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Chapter 1
Introduction

Representing the information in a data set in a concise way is an important part of data
analysis. The data sets that are used in modern-day empirical research can often be hard
to represent or interpret without specialized statistical techniques. This is because these
data sets often comprise many respondents or objects and many variables, leading to large
matrices of observed data. In addition, we often have limited information on how the
variables are related and what kinds of effects can be expected, which exacerbates the
problem. To understand the relations among variables in such large data matrices, we
consider exploratory statistical techniques for analyzing multivariate data. That is, we do
not have an explicit theory that we want to test, we only wish to better understand the
data. These exploratory techniques make relatively few assumptions and emphasize flexible
searching for clues and evidence (see, for example, Hoaglin, Mosteller, & Tukey, 1983). We
specifically look for techniques that can summarize the information in a data set in ways
that are easy to understand, preferably using graphical representations. At the same time,
we wish to retain the advantages of imposing statistical assumptions on the process that
generates the data; these advantages include the possibility to conduct statistical inference
and hypothesis testing. To do so, we imbed techniques for summarizing multivariate data
in statistical models.

In this thesis, we present a number of methodological innovations with respect to
exploratory and model-based multivariate data analysis techniques. The goal of the
thesis is to develop new models and methodologies for representing data in ways that
are simple and easy to understand. We seek to develop models that can summarize and
explain the information in a data set in a parsimonious way. The focus is on techniques
for segmentation (which includes clustering and finite mixture modeling) and dimension
reduction. To illustrate the usefulness of the techniques, the thesis includes a variety of
empirical applications in marketing, psychometrics, and political science. In most of the
chapters in this thesis, we propose new statistical models. The first part of this thesis
focuses on bilinear decomposition models, and the second part considers techniques for
two-mode partitioning. We treat a variety of subject areas, and each chapter presents a
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unique methodological contribution. To show how the methods can be applied, we use at
least one empirical data set in each chapter.

This thesis contributes to the literature in the following ways. First, we develop a
general model for representing two-way interaction effects in generalized linear models
using graphical representations. Second, we show how the methods discussed in this
thesis can be used to model the response behavior of respondents in rating scale surveys
with multiple items. Our method can provide better nuance on how response styles
and opinions affect the response behavior than previous methods. Third, we show how
bilinear decompositions can also be used to model attribute interactions in conjoint analysis
experiments. Fourth, we compare several optimization methods for deterministic two-mode
partitioning methods and show which methods yield the best results. Finally, we develop a
new Bayesian approach to model-based two-mode clustering. This Bayesian approach gives
more informative results and can be easier to implement than previous classical estimation
methods for model-based two-mode clustering.

In this introduction, we first explain what kinds of models and data analysis techniques
are considered. We then give a brief overview of the two types of techniques used in this
thesis. Finally, we discuss an outline of the individual chapters, including their scientific
contribution and publication status.

1.1 Exploratory and Model-Based Data Analysis

Many exploratory techniques for analyzing multivariate data, such as k-means clustering
(see, for example, Hartigan, 1975) and principal components analysis (Jolliffe, 2002), are
procedural or deterministic and do not rely on statistical assumptions. That is, these
techniques only consist of an algorithm or a criterion function that needs to be optimized;
no assumptions are made about the process that generated the data. Not making such
assumptions has the advantage that these techniques are easy-to-apply, but can also limit
their usefulness, as the statistical significance of the results cannot be known.

In this thesis, we strive to develop model-based techniques for analyzing multivariate
data. By making explicit assumptions on the distribution of the data, we can determine
whether the effects of variables are statistically significant and provide confidence intervals
for the parameter estimates. Using information criteria, we can also estimate the complex-
ity of the models (that is, the number of segments/clusters and components/dimensions).
A disadvantage of the model-based techniques in this thesis is that they need to be designed
for a specific type of data set. Simpler techniques, such as k-means clustering and principal
components analysis, can be applied to almost any data set presented in this thesis, but
would generally provide less informative results.

A large number of techniques can be considered as a form of exploratory multivariate
data analysis, and giving a complete overview of these techniques is beyond the scope of
this thesis. Instead, we focus on two techniques in this thesis: segmentation and dimension
reduction.  Specifically, we consider models based on a bilinear parameter structure
(dimension reduction) and techniques for two-mode partitioning (segmentation). Below,
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we give a general overview of the techniques of dimension reduction and segmentation and
also a description of how these techniques are implemented in this thesis.

1.2 Dimension Reduction

Dimension reduction is the general technique of representing high-dimensional data in a
low-dimensional space, preferably using graphical representations. Well-known examples
of such techniques are principal components analysis, multiple correspondence analysis,
and multidimensional scaling. To reduce the dimensionality of the data, one typically
assigns a point in a Euclidean space to each respondent, object, or (category of a) variable.
The data can then be visualized by plotting the respondents, objects, or variables in a
figure. The resulting graphical displays are a major advantage of dimension reduction
techniques, because they can help interpret the data. If different kinds of objects (for
example, respondents and variables) are jointly represented in a single figure, the resulting
figures are called biplots (Gower & Hand, 1996).

In this thesis, we incorporate dimension reduction methods in statistical models, so that
the locations of the points must be estimated as parameters. We use bilinear parameter
structures, in which a matrix of parameters is approximated by parameter matrices of a
lower rank. This lower rank equals the dimensionality of the representation.

Mathematically, a bilinear parameter structure can be imposed as follows. Suppose that
the effects of certain variables in a statistical model are estimated by the k x [ parameter
matrix H. Such parameter matrices often occur in practice, especially in models in which
several (predictor or response) variables have a categorical measurement level, such as
analysis of variance. Instead of estimating H directly, we can obtain a bilinear parameter
structure by imposing that H = FG’, in which F and G are k x P and [ x P parameter
matrices. The number of columns P is the rank of the estimated matrix H and equals the
dimensionality of the representation. For P large enough, the matrix H can take any form
and can thus approximate the effects in the data as well as possible. Note that, for large
k and [, accurately estimating H requires a large amount of data. Imposing a bilinear
parameter structure can then reduce the number of parameters to be estimated, and the
remaining parameters can be estimated more precisely.

To represent the results of such a bilinear decomposition in a single figure, we can plot
the rows of the matrices F and G as points in a P-dimensional space. Figure 1.1 contains
an example of such a figure, based on a 3 x 4 matrix H. To easily determine the estimated
effects, all points are connected to the origin using vectors. The estimated effects can be
derived from such a figure in the same way as in principal components analysis biplots.
Suppose we are interested in determining element (1,4) of H. To do so, we may proceed
as follows.

1. Find the points in the figure that are associated with row 1 and column 4.

2. Project the vector of column 4 onto the vector of row 1.
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Figure 1.1: Hypothetical example of a graphical representation
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3. Multiply the length of the projection with the length of the vector of row 1.

4. The resulting length is the estimated effect, which also equals the inner product of
the two vectors.

The projections of the vectors of all columns onto the vector of Row 1 are shown in the
left panel of Figure 1.1. In the right panel, the estimated effects for Row 1 are shown. The
effect of element (1,4) is approximately 0.26.

Although any user of a bilinear decomposition model should be able to implement
this stepwise approach, we can often simplify the interpretation of the effects by assigning
interpretations to the dimensions of the low-dimensional representation. In that case, the
users of a model often do not need to compute the exact estimated effects to understand
the results. The bilinear specification using inner products contrasts the distance-based
interpretation that is used in multidimensional scaling and other techniques. With a
distance-based method, the distances between points in a graphical representation can
be used to determine the estimated effects.

In this thesis, we use bilinear decompositions to model the effects of multiple categor-
ical variables. The parameter matrix that is decomposed either represents the effects
of a categorical explanatory variable on a categorical dependent variable or the two-
way interaction effect of two categorical explanatory variables. We also link dimension
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reduction to the methodology of optimal scaling (see, for example, Young, 1981; Gifi,
1990; Linting, Meulman, Groenen, & Van der Kooij, 2007). This methodology assigns
numeric values to categorical variables in such a way that a criterion function is optimized.
We incorporate optimal scaling in some of the models that we develop, and we show that,
for some dimension reduction techniques, optimal scaling is equivalent to reducing the
dimensionality to 1.

1.3 Segmentation

Segmentation techniques divide a set of respondents or objects into groups. Typically,
the goal of such an approach is to make the respondents or objects in a group as similar
as possible; the clusters should have internal cohesion and external isolation (Cormack,
1971). Segmentation techniques include cluster analysis and finite mixture modeling.
Cluster analysis (see, for example, Sneath, 1957) is the automatic grouping of objects
into groups on the basis of properties of the objects or the dissimilarities between them.
Cluster analysis comprises both hierarchical methods, such as Ward’s method, and non-
hierarchical methods, such as k-means clustering. Finite mixture modeling (see, for
example, McLachlan & Peel, 2000) can be seen as a model-based version of clustering.
In finite mixture modeling, certain (sets of) parameters of a statistical model are allowed
to vary among latent classes of respondents/objects. An advantage of finite mixture models
is that it is possible to calculate the probability that a respondent or an object belongs to
a certain segment. This allows us to determine the uncertainty in the classification, which
is usually not possible in cluster analysis.

In this thesis, we apply both finite mixture modeling and more traditional clustering
techniques. We use both methodologies for partitioning (that is, clustering in such a
way that each object belongs to exactly one cluster) two-mode two-way data matrices;
in two-mode partitioning, respondents and variables are clustered simultaneously. We
first compare optimization methods for the k-means clustering problem in the case of
two-mode data matrices. We then propose a new Bayesian segmentation method for two-
mode data matrices, based on finite mixture modeling. Finally, in one of the models in
which dimension reduction is applied, finite mixture modeling is also used to account for
unobserved heterogeneity in the respondents. We will thus show how dimension reduction
and segmentation can be meaningfully combined in a single model.

1.4 Summary

This thesis is divided into two parts. In Part I, the main focus is on representing interactions
effects using bilinear decompositions (dimension reduction). Part IT focuses on techniques
for two-mode partitioning. Parts I and II comprise three and two chapters, respectively.
Each chapter contains an abstract and can be read independently of the other chapters.
Below, we give a brief overview of each chapter.
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In Chapter 2, we consider a general model specification for representing two-way
interaction effects in a parsimonious way. We discuss an optimal scaling model for analyzing
the content of interaction effects in generalized linear models with any number of categorical
predictor variables. This model, which we call the optimal scaling of interactions (OSI)
model, is a parsimonious, one-dimensional multiplicative interaction model. We discuss
how the model can be used to visually interpret the interaction effects. Several extensions
of the one-dimensional model are also explored. Finally, two data sets are used to show
how the results of the model can be applied and interpreted. Chapter 2 is based on
Van Rosmalen, Koning, and Groenen (2009) and has been published in Multivariate
Behavioral Research.

In Chapter 3, we consider the topic of response styles (that is, the way respondents
use rating scales), which threaten the validity of rating scale responses. We investigate
how response style and content of the items affect rating scale responses. We develop
a novel model that accounts for different kinds of response styles, content of items, and
background characteristics of respondents. By imposing a bilinear parameter structure
on a multinomial logit model, the effects on the response behavior of the characteristics
of a respondent and the content of an item are graphically distinguished. This approach
is combined with finite mixture modeling, yielding two segmentations of the respondents:
one for response style and one for item content. This latent-class bilinear multinomial logit
(LC-BML) model is applied to the well-known List of Values in a cross-national context.
Chapter 3 is based on Van Rosmalen, Van Herk, and Groenen (in press) and has been
accepted for publication in the Journal of Marketing Research.

In Chapter 4, we apply the modeling principles of Chapter 2 to conjoint analysis data.
In conjoint choice experiments, interaction effects of attributes are seldom fully modeled.
Modeling all interaction effects tends to require a large number of parameters and a large
conjoint choice design. We consider a novel approach for modeling two-way interactions
effects, based on the OSI model of Chapter 2. The aim of this approach is to model the
two-way interaction effects in choice-based conjoint analysis effectively, while keeping the
design size and the number of parameters relatively small. We apply the resulting models
to an empirical conjoint choice data set. We also sketch how good choice designs can
be constructed for our models. Chapter 4 is joint work with Alex Koning and Patrick
Groenen.

In Chapter 5, we compare various optimization strategies for two-mode partitioning.
Two-mode partitioning is a relatively new form of clustering that clusters both rows and
columns of a data matrix. We consider deterministic two-mode partitioning methods in
which a criterion similar to k-means is optimized. A variety of optimization methods have
been proposed for this type of problem. However, it is still unclear which method should be
used, as various methods may lead to non-global optima. We review and compare several
optimization methods for two-mode partitioning. Several known methods are discussed,
and a new fuzzy steps method is introduced. The performances of all methods are compared
in a large simulation study. Finally, an empirical data set is used to give a practical example
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of two-mode partitioning. Chapter 5 is based on Van Rosmalen, Groenen, Trejos, and
Castillo (in press) and has been accepted for publication in the Journal of Classification.

In Chapter 6, we develop a new Bayesian approach to estimate the parameters of
a latent-class model for the joint clustering of both modes of two-mode data matrices.
Posterior results are obtained using a Gibbs sampler with data augmentation. Our
Bayesian approach has three advantages over existing methods. First, we are able to do
statistical inference on the model parameters, which would not be possible using frequentist
estimation procedures. In addition, the Bayesian approach allows us to provide statistical
criteria for determining the optimal numbers of clusters. Finally, our Gibbs sampler has
fewer problems with local optima in the likelihood function and empty classes than the
EM algorithm used in a frequentist approach. We apply the Bayesian estimation method
of the latent-class two-mode clustering model to two empirical data sets. The first data
set is the Supreme Court voting data set of Doreian, Batagelj, and Ferligoj (2004). The
second data set comprises the roll call votes of the United States House of Representatives
in 2007. For both data sets, we show how the results can provide useful insight into the
data. Chapter 6 is joint work with Bram van Dijk and Richard Paap.

In the Discussion, the thesis is ended with a short overview of the findings and a
discussion of the limitations and avenues for future research.
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Chapter 2

Optimal Scaling of Interaction Effects
in Generalized Linear Models™

Abstract

Multiplicative interaction models, such as Goodman’s RC(M) association models,
can be a useful tool for analyzing the content of interaction effects. However, most
models for interaction effects are only suitable for data sets with two or three predictor
variables. Here, we discuss an optimal scaling model for analyzing the content
of interaction effects in generalized linear models with any number of categorical
predictor variables. This model, which we call the optimal scaling of interactions
(OSI) model, is a parsimonious, one-dimensional multiplicative interaction model.
We discuss how the model can be used to visually interpret the interaction effects.
Several extensions of the one-dimensional model are also explored. Finally, two data
sets are used to show how the results of the model can be applied and interpreted. The
first data set is based on the Student/Teacher Achievement Ratio (STAR) project
and is used to investigate the effects of class size on the performance of primary school
students. The second data set comprises four questions from the 1994 General Social
Survey (Davis & Smith, 1996) on attitudes of the labor roles of women.

2.1 Introduction

The analysis of data sets with categorical variables often requires studying interaction
effects between these variables. If the relationship between the response variable and the
predictor variables is linear, the interaction effects can be studied using analysis of variance
(ANOVA). If this relationship is nonlinear, models from the class of generalized linear
models (GLMs) are often used. Generalized linear models, which are extensions of the
general linear model, can be used to model various kinds of relationships between variables

*This chapter is based on Van Rosmalen et al. (2009).
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and can account for nonnormality and nonlinearity. GLMs have been thoroughly described
in Nelder and Wedderburn (1972) and McCullagh and Nelder (1989). Including all two-way
interactions in a GLM may often require the estimation of a large number of parameters,
especially if there are many categorical variables and if these variables have many levels.
Because of the large number of parameters, the estimated individual interaction effects are
often not interpreted, and only their combined effect is tested for significance.

Models for representing interaction effects parsimoniously have been proposed before,
especially for the case of two categorical predictor variables. For example, Goodman
(1981) proposed row-column (RC(M)) association models for the analysis of two-way
contingency tables. RC(M) association models can be considered as a special case of
generalized additive main effects and multiplicative interaction (GAMMI) models, which
are mainly used in agricultural science (see, for example, Van Eeuwijk, 1995, 1996). Similar
models were proposed by Gabriel (1998). Algorithmic approaches for these kinds of models
were discussed by De Falguerolles and Francis (1992). These types of models often use
biplots (see, for example, Gower & Hand, 1996) to represent interaction effects between
two variables, by plotting the categories of both variables in a two-dimensional space.
Specialized models for the case of three categorical predictor variables also exist (see, for
example, Clogg, 1982; C. J. Anderson, 1996; Choulakian, 1996; Siciliano & Mooijaart,
1997; Wong, 2001).

For the case of more than three predictor variables, Groenen and Koning (2006)
proposed the interaction decomposition model. They sketched an outline of an algorithm
for parameter estimation in this model and gave graphical representations of their results.
For log-linear analysis (a special case of generalized linear modeling) with more than three
variables, a variety of models were proposed by C. J. Anderson and Vermunt (2000). In
their article, the interaction effects are parsimoniously modeled by assuming the presence
of latent variables.

In this chapter, we use the methodology of optimal scaling for modeling interaction
effects parsimoniously. Optimal scaling (see, for example, Young, 1981; Gifi, 1990; Linting
et al., 2007) is a methodology originating from psychometrics that assigns numeric values
to categorical variables in an optimal way. The history of optimal scaling can also be
traced back to correspondence analysis (Richardson & Kuder, 1933; Fisher, 1940; Guttman,
1941); see Benzéceri (1982) for an overview and further details. Gifi (1990) discusses a host
of multivariate analysis techniques (multiple correspondence analysis, nonlinear principal
components analysis, generalized nonlinear canonical correlation analysis, etc.) all having
in common that the variables are categorical and that some optimal recoding is being done.
That is, the categories of the original categorical variables are replaced by their so-called
category quantifications, and from then on the variables are considered to be quantitative
variables. The word optimal refers to the fact that these category quantifications are chosen
in such a way that they help optimize the criterion. Optimal scaling has also been applied
in a regression context, with techniques such as MONANOVA (Kruskal, 1965), ADDALS
(De Leeuw, Young, & Takane, 1976), MORALS (Young, De Leeuw, & Takane, 1976), ACE
(Breiman & Friedman, 1985), and generalized additive models (Hastie & Tibshirani, 1990).
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We describe a model for representing interaction effects in generalized linear models
with any number of categorical predictor variables in a clear and parsimonious way.
Typically, only main effects and two-way interaction effects are empirically relevant, and
higher-way interaction effects are often not required in empirical applications. Therefore,
we primarily focus on modeling two-way interaction effects. The main assumption of our
model is that interactions between categorical predictor variables can be modeled using
continuous predictor variables on which we have partial knowledge. This assumption leads
to a model in which the estimated parameters may be interpreted in terms of an optimal
scaling of the categorical predictor variables. Because of this assumption, we refer to
our model as the optimal scaling of interactions (OSI) model. The OSI model requires a
number of parameters that is only linear in the total number of categories of the categorical
variables and quadratic in the number of variables. By contrast, a standard two-way
interaction model requires a number of parameters that is quadratic in the total number
of categories of the variables.

With our model, we construct one-dimensional graphical representations of the inter-
action effects, which can help interpret these effects. As a one-dimensional model may
be restrictive in some cases, we also explore multidimensional extensions of our model.
Furthermore, we briefly show how the idea of the OSI model could be extended to model
three-way and higher-way interaction effects. Finally, two empirical data sets are used to
show how the results of the OSI model and its multidimensional extensions can be applied
and interpreted. The first data set is based on the Student/Teacher Achievement Ratio
(STAR) project in Tennessee and is used to investigate the effects of class size on the
academic performance of primary school students. The second data set comprises four
questions from the 1994 General Social Survey (Davis & Smith, 1996) on attitudes of the
labor roles of women. To fit the OSI model, we have written specialized software in the
matrix programming language MATLAB. This software package includes the example data
sets discussed in this paper and is available at http://people.few.eur.nl/groenen. The
Optimization Toolbox in MATLAB is required to use this software.

The outline of this chapter is as follows. In the next section, we introduce some notation
and our optimal scaling of interactions model. In Section 2.3, we discuss several extensions
of this model. Section 2.4 describes the application of our model to two empirical data
sets. The final section summarizes our findings.

2.2 Optimal Scaling of Interactions Model

The model we propose is based on generalized linear modeling (see, for example, Nelder
& Wedderburn, 1972; McCullagh & Nelder, 1989). The observations z;,i = 1...n are
assumed to be independently distributed with E(z;) = u;. Each z; has a distribution in
the exponential family, with probability density function given by

260 — b(0)

f(zi;0,¢) = exp { e

—|—c(zi,¢)}, (2.1)
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where a(-), b(-), and ¢(-) are given functions, ¢ is the so-called natural parameter, and
¢ is the dispersion parameter. The exponential family includes the normal, Poisson,
binomial, gamma, and inverse Gaussian distributions; see McCullagh and Nelder (1989) for
a comprehensive overview of possible distributions. The systematic part of a generalized
linear model consists of a predictor 7;, which typically is a linear function of the predictor
variables and the parameters. A link function h(.) relates the linear predictor n; to the
response variable according to

;= h(:). (22)

Common link functions are the identity, inverse, logarithm, and logit functions. In practice,
one often uses canonical links, such as a logarithm link in combination with a Poisson error
distribution. The canonical links can be derived from the theory of sufficient statistics.

In this paper, we aim to model interaction effects using a generalized linear modeling
framework. Suppose continuous predictor variables x;, j = 1,...,m are known. Then,
the main effects and the two-way interaction effects of these variables can be modeled

according to
=c+ Zb Lij + Z Z Wj1S51T45T41, (23)

7=1l=j+1

where c is a constant term, b; is the main effect of variable x;, and s is the size of the
interaction effect of variables x; and x;. The m x m upper-triangular matrix W = (w;;)
specifies which interaction effects are to be estimated in the GLM, with wj = 1 if the
interaction between predictor variables j and [ is taken into account and wj; = 0 otherwise.
The purpose of the matrix W is to increase the flexibility of the model; if a researcher
believes that there is no interaction effect between variables j and [, he or she can set
wj = 0 in advance. The diagonal elements of W are not used, as these elements refer to
main effects that are already modeled by the second term in (2.3).

Here, we restrict ourselves to cases in which all predictor variables are categorical
instead of continuous, so that (2.3) cannot be used directly. The central assumption
of our model is that interaction effects between the categorical predictor variables can be
modeled in approximately the same way as interaction effects between continuous predictor
variables. To do so, we apply the idea of optimal scaling (see, for example, Gifi, 1990) to
the categorical predictor variables for modeling their interaction effects, hence the name
optimal scaling of interactions (OSI) model.

To be able to introduce optimal scaling in model (2.3), we need some notation. Let
there be m categorical predictor variables with each variable having k; categories. To code
the categorical predictor variables, we use indicator matrices G; with rows g;; of length
k;; element [ of g;; has value 1 if observation z; belongs to category I of predictor variable
j and 0 otherwise. In the OSI model, we use separate optimally scaled variables for the
main effects and the interaction effects, so that

m m—1 m

=c+ Zb Tij + Z Z Wj1S514i54il 5 (24)

J=1 l=j+1
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where r; is the optimally scaled variable for the main effect of variable j, and q; is the
optimally scaled variable that is used for the interaction effects of variable j. In principle,
one could also use the same optimally scaled variables for both the main effects and the
interaction effects, so that r; = q;. However, we find this approach too restrictive, and we
therefore do not explore it here.

The values of the continuous, optimally scaled predictor variables r; and q; are not
known in our model and need to be estimated. The r;s are related to the categorical
predictor variables according to r; = Gja;, where a; is a k; x 1 parameter vector that
contains the category quantifications for the main effects of variable j. The q;s are
constructed similarly as q; = Gjy;, with y; a k; x 1 parameter vector that contains
the category quantifications for the interaction effects of variable j. Instead of (2.4), the
OSI model can also be described as

m m—1 m
N =c+ Z bjg;jaj + Z Z wjlsjlg;j}’j}’ggil- (2.5)
j=1

j=1 1=j+1

In this way, the main effects appear in the same manner as in an ordinary GLM with cate-
gorical predictor variables. For the interaction effects, the OSI model uses a multiplicative
specification that is relatively parsimonious. The parameter vector y; reflects the content
of the interaction effects of variable j. The goal of the parameter s;; is to estimate the size
of the interaction effect between variables j and [. Therefore, we refer to s; as a scaling
factor.

Once the category quantifications a; and y; are estimated and hence are known, the
optimally scaled variables can be treated as ordinary continuous variables. Then, the
parameters b; and s; can be computed using the ordinary GLM in (2.3). Because the g;s
are not known, and the way the interactions appear in (2.4), the predictor 7; is a nonlinear
function of the model parameters. Therefore, the OSI model is not an ordinary GLM. As
the q;s are restricted by q; = G,y;, and y; can be estimated from the data, the OSI model
can be seen as a GLM with optimal scaling of the categorical predictor variables.

Several parameter constraints, including location and scale constraints, are required for
model identification. We use the following parameter constraints, which originate from the
optimal scaling methodology and differ from the constraints typically used in multiplicative
interaction models. We impose that the optimally scaled variables r; and q; have mean zero
and variance one. For the interaction effects, this results in the location constraints 1'q; =
S g,;¥; = 0 and the scale constraints qjq; = S g:;Y;¥;8ij = n, where 1 denotes a
vector of ones of length n. For the main effects, we impose that 1'r; = Y7, gi;a; =0
and rir; = Y1 | gj;a;ajg;; = n. In addition, the value of the scaling factor s;; cannot be
estimated if wj = 0; therefore, we set s; = 0 whenever w;; = 0. Finally, simultaneously
changing the signs of the elements of y; and sj; for all I does not affect the predictor ;.
To improve the interpretability of the model parameters, we simultaneously reflect the y;s
and the scaling factors s; in such a way, that the sum of the estimated scaling factors
is maximized. To do so, each of the 2™ possible combinations of reflections of the y;s is
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m

. o o -1
considered, and the combination that maximizes Z;”:l I=j+1

results of the model.

Additional parameter constraints may be required if few observations are available, or
if wy; = 0 for many values of j and I. Whether such additional constraints are necessary
can be determined empirically, for example, by checking whether the estimated parameters
are unique maximizers of the log-likelihood function. This can be done by estimating the
model parameters multiple times using randomly chosen starting values; if no additional
parameter constraints are necessary, the estimated parameters must be the same in every
instance.

The categorical predictor variables can have either a nominal or an ordinal measurement
level. For ordinal predictor variables, it is possible to impose their ordering on y;.
However, imposing such ordinality constraints may not be appropriate, as the interaction
effects can reflect nonmonotonic relations between the predictor variables and the response
variable. Therefore, we do not impose the ordering of ordinal predictor variables on the
model parameters. The OSI model can also be extended to include continuous predictor
variables, for example, by modeling the y;s as (spline) transformations of these continuous
variables. In that case, one again needs to consider whether such transformations need to
be monotonic. More information on splines and other nonlinear transformations is given
in Gifi (1990).

As the OSI model is not an ordinary GLM, a special algorithm for parameter estimation
is needed. In our implementation, the parameters are estimated by maximizing the log-
likelihood function using the BFGS quasi-Newton optimization routine in the MATLAB
Optimization Toolbox (version 3.0.4). To ensure that the global maximum of the log-
likelihood function is found, this optimization routine should be run several multiple
times with randomly chosen starting values. The parameters of the OSI model are not
identified without the parameter constraints that were discussed above. To be able to
compute standard errors, we used the reparameterization of the model parameters that
is discussed in Appendix 2.A; in this reparameterization, the parameters are identified
without imposing any constraints. Standard errors of the estimated parameters are
computed using the negative inverse of the Hessian (the matrix of second-order partial
derivatives of the log-likelihood function), evaluated at the final parameter estimates in
the reparameterized model.

The OSI model has several relationships with existing models for interaction effects. A
standard GLM with two-way interaction effects can be described as

m m—1 m
N =c+ Z b]vg;jaj + Z Z wjlg;ijlgilv (2.6)
j=1

=1 1=j+1

sj; is used to interpret the

where Bj; is a k; x k; parameter matrix of interaction effects between variables j and |.
The OSI model can be obtained from the full two-way interaction GLM by imposing that
each interaction matrix Bj; equals a matrix Bj; with

le = Sjlyjyz. (27)
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Thus, the OSI model implicitly approximates each matrix of interaction effects Bj; by a
matrix of rank one.

The OSI model also resembles a few multiplicative interaction models that have been
proposed previously. If there are only two categorical predictor variables, the OSI model is
equivalent with the generalized additive main effects and multiplicative interaction models
discussed by Van Eeuwijk (1995, 1996), which are a generalization of the RC association
models discussed by Goodman (1981). For log-linear analysis (that is, generalized linear
modeling with link function 1, = log(u;) and a Poisson probability distribution), the
OSI model is equivalent with equation (20) of C. J. Anderson and Vermunt (2000); they
interpreted the y;s as latent variables. For the special case of log-linear analysis with
three predictor variables, the OSI model can be obtained by imposing consistent score
restrictions in equation (4.9) in Clogg (1982); see also Wong (2001).

2.3 Extensions

The one-dimensional OSI model (2.5) is relatively straightforward to interpret. However,
this model may yield an inadequate fit for some data sets. In that case, a less restrictive
model may be considered. Here, we discuss several ways to generalize the one-dimensional
OSI model to a multidimensional model, which should provide a better fit. We also discuss
what identification constraints are required for such models and how they are related to
previously proposed models. Finally, we briefly explore how the idea of the OSI model can
be used to model higher-way interaction effects.

2.3.1 Multidimensional extensions

The most natural generalization of the one-dimensional OSI model consists of allowing for
multiple optimally scaled variables per categorical predictor variable. We use this approach
for our general multidimensional model, so that it is given by

=ct Z b jTij + Z Z Wi Z SjipQijpYilps (2.8)

7=1 l=j+1 p=1

where g;;, is the score of person ¢ on the p-th optimally scaled variable for categorical
variable j, and s, is the coeflicient of the p-th optimally scaled variable for the interaction
between categorical variables j and [. By writing this model in terms of the categorical
predictor variables, it can be also described as

=c+ Zb]g”a] + Z Z wagl; Y SiY g, (2.9)
J=1l=j+1

where Y; and Sj; are matrices of sizes k; x P and P x P respectively, with P the

dimensionality of the model. The matrix S;; is constrained to be diagonal. For P = 1,

(2.9) simplifies to the one-dimensional OSI model.
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For the general multidimensional model (2.9), we impose similar location constraints as
for the one-dimensional model, so that 1'r; = 37" | gi;a; = 0and 1'Q; = > 7 g, Y; =0/,
in which Q; = G;Y; contains the P optimally scaled variables for variable j, and 1
and O are vectors of appropriate length. For the main effects, the scale constraints are
rir; = D gi;a;a5g;; = n; for the interaction effects, we require that Q;Q; = Y:G'G,Y
has diagonal elements equal to n. In addition, we must set sj;, = 0 for every w;; = 0.
Furthermore, just as in the one-dimensional OSI model, we change the signs of the columns
of Y; and, correspondingly, sj;, in such a way that the elements of Z;’:ll Z;in S, are
maximized. Finally, in a multidimensional model, it is often convenient to ensure that the
amount of explained variation decreases with the dimension, so that the first dimension is
the most important one. For the general multidimensional model (2.9), we accomplish this
by requiring that the diagonal elements of Z;nzl >, ISl are decreasing.

Determining the number of degrees of freedom in model (2.9) may be somewhat difficult,
as the degrees of freedom are influenced by characteristics of both the model and the
research design (that is, the values of the predictor variables in the data set). However,
if all interaction terms are present in the model (that is wy; = 1 for all j < [), and
the number of observations is sufficiently large, the number of parameters in the general
multidimensional model equals 1+ Pm(m —1)/2+ (14 P) 37", kj, and the total number
of parameter restrictions is (P + 2)m. In that case, the number of degrees of freedom
required by this model is given by

df = 1+(1+P)§:kj—(1+2P)m+%Pm(m—1), (2.10)

Jj=1

To represent the results of (2.9) graphically in a way that is easy to interpret, we can
construct a biplot for each interaction term separately. To do so, one may calculate a
compact singular value decomposition of ]_3]-1 =w;Y;S;Y]}, so that USV' = w;Y;S;Y],
where 3 is P x P diagonal matrix, and U and V are orthogonal (so that U'U = V'V =1).
Matrices U, X, and V that meet these requirements must exist, as the rank of le cannot
be greater than P. A biplot can then be constructed by plotting UXY? and VX1/2
simultaneously in one figure.

Restricted Multidimensional Models

For some data sets, the general multidimensional model (2.9) may require prohibitively
many parameters, leading to instability of the estimated parameters. In addition, inter-
preting the estimated interaction effects using graphical representations may be difficult if
there are many predictor variables. In such cases, alternative generalizations of the one-
dimensional OSI model with fewer parameters can be considered. Here, we discuss three
such generalizations, which consist of restricting the parameters in Sj; to be equal for each
interaction term or for each dimension.

First, we can restrict the elements of Sj; to be equal across dimensions, which leads to
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the model »
=c + Z b]gl]a] + Z Z w]lsjlgij Ylgll (211)
Jj=11=j+1

Here, the scale constraint that Q}Qj (with Q; = G,Y;) must have diagonal elements equal
to n cannot be imposed without loss of generality. Instead, we impose that tr(Q}Q;) = n,
in which tr(-) refers to the trace operator (the sum of the diagonal elements). For this
model, the scale constraints for the main effects and the location constraints are identical
to those of the general multidimensional model. As for any orthogonal rotation matrix
T, Y, Y, = Y, TT'Y], simultaneously rotating the matrices Y; does not alter the values
of n;. Therefore, rotation restrictions are also required for this model. We require that
> QQ; = >0 YIGLGY is diagonal, which yields P(P—1)/2 parameter restrictions
on the Yjs.

A second type of restricted model can be obtained by imposing that S; = S for every
interaction term, so that

L =c+ Z bigl;a; + Z Z wigl Y;SY g, (2.12)

j=1l=j+1

where S is diagonal. Again, a special scale constraint is required for the interaction effects;
here, we impose that Z;n:1 Q’;Q; has diagonal elements equal to mn. The other scale and
location constraints are identical to those of the general multidimensional model. In this
model, no rotation constraints can be imposed without loss of generality. For log-linear
modeling, this model coincides with equation (24) of C. J. Anderson and Vermunt (2000),
though the parameter restrictions used in their article are different.

Finally, one may restrict the parameter matrices Sj to be equal for every interaction
term and for every dimension (so that S;; = I), essentially removing these parameters from
the model. In that case, the model is

=c+ ijgwaf + Z Z wgi; Y, Ygi, (2.13)

Jj=1l=j+1

and we obtain the interaction decomposition model proposed by Groenen and Koning
(2006). Here, the sizes of the interaction effects are determined by the parameter matrices
Y. The same location and rotation constraints as in (2.11) can be imposed; however, no
scale constraints can be imposed on the Y ;s without loss of generality. If the estimated
interactions effects have similar sizes, the results of (2.13) can be conveniently visualized
using a biplot in which the Y;s are simultaneously plotted in a P-dimensional space.
However, if various interaction effects differ in size significantly, the visualization may
break down, and the model may fit poorly.

Model (2.13) is a special case of (2.12), which can be obtained by setting s, = 1 for
all p; the results of these two models may appear to be almost identical, though they are
not equivalent. Model (2.13) can be obtained from (2.12) by multiplying the elements of
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Table 2.1: Maximum degrees of freedom associated with various models

Model Degrees of freedom
Main effects only GLM 1+, k]
One-dimensional OSI model (2.5) | 1+2 Zm 3m +m(m—1)/2

General multidim. model (2.9) +(1+P) Z] 1 kj— (1 +2P)m+ Pm(m —1)/2

Restricted multidim. model (2.11) | 1+ (1+ P) 372, kj — (2 + P)ym +m(m —1)/2 — P(P —1)/2
Restricted multidim. model (2.12) | 1+ (1 + P) Zm kj — (14 P)m

Restricted multidim. model (2.13) | 1+ (14 P) Z 1kj—(1+P)m—-P(P-1)/2

Full two-way interaction GLM 1+ kj—m+ Zm ! e (b =Dk = 1)

the p-th column of Y; with /s,, but this is only possible if all s, are nonnegative, so that
(2.12) is more flexible than (2.13).

Experimentation with these multidimensional models suggests that unique parameter
estimates that maximize the log-likelihood function may not always exist. In that case, the
parameter estimates that optimization algorithms produce may fail to converge to finite
values and could approach infinity instead. If the parameters of a multidimensional model
are not uniquely identified, another type of model should be considered. This effect does
not appear to occur in the one-dimensional OSI model and also does not occur for all
data sets; for some data sets, the parameters of multidimensional models can be uniquely
estimated. Therefore, we still believe that the multidimensional extensions described above
can be useful.

Table 2.1 gives an overview of the maximum numbers of degrees of freedom for a
number of models, based on the location, scale, and rotation constraints that were described
previously. The values in this table are upper bounds on the actual degrees of freedom;
they can only be attained if all interaction terms are taken into account, and both the
number of observations and the number of variables are large enough.

2.3.2 Multilinear models for higher-way interactions

In some cases, modeling two-way interactions is not enough, and higher-way interactions
should also be taken into account. The idea of the OSI model can also be extended to
model three-way and higher-way interactions. Here, we sketch how the OSI model can be
extended to handle three-way interactions.

Modeling three-way interactions only makes sense if all main effects and two-way
interaction effects are already taken into account. Applying the idea of the OSI model
for modeling three-way interactions results in optimally scaled variables for the three-way
interactions. If we add the three-way interaction effects of such optimally scaled variables
to the full two-way interactions model (2.6), we obtain

m—1 m 1 m

m—2 m—
=c+ Z b]g”a] + Z Z gZ] ]lgll + Z Z Z Wiir Sjirqijqitdir, (214)
j=1l=j+

J=1l=j+1 1r=I+1
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in which q; is the optimally scaled variable for modeling the three-way interaction effects
of variable j, and s;;, is the scaling factor for the three-way interaction between variables
j, I, and r. The constants w;;, determine which three-way terms are modeled; wj, = 1
if the three-way interaction effect between variables j, [, and r is taken into account and
wjir = 0 otherwise. Writing this model in terms of the category quantifications y; yields

m—2 m—1

= C—I—Zb]g,]a] + Z Z g Bugu+ Y, > Z Wit 11,845 Y 184y 18y Yr-  (2.15)

j=1 l=j+1 j=1 l=j+1r=I+1

For each three-way interaction term, this model performs a decomposition that is similar to
the one-dimensional version of the PARAFAC/CANDECOMP model that was proposed
by Harshman (1970) and Carroll and Chang (1970). For log-linear analysis with three
variables, this model is equivalent to equation (3) in Siciliano and Mooijaart (1997) and
equation (17) in Wong (2001). It is possible to construct multidimensional versions of this
model. In addition, the idea of optimal scaling could be applied to four-way and higher-way
interaction effects. However, we believe such interactions effects rarely need to be modeled
in practice.

2.4 Empirical Applications

To determine how the OSI model performs in practice, we apply it to two empirical data
sets. We also compare its usefulness with other models and show how the interaction effects
can be visually represented and interpreted.

2.4.1 STAR Data Set

The first data set we use is based on the STAR data set, which can be found in the
“Ecdat” package in the R programming language. This data set contains the results
of 5,748 Tennessee primary school students on tests of math and reading skills. The
data were collected as a part of the Student/Teacher Achievement Ratio (STAR) project
(see http://www.heros-inc.org/star.htm for additional information). This project
investigates the effects of class size on the performance of primary school students. Each
student was assigned to either a small class (13 to 17 students per teacher), a regular size
class (22 to 25 students per teacher), or a regular-with-aide class (22 to 25 students with
a full-time teacher’s aide). The data set also contains personal background characteristics
of the students, the level of experience of the teacher, and the school at which the test was
taken.

The aim is to explain the results of the math skills test using six categorical predictor
variables that are also in the STAR data set. We will focus on the two-way interaction
effects of these predictor variables.

e Class size: A categorical predictor with levels “small”, “regular”, and “regular with
aide”
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Table 2.2: Residual degrees of freedom, log-likelihood values, and values of the Akaike information
criterion of various models for the STAR data set

Model Residual df Log-likelihood AIC

GLM with main effects only 5659 -29,483.34 59,144.68
OSI model 5647 -29,450.89 59,103.78
GLM with all two-way categorical interactions 5624 -29,433.69 59,115.38

Teaching experience: A categorical predictor with levels “< 5 years”, “5-9 years”,
“10-14 years”, “15-19 years”, and “> 19 years”

Gender: A categorical predictor with levels “boy” and “girl”

e Race: A categorical predictor with levels “white” and “black”

Free lunch: A categorical predictor with levels “Free lunch” and “No free lunch”

School id: A categorical predictor with 79 levels, which identifies the school at which
the test was taken.

The effects of the variables gender and race are combined, so that a new predictor variable
(denoted by “Gender, race”) with four levels is obtained. We do not take the interaction
effects of “School id” into account in our analysis, as the levels of this factor have no
meaning to the reader; only the main effects of “School id” are modeled. In addition,
“School id” is modeled as a random factor (the schools used in the study are a sample
of the population of schools in Tennessee), whereas all other predictor variables are fixed
factors. The math score is a continuous variable and ranges from 320 (worst performance)
to 626 (best performance), with an average score of 486. As the response variable is
continuous and approximately normally distributed, generalized linear modeling with an
identity link and a normal error distribution (which is analysis of variance) seems most
appropriate.

Table 2.2 contains the results for the one-dimensional OSI model, a standard GLM with
only main effects, and a standard GLM with full two-way interaction effects. From this
table, we can observe that the OSI model accounts for most of the interaction effects, as the
difference in log-likelihood between the OSI model and a full two-way interaction model
is relatively small. Therefore, a full two-way interaction model does not seem necessary.
To formally choose among these models, we cannot use a likelihood ratio test, as the
associated test statistic is generally not asymptotically chi-square distributed. This is
because the parameters of the category quantifications in the OSI model are not identified
under the null hypothesis that there are no interaction effects (see Davies, 1977). Instead
of a likelihood ratio test, we use the often-used Akaike information criterion (AIC) to
determine which model should be preferred. We note that the AIC should be regarded
as a ‘heuristic figure of merit’ in this case, as the regularity conditions used to derive the
AIC are similar to the conditions on which the chi-square distribution of the likelihood
ratio test statistic is based. The OSI model has a lower value for the AIC than either a
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Table 2.3: ANOVA table with all two-way interactions for STAR data set

Source Type III sum sq. d.f. Mean sq. F p-value Partial n?
School id 2,230,156 78 28,591.7 17.04  0.000 0.191
Class size 50,189 2 25,0943 14.96  0.000 0.005
Teaching exp 16,425 4 4,106.3 2.45  0.044 0.002
Gender, race 80,821 3 26,940.3 16.06  0.000 0.008
Free lunch 158,946 1 158,945.8 11.53  0.001 0.017
Class size x Teaching exp 71,125 8 8,890.6 5.30  0.000 0.007
Class size x Gender, race 16,631 6 2,771.7 1.65 0.129 0.002
Class size x Free lunch 209 2 104.6  0.06  0.940 0.000
Teaching exp x Gender, race 47,845 12 3,987.1 2.38  0.005 0.005
Teaching exp x Free lunch 1,737 4 4343 0.26  0.904 0.000
Gender, race x Free lunch 23,268 3 7,755.9 4.62  0.003 0.002
Error 9,436,513 5,624 1,677.9

Total 13,115,339 5,747

Table 2.4: Main effects of OSI model for STAR data set

Category Main effect ~ Category Main effect

Class size Gender, race

Small 6.423  White boy 3.451

Regular with aide -2.442  White girl 8.325

Regular -3.106  Black boy -16.456
Black girl -7.912

Teaching experience

< b years -0.479  Free lunch

5 — 9 years -1.483  No free lunch 9.240

10 — 14 years -0.167  Free lunch -9.899

15 — 19 years 3.270

> 19 years 3.997

model with only main effects or a full two-way interaction model, so that the OSI model
is preferred by this criterion. Table 2.3 gives the ANOVA table for the model with full
two-way interactions. This table shows that the interactions of “Teaching experience” with
“Class size” and “Gender, race” are relatively large and statistically significant at the 5%
level.

We discuss the main effects and the interaction effects of the OSI model for the STAR
data set separately. Table 2.4 shows the values of the main effects (that is, the values of
b;a;) of the four predictor variables “Class size”, “Teaching experience”, “Gender, race”,
and “Free lunch”. The main effects of “School id” have little meaning to the reader and
are not reported here. The main effects show that math performance tends to be higher
for girls, white children, and students who are not eligible to receive free lunches (that
is, students whose household income is not low). Being in a small class and having an
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experienced teacher also seem to positively affect a student’s math performance, though
these effects are somewhat smaller.

To interpret the interactions, we can construct visualizations of the estimated model
parameters, which should provide an understanding of the interaction effects. The y;s
may be graphically represented using an interaction plot that shows the elements of these
parameter vectors. In such a figure, each level of each categorical variable is represented
by a single parameter. Such an interaction plot is similar to a one-dimensional version of a
biplot (see Gower & Hand, 1996) used in, for example, principal components analysis and
correspondence analysis. The scaling factors s; constitute a matrix, which can be shown
in a simple table.

Figure 2.1 shows the interaction plot and the estimated scaling factors of the OSI
model for the STAR data set.! To improve the interpretability of this figure, the estimated
category quantifications are shown in a separate axis for each predictor variable. The
estimated standard errors of the scaling factors are shown in parentheses in Figure 2.1.
Using these results, we can interpret the content of the interaction effects as follows. The
values of the scaling factors s; determine the relative sizes of the interaction effects; large
absolute values of these scaling factors correspond to large interaction effects. The scaling
factors in Figure 2.1 show that the interaction effects between “Teaching experience” and
“Class size” (s12 = 3.861) and between “Teaching experience” and “Gender, race” (sg3 =
2.265) are relatively large. The content of the interaction terms can be determined using the
y;s. If the corresponding scaling factor is positive, pairs of categories of different variables
with quantifications y; of the same sign have positive estimated interaction effects. For
the interaction between “Class size” and “Teaching experience”, y; and ys show that
there are fairly high positive estimated interaction effects between a high level of teaching
experience and regular size classes; this is also true for a high level of teaching experience in
combination with black students. Therefore, we can conclude that teachers with more than
15 years of experience appear more capable of handling regular size classes and classes with
black students than other teachers. It seems best to assign small classes and classes with
few black students to less experienced teachers. There is also a strong interaction between
“Gender, race” and “Free lunch”. The variable “Free lunch” is mainly determined by the
household income of the student. There appear to be more severe negative effects of having
a low household income on math performance for white students (especially for white girls)
than for black students. The values of the quantifications for the variable “Gender, race”
suggest the presence of three-way interaction effects between gender, race, and the other
predictor variables. Therefore, combining the variables gender and race into one variable
seems to be appropriate.

IThe figures in this chapter have been created using the programming language MATLAB. Pro-
gramming code for creating such figures is included in the package that can be downloaded from
http://people.few.eur.nl/groenen.



2.4 Empirical Applications 25

Class size Teaching exp. Gender, race  Free lunch
15F
1k White girl
Regular with aide No free lunch
os| g g
White boy
or ) <5 years
-0.5r
15-19 years
> -1 Free lunch
Black girl
sl Regular Black Boy
_2 [
_25 [
_3 [
—35L >20 years
Class size Teaching exp. Gender, race Free lunch
Class size - 3.861 (0.675) -0.702 (0.707) 0.124 (0.606)
Teaching exp. - - 2.265 (0.693) -0.262 (0.622)
Gender, race - - - 2.593 (0.699)
Free lunch - - - -

Figure 2.1: Interaction plot and corresponding scaling factors s;; of the OSI model for the STAR
data set. The estimated standard errors of the scaling factors are shown in parentheses.
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Table 2.5: Residual degrees of freedom, deviance values, and values of the AIC of various models
for the General Social Survey data set

Model Residual df Deviance AIC

GLM with main effects only 187 1,063.25 1,089,25
OSI model 173 277.85  331.85
Model (2.11), P =2 162 168.46 244.46
GLM with all two-way categorical interactions 136 117.93 245.93

2.4.2 General Social Survey Data

The second data set used in this chapter is based on the 1994 General Social Survey (Davis
& Smith, 1996). This data set contains the responses of 899 respondents on four questions
on attitudes of the labor roles of women and was also used in C. J. Anderson and Vermunt
(2000). The four questions were as follows:

1. Woman earning money: “Do you approve or disapprove of a married woman earning
money in business or industry if she has a husband capable of supporting her?”
(approve, disapprove).

2. Men should perform outside the home: “It is much better for everyone involved if
the man is the achiever outside the home and the woman takes care of the home and
family.” (strongly agree, agree, disagree, strongly disagree).

3. Men should earn money: “A man’s job is to earn money; a woman'’s job is to look after
the home and family.” (strongly agree, agree, neither agree nor disagree, disagree,
strongly disagree).

4. Men should not stay at home: “It is not good if the man stays at home and cares for
the children and the woman goes out to work.” (strongly agree, agree, neither agree
nor disagree, disagree, strongly disagree).

From this data set, we construct a contingency table, so that we can apply log-linear
analysis (generalized linear modeling with a log link and a Poisson error distribution) with
the four questions as predictor variables; for each of the 2 x 4 x 5 x5 = 200 combinations of
the response categories of the questions, the response variable is the number of respondents
ticking that combination of response categories.

Table 2.5 gives results of a GLM with only main effects, the OSI model, the multi-
dimensional model (2.11) with P = 2, and a full two-way interaction model for the GSS
data set. The deviance values in Table 2.5 show that a model with only main effects
and the OSI model fit the data poorly. Therefore, we also consider the multidimensional
model (2.11) with P = 2; we chose this model because it gives good results and unique
parameter estimates for the GSS data set. Based on the deviance values in Table 2.5, this
model and a GLM with full two-way interaction effects appear to fit the data. As the two-
dimensional version of model (2.11) provides an adequate fit, there is no need to consider
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1. Woman earning money - 0.161 (0.079) 0.224 (0.073) 0.171 (0.069)
2. Men should perform outside the home - - 1.288 (0.129) 0.383 (0.078)
3. Men should earn money - - - 0.817 (0.090)
4. Men should not stay at home - - - -

Figure 2.2: Interaction plot and scaling factors s of the OSI model for the General Social Survey
data set. The estimated standard errors of the scaling factors are shown in parentheses.

higher-dimensional versions of this model or models that include three-way interaction
effects. The values of the Akaike information criterion (AIC) indicate that model (2.11)
with P = 2 is preferable to the other three models in Table 2.5.

For the GSS data set, we focus on the interaction effects and we do not report any
main effects, as the main effects only reflect the relative frequencies with which each of the
response categories have been chosen. Although the two-dimensional model (2.11) should
be preferred to the one-dimensional OSI model, the results of the OSI model can still help
us interpret the interaction effects. Therefore, we report and interpret the results of both
models here.

Figure 2.2 shows the interaction plot and the estimated scaling factors of the OSI model.
As all estimated scaling factors are positive, the interaction plot shows that the respondents
tend to have similar opinions for items 2, 3, and 4. The similarities are largest between
items 2 and 3 (s93 = 1.288) and between items 3 and 4 (s34 = 0.817). The categories of
item 1 appear inverted compared with the other three items. This was to be expected,
as a negative response to item 1 implies a conservative attitude towards gender roles; for
the other three items, a positive response indicates such a conservative attitude. The
reported scaling factors correspond to fairly large effects. For example, for a respondent
who responds “strongly disagree” to items 2 and 3, the additive interaction effect between
these two items on n; is 1.288 x —1.485 x —1.473 = 2.82. For a log-linear model, the



28 Optimal Scaling of Interaction Effects in Generalized Linear Models
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3. Strongly agree
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1. Woman earning money - 0.159 (0.083) 0.282 (0.099) 0.246 (0.096)
2. Men should perform outside the home - - 1.452 (0.241) 0.475 (0.110)
3. Men should earn money - - - 0.951 (0.118)
4. Men should not stay at home - - - -

Figure 2.3: Interaction plot and scaling factors sj; of model (2.11) with P = 2 for the General
Social Survey data set. The estimated standard errors of the scaling factors are shown in
parentheses.

expected frequency p; is calculated as p; = exp(n;). Therefore, the estimated interaction
effect between items 2 and 3 increases the probability of responding “strongly disagree” to
both items by a factor of exp(2.82) = 16.8.

Figure 2.3 shows the interaction plot and the estimated scaling factors of the two-
dimensional model (2.11). The interpretation of such an interaction plot is similar to that
of a principal components analysis biplot. Here, category k of item j is represented by
a vector from the origin with coordinates yy;, that is, row k of Y;. Due to the scale
constraints that have been imposed for this model, the weighted average of the squared
lengths of the vectors equals one for the categories of each variable. The interaction
effect of category k of variable j and category ¢ of variable [ on the linear predictor #; is
modeled as s;y;;ya in (2.11), which is the product of the inner product yj yn and the
corresponding scaling s;. The inner product y}cjyu is equivalent to the projection of yy;
onto y, multiplied by the length of y,. Therefore, if two vectors are perpendicular, the
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predicted interaction effect is zero. If the two vectors coincide in direction, then this inner
product is positive and equal to the product of their two lengths. As all estimated scaling
factors in Figure 2.3 are positive, pairs of vectors with angles smaller than 90° describe
positive interaction effects and those with a larger angle negative effects.

In the two-dimensional interaction plot, similar response categories of items 2, 3, and
4 tend to be close together. This shows that the respondents have a tendency to give the
same response for these three items. To help interpret such an interaction plot, it can
sometimes be useful to assign interpretations to the dimensions. Here, we can interpret
the first dimension as measuring conservatism with respect to the labor roles of women.
The second dimension seems to represent the extremity of the respondent’s answers (that
is, his or her response tendency). The estimated scaling factors of this two-dimensional
model resemble those of the one-dimensional OSI model. Therefore, we believe that these
scaling factors adequately represent the sizes of the interaction effects.

2.5 Discussion

Optimal scaling is a useful methodology for modeling the effects of categorical predictor
variables. In this chapter, we have applied this methodology to modeling two-way interac-
tions effects in generalized linear models. The resulting optimal scaling of interactions
(OSI) model is a multiplicative interaction model that can help interpret the content
of interaction effects. This model has the additional advantages that it requires fewer
parameters than a full two-way interaction model and that it can be used to construct
(graphical) representations of the interaction effects. The OSI model can be seen as an
extension of several models for parsimoniously representing interaction effects, including
Goodman’s RC(M) association models and models that were proposed by C. J. Anderson
and Vermunt (2000) and Groenen and Koning (2006).

Using two empirical data sets, we have shown how the OSI model can be applied in
practice and we have compared its usefulness with other models, including a multidimen-
sional model. Based on the results, the one-dimensional OSI model appears to be useful,
as it is easy to apply and gives good results. The results of multidimensional models tend
to be harder to interpret. Based on our experience with these models, we recommend using
the one-dimensional OSI model if the fit of this model is good enough. We believe that
this model can be useful for interpreting interaction effects in an applied setting.

An advantage of the OSI model is that it uses different sets of parameters to model
the strength of an interaction term (using the scaling factors s;;) and the content of an
interaction term (using y;). Separating the strength and the content of an interaction effect
in this way may help to understand the results. A limitation of the one-dimensional OSI
model is that it may have an inadequate fit for some data sets. This problem may be solved
by applying one of the multidimensional extensions in Section 2.3. In these extensions,
degenerate solutions can sometimes occur that are avoided in the one-dimensional OSI
model. To account for this problem, researchers applying a multidimensional OSI model
should always check whether the parameters are identified (for example, by determining
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whether the optimization routine returns the same parameter estimates with different
starting values). If the parameters are not identified, we recommend using either a one-
dimensional OSI model or a full two-way interaction model. If even the fit of a full two-
way interaction model is insufficient, the idea of optimal scaling can potentially be used
to obtain a parsimonious specification for the three-way interaction effects. However, we
have focused on two-way interaction effects in this chapter, as we believe that two-way
interactions are the most important ones to explore in practice.

2.A Model Reparameterization

In this appendix, we discuss a parameterization for the quantifications of the optimally
scaled variables in the one-dimensional OSI model. In this reparameterization, no param-
eter constraints are necessary, which facilitates the easy calculation of standard errors of
the estimated parameters. This reparameterization consists of replacing the quantifications
for the main effects and the quantifications for the interaction effects by functions of new
parameters, so that the resulting optimally scaled variables automatically have mean 0 and
variance 1.
The constraints imposing mean 0 and variance 1 can respectively be described by

K]
> ferp =0 (2.16)
k=1
and
K;
> fert =1, (2.17)
k=1

in which zy is the quantification (for either the main effects or the interaction effects of
variable j) of category k, and f denotes the relative frequency of category k. We assume
that the fis are positive and sum to one, so that ZkKi1 fe=1

We use an inductive approach to determine a reparametrization of the quantifications
that satisfies the constraints (2.16) and (2.17). Suppose that quantifications z1, ..., 2,1
have already been determined and z,, r < K; — 1 must be determined. Consider the
equations

> A} + Rz, 2,) <1 (2.18)
k=1

and .
> fia} + Ronas(@, -y 2,) > 1, (2.19)

k=1
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where Rypin(z1,...,2,) and Ryaz(x1, ..., 2,) are respectively defined as

Ruyin(1,...,2,) = min Z fer: subject to Z fere = — kaxk,

g1y K
T Jk'7+1 kr+1

Ropaz(x1, .. x0) = max Z kak subject to Z fezy = kaxk
k=1

Jk r+1 k=r+1

It is straightforward to see that x,, given z1,...,x,._1, can be an element of a sequence
T1,..., 2k, that satisfies (2.16) and (2.17) if and only if it satisfies (2.18) and (2.19).

For r < K; — 1, the solution of the maximization problem that occurs in the definition
of Ryaz(1, .. xT) is always infinity, as zx, 1 and xg; can be set arbitrarily large with
opposite signs. Therefore, (2.19) is always satisfied. An application of the Lagrange
relaxation method shows that the solution of the minimization problem in Ryn (21, ..., ;)
is given by z, = —(3> "5, fkmk)/ZkKir+1 fr, 7 < s < Kj, so that Ry(zy,...,2,) =

(e frw)?/ ZkK:JTH fr. The permissible values for z,, r < K; — 1 are therefore given by

kal‘k kal‘k / Z e <L (2.20)
P

k=r+1

Rewriting this inequality as

K;
(fr+ 17/ Z fi)a? +2f, kaxk /O fome+

k=r+1 k=r+1
kal’k /Z fk+2fkl°k—1 <0
k=r+1

and solving for x, shows that this inequality holds if

— S0 fea VA <z, < — i1 Ji + va, (2:21)

I/ D By A SRD O D DAy

in which @, is defined as

LS R — (3 AP S A kaxk s fwszxfl
k=1

k=r+1 k=r+1 k=r+1

For determining zg,—1, Rpin(21,...,2k,-1) = Rmae(21,...,2x;-1) so that (2.18)
should hold with equahty This equality hOldb if xx, 1 equals one of two endpoints
in the interval given in (2.21). Based on (2.21), we construct a reparametrization of
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the parameters xy,. ..z, using the parameters 0y, ..., 0, » according to the following
recursive formulas

— S0 fuew + (exp(6,) — 1)/(exp(6,) + 1)VQ,

T, = e < K;—1
Zk:r fk
K;j—2
2k e Qg
xKyfl - f + f )
Kj—l KJ
Kj—1
_Zkil Jrr
.Z’K]. 7]01( .
J

The sign of /@, in the definition of x, 1 can be chosen to be either positive or negative

without influencing the general results, so that xx, 1 could alternatively be defined as
K;j—2

Tro1 = (=Y p 2y frxk — V@) /(fr,—1 + fx;). Now, the parameters 6y, ..., 0k, o can be

allowed to vary freely, but these parameters can still represent all optimally scaled variables

with mean 0 and variance 1.



Chapter 3

Identifying Response Styles: A
Latent-Class Bilinear Multinomial
Logit Model*

Abstract

Respondents can vary strongly in the way they use rating scales. Specifically,
respondents can exhibit a variety of response styles, which threatens the validity of
the responses. The purpose of this chapter is to investigate how response style and
content of the items affect rating scale responses. The authors develop a novel model
that accounts for different kinds of response styles, content of items, and background
characteristics of respondents. By imposing a bilinear parameter structure on a
multinomial logit model, the effects on the response behavior of the characteristics
of a respondent and the content of an item are graphically distinguished. This
approach is combined with finite mixture modeling, yielding two segmentations of
the respondents: one for response style and one for item content. This latent-class
bilinear multinomial logit (LC-BML) model is applied to the well-known List of
Values in a cross-national context. The results show large differences in the opinions
and the response styles of respondents and reveal previously unknown response styles.
Some response styles appear valid communication styles, whereas other response
styles often concur with inconsistent opinions of the items and seem to be response
bias.

3.1 Introduction

In recent years, the interest in response styles has increased in marketing research
(Baumgartner & Steenkamp, 2001; De Jong, Steenkamp, Fox, & Baumgartner, 2008) and

*This chapter is based on Van Rosmalen, Van Herk, and Groenen (in press).
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related disciplines (Cheung & Rensvold, 2000; Van Herk, Poortinga, & Verhallen, 2004).
Response styles are now considered a source of concern in domestic (Hui & Triandis, 1989;
Greenleaf, 1992a) and international research (Johnson, Kulesa, Cho, & Shavitt, 2005).

A response style can be defined as a person’s tendency to respond to questionnaire
items regardless of item content (Paulhus, 1991). A major reason for concern about
response styles is that they are considered content-irrelevant and that they may threaten
the validity of responses given to substantive questions. Furthermore, marketing managers
may perceive differences in response styles between countries as differences in content and
may make unfavorable marketing decisions based on these assumed differences (Usunier
& Lee, 2005). Therefore, researchers have suggested removing response styles from the
data (for example, Hofstede, 2001; Baumgartner & Steenkamp, 2001). Purging response
styles is possible if researchers have a large data set with heterogeneous items; however,
in smaller data sets, the response style components are hard to separate from the real
attitude information. In that case, purging the response styles may also remove attitude
information. Moreover, several researchers (Greenleaf, 1992a; Smith, 2004) state that
certain response styles contain attitude information only and no bias, and should be
considered a communication style.

Many well-known statistical techniques such as k-means clustering (Hartigan, 1975)
have problems distinguishing between response style and item content. For example, when
applying k-means clustering to ratings containing extreme response style or acquiescence,
some clusters are likely to emerge that reflect those response styles instead of attitude
information. Other possible unwanted effects of response styles are the inflation of mean
scores and the inflation of correlations between constructs that are both affected by the
same response style (Baumgartner & Steenkamp, 2001). For example, Van Herk et al.
(2004) found that Greek women systematically gave more positive answers on cooking
attitudes than French women. However, this result was not reflected in their behavior.
Targeting the Greek market for cooking products would not have led to the expected
positive effect on sales, because the differences in responses between French and Greek
respondents were not content-related.

When differences in responses are caused by response bias, correcting for response
styles is necessary. Therefore, several methods to remove response style from data have
been suggested: (a) Hofstede (2001) and Bond (1988) employ ipsatizing to correct for
response styles in their respective values studies; (b) in his large values survey, Schwartz
(1992) recommends using the respondent’s mean across all items as a control variable
in partial correlation or regression analysis; (c) Baumgartner and Steenkamp (2001)
recommend calculating various response style indices across many heterogeneous items in
a large data set and correcting for them using regression techniques; (d) other researchers
include parameters in their model to correct for scale usage heterogeneity. For example,
Ter Hofstede, Steenkamp, and Michel (1999) model heterogeneity in response behavior in
pick any/n data, Lenk, Wedel, and Béckenholt (2006) take scale usage heterogeneity into
account when fitting circumplex structures, and Rossi, Gilula, and Allenby (2001) correct
for extreme and acquiescent response tendencies in a small set of ordinal rating scales.
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Although the idea of correcting for response styles seems generally accepted, there is no
consensus on which approach should be used. Moreover, many cross-national studies do
not even mention correcting for response styles (Schwarz, 2003). The fact that the validity
of the information after correction is unclear (see, for example, Fischer, 2004) may be a
major reason for the lack of consensus on whether or not to purge response styles.

In this chapter, we focus on the simultaneous effects of response style (which can be
either bias or communication style) and attitude (item content) on response behavior in
data sets with multiple items and constructs measured using a rating scale. As people are
heterogeneous with respect to their opinions and response styles, we use a segmentation
for each effect. In doing so, we aim to distinguish between the effects of response style
and the effects of attitude on response behavior. We also show how these effects interact,
so that we provide insight into what attitude-based segments are more prone to certain
response styles than other attitude-based segments. In addition to content and response
style, we also model the effects of background characteristics, as those are known to affect
response behavior (Greenleaf, 1992a). Moreover, in contrast to other studies on response
styles (Cheung & Rensvold, 2000; De Jong et al., 2008), we do not limit ourselves to the
prominent response styles extreme response style and acquiescence, and we also do not
predefine what kinds of response styles exist. Instead, the segmentation procedure allows
us to infer what possibly a priori unknown response styles are present in the data.

The present study contributes to the literature in two ways. First, we simultaneously
model the effects of item content and the effects of response style. By segmenting
respondents with respect to their opinions and the way in which the respondents use
the rating scale, we provide insight into what determines response behavior. Unlike other
methods (De Jong et al., 2008; Rossi et al., 2001), we graphically show how item content
affects response behavior, using biplots (see, for example, Gower & Hand, 1996; DeSarbo,
Grewal, & Scott, 2008; Hoffman & Franke, 1986). The graphical displays facilitate insight
into the extent to which responses to specific items are more likely to get, for example,
extreme or positive responses. Second, the natural ordering of rating scale categories is not
imposed on the model, as it could restrict how content and personal characteristics affect
response behavior. As J. A. Anderson (1984, p. 3) remarks: “There is no merit in fitting
an ordered relationship as a routine, simply because the response variable is ordered.” Our
approach of assuming a nominal scale has the additional advantage that missing values and
‘don’t know’ response options can be modeled in the same way as ordinary rating scale
categories.

The outline of this chapter is as follows. First, we introduce the LC-BML model that
is proposed in this chapter. We then illustrate the merits of this model using a large
international data set including the well-known List of Values (LOV) and compare our
results with those of other methods for assessing response style. Finally, we discuss the
implications of our findings and the study’s limitations, and we suggest possible topics for
further research.
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3.2 A Latent-Class Bilinear Multinomial Logit Model

We seek to model the entire response behavior, that is, the probability that a single
respondent ticks certain rating scale categories for the items used in the study, given
the content of the items and the respondent’s background characteristics. To do so, we
use the responses of all persons to all items in a single statistical model, which we call
the Latent-Class Bilinear Multinomial Logit model (LC-BML model). In this model, we
distinguish three sets of variables. The first set is a single variable called Rating that
indicates the category of the rating scale ticked by the respondent. The second set is the
single variable called Item that indicates the item being rated by the respondent. The
third set contains variables indicating the background characteristics of the respondents.
A nominal measurement level is assumed for all three sets of variables. To adequately
distinguish between response style and item content, the items should represent a diverse
set of constructs; throughout this chapter, we assume that the data satisfy this condition.

The basis of the LC-BML model is an unordered multinomial logit model with Item
and the background variables as categorical predictor variables to explain the dependent
categorical variable Rating. We adapt this multinomial logit model by incorporating ideas
from the models proposed by J. A. Anderson (1984), C. J. Anderson and Vermunt (2000),
and Groenen and Koning (2006). To limit the number of parameters, we apply the bilinear
parameter structure used in these articles. In addition, we incorporate latent classes
(see, for example, Wedel & Kamakura, 2000) to model (a) differences among respondents
in reactions to content (that is, their opinions of the items) and (b) differences among
respondents in response tendencies (that is, their use of rating scale response categories).
Our model extends the stereotype model proposed by J. A. Anderson (1984) by using the
bilinear parameter structure on categorical predictor variables and by incorporating latent
classes. Our approach allows to determine how likely a given pattern of responses is for
a single respondent, given the items used in the study and certain characteristics of the
respondent.

Before introducing the LC-BML model, we define some notation.

¢ Index to specify the respondent, with i = 1,... n.

t Index to indicate the item being rated, with t =1,...,T.

7 Index to indicate the rating, with j =1,...,J.

k Index to indicate the background variable, with k =1,..., K.
Y;: The random variable of the rating of person i on item t.
yix The realized rating of person i on item t.

my, The number of categories of background variable k.



3.2 A Latent-Class Bilinear Multinomial Logit Model 37

The multinomial logit model predicts the probability of person ¢ choosing rating j on item ¢
as

exp(zijt)

7 )
Zj’:l exp(zijt)
with z;;; a linear combination of a constant a; (the attractiveness of rating category j),
the effects of the categories of the background variables, and the effect c;; of rating j on
item ¢, that is,

PI‘(Yz‘t = J) =

K
Zijt = @ + Zb;kxzk + Cijt.- (31)
k=1

Each background variable k can be represented by a matrix X of dummy variables for each
category, so that xj, is row i of Xy, and b’ x;. selects the element from vector bj; belonging
to the category of respondent ¢ on background variable k. As a result of Equation 3.1,
separate model parameters need to be estimated for each rating scale category. To see this,
consider a hypothetical example with J = 3 response categories of Rating, T' = 4 items,
and K = 1 background variable (that has m; = 2 categories). For this case, Table 3.1
contains the z;;;s as the linear combination of the specific parameters. There are J = 3
attractiveness parameters a;, J x m; = 6 parameters for the effects of the two categories of
the background variable, and J x T' = 12 parameters for the effect c;; of item ¢ on rating j.
To fully model the effects of the explanatory variables on the dependent variable, a
parameter vector is required for each category of each explanatory variable. The number
of parameters J + J Zf;l my, + JT gets large if the total number of categories is large.
The resulting parameter vectors are generally not easy to represent or to interpret, which

is one of the reasons for proposing the adaptations below.

Bilinear Decomposition of Parameters

The problem of the large number of parameters occurs in a wide variety of models for
analyzing categorical data sets. For the case of log-linear analysis, C. J. Anderson and
Vermunt (2000) proposed several models that construct a parsimonious representation of
the relationships between categorical variables, based on a bilinear decomposition. Groenen
and Koning (2006) proposed a similar model in the context of analysis of variance, with
the aim of obtaining a simple low-dimensional visual display of the estimated interaction
effects. Based on their interaction decomposition model, we adapt the multinomial logit
model described above to parsimoniously represent the effects of the explanatory variables.

Table 3.1: The linear combination of the z;;s for a hypothetical example with J = 3 response
categories of Rating, T' = 4 items, and K = 1 background variable.

Rating j Ttem 1 Item 2 Item 3 Item 4
1 ay + bix; + enn a1 + bixi1 + ¢z ay + bix + a3 a1 + bixi1 + c1a
2 as + bhx;1 + c21 az + bhxi1 + c22 as + bhx;1 + co3 az + bhxi1 + c21
3 az + bix;1 + a1 a3 + bix;1 + c32 as + bix;1 + ¢33 a3 + bix1 + c3a
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An important objective of our approach is the graphical representation of the parameter
estimates, to facilitate a better understanding of the effects. To be able to represent
the results of the model graphically, the bilinear decomposition assigns a point in a low-
dimensional space to each category of each variable.

To formally describe the bilinear decomposition, we gather the b;-ks (that is, the effect
of background variable k on rating j) for all ratings j underneath each other as By =
[b1k|bak| - -+ [byk]’. To ensure that the categories of all variables can be represented by

points in a low-dimensional space, we restrict each By and C (with elements ¢;;) as
B, =FG, and C = FH'. (3.2)

Here, F is the J x P matrix of coordinates for the points of ratings in the visual
representation, Gy the my x P matrix of coordinates for background variable k, and the
T x P matrix H denotes the coordinates of the T' items, where P is the dimensionality of
the representation. The dimensionality P cannot be greater than J — 1; for P = J — 1,
the effects of the explanatory variables are fully modeled, so that our bilinear model is
equivalent to a standard multinomial logit model in that case. The model under the rank
restrictions in Equation 3.2 can now be described as

K P P
Zijt = aj + Z Z Fin8ipXin + Z Fivhip,
p=1

k=1 p=1

where fj, and hy, are elements of F and H respectively, and gy, is the p-th column of Gy.

Segmentation of Respondents

In marketing, and especially in international marketing, response behavior cannot be
considered homogeneous across respondents. People differ with respect to their opinions
and preferences, and heterogeneity in response behavior is expected. So far, the model has
no possibility to take heterogeneity in the response behavior of respondents into account,
and assumes that the T responses of every respondent are independent. To account for
dependent observations and unobserved heterogeneity in the respondents, we use finite
mixture modeling (see, for example, Wedel & Kamakura, 2000). We extend our model to
take two types of heterogeneity into account. First, respondents may vary with respect
to their response styles, so that they differ in the probabilities with which they generally
tick different response categories of Rating. We account for these differences in response
styles by allowing the constants a; to vary between latent classes of respondents. Second,
respondents can differ on their opinions of the relative importance of the items. These
differences are incorporated by allowing the parameters hy, to also vary between latent
classes of respondents. We thus construct a joint segmentation of the respondents in the
model, in which response style and content function as bases for the two segmentations.
Here, we allow the prior probabilities of membership in the two types of segments to be
dependent. It is also possible to model these prior probabilities as independent, which
would be more restrictive.
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Let there be R segments for the response tendencies and S segments for representing
the opinions of the relative importance of the items. We refer to these types of segments
as response style segments and item segments, respectively. The prior probability that
a respondent simultaneously belongs to response style segment r and item segment s is
denoted by u,s and must satisfy Zf’zl ZSSZI uys = 1. The probability that respondent i
evaluates item ¢ with rating j can be calculated as

R S
= ZZU”PY w=7Jlr,s), (3.3)

r=1 s=1
with
EXP\ Zijt|r,s
Pr(Yy = jir,s) = — 2R Ctine) (3.4)
Z =1 eXp(Zij’t\'r,s)
Zijt|r,s = Qjr + Z Z f]ngpxzk + Z f]Phtp|5
k=1 p=1
The likelihood of observing responses y;, t = 1,... ,T7 conditional on respondent ¢

belonging to response style segment r and item segment s is

T J

Li(yilr,s) = [ [ T]Pr(Yae = jlr, s)" =9,

t=1 j=1

where I() denotes the indicator function, and y; is the vector of length T with the observed
responses of respondent i. As the unconditional likelihood for respondent i is

-3

r=1 s=

S
urst y1|r s
1

the likelihood of the entire model, as a function of the model parameters, is given by

L(a.\h"'70’4\R7F7G17"'7GK7H1M"7HS7U)

n R S T J
IID° > w JTTIPr(¥a = jlr, ) 0=, (3.5)

i=1 r=1 s=1 t=1 j=1

A number of parameter constraints are required to ensure parameter identification of the
LC-BML model; these constraints are described in Appendix 3.A. For given values of the
numbers of segments R and S and the dimensionality P, parameter estimates are obtained
by maximizing the likelihood function in Equation 3.5. A description of the optimization
algorithm can be found in Appendix 3.B. After imposing the necessary parameter con-
straints, the LC-BML model is identifiable (that is, unique maximum likelihood parameter
estimates can exist; see also Teicher, 1963), if there are at least several items in the study
and not too many segments; the identifiability of the LC-BML model is discussed further
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in Appendix 3.C. Given the optimal parameter estimates, the posterior probability that
respondent i belongs to response style segment r and item segment s can be calculated in
a Bayesian way as

Urs Hz IHJ] IPr( it =j|7“ S)I(y“:j)
Z/ 12' 1ur’S’Ht 1H] L Pr(Yiy = jlr!, s")1wn=d)

where Z, ; denotes the set of respondents belonging to response style segment r and item
segment s.

The dimensionality and the numbers of segments of a model are often determined
using an information criterion, such as AIC or BIC (see Andrews & Currim, 2003). To
evaluate the performance of these information criteria for the LC-BML model, we have
conducted a simulation study, which is discussed in Appendix 3.D. The results show that,
for a variety of simulated data sets, AIC-3, BIC, and CAIC are usually able to recover
the correct numbers of segments and the dimensionality. The simulation study also shows
that the parameter recovery of the optimization algorithm is generally acceptable. In this
chapter, we use the Bayesian information criterion (BIC) to determine the dimensionality
and the numbers of segments. This criterion performs well with very large sample sizes
(see Andrews & Currim, 2003) and is supported by the results of our simulation study.

Prie 5, ;) =

(3.6)

Correcting for Response Styles

Because the LC-BML model accounts for differences in both response styles and opinions, it
can also be used to correct for the presence of response styles (that is, remove the response
styles from the data); such an approach will be used at the end of the Results section. For
each observation, we can determine estimated posterior response probabilities as

R S
Z ZPr (1 € E,.5)Pr(Yy = jlr, s), (3.7

r=1 s=1

PF(YM = ]|Y1)

where Pr(i € Z,;) and Pr(Y; = j|r,s) are calculated using Equations 3.4 and 3.6,
respectively. These estimated posterior response probabilities can be corrected for the
presence of response styles as follows. First, correct the conditional response probabilities
Pr(Y;; = jlr,s) by setting aj, = 0 for all j and  and by setting all elements of each
estimated g, equal to 0 in Equation 3.4. Then, recalculate the posterior response
probabilities using Equation 3.7. Note that the original (uncorrected) parameter estimates
should be used to compute the posterior segment membership probabilities Pr(i € Z,,).
The corrected response probabilities can be used to simulate a data set from which
differences in response styles have been removed as much as possible. Such a simulated
data set may be used in subsequent analyses.
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3.3 Empirical Application: The List of Values

We apply the LC-BML model to the List of Values (Kahle, 1983). The List of Values
(LOV) is a well-known values system that is often used in marketing in single country
studies (see, for example, Chryssohoidis & Krystallis, 2005; Kamakura & Novak, 1992) as
well as in studies in multiple countries (Wedel, Ter Hofstede, & Steenkamp, 1998; Kropp,
Lavack, & Silvera, 2005). Moreover, it is known that different segments based on LOV
exist (Kamakura & Novak, 1992) and that the items on the LOV represent a diverse
set of constructs (Kahle, 1983). The LOV comprises nine items, of which respondents
indicate the importance ‘as a guiding principle in their lives’. The nine items are (a) sense
of belonging, (b) excitement, (¢) warm relationships with others, (d) self-fulfillment, (e)
being well-respected, (f) fun & enjoyment in life, (g) security, (h) self-respect, and (i) a
sense of accomplishment.

The results of previous studies have shown similarities across countries and across
subgroups within countries. The value ‘self-respect’ is the most important value in
studies in the USA (Kahle, 1983) and one of the most important values in studies in, for
example, Greece (Chryssohoidis & Krystallis, 2005) and Germany and Norway (Grunert
& Scherhorn, 1990). The value ‘excitement’ is usually considered the least important one
(Kamakura & Novak, 1992; Kropp et al., 2005). The importance of ‘warm relationships
with others’ depends on the meaning respondents attach to it. If respondents see this
value as hedonic, it is assessed similar to ‘fun & enjoyment’; if respondents see ‘warm
relationships with others’ as true friendship, it is considered similar to ‘sense of belonging’.
On the value ‘sense of belonging’, people tend to have a strong view that can be either
positive or negative; in some countries (Germany, Norway), this value is considered very
important, whereas it is not important in, for example, Canada, Greece, and the USA
(Grunert & Scherhorn, 1990). For the other five LOV items, no consistent results have
been found. Based on the aforementioned findings, we expect that: (1) in all item segments,
the value ‘self-respect’ is considered (very) important; (2) ‘excitement’ is not considered
important; (3) ‘sense of belonging’ is considered very important in some, but not all,
segments.

Data

The data used in this study are part of a commercial survey performed in 1996 (see
also Van Herk, 2000). The original sample consisted of 4916 male respondents from
five European countries (France, Germany, Italy, Spain, and United Kingdom). For each
respondent, in addition to items on personal care, the List of Values (Kahle, 1983) and
background characteristics were measured.

The importance of each LOV item as a guiding principle in life was measured on a nine-
point rating scale ranging from ‘1’ (‘very important’) to ‘9’ (‘not important at all’). The
procedure used to establish translation equivalence was a committee approach using parallel
translation (Craig & Douglas, 2005). All questionnaire items were translated from English
into French, German, Italian, and Spanish by bilinguals. Next, the translations were



42 Identifying Response Styles: A Latent-Class Bilinear Multinomial Logit Model

examined, and a discussion was held between the translators, two independent reviewers,
and the project coordinators in the participating countries to solve inconsistencies.

Respondents who had missing values on the background variables, respondents who did
not respond to any LOV item, and respondents who ticked the same rating category for
each LOV item were removed from the sample. This procedure resulted in the elimination
of 8% of the respondents, leading to a final sample of 4514 respondents. The respondents
who had missing values for some but not all LOV items were included in the analyses.
To do so, missing values were treated as a separate rating scale category, so that there
effectively were ten rating scale categories for each LOV item.

The numbers of respondents were 936, 965, 994, 771, and 848 in France, Germany,
Italy, Spain, and United Kingdom, respectively. Country is explicitly included in the
model, because response styles differ among countries (see, for example, Johnson et al.,
2005). In addition, we include the demographic variables age and level of education.
Differences in response styles have often been reported for people differing with respect
to these two demographic characteristics (see, for example, Greenleaf, 1992a, 1992b;
Hamilton, 1968; Krosnick & Alwin, 1988). In his review, Hamilton (1968) already reported
accumulated evidence that adolescents and elderly subjects gave more extreme responses
than people aged 20-59. Later studies (see, for example, Greenleaf, 1992a) support this
finding. Acquiescence was found positively related to age; older people tend to use the
positive side of the rating scale more often (Winkler, Kanouse, & Ware, 1982; Moum,
1988; Greenleaf, 1992a, 1992b). Several researchers found that education is negatively
associated with acquiescence (Greenleaf, 1992a; Krosnick & Alwin, 1988; Winkler et al.,
1982) and with extreme response style (Greenleaf, 1992a, 1992b; Stening & Everett, 1984).
Based on these findings, we expect that acquiescence has a curvilinear relationship with
age and that extreme response style is positively related to age. In addition, we expect
that both response styles are negatively related to education. To ensure equivalence across
countries, education was coded in two levels: higher level of education (40%) and lower
level of education (60%). Age was coded as a categorical variable with categories 15 — 24
(13%), 25 — 39 (32%), 40 — 54 (25%), and 55+ (30%).

3.4 Results

In this section, we apply the LC-BML model to the List of Values data set and interpret
the results. We seek to explain the observed rating scores using the LOV item and the
background characteristics country, age, and education as predictor variables. In our
analyses, we use each respondent’s answers on how important each LOV item is in his
daily life, so that we have 4514 x 9 = 40626 responses in total. To present the results, we
first discuss how the dimensionality and the numbers of segments of the model are chosen.
We then describe results for the two types of segmentations and how they are related.
Finally, we study the statistical stability of the graphical representations and compare the
predictive validity of our model with that of our methods.

To choose the dimensionality P, the number of response style segments R, and the
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number of item segments S, we use the Bayesian information criterion (BIC). We estimate
the model parameters for each combination of P = 1,...,3 dimensions, R = 1,...,13
response style segments, and S = 1,...,6 item segments. As a safeguard against local
optima, the optimization algorithm was run ten times with randomly chosen starting values
for each combination of P, R, and S, and the best results out of these ten runs are
reported here. The BIC values are shown in Table 3.2. The lowest overall BIC value
(130, 685) is attained with P = 2 dimensions, R = 11 response styles segments, and S = 5
item segments; the corresponding value of the log-likelihood is —63,946.78. We use these
numbers of segments with two dimensions to interpret the results of the model. To facilitate
distinguishing between the item segments and the response style segments, we number the
response style segments and assign the letters A through E to the item segments. To
easily interpret the segments, we order the response style segments based on the associated
response styles, and we order the item segments according to their size.

Figure 3.1: Graphical Representation of Effects of Age on Response Behavior
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Notes: Panel a shows the graphical representation with a vector for each category of Rating, a dot for
each age category, and the projections of the age categories onto rating ‘9’. Panel b shows the projections
multiplied by the length of rating ‘9’.

To interpret the results, we first show the effects of Item and the background char-
acteristics on Rating using graphical representations. To help explain the graphical
representations, only the points of the rating scale categories and the age categories are
shown in Figure 3.1; this figure can be used to determine how rating scale usage varies
among age categories. The categories of age are shown as dots, and the rating scale
categories are shown as vectors. The effects of age in the multinomial logit model are
related to the projections of the points of the age categories onto the vectors of Rating.
For example, if one is interested in the estimated effect (that is, bj) of age ‘55+ on rating
‘9’, one may proceed as follows.
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Table 3.2: BIC Values for R = 1,...,13 Response Style Segments, S = 1,...,6 Item Segments,
and Dimensionalities P = 1,...,3 in the LOV Data Set

Dim. Response style Item segments
segments 1 2 3 4 5 6

144,946 144,233 142,440 142,081 141,934 141,530
139,964 138,791 138,379 137,668 137,705 137,547
136,436 135,256 134,852 134,580 134,480 134,446
135,428 134,158 133,666 133,397 133,175 133,154
134,508 133,222 132,791 132,467 132,317 132,278
134,063 132,694 132,156 131,858 131,622 131,595
133,727 132,321 131,822 131,498 131,318 131,277
133,471 132,072 131,570 131,255 131,105 131,081
133,340 131,918 131,406 131,094 130,932 130,918
10 | 133,270 131,846 131,333 130,979 130,839 130,850
133,218 131,789 131,263 130,944 130,792 130,819
133,189 131,753 131,246 130,909 130,789 130,820
133,185 131,738 131,229 130,916 130,809 130,842
144,324 142,145 140,528 140,023 139,895 139,476
139,435 137,861 137,448 135,611 135,158 134,987
136,022 134,962 134,606 133,910 133,895 133,733
134,937 133,842 133,405 133,058 132,800 132,828
134,055 132,957 132,539 132,144 131,940 131,960
133,645 132,462 131,972 131,710 131,610 131,579
133,329 132,149 131,631 131,361 131,186 131,313
133,093 131,943 131,420 131,149 131,057 131,085
132,980 131,786 131,247 130,963 130,870 130,967
132,901 131,694 131,170 130,839 130,728 130,804
132,825 131,613 131,098 130,791 130,685 130,793
132,799 131,597 131,087 130,767 130,699 130,799
132,808 131,590 131,061 130,765 130,705 130,813
144,202 142,027 140,501 140,079 139,857 139,320
139,309 137,761 137,429 135,661 135,200 135,149
135,888 134,938 134,474 133,990 133,788 133,663
134,820 133,787 133,361 132,954 132,855 132,374
134,051 133,002 132,629 132,366 132,240 132,133
133,642 132,544 132,121 131,914 131,855 131,898
133,329 132,226 131,775 131,599 131,571 131,601
133,091 132,018 131,561 131,371 131,340 131,472
132,978 131,860 131,379 131,187 131,158 131,325
132,909 131,768 131,294 131,060 131,017 131,173
132,828 131,690 131,231 131,015 130,981 131,147
132,800 131,663 131,206 130,990 130,998 131,151
132,817 131,672 131,213 130,997 130,993 131,193
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1. Project the point ‘55+ onto rating vector ‘9’.
2. Multiply the length of the projection with the length of rating vector ‘9’.

3. The resulting length is the estimated effect, which also equals the inner product of
the vector ‘9’ and the vector that connects the point ‘554 to the origin.

In Figure 3.1a, all points of age have been projected onto rating ‘9’. In the model, the
projected effects are multiplied by the length of the vector ‘9’ and the result is shown in
Figure 3.1b. As in vector models (see, for example, DeSarbo et al., 2008), the orientation
of the rating vector points in the direction of higher utility for the corresponding rating
category. The projection of the point of an age category onto the rating vector indicates
the relative magnitude of the preference for that rating category among respondents of
the corresponding age category. From Figure 3.1, it can be seen that ‘9’ is relatively more
often ticked by older respondents than by younger respondents.

Thus, the representation has the following properties. Long vectors tend to correspond
to large effects. To determine the sign of an effect, we consider the angle between a vector
of Rating and the vector that connects a point of a predictor variable to the origin (note
that the latter vectors are not shown in Figure 3.1b). If this angle is smaller than 90
degrees, the corresponding estimated effect is positive. If, on the other hand, the angle
is greater than 90 degrees, the estimated effect is negative. The estimated effect becomes
stronger as the angle gets closer to either 0 or 180 degrees. For example, the effect of
‘15-24 on rating ‘9’ is negative, implying that younger respondents tick this category less
often.

In Figure 3.2, we also include the points of country and education, so that this figure
shows the effects of all three background variables. We can see that the structure of
the categories of Rating, except for ‘missing’, resembles a U-shape. These rating scale
categories have retained their natural ordering (from ‘1‘ to ‘9’) with respect to the first
dimension. As a result, the scores of the background characteristics on the first dimension
are positively related to the probability of ticking positive rating categories such as ‘1’ or
‘2. For example, respondents between 15 and 24 years of age tend to tick ‘1’ and ‘2’ more
often than people in the other age categories. Therefore, it seems natural to interpret
this first dimension as representing the effects of items and background characteristics
on a scale of positivity-negativity.! On the second dimension, the most extreme rating
categories ‘1’ and ‘9’ have the highest scores, whereas moderate responses such as ‘3’;
‘4’ and ‘5’ have low scores. Therefore, we can infer that the categories of the background
characteristics on the second dimension are positively related to the probability of choosing
extreme response categories; we can interpret this dimension as representing the effects of
items and background characteristics on the extremity of a response. For example, elderly
(55+) and lower educated respondents tend to use the extreme response categories more

'However, one should be careful in assigning interpretations to the dimensions, as the graphical
representations can, in principle, be rotated arbitrarily; here, they are rotated so that the greatest variation
of the coordinates occurs along the first dimension, see Appendix 3.A.
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often than other people. The point for the category of the missing values lies close to the
origin, which means that the effects of the predictor variables on this response category
are likely relatively small.

Figure 3.2: Graphical Representation of Effects of Background Characteristics on Response
Behavior
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Notes: The rating categories are represented by vectors, and the categories of the background variables
are shown as dots.

In short, Figure 3.2 shows that respondents with a low education level are more prone
to ticking extreme response categories than respondents with a high level of education.
Age appears negatively related to the probability of ticking the positive side of the rating
scale and seems to have a curvilinear relationship with the probability of ticking extreme
response categories. Moreover, the respondents in Southern European countries show a
stronger tendency to tick extreme response categories than respondents in the U.K. and
Germany.

Item Segments

To show how content differs across the item segments, we provide a separate graphical
representation of the effects of Item on Rating for each item segment. In Figures 3.3
and 3.4, the LOV items are shown as dots with labels, the categories of the background
variables as dots without labels, and the rating categories are again shown using vectors.
The effects of Ttem on the response behavior tend to be larger than the effects of the
background variables, as the points belonging to Item are generally farther away from the
origin. In addition, the differences in content among the item segments are quite large.
For example, a large majority of the respondents in item segment C evaluated ‘sense of
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belonging’ with a rating of ‘1’, whereas almost no respondent in item segment A ticked ‘1’
for this item.

The segments can be described as follows. In item segment A (‘hedonists’), projections
on the vectors ‘1’ and ‘2’ show that the LOV items ‘fun & enjoyment’ and ‘self-respect’
are considered important, whereas ‘belonging’ is not. The items ‘being well-respected’
and ‘warm relationships’ evoke the extreme responses ‘1’ and ‘9’ relatively more often
than the other LOV items, implying that respondents who consider these LOV-items ‘very
important’ and respondents who consider these items ‘not important at all’ belong to
this segment. We label this segment ‘hedonists’, as the emphasis for those respondents
seems on serving the individual interest and especially enjoyment. Segment B is labeled
‘indifferent’, because the effects of the LOV items are relatively small, as all item points lie
close to the origin. The respondents in this segment seem to consider ‘warm relationships’,
‘respected’; ‘security’, and ‘self-respect’ somewhat more important than ‘belonging’ and
‘excitement’. However, a clear opinion on the items (focusing on either group or individual
interest) is not found; this segment also cannot be connected to earlier findings in the
literature. In segment C (‘group-oriented’), respondents clearly consider ‘belonging’ the
most important item; ‘excitement’, which serves the individual interest more, is not
considered important. ‘Self-respect’ and ‘security’ are also considered important. Such
opinions on the LOV items have been found earlier by Grunert and Scherhorn (1990)
and Kropp et al. (2005). Given the emphasis on values in the maturity and security
domain, in which group interest is important (Kamakura & Novak, 1992), we label this
segment ‘group-oriented’. In segment D (‘self-oriented’), ‘self-respect’ is considered the
most important, though ‘accomplishment’” and ‘security’ also tend to get positive responses;
‘belonging’ is considered far less important, it relatively often gets the score ‘9’. People
in this segment seem mainly concerned with achieving personal goals, and enjoyment is
of secondary importance; therefore, we label this segment as ‘self-oriented’. Previous
studies (Chryssohoidis & Krystallis, 2005; Kamakura & Novak, 1992) found a similar
preference for LOV items in certain groups. Finally, in segment E (‘mixed opinions’), some
items get relatively more extreme responses than other items; the items ‘self-respect’,
‘accomplishment’, and ‘fun and enjoyment’ all are often rated ‘1’ or ‘9. The items
‘belonging’ and ‘excitement’ tend to get scores from ‘2’ to ‘4’. The answers given in this
segment cannot be clearly linked to a values domain, and we therefore label segment E as
‘mixed opinions’. The respondents in the latter segment, as in segment B (‘indifferent’),
do not appear to have strong opinions on what items are important to them. Moreover,
there are respondents in segment E who appear to consider ‘self-respect’ not important at
all and ‘excitement’ of moderate importance; both results have not been reported in the
literature before.

Item Segments and Respondent Characteristics

The item segments should satisfy the six criteria for effective lifestyle-based segments (see
Wedel & Kamakura, 2000); these criteria are substantiality, identifiability, accessibility,
stability, responsiveness, and actionability. All five segments have a substantial size



48 Identifying Response Styles: A Latent-Class Bilinear Multinomial Logit Model

Figure 3.3: Graphical Representations of Effects of LOV Items on Response Behavior for Item

Segments A through C.
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Notes: The rating categories are represented by vectors, and the items and the categories of the background
variables are shown as dots. The categories of the background variables are not labeled in these plots.
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Figure 3.4: Graphical Representations of Effects of LOV Items on Response Behavior for Item
Segments D and E.
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Table 3.3: Item Segment Membership Percentages for Each Category of Each Background
Variable

Item segment

A B C D E
Interpretation Hedonists Indifferent Group-oriented Self-oriented Mixed opinions
Country
United Kingdom 20.9 24.9 18.3 18.6 17.3
France 53.1 27.7 5.1 6.1 8.1
Germany 9.7 12.7 62.0 4.2 11.5
Italy 22.6 24.6 3.3 38.5 11.1
Spain 38.0 33.9 2.3 16.2 9.7
Education
Lower educ 25.7 24.3 22.1 16.7 11.2
Higher educ 32.7 244 13.9 17.1 11.9
Age
15-24 33.5 29.0 10.8 11.6 15.0
25-39 33.2 26.1 14.2 13.7 12.8
40-54 25.6 21.5 22.9 19.3 10.8
55+ 23.5 22.8 24.1 20.7 9.0
Segment size 28.5 24.3 18.9 16.9 11.5

(see final row in Table 3.3), as even the smallest segment contains more than 10% of
the sample. Identifiability corresponds to the extent to which distinct groups can be
recognized using a segmentation. Each segment has a different profile on the LOV items
and can be distinguished from the other segments. Furthermore, when the respondents’
background characteristics are also different, the segments can be targeted by a company.
Table 3.3 shows, in percentages, the distribution of respondents from each category of each
background variable over the item segments. The percentages in this table are calculated
using the posterior segment membership probabilities in Equation 3.6. The results in Table
3.3 show that the distribution of the respondents over the item segments depends on their
age, education level, and country of residence, which suggests that the item segments are
identifiable. We will come back to the other four criteria for effective segmentation in the
discussion.

Using the information in Figures 3.3 and 3.4 and Table 3.3, we can further interpret the
item segments. We distinguish three segments that seem to meet expectations regarding
content (segments A, C, and D) and two segments that do not (segments B and E).
In the largest item segment A (28.5%, ‘hedonists’), respondents attach high importance
to the LOV-items ‘fun & enjoyment’, and ‘self-respect’; the values ‘sense of belonging’
and ‘excitement’ are considered much less important. In this segment, relatively many
respondents are from France and Spain, and they are relatively young and highly educated.
The relatively high percentage of young respondents confirms results of Kamakura and
Novak (1992), who also found that ‘fun & enjoyment’ is considered important by younger
people. Unlike the other segments, respondents in item segment C (18.9%, ‘group-



3.4 Results 51

oriented’), consider ‘belonging’ the most important value. The majority in this segment
is from Germany, and a majority is lower educated and older than 40. As in most
other segments, in item segment D (16.9%, ‘self-oriented’), ‘self-respect’ is considered very
important. Respondents in this segment are relatively older and often come from Italy.
Segments C and D are also similar to results of previous studies; for example, segment C
(‘group-oriented’) clearly resembles the results found for German respondents by Wedel et
al. (1998). Item segment B (‘indifferent’) is relatively large (24.3%). People in this segment
are relatively often from Spain, and a majority in this segment is young. Item segment E
(‘mixed opinions’) is the smallest segment (11.5%) and contains relatively many young and
British respondents. Unlike the three other segments, segments B and E are not similar
to segments found in earlier studies and seem to include respondents with less outspoken
and opaque opinions; we come back to this finding later.

Response Style Segments

To show what response styles are present in the data, we focus on the response style seg-
ments. Table 3.4 contains the observed proportions of the rating categories in percentages
for the respondents in each response style segment. We do not show the values of the
parameters aj, (which model the differences in response styles among the response style
segments), as the proportions in Table 3.4 more clearly show what rating categories have
been used by the respondents in each segment. Two elements in this table are exactly zero,
because the estimates of the corresponding parameters a;|, converged to minus infinity. We
believe that these parameter estimates are unlikely to affect the results negatively, as it is
conceivable that some subgroups of respondents do not use all rating scale categories.
The 11 response style segments identified by our model fit into the possible response
styles distinguished by Broen and Wirt (1958). For example, in segments 1 through 3,
respondents show different levels of acquiescence (a tendency to tick positive categories in
rating scales, see Hofstede, 2001; often also defined as a tendency to agree with statements
regardless of their content), and in segments 9 and 10, respondents show two levels of
disacquiescence (a tendency to tick negative rating categories). In segment 7, respondents
show an extreme response style, and in segments 4 and 5, respondents have a tendency to
avoid extreme ratings. Interestingly, respondents in segment 8 show midpoint scoring and
tick many extreme scores. In segment 11, respondents either tick the category ‘1’ or do
not tick a category (incomplete response). The respondents in segment 10 seem to have a
high level of disacquiescence, as Table 3.4 shows that over 80% of their responses are either
‘7, 8%, or ‘9°. However, a closer inspection of the raw data shows that values that are
considered relatively important by most respondents are rated as relatively unimportant
by the respondents in segment 10, and vice versa. Therefore, we conclude that most
respondents in segment 10 must have misread the rating scale and incorrectly thought
that ‘9’ was the most positive rating value. This phenomenon was called “misresponse”
by Swain, Weathers, and Niedrich (2008), who studied its prevalence for rating scales that
contain both reversed and nonreversed items; our results indicate that misresponse can
also occur in surveys without reversed items. Only a small number of respondents show
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Table 3.4: Relative Frequencies of Rating Categories in Percentages and Response Style Indices for Each Response Style Segment

Segment Size 1 2 3 4 5 6 7 8 9 Miss.[ARS DARS ERS RR MPR NCR
1. Strong acquiescence 175|714 7.0 55 38 63 15 11 .8 26 1] 784 34 740 1.7 6.3 .8
2. Moderate acquiescence |16.7|46.7 32.5 12.0 4.2 22 .7 .7 5 6 0| 79.2 1.1 472 1.2 22 .8
3. Weak acquiescence 2421386 164 181 89 84 2.7 27 15 23 5| 55.2 3.8 411 19 84 14
4. Nuanced positive 14.1112.0 42.0 20.3 100 7.9 33 20 12 1.2 21 54.0 24 132 15 79 11
5. Moderate 6.5| 44 11.6 33.8 23.6 14.8 51 34 1.7 1.0 6] 16.1 27 54 14 149 1.2
6. Wide response range 9.3/20.2 16.0 12.0 10.2 11.7 68 81 73 7.5 11362 148 27.7 25 11.7 23
7. Extreme scoring 411588 27 23 59 31 18 12 18214 10|621 235 810 3.1 31 24
8. Midpoint scoring 25(33.8 40 114 23 348 21 6 .0 105 5380 106 445 24 350 20
9. Weak disacquiescence 23] 14 22 52 6.7 214 21.0 193 153 66 1.0/ 3.6 221 80 1.6 216 14
10. Strong disacquiescence| 1.8| 1.4 .5 1.6 1.6 54 4.6 155 19.5 488 1.0 1.9 69.0 50.7 1.5 55 1.0
11. Incomplete response 9126.7 1.8 27 13 39 13 3 8 .7 606|723 3.8 69.5 1.0 98 7
Entire sample 37.0 19.0 141 79 83 32 3.0 23 4.2 .81 56.6 6.6 41.6 1.7 84 1.3

Notes: The response style indices in the last six columns are ARS (acquiescence response style), DARS (disacquiescence),
ERS (extreme response style), RR (response range), MPR (midpoint responding), and NCR (noncontingent responding).
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misresponse (the size of segment 10 is 1.8%), but due to the severity of the mistake, it
can have major consequences for the results of a study; the responses of some people in
segment 9 may also suffer from misresponse.

The last columns of Table 3.4 show average values of six response style indices (see
Baumgartner & Steenkamp, 2001, for an overview of these indices). These response styles
indices are acquiescence response style (ARS), disacquiescence response style (DARS),
extreme response style (ERS), response range (RR), midpoint responding (MPR), and
noncontingent responding (NCR). Following Baumgartner and Steenkamp (2001), ARS is
defined as the percentage of responses that is ‘1’ or ‘2’ DARS is the percentage of responses
that is ‘8" or ‘9’, ERS is the percentage of responses that is ‘1’ or ‘9’, RR is the estimated
standard deviation of a respondent’s ratings, MPR is the percentage of the responses that
is ‘6’, and NCR is defined here as the average difference between the ratings of pairs of
items that have a correlation greater 40% in the entire sample. Missing observations have
been excluded in the calculation of the response style indices.

These response style indices can help interpret the response style segments, as most
segments can be characterized by a high level for one of the indices. An interesting
result is that MPR seems to evoke the extreme categories as well; respondents showing
midpoint scoring seem to use only a small part of the rating scale (the two extremes and
the midpoint). Segment 11 shows that respondents with many missing values also tend to
score high on ARS. To the best of our knowledge, the latter two response tendencies have
not been described previously. In summary, using our model we find 11 response styles
that closely resemble, but do not completely overlap with earlier descriptions of response
styles.

Dependence between Segmentations

In the LC-BML model, the item segments and response style segments are not independent.
Table 3.5 shows the segment sizes of all combinations of a response style segment and
an item segment and, in parentheses, their expected values based on independence of
the two segmentations. For item segments A, C, and D, the sizes of the segments are
relatively close to their expected values based on independence of the segmentations. In
item segments B and E, there is clear dependence between the two types of segments. In
item segment B, there is an overrepresentation of response style segments 5 through 8, that
is a moderate response style, wide response range, extreme scoring, and midpoint scoring.
In item segment E, response style segments 1, 9, and 10 are overrepresented, implying
that respondents in this item segment tend to show strong acquiescence (response style
segment 1) or disacquiescence (segments 9 and 10) more often than respondents in the
other item segments. These results indicate that less outspoken and opaque opinions, as
in item segments B (‘indifferent’) and E (‘mixed opinions’), coincide with specific response
styles.
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Table 3.5: Response Style Segments versus Item Segments, Segment Sizes in Percentages.

Response style segments Item segments

A B C D E Total
Interpretation Hedonistic Indifferent Group-oriented Self-oriented Mixed opinions
1. Strong acquiescence 4.8 (5.0) .0 (43) 3.6 (3.3 32 (3.0) 58 (2.0) 17.5
2. Moderate acquiescence | 5.3 (4.7) 1.1 (4.1) 50 (3.1) 42 (28) 1.0 (1.9 16.7
3. Weak acquiescence 92 (6.9) 6.1 (59) 53 (4.6) 36 (41) .0 (2.8) |24.2
4. Nuanced positive 57 (40) 9 (34) 28 (2.7) 46 (24) 0 (1.6) |[14.1
5. Moderate 1.8 (1.9) 38 (1.6) .8 (12) .2 (L1) 0 (7)) | 65
6. Wide response range 6 (27) 6.2 (23) 1.0 (1.8) 9 (16) 6 (11) 9.3
7. Extreme scoring 4 (1.2) 28 (1.0) .2 (.8) 0 (1) .6 (.5) 4.1
8. Midpoint scoring 3 (7 21 (6) .0 (.5) 1 (4 .0 (.3) 2.5
9. Weak disacquiescence 0 (7 7 (6) .0 (4) 0 (4) 16 (:3) 2.3
10. Strong disacquiescence| .1 (.5) 0 (4 0 (:3) 0 (3) 1.7 (:2) 1.8
11. Incomplete response 1 (3) 6 (2 1 (:2) 0 (2 1 (.1) 9
Total 28.5 24.3 18.9 16.9 11.5

Notes: Expected segment sizes based on independence of the segmentations have been calculated as
the product of row and column totals and are shown in parentheses.

Reliability of Results

To show the statistical significance of our results, we have constructed confidence ellipses
for the points in the graphical representations. Figure 3.5 shows 95%-confidence ellipses
for all points shown in the graphical representation of item segment C; the other segments
have comparable confidence ellipses. An explanation of how the confidence ellipses are
constructed is given in Appendix 3.E.

The amount of uncertainty in the graphical representation appears to be low. The
confidence ellipses of the items are larger than the ellipses of the ratings and the background
variables, as only the respondents in item segment C determine the locations of the points
of the items in this plot. The locations of all points (except for ‘missing’) are significantly
different from the origin, so that the effects of all predictor variables are statistically
significant. As the location of ‘missing’ is not significantly different from the origin, there
is insufficient evidence to conclude that missing values are informative with respect to the
opinions of respondents. The confidence ellipses of Rating do not overlap with each other,
which means that all rating categories are distinguishable with respect to the predictor
variables (see J. A. Anderson, 1984, for more information on the distinguishability of
rating categories).

External Validation

We also use external criteria to give an indication of the effectiveness of the LC-BML
model for assessing the opinions of respondents. The List of Values is a well-known general
basis for segmentation (Wedel & Kamakura, 2000) and is thus expected to have some
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Figure 3.5: Graphical Representation of Item Segment C with 95% Confidence Ellipses for All
Points.
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explanatory power. If our model works well, the results of the model should be able to
help predict consumer behavior (Kamakura & Novak, 1992).

As was described previously, the results of the model can be used to construct response
probability distributions that are corrected for differences in response styles. For each
observation, it is also possible to construct a score that is corrected for differences in
response styles, by taking the mean of the response distribution that is corrected for
response styles (excluding the ‘missing’ category). These scores should be good predictors
of a respondent’s values and thus be related to other variables. If these scores accu-
rately represent a respondent’s values, there should be statistically significant correlations
between these corrected scores and other variables. If such scores are still affected by
differences in response styles, correlations with external variables that are unaffected by
response styles should be expected to be smaller.

To properly assess the sizes of these correlations, external variables should be chosen
that are unaffected by response styles, to avoid spurious correlations caused by response
styles. We use behavioral variables as external variables, as such variables are typically
considered to be much less sensitive to response styles than attitude or values scales
(Greenleaf, 1992a). We compare the scores corrected for response styles using the LC-
BML model with four other methods used in marketing research. These four methods are
(a) using the original responses without correcting for response styles, (b) ipsatizing the
LOV responses for each respondent, (c) correcting the observed scores by regressing them
on various response style indices, and (d) the Bayesian hierarchical method for correcting
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Table 3.6: Predictive Performance of Five Methods for Correcting for Response Styles Based on
20 Behavioral Variables

Method Mean absolute correlation Percentage of significant correlations
Original data .0350 45.6
Ipsatized data .0370 48.9
Scores based on response style indices .0348 45.6
Scores based on Rossi et al. (2001) .0373 48.9
Scores of LC-BML model .0489 65.0

for scale usage heterogeneity proposed by Rossi et al. (2001). Method (c) uses the response
style indices shown in Table 4 and was proposed by Baumgartner and Steenkamp (2001).
Method (d) uses as scores the posterior means of the latent variables z;; in Rossi et al.
(2001). This method was performed using the bayesm package in the R programming
language.

We use a set of 20 behavioral variables on the usage frequencies of personal care
products, for the same respondents who evaluated the LOV items. For each of the five
methods described above, we compute a matrix of correlation coefficients between the 20
items on usage frequencies of personal care products and the nine LOV items. Table 3.6
shows, for each method, the average of the absolute values of the correlations and the
percentage of the correlation coefficients that are statistically significant at the 5% level.
The mean absolute correlations are approximately .04, which seems low; such correlations
are, however, common and acceptable in cases where values and behavior are related (see,
for example, Kamakura & Novak, 1992). The scores of all five methods appear to be
correlated with the behavior variables, as the percentages of significant correlations are
clearly greater than 5%.

The elements of the correlation matrices cannot be assumed to be independent, as
the methods for removing response styles do not ensure independence among the LOV
items. However, it seems reasonable to suppose that the differences between the methods
in average absolute correlations (with the averages taken over the nine LOV items) are
independent. For 19 out of 20 behavioral variables (sign test, p < .001), the average abso-
lute correlations for the LC-BML model are higher than the average absolute correlations
for the original data; the same result is obtained when comparing scores of the LC-BML
model with the ipsatized data and with the scores based on the model of Rossi et al.
(2001). For all 20 variables (sign test, p < .001), the average absolute correlations for the
LC-BML model are higher than those that were obtained using regressions on the response
style indices. The scores of the LC-BML model thus appear to yield the best predictive
performance, as the absolute correlations are highest for this method.

The scores of the LC-BML model are based on the posterior segment membership
probabilities. To show how the predictive validity varies among the item segments, we also
calculate the mean absolute correlations of the segment memberships and the behavioral
variables for each item segment. This mean absolute correlation is relatively high for item
segments A, C, and D (.049, .073, and .064, respectively) compared to segments B and E
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(mean absolute correlations .027 and .039). These findings again indicate less useful results
in the latter two segments.

3.5 Conclusions and Discussion

In this chapter, we have proposed a new model, called the LC-BML model, for explaining
response behavior and distinguishing between content and response styles in data sets
with rating scale responses. Specifically, we found a variety of response styles as suggested
by Broen and Wirt (1958). The most prominent response style is acquiescence (58.4%
of respondents), followed by avoiding the extreme scores (20.6%), using a wide range
of responses (9.3%), extreme responding (4.1%), disacquiescence (4.1%), and midpoint
scoring (2.5%). A small group of respondents (.9%) did not tick a rating category for most
of the LOV items.

The LC-BML model distinguishes between the effects of the content of an item,
background characteristics, and the response style of a respondent, which contributes to our
understanding of response behavior in the following ways. First, the model uses graphical
representations (biplots), enabling researchers to see how respondents use the rating scale
and what kinds of opinions respondents have. Our results show that item content is highly
effective in explaining differences in response behavior; there are large differences in the
effects of the items on response behavior both within and among item segments. The
effects of the background characteristics (that is, country, age, and education) on response
behavior tend to be much smaller than the effects of the content of the items. Second,
the LC-BML model reveals what response styles are used by the respondents without
imposing any restrictions on the types of response styles. This freedom allows us, for
example, to infer that some respondents reversed the scale and that others almost solely
used the rating score ‘1’ and the missing category. This latter group of respondents is
not identified by traditional methods for assessing response styles. Third, unlike other
models, the LC-BML model does not assume an ordering of the dependent variable Rating
and can be used to investigate response styles in rating scales that include a ‘don’t know’
category or have missing observations. By assigning a location to each rating category, our
method can provide insight into the relative position of such categories. For the current
data set, the location of the ‘missing’ category in the plot suggests that missing values can
provide only limited information about a respondent’s opinions. However, it is likely that
missing values or ‘don’t know’ responses can provide useful information in other surveys;
for example, surveys including sensitive questions, in which item nonresponse is common
(Tourangeau, Rips, & Rasinski, 2000), may benefit from our method.

The LC-BML model shows the possible detrimental effect of ignoring response styles
in cross-national survey research. Our results show two item segments (B and E) together
containing 36% of the sample in which respondents have biased response patterns. The
interaction between content and response styles reveals that certain response styles, such
as extreme response style, strong acquiescence, disacquiescence, and incomplete response,
are overrepresented in these two item segments. Given the outspoken nature of these
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response styles, we believe that these response styles are often not valid communication
styles. Other response styles, such as moderate and weak acquiescence, appear to be valid
communication styles. For marketing applications, it is better to drop item segments such
as segments B and E from targeting activities. Focusing on segments that provide valid
information can increase marketing effectiveness.

To provide a basis for the formulation of marketing strategies, the item segments
should satisfy the six criteria for effective segmentation (Wedel & Kamakura, 2000). Our
item segments are based on psychographics, which is a general unobservable segmentation
basis. The criteria identifiability and substantiality were already established in our study.
Stability is also likely, as values do not change dramatically over time (Schwartz, 1992).
Further, accessibility refers to the extent to which the segments can be reached through
promotion and distribution efforts. Especially the segments ‘hedonists’, ‘group-oriented’,
and ‘self-oriented’ show differences with respect to the background characteristics country,
age, and education; to reach those segments, the background information can be used
to link the segments to existing commercial databases on, for example, media usage.
Finally, responsiveness and actionability may not seem evident for the item segments.
Responsiveness is satisfied when each segment responds in a unique way to the marketing
mix, and actionability depends on whether the segments provide guidance for effective
specification of the marketing instruments. Because of the psychographics used, we find
only minor differences in behavior among segments. However, the substantial differences
among segments in value structures and background characteristics suggest that differences
in behavior exist. To increase responsiveness and actionability of the segments, product-
specific attitudes measured using rating scales can be included in future studies. Unlike
segments based on either demographics or behavior, segments based on product-specific (or
domain-specific) attitudes are considered high on responsiveness and actionability (Wedel
& Kamakura, 2000). Thus, applying the LC-BML model simultaneously to domain-specific
variables and general psychographics or values may help find item segments that meet all
criteria for effective segmentation.

As any study, the present study has some limitations. First, the number of items and
the number of countries were limited. Second, the LC-BML model uses an optimization
algorithm that may be quite time-consuming. This is especially true if the data set contains
many observations and background variables, safeguards against local maxima are taken,
and the numbers of segments are determined using an information criterion, so that the
model parameters have to be optimized many times. Third, the LC-BML model cannot be
estimated using conventional, commercially available statistics packages, so that specialized
programs had to be written. These programs have been written in the matrix programming
language MATLAB and are available from the authors upon request. Finally, the specific
response styles found in our data set may differ from the response styles in other data sets.
However, we believe that the response styles found here are representative of the response
styles in many data sets in marketing research.

Our study offers several directions for future research. First, the LC-BML model
has been designed for data sets with substantive scales measured on rating scales and
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background characteristics measured on nominal scales. Many data sets in international
marketing research fit this format. Future research can focus on using our model to assess
the occurrence of various response styles worldwide, especially in emerging markets where
different reactions to Western-based scales are common (Burgess & Steenkamp, 2006). In
addition, the LC-BML model can be used to gain insight into the meaning of categories
such as ‘don’t know’ or ‘missing’; this insight seems especially useful if those categories are
not ticked completely at random. Future research may increase our understanding of how
these response categories are used and whether such categories really reflect the absence of
an opinion. Finally, our model gives estimated probability distributions for the response
categories. Future studies can investigate whether such probability distributions can be
meaningfully used for imputing missing observations in a data set.

In this research, we concentrated on marketing data from several countries. Marketing
research providers are global enterprizes. For example, ACNielsen currently has subsidiaries
in 108 nations and conducts research all over the world. Such large research enterprizes
have proprietary ways to adjust their polling methods and surveys, as they operate in so
many cultures and environments. Nonetheless, the method described here would be useful
to any marketing research company (large or small) and is applicable to academic research,
where there is increasing interest in testing traditional marketing models and practices in
a variety of nations and cultures. In a marketing context, the LC-BML model is a useful
tool to provide more insight into how rating scale responses are affected by response styles,
the content of the items, and background variables. In brief, we believe that the LC-BML
model adds a promising technique to the international marketing researcher’s toolkit.

3.A Parameter Restrictions

Several parameter restrictions are necessary for identification of the model parameters.
Here, we describe the restrictions that we impose. First, we consider location restrictions,
that is, restrictions that are necessary because adding a constant to a set of parameters
would not change the estimated probabilities in the model. Location restrictions are needed
for aj,, F, Gi, and H,. We impose sum-to-zero constraints for all these parameters per
set, that is, we require that Z;}:laﬂr =0, Z}]:1 fip = 0, 30, hipjs = 0, and that the
elements of gy, sum to zero. As a result, the centroid of the points referring to a single
variable (Rating, Item, or a background variable) is the origin in the plot.

Scale and rotation constraints are required for F, Gy, and H,. For notational conve-
nience, let B = [By|...|Bg|, C =[Cy|...|Cs], G = [G)|...|G%],and H = [H}] ... H],
where C, contains the effects of the ratings on the items in item segment s. Then, the
rank restrictions in Equation 3.2 can be written as

[B|C] = FIG/|H. (3.8)

Without loss of generality, we can transform the parameter matrices as F = FT, G =
(T7'G’Y, and H = (T~'H'Y for any nonsingular P x P matrix T, because

F|G/|H'] = FTT ' [G/|H/.
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This freedom of scaling also occurs in principal components analysis and correspondence
analysis (Gifi, 1990). We compute a constrained solution as follows. Let [B|C] be obtained
by some unconstrained F, G, and H. In addition, let P®Q’' = [B|C] be a compact singular
value decomposition with P and Q orthogonal rotation matrices with P columns (with
PP=QQ=1I) and ® a P x P diagonal matrix with positive monotonically decreasing
values. As the rank of [B|C] is not greater than P, matrices P, ®, and Q that meet the
requirements above must exist and typically are unique up to a reflection per dimension.
We set F = wP®'/? and [G'|H') = 1/wQ®'/2, where w is a constant that determines the
relative scaling of the points of the ratings compared to the points of the items and the
background characteristics. Choosing F and [G'|H’)’ in this way ensures that the equality
in Equation 3.8 is preserved, as

F[G'|H| = wP®'/? (i}Qqﬂﬂ)/ =P&Q = [B|C].

The value of w can be adapted without altering the general results. We set

1/4
J /
Y=\l ~K )
ST + 3y i

so that the average squared Euclidean distance of the points to the origin is the same for
both F and [G'|H']". For the LOV data set, this choice amounts to setting w ~ .65. We
also simultaneously reflect the columns of F, G, and H in such a way that the first row of
F only has positive values.

Due to these parameter restrictions, the spread of the points in the graphical repre-
sentations decreases with the dimension, and the dimensions are orthogonal with respect
to F and [G'|H']". The point of Rating 1 must have positive values on all dimensions. A
final parameter restriction is that the segment sizes must be nonnegative and should sum
to one, so that u,.s > 0 and Zf’:l Zle Ups = 1.

3.B Optimization Algorithm

An Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) is used to
estimate the model parameters by maximizing the likelihood function. The EM algorithm
starts with initial parameter estimates and then iteratively performs an E-step and a M-
step, until convergence has been achieved. In the E-step, the posterior segment membership
probabilities Pr(: € =, ,) are computed using Equation 3.6, given the current parameter
estimates. In the M-step, the expected complete log-likelihood is maximized with respect
to the parameter estimates, given the segment membership probabilities computed in the
E-step. In our implementation, every M-step consists of 10 iterations of the BFGS quasi-
Newton optimization routine in the MATLAB Optimization Toolbox (version 3.0.4), with
analytically computed gradients. Convergence is considered to have been achieved if the
change in log-likelihood between two consecutive EM iterations is smaller than 2 x 1075.
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It is possible that the EM algorithm converges to parameter estimates that are only
locally optimal. To solve this problem, the EM algorithm was run 10 times for every
value of R, S, and P with randomly chosen starting values, and the solution with the best
likelihood value was retained.

3.C Model Identifiability

An important issue is whether the model parameters are identifiable (see, for example,
Teicher, 1963). If there are few items in the study and many segments, the model may not
be identifiable, so that unique parameter estimates that maximize the likelihood function
may not exist. For example, with only one item in the study, it is not possible to distinguish
more than one response style or item segment.

To ensure model identifiability, the parameters must be locally identifiable. In addition,
we must account for trivial nonidentifiability, which occurs because the order of the
segments can be interchanged without changing the likelihood value; this problem can
be solved by imposing appropriate restrictions of the segment sizes. Local identifiability
is guaranteed if the Hessian (that is, the matrix of second derivatives of the log-likelihood
function at the final parameter estimates) has full rank, which can easily be checked after
the estimating the model parameters. In principle, it may be possible to derive conditions
in which the model is always identifiable, which can be checked before estimating the
parameters. However, because we have two types of segments, deriving necessary and
sufficient conditions for identifiability is very hard and beyond the scope of this chapter.

Instead, we solve this problem empirically. After estimating the parameters of a
model, we check whether the Hessian is of full rank (using the alternative parametrization
described in Appendix 3.E), and we impose a specific ordering of the segments. Based on
numerical experimentation, we find that the model is almost always identifiable if there are
more than three items, and the LC-BML model is also identified for the solution presented
in this chapter for the LOV data set. Most marketing segmentation studies use at least ten
items and distinguish at most five segments; such studies will thus almost always result in
identifiable models. Therefore, we do not believe that the identifiability of the LC-BML
model poses a problem for marketing practitioners.

3.D Simulation Study

To apply the LC-BML model, the numbers of segments R and S and the dimensionality P
need to be chosen. To do so, we use an information criterion. However, many information
criteria exist, and their performances tend to depend on the characteristics of the model
and the data set (Yang & Yang, 2007). To determine how various information criteria
perform for our model and to evaluate the performance of the optimization algorithm,
we conduct a simulation study. In this simulation study, we generate data according to
simulated model parameters and then apply the optimization algorithm.
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Table 3.7: Factors in Simulation Study

Factor Level 1 Level 2

Number of respondents (n) n = 1000 n = 4000

Number of rating categories (J) J=5 J=9

Background variables no background variables 2 variables with 2 categories each
Numbers of segments (Rgim, Ssim) | Rsim = 2, Ssim = 2 Rsim = 3, Ssim = 3
Dimensionality (Psim) Pyim =1 Pyjp =2

Number of items (') T=8 T=16

Variance of parameters 1.2 .6

To generate simulated data sets, we simulate model parameters as follows. The elements
of ap,...,ar, F, Gi,...,Gy, and Hy,...,Hg are chosen as independently normally
distributed variables, in such a way that the parameter restrictions that are described
in Appendix 3.A are met (so that the columns of these parameter matrices must sum to
zero). The variance of these parameters is one of the factors in the simulation study and
equals either .6 or 1.2. The elements of U are chosen to be 1/(R x S), so that all segments
have the same size.

In our simulations, we vary seven factors with two levels each, using a full-factorial
design. These factors and the levels of these factors are shown in Table 3.7. The levels
of these factors have been chosen in such a way, that the simulated data are roughly
comparable to empirical data sets such as the LOV data set; to limit the computation
time, the numbers of segments have been set lower than in the empirical study. We
generate one data set for each of the 27 = 128 combinations of the levels of these factors.
For each data set, we apply the optimization method for R = 1,..., Rgm, Rsim + 1, S =
1,...,8m,Seim + 1, and P =1,..., Py, Pym + 1, in which Ry, Ssim, and Py, are the
values of R, S, and P that have been used to simulate the data. The optimization method
uses five random starts for each combination of R, S, and P in each data set, and the
EM-algorithm is considered to have converged if the difference in log-likelihood between
two iterations is smaller than 10™*. We then determine the preferred model in each data
set for each of four information criteria. These criteria are: AIC, AIC-3, BIC, and CAIC
(see Andrews & Currim, 2003, for an overview).

The first four rows of Table 3.8 show, for each information criterion, the proportion
of the data sets in which the information criterion identified the correct model; these
proportions are computed for each level of each factor, averaged over the six remaining
factors. In each situation, either the AIC-3 or the BIC performs best. CAIC tends do
slightly worse than BIC, and AIC seems to perform rather poorly (it often overestimates
the numbers of segments). The differences in the performances between AIC-3, BIC, and
CAIC appear to be rather small compared to the clearly inferior performance of AIC. For
large data sets, BIC and CAIC are known to give good performances (Andrews & Currim,
2003), which is supported by the results in Table 3.8. As AIC-3 was only proposed as
a criterion for determining numbers of segments (Andrews & Currim, 2003), and not for
choosing a dimensionality, we decide to use BIC for the List of Values data set.
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The results of the simulation study show that the optimization algorithm, in combi-
nation with a properly chosen information criterion, is capable of identifying the correct
values for R, S, and P. We also wish to evaluate the parameter recovery of the optimization
algorithm given that R, S, and P have been identified correctly. For each simulated
data set, we compare the simulated parameters to the estimated parameters for the
optimizations in which R, S, and P equal their correct values. The second part of Table 3.8
shows the mean absolute error for each parameter set, for each level of each factor. The
mean absolute error is always smaller than .08 for each parameter set. As these estimated
parameters (except for the elements of P) have a variance of .6 or 1.2, we believe that the
parameter recovery is acceptable.

The last two rows of Table 3.8 show the average proportions with which the respondents
are assigned to their simulated clusters, for both the response styles segments and the item
segments. To assign each respondent to one segment, each respondent is placed in the
segment in which his posterior membership probability is greatest. These proportions tend
to be around 90% and are relatively mildly affected by the characteristics of the data set.

Finally, we have tested the effects of each factor in the simulation study on the recovery
performance of the LC-BML model, and the results of these tests are also shown in
Table 3.8. For the information criteria, these tests have been conducted using a binomial
logit model, and for the other results in Table 3.8, an ANOVA model has been used;
both types of models contained a constant term, main effects of all factors, and no
interaction effects. The results show that the parameter recovery is better if the numbers
of respondents and items are higher. Increasing the numbers of segments and dimensions
may negatively affect the parameter recovery and the probability that the correct model
is identified, though the effects of these factors are often not statistically significant. For
the other factors in the simulation study, no consistent results are found.

3.E Confidence Ellipses

The confidence ellipses in the Results section are based on maximum likelihood theory.
Under regularity conditions, a maximum likelihood parameter estimator is normally dis-
tributed with covariance matrix equal to the inverse of the information matrix. The
information matrix can be estimated as the negative of the matrix of second-order partial
derivatives of the likelihood function with respect to all model parameters, evaluated at
the maximum likelihood parameter estimates. However, as the model parameters are not
identified without the parameter constraints described in Appendix 3.A, this matrix of
second-order partial derivatives is not invertible. To circumvent this problem, we created
an alternative model parametrization that does not require any parameter constraints
for parameter identification and is equivalent to our original model. Several estimated
parameters in the original parametrization represent probabilities of almost exactly 0.
These parameters were fixed at these values for the alternative parametrization, so that
the uncertainty in the associated parameter estimates is not taken into account in the
confidence ellipses.
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The confidence ellipses are constructed using the following procedure. First, the final
parameter estimates of our original parametrization are transformed to the alternative one.
Using these transformed parameter estimates, the matrix of second-order partial derivatives
is calculated numerically. Then, 10,000 simulated parameter vectors are drawn from a
multivariate normal distribution with covariance matrix equal to the negative inverse of
the matrix of second-order derivatives. For each simulated parameter vector, the associated
parameter vector in the original parametrization is computed. Analysis of the simulated
parameters in the original parametrization shows that the locations of the points in the
graphical representation have approximately a joint bivariate normal distribution. Finally,
the simulated locations of the points are used to construct 95% normal theory confidence
ellipses.






Chapter 4

Modeling Attribute Interactions in
Choice-Based Conjoint Analysis™®

Abstract

In conjoint choice experiments, interaction effects of attributes are seldom fully mod-
eled. Modeling all interaction effects tends to require a large number of parameters
and a large conjoint choice design. In this chapter, we consider a novel approach
for modeling two-way interactions effects, based on the OSI model of Chapter 2.
The aim of this approach is to model the two-way interaction effects in choice-
based conjoint analysis effectively, while keeping the design size and the number of
parameters relatively small. We apply the resulting models to an empirical conjoint
choice data set. We also sketch how good choice designs can be constructed for our
models.

4.1 Introduction

Conjoint choice experiments are a useful way to determine how product characteristics
affect the preferences of consumers (see, for example, Green & Wind, 1975). Researchers
have often focussed on the main effects of the product characteristics, and usually only
limited attention is paid to interaction effects. However, it is well-known that combining
various product characteristics can yield synergies or suppressions (Gofman, 2006), so that
modeling interaction effects in conjoint analysis can be important.

There is often a need to also include interaction effects in such a model specification
(see, for example, Carmone & Green, 1981). In conjoint analysis, modeling interaction
effects is almost always confined to two-way interaction effects (Vriens, 1995). Compared
to other types of models, modeling interactions in conjoint analysis can be hard, because
the design (that is, the characteristics of the choice sets offered to the respondents) limits

*This chapter is joint work with Alex J. Koning and Patrick J. F. Groenen.
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what kinds of effects can be measured. If a full-factorial design (that is, a design that
contains all combinations of the levels of the attributes) is used, all main effects and
higher-way interactions can be measured. However, the size of such a design increases
exponentially with the number of product attributes and their number of levels. Alter-
natively, it is possible to model only selected two-way interaction terms, using fractional
factorial designs (see Holland & Craves, 1973). For example, Carmone and Green (1981)
suggest using compromise designs, which are fractional factorial designs that facilitate the
estimation of all main effects and a subset of the two-way interactions. Fractional factorial
designs typically are much smaller than the associated full-factorial designs. However,
this approach has the disadvantage that one must determine in advance which two-way
interaction terms are relevant; all other interaction effects are subsequently neglected.

In this chapter, we consider several ways to model interaction effects of product
characteristics in conjoint choice experiments. We limit ourselves to choice-based conjoint
analysis experiments, which is one of the most popular forms of conjoint analysis. We
propose an alternative specification of the interaction effects that is based on the OSI
model of Chapter 2. The aim is to construct a parsimonious model specification for two-way
interaction effects in conjoint analysis. This model specification allows to account for all
two-way interaction terms of both categorical and continuous product characteristics. The
fact that the models discussed here require relatively few parameters has the advantage
that the required choice design (that is, the sets of products that are presented to the
respondents) can also be smaller. To estimate the parameters of a conjoint choice model
efficiently, a good conjoint choice design must be available. The construction of optimized
designs has received much attention in the marketing literature (see, for example, Kuhfeld,
Tobias, & Garratt, 1994; Huber & Zwerina, 1996; Sandor & Wedel, 2001; Kessels, Goos,
& Vandebroek, 2006). Therefore, we also explore the construction of good choice designs
for our model in this chapter. Finally, we use empirical data to illustrate the models.

The outline of this chapter is as follows. In the next section, we give an overview
of choice-based conjoint analysis, including the necessary notation. In Section 4.3, we
introduce our model for analyzing interaction effects in conjoint analysis and show how it
is related to other methods. The model is applied to an empirical data set in Section 4.4.
In Section 4.5, we discuss the generation of optimal conjoint choice designs. In the final
section, we summarize our findings.

4.2 Overview of Choice-Based Conjoint Analysis

The aim of conjoint choice experiments is to measure the preferences of consumers. A
typical choice experiment presents each respondent with several sets of products; these
sets of product are also called choice sets. Each product in each choice set comprises a
number of attributes. For each choice set, each respondent is asked to select the product
that he or she likes most. The choices made by the respondents can be used to infer what
kind of product they would prefer most. Although many attributes of products, such as
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the price, are continuous in nature, the levels of the attributes are typically chosen from a
finite set.

To describe choice-based conjoint analysis mathematically, we consider the situation in
which S choice sets are presented to each of n respondents. We assume that these choice
sets are the same for each respondent. For each choice set, each respondent is asked to select
exactly one of J profiles. Each profile represents a product that has m characteristics, which
are denoted by Xijs, ..., Xm;s. The vector x;;s is defined as an indicator vector; element k
of x;;5 equals 1 if attribute ¢ of concept j in choice set s has level k, and 0 otherwise.

We use a multinomial logit model to model the choice behavior of the respondents.
However, our approach for modeling interaction effects may also be used in other types of
conjoint choice models. The utility that a respondent derives from profile j is modeled as

Ujs = f(x.js> 9) + €jss (41)

in which x j; represents the attributes of profile j in choice set s, 6 is a parameter vector
containing all model parameters, and €;; is an error term with an ii.d. extreme value
distribution. The respondents are assumed to choose the profile with the highest utility in
each choice set s. As a result, the probability that a respondent chooses profile j in choice

set s is given by
e (%je)
> exp(f (%56, 0))

As the observations are assumed to be independent, the log-likelihood function of the
conjoint choice experiments is given by

Pjs = (42)

S J
IOgL(fjsapjs) = nZijs 10gpjs> (4'3)

s=1 j=1

in which f;,; denotes the proportion of times that the respondents choose product j in
choice set s. For a given choice design x;;, and response frequencies fj;, the parameters ¢
are estimated by maximizing the log-likelihood function.

4.3 The Conjoint-OSI model

If the product characteristics do not interact, the effects of the categorical attributes on
the estimated utility can be fully specified as

m

f(xXjs,a1,...,an) = ngjsai, (4.4)
=1

in which a; is a parameter vector of main effects of attribute ¢ and must sum to zero. The
conjoint choice model with only main effects is well-known (see, for example, Séndor &
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Wedel, 2001) and often applied. It is straightforward to augment this model with two-
way interaction effects. Modeling all two-way interaction effects fully results in the model
specification

m—1 m
f(xjsa ar, ..., am, Ckl § X/L]sa1 + § E Xk7scklxlj97 (45)
k=1 I=k+1

in which Cy, is a parameter matrix that contains the interaction effect between attributes
k and [; all rows and columns of each Cy; must sum to zero. For many applications, such
a full two-way interaction specification requires estimating too many parameters, so that
(4.5) is not often applied in practice.

In this chapter, we consider a novel way for modeling interaction effects in conjoint
analysis. To do so, we use the modeling approach for interaction effects that was proposed
in Chapter 2. This modeling approach is based on the methodology of optimal scaling
(Young, 1981; Gifi, 1990). Optimal scaling assigns numeric values to categorical variables
by optimizing a criterion (in this case, the likelihood function). In Chapter 2, optimal
scaling was used to model two-way interaction effects in generalized linear models. In
the OSI model, a continuous, optimally scaled variable is constructed for each predictor
variable, to model its two-way interaction effects. The optimally scaled variables are
constructed by assigning a parameter to each level of each categorical predictor variable.
For each interaction term, the product of the corresponding two optimally scaled variables
is then treated as an ordinary predictor variable. As a result, only one parameter is required
for modeling the strength of the interaction effect of each pair of predictor variables.

Here, we adapt the methodology of the OSI model, so that it can be applied to (choice-
based) conjoint analysis data. We call the resulting model the Conjoint-OSI model. To
describe this model formally, we first write a model with only main effects in terms of
optimally scaled variables as

f(X.j57 a, ..., an,7 Z 71X1J9a17 (46)

in which the vector a; contains the category quantifications of attribute ¢, and the ~; are
coefficients of the optimally scaled variables. The category quantifications are restricted
to have mean 0 and variance 1, which makes it necessary to include the parameters ~;.
We distinguish two versions of the Conjoint-OSI model. The first version is obtained by
adding the two-way interaction effects of a new set of optimally scaled variables to (4.6),
which yields

f(Xjs,ar,... am, by, .. by, v, 0 Z%stal Y0 ouxibibixie, (A7)

k=1 l=k+1

in which oy, is a parameter that measures the strength of the interaction between attributes
k and [, and by is the parameter vector of quantifications for the interaction effects of
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Table 4.1: Degrees of freedom, log-likelihood values, and AIC values of various conjoint choice

models.
Model Degrees of freedom Log-likelihood —AIC
Main effects only 11 -20,310.1  40,642.2
Conjoint-OSI model (unequal quantifications) 21 -20,298.6  40,639.2
Conjoint-OSI model (equal quantifications) 14 -20,301.0  40,630.0
All two-way interactions 44 -20,288.0  40,664.0

attribute k. The term xj; by is the value of optimally scaled variable k for product j in
choice set s; see Chapter 2 for more information on this model specification.

As an alternative model, we can also use the category quantifications of the main effects
for modeling the two-way interaction effects (that is, impose that by, = a;), which leads to
a more parsimonious model. This approach yields

m m—1 m
! ! !
f(Xjs,an, .., am,7,0.) = E ViXijs@i + E E O kX5 AR X s (4.8)
=1 k=1 I=k+1

In the remainder of this chapter, we consider both versions of the Conjoint-OSI model.

The Conjoint-OSI model partially models the two-way interaction effects. To model
the interaction effects, this model constructs a continuous, optimally scaled variable for
each attribute, by assigning a parameter to each level of each attribute. As in Chapter 2,
the estimated quantifications (that is, by and a;) are constrained in such a way that the
optimally scaled variables have mean 0 and variance 1. For each pair of attributes, the
Conjoint-OSI model uses a single parameter to model the size of the interaction effect. The
interaction effect between two levels of different attributes is estimated as the product of
the quantifications for the interaction effects of these two levels and the corresponding size
parameter.

4.4 Empirical Application

We use a data set based on a commercial study! to test the Conjoint-OSI model and
compare it with other approaches for modeling interaction effects. For this data set,
805 respondents were each shown 24 pairs of products. For each pair of products, each
respondent was asked to choose his or her preferred product or to make no choice at all.
The products had three attributes: ‘Brand’ (5 levels), ‘Benefit’ (4 levels), and ‘Format’ (4
levels). As the data are confidential, we do not report the meanings of the levels of these
attributes here.

"We would like to thank Graham Cleaver for providing this data set.
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We estimate four conjoint choice models for this data set. These models are all based
on a multinomial logit model and include a model with only main effects (Equation 4.4),
a model that contains all two-way interaction terms (Equation 4.5), and the two variants
of the Conjoint-OSI model (Equations 4.7 and 4.8). The parameters of the models were
estimated by maximizing the log-likelihood function using a general-purpose quasi-Newton
optimization routine, with appropriate constraints on the parameters; see also Chapter 2
of this thesis. Table 4.1 shows general results for these four models.

The Akaike information criterion (AIC) prefers both versions of the Conjoint-OSI model
over the other two models, so that we are justified in considering the Conjoint-OSI model.
Below, we interpret the results of the Conjoint-OSI model with equal quantifications, which
resulted in the lowest value of the AIC.

The upper side of Figure 4.1 shows the estimated quantifications (that is, the param-
eters a;) of the attributes, which are used for both the main effects and the interaction
effects. The first row of the lower part of Figure 4.1 contains the estimated sizes of the
main effects (that is, the parameters +;). The main effects of Brand and Format appear to
be stronger than the main effects of Benefit. To obtain the estimated main effects for each
level of each attribute, we must multiply the sizes of the main effects with the corresponding
quantifications. For example, Brand 2 has a positive main effect of —0.144 x —1.03 = 0.149.
Brands 2 and 4 are therefore preferred to Brands 1 and 3. A similar preference exists for
Formats 1 and 2. However, the effects of the attributes on the respondents’ choices seem
relatively small, as the estimated parameters of the main effects are not large.

We also interpret the estimated interaction effects. The lower part of Figure 4.1 also
displays the estimated sizes of the interaction effects; the interaction effects in this figure
can be determined in the same way as in Figure 2.1. To obtain an estimated interaction
effect between two levels of different attributes from Figure 4.1, the coefficient of the
interaction in the lower part of Figure 4.1 must be multiplied with the corresponding
interaction quantifications in the upper part of this figure. For example, the estimated
interaction effect of Brand 1 and Benefit 1 is the coefficient 0.0433 times the product of the
interaction quantifications 1.19 and 0.57, which equals 0.029. Of the three interaction
effects, the interaction between Brand and Benefit appears to be the strongest; the
attributes Benefit and Format do not appear to interact strongly.

Based on the estimated parameters of the Conjoint-OSI model, the most preferred com-
bination of the levels is Brand 2, Benefit 2, and Format 1; the least preferred combination is
Brand 1, Benefit 5, and Format 3. If these two products, which have the largest difference
in estimated utility among all possible products, are compared using a no-choice option,
the estimated probability that the respondent chooses the product with Brand 2, Benefit 2,
and Format 1 equals 52.3%, and the estimated probability of choosing Brand 1, Benefit 5,
and Format 3 equals 26.7%. With a probability of 21.0% percent, the respondent chooses
neither of the two products. These results show that differences in utility among products
exist, but they are relatively small.
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Figure 4.1: Parameter estimates for the Conjoint-OSI model with a single quantification for each
level of each attribute.
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4.5 Optimal Designs

Before conducting a conjoint choice experiment, a design must first be chosen. Several
criteria exist to evaluate the effectiveness of a design; see Kessels et al. (2006) for an
overview of the performance of these criteria. The most commonly used criterion is the
D-criterion (see, for example, Kuhfeld et al., 1994; Huber & Zwerina, 1996), and we discuss
this criterion here. The D-criterion minimizes the D,-error, which is defined as

det[I(A]|X)] /¥, (4.9)

in which I(4|X) is the information matrix and k denotes the number of free model
parameters. Minimizing (4.9) corresponds to minimizing the volume of the confidence
ellipsoid for 6. For model (4.2), the information matrix is given by

nz 005000 ) 2L 050). (4:10)

in which the matrix X contains the vectors x;,, ps has elements p;;, and P is defined as
diag(ps).

The D-criterion depends on the unknown values of the model parameters 6. In some
cases, the D-criterion is optimized by assuming that all parameters are zero. However, for
the Conjoint-OSI model, this assumption does not make sense, as the model parameters
are not identified under this assumption.

An optimal design for the Conjoint-OSI model can be constructed as follows

1. Conduct a pilot study that does not use an optimized design to obtain initial
parameter estimates.

2. Generate a random initial design and calculate the value of the D-criterion for this
design.

3. Do the following, until no further improvements can be made to the design.

(a) Randomly choose a product in the design and replace it with another, randomly
chosen product.

(b) Determine whether replacing the product improves the value of the D-criterion.

(c) If no improvement in the design has been obtained, revert to the previous design.

To obtain the globally optimal design, Steps 2 and 3 of the algorithm described above
should be performed many times, and the best design found should be chosen. However,
finding the globally optimal design is usually not necessary, and a good design will suffice.
The design obtained using this algorithm should allow researchers to investigate the
presence of interaction effects much more efficiently than an unoptimized or a random
design.
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Table 4.2: An example of an optimized design for the Conjoint-OSI model with equal quantifica-

tions.
Profile 1 Profile 2
Choice set |Brand Benefit Format|Brand Benefit Format
1 4 2 3 2 5 1

Ut N Ot

—
w

W W = NN W =N 0 N R N R
O NN O N W N =N O R N RN R OOt Ot W
N W RN DN N BN B BN~ W WWWwWwN = =
o e = e e = DN R = W W W R N W R =N = =W
CU B W NN BN RN WWR BN WER N oG

W = R W W W R RN R NN R =W N




76 Modeling Attribute Interactions in Choice-Based Conjoint Analysis

We have constructed an optimized design for the Conjoint-OSI model with equal
quantifications, using the data set in this chapter as a pilot study. This design is shown in
Table 4.2. Tt is also possible to construct optimized designs for the full two-way interaction
model; however, such a design must be larger than the design shown in Table 4.2. We
believe that the fact the Conjoint-OSI model requires a smaller design than a full two-way
interaction model is an important advantage.

4.6 Conclusions

In this chapter, we have applied the optimal scaling methodology of Chapter 2 to modeling
interaction effects in conjoint analysis. We find that imposing a bilinear parameter
structure can also be useful in sophisticated techniques such as choice-based conjoint
analysis. This approach has resulted in the new Conjoint-OSI model. We distinguish two
versions of our model: a version with separate quantifications for the interaction effects and
the main effects and a version with one quantification for both main effects and interaction
effects. We believe that both versions of the model can be useful; which version is the best
one likely depends on the data set used.

As interaction effects in conjoint analysis are usually relatively small, there is typically
no need to consider multidimensional models or full two-way interaction models. Three-
way interactions appear to be almost always negligible in conjoint analysis.

We have applied our models to a commercial data set. In this data set, the Conjoint-
OSI model with equal quantifications for main and interaction effects is preferred over all
other models by Akaike information criterion. Using only three parameters, this model can
fit a large portion of the two-way attribute interactions; a full two-way interaction model
would use 33 effective parameters to account for these interaction effects.

Finally, we have sketched how optimal designs can be generated for our model. Such
optimal designs are easiest to construct if prior parameter estimates are available. We find
that optimized designs for the Conjoint-OSI model can be smaller than designs for the full
two-way interaction model. It remains a subject for further research how good conjoint
choice designs can be generated if no prior information is available. Future research may
also investigate how attribute interactions in other types of conjoint analysis experiments
can be modeled effectively.
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Chapter 5

Optimization Strategies for
Two-Mode Partitioning™

Abstract

Two-mode partitioning is a relatively new form of clustering that clusters both rows
and columns of a data matrix. In this chapter, we consider deterministic two-
mode partitioning methods in which a criterion similar to k-means is optimized.
A variety of optimization methods have been proposed for this type of problem.
However, it is still unclear which method should be used, as various methods may
lead to non-global optima. This chapter reviews and compares several optimization
methods for two-mode partitioning. Several known methods are discussed, and a
new fuzzy steps method is introduced. The fuzzy steps method is based on the fuzzy
c-means algorithm of Bezdek (1981) and the fuzzy steps approach of Heiser and
Groenen (1997) and Groenen and Jajuga (2001). The performances of all methods
are compared in a large simulation study. In our simulations, a two-mode k-means
optimization method most often gives the best results. Finally, an empirical data set
is used to give a practical example of two-mode partitioning.

5.1 Introduction

Clustering can be seen as one of the cornerstones of classification. Consider a typical
two-way two-mode data set of respondents by variables. Often, clustering algorithms are
applied to just one mode of the data matrix, which can be done in a hierarchical or
non-hierarchical way. Among the non-hierarchical methods, k-means clustering (Hartigan,
1975) is one of the most popular methods and has the advantage of a loss function being
optimized. For an overview of clustering methodology for one-mode data, see Mirkin
(2005).

*This chapter is based on Van Rosmalen, Groenen, et al. (in press).
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A relatively new form of clustering is two-mode clustering. In two-mode clustering,
both rows and columns of a two-mode data matrix are assigned to clusters. Each row of a
two-mode data matrix is assigned to one or more row clusters, and each column to one or
more column clusters. Elements of the data matrix that are in the same row cluster and
in the same column cluster should be close. DeSarbo (1982) described such a two-mode
clustering method, called the GENNCLUS model. A technique that is related to two-mode
clustering is blockmodeling, which is often used in social network analysis (see, for example,
Noma & Smith, 1985; Doreian, Batagelj, & Ferligoj, 2005) and can be used for both one-
mode and two-mode data matrices (Doreian et al., 2004). Blockmodeling attempts to
partition network actors into clusters, so that a block structure can be identified in a data
matrix in which the rows and columns have been reordered in a specific way; the elements
within each block should typically have similar values. An extensive overview of two-mode
clustering methods can be found in Van Mechelen, Bock, and De Boeck (2004).

In this chapter, we focus on two-mode partitioning, that is, partitioning the sets of rows
and columns so that each row and each column is assigned to exactly one cluster. To do so,
we use a least-squares criterion that models the elements of the data matrix belonging to
the same row and column cluster by their average. Other optimization criteria and methods
that do not optimize a criterion can also be used to partition the rows and columns of a data
matrix. However, in the remainder of this chapter, we focus on deterministic two-mode
partitioning using a least-squares criterion and refer to this method simply as two-mode
partitioning. Several optimization methods for finding good two-mode partitions based on
this criterion are known from the literature. However, these methods are not guaranteed
to find the global optimum and often get stuck in local minima. Therefore, we study the
local minimum problem of two-mode partitioning for several optimization methods and
determine which method tends to give the best local minimum among these methods. In
addition, a new optimization method for two-mode partitioning is introduced, based on
the fuzzy c-means algorithm of Bezdek (1981). Using a simulation study, we identify the
methods that perform well under most circumstances, within a reasonable computational
effort.

The remainder of this chapter is organized as follows. In the next section, we introduce
the notation and give an overview of the optimization problem, including two hill climbing
algorithms. Section 5.3 describes the implementation of two meta-heuristics for two-mode
partitioning. Section 5.4 introduces the fuzzy steps two-mode partitioning method. In
Section 5.5, we compare the performances of the methods using a simulation study. Section
5.6 uses an empirical data set to compare the methods and to give a practical example of
two-mode partitioning. Finally, we draw conclusions and give recommendations for further
research.
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5.2 Overview of Optimization Problem
To define the two-mode partitioning problem, consider the following notation:

Xyxm = (Tij)nxm  Two-mode data matrix of n rows and m columns.
Poxx = (Pit)nxx  Cluster membership matrix of the rows with K the number of row
clusters, p;x = 1 if row @ belongs to row cluster k, and p; = 0

otherwise.
Qmxr = (¢ji)mxr  Cluster membership matrix of the columns with L the number of
column clusters, ¢;; = 1 if column j belongs to column cluster [,

and g;; = 0 otherwise.
Visr = (vn)kxr  Matrix with cluster centers for row cluster k£ and column cluster .
E,xm = (€ij)nxm  Matrix with errors from cluster centers.

Usually, the rows of X correspond to objects, and the columns of X refer to variables.
The elements of X can be associations, confusions, fluctuations, etc., between row and
column objects. Applying two-mode partitioning only makes sense if the data matrix is
matriz-conditional, that is, its values can be compared among each other. Therefore, if
one of the modes refers to variables, these variables must be comparable, standardized, or
measured on the same scale. In the remainder of this chapter, we assume that the data
satisfy this condition.

Two-mode partitioning assigns each element of X to a row cluster and a column cluster.
If L equals m, each column can be placed in a cluster by itself, so that two-mode partitioning
reduces to one-mode k-means clustering, and the same is true if K equals n. The matrix
V can be interpreted as the combined cluster means. The cluster memberships are given
by the matrices P and Q. Together, the three matrices P, Q, and V approximate the
information in X by PVQ'. To make this approximation as close to X as possible, we use
the additive model

X =PVQ' +E, (5.1)

where E is the error of the model. Equation (5.1) can be seen as a special case of the
additive box model proposed by Mirkin, Arabie, and Hubert (1995); the additive box
model does not partition the rows and columns, but allows for overlapping clusters.

Two-mode partitioning searches for the optimal partition P, Q and cluster centers V
that minimize the sums of squares of E. This objective amounts to minimizing the squared
Euclidean distance of the data points to their respective clusters centers in V. Therefore,
the criterion to be minimized can be expressed as

K L n m
fP,QV) =X =PVQ*=>">">"> puaulw; —va)*. (5.2)
k=1 I=1 i=1 j=1
Using the Euclidean metric is not mandatory; other metrics have been used as well,
especially in one-mode clustering (see, for example, Bock, 1974). However, in this study,
we restrict ourselves to the Euclidean metric.
The optimal cluster membership matrices must satisfy the following constraints.
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1. The cluster memberships of each row and column object must sum to one, so that
K L
Do P =1and 377, g = 1.

2. All cluster membership values must be either zero or one, so that p; € {0,1} and
q;1 € {0, 1} .

3. None of the row or column clusters is empty, that is >\, py > 0 and Z;n:l g1 > 0.

The first two constraints together require that each row of P and Q contains exactly one
element with the value 1. Hence, each row and column object is assigned to exactly one
cluster. These two constraints are necessary and sufficient for the second equality in (5.2) to
hold. A partition that is optimal according to (5.2) typically does not have empty clusters,
and, in principle, the third constraint is not required during the estimation. However,
some algorithms may lead to a partition with empty clusters. Therefore, we adapt these
algorithms to correct for potential empty clusters or prevent them from happening.

No known polynomial time algorithm is guaranteed to find the global minimum of
f(P,Q, V) in every instance. Even for relatively small n and m (say, n = 20 and m = 20),
the number of possible partitions can become extremely large, and a complete enumeration
of the possible solutions is almost always computationally infeasible. However, if two of
the three matrices P, Q, and V are known, the optimal value of the third matrix can
be computed easily. If both P and Q are known, the optimal cluster centers V can be

computed as
Vg = Z?:l Z;nzl Pikdj1%ij5
Z?:l Z;nzl Pikq;t
which is the average of the elements of X belonging to row cluster k£ and column cluster [.
If V and either P or Q are known, the problem of minimizing f(P, Q, V) becomes a linear
program that has a closed-form solution. When V and Q are known, the optimal value of
P can be computed as follows. Let ¢ = >0, S qii(wi — vi)®. Then,

o 1 if Cik = miﬂlgrgK Cir,
Pik = { 0 otherwise. (54)

(5:3)

When P and V are known, the optimal matrix Q can be computed in a similar fashion.
Several methods for finding an optimal two-mode partition, based on the minimization
of (5.2), have been proposed in the literature. Two of these methods are discussed in the
remainder of this section. Both methods are hill climbing algorithms and are guaranteed
to find a local optimum (which may or may not be the global optimum). Three additional
optimization methods for two-mode partitioning are discussed in the next two sections.

5.2.1 Alternating Exchanges Algorithm

The alternating exchanges algorithm was proposed by Gaul and Schader (1996). This
algorithm tries to improve an initial partition by making a transfer of either a row or a
column object and immediately recalculating V. Our implementation of the alternating
exchanges algorithm performs the following steps:
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1. Choose initial P and Q, and calculate V according to (5.3).
2. Repeat the following until there is no improvement of f(P,Q, V) in either step.

(a) For each ¢ and k, transfer row object i to row class k and re-calculate V according
0 (5.3). Accept the transfer if it has improved f(P, Q, V), otherwise return to
the old P and V.

(b) For each j and [, transfer column object j to column class [ and re-calculate V
according to (5.3). Accept the transfer if it has improved f(P, Q, V), otherwise
return to the old Q and V.

The alternating exchanges algorithm always converges to a local minimum, as the value
of f(P,Q,V) decreases in every iteration, the algorithm is defined on a finite set, and
f(P,Q,V) is bounded from below by 0.

5.2.2 Two-Mode k-Means Algorithm

The k-means algorithm (Hartigan, 1975) is one of the simplest and fastest ways to obtain
a good partition, which accounts for its popularity in one-mode clustering. This algorithm
can easily be extended to handle two-mode partitioning (see Baier, Gaul, & Schader,
1997; Vichi, 2001). The so-called two-mode k-means algorithm aims to improve an initial
partition using (5.3) and (5.4) and comprises the following steps.

1. Choose initial P and Q.
2. Repeat the following, until there is no improvement of f(P,Q, V) in any step.
(a) Update V according to (5.3).
(b) Let cir = 327, Sr (% — vi)®. Then update P according to
_J1 if e = miny<, <k Cr,
bk { 0 otherwise. (5.5)
(c) Update V according to (5.3).
(d) Let djy = S0 o5, pij(wi; — vm)?. Then update Q according to

_ 1 lf dﬂ = Hlin1§r§L dj,n7
4t = { 0 otherwise. (5.6)

The two-mode k-means algorithm always converges to a local minimum, as the value of
the criterion f(P,Q,V) cannot increase in any step. However, one or more clusters may
become empty after Step 2b or 2d. This situation is immediately corrected by transferring
the row or column object with the highest value of Zszl PirCix OF Zlel g;idj; to the empty
cluster.
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5.3 Meta-Heuristics

The algorithms discussed in the previous section contain no provisions to avoid finding
non-global optima. As no known polynomial time algorithm is capable of finding the
global optimum in every instance, we also use optimization methods that are based on
meta-heuristics. These meta-heuristics aim to increase the likelihood of finding the global
optimum, though this cannot be guaranteed. Here, we discuss two optimization methods
for two-mode partitioning that are applications of the meta-heuristics simulated annealing
and tabu search. For the other three optimization methods in this chapter (the two
algorithms discussed in the previous section and the fuzzy steps method that is proposed in
the next section), the likelihood of finding a non-global optimum is reduced by performing
multiple random starts. That is, these algorithms are performed several times with starting
values that are chosen randomly every time an algorithm is run; the best result of all runs
is retained as the final solution.

Other optimization methods have also been used for two-mode partitioning. Hansohm
(2001) used a genetic algorithm, but found that its performance in two-mode partitioning is
not as good as it is in one-mode k-means clustering. Gaul and Schader (1996) implemented
a penalty algorithm, but found that it does not compare favorably with the alternating
exchanges algorithm.

5.3.1 Simulated Annealing

Simulated annealing (see, for example, Van Laarhoven & Aarts, 1987) is a meta-heuristic
that simulates the slow cooling of a physical system. Trejos and Castillo (2000) first
used simulated annealing for two-mode partitioning. Their implementation of simulated
annealing performs a local search that is based on the central idea of the alternating
exchanges algorithm. To avoid getting stuck in local minima, transitions that increase
f(P,Q, V) are also accepted with a positive probability.

Here, we use the implementation of Trejos and Castillo (2000), except for the values
of certain parameters. These parameters are the cooling rate v < 1, the number of itera-
tions R in which the temperature remains constant, the initial value of the temperature T,
and the maximum number of iterations without accepted transitions, which is denoted by
tmae. This implementation comprises the following steps.

1. Choose initial P and Q and calculate V according to (5.3).
2. Choose the parameters R, 7, and an initial value of T

3. Repeat the following until there is no change in P and Q for the last ¢,,,, values of
T.

(a) Do the following R times:

i. Choose one of the two modes with equal probability.
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ii. Choose one of the objects of this mode with uniform probability and transfer
it to another randomly chosen cluster.

iii. Update V according to (5.3) and calculate Af as the change in f(P, Q,V)
achieved by the transfer and the subsequent updating of V.

iv. Always accept the transfer if Af < 0, otherwise accept it with probability
exp(—~Af/T).
(b) Set T'=~T.

The partition with the lowest value of f(P,Q, V) found during estimation is retained as
the final solution.

5.3.2 Tabu Search

The tabu search meta-heuristic (see, for example, Glover, 1986) also performs a local
search, but tries to avoid local optima by maintaining a tabu list. The tabu list is a list of
solutions that are temporarily not accepted. We use the following implementation of tabu
search for two-mode partitioning, which is based on the alternating exchanges algorithm.
See Castillo and Trejos (2002) for a more detailed description of this implementation.
Define Z(P, Q) = miny f(P,Q, V). The algorithm performs the following steps.

1. Start with an initial partition (P, Q) and an empty tabu list. Set (P, Q)q = (P, Q).
2. Choose the number of iterations S and a maximum length of the tabu list.
3. Perform the following steps S times.

(a) Generate a neighborhood of partitions N, consisting of the partitions that can
be constructed by transferring one row or column object from (P,Q) to another
cluster.

(b) Choose the partition (P, Q).nq as the partition in N with the lowest value of
Z(P, Q) that is not on the tabu list.

(c) Set (P,Q) = (P, Q)ecana- If Z(P,Q)cana) < Z((P,Q)opt), then (P, Q)opr =
(P7 Q)cand~

(d) Add (P,Q) to the tabu list. Remove the oldest item from the tabu list, if the
list exceeds its maximum length.

The final solution of the algorithm is given by (P, Q)opt-

5.4 Fuzzy Two-Mode Partitioning

Fuzzy methods relax the requirement that an object belongs to a single cluster, so that the
cluster membership can be distributed over the clusters. For one-mode clustering, the best
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known method is fuzzy c-means (Bezdek, 1981); for adaptations of this method see Tsao,
Bezdek, and Pal (1994) and Groenen and Jajuga (2001). These methods try to make the
optimization task easier by allowing for cluster membership values between 0 and 1. In
this section, we extend one-mode fuzzy optimization methods to the two-mode case. First,
we introduce a fuzzy two-mode partitioning criterion. We then discuss an algorithm for
finding an optimal fuzzy partition, based on Bezdek (1981). Finally, we describe the fuzzy
steps method, which reduces the fuzziness of the solution in steps until a crisp partition
(that is, a partition in which all cluster membership values are either 0 or 1) is found.

Simply relaxing the constraint that the cluster membership values in (5.2) must be
0 or 1 by allowing for values between 0 and 1 does not guarantee an optimal partition
that is fuzzy. A crisp partition will still minimize f(P,Q,V) in that case, though a fuzzy
partition might be equally good. Fuzzy optimal partitions can be obtained if the criterion
f(P,Q,V) is altered by raising the cluster membership values to a power s, with s > 1.
Thus, the fuzzy two-mode partitioning criterion is defined as

n m

fs(P,Q, V) Zzzzpzk%l iy — o), (5.7)

k=1 =1 i=1 j=1

subject to the constraints

K L n m
S opn=1Y aqu=1px>0,¢;>0,> py>0,and gy >0. (5.8)
k=1 =1 i=1 =1

This criterion yields fuzzy optimal partitions and the fuzziness parameter s determines
how fuzzy the optimal partition is. For s = 1, the fuzzy criterion coincides with the crisp
criterion.

5.4.1 The Two-Mode Fuzzy c-Means Algorithm

The algorithm for the optimization of f,(P,Q, V) is based on iteratively updating each set
of parameters while keeping the other two sets fixed. Given optimal Q and V, the optimal
P can be found using the Lagrange method for each row ¢ of P. The Lagrangian is given

by
K
LT(Pi Q7 V7 )‘) = prk Z Zq]l Tij — Ukl - A <szk - 1) (59)
k=1

=1 j=1

Defining ¢, = ZZL:I Z;”:l q;l(acij — vyy)? and taking partial derivatives of L; gives

K
oL; 1 oL;
=S S Ci —)\ d = A — 1. 5.10
O SPir Cik and  —+ ;p & (5.10)
Setting these derivatives to zero and solving for p; yields
o
Pik = Sk 10 (5.11)

k=1 Cik
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However, (5.11) does not apply if any c¢; in row 4 is zero. In that case, any partition
with p;x = 0 whenever ¢;; > 0 and ZkK:l pi. = 1 is optimal. Finding the optimal Q
given P and V can be done in a similar fashion. When s is large enough, the optimal
values of the cluster memberships become py ~ 1/K and g; ~ 1/L, which can easily
be derived from (5.11). In practice, the cluster membership values approach these values
quite rapidly for reasonably large s. For s = 3, the cluster membership values often differ
only slightly and for s > 10, they are usually equal to each other within the numerical
accuracy of current computers. As s approaches 1 from above, 1/(1 — s) approaches minus
infinity, and the fuzzy optimization formula (5.11) becomes its crisp counterpart (5.4). In
that case, the optimal partition based on (5.7) also approaches the optimal crisp partition.
Therefore, higher values of s correspond to fuzzier optimal partitions, and s close to 1 to
crisp partitions. The optimal V can be obtained by setting the partial derivatives of (5.7)
with respect to vy to zero and solving for vy, which yields

- Zn Z;n 1pfkq;zxij
kl — .
Zz 1 Z] 1 pqu]l

For a given value of s, the two-mode fuzzy c-means algorithm comprises the following
steps.

(5.12)

1. Choose initial P and Q, which can be either crisp or fuzzy, and calculate V according
o (5.12).

2. Repeat the following, until the decrease in fi(P,Q, V) is small.

(a) Calculate Cik = ZlL L Z;nzl @iy — v)? and update P according to py =

s 1 (1—s)
ST
(b) Calculate dy = Zk Lo P (@i — vg)? and update Q according to g =

1/(1 S/Zk 1 1/1 s).
(c) Update A% accordlng to (5.12).

This algorithm lowers the value of fi(P, Q, V) in each iteration, until convergence has been
achieved. Therefore, the algorithm always converges to a saddle point or a local minimum,
which may or may not be a global minimum.

5.4.2 Fuzzy Steps

The two-mode fuzzy c-means algorithm generally converges to a fuzzy partition. To ensure
that our fuzzy optimization method converges to a crisp partition, we use the idea of fuzzy
steps, which was proposed by Heiser and Groenen (1997). Our fuzzy steps method for
two-mode partitioning starts with an initial value of s that is greater than 1. This method
uses the two-mode fuzzy c-means algorithm to minimize fi(P,Q,V) for a given value of s
and gradually lowers s to avoid local minima and obtain a good crisp partition. Our fuzzy
steps method performs the following steps.
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1. Choose an initial value of s, a fuzzy step size v < 1, and a threshold value $,,;,.

2. Choose initial Py and Qg and calculate Vj according to (5.12). The initial Py and
Qo can be either crisp or fuzzy.

3. Repeat the following while s > $,,in.

(a) Perform the two-mode fuzzy c-means algorithm starting with Py, Qo, and V.
The results are in Py, Qq, and V7.

(b) Set s =1+~(s—1) and set Py =Py, Qo = Q1, and V, = V.
4. Apply the two-mode k-means algorithm starting from Py, Qq, and V.

The formula in Step 3b for decreasing s gives an exponential decay of (s—1). The value
of Sin should generally be set to a value slightly higher than 1, for example, 1.001. The
two-mode k-means algorithm is performed at the end of the fuzzy steps method to ensure
that a crisp solution is found. Although the two-mode k-means algorithm was defined
for crisp partitions in Section 5.2.2, it can also be used in combination with fuzzy initial
partitions.

The fuzzy steps optimization method may sometimes get stuck in a saddle point, if
two or more row or column clusters become equal. In that case, these clusters and their
corresponding cluster membership values will remain equal for any value of s. Preliminary
tests with this method suggest that it often reaches a saddle point, if the starting value of
s is too high. Therefore, one should not set the starting value of s too high, for example,
s <1.2.

5.5 Simulation Study

To compare the performances of the optimization methods described in the previous sec-
tions, we conduct a simulation study. With this simulation study, we also aim to determine
which methods perform well under most circumstances and how well the optimization
methods can retrieve a clustering structure. First, we describe the setup of the simulation
study and how the results are represented. We then give the results of the simulation study
and interpret them.

5.5.1 Setup of the Simulation Study

We generate the data matrix X in each problem instance by simulating P, Q, V, and E,
and then using (5.1) to construct X. Generating simulated data this way comes natural
and has the advantage that some clustering structure exists in the data. Also, the P,
Q, and V used in generating X can give a useful upper bound on the optimal value of

fP.Q,V).
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A large number of factors can be varied in a simulation study for two-mode partitioning,
such as the values of n, m, K, and L, the size and the distribution of the errors, the numbers
of elements in the clusters, and the locations of the cluster centers. As a full-factorial design
with several levels for each of these factors would require a prohibitively large number of
simulations, we limit the number of factors and the number of levels for each factor. The
simulation study is set up using a four-factor design and is loosely based on the approach of
Milligan (1980). The first factor is the size of the data matrix X. The numbers of rows and
columns are given by n = m = 60, n = 150 and m = 30, and n = m = 120 for the three
levels of this factor. The second factor is the numbers of clusters; the three levels of this
factorare K = L =3, K = L =5,and K = L = 7. The third factor is the size of the error
perturbations. All elements of E are independently normally distributed with mean 0 and
standard deviation equal to 0.5, 1, or 2 for the three levels of this factor. The final factor is
the distribution of the objects over the clusters. For the first level of this factor, all objects
are divided over the clusters with equal probability. For the second and third levels, one
cluster contains exactly 10% and 60% of the objects, respectively. The remaining objects
are then divided over the remaining clusters with uniform probability. Constructing one
cluster with 10% of the objects represents a small deviation from a uniform distribution,
whereas a cluster with 60% constitutes a large deviation. The size of this deviation also
depends on the numbers of clusters.

Empty clusters are not allowed in the generated data sets. If a simulated data set
contains an empty cluster, this data set is discarded and another data set is simulated.
The locations of the cluster centers vy are chosen by randomly assigning the numbers
(=), = 1,..., K x L to the elements of V, where ®(.) is the inverse standard
normal cumulative distribution function. As a result, the elements of V appear standard
normally distributed, and a fixed minimum distance between the cluster centers is ensured.

We show the effects of some of these choices in Figures 5.1 through 5.3. These figures
give a visual representation of a simulated data matrix for various levels of the factors. In
these figures, the rows and columns are ordered according to their cluster. The elements
of the data matrix are represented by different shades of gray. The bars at the right-hand
side show what values the shades of gray represent. Figure 5.1 represents a data set for
which the levels of the factors ensure that the original clusters can easily be recognized.
In Figure 5.2, the original clusters are more difficult to recognize, and in Figure 5.3, this is
almost impossible. The optimal partition should generally be easier to find if the number
of clusters is low, the error standard deviation is small, and the objects are evenly divided
over the clusters.

The four factors in the simulation design give a total of 3* = 81 possible combinations.
To avoid drawing spurious conclusions based on a single data set, we simulate 50 data sets
for each combination, and all five methods are performed for each data set.

All optimization methods require an initial choice for P and Q. For the alternating
exchanges and two-mode k-means methods, P and Q are chosen randomly by assigning
each row and column to a cluster with uniform probability. However, some methods may
perform better if the initial partitions are relatively good. Therefore, the initial partitions
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1 10 20 30 40 50 60

Figure 5.1: Graphical representation of simulated data set with sizes n = m = 60, K = L = 3,
error standard deviation 0.5, and a uniform distribution of the objects over the clusters.

Figure 5.2: Graphical representation of simulated data set with sizes n = m =60, K = L = 5,
error standard deviation 1, and 10% of the objects in one cluster.
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Figure 5.3: Graphical representation of simulated data set with sizesn =m =120, K =L =17,
error standard deviation 2, and 60% of the objects in one cluster.

of the simulated annealing, tabu search, and fuzzy steps methods are chosen by applying
the two-mode k-means algorithm to a random partition.

The optimization methods also require choosing additional parameters. For the op-
timization methods that use multiple random starts (that is, the alternating exchanges,
two-mode k-means, and fuzzy steps methods), the numbers of random starts have been
set so that the total computation time of these methods is approximately equal. This is
also true for the numbers of iterations R and S that are respectively used in the simulated
annealing and tabu search methods. We also wish to ensure a good balance between the
performance and the computation time of the simulated annealing and tabu search methods
for varying problem sizes. Therefore, the parameters R and S are chosen as a function of
the size of the neighborhood used in these two methods, which equals n(K —1)+m(L—1);
as a result, the computation time should increase modestly with the size of the problem.
The initial temperature in the simulated annealing method is chosen in such a way that
the initial acceptance rate for the transfer of a row or a column to another cluster is at
least 85%. As a result, the transfers of rows and columns should occur almost randomly in
the initial iterations of this method. The cooling rate - in this method should be chosen
slightly lower than 1. We stop the simulated annealing method if there are no changes
for t,ae = 10 values of the temperature parameter, as further improvements are unlikely
to occur in that case. Preliminary experimentation with the tabu search method shows
that increasing the tabu list length typically has a positive effect on the performance of
this method. We set the length of the tabu list to one third of the number of iterations .S,
as increasing the tabu list length any further would increase computation time without
meaningfully improving the performance. In the fuzzy steps method, the fuzzy step size
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is set to a value somewhat lower than 1. The threshold value of s (that is, the parameter
Smin) 18 set to 1.001, as experimentation shows that the solution is almost always close to a
crisp partition at that value of s. The initial value of s was optimized on a separate set of
data sets, which were simulated in the same way as the data sets in the simulation study.
Initial values of s = 1.025,1.05, ..., 1.2 were tested, and an optimal recovery was achieved
with s = 1.05.

The parameters of the optimization methods are thus chosen as follows:

e Alternating exchanges: The alternating exchanges algorithm is run 30 times for every
simulated data set.

e Two-mode k-means: The two-mode k-means algorithm is run 500 times for every
simulated data set.

e Simulated annealing: Initial temperature T = 1, v = 0.95, ¢4, = 10, and R =
1/4(n(K — 1) + m(L — 1)).

e Tabu search: The number of iterations is S = 3(n(K — 1) +m(L — 1))"/2, and the
length of the tabu list is 1/3S.

e Fuzzy steps: The initial value of s is 1.05, the fuzzy step size « is 0.85, and the
threshold value s,,;, is 1.001. The fuzzy steps method is run 20 times for every
simulated data set.

The values of the parameters that are a function of the neighborhood size n(K — 1) +
m(L — 1) are rounded to integer values.

We use three criteria to evaluate the results of the simulation study. The first criterion
is the variance accounted for (VAF) criterion, which is comparable to the R%-measure used
in regression analysis. The VAF criterion is defined as
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where & = 1/(nm) > 2L, 377" wij. The optimal value of VAF ranges from 0 to 1, and
maximizing VAF corresponds to minimizing f(P,Q, V).

Second, we report the average adjusted Rand index (ARI), which was introduced by
Hubert and Arabie (1985). This metric shows how well the partitions found by the
optimization methods approximate the original partition. The ARI is invariant with respect
to the ordering of the clusters, which is arbitrary in two-mode partitioning. The ARI is
based on the original Rand index, which is defined as the fraction of the pairs of elements
on which the two partitions agree. For two random partitions, the expected value of the
Rand index depends on the parameters of the clustering problem. To ensure a constant
expectation, the ARI is a linear function of the Rand index, so that its expectation for
randomly chosen partitions is 0, and its maximum value is 1. The ARI is defined as
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where a;; is the number of elements of X that simultaneously belong to cluster 7 of the
original partition and cluster j of the retrieved partition, R is the total number of clusters,
a; = Zf‘:l aij, a; = Zf;l a;;, and a = Zil Zf‘:l a;; = nm. Here we consider a pair of
elements to be in the same cluster only if they belong to same row cluster and to the same
column cluster, so that R = K x L.

The final criterion is the average CPU time, which is of practical interest. In this
study, the CPU time is also used as a control variable, as the parameters of the opti-
mization methods have been chosen in such a way, that the average computation time is
approximately equal for all methods. To provide a fair comparison, we made sure that the
optimization methods were programmed in an efficient way. Efficient updating formulas
for computing the change in f(P,Q, V) when transferring an object from one cluster to
another are given in Castillo and Trejos (2002). These updating formulas were used for the
alternating exchanges, simulated annealing, and tabu search methods. For the two-mode
k-means algorithm, an efficient implementation is given by Rocci and Vichi (2008). All
computer programs are written in the matrix programming language MATLAB 7.2 and
are executed on a Pentium IV 2.8 GHz computer. These programs are available from the
authors upon request.

Dolan and Moré (2002) discuss a convenient tool, called performance profiles, for graph-
ically representing the distribution of the results of a simulation study. Performance profiles
are especially useful for determining which optimization methods perform reasonably well
in almost every instance. They can be constructed as follows. First, one has to identify a
performance measure. We use the VAF criterion for this and define VAF®* as the VAF
achieved by method s in problem instance p. We include the partition used to generate
the data as one of the methods in the performance profiles. Then, the performance ratio
p?*) is defined as

max; VAF®*)
ST VAReT
Finally, the cumulative distribution function of the performance ratio can be computed as

p®) (5.15)
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where I() denotes the indicator function. By drawing ¥(*)(7) in one figure for all optimiza-
tion methods, their performances can be compared quite easily.

5.5.2 Simulation Results

We now present the results of the simulation study. Tables 5.1 through 5.3 show the
average VAF values of all optimization methods and the original partitions for various
combinations of the factors. Tables 5.1, 5.2, and 5.3 respectively show the effects of the
size of the data set, the numbers of clusters, and the distribution of the objects over the
clusters. As the error standard deviation strongly affects the magnitude of the VAF values,
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Table 5.1: Average VAF for data sets with different error variances and numbers of rows and
columns.

Size of data set n =60, m = 60 n=150,m=30 n =120, m =120
Error st. dev. 5 1 2 5 1 2 5 1 2

Alternating exchanges|.7260 .4128 .1685 .7288 .4140 .1750 .7251 .4058 .1532
Two-mode k-means |.7283 .4134 .1667 .7322 4146 1733 .7293 .4082 .1535
Simulated annealing |.7092 .4068 .1668 .7166 .4078 .1739 .7108 .3987 .1518

Tabu search .6823 .4003 .1642 .6904 .4015 .1660 .6703 .3853 .1496
Fuzzy steps 7248 4129 1688 7299 .4143 .1755 7199 .4064 .1531
Original partition 7292 4126 .1540 .7326 .4122 .1531 .7308 .4088 .1515

Table 5.2: Average VAF for data sets with different error variances and numbers of clusters.

Numbers of clusters K=3,L=3 K=5L=5 K=7L=17
Error st. dev. R3] 1 2 R3] 1 2 R5) 1 2
Alternating exchanges | .6843 .3558 .1294 .7399 .4260 .1725 .7557 .4508 .1948
Two-mode k-means L6843 3558 1296 .T440 4276 1724 7614 .4529 .1915
Simulated annealing |.6804 .3525 .1284 .7221 .4186 .1706 .7340 .4422 .1935

Tabu search .6584 .3476 .1259 .6868 .4066 .1663 .6980 .4329 .1876
Fuzzy steps .6838 .3558 .1288 .7394 .4264 .1725 7515 .4515 .1960
Original partition 6843 3549 1214 7442 .4265 .1601 .7640 .4522 .1771

we do not report average VAF values over data sets with different error standard deviations;
the effects of the error standard deviation are shown within each of these three tables. The
results of the best performing optimization method are shown in italics, for each column
in these tables.

Based on the VAF values, the two-mode k-means method appears to perform relatively
well. This method always has the best average performance if the error standard deviation
is .5 or 1. In addition, the partition found by this method is almost always as least as
good as the original partition. For data sets with an error standard deviation of 2, the
best performance is most often achieved by the fuzzy steps method, though the alternating

Table 5.3: Average VAF for data sets with different error variances and distributions of the
objects over the clusters.

Object distribution uniform distribution  10% in one cluster 60% in one cluster
Error st. dev. .5 1 2 D 1 2 5 1 2

Alternating exchanges | .7460 .4293 .1695 .7330 .4171 .1666 .7009 .3862 .1606
Two-mode k-means |.7467 .4294 .1683 .7336 .4174 .1655 .7094 .3894 .1596
Simulated annealing |.7352 .4255 .1684 .7199 .4105 .1650 .6814 .3774 .1593
Tabu search .6858 4127 .1641 .6818 .3993 .1606 .6755 .3751 .1552
Fuzzy steps 7419 4291 11698 .7299 4170 .1668 .7029 .3875 .1608
Original partition 7467 4288 .1602 .7337 .4167 .1566 .7121 .3881 .1418
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exchanges and the two-mode k-means methods also perform well. The simulated annealing
method and especially the tabu search method do not perform as well as the other
optimization methods in the simulation study.

Table 5.4 gives the average values of the adjusted Rand Index, for each level of each
factor, averaged over the levels of the three other factors; the best results are shown in
italics. The two-mode k-means method again has the best average performance. This
method almost always exactly retrieves the original partition for data sets with a small
error standard deviation and a uniform distribution of the rows and columns over the
clusters. The best performing optimization method usually has an average ARI above
90% or even 99% if the characteristics of the simulated data sets are favorable. However,
this value rapidly decreases, when the problem instances become harder. The original
partitions are especially hard to retrieve if the error standard deviation is 2 or if 60% of
the objects are located in one cluster. The ARI never becomes negative or close to 0 for
any optimization method, indicating that at least some structure can always be found in
the data set. Another important conclusion is that the differences in the average adjusted
Rand indices between the methods can be large. The difference in ARI can sometimes be
as large as 20%, when the corresponding difference in VAF is just a few percentage points.
Therefore, the choice of the optimization method can be quite important, if one wants to
find the ‘true’ clustering.

Finally, we give the average CPU times in seconds used by the methods in Table 5.5,
for each size of the data set and each number of clusters. Note that the average CPU
times strongly depend on the type of computer used and how the methods have been
implemented; they should only serve as a general indication of the amount of computation
that optimization methods require. The effects of the distribution of the objects over the
clusters and the error standard deviation on the computation time are not reported here.
The computation time does not increase with m, n, K, and L in the same manner for all
optimization methods. The computation time of the two-mode k-means method increases
relatively slowly with the size of the data set and the numbers of clusters; the increase of
the computation time is more rapid for the tabu search and fuzzy steps methods.

The average VAF values in Tables 5.1 through 5.3 do not show the distribution of the
VAF values. For example, a method may usually perform well, but occasionally give very
poor results. Here, we show performance profiles of the VAF values for all methods and
the original partition, for various combinations of the levels of the four factors. As drawing
these profiles for each of the 81 combinations of the factors requires too much space, we
give three examples in Figures 5.4 through 5.6.

Figure 5.4 shows a performance profile of 50 data sets with a low error standard
deviation. The value of the graph at the y-axis gives the fraction of times that a method
achieved the best VAF value of all methods (including the original partition); this value is
an upper bound on the fraction of times that a method managed to find the global optimum.
The alternating exchanges, two-mode k-means method, and fuzzy steps methods found the
best partition, which usually was the original partition, in every problem instance. The
simulated annealing and tabu search methods usually also found the best partition, but
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Table 5.4: Average adjusted Rand indices for each level of each factor.

Size of data set n =60, m = 60 n =150, m =30 n =120, m =120
Alternating exchanges .739 721 .846
Two-mode k-means 759 748 .893
Simulated annealing .678 673 793
Tabu search .636 .613 729
Fuzzy steps 745 137 .851
Numbers of clusters K=3L=3 K=5L=5 K=7L=T7
Alternating exchanges .865 772 .669
Two-mode k-means .868 815 718
Simulated annealing .830 .702 .612
Tabu search 775 .637 567
Fuzzy steps .858 .783 .692
Error standard deviation 5 1 2
Alternating exchanges 915 .853 .038
Two-mode k-means 974 .889 537
Simulated annealing .852 .788 .503
Tabu search 782 742 .454
Fuzzy steps 934 .863 .537
Distribution of the objects |uniform distribution 10% in one cluster 60% in one cluster
Alternating exchanges 874 .861 571
Two-mode k-means 873 .860 .668
Simulated annealing 837 .805 501
Tabu search 741 .27 510
Fuzzy steps .868 .856 .610

Table 5.5: Average CPU times of all optimization methods in seconds.

Size of data sets n = 60, m = 60 n=150,m=30 n =120, m =120
Numbers of clusters (K, L)| 3 5 7 3 5 7 3 5 7

Alternating exchanges 1.21 254 396 1.92 4.22 643 239 559 872
Two-mode k-means 1.54 236 3.09 1.96 3.58 4.57 250 531 7.66
Simulated annealing 1.08 2.30 3.54 1.75 3.82 578 242 547 8.49
Tabu search .82 216 3.74 147 382 6.77 234 6.04 10.75
Fuzzy steps 99 191 266 1.056 248 347 222 7.92 11.28
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Figure 5.4: Performance profile of data sets with sizes n = 150, m = 30, K = 3, L = 3, error

standard deviation .5, and a uniform distribution of the objects.
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Figure 5.6: Performance profile of data sets with sizes n = 120, m = 120, K = 7, L = 7, error
standard deviation 2, and one cluster containing 60% of the objects.

sometimes got stuck in an inferior solution. Figures 5.5 and 5.6 show performance profiles
of data sets with a large error standard deviation, in which the optimal partition was
hard to find. In these cases, no method performed at least as good as all others in every
problem instance. In Figure 5.5, the two-mode k-means method performed best, followed
by the alternating exchanges and fuzzy steps methods. This performance profile shows
that each of these three methods almost always found a solution within 5 to 10 percent
of the best solution found, in terms of the optimization criterion f(P,Q,V). In Figure
5.6, each optimization method ended up in a non-global optimum for at least 46% of the
problem instances. In this figure, the fuzzy steps and two-mode k-means methods had the
best relative performances, followed by the alternating exchanges method. These three
methods seldom find a solution that is more than 5 percent worse than the best solution
found. The two implementations of meta-heuristics (simulated annealing and tabu search)
do not perform as well as the other methods, but can usually find partitions that are better
than the original partition.

As all optimization methods do not find a global optimum for a large number of problem
instances represented in Figure 5.6, their performances may be considered unsatisfactory.
If finding the global optimum is required, one may consider increasing the numbers of
random starts in the optimization methods. To test the effectiveness of increasing the
number of random starts, we applied the two-mode k-means and fuzzy steps methods to
data sets similar to the ones used for Figure 5.6 with 50,000 and 2,000 random starts,
respectively. The results show that increasing the numbers of random starts in this way
(by a factor of 100) improves the performances of the methods only slightly; the average
VAF values for the methods with increased numbers of random starts were approximately
0.2 percentage points higher than for the methods with the original numbers of random
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starts. However, even with these large numbers of random starts, no optimization method
performed as well as all others for a majority of the data sets. These results show that all
optimization methods have great difficulty in finding the global optimum in conditions such
as represented in Figure 5.6. This problem is much less severe for smaller data sets and
data sets with lower numbers of clusters and lower error standard deviations. As strongly
increasing the number of random starts tends to improve the VAF value only slightly, we
find it unlikely that the solution found by the optimization methods are much worse than
the global optimum, in terms of the VAF criterion.

5.6 Empirical Application

We use an empirical data set to illustrate two-mode partitioning and determine whether
the conclusions of the simulation study are valid for empirical data. The data set is based
on a questionnaire about the internet and comprises evaluations of 22 statements by 193
respondents. The statements were evaluated using a seven-point Likert scale, ranging from
1 (completely disagree) to 7 (completely agree). The average scores in the data set can
differ significantly per individual and per statement. A sample run of the optimization
methods shows that, if the raw data set is used, the individuals and the statements are
mostly clustered based on their average scores. We correct for this problem by double
centering the data matrix X, that is, by replacing each x;; with z;;, where

n m

} 1 1 1 n m
Tij = Tij — D i - m >y + o >0 (5.17)

=1 j'=1 i=1j'=1

so that the row and column averages of X are zero; double centering accounts for 34% of
the variance in X.

As good values for the numbers of clusters are not known in advance, we use the
following procedure for choosing K and L. First, we perform the optimization methods
on 5(, for all K and L such that K + L =i, for i = 4,...,20. For each value 7 and for
each optimization method, we determine the values of K and L that yield the best VAF.
The resulting VAF values are shown in Figure 5.7. The optimization methods were given
the same parameters as in the simulation study. For this data set, the fuzzy steps method
performed best on average, followed by the alternating exchanges, simulated annealing,
and two-mode k-means methods. The tabu search method performed poorly. These results
appear to support the conclusions of the simulation study for data sets in which the optimal
partition is hard to find.

The maximum of the VAF values shown in Figure 5.7 increases smoothly with the
numbers of clusters, so that it is not clear which values of K and L should be chosen.
To determine the numbers of clusters for two-mode partitioning, several selection criteria
are discussed by Schepers, Ceulemans, and Van Mechelen (2008); they found the best
performance using the numerical convex hull method. This criterion prefers K = 2 and
L = 2, with a VAF value of 8.8%. In this solution, both the statements and the respondents
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Figure 5.7: Best VAF values found in internet data set, for K + L = 4...20.

are divided into a cluster with a positive attitude and a cluster with a negative attitude. We
find that this solution lacks a useful interpretation. As we seek to obtain a more fine-grained
clustering, we select the solution with K = 5 and L = 5, based on the interpretability of
the findings. The results of this solution are shown in Table 5.6. The associated VAF value
is 20.4%, so that two-mode partitioning in combination with double centering accounts for
48% of the variance in the original data.

The statements in each statement cluster are shown in Table 5.7. Although the
proportion of the variance of X explained by the clustering is relatively small (20.4%),
it seems possible to interpret the clusters in a meaningful way. The statement clusters can
be interpreted as follows. Cluster 1 comprises only one statement, which argues that the
content of websites should be regulated. Cluster 2 consists of statements that show an
enthusiastic attitude towards the internet. The statements in cluster 3 state that using the
internet is expensive. The statements in cluster 4 are associated with experienced users
of the internet. Finally, the statements in cluster 5 consider the internet unreliable. To

Table 5.6: Average evaluations per cluster, cluster sizes, and interpretations.

Respondent Statement clusters Cluster

clusters 1 2 3 4 5 size Interpretation

1 -2.03 0.19 0.42 0.40 -0.89 36  enthusiasts

2 1.86 0.35 0.15 -0.34 -0.41 54  safety-conscious
3 -1.42 -0.02 -1.42 0.81 -0.16 32 experts

4 1.61 -0.37 -0.46 -0.28 1.06 37  skeptics

5 -1.21 -0.33 1.15 -0.33 0.59 34  price-conscious
Cluster size 1 6 3 8 4

Interpretation|regulation enthusiastic expensive experience unreliable
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Table 5.7: Statement clusters in internet data set.

Cluster 1 (regulation):

The content of websites should be regulated
Cluster 2 (enthusiastic):

Internet is easy to use

Internet is fast

Internet is the future’s means of communication
Internet is user-friendly

Internet offers unbounded opportunities

Surfing the internet is easy

Cluster 3 (expensive):

Internet phone costs are high

The costs of surfing are high

The prices of internet subscriptions are high
Cluster 4 (experience):

I always attempt new things on the internet first
I know much about the internet

I like surfing

I like to be informed of important new things

I often speak with friends about the internet

I regularly visit websites recommended by others
Internet is addictive

Paying using the internet is safe

Cluster 5 (unreliable):

Internet is slow

Internet is unreliable

Internet offers many possibilities for abuse
Transmitting personal data using the internet is unsafe
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interpret the respondent clusters, we use the interpretations of the statement clusters and
the values of the cluster centers in Table 5.6. The respondents in cluster 1 are ordinary
internet users with a positive and enthusiastic attitude. Cluster 2 consists of people who
mainly want regulation of the content of websites. Cluster 3 consists of experienced internet
users, who find using the internet quite cheap, but apparently are not enthusiastic about
it. The respondents in cluster 4 seem to dislike using the internet and find it unreliable.
The respondents in the final cluster seem to dislike using the internet because of the high
costs.

5.7 Conclusions

Two-mode partitioning seems a powerful statistical technique, and a variety of optimization
methods exist for finding good partitions. However, it remains unclear which optimization
method has the best relative performance and is thus preferable in practice. We have tried
to alleviate this problem by giving an overview of five optimization methods, one of which
has been introduced in this chapter.

Using a simulation study, the effects of various characteristics of the clustering problem
on the performances of the methods were evaluated. We found that both the error variance
and the relative sizes of the clusters strongly affect how well a clustering structure can be
retrieved and can also affect the relative performances of the optimization methods. The
two-mode k-means method most often had the best performance in the simulated data sets,
especially if the characteristics of the problem were favorable. When the optimal partition
was hard to find, the alternating exchanges and fuzzy steps methods often performed
best. The simulated annealing method also performed fairly well, but not as good as the
three methods mentioned above. The performance of the tabu search method generally is
inferior.

In sum, the best average performance is obtained using the two-mode k-means method,
followed by the alternating exchanges and fuzzy steps methods. Which of these three
methods gives the best performance depends on characteristics of the clustering problem.
The performance profiles show that no optimization method can find the global optimum
in a majority of the cases for every type of simulated data set. However, the alternating
exchanges, two-mode k-means, and fuzzy steps methods almost always give a solution
within 10% of the best solution found, in terms of the optimization criterion. As the
two-mode k-means method requires relatively little CPU time and is easy to implement,
we believe it is the best choice for data sets similar to the ones in this study. Note that
performing a fairly large number (preferably more than 100) of random starts is necessary
to ensure a good performance for this method. If finding a globally optimal partition
is important, and computation time is not really an issue, the number of random starts
should be set much higher. However, for data sets in which the optimal partition is hard to
find, even a very large number of random starts may not ensure that the global optimum
is found.

The results of the methods for the empirical data set are similar to the results of the
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simulation study. This data set also gives a useful example of the potential applications of
two-mode partitioning. We believe that the clustering found in this data set is meaningful
and provides relevant insight.

There are a few limitations associated with this study. First, we can only evaluate
the relative performances of the methods for situations similar to our simulation study.
It is possible that the relative performances of the methods are different for data sets
with different characteristics. However, we have tried to make the simulated data sets
similar to data sets that are typically found in practice. Therefore, the results should be
reasonably similar for many empirical data sets. Second, the results of such a comparison of
optimization methods depend on the values of certain parameters of the methods and the
way these methods have been implemented. Here, we have tried to choose the parameters
of the optimization methods in a sensible way that gives good performance. In addition,
we have tried to make our computer programs as fast as possible. To do so, the efficient
updating formulas that were given by Castillo and Trejos (2002) and Rocci and Vichi
(2008) turn out to be quite important.

Some avenues for further research exist. For example, we cannot exclude the possibility
that some optimization methods can be improved by choosing their parameters differently
or implementing them in a different way. Besides further theoretical research, we believe
that further practical experience with two-mode partitioning is also required. Practice can
show the real merits and drawbacks of using two-mode partitioning.






Chapter 6

A Bayesian Approach to Two-Mode
Clustering”*

Abstract

We develop a new Bayesian approach to estimate the parameters of a latent-class
model for the joint clustering of both modes of two-mode data matrices. Posterior
results are obtained using a Gibbs sampler with data augmentation. Our Bayesian
approach has three advantages over existing methods. First, we are able to do
statistical inference on the model parameters, which would not be possible using
frequentist estimation procedures. In addition, the Bayesian approach allows us to
provide statistical criteria for determining the optimal numbers of clusters. Finally,
our Gibbs sampler has fewer problems with local optima in the likelihood function
and empty classes than the EM algorithm used in a frequentist approach. We apply
the Bayesian estimation method of the latent-class two-mode clustering model to
two empirical data sets. The first data set is the Supreme Court voting data set of
Doreian et al. (2004). The second data set comprises the roll call votes of the United
States House of Representatives in 2007. For both data sets, we show how the results
can provide useful insight into the data.

6.1 Introduction

Clustering algorithms divide a single set of objects into segments based on their similarities
and properties or the dissimilarities between them (see, for example, Hartigan, 1975). Such
methods typically operate on one mode (dimension) of a data matrix; we refer to these
methods as one-mode clustering. Two-mode clustering techniques (Van Mechelen et al.,
2004) cluster two sets of objects into segments based on their interactions. In two-mode
clustering, both rows and columns of data matrix are clustered simultaneously.

*This chapter is joint work with Bram van Dijk and Richard Paap.
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Many clustering methods, such as k-means clustering and Ward’s method, lack a
method to ascertain the significance of the results and rely on arbitrary methods to
determine the number of clusters. To solve these problems, one may consider using model-
based techniques for clustering data. For one-mode data, model-based clustering methods
have been developed (see, for example, Fraley & Raftery, 1998; Frithwirth-Schnatter, 2006).
These model-based clustering methods use statistical tools for inference.

In this chapter, we extend the model-based one-mode clustering approach to two-mode
clustering. In two-mode clustering, we cluster both the rows and the columns of a data
matrix into groups in such a way that the resulting block structure is homogenous within
blocks but differs between blocks. This requires matrix-conditional data, which means
that all elements must be comparable in size, standardized, or measured on the same scale.
Methods for two-mode clustering are in general not model-based (see, for example, Candel
& Maris, 1997; Doreian et al., 2004; Brusco & Steinley, 2006, and Chapter 5 of this thesis).
Model-based methods usually rely on latent-class techniques. It is not straightforward to
extend these techniques to two-mode data, because, unlike one-mode data, two-mode data
cannot be assumed to be independent. Despite this problem, Govaert and Nadif (2003,
2008) have been able to use a latent-class approach to cluster two-mode data. They use
a frequentist approach to estimate the parameters, but they are only able to optimize an
approximation of their likelihood function using the EM algorithm (Dempster et al., 1977).
In this chapter, we use the same likelihood function as Govaert and Nadif (2003, 2008),
but we propose a Bayesian estimation procedure. This enables us to estimate the model
parameters properly and to do statistical inference on the results.

The contribution of our Bayesian approach is threefold. First, our approach allows for
statistical inference on the parameter estimates. Govaert and Nadif (2003, 2008) estimate
the model parameters in a frequentist setting, but they are unable to compute standard
errors of the estimated parameters. Our method provides posterior standard deviations
and posterior distributions of the parameters. Therefore, our approach enables hypothesis
testing, which is not feasible in the frequentist setting.

Second, our Bayesian method has fewer computational problems than the maximum
likelihood approach. Using proper priors, we avoid some computational issues with
empty classes, which is a known problem with the EM algorithm. Because we use
natural conjugate priors, sampling from the posterior distributions is straightforward for
a large variety of distributions, including all distributions from the exponential family.
Furthermore, because of the more flexible way Markov Chain Monte Carlo methods search
the parameter space, our Bayesian algorithm is less likely to get stuck in a local optimum
of the likelihood function. This flexibility may cause label switching (see Celeux, Hurn, &
Robert, 2000). However, solutions to this problem exist (see, for example, Geweke, 2007).

Finally, our method can help indicate the optimal number of segments. The Bayesian
approach can be used to derive selection criteria such as Bayes factors. Methods previously
proposed in the literature for selecting the optimal number of clusters (see, for example,
Milligan & Cooper, 1985; Schepers et al., 2008) seem somewhat arbitrary and lack
theoretical underpinnings.
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We illustrate our Bayesian approach using two data sets. The first data set comprises
votes of the Supreme Court of the United States and was also used by Doreian et al. (2004).
Our approach results in a similar solution; however, the optimal numbers of segments are
lower than in their solution. Our second application is a large data set concerning roll call
voting in the United States House of Representatives. We use our model to cluster both
the representatives and the bills simultaneously.

The remainder of this chapter is organized as follows. In Section 6.2, we introduce our
new Bayesian approach for clustering two-mode data. We compare this Bayesian approach
with the existing frequentist approaches of (Govaert & Nadif, 2003, 2008). In Section 6.3,
we discuss the posterior simulator for our Bayesian approach and the selection of the
numbers of segments. In Section 6.4, the Bayesian approach is illustrated on the Supreme
Court voting data. Section 6.5 deals with our second application, which concerns roll call
votes of the United States House of Representatives in 2007. Finally, Section 6.6 concludes.

6.2 The Latent-Class Two-Mode Clustering Model

In this section, we present our Bayesian approach to clustering both modes of two-mode
data simultaneously. We first give a derivation of the likelihood function and then discuss
Bayesian parameter estimation for the latent-class two-mode clustering model.

6.2.1 The Likelihood Function

For illustrative purposes, we start this discussion with one-mode data, that is, we have N
observations denoted by y = (y1,...,yn)". These observations can be discrete or contin-
uous, and one-dimensional or multidimensional. We assume that each observation comes
from one of K segments, and that the elements within each segment are independently and
identically distributed. As a result, all observations must be independent. Furthermore,
we assume that the observations come from a known distribution that is the same for all
segments; only the parameters of the distribution vary among the segments. This can
be described by a mixture model. Let k; € {1,..., K} be an indicator for the segment
to which observation y; belongs, and let k = (ky,...,ky). The conditional density of y;
belonging to segment g only depends on the parameter vector 6, and is denoted by g(v;|6,).
The segment membership is unknown. We assume that the probability that observation
y; belongs to segment ¢ is given by x4 for ¢ = 1,..., K, with x, > 0 and Z;il kg = 1. We
collect the so-called mixing proportions k, in the vector k = (k1, ..., kk)". The likelihood
function of this model is given by

N

10,7) =11 {Z w(yieq)} : (6.1)

i=1 \¢=

where 0 = (04,...,0k)".



108 A Bayesian Approach to Two-Mode Clustering

To cluster two-mode data, we would like to extend (6.1) to two-mode data matrices,
with a simultaneous clustering of both rows and columns. We aim to construct a model in
which the observations that belong to the same row cluster and the same column cluster
are independently and identically distributed. In two-mode clustering, unlike in one-mode
clustering, this assumption does not ensure that all observations are independent. As
a result, a naive extension of the one-mode likelihood function to two modes will not
adequately model the dependence structure in the data.

Assume that Y is an (N x M) matrix, and that we want to cluster the rows into
K latent classes and the columns into L latent classes. The naive extension of (6.1) to
two-mode data yields

N M K

10,5, \) HHZZ% r9(Yij104.), (6.2)

i=1 j=1 ¢g=1 r=1

where £ = (k1,...,kK)" gives the size of each row segment, A = (A1,...,Ar) gives the size
of each column segment, and 6, contains the parameters of observations in row segment
¢ and column segment r. Model (6.2) fails to impose that all elements in a row belong to
the same row cluster and also does not impose that all elements in a column belong to the
same column cluster; using this model, the data matrix Y would effectively be modeled as
a vector of one-mode data.

To solve this problem, we first rewrite the one-mode likelihood function (6.1) as

{Z’iqg(yieq)}
K " K
Zﬁqg(ylwq)} Zﬁqg y2|6 } {Z’iqg yN|9 }

=

10,k) =

7

Il
—N

I(q:lK K N "
= > > > T emowilor)
k1=1ko=1 ky=1i=1
K N N
= [T xa* [T owilon), (6.3)
ke g=1 =1

where we introduce some new notation in the last line. First, the set K contains all possible
divisions of items into the segments and thus has K™ elements if there are N items and
K possible segments. Second, N equals the number of items belonging to segment ¢
according to segmentation k. Thus, 25:1 N} = N for a fixed classification k. The fact
that these two representations of the likelihood function of a mixture model are equivalent
was already noticed by Symons (1981).

Using this representation, we can extend the mixture model to clustering two modes
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simultaneously. The resulting likelihood function for two modes is

N M

16,5, \) ZZHn HAMHHqY,ka, (6.4)

kek 1eL£ g=1 r=1 i=1 j=1

where £ denotes all possible divisions of the columns into L segments, and M| equals the
number of items belonging to segment 7 according to column segmentation 1 = (Iy, ..., 1)
Note that it is impossible to rewrite (6.4) as a product of likelihood contributions, which
is possible in the one-mode case (6.1).

6.2.2 Parameter Estimation

The likelihood function (6.4) was already proposed by Govaert and Nadif (2003), who
estimate the parameters of this model in a frequentist setting. However, this approach
has several limitations. First, in contrast to the likelihood function in the one-mode case,
the likelihood function (6.4) cannot be written as a product over marginal/conditional
likelihood contributions; we only have a sample of size 1 from the joint distribution of Y,
k, and 1. Therefore, the classical results for the asymptotic properties of the maximum
likelihood estimator are not applicable.

Second, standard approaches to maximize the likelihood function (6.4) and estimate
the model parameters are almost always computationally infeasible. Enumerating the
KN LM possible ways to assign the rows and columns to clusters in every iteration of an
optimization routine is only possible for extremely small data sets. To solve this problem,
Govaert and Nadif (2003) instead consider the so-classed classification likelihood approach,
in which k and 1 are parameters that need to be optimized. Hence, one maximizes

N M

10,5, M.k, 1) = an H)\M TTT] o(vis161.,) (6.5)

=1 j=1

with respect to 0, k, A\, k € K, and 1 € £. As the parameter space contains discrete
parameters k and 1, standard asymptotic theory for maximum likelihood parameter es-
timation does not apply. Govaert and Nadif (2008) also consider the optimization of
an approximation to the likelihood function (6.4). This approximation is based on the
assumption that the two classifications (that is, the classification of the rows and the
classification of the columns) are independent.

We solve the aforementioned problems by considering a Bayesian approach. This
approach has several advantages. First, we do not have to rely on asymptotic theory for
inference. We can use the posterior distribution to do inference on the model parameters.
In addition, it turns out that we do not need to evaluate the the likelihood specification (6.4)
to obtain posterior results. Posterior results can easily be obtained using a Markov Chain
Monte Carlo (MCMC) sampler with data augmentation (Tanner & Wong, 1987). Data
augmentation means that the latent variables (that is, k and 1) are simulated alongside
the model parameters 6, x, and A\. This amounts to applying the Gibbs sampler to the
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complete data likelihood in (6.5). As Tanner and Wong (1987) show, the posterior results
for the complete data likelihood function are equal to the posterior results for the likelihood
function. As we can rely on the complete data likelihood (6.5) and do not have to consider
(6.4), obtaining posterior results is computationally feasible. Furthermore, unlike previous
authors (see, for example, Govaert & Nadif, 2003, 2008), we can provide statistical rules for
choosing the numbers of segments, which we will do in Section 6.3.2. Finally, our method
does not suffer much from computational difficulties when searching the global optimum
of the likelihood function. The EM algorithm is known to get stuck in local optima of the
likelihood function, which often occurs in local optima with one or more empty segments.
Because we rely on MCMC methods, our approach has fewer problems with local optima.
Using proper priors, we can avoid solutions with empty segments; see also Dias and Wedel
(2004) for similar arguments.

6.3 Posterior Simulator

As discussed previously, we rely on MCMC methods to estimate the posterior distributions
of the parameters of the two-mode mixture model. We propose a Gibbs sampler (Geman
& Geman, 1984) with data augmentation (Tanner & Wong, 1987), in which we sample
the vectors k and 1 alongside the model parameters. This approach allows us to sample
from the posterior distributions of the parameters without evaluating the full likelihood
function and therefore requires limited computation time. We assume independent priors
for the model parameters with density functions f(x), f(A), and f(8). In Section 6.3.1, we
derive the Gibbs sampler. Methods for choosing the numbers of segments are discussed in
Section 6.3.2.

6.3.1 The Gibbs Sampler

In each iteration of the Gibbs sampler, we need to draw the parameters 6, x, and A
together with the latent variables k and 1 from their full conditional distributions. The
MCMC simulation scheme is as follows.

e Draw k, A0, k, 1Y
e Draw k|x, A, 60,1
e Draw |k, A, 0,k, Y
e Draw 0|, \, k, 1Y

Below, we derive the full conditional posteriors, which are needed for the Gibbs sampler.
The Gibbs sampler results in a series of draws from the posterior distributions of the
parameters 6, k, and X\. These draws can be used to compute posterior means, posterior
standard deviations, and highest posterior density regions. Because we use data augmen-
tation, we also obtain draws from the posterior distributions of k and 1. This enables us to
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compute the posterior distributions of each row of data and each column of data over the
segments. We can store the posterior distributions in matrices Q and R, where Q is of size
(N x K), and R is of size (M x L). Each row of Q contains the posterior distribution of
a row of data over the K possible row segments, and each row of R contains the posterior
distribution of a column of data over the L possible column segments.

Sampling of x and A

The full conditional density of x is given by
FEIOAKLY) o (8, 5,0)f (k)

K
x H/{ S Ik =9 f(k), (6.6)
q=1
where f(k) is the prior density of x, and I(.) is an indicator function that equals 1
if the argument is true and 0 otherwise. The first part of (6.6) is the kernel of a
Dirichlet distribution (see, for example, Frithwirth-Schnatter, 2006). If we specify a
Dirichlet(dy, da, . .. ,dg) prior distribution for k, the full conditional posterior is also a
Dirichlet distribution with parameters SN I(k; = 1) + dy, S I(ki = 2) + da, ..
S (k= K) + dic.
If we take a Dirichlet(d;,ds, .. .,dr) prior for A, the A parameters can be sampled in
exactly the same way. The full conditional posterior density is now given by

i)

L M =
FOO, £k 1Y) oc [0 (), (6.7)
r=1
where f(\) denotes the prior density. Hence, we can sample A from a Dirichlet distribution
with parameters Z;\; I(l; =1) 4+ dy, Z I(l; =2)+ d, ..., Z;‘; I(lj=L)+dp.

Sampling of k and 1

We sample each element of k and 1 separately. The full conditional density of k; is given
by

p(ki|97"€>)‘7k7i7le) X p(Y|/€Z,9 K, A 1)
X K Hg 1Oki; (6.8)

for k; =1,..., K, where k_; denotes k without &;, and Y; denotes the ith row of Y. Hence,
k; can be sampled from a multinomial distribution. In a similar way, we can derive the full
conditional density of I;, which equals

N
p(1510, 5, 0k, 15,Y) oc Ay [T 9(Yij10k,0,), (6.9)
i=1
where 1_; denotes 1 without ;. We can thus sample /; from a multinomial distribution.
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Sampling of 0

The sampling of the parameters 6 depends on the specification of g(Y;;|6,.). In principle,
the distribution g(Y;;]6,,) can be chosen at will. However, sampling from the posterior
is much easier if ¢(Y;;|6,,) has a natural conjugate prior. If a natural conjugate prior is
used, the posterior distribution is in the same family as the prior distribution (see Gelman,
Carlin, Stern, & Rubin, 2003, for an overview of the natural conjugate priors). A natural
conjugate prior exists if the distribution g(Y;;|6,.,) is chosen from an exponential family of
distributions. A large number of distributions belong to an exponential family, including
the binomial, gamma, normal, and Poisson distributions. Therefore, our Bayesian approach
to two-mode clustering can easily be used with many distributions used in practice. Below,
we discuss the prior and posterior distributions of the parameters if Y; ; has a Bernoulli or
a normal distribution.

Example 1: Sampling of 0 if Y Has a Bernoulli Distribution

If Y; ; is a binary random variable with a Bernoulli distribution, with probability p,, for
an element in row segment ¢ and column segment r, then

9(Yijl0qr) = Y3 (1 = Yiz) ' Por. (6.10)

Let P denote the (K x L) matrix containing these probabilities for each combination of a
row segment and a column segment, so that § = P.
To sample p,,, we need to derive its full conditional density, which is given by
f(ParP gk, A K LY
< f(Ypgr Pogr ki, A K1) f(pgr)
& HHpq (1= pg)' " f(pysr)
1€Q JER

N M _ =Y, ) o — ) (1-Y,
- pqzrz 1251 L (ki=q)1(l; )Y-J(l 7pq,r)2£\;l Z§Z1 I(ki=q)I(l;=r)(1 Yl’])f(pq,r)a (611)

where Q is the set containing all rows that belong to segment ¢, R contains all columns that
belong to segment r, P_, . denotes P without p,,, and f(p,,) denotes the prior density of
Pq,r- The first part of (6.11) is the kernel of a beta distribution. If we specify a Beta(by, bs)
prior distribution, the full conditional posterior distribution is also a beta distribution; the
parameters of this posterior distribution are S Z;Lil I(k; = ¢)I(l; = r)Yi; + b and

S S Ik = q) (L =) (1 = Yi;) + bo.

Example 2: Sampling of 0 if Y Has a Normal Distribution

If Y;; is a normally distributed variable, with mean i, and variance ng
q and column segment 7, then

exp{lw}. (6.12)

in row segment

g(Y;,qu,r) = 2 ggT

1
2mo?



6.3 Posterior Simulator 113

Let p and X denote the (K x L) matrices containing the means and variances, respectively,
for each combination of a row segment and a column segment; hence, § = {u, X}.
To sample 1, we need to derive its full conditional distribution, which is given by

f(:u’qgr",uffq,m Ea R, )\a k7 la Y)
o f(Y g bqurs 2y 5, A K1) f(1g,)

) (Y — 1g.)?
x exp |:ZZEQ Z]EQR(Q i.j Ha,r) } Flitgr)
9qr
(Hgr — 1/NY Z'eQ Z]‘GRYM)Q
_ 9 5 7 2 - 6_13
X eXp |: QO_gyr/le:;‘ f(/j’(L )7 ( )

where fi_q, denotes p without pg,, f(fqr) denotes the prior of y,,, and the number of
elements that are both in row segment ¢ and column segment r according to segmentations
k and 1 is denoted by N[ = PR Z]]Vil I(k; = q)I(l; = r). Assome segments may become
empty in one of the iterations, we use a proper prior. In this case, the first part of (6.13) is
the kernel of a normal distribution, so that using a normal prior is an obvious choice. Let
the prior distribution have mean pg and variance o2. Then, the full conditional posterior
distribution is also normal with

—2 -2

o s
f(/‘qf‘u—q,l" ¥, 5 ANk, le) ~N <0_02 + 52 o +

N I N
, (6.14
0524—3*2”7(00 ) > (614

where i = 37,0 37 o Y /Ny, the sample average within the cluster, and s> = o /Ny

The full conditional distribution of O'Z,T is given by

FO0 11T e kA K LY)
X f(Y|u> O-z?,m E*qyﬁ K, )\7 k’ l)f(a—g,r)
S 2
2 )Nﬁjf/2 exp [_ Zie@ ZjeR(Yw fig,r) :|f(0_2

q,r 2 ‘1-,7“)7
205”

x (o

(6.15)

where X _q, denotes X without o7, and f(o7,) denotes the prior of o7 ,. The first part of

(6.15) is the kernel of an inverted gamma-2 distribution. Again, using a proper prior seems
advisable. If we specify an inverted gamma-2 prior with parameters g; and g, the full
conditional posterior has an inverted gamma-2 distribution with parameters N7 + ¢; and
Yico ZjeR(Yz'.,j — tgr)? + g2. The prior essentially adds g; observations with an average
variance of go/g1 to each combination of a row segment and a column segment.

6.3.2 Selecting the Numbers of Segments

The usual way to determine the numbers of clusters in a finite mixture model in a
frequentist framework is to use information criteria such as AIC, AIC-3, BIC, and CAIC
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(see, for example, Fraley & Raftery, 1998; Andrews & Currim, 2003). The reason for
this is that standard tests for determining the optimal number of classes in latent-class
models are not valid due to the Davies (1977) problem. Within a Bayesian framework,
we can avoid this problem by computing Bayes factors (see, for example, Berger, 1985;
Kass & Raftery, 1995; Han & Carlin, 2001). Unlike hypothesis tests, Bayes factors can be
used to compare several possibly nonnested models simultaneously; Bayes factors naturally
penalize complex models. The Bayes factor for comparing Model 1 with Model 2 is defined

as
_ f(Y|My)

- (YA

where f(Y|M;) denotes the marginal likelihood of model M;. The marginal likelihood is
defined as the expected value of the likelihood function with respect to the prior (see, for
example, Gelman et al., 2003).

Computing the value of the marginal likelihood is not an easy task. Theoretically, its
value can be estimated by averaging the likelihood function over draws from the prior
distribution. If the support of the prior distribution does not completely match with
the support of the likelihood function, the resulting estimate will be very poor. Another
strategy is to use the harmonic mean estimator of Newton and Raftery (1994). However,
this estimator can be quite unstable. In this chapter, we estimate the marginal likelihood
using the fourth estimator proposed by Newton and Raftery (1994, p. 22), which is also
used by DeSarbo, Fong, Liechty, and Saxton (2004) in a similar model. This estimator uses
importance sampling to compute the marginal likelihood value. The importance sampling
function is a mixture of the prior and the posterior distribution with mixing proportion
6. Using the fact that the marginal likelihood is the expected value of the likelihood
function with respect to the prior, it can be shown that the marginal likelihood f(Y) can
be estimated using the iterative formula

Bo (6.16)

) = om/(1 =) + 33, (F(YWD)/(OF(Y) + (1 - 5)f(YI19<">)))7 (6.17)

om/(1 = 0)f(Y) + 335, (0 (Y) + (1 = 0) f(Y[9@))~!

where m denotes the number of draws ¥ from the posterior distribution; for notational
convenience, we drop the model indicator M;. To apply this formula, we need to choose
the value §; Newton and Raftery (1994) recommend using a low value of §, which we set
to 0.001 in our application below.

Obtaining an accurate value of the marginal likelihood for any moderately sophisticated
model tends to be hard, as was noted by Han and Carlin (2001). Therefore, we also propose
a simpler alternative method to choose the numbers of segments, based on information
criteria. Simulations in Andrews and Currim (2003) suggest that the AIC-3 of Bozdogan
(1994) performs well as a criterion for selecting numbers of segments. To evaluate the
AIC-3, we need the maximum likelihood value and the number of parameters. To compute
the maximum likelihood value, we take the highest value of the likelihood function (6.5)
across the sampled parameters.
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Determining the number of parameters is not as straightforward as usual. The pa-
rameters 6, k, and A\ contain wK L, K — 1, and L — 1 parameters, respectively, where w
denotes the number of parameters in 6 per combination of a row segment and a column
segment. Although k and 1 contain the same numbers of parameters for all numbers
of latent classes, the number of possible values for each parameter increases. We can
think of k as representing an (N x K) indicator matrix, where each row indicates to
which segment an object belongs. This means that k and 1 represent N(K — 1) and
M(L — 1) free parameters, respectively. Hence, the effective total number of parameters is
wKL+NK+ML+K+L—-M—-N —2.

6.4 Application 1: Supreme Court Voting Data

We apply the latent-class two-mode clustering model to two empirical data sets. The first
data set, which is discussed in this section, is the Supreme Court voting data of Doreian
et al. (2004). We use this data set to compare the results of our approach with the results
of previous authors, and we discuss this data set relatively briefly. The second data set
will be analyzed in greater detail in the next section. The Supreme Court voting data
set comprises the decisions of the nine Justices of the United States Supreme Court on 26
important issues. The data are displayed in Table 6.1. In this table, a 1 reflects that the
Justice voted with the majority, and a 0 means that the Justice voted with the minority.

To describe the votes, we use a Bernoulli distribution with a Beta(1, 1) prior for the
probability, which is equivalent to a uniform prior on (0,1). Furthermore, we use an
uninformative Dirichlet(1,1,...,1) prior for both x and A. To determine the optimal
numbers of segments, we compute the marginal likelihoods for several values of K and L,
based on an MCMC chain of 100,000 draws for each combination of K and L. Table 6.2
displays the values of In f(Y) for each combination of K = 1,...,6 rows segments and
L =1,...,6 column segments. The highest marginal likelihood is achieved with K = 2
segments for the issues and L = 3 segments for the Justices.

To analyze the results, it is possible to weight the results with different numbers of
segments according to the posterior model probabilities that follow from the marginal
likelihoods. However, we find it more convenient to consider the results for only one value
of K and L. Therefore, we focus on the solution with the highest marginal likelihood value,
that is, K = 2 segments of issues and L = 3 segments of Justices. Note that we find fewer
segments than Doreian et al. (2004), who applied blockmodeling to this data set and found
7 clusters for the issues and 4 clusters for the Justices, and Brusco and Steinley (2006),
who found 5 clusters for the issues and 3 clusters for the Justices.

We experienced label switching in our MCMC sampler. Two of the segments of Justices
switched places twice in the MCMC chain of 100,000 draws. However, we could easily
identify where these switchings occurred. As suggested by Geweke (2007), we solved the
label switching problem by sorting the draws in an appropriate way.

The posterior means and standard deviations of P, x, and A are shown in Table 6.3.
Tables 6.4 and 6.5 show the marginal posterior distributions of the issues and the Justices
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Table 6.1: The Supreme Court Voting Data

Issue

Br Gi So St OC Ke Re Sc Th

Supreme Court Justice

Issue

Supreme Court Justice
Br Gi So St OC Ke Re Sc Th

2000 Presidential Election
Illegal Search 1

Tllegal Search 2

Illegal Search 3

Seat Belts

Stay of Execution
Federalism

Clean Air Act

Clean Water

Cannabis for Health
United Foods

New York Times Copyright
Voting Rights
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00 0 1 1
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111 1 1
1 1.0 0 O
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00 0 1 1
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Title VI Disabilities

PGA vs. Handicapped
Immigration Jurisdiction
Deporting Criminal Aliens
Detaining Criminal Aliens
Citizenship

Legal Aid for the Poor
Privacy

Free Speech

Campaign Finance
Tobacco Ads

Labor Rights

Property Rights
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Table 6.2: Log marginal likelihoods for the Supreme Court Voting Data

Segments of Justices

Segments of issues 1 2 3 4 5 6
-155.56 -160.96 -164.17 -166.28 -168.13 -169.96
-172.98 -117.69 -109.98 -111.00 -112.27 -114.02
-183.29 -124.17 -112.17 -113.83 -114.63 -116.56
-189.60 -129.92 -115.57 -117.72 -119.27 -118.61
-194.88 -133.45 -118.78 -120.00 -121.50 -121.51
-199.67 -137.27 -122.29 -122.66 -125.84 -126.28

D TR W N

over the segments. We find that Justices Ginsburg, Stevens, Breyer, and Souter constitute
the liberal wing (that is, the left wing) of the Supreme Court. The Court’s moderate
wing comprises Justices O’Connor and Kennedy, and the conservative wing (that is, the
right wing) consists of Justices Rehnquist, Scalia, and Thomas. The segments of the issues
consist of issues that resulted in liberal decisions (segment 1) and issues that resulted in
conservative decisions (segment 2). We find strong partisan tendencies in the Supreme
Court: liberal Justices support liberal decisions in 97% of the cases, and conservative
Justices also support conservative decisions with a 97% probability. The liberal Justices
sometimes (in 26% of the cases) vote for a conservative decision, whereas conservative
Justices seldom support a liberal decision. Because of their centrist position in the court,
the moderate Justices usually are in the majority. However, the moderate Justices are
slightly more likely to support conservative decisions than liberal decisions. In general,
the uncertainty in these classifications is low, especially given the relatively small size of
the data set. The Justices and almost all issues can be assigned to one segment with a
posterior probability close to 1.

The segmentation of the Justices, as displayed in Table 6.4, resembles the one found
by Doreian et al. (2004), who divide the Justices into four segments. The segmentation of
the issues deviates more from the solution of Doreian et al. (2004), who find 7 segments for
the issues. Brusco and Steinley (2006) also find more segments of Justices and issues than
the numbers of segments found here. We believe that the methods used by these authors
can overestimate the numbers of segments in the data.

Table 6.3: Mean posterior results, with posterior standard deviations in parentheses, for K = 2
and L = 3 in the Supreme Court Data.

Segment of Justices
Segment of issues 1 2 3 Posterior segment size
Interpretation liberal moderate conservative
1 (liberal majority) 0.97 (0.03) 0.68 (0.10) 0.10 (0.07) 0.46 (0.10)
2 (conservative majority) | 0.26 (0.07) 0.84 (0.07) 0.97 (0.03) 0.54 (0.10)
Posterior segment size 0.42 (0.14) 0.25 (0.12) 0.33 (0.13)
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Table 6.4: Marginal posterior distribution of the Justices over the segments.

Justice 1 2 3
Breyer 1.00 0.00 0.00
Ginsburg 1.00 0.00 0.00
Stevens 1.00 0.00 0.00
Souter 1.00 0.00 0.00
O’Connor 0.00 1.00 0.00
Kennedy 0.00 0.98 0.02
Rehnquist 0.00 0.00 1.00
Thomas 0.00 0.00 1.00
Scalia 0.00 0.00 1.00
Interpretation | liberal moderate conservative

Table 6.5: Marginal posterior distribution of the issues over the segments.

Issue \ Segment 1 2 Issue \ Segment 1 2
2000 Presidential Election 0.00 1.00 Clean Air Act 0.20 0.80
Federalism 0.00 1.00 Tllegal Search 3 0.57 0.43
Clean Water 0.00 1.00 PGA vs. Handicapped 1.00 0.00
Title VI Disabilities 0.00 1.00 Illegal Search 1 1.00 0.00
Tobacco Ads 0.00 1.00 Illegal Search 2 1.00 0.00
Labor Rights 0.00 1.00 Stay of Execution 1.00 0.00
Property Rights 0.00 1.00 Privacy 1.00 0.00
Citizenship 0.00 1.00 Immigration Jurisdiction 1.00 0.00
Free Speech 0.00 1.00 Detaining Criminal Aliens | 1.00 0.00
Seat Belts 0.00 1.00 Legal Aid for the Poor 1.00 0.00
United Foods 0.00 1.00 Voting Rights 1.00 0.00
New York Times Copyright | 0.00 1.00 Deporting Criminal Aliens | 1.00 0.00
Cannabis for Health 0.01 0.99 Campaign Finance 1.00 0.00
Majority liberal conservative | Majority liberal conservative
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6.5 Application 2: Roll Call Voting Data

6.5.1 Data

To apply our method to a larger data set, we consider the voting behavior of the entire
United States House of Representatives. The details of each roll call vote of the United
States congress are published on the website http://www.GovTrack.us. We gathered data
on all roll call votes from the House of Representatives in 2007. We only use data on votes
that are related to a bill. We thus obtain data on 766 roll call votes from 427 members
of the House of Representatives in 2007. There are four possible types of votes: yea, nay,
no vote, and present. A no vote means that the representative was absent at the moment
of voting; this is the case for 3.5% of the observations. A present vote means that the
representative is present, but votes neither yea nor nay, which happens only 143 times
(0.04%).

We did not recode our data in such a way that voting with the majority or voting
with the Democrats is always recorded as a 1 in the data matrix. Such recodings have
been done in the past, for example with the Supreme Court voting data from Section 6.4.
The main argument for recoding the data is that each bill is equivalent to a bill for which
each representative votes the opposite, in terms of the information that the votes of the
representatives provide. However, this argument does not take into account the fact that
there is a status quo, from which a bill deviates. We find it is interesting to see in which
direction a bill deviates from the status quo; this information would be lost if we recoded
the votes.

We collected some additional information on the representatives from GovTrack.us.
We have data on their party membership, gender, age on January 1lst 2007, and state

Table 6.6: Sample means of the individual characteristics for the whole House, Democrats, and

Republicans.
House Democrats Republicans

Size 1.00 0.54 0.46
Democrat 0.54 1.00 0.00
Female 0.16 0.20 0.10
Age 55.73 56.54 54.78
Region

Pacific 0.16 0.19 0.12
Mountain 0.07 0.05 0.09
West North Central 0.07 0.07 0.08
East North Central 0.15 0.14 0.17
Middle Atlantic 0.14 0.18 0.10
New England 0.05 0.09 0.01
West South Central 0.11 0.08 0.15
East south Central 0.06 0.05 0.08
South Atlantic 0.18 0.15 0.22
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from which they were elected. Table 6.6 shows the means for these variables for the
entire House of Representatives and for the Democrats and Republicans separately. In
2007, the Democrats had a majority in the House of 53.9%, and there were no third-party
or independent representatives. There is a fairly large difference in the share of female
representatives between the Democrats (20.4%) and the Republicans (10.1%). The age is
about the same for representatives from both parties. We aggregated the representatives’
home states into nine regions.

Table 6.7: The numbers of bills prepared by each House Committee

Administration 14 | Intelligence (Permanent Select) 15
Agriculture 18 | Judiciary 51
Appropriations 291 | Natural Resources 50
Armed Services 43 | Oversight and Government Reform 57
Budget 14 | Rules 9
Education and Labor 51 | Science and Technology 43
Energy and Commerce 44 | Small Business 26
Financial Services 98 | Transportation and Infrastructure 69
Foreign Affairs 44 | Veterans’ Affairs 15
Homeland Security 55 | Ways and Means 42

We also collected more information on the bills. Before a bill comes to a vote in the
House of Representatives, it is prepared by at least one of the 20 House Committees.
Table 6.7 shows the committees and how many bills they prepared. The committee that
handles the largest number of bills is Appropriations, which controls the disbursement of
funds. The Rules committee influences what is discussed and voted upon; this committee is
not primarily concerned with bills and only prepared nine of them. Most other committees
deal with specific topics. The committee(s) that prepared a bill is an indication of the sub-
ject of the bill. Having this information should allow us to interpret the segments of bills.
Identifying the segments of bills may help us understand the segments of representatives
in a better way, as we know what types of bills they support and oppose.

Roll call votes have analyzed before. Poole and Rosenthal (1991), Heckman and
Snyder Jr. (1997), and Nelson (2002) try to estimate latent preferences of representatives,
based on their voting behavior. De Leeuw (2006) plots the relative positions of represen-
tatives into a two-dimensional space. The paper that most closely resembles the analysis
in this chapter is Hartigan (2000), who clusters the members of the United States Senate,
as well as the bills on which they vote. However, Hartigan (2000) does not cluster the two
dimensions simultaneously, but alternates between clustering one dimension conditional on
the segmentation of the other dimension, until convergence.

6.5.2 Parameter Estimates

We apply the latent-class two-mode clustering model to the roll call voting data. We
assign a 1 to yea votes and a 0 to nay votes; we treat the response options no wote
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and present as missing observations. Again, we describe the individual votes using a
Bernoulli distribution with a Beta(1,1) prior for the probability. Furthermore, we use an
uninformative Dirichlet(1,1,...,1) prior for both x and A.

To determine the numbers of segments, we now opt for the AIC-3 criterion as described
in Section 6.3.2. To prevent the Gibbs sampler from getting stuck in a local optimum of
the likelihood function, we sample 10 sets of 10 MCMC chains, and each of the 100 MCMC
chains has length 200. For each set, the MCMC chain that attains the highest likelihood
value is chosen, and this MCMC chain is allowed to run for an additional 3,000 iterations.
The highest likelihood value that is attained during these 3,000 iterations over all sets of
MCMC chains is then used as the final maximum likelihood value. This likelihood value
serves as input for the AIC-3 information criterion.

Table 6.8: AIC-3 values for K = 2,...,12 segments of bills and L = 2,...,10 segments of
representatives.

Segments Segments of representatives

of bills 2 3 4 5 6 7 8 9 10
2 251,889 245,490 242,752 242,630 243,333 244,062 245,130 246,267 247,433
3 206,373 197,752 193,995 193,132 193,360 193,966 194,899 195,951 197,020
4 191,907 181,359 177,459 176,081 176,193 176,556 177,376 178,328 179,349

5 186,493 175,547 170,848 169,409 169,370 169,698 170,476 171,396 172,353
6 181,998 170,774 165,959 164,315 164,261 164,480 165,229 166,115 167,061
7 179,889 168,300 163,112 161,363 161,263 161,449 162,178 163,044 163,920
8 179,620 167,790 162,484 160,722 160,516 160,698 161,421 162,244 163,136
9 179,565 167,459 162,080 160,182 160,015 160,056 160,745 161,567 162,449
10 179,531 167,209 161,744 159,715 159,530 159,553 160,194 161,011 161,837
11 180,904 168,414 162,822 160,696 160,443 160,346 160,986 161,810 162,621
12 182,500 169,944 164,292 162,167 161,802 161,671 162,248 163,065 163,854

Table 6.8 displays the AIC-3 values. The lowest AIC-3 value is attained with K = 10
segments of bills and L = 6 segments of representatives; the corresponding log-likelihood
value is —66, 108.70. For these numbers of segments, we sample an additional 100,000
iterations from the chain that had the highest likelihood value. Due to the large size of
the data set, we have no problems with label switching. In the remainder of this section,
we present and interpret the results for this model specification.

Table 6.9 shows the posterior means and standard deviations for P, x, and A. The first
thing to note is that, except for segments (of bills) 9 and 10, the posterior means of the yea
voting probabilities are monotonously increasing or decreasing in each row. For segments 9
and 10, there are only deviations from monotonicity in segment of representatives 6. These
results imply that the political preferences in the House are one-dimensional. Bills from
segment 2 are approved more or less unanimously, and bills from segments 7 and 9 are also
widely supported. Bills from other segments seem to be backed only by representatives
from either segments 1 through 3 or segments 4 through 6. In the next subsection, we
show that these segments mainly contain Democrats and Republicans, respectively.
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Figure 6.1: Graphical Representation of Voting Data Set Before (Upper Panel) and After (Lower
Panel) Reordering of Rows and Columns.
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Table 6.9: Posterior means and posterior standard deviations in parentheses of P, x, and .

Segment of representatives
Segment of bills 1 2 3 4 5 6 K
1 0.00 0.01 0.20 0.87 0.98 0.99 0.19
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) | (0.01)
2 1.00 1.00 1.00 1.00 1.00 0.98 | 0.18
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) | (0.01)
3 0.01 0.03 017 045 0.83 093 | 0.13
(0.00) (0.00) (0.01) (0.01) (0.01) (0.00) | (0.01)
4 0.01 0.01 007 013 030 0.79 | 0.12
(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) | (0.01)
5 099 097 084 014 0.02 0.02 | 0.09
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) | (0.01)
6 1.00 099 095 065 0.25 0.10 | 0.08
(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) | (0.01)
7 1.00 1.00 099 095 0.83 048 | 0.08
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) | (0.01)
8 0.11 041 078 093 097 098 | 0.05
(0.01) (0.01) (0.01) (0.01) (0.00) (0.00) | (0.01)
9 071 091 095 097 098 097 | 0.05
(0.01) (0.01) (0.01) (0.00) (0.00) (0.00) | (0.01)
10 074 049 034 025 0.09 0.15 | 0.04
(0.01) (0.02) (0.02) (0.01) (0.01) (0.01) | (0.01)
A 0.29 0.17 0.08 0.12 0.17 0.17
(0.02) (0.02) (0.01) (0.02) (0.02) (0.02)

To show the effectiveness of our two-mode clustering method, we show graphical
representations of the roll call voting data set before and after reordering the rows and
columns according to their segments in Figure 6.1. For this reordering, we used the
segmentation k and 1 that yielded the highest likelihood value. Before reordering the
rows and columns, it is already apparent that some structure exists in the data; after
reordering, the nature of the block structure becomes clear.

6.5.3 Interpretation of Segments

For each row (bill) and for each column (representative), we compute the marginal posterior
distribution over the segments. This allow us to compute the means of the explanatory
variables within each segment. Table 6.10 shows the posterior means of the individual
characteristics of the representatives for each segment of representatives. The main result
is that the first three segments consist of Democrats, and the last three contain Republicans.
We know from Table 6.9 that voting behavior is monotonous; therefore, we can interpret
segments 1 and 6 as very partisan Democrats and Republicans, respectively. Segments 2
and 5 seem to be typical Democrats and Republicans, respectively, and the representatives
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in segments 3 and 4 are relatively moderate. Note that segments 3 and 4 are not completely
homogenous, which means that there is a little overlap between these moderate Democrats
and Republicans.

Table 6.10: Posterior means of personal variables for each segment of representatives.

Segment of representatives 1 2 3 4 5 6 | Total
Democrat 1.00 1.00 0.97 0.02 0.00 0.00| 0.54
Female 0.29 0.08 0.16 0.16 0.08 0.08| 0.16
Age 59.30 57.44 50.79 57.68 55.19 55.06 | 55.73
Region 9

Pacific 0.27 0.12 0.03 0.10 0.14 0.12| 0.16
Mountain 0.03 0.06 0.09 0.08 0.03 0.15] 0.07
West North Central 0.03 0.12 0.09 0.08 0.07 0.08| 0.07
East North Central 0.13 0.14 0.16 0.26 0.14 0.15| 0.15
Middle Atlantic 0.22 0.12 0.13 0.27 0.06 0.03]| 0.14
New England 0.12 0.07 0.00 0.02 0.00 0.00] 0.05
West South Central 0.04 0.12 0.15 0.00 0.21 0.19| 0.11
East South Central 0.01 0.06 0.16 0.02 0.15 0.04| 0.06
South Atlantic 0.14 0.18 0.19 0.18 0.20 0.25| 0.18
Region 4

West 0.30 0.18 0.13 0.18 0.17 0.27] 0.22
Midwest 0.17 026 025 0.34 021 0.23] 0.23
Northeast 0.34 0.20 0.13 0.29 0.06 0.03| 0.19
South 0.19 036 0.50 0.20 0.57 0.48]| 0.36
Segment size 0.29 0.17 0.08 0.12 0.17 0.17| 1.00

Further, we can see that there are relatively more women in the left wing. Not only are
women more often Democrats than Republicans, but they also seem to be on the left side
within their parties. There appear to be no effects of age within the Republican party, but
within the Democratic party, the younger representatives seem more moderate than the
older ones.

There are also some clear regional patterns. Representatives from states in the West
are more extreme in their voting behavior, as there are few representatives from these
states that are in the moderate clusters 3 and 4. The representatives from the Pacific are
responsible for the left wing, while the right-wing representatives seem to come mainly
from the Mountain states. Representatives from the Midwest seem to be more moderate
than the national average, though this effect is not very strong. In the Northeast, we find
that the Democrats are relatively liberal and that the Republicans are relatively moderate.
Finally, in the South, we find that the Democrats are moderate, whereas the Republicans
often belong to the most conservative segments.

Table 6.11 contains the posterior means of the committees for the segments of bills.
These results are less pronounced than the posterior means for the representatives. For
example, the posterior means for segment 1 closely resemble the entire sample (that is, the
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Table 6.11: Posterior means of committees for each segment of bills.
Segment of bills 1 2 3 4 5 6 7 8 9 10 | Total
Administration 0.01 0.03 0.00 0.00 0.04 0.02 0.00 0.00 0.09 0.03| 0.02
Agriculture 0.01 0.01 0.03 0.00 0.03 0.00 0.02 0.02 0.00 0.28| 0.02
Appropriations 0.36 0.05 0.66 0.92 0.27 0.24 0.07 0.58 0.37 0.38| 0.38
Armed Services 0.06 0.05 0.02 0.00 0.12 0.00 0.05 0.02 0.14 0.27| 0.06
Budget 0.03 0.00 0.00 0.00 0.07 0.05 0.02 0.02 0.00 0.00| 0.02
Education and Labor 0.07 0.05 0.08 0.00 0.11 0.15 0.09 0.00 0.06 0.10| 0.07
Energy and Commerce 0.07 0.11 0.01 0.00 0.07 0.08 0.05 0.00 0.03 0.10| 0.06
Financial Services 0.24 0.09 0.15 0.03 0.03 0.24 0.14 0.12 0.03 0.07| 0.13
Foreign Affairs 0.05 0.08 0.03 0.00 0.06 0.02 0.09 0.00 0.09 0.35| 0.06
Homeland Security 0.08 0.05 0.02 0.02 0.19 0.05 0.05 0.12 0.14 0.13| 0.07
Intelligence (Permanent Select) 0.04 0.00 0.00 0.00 0.07 0.02 0.02 0.05 0.03 0.00| 0.02
Judiciary 0.04 0.14 0.00 0.00 0.07 0.03 0.16 0.02 0.23 0.07| 0.07
Natural Resources 0.08 0.09 0.03 0.00 0.10 0.14 0.05 0.02 0.03 0.10| 0.07
Oversight and Government Reform | 0.03 0.17 0.02 0.00 0.10 0.07 0.14 0.05 0.09 0.10| 0.07
Rules 0.01 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.06 0.03| 0.01
Science and Technology 0.04 0.10 0.04 0.01 0.05 0.02 0.09 0.07 0.09 0.10| 0.06
Small Business 0.05 0.05 0.01 0.00 0.01 0.02 0.11 0.00 0.00 0.10| 0.03
Transportation and Infrastructure |0.06 0.09 0.05 0.03 0.17 0.18 0.15 0.07 0.06 0.10| 0.09
Veterans’ Affairs 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00| 0.02
Ways and Means 0.06 0.04 0.00 0.01 0.18 0.11 0.05 0.02 0.11 0.00| 0.05
Segment size 0.19 0.18 0.13 0.12 0.09 0.08 0.08 0.05 0.05 0.04| 1.00
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final column in the table), except that segment 1 contains relatively many bills from the
Financial Services committee.

Nevertheless, there are some striking results. Bills from the Veterans’ Affairs committee
all belong to segment 2, which contains bills that receive nearly unanimous support.
Transportation and Infrastructure is relatively common in segments 5, 6, 7, and 10, which
are all primarily favored by Democrats. Bills from the Judiciary committee can primarily
be found in segments 2, 7, and 9. For these segments, the voting is almost unanimously
yea. Segment 4 almost solely contains bills from the Appropriations committee. Only the
hard-line Republicans from segment 6 vote in majority (79%) yea for these bills. To a
lesser extent, this is also true for bills from segment 3, though there is a little more support
for these bills, even from some of the moderate Democrats in segment 3.

6.6 Conclusions

We have developed a Bayesian approach to do inference in a latent-class two-mode cluster-
ing model, which has several advantages over frequentist parameter estimation methods.
First, our method allows for statistical inference on the model parameters, which is not
possible using a maximum likelihood approach. The Bayesian approach also allows us to do
statistical inference on the number of segments using marginal likelihoods. An alternative
way to select the numbers of segments is to consider information criteria. The third
advantage of using Bayesian estimation techniques is that fewer computational problems
occur during estimation.

We have applied our model to the Supreme Court voting data set of Doreian et al.
(2004). The marginal likelihoods used to determine the optimal number of segments
indicate fewer segments than were found in these previous studies. In the second example,
we consider roll call votes from the United States House of Representatives in 2007. We
detect six segments of representatives and ten segments of bills. Three of the individual
segments contain Democrats and the other three segments contain Republicans, though
there is a little overlap. There are also clear regional effects on voting behavior.

Another advantage of our approach is that it can easily be extended in several directions.
First, it can be adapted for use with data matrices with arbitrary distributions. Although
we have only derived posterior samplers for Bernoulli and normally distributed data, it
is straightforward to derive posterior samplers for all distributions that belong to an
exponential family, as these distributions have natural conjugate priors. Second, our
method can be adapted for three-mode data (see Schepers, Van Mechelen, & Ceulemans,
2006). Third, explanatory variables can be added, either with segment-dependent effects
or as concomitant variables, that is, variables explaining why a row (or column) belongs
to a certain segment (see Dayton & MacReady, 1988).



Chapter 7
Discussion

In this chapter, we first give a short summary of the main findings of each chapter. We
then proceed to discuss limitations and some technical issues of the models that have been
proposed in this thesis. We also sketch some directions for future research.

7.1 Summary of the Main Findings

The main contribution of this thesis is the introduction of new statistical models that
incorporate techniques for segmentation and dimension reduction. Because each chapter
of this thesis discusses a different topic, it is hard to give overall conclusions. Instead, we
give a brief overview of the main findings of each chapter and how each chapter contributes
to the literature.

In Chapter 2, we have developed the optimal scaling of interactions (OSI) model for
two-interaction effects of categorical predictor variables in generalized linear models. We
find that a one-dimensional version of this model usually yields the best results. Two-
dimensional models and models for analyzing three-way interaction effects can also be
constructed. However, these versions of the OSI model often do not yield appropriate
results, as unique parameter estimates that maximize the likelihood function do not always
exist in that case. We have also devised ways to graphically represent the results of the OSI
model, based on suitably chosen parameter constraints. We believe that these graphical
representations can provide insight into the interaction effects. Furthermore, we have shown
the usefulness of such methods using two empirical applications. A final contribution of
Chapter 2 is the iterative reparameterization for estimating the standard errors of a set
of parameter estimates that are subject to location and scale constraints. We believe that
this reparameterization may be of use in future research.

In Chapter 3, we proposed a new model for analyzing response behavior in rating
scale surveys. The main contribution is that rating scale responses can be treated as
nominal response options, without a significant loss of information. To limit the number
of parameters, we incorporated a bilinear parameter structure, which can be used to
construct graphical representations of the estimated effects. Another important novelty
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is the separation of content and response style using two types of segmentations. We find
that our LC-BML model performs well for a data set that contains the List of Values.
By applying our model to this data set, we also managed to discover what appear to
be novel response styles. For example, we find misresponse (that is, some respondents
accidentally interpret the rating scale in the opposite order) even when the survey contains
no reverse-keyed items.

In Chapter 4, we have extended the OSI model of Chapter 2 to the area of conjoint
analysis. The resulting Conjoint-OSI model is a multiplicative interaction model for
analyzing attribute interactions in choice-based conjoint analysis experiments. We believe
that this method can be useful, because until now researchers have often estimated only a
subset of the two-way interaction effects in conjoint analysis experiments. Fully estimating
all two-way interactions typically requires a large and costly design. We show that our
model can lead to smaller designs. For an empirical data set, we find that the Conjoint-
OSI model outperforms traditional approaches for modeling interactions.

In Chapter 5, we compared various optimization strategies for two-mode partitioning,
which is a form of clustering that partitions the rows and the columns of a data matrix
simultaneously. We have given an overview of customary optimization strategies for this
optimization problem. In addition, we have introduced a new fuzzy steps optimization
method. Using a large simulation study, we have compared the performances of these op-
timization methods. We find that, in the simulation study, the two-mode k-means method
performs best on average, followed by the alternating exchanges and fuzzy steps methods.
Which of these three methods gives the best performance depends on characteristics of the
clustering problem. An empirical application shows the practical applicability of two-mode
partitioning.

In Chapter 6, we have developed a new Bayesian approach to estimate the parameters
of a latent-class model for the joint clustering of both modes of two-mode data matrices.
A Gibbs sampler with data augmentation can used to obtain posterior results. We have
shown how such a Gibbs sampler can be designed for a variety of prior distributions.
Our Bayesian approach has several advantages over existing methods. First, we are able
to do statistical inference on the model parameters, which would not be possible using
frequentist estimation procedures. In addition, the Bayesian approach allows us to provide
statistical criteria for determining the optimal numbers of clusters. Finally, our Gibbs
sampler has fewer problems with local optima in the likelihood function and empty classes
than the EM algorithm used in a frequentist approach. We have applied the Bayesian
estimation method of the latent-class two-mode clustering model to two empirical data
sets that comprise voting behavior in the United States. Using these data sets, we have
shown how the results of the Bayesian approach to two-mode clustering can provide useful
insight into the data.
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7.2 Limitations and Avenues for Future Research

Throughout this thesis, we have encountered some limitations and technical issues that
can occur in the types of models that we have discussed. Below, we give an overview of
these issues. For some limitations, solutions may be found in future research; this will be
discussed below. We also discuss other ways in which future research may build upon the
work that has been done in this thesis.

After proposing a new model, a way to estimate the parameters must be determined;
in most chapters of this thesis, the parameters were estimated using the principle of
maximum likelihood. Finding the global maximum of the likelihood function is not
always trivial for finite mixture models and models that include a bilinear parameter
structure. In this thesis, we have mostly relied on general-purpose optimization routines
(such as BFGS) for estimating parameters. Such optimization routines start from randomly
chosen initial parameter estimates and then iteratively try to improve these estimates until
convergence. To increase the probability that such an optimization routine can locate
the global maximum of the likelihood function, we have used multiple random starts
of the optimization routines. For finite mixture models, the probability of finding the
global optimum can also be increased by applying the EM algorithm. We find that these
two solution strategies together are usually sufficient to find the global optimum of the
likelihood function, as long as the numbers of segments and dimensions are not very large.

To be able to conduct statistical inference on the parameters of a model, the global
maximum of the likelihood function must also be unique, that is, the model parameters
must be identified. The parameters of the models in this thesis are not identified without
imposing suitably chosen parameter restrictions. Finding parameter constraints that
ensure that the model parameters are identified is an important part of designing a model.
In principle, constrained optimization can be used to optimize the likelihood function
under the necessary parameter constraints. However, we have not used this approach
in this thesis. Instead, we first estimate the parameters without any constraints and
then transform the parameters estimates so that they do satisfy the constraints. An
alternative solution is constructing a reparameterization in which no parameter constraints
are necessary (see Appendix 2.A). For some multidimensional versions of the OSI model of
Chapter 2, we found that the parameter estimates produced by an optimization routine do
not always converge to finite values. This may mean that unique parameter estimates that
maximize the likelihood function do not always exist. An easy solution to this problem
is to use the one-dimensional version of the OSI model, which does not suffer from this
problem and works well in practice. However, future research may investigate in greater
detail what causes this problem for multidimensional versions of the OSI model and how
it can be solved.

Another important issue is determining the appropriate complexity of the model, that
is, the number(s) of segments and dimensions. This can only be done after estimating the
parameters for varying numbers of segments and/or dimensions. To choose the numbers of
segments and dimensions, we have relied on information criteria such as BIC and AIC-3,
which penalize the maximum value of the likelihood function based on the number of
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parameters in the model. We find that these information criteria have better theoretical
underpinnings than the selection criteria that are often used in techniques that are not
model-based (such as the scree plots commonly used in principal components analysis). In
future research, we could study which information criterion performs best in practice and
if there are any good alternatives to using information criteria.

Some of the strategies outlined above for estimating the model parameters and de-
termining the appropriate complexity of a model can lead to a large computation time.
This was especially so for the LC-BML model of Chapter 3, where we used 10 random
starts for each combination of the number of response style segments, the number of item
segments, and the number of dimensions. This strategy was likely successful in determining
the optimal parameter estimates, but may lead to a prohibitively large computation time
for larger data sets. Future research may investigate how to limit the computation time
associated with estimating the model parameters.

A final and important issue is the interpretability of graphical representations based
on bilinear decompositions. The possibility to construct graphical representations of the
parameter estimates is an important advantage of the bilinear parameter structures used
in this thesis. However, some explanation is often necessary to allow the users of a model
to determine the exact estimated effects. Future research could focus on ways to make
such graphical representations easier to understand and explain.

Above, we have given an overview of some technical issues and pitfalls that can occur
when developing a model similar to the ones proposed in this thesis. Although this may
seem like a long list of issues, we believe that our models, now that they have been
developed, can be easy to apply. By making appropriate software publicly available, we
aim to make it easy for practitioners to use the models proposed in this thesis. We sincerely
hope that our techniques will be applied in practice more often.
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(Summary in Dutch)

Voor de statistische analyse van data is het belangrijk om de informatie op een overzichtelijke
manier te representeren. Diverse multivariate statistische technieken zijn hiervoor ont-
wikkeld, zoals k-means-clusteranalyse en principale-componentenanalyse. Deze technieken
zijn vaak gebaseerd op de beginselen van segmentatie (het in groepen onderverdelen van de
observaties) en dimensiereductie (het maken van een visuele, laag-dimensionale weergave
van een dataset). Echter, deze technieken maken meestal geen statistische aannames over
het proces dat de data genereert, wat tot gevolg heeft dat de statistische significantie van
de resultaten vaak onbekend is.

In dit proefschrift hebben we de modelleer-principes van segmentatie en dimensiereduc-
tie verwerkt in statistische modellen. We ontwikkelen nieuwe modellen om de informatie in
een dataset samen te vatten, opdat we de data makkelijker kunnen begrijpen en verklaren.
De nadruk ligt op dimensiereductie met behulp van bilineaire parameterstructuren en
technieken voor het clusteren van de rijen en kolommen van een datamatrix. Aan de
hand van diverse toepassingen uit de marketing, de psychometrie en de politicologie, laat
dit proefschrift zien hoe de voorgestelde technieken extra inzicht kunnen geven in de data.

Dit proefschrift bestaat uit twee delen. Deel I richt zich op het representeren van
interactie-effecten door middel van bilineaire decomposities (dimensiereductie). Deel II
bespreekt technieken voor het simultaan clusteren van de rijen en kolommen van data-
matrices. Deel I bestaat uit drie hoofdstukken en deel II bestaat uit twee hoofdstukken.
Hieronder geven we een korte omschrijving van elk hoofdstuk.

In hoofdstuk 2 bespreken we een algemeen model voor het representeren van tweeweg-
interactie-effecten met een beperkt aantal parameters. We bespreken een nieuw model,
gebaseerd op de methodologie van optimaal schalen (optimal scaling), voor het analyseren
van de inhoud van de interactie-effecten in gegeneraliseerde lineaire modellen met een
willekeurig aantal onafhankelijke variabelen. Dit model, dat we het optimaal schalen van
interacties (OSI) model noemen, is een eendimensionaal multiplicatief interactiemodel dat
weinig parameters gebruikt. We bespreken hoe het model kan worden gebruikt om de
interactie-effecten op grafische wijze weer te geven en te interpreteren. Tevens bespreken
we diverse uitbreidingen van het eendimensionale model. Ten slotte pas we het model
toe op twee datasets, om te laten zien hoe het model in de praktijk kan worden gebruikt.
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Hoofdstuk 2 is gebaseerd op Van Rosmalen et al. (2009) en is gepubliceerd in Multivariate
Behavioral Research.

Hoofdstuk 3 behandelt het modelleren van antwoordstijlen (de manier waarop respon-
denten ratingschalen gebruiken), die een risico vormen voor de validiteit van ratingschalen.
We onderzoeken hoe de verschillende antwoordstijlen en de meningen over de items de
antwoorden op ratingschalen beinvloeden. Hiervoor ontwikkelen we een nieuw model dat
rekening houdt met verschillen in antwoordstijlen, verschillen in mening over de items en
achtergrondgegevens van de respondenten. Door een bilineaire parameterstructuur op te
leggen op de parameters van een multinomiaal logitmodel, kunnen we op grafische wijze
onderscheiden hoe persoonlijke kenmerken en inhoudelijke meningen het antwoordgedrag
beinvloeden. We combineren deze methode met segmentaties op basis van latente klassen,
zodat we twee segmentaties van de respondenten krijgen. Een segmentatie groepeert de
respondenten op basis van hun meningen; de andere segmentatie deelt de respondenten
op in groepen op basis van hun antwoordstijlen. Dit bilineaire multinomiaal logitmodel
met latente klassen wordt toegepast op een internationale dataset waarin de List of Values
gemeten is. Hoofdstuk 3 is gebaseerd op Van Rosmalen, Van Herk, en Groenen (in druk)
en is geaccepteerd voor publicatie in het Journal of Marketing Research.

In hoofdstuk 4 passen we de modelleer-technieken van hoofdstuk 2 toe op conjunct-
analyse. De interactie-effecten van de attributen worden zelden volledig gemodelleerd
bij het analyseren van de resultaten van conjunctanalyse. Een reden hiervoor is dat het
modelleren van alle interactie-effecten in het algemeen veel parameters vereist en veel
keuzesets per respondent. Daarom introduceren we een nieuwe aanpak voor het modelleren
van de tweeweginteracties, gebaseerd op het OSI model van hoofdstuk 2. De bedoeling is
om de tweeweginteractie-effecten zo goed mogelijk te schatten met een beperkt design en
een beperkt aantal te schatten parameters. Het op deze wijze ontworpen model passen
we toe op een conjunctanalysedataset. Tevens laten we zien hoe conjunctanalysedesigns
geconstrueerd kunnen worden op basis van ons model. Alex Koning and Patrick Groenen
zijn co-auteurs van hoofdstuk 4.

Hoofdstuk 5 vergelijkt diverse optimalisatietechnieken voor het simultaan partitioneren
van de rijen en kolommen van datamatrices. Het op deze wijze partitioneren van datamatri-
ces is een relatief nieuwe clustertechniek. We richten ons op partitioneringsmethodes die een
criterium optimaliseren dat vergelijkbaar is met het criterium van k-means-clusteranalyse.
Voor dit type probleem bestaan diverse optimalisatietechnieken. Welke methode de beste
resultaten oplevert, is tot nog toe niet duidelijk, aangezien de meeste methodes niet-globale
optima van de criteriumfunctie kunnen opleveren. We bespreken en vergelijken diverse
optimalisatiemethoden voor het partitioneren van de rijen en kolommen van datamatrices.
Naast het behandelen van bestaande methodes, introduceren we ook een nieuwe methode,
gebaseerd op het principe van fuzzy steps. De effectiviteit van de methodes vergelijken
we met behulp van een grote simulatiestudie. Ten slotte gebruiken we een empirische
(niet gesimuleerde) dataset om de praktische toepasbaarheid van de techniek te illustreren.
Hoofdstuk 5 is gebaseerd op Van Rosmalen, Groenen, et al. (in druk) en is geaccepteerd
voor publicatie in het Journal of Classification
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In hoofdstuk 6 behandelen we een nieuwe Bayesiaanse aanpak voor het schatten van
de parameters van een latenteklassenmodel voor het simultaan clusteren van de rijen en
kolommen van datamatrices. Een Gibbs sampler met data-augmentatie wordt gebruikt
om de posteriorresultaten te verkrijgen. Deze Bayesiaanse aanpak heeft drie voordelen ten
opzichte van bestaande methodes. Ten eerste kunnen we statistische inferentie toepassen
op de modelparameters, hetgeen niet mogelijk zou zijn met frequentistische schattings-
methodes. Tevens stelt deze Bayesiaanse methode ons in staat, statistische criteria voor
het bepalen van de optimale aantallen clusters te definiéren. Ten slotte leidt het gebruik
van de Gibbs sampler minder vaak tot problemen met lege klassen of lokale optima in de
aannemelijkheidsfunctie dan het EM-algoritme, dat vaak gebruik wordt in frequentistische
methodes. Om de praktische toepasbaarheid te illustreren, passen we de Bayesiaanse
schattingsmethode toe op twee datasets. De eerste dataset bestaat uit het stemgedrag van
het Hooggerechtshof van de Verenigde Staten (zie ook Doreian et al., 2004). De tweede
dataset beschrijft de roll call votes van het Amerikaanse Huis van Afgevaardigden in 2007.
Voor beide datasets laten we zien hoe de resultaten kunnen leiden tot praktisch inzicht in
de data. Bram van Dijk en Richard Paap zijn co-auteurs van hoofdstuk 6.
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