mice. Although antibody levels were not 

correlated with anti-tumor protection, vaccination with a combination of plasm ids 
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encoding the neu oncogene and IL-12, resulted in protection against mammary 

tumors that normally develop spontaneously in these mice [Amici et al, 2000]. 

In several recent studies IL-12 has been combined with other strategies 

aimed to promote effective immune responses against tumor antigens. The 

administration was systemically, together with tumor cells transduced to express 

co-stimulatory molecules such as B7-1 or MHC class II [Joki et al, 1999; Pulaski 

et al, 2000]. An important and promising vaccination strategy consists of the 

addition of Il-12 to DC based vaccines [Melero et al, 1999; Zitvogel et al, 1996; 

Fallarino et al, 1999; Koido et al, 2000]. In a mouse model of chemically induced 

fibrosarcoma, DC were pulsed with tumor peptides, that had been eluted with 

acid from autologous tumor [Zitvogel et al, 1996]. These DC were combined with 

intra-peritoneal administration of Il-12. Alternatively, antigen-loaded DC were 

transfected with a retroviral vector or a pro-viral construct encoding murine riL-

12. Both strategies augmented the anti-tumor effect of the vaccine, enhanced 

the growth arrest of established tumors and increased specific cytotoxicity of 

splenic T cells, as compared to treatment with non-transfected, peptide pulsed 

DC or ll-12 alone. A recent experiment with DC in MHC-1 transgenic mice 

demonstrated that Il-12 can even reverse tolerance in vivo. MUC1 is over­

expressed in human breast and other cancers. Administration of MUC-1 

expressing DC to the MUC-1-transgenic mice only elicited a specific anti-MUC 

immune response, if ll-12 was co-administered along with the DC [Koido et al, 

2000]. MUC-1-specific CTL were also induced when antigen pulsed PBMC, instead 

of DC, served as APC. Because peptide-loaded autologous human PBMC can be 

obtained relatively easy, in contrast to DC, this is an attractive approach to 

translate for clinical use and indeed, similar studies are now performed in 

humans. 

Adjuvant effects of Il-12 in human studies 

Clinical experience in humans is still limited. Results of two studies with 

tumor peptide vaccination and Il-12 co-administration in patients with malignant 

melanoma were recently published [Gajewski et al, 2001; lee et al, 2001]. One 

study was performed in patients with metastasized melanoma/ using a vaccine 

consisting of autologous PBMC pulsed with MAGE-3 or MelanA peptides and co­

administration of recombinant Il-12 [Gajewski et al, 2001]. Fifteen HLA-A2 

positive patients with metastases expressing MAGE-3 or Melan-A, were 

vaccinated with these tumor peptides at least 3 times at three week intervals. 
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Different doses of IL-12 were used (0, 30, 100 or 300 ngjkg) and IL-12 was 

administered s.c., adjacent to the vaccination site, on days 1, 3 and 5. Only one 

out of four patients treated with pulsed PBMC without IL-12, but all patients 

treated with 30 or 100 ng/kg of IL-12 developed a specific CDS+ T cells response 

after 3 immunizations. Remarkably, only one out of three patients treated at the 

highest dose level of 300 ng/kg of IL-12 did so. Furthermore, grade 2 or 3 

toxicity (fatigue, depression and decreased numbers of peripheral blood cells) 

only occurred with the highest dose of IL-12. Most importantly, 6 of S patients 

with tumor-specific CDS+ T cells showed regression of all, or part of their 

metastases. In the second study, patients with stage III or IV malignant 

melanoma/ who had undergone complete resection of macroscopic tumor, were 

vaccinated with peptides derived from the tumor antigens gp100 and tyrosinase, 

emulsified with incomplete Freund's adjuvant [Lee et al, 2001]. Patients 

received, during 26 weeks, a total of S vaccinations, with or without 30 ng /kg 

IL-12. The combination augmented gp 100-specific DTH reactivity and boosted 

the gp100- and tyrosinase specific production of IFN-y by peripheral blood T cells 

after repeated vaccinations. The number of gp100 specific CTL as measured by 

tetramer flow cytometry was also augmented by IL-12. Of note, the generation 

of specific CTL responses took several vaccinations over multiple months. This 

observation confirmed the clinical impression that patients with rapidly 

progressive disease may not benefit from therapeutic vaccination. Time to 

relapse was not influenced by the addition of IL-12 to the regimen, and did not 

correlate with any of the immunological results. In a third study, the treatment 

of 6 patients with advanced melanoma with weekly vaccinations, using IL-12 

gene-transfected autologous irradiated tumor cells, resulted in one mixed 

response (disappearance of part of the metastases). Two of 6 patients had an 

increased specific CTL response, as measured 2 weeks after the third 

vaccination, one of whom had a mixed response the other stable disease [Meller 

et al, 2000]. In this study, lymphokine activated killer cell activity was induced in 

the majority of patients, but was not related to clinical outcome. In another 

clinical protocol, peritumoral injection of IL-12 transfected fibroblasts was shown 

feasible, and reduction of tumor masses near the injection site were observed 

[Kang et al, 2001]. 



• IL-12 as an adjuvant for cancer vaccination • 103 

Inverse Dose response effect 

In a human study that bears similarities to the study by Lee, patients with 

advanced malignant melanoma were treated with a vaccine consisting of gp100 

melanoma tumor antigen in incomplete Freund's adjuvant [Rosenberg et al, 

1999]. The vaccine elicited the generation of anti-peptide and anti-tumor T cell 

precursors in the circulation, while 42°/o of patients exhibited objective tumor 

regression, but unfortunately without attaining a clinical response. In sharp 

contrast with results by Lee, co-administration of IL-12 reduced the number ofT 

cell precursors and anti-tumor responses were no longer observed. However, IL-

12 was administered i.v. at a relatively high dose level, i.e. 250 ng/kgjday, on 5 

consecutive days after each peptide vaccination. 

In analogy with clinical studies of systemic single agent IL-12 administration, 

the biological effects of IL-12 may be down-regulated at the higher dose levels. 

Additional lines of evidence indicate that IL-12 in the setting of vaccination 

studies, does not exerts optimal immune modulation at high dose levels, and 

that above a certain threshold level, the dose response relationship may revert 

[Noguchi et al, 1995; Jean et al, 1998; Kurzawa et al, 1998]. A very low dose of 

1 ng per day, eight times during 2 weeks, co-administered with a p53 tumor 

peptide vaccine, induced tumor rejection and CTL generation in a murine 

sarcoma model, whereas doses higher than 10 ng per day failed to do so 

[Noguchi). In a rat glioma model, vaccination with irradiated tumor cells in 

combination with subcutaneous IL-12, resulted in maximal tumor eradication and 

optimal protective immunity against repeated tumor challenge at the lowest 

applied dose of 1 ng of IL-12 per day, for 28 days [Jean et al, 1998]. In contrast, 

treatment with high doses of 250 ng per day, for 10 days, prevented the 

generation of tumor specific CTL induced by immunization with GM-CSF­

transfected tumor cells [Kurzawa et al, 1998]. A possible inhibitory role for IL-10 

has been suggested in a model of adoptive transfer of specific CTL in immuno­

deficient mice bearing autologous tumor. In these mice, tumor growth 

suppression by CTL increased after injection of 100 ng of IL-12 into the tumor, 

every 2 to 3 days, but not after higher doses of 1000 ng [Asselin-Paturel et al, 

2001]. In vitro, it was then shown, that high dose IL-12 stimulated, in addition 

to IFN-y-, the production of high levels of IL-10 from the tumor specific CTL, and 

furthermore, anti-IL-10 polyclonal antibodies could abrogate the inhibition of 

tumor cell lysis observed after high dose IL-12. Since IL-12 and IL-10 have 

opposite effects on the accessory function of DC and other APC [Koch et al, 

1996], dose finding studies for IL-12 as adjuvant in therapeutic anti-tumor 
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vaccination should focus on those dose levels that do not induce IL-10 

production. 

Conclusions 

IL-12 is a promising adjuvant for cancer vaccination and has the potential to 

activate an effective immunological response to cancer. Firstly, it has strong 

inflammatory properties, and causes the induction of other pro-inflammatory 

cytokines, degranulation of neutrophils, the formation of lipid mediators and 

activation of the coagulative and fibrinolytic systems, that together can provide 

an environment of multiple danger signals for tumor antigens1 suitable for the 

activation of professional APC. In addition, IL-12 directly and indirectly activates 

innate immune effector cells such as neutrophils and NK cells, and promotes 

their secretion of substances that alter the microenvironment and promote 

expression of adhesion molecules that mediate trafficking and homing of APC and 

specific immune cells. Moreover, IL-12 enhances the maturation and antigen 

presenting efficacy of DC and promotes T helper cell differentiation towards Th1 

type, necessary for cellular immune responses. Finally, it stimulates the 

differentiation and lytic capacity of antigen specific CTL and promotes immune 

memory. 

The strong adjuvant properties of IL-12 have been demonstrated in a variety 

of animal models using different vaccination strategies that united tumor 

antigens and IL-12. Sophisticated vaccines have been constructed with antigen 

pulsed DC or PBMC, transduced to express increased IL-12. In these animal 

cancer models, IL-12 was shown to clearly enhance eradication of established 

tumor and moreover was capable of inducing a specific anti-tumor immune 

memory. The first human studies addressing the co-administration of systemic 

IL-12 to cancer vaccines have shown development of tumor-specific CTL in the 

course of multiple vaccinations and although clinical responses were limited, CTL 

responses were clearly correlated with clinical tumor regressions. Several lines of 

evidence indicate that the optimal immune regulatory effects of IL-12 are 

confined to the lower dose levels at which the induction of IL-10 does not take 

place. The maximally effective dose, schedule and route of administration remain 

to be defined. 

Based on the reviewed data, we anticipate the revival of IL-12 as adjuvant 

for therapeutic vaccination against cancer. 



Chapter 7 

Summary 
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The immunotherapy of cancer is based on the assumption that the immune 

system can be stimulated to recognize cancer and eradicate tumor. One of the 

approaches of immunotherapy consists of systemic administration of cytokines. 

Interleukin 12 (Il-12 ) is a cytokine with important immunoregulatory functions. 

The encouraging anti-tumor effects, observed in a variety of animal tumor 

models, have resulted in the development of Il-12 as a single agent for systemic 

cytokine therapy of cancer in humans. Renal cell cancer is one of the few human 

cancers that are more responsive to immunotherapy than to conventional 

cytotoxic therapies. 

We therefore performed a phase I and pharmacokinetic study of 

subcutaneously administered ll-12 in 28 patients with advanced renal cell cancer 

(chapter 1). Recombinant human Il-12 was administered on day 1, followed by 

an observation period of 7 days. Starting on day 8, repeated injections were 

administered 3 times a week, for two weeks. Dose limiting toxicity (DLT) of the 

initial injection was observed at 1.0 ~g/kg and consisted of fever, peri-vasculitis 

of the skin and leukopenia. DLT of the subsequent repeated injections was 

observed at 1.25 ~g/kg and comprised deterioration of performance status, 

fever, vomiting, mental depression and leukopenia. Other notable toxicity 

consisted of oral mucositis and elevation of hepatic enzymes. Fever, leukopenia 

and elevation of hepatic enzymes were more severe after the initial injection 

than after repeated injections at the same dose level. Peak levels of Il-12 were 

reached 9.7 hours after administration and the mean elimination half-life was 9.4 

hours, which is exceptionally long for a cytokine. At dose level 0.5 ~g/kg, the 

mean area under the plasma concentration-time curve (AUC) significantly 

decreased from 7.4 ng x h/ml after the first injection to 3.3 ng x h/ml after repe­

ated administrations, and at dose level 1.0 ~g/kg, from 32 ng x h/ml to 6.0 ng x 

h/ml, possibly due to upregulation of Il-12 receptors. It was concluded that the 

maximum tolerated dose (MTD) of the initial injection of rHull-12 was 0.5 ~g/kg, 

whereas the MTD of 3 subsequent administrations per week was, 1.0 ~g/kg. 

Upon repeated administrations of ll-12, side effects diminished. This 

prompted us to study whether or not the immunological effects decreased as well 

(chapter 3). Serial blood samples were collected from 26 patients in the course 

of the phase I study. The first injection of ll-12 was accompanied by rapid, 

transient and dose dependent increments of plasma levels of IFN-y, TN F-a, Il-10, 

Il-6, Il-8, but not Il-4. Additionally, rapid, transient, and dose dependent 

reductions of lymphocyte-, monocyte- and neutrophil counts were observed in 

the peripheral blood. The major lymphocyte subsets, i.e. CD 4+ and CDS+ T 

cells, B cells and NK cells, followed this pattern. Upon repeated injections, 
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concentrations of the inhibitory cytokine IL-10 further increased, while 

increments of plasma levels of IFN-y, TNF-a, IL-6 and IL-8, as well as 

fluctuations of leukocyte subset counts, were tapered. Dose escalation of IL-12 

within clinically tolerable margins did not reduce the decline of these 

immunological effects. Thus, upon repeated administrations of IL-12, levels of 

pro-inflammatory cytokines diminish, as well as effects on peripheral blood 

leukocyte subsets, while IL-10 production increases and may mediate the 

observed down-regulation of clinical and immunological effects. 

Several bleeding episodes that have been reported in the literature as a 

result of ll-12 administration to humans prompted us to study the effects of IL-

12 on fibrinolysis and coagulation (chapter 4). Coagulative and fibrinolytic 

responses were assessed in 18 patients with advanced renal cell carcinoma after 

subcutaneous administration of 0.5 !Lg/kg rHu!L-12. IL-12 induced sustained 

activation of fibrinolysis in the majority (94%) and substantial thrombin 

generation in half of patients. Plasmin-a2-antiplasmin complexes (PAPc) 

increased from 12 to a maximum of 19 nmol/1 at 72 hours. IL-12 induced the 

production of tissue plasminogen activator (tPA), whereas secretion of its natural 

inhibitor plasminogen-activator inhibitor-! (PAl) diminished. The elevation of tPA 

and reduction of PAl correlated with elevation of PAPc. Thrombin-anti-thrombin 

III complexes increased from 29 to a maximum of 460 ng/ml at 12 hours. The 

fibrinolytic response continued while thrombin generation had already abated 

and therefore occurred independently. Sequence and time frame of fibrinolytic 

and coagulative responses differ markedly from those observed after other 

cytokines and are not in agreement with an important mediator function of IFN-y 

or TN F-a. 

Studies in experimental animals and humans have shown that endogenously 

produced IL-12 plays an important role in the toxic sequel of sepsis and 

endotoxemia. In these situations, excessive activation of various components of 

the inflammatory cascade contributes to the development of tissue injury and 

mortality. We therefore studied the in-vivo effects of different doses of IL-12 on 

components of the inflammatory cascade (chapter 5). A single dose of 0.5 !Lg/kg 

IL-12 induced significant degranulation of neutrophils: plasma levels of elastase 

(azurophilic granules) and lactoferrin (specific granules) increased from 48 to 

117 ng/ml and from 124 to 181 ng/ml, respectively, at 24 hours. Additionally, 

IL-12 injection mediated the release of lipid mediators: Plasma concentrations of 

secretory phospholipase A2 (sPLA2) increased from 17 to 97 ng/ml. Systemic 

activation of inflammation by IL-12 occurred in a dose dependent way. At 0.1 

f!g/kg of IL-12, systemic responses were minimal: Although mild activation of 
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neutrophils was already detectable, formation of sPLA2 was limited. Because the 

hemostatic mechanism is tightly linked to the inflammatory cascade, it is 

important to note, that at this dose level, there was neither activation of the 

coagulative response and only minimal activation of fibrinolysis. 

While performing the studies presented in this thesis, reports of the first 

phase II studies of single agent systemic IL-12 in patients with advanced ovarian 

and renal cell cancer were published and demonstrated disappointing anti-tumor 

efficacy. In these studies, IL-12 was used at the MTD as defined in previous 

phase I studies, including the study described in chapter 2. Probably, the lack of 

efficacy is related to the decline of immunological effects of IL-12 that occurs in 

the course of repeated administrations at the MTD. Protective feedback 

mechanisms, such as the production of IL-10, may operate to abrogate the 

strong and potentially damaging systemic inflammatory responses that occur 

after relatively high dose IL-12. 

Recent cancer vaccination studies in animal models and humans have 

demonstrated that IL-12 has powerful adjuvant properties and hence remains a 

promising immunotherapeutic agent. All classical adjuvant substances are strong 

stimulators of local inflammation and therefore, the stimulation of inflammatory 

responses is thought to play an important role in the adjuvant effects of IL-12. In 

chapter 6, the adjuvant properties of IL-12 are reviewed. It is described how the 

pro-inflammatory effects of IL-12 can provide an environment of multiple danger 

signals for tumor antigens, resulting in activation of professional antigen 

presenting cells. Results of animal and human studies with IL-12 applied as an 

adjuvant for cancer vaccination are reviewed. Finally, it is discussed how clinical 

studies with systemic IL-12 and several other lines of evidence indicate that IL-

12 may exert optimal adjuvant effects only at low dose levels, and consequently, 

that the maximum tolerated dose is not be the most effective dose of !L-12. 

Final conclusions and future perspectives 

The initial administration of !L-12 to humans induces transient elevation of 

various other pro-inflammatory cytokines, and transient depletion of leukocytes 

in the peripheral blood. Upon repeated administration of !L-12, the induction of 

the inhibitory cytokine IL-10 is sustained, whereas the other immunological 

effects diminish. The disappointing anti-tumor effects observed in the first phase 

II studies are possibly related to this decline of biological effects. However, IL-12 

may re-enter the arena of cancer therapy, because recent cancer vaccination 
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studies have shown that IL-12 is a promising adjuvant substance, that seems to 

exert optimal effects at low dose levels. We hypothesize that localized 

inflammation plays a key role in the adjuvant effects of IL-12. On the other 

hand, administration of high dose IL-12 will trigger endogenous feedback 

mechanisms that annihilate the potential therapeutic effects. We anticipate 

therapeutic application of IL-12 as adjuvant for vaccination against cancer. 



Chapter 8 

Samenvatting 
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Het onderzoek dat wordt beschreven in dit proefschrift bestudeerde de klinische 

en biologische effecten van interleukine 12 (IL-12) bij patienten met 

niercelkanker. 

In Ieiding 

Niercelkanker is een relatief zeldzame ziekte. Patienten met deze vorm van 

kanker hebben in het algemeen een slechte prognose, omdat veel van hen bij 

presentatie van de ziekte al uitzaaiingen hebben. Helaas is uitgezaaide 

niercelkanker meestal niet geed te behandelen met chirurgie, radiotherapie of 

chemotherapie. Daarom wordt er veel onderzoek gedaan naar nieuwe manieren 

van behandeling. 

Het concept van immunotherapie bij kanker is gebaseerd op de 

veronderstelling dat het immuunsysteem kan worden gestimuleerd om kanker 

cellen te herkennen en te vernietigen. Eerder onderzoek heeft aangetoond dat 

niercel kanker een van de zeldzame kanker soorten is die relatief gevoelig is voor 

immunotherapie. Hoewel slechts een klein gedeelte van de patienten met 

uitgezaaide niercelkanker baat heeft bij de nu toegepaste vormen van 

immunotherapie, genezen sommige patienten uiteindelijk geheel. Dit resultaat 

motiveert onderzoek naar nieuwe immunotherapeutische behandelingen bij 

patienten met uitgezaaide niercelkanker. Een van de vormen van 

immunotherapie bestaat uit het toedienen van cytokines. Cytokines zijn in het 

lichaam natuurlijk voorkomende stoffen, die geproduceerd worden door 

verschillende cellen van het immuunsysteem en vervolgens de werking van 

andere immuuncellen sturen. In dierproeven werd aangetoond dat het cytokine 

IL-12 sterke anti-tumor effecten heeft. 

Het onderzoek 

Allereerst deden we een fase I onderzoek met IL-12 bij patienten met 

uitgezaaide niercelkanker (hoofdstuk 2). In fase I onderzoek wordt bepaald hoe 

een potentieel geneesmiddel door patienten wordt verdragen. Dit type onderzoek 

gaat vooraf aan fase II onderzoek, waarmee de uiteindelijke werkzaamheid bij 

een bepaalde ziekte wordt bepaald. Fase 1 onderzoek is niet erg geschikt om de 

werkzaamheid van potentiele geneesmiddelen te bepalen, omdat uiteindelijk 
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maar een klein aantal mensen met de meest effectieve dosis van het middel 

wordt behandeld. 

In ons onderzoek werd IL-12 met onderhuidse injecties, in een langzaam 

opklimmende dosering, aan kleine groepen patienten gegeven waarbij 

nauwkeurig werd bepaald wat de bijwerkingen bij de verschillende doseringen 

waren. Het onderzoek werd uitgevoerd in de Dr. Daniel den Hoed Kliniek, 

behorend tot het Erasmus Medisch Centrum in Rotterdam en in de Johannes 

Gutenberg Klinik, behorend tot de universiteit van Mainz in Duitsland. Met de 

studie werd bepaald welke de hoogste dosis is die kan worden toegediend zonder 

belangrijke bijwerkingen. Deze dosis was vervolgens de geadviseerde dosis voor 

fase II onderzoek dat in andere centra werd verricht. Frequente bijwerkingen van 
Il-12 waren: koorts, vermoeidheid, afname van de witte bloedcellen en 

verhoging van de leverenzymen in het bleed. In de loop van de behandeling kon 

de toegediende dosis Il-12 worden verhoogd, omdat de bijwerkingen afnamen 

en het middel dus beter werd verdragen. In onze studie werd slechts bij een van 

de 28 deelnemende patienten een tijdelijke afname van uitzaaiingen gezien en 7 

patienten had den tijdelijke stabilisatie van de ziekte. 

In fase I onderzoek wordt altijd de eerste ervaring met een middel bij 

patienten opgedaan. AI het onderzoek dat eraan vooraf is gegaan heeft zich in 

het algemeen in het laboratorium of in proefdieren afgespeeld. Tijdens fase I 

onderzoek wordt daarom ook altijd geprobeerd om zoveel mogelijk te weten te 

komen over de biologische effecten bij de mens. Wij waren ten eerste 

ge"interesseerd in de effecten die IL-12 bij patienten heeft op verschillende 

componenten van het immuunsysteem (hoofdstuk 3). De eerste IL-12 toediening 

gaf een verhoging van bloedspiegels van een hele reeks andere cytokines, terwijl 

de witte bloedcellen, die belangrijke functies vervullen bij de afweer, tijdelijk 

vanuit het bleed naar de organen trokken. Na de volgende Il-12 injecties bleef 

stijging van de meeste cytokines uit, evenals de effecten op de witte bloedcellen. 

Van een cytokine, namelijk IL-10, bleven de spiegels in de loop van volgende IL-

12 injecties wei stijgen. IL-10 wordt beschouwd als een remmer van het 

immuunsysteem, en de hoge spiegels hebben vermoedelijk de andere effecten 

van IL-12 onderdrukt. 

In een aantal studies, verricht door andere onderzoeksgroepen, waren na Il-

12 injectie ernstige bloedingen bij patienten opgetreden. Daarom bestudeerden 

we de effecten van IL-12 op de stalling (hoofdstuk 4). Nu bleek dat IL-12 injectie 

een langdurig stimulerend effect op de oplossing van bloedstolsels heeft, hetgeen 

bloedingsneiging kan geven. 
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Bij ernstige bacteriele infecties zoals bloedvergiftiging treden er in het 

lichaam heftige ontstekingsreacties op, die uiteindelijk schadelijk voor de 

organen kunnen zijn. In deze situaties zijn IL-12 bloedspiegels vaak hoog. We 

bestudeerden daarom of IL-12 ontstekingseffecten tot gevolg heeft (hoofdstuk 

5). IL-12 bleek, in de dosis die voor fase II onderzoek geadviseerd werd, 

inderdaad een stimulus voor gegeneraliseerde ontstekingseffecten te zijn. Bij 

lagere doseringen was dit nauwelijks het geval. 

De eerste fase II studie met IL-12 is inmiddels in andere onderzoekscentra 

bij patienten met uitgezaaide niercel kanker uitgevoerd. Helaas bleek IL-12 niet 

werkzaam. Het ontbreken van anti-tumor effecten lijkt gerelateerd aan de 

uitdoving van immunoiogische effecten die door ons werd waargenomen bij 

herhaalde IL-12 injectie. 

Wij veronderstellen dat in het menselijk lichaam feedback mechanismen in 

werking treden, zoals bijvoorbeeld productie van IL-10, in antwoord op de 

potentieel schadelijke ontstekingseffecten die door ons werden waargenomen na 

relatief hoge dosering IL-12. 

Recent onderzoek toont aan dat IL-12 desondanks een belangrijk 

immunotherapeutisch middel kan worden. Kanker vaccinatie is een andere vorm 

van immunotherapie waarnaar op dit moment wereldwijd veel onderzoek wordt 

gedaan. Vaccins tegen kanker bestaan vaak uit eiwitten afkomstig van 

kankercellen, waaraan een hulpstof is toegevoegd die de afweer tegen deze 

eiwitten moet stimuleren. Een dergelijke hulpstof heet een adjuvans. Elders 

uitgevoerde studies in proefdieren en patienten hebben nu aangetoond dat IL-12 

krachtige adjuvante effecten heeft. Hoofdstuk 6 geeft hiervan een overzicht. 

Omdat aile klassieke adjuvante stoffen lokale ontsteking veroorzaken, lijken de 

ontstekingseffecten van IL-12 een belangrijke rol te spelen bij de adjuvante 

werking. In lage doseringen blijkt IL-12 het meest werkzaam als adjuvans. 

Conclusie 

Bij herhaalde toediening van relatief hoge doseringen IL-12 doven de 

immunologische effecten van IL-12 uit. Dit is vermoedelijk de oorzaak van de 

teleurstellende behandelingsresultaten in fase II onderzoek. Recent hebben 

kanker vaccinatie studies aangetoond dat IL-12 in lage doseringen een krachtige 

adjuvante werking heeft. Lokale ontstekingseffecten lijken hierbij van groat 

belang te zijn. Echter, wij toonden aan dat hoge doseringen IL-12 tot 

gegeneraliseerde ontstekingseffecten kunnen leiden. Deze potentieel schadelijke 
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reacties activeren waarschijnlijk feedback mechanismen die de therapeutische 

effecten van IL-12 teniet kunnen doen. 

IL-12 is een veelbelovend adjuvans voor kanker vaccinaties, en in lage dosis 

waarschijnlijk het meest effectief. 
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