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Instrumental Variable Estimation of Treatment Effects
for Duration Outcomes

Abstract

In this article we propose and implement an instrumental variable estimation proce-
dure to obtain treatment effects on duration outcomes. The method can handle the typical
complications that arise with duration data of time-varying treatment and censoring. The
treatment effect we define is in terms of shifting the quantiles of the outcome distribution
based on the Generalized Accelerated Failure Time (GAFT) model. The GAFT model
encompasses two competing approaches to duration data; the (Mixed) Proportional Haz-
ard (MPH) model and the Accelerated Failure Time (AFT) model. We discuss the large
sample properties of the proposed Instrumental Variable Linear Rank (IVLR), and show
how we can, with one additional step, improve upon its efficiency. We discuss the em-
pirical implementation of the estimator and apply it to the Illinois re-employment bonus
experiment.

JEL classification: C21, C41, J64.
Key words: Treatment effect; Duration model; Censoring; Instrumental Variable.
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1 Introduction

In recent years, social experiments have gained popularity as a method for evaluating social and

labor market programs (see e.g. Meyer (1995), Heckman et al. (1999) and Angrist and Krueger

(1999)). In experiments the assignment of individuals to the treatment can be manipulated.

If assignment is random, the average impact of the treatment can be estimated. However, a

randomized assignment may be compromised, if the individuals can refuse to participate, either

by dropping out, if they are to receive the treatment, or by obtaining the treatment, if they

are in the control group. If this non–compliance to the assigned treatment is correlated with

the outcome variable, i.e. is selective, then the difference of the average outcomes is a biased

estimate of the average effect of the treatment.

Most of the evaluation literature has focused on static treatments, i.e. treatment that is

administered at a particular point in time or in a particular time interval. If the outcome is a

duration the treatment or its effect can be dynamic, i.e. it can be switched on and off over time.

A further complication with duration data is that the durations are often censored. Examples of

evaluation studies based on duration outcomes are Ham and LaLonde (1996), Meyer (1995), Van

den Berg et al. (2004), Ashenfelter et al. (2005) and Bijwaard and Ridder (2005). These studies

show that simple comparisons between average durations in the various treatment regimes are

confounded by dynamic selection. We specify a causal model for duration outcomes that can

handle censoring and time-varying treatments. The treatment effect in this model is defined in

terms of shifting the quantiles of the survival rate.

Two competing approaches to the estimation of the effect of a, possible time–varying, covari-

ate on survival has been the (Mixed) Proportional Hazard (MPH) model (for a recent survey

see Van den Berg (2001)) and the Accelerated Failure Time (AFT) model (see a.o. Kalbfleisch

and Prentice (2002), Brännäs (1992), and Klein and Moeschberger (1997)). In the Mixed Pro-

portional Hazards (MPH) model the hazard is written as the product of the baseline hazard,

a non-negative regression function, and a non-negative random variable that represents the

covariates that are omitted from the regression function. Ridder (1990) introduced the Gener-

alized Accelerated Failure Time (GAFT) model, a generalization of the AFT models that also

includes the MPH model.

The GAFT model is based on transforming the duration and assuming some distribution

for this transformed duration. The transformation is the integrated hazard of a PH model. The

1



AFT model is obtained by restricting the transformation but it does not restrict the distribution

of the transformed duration, while the MPH model restricts the this distribution to a mixed

of exponentials. The GAFT model is also related to the generalized regression model of Han

(1987). The regression coefficients in a GAFT model can be interpreted in terms of the effect

of regressing on the quantiles of the distribution of the transformed duration for the reference

individual. In an AFT model the relation between the quantile of a individual with observed

characteristics X and the quantile of the reference individual is the acceleration factor. In a

GAFT this acceleration factor is multiplied by the ratio of the duration dependence at the two

quantile durations. We use the GAFT model to construct a causal model for duration outcomes.

Our approach to obtain the treatment effect in a duration model is related to rank es-

timation procedures of Robins and Tsiatis (1991) and of Bijwaard and Ridder (2005). The

procedure of Bijwaard and Ridder (2005) is based on a semi-parametric MPH and requires pre-

liminary estimates of the baseline hazard. The procedure of Robins and Tsiatis (1991) is based

on the strong version of the Accelerated Failure Time model. Their model imposes a strong

non-interaction assumption. This implies that if two individuals have the identical observed

durations and observed treatment histories then they would have had identical durations had

treatment always been withheld.

We propose an instrumental variable procedure for duration models that does neither impose

the non-interaction assumption nor requires full compliance in the control group. It enables us

to estimate the treatment effect in terms of changes in the quantiles. This is accomplished by

using a GAFT model that transforms the duration such that for the true, population, parameter

the transformed duration is independent of the instrument. Thus, for a binary instrument, R,

the proportion of the people with R = 1 remains the same over the survivors on the transformed

duration time. This implies that the rank test statistic for the instrument on the relevant time

scale, i.e. the transformed duration time scale, should go to zero. The inverse of this rank test,or

a weighted version, provides the estimation procedure we call the Instrumental Variable Linear

Rank (IVLR) estimation.

The existence of an endogenous treatment implies (possible) dependence between the trans-

formed duration and the censoring time. This implies that the IVLR estimator, which exploits

the independence between the transformed durations and the instruments, may give biased re-

sults. However, with a small adjustment we can still apply the IVLR approach, based upon the

assumption that the (potential) censoring time is known at the start of the study. For example,
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in our empirical data, we only observed the unemployed while receiving UI benefits. In these

data the potential censoring time for all individuals is at 26 weeks, the maximum duration of

receiving UI benefits. With known (potential) censoring time we can modify the GAFT trans-

formation by introducing additional censoring such that this modified transformation and the

instruments become independent for the uncensored observations. Then, the IVLR estimator

on this modified transformation leads to consistent estimators.

The IVLR estimation is based on a vector of mean restrictions on weight functions of

the covariates, instrument and the transformed durations. Thus the IVLR is also related to

GMM estimation. In GMM estimation it is feasible to get the most efficient, optimal, GMM

estimator in just two steps. At the first step a GMM estimator is obtained using suboptimal, but

feasible, weighting matrices. From this consistent estimator the optimal weighting matrices can

be estimated consistently. With these estimated matrices we can obtain an efficient estimate of

the parameters involved in just one additional step. A similar reasoning applies to the IVLR-

estimator. At the first step we use feasible weighting functions to obtain consistent estimates

of the parameters of the GAFT model. From these parameters we estimate the distribution of

the transformed durations, which is needed to calculate the most efficient weighting functions.

Then, in just one additional step the efficient IVLR estimator is obtained.

Our approach identifies the treatment effect in terms of the effect of the quantiles of the

transformed duration. It is therefore not surprising that our approach is also related to quantile

regression. Koenker and Geling (2001) and Koenker and Bilias (2001) use quantile survival

regression to identify the treatment effect as the difference between the two marginal survival

distributions of treated and untreated individuals. It is, however, unclear how these methods

can handle time-varying treatment.

Various other papers consider methods for Instrumental Variable estimation for duration

models that are related to the approach of this paper. We mentioned already the methods

developed by Robins and Tsiatis (1991) and by Bijwaard and Ridder (2005). Recently the

application of the timing-of-events approach, introduced by Abbring and van den Berg (2003)

has emerged. This method identified the causal effect on the hazard rate in a MPH model. The

important identifying assumption is that the time to the treatment randomly varies between the

individuals. Thus, when the timing of the treatment follows a predescribed protocol, as is the

case for the bonus data, the timing-of-events method cannot be used to obtain the treatment

effect. Abbring and van den Berg (2005) show that for a binary time-invariant treatment the
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(fixed) treatment effect on the hazard rate in an MPH model is identified. The treatment

effect can then consistently be estimated based on the behaviour of very short durations. The

practical use of this estimator is limited because very short durations are often ill-recorded.

Chesher (2002) considers an MPH-type model with an endogenous continuous treatment as well

as exogenous variables, a continuous instrument, and a latent variable relating the treatment

and the instrument.

For our empirical application we use data from the Illinois unemployment bonus experi-

ment. These data have been analysed before with increasing sophistication by Woodbury and

Spiegelman (1987), Meyer (1996) and Bijwaard and Ridder (2005). In this experiment a group

of individuals who became unemployed during four months in 1984 were divided at random

in three groups of about equal size: two bonus groups and a control group. The unemployed

in the claimant bonus group qualified for a cash bonus if they found a job within 11 weeks

and would hold this job for at least four months. In the employer bonus group, the bonus was

paid to their employer. The members of the two bonus groups were asked whether they were

prepared to participate in the experiment. About 15% of the claimant bonus and 35% of the

employer bonus groups refused participation. The reason for this refusal is unknown, and it

is very likely that the decision to participate is related to the unemployment duration. This

makes the indicator of being eligible for a bonus an endogenous treatment variable.

The outline of the article is as follows. Section 2 provides the definition of treatment effect in

the Generalized Accelerated Failure Time model. We also discuss identification. Section 3 pro-

vides the intuition behind the Instrumental Variable Linear Rank estimator that is introduced

in Section 4. We prove the consistency and asymptotic normality of the estimator and discuss

the efficiency and the practical implementation of the IVLR. In Section 5 we apply the IVLR

estimator to estimate the treatment effect of a re-employment bonus based on the Illinois bonus

experiment. We conclude with a summary of the proposed procedure and empirical results, and

discuss avenues for further research.

2 Treatment effects in Duration Models

We consider the population of individuals flowing into unemployment, and the durations these

individuals subsequently spend in unemployment. Each individual is either assigned to a pre-

described treatment protocol or to a control group. Thus, we know for each individual when

the treatment is turned on or off. We are interested in the causal effect of the treatment on the
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unemployment duration.

It can rarely be defended that a study on unemployment durations includes all the relevant

characteristics of the individuals looking for a job. For example, consider a study on the effect

of a re-employment bonus on finding a job within a certain period. Because such a bonus

increases the reward of leaving unemployment it gives an incentive to search more intensively

and therefore it is expected to increase the re–employment hazard. However, the search intensity

of the unemployed individuals is usually not observed.

Suppose that the unemployed have to choose at the start of their unemployment spell

whether they want to be eligible for a bonus. If they choose to be eligible they have to fill in

some forms, notify their new employer and provide a proof that they held that job for at least 4

months. Thus, joining the bonus program implies some administrative duties and cooperation

with their new employer for the unemployed. This might refrain some individuals from joining

(as we see in our application). It is very likely that the unobserved motivation to return to work

has an impact on both the decision to be eligible for a bonus and the search intensity. This

makes the indicator of joining the bonus program an endogenous variable. Without adjusting

for this (self)-selection standard duration analysis give biased results of the effect of the bonus

on unemployment duration.

A way of adjusting for an endogenous treatment is the conventional instrumental variable

assumptions of instrument–error independence and an exclusion restriction. A familiar example

of an instrumental variable is a randomly assigned treatment for a policy in which the actual

treatment still depends on a decision by the agents (or on decisions made by those who execute

the program). For instance, long–term unemployed can be randomly assigned to a training

program, but for many programs they can still decide not to join, or the training manager

can decide to withhold some training from some people. Then, the assignment indicator is an

instrument for the actual indicator of training received.

Complications arise if the outcome variable of interest is a duration variable, like the un-

employment duration. Models for duration data are usually non-linear. In general the value of

the treatment variable may depend on information that accumulates during the evolution of

the duration. The common approach to accommodate such time-varying variables is to relate

them to the hazard rate or survival rate. Another reason not to consider the effect on the mean

is that duration data are usually (right)-censored, due to a limited observation window. The

hazard rate and survival rate are invariant to censoring. We shall define the treatment effect
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in terms of a change in the quantiles of the distribution based on a Generalized Accelerated

Failure Time Model.

2.1 The Generalized Accelerated Failure Time Model

The key variables in duration analysis are the duration till the next event, T , and the indicator of

censoring, δ. The observed durations may be right–censored, i.e. we observe T̃ = min(T, C) with

C the censoring time. The possible time–varying treatment indicators are given by the vector

Di(t) where i refers to a member of the population. The path of the treatment is predetermined.

Thus D(t) = {D(s); 0 ≤ s ≤ t} does not depend on future, after t events.

Two competing approaches for the analysis of duration data has been the (Mixed) Propor-

tional Hazard (MPH) model and the Accelerated Failure Time (AFT) model. The MPH model

assumes that the hazard, the instantaneous probability of an event at duration t, given that no

event occurred before t can be written as

λ(t|D(t), V ) = vλ0(s;α)eγD(t)

where λ0(t) represents the baseline hazard, that is, the duration dependence of the hazard

common to all individuals. The treatment affect, eγ
′D(s), and the unobserved heterogeneity

,V , enter the hazard proportionally. The integrated hazard, Λv(t) =
∫ t

0
λ(s|D(s), V ) ds =

v
∫ t

0
λ0(s;α)eγD(s) ds is unit exponentially distributed, E(1) and therefore the MPH model is

also equivalent to
∫ t

0

λ0(s;α)eγD(s) ds ∼ E(1)

V
(1)

Thus the distribution of Λ(t) =
∫ t

0
λ0(s;α)eγ

′D(s) ds is a mixture of exponential distributions.

The AFT model assumes that the survival function of an individual with covariate pathD(t)

is related to the survival function of the untreated individual, the individual with D(t) = 0, by

S
(

t|D(t)
)

= S0

(

∫ t

0

eγ
′D(s) ds

)

with S0(·) is the survival function of the untreated individual. Let T0 be the duration of an

untreated individual. If the treatment is time-invariant then an AFT model implies that the

distribution of TD, the duration of an individual with treatment D, and the distribution of

e−γ
′DT0 are the same. Thus, the treatment D accelerates, γ < 0, or decelerates, γ > 0 the

duration. This is equivalent with a linear regression model for the log-duration

ln(T ) = −γ′D + ǫ
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where ǫ is a random variable with same distribution as ln(T0).

A class of duration models that generalizes the AFT models in such a way that it also in-

cludes the MPH models is the Generalized Accelerated Failure Time (GAFT) model, introduced

by Ridder (1990). The GAFT model is not specified by the distribution of the log-duration.

Instead, we transform the duration, and assume that this transformed duration has some distri-

bution. The transformation of the duration is related to the integrated hazard in a PH-model.

The GAFT model is related to the generalized regression model proposed by Han (1987).

The GAFT model assumes that the relation between the duration T and the treatment is

specified as
∫ T

0

λ(s;α)eψ(s,D(s),γ) ds = U = h
(

T,D(T ), θ
)

(2)

where λ(t;α) is a non–negative function on [0,∞) and ψ(t, D(t), γ) is the treatment function

with treatment coefficient (vector) γ and θ = (α′, γ′)′. For the true population parameter-vector

θ0 we have U0 = h
(

T,D(T ), θ0
)

. We assume that the treatment is a binary variable that only

changes at predescribed durations and that the treatment effect may change over the duration.

Then a flexible functional form for ψ is

ψ(t, D(t), γ) =
J

∑

j=0

γj ·Dj · Ij(t) (3)

where Ij(t) = I(tj < t ≤ tj+1) with t0 = 0 and tJ+1 = ∞.

A flexible functional form for λ is the piecewise constant function. The GAFT model is

characterized by these functions and by the distribution of the non–negative random variable

U0. We denote the survivor function of U0 by G0(u), which does not depend on the treatment,

and its hazard function by κ0(u). We assume that the distribution of U0 is absolutely continuous.

The semi–parametric estimators considered in this article avoid assumptions on the distribution

of U0.

As mentioned, the GAFT model contains as special cases the AFT, the PH and the MPH

models. The AFT model restricts the transformation to λ(t;α) ≡ 1, but leaves the distribution

of U0 unrestricted (with the exception of that U0 should be non–negative, see e.g. Cox and

Oakes (1984)). The (M)PH model restricts the distribution of U0, but leaves the λ unrestricted

(non–negative). The distribution of U0 is an unit exponential distribution (PH) or a mixture of

exponential distributions (MPH). A convenient assumption is that the unobserved heterogeneity

has a gamma distribution with variance σ2. Then, U0 has a Burr distribution with density

g0(u) = (1 + uσ2)−1−1/σ2
, mean 1/(1 − σ2) and hazard function (1 + uσ2)−1.
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2.2 Counterfactual analysis

We model the causal effect of the treatment on the unemployment duration using the potential-

outcome framework, as formulated by Holland (1986) for static interventions, and extended by

Robins (1986) to time-varying interventions.

Equation (2) implicitly defines the outcome, i.e. duration, distributions for the treatment

and control groups. We indicate these regimes by the subscripts (1) and (0), respectively. The

outcome distributions for the two regimes for T ∗
(1), T

∗
(0) are given by

U∗
(0) =

∫ T ∗

(0)

0

λ(s;α0) ds (4)

U∗
(1) =

∫ T ∗

(1)

0

λ(s;α0)e
ψ(s,1;γ0)ds (5)

The fundamental assumption that assures identification is that U∗
(0) and U∗

(1) have the same

distribution. They may be dependent, but the joint distribution is only identified in special

cases and not of particular interest. A special case is that U∗
(1) ≡ U∗

(0). In that case there is a

deterministic relation between the outcomes in the two regimes and,

∫ T ∗

(0)

0

λ(s;α0)ds =

∫ T ∗

(1)

0

λ(s;α0)e
ψ(s,1;γ0)ds (6)

This model corresponds, but is not identical to the Rank Preserving Structural Failure Time

(RPSFT) model of Robins and Tsiatis (1991). In the RPSFT model T ∗
(0)i is the potential

duration of individual i, if she/he was never to receive the treatment. Thus, Robins and Tsiatis

think of T ∗
(0)i is the baseline duration for the never treated, as a pre–treatment characteristic

of the individual. An example of an RPSFT model is to assume that

T ∗
(0) =

∫ Ti

0

eψ(s,Di(s);γ0)ds (7)

The outcome model defined in (4) and (5) is also rank preserving. If we consider two individuals

with potential outcomes T ∗
(0)i, T

∗
(1)i, i = 1, 2, then T ∗

(0)1 > T ∗
(0)2 implies T ∗

(1)1 > T ∗
(1)2 and vice

versa. However,

T ∗
(0) 6=

∫ T ∗

(1)

0

λ(s;α0)e
ψ(s,D(s);γ0)ds

∣

∣

∣

ψ(t,D(t);γ0)≡0
(8)

and T ∗
(0) cannot be interpreted as the latent baseline duration. An unattractive feature of the

RPSFT model is that it implies that individuals with the same outcome in the treatment regime

have the same outcome in the no treatment regime, and the other way round. This equality of

counterfactuals is a strong assumption.
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Under the weaker assumption that U∗
(0) and U∗

(1) have the same distribution, the relation in

(6) still holds but now for the quantiles of the outcome distribution. Thus we can interpret the

treatment effect in terms of regressing on the U∗
(0) quantiles. Let tq(0) and tq(1) be the quantiles

of U∗
(0) and U∗

(1) then,

G0

(

h
(

tq(1), 1; θ0

)

)

= 1 − q = G0

(

h
(

tq(0), 0; θ0
)

)

(9)

Hence we obtain a relation between tq(1) and tq(0) that is defined implicitly by

∫ tq(1)

0

λ(s;α0)e
ψ(s,1;γ0) ds =

∫ tq(0)

0

λ(s;α0) ds (10)

This implies that
dtq(1)

dtq(0)
= e−ψ

(

tq(1),D(tq(1));γ0

)

× λ(tq(0);α0)

λ(tq(1);α0)
(11)

In the MPH model we can interpret λ(t) as the baseline hazard, i.e. the factor in the proportional

hazard that captures the (duration) time variation in the hazard function. Thus, in the MPH

model the ratio in (11) can be interpreted as the ratio of baseline hazards.

Note that if the treatment is time-invariant and has a fixed coefficient, ψ(t, D, γ0) = γ0D and

γ0 > 0 then an AFT model would overestimate the treatment effect if λ
(

tq(0);α
)

< λ
(

tq(1);α
)

and underestimate the treatment effect if λ
(

tq(0);α
)

> λ
(

tq(1);α
)

. Hence failure to correct for

variation in λ may bias the treatment coefficient.

It may be instructive to give an example. The hazard or re–employment rate of unemploy-

ment durations often exhibits a spike just before the time that unemployment benefits are

exhausted. This corresponds to a large increase in λ at that spike. Now let us assume that all

unemployed who find a job receive a bonus data and that the bonus has a small impact on

the job finding rate, so that tq(0) > tq(1). If tq(0) is in the spike while tq(1) is not, then the

left–hand side of (11) is greater than one and the AFT treatment effect at tq(1) is negative.

We conclude that if there is (substantial) variation in λ, the uncorrected treatment effects that

can be directly estimated from the marginal outcome distributions are misleading.

2.3 Identification of the GAFT model

In the GAFT model with an exogenous treatment and a log–linear regression function, the

model is characterized by the non–negative function λ(t;α) defined on [0,∞), the distribution

of U0 and the regression parameter γ. Ridder (1990) has shown that if the covariates are time
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constant, all observationally equivalent GAFT models, i.e. models that give the same condi-

tional distribution of T given D, have regression parameters c1γ, integrated transformation

c2

(

∫ t

0
λ0(s;α) ds

)c1
and U0 distribution G0

(

(

u
c2

)1/c1
)

for some constants c1, c2 > 0. The equiv-

alent class follows from the fact that a GAFT model with time constant covariates can be

expressed as a transformation model

ln
(

∫ T

0

λ0(s;α) ds
)

d
= −γD + lnU,

and the constants c1, c2 correspond to addition of ec2 to and division by c1 of the left– and

right–hand sides.

With time–varying covariates, the set of observationally equivalent GAFT models is gener-

ally smaller. In particular, the power transformation that gives an observationally equivalent

model if the covariates are time constant, in general does not result in a GAFT model. As

an example consider the GAFT model with time–varying regressors that differ between two

groups. In group I

D(t) =

{

1 if 0 ≤ t ≤ 1,

0 if t > 1.

and in group II, D(t) = 0; t ≥ 0. Moreover λ0(t;α) = αtα−1. With time constant regressors

the parameter α is not identified. It can be shown that the observationally equivalent GAFT

models have transformation c2t
α and U0–distribution with c.d.f. Gu

(

u
c2

)

. Hence, with time–

varying covariates α is identified (and so is γ).

We conclude that identification depends on whether the covariates are time constant or time–

varying. If the covariates are time constant we can identify the transformation h(T,D(T ); θ)

up to a power and γ up to scale (with the power and the scale being equal). Moreover, if we fix

the power we can identify h(T,D(T ); θ)c1 up to scale and the distribution of U up to the same

scale parameter.

If the covariates are time–varying, we can, except in special cases, identify h(T,D(T ); θ)

and the distribution of U0 up to a common scale parameter. Because we leave the distribution

of U0 unspecified in our estimation method, we can not use restrictions on this distribution to

find the scale parameter. For that reason we normalize h(T,D(T ); θ) by setting h(T, 0; θ) =

1 for some t0 > 0. With time constant regressors we need the same normalisation, but in

addition we need to set one regression coefficient equal to one. Of course, we could choose a

class of transformations that is not closed under the power transformation. This amounts to

identification by functional form.
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Finally, we need a condition on the sample paths of D in the population. If we rewrite (2)

as
∫ T

0

elnλ(s;α)+ψ(s,D(s),γ)ds = U (12)

we require that

Pr
(

lnλ(s;α) + lnψ(s,D(s), γ) = 0
)

= 0 (13)

where the probability is computed over the distribution of D as a random function of t and 0

is the zero function. In other words, lnλ is not collinear with D.

The identification issues in the GAFT model with endogenous treatment are the same as in

the GAFT model with only exogenous variables, except that we need additional assumptions

on the instrument. First, the instrument should only affect the duration through the treatment

and not directly. Second, the value of the instrument should influence the value of the treatment

in a non-trivial way, for example if both the instrument and the treatment are binary Pr(D =

1|R = 1) > 0 and Pr(D = 0|R = 0) > 0.

3 Instrumental Variable estimation for Duration data

If treatment choice is exogenous to the duration, standard techniques for the analysis of survival

time data can be used to estimate the treatment coefficient. For example, we can use a Mixed

Proportional Hazards model and estimate the treatment coefficient using (semi–parametric)

Maximum Likelihood procedures, depending on the assumptions we make about the distribution

of the unobserved heterogeneity, V , and the baseline hazard. If the model is correctly specified

the MLE yields a consistent estimate. However, standard MLE will give biased estimation

results if the treatment choice is endogenous.

3.1 Common solutions to endogeneity in duration models

Consider, for example, a randomized trail with selective compliance to the assigned time-

constant treatment. Let R = 0, 1 be the random assignment and D = 0, 1 the actual treatment.

Since physical randomization implies that at time zero all attributes of the two groups are (in

expectation) identical, a commonly used solution to the endogeneity problem, is to ignore the

post–randomization compliance and rely on the analysis of the treatment assignment groups.

This intention–to–treat analysis replaces the actual treatment D, by the treatment assignment
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indicator R, in the estimation procedure. Further, if the model is correctly specified the esti-

mated treatment coefficients will correspond to the overall effect that would be realized in the

whole population, under the assumption that the compliance rate and the factors influencing

compliance in the sample are identical to those that would occur in the whole population.

The major drawback of the intention–to–treat analysis is that the estimated effect is a

mixture of the population effect and the effect on the compliance. Hence, if the treatment

effectively raises the re–employment hazard, the intention–to–treat measure of this effect will

diminish as non–compliance increases. Another disadvantage is that compliance is very likely

to depend on the perceived effects of the treatment. If, for example, the unemployed know that

being eligible for a re–employment bonus does not stigmatize them, they will be more prone to

participate. Thus, when the pattern of compliance is a function of the perceived efficacy of the

treatment the estimated intention–to–treat will not represent the overall effect of the treatment

had it been adopted in the whole population.

Recently an alternative approach introduced by Abbring and van den Berg (2003) to the

analysis of treatment effects in duration models has emerged. This timing-of-events method

identified the causal effect on the hazard rate in a MPH model. The important identifying

assumption is that the time to the treatment randomly varies between the individuals. Thus,

when the timing of the treatment follows a predescribed protocol, as is the case for the bonus

data, the timing-of-events method cannot be used to obtain the treatment effect.

Abbring and van den Berg (2005) show that for a binary time-invariant treatment the

(fixed) treatment effect on the hazard rate in an MPH model is identified. In the MPH model

the hazard rate is λ(t|D, V ) = vλ0(s;α)eγ
′D. The treatment effect γ can then consistently be

estimated based on the behaviour of very short durations. The practical use of this estimator

is limited because very short durations are often ill-recorded.

When a continuous instrument is available more general models of the treatment effect are

identified. Chesher (2002) considers an MPH-type model with an endogenous continuous treat-

ment D as well as exogenous variables X, a continuous instrument R, and a latent variable

relating D and R. He demonstrates local identification of ratios of the derivatives of the in-

dividual hazard rate with respect to D and R. Abbring and van den Berg (2005) prove that

for an MPH model with perfect compliance in the control group and a binary treatment a

time-varying treatment effect that possibly depends on X is identified.

Our approach to obtain the treatment effect in a duration model is related to rank estimation

12



procedures of Robins and Tsiatis (1991) and of Bijwaard and Ridder (2005). The procedure

of Bijwaard and Ridder (2005) is based on a semi-parametric MPH and requires preliminary

estimates of the baseline hazard. If there is full compliance in the control group these preliminary

estimates can be obtained from the control sample. These estimates are substituted in the

second stage estimation equation. Their 2 Stage Linear Rank Estimator (2SLR) is a device to

reduce the computational burden by dividing the computation into two steps. This is appealing

because in the 2SLR is the solution to a discontinuous estimating function. However, the first

stage of the 2SLR estimator is based on a MPH model for the control group and can only be

estimated if the individuals in that group do not have any possibility to get a treatment.

As discussed in Section 2.2, the procedure of Robins and Tsiatis (1991) is based on the strong

version of the Accelerated Failure Time model. Their model imposes a strong non-interaction

assumption. This implies that if two individuals have the identical observed durations and

observed treatment histories then they would have had identical durations had treatment always

been withheld.

We propose an Instrumental Variable (IV) procedure for duration models that does neither

impose the non-interaction assumption nor requires full compliance in the control group. It

enables us to estimate the treatment effect in terms of change in the quantiles, as defined in

(11). This is accomplished by using a GAFT model that transforms the duration such that for

the true, population, parameter the transformed duration is independent of the instrument.

The intuition behind the idea of transforming can be clarified by considering a simple

example. Suppose we have data from an experiment on a treatment that may reduce unem-

ployment duration. The assignment to treatment is random, but the compliance to the assigned

treatment is selective. If the treatment has no impact on the re-employment hazard the prob-

ability of observing an individual with assigned to treatment, R = 1, among the survivors at

some unemployment duration t is equal to the treatment assignment probability at the start,

Pr(R = 1). However, if the treatment has an effect, say positive, on the hazard this does not

hold, because in that case the treated individuals will find a job faster. But the distributions

of the counterfactual transformed durations U∗
(0) and U∗

(1) are both independent of the treat-

ment assignment. Thus, on the transformed duration time-scale, using the true, population,

parameters, U0 = h
(

T,D(T ), θ0
)

, in the GAFT model in (2) the proportion of the individuals

in assignment group remains the same

Pr
(

R = 1 | U0 ≥ u
)

= Pr
(

R = 1 | T ≥ 0
)

, (14)

13



In other words: the basic assumption underlying the IV estimator is that for the right GAFT

model the distribution of the duration on the transformed time scale is independent of the

instrument. This implies that the hazard of the population transformed duration is independent

of the instrument. This independence only holds for the population parameters and therefore we

can build an estimation procedure that exploits this conditional independence1. Independence

of R and the hazard rate of U0 implies (infinitely) many orthogonality restrictions. For instance,

if we assume independence of the hazard of U0 and R for u ≤ Cu, we can choose Cu so that it

corresponds to a specific quantile of the distribution of U0. In section 4 we explore this moment

conditions that lead to the Instrumental Variable Linear Rank (IVLR) estimator.

3.2 Censoring and endogenous treatment in GAFT

A common feature of duration data is that some of the observations are censored. Assume

the censoring time, C, is (potentially) known. For example, in the analysis of unemployment

duration based on administrative data the duration is often only observed while the individual

receives unemployment benefits. Usually, the maximum duration of receiving benefits is based

on the labor market history of the individual and is recorded in the data. Then, the potential

censoring time is known and the observed durations are T̃ = min(T, C) and ∆ = I(T ≤ C),

where ∆ is one if T is observed.

One is tempted to define the censored transformed durations by the minimum of the

transformed time till (potential) censoring and the transformed time till the event occurs,

Ũ(θ) = min
(

h(T ; θ), h(C; θ)
)

= h(T̃ ; θ). However, with an endogenous treatment censoring

makes some of the orthogonality conditions implied by the independence of the instrument and

the transformed durations fail to hold. This can be illustrated by a simple example: Consider

a fixed censoring time, all individuals have the same maximum duration of receiving benefits.

Then for all individuals, irrespective of their treatment status, censoring occurs at time C.

Suppose that treatment is time-invariant and has a constant treatment function, ψ(·) = γD.

Finally, we assume that except for the treatment parameter, γ, all the parameters of λ are

known. Hence

U0 = eγ0DΛ0(T ) (15)

with Λ0(t) =
∫ t

0
λ(s, α0) ds. Hence, if D = 0 censoring in the transformed time occurs at Λ0(C),

1Here we only concentrate on a static binary instrument and a discrete, but possible time-varying according
to a prescribed protocol, treatment. It is not difficult to extend the analysis to more, discrete, levels of both the
instrument and the treatment and to have a sequential instruments.
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but if D = 1 censoring occurs at eγ0Λ0(C). Thus, if γ0 > 0, then all transformed durations in

the interval [Λ0(C), eγ0Λ0(C)] have D = 1, i.e belong to the treatment group (for γ0 < 0 the

boundaries are reversed). The hazard of U0 on this interval clearly depends on D and hence on

R. The independence of the hazard of U0 and R only holds up to the lower bound of the interval.

This implies that in the IVLR, which exploits this independence, the transformed durations

that fall in the problematic interval have to be censored.

This can be generalized to a model with a time–varying treatment parameter and/or a time–

varying treatment. Assume the piecewise constant structure for the treatment function in (3).

This implies that for a duration in the interval (tk, tk+1], the treatment parameter is eγk . We

define the transformed censoring time CU(θ) such that: (a) T ≥ C implies h(T ; θ) ≥ CU(θ) and

(b) U0 and R are independent on the interval bounded above by CU(θ).

Note that we either observe T ≤ C and ∆ = 1, or T > C and ∆ = 0. The transformed

censoring times (conditional on T, C > tk) that take all these considerations into account are

the sum of the transformed duration up to tk, h(tk; θ) and the censoring adjustment, i.e

CU(θ) =

{

∫ C

0
λ(s;α)P (s; γ) ds if T > C,

∫ T

0
λ(s;α)P (s; γ) ds+

∫ C

T
λ(s;α) ds if T ≤ C.

(16)

where P (s; γ) = I(s ≥ tk)
∏k

j=0 min(eγj , 1). From the last term on the right–hand side of (16)

we see why we need to know C even for the uncensored observations. Otherwise we can not

compute CU(θ) for these observations. We can estimate the treatment coefficient γ and the

parameters of λ from the following observed data

Ũ(θ) = min
(

U(θ), CU(θ)
)

, ∆U (θ) = I
(

U(θ) < CU(θ))

Now Ũ(θ0) is independent of R for ∆U(θ0) = 1. Note that if, at least, one of the γ’s is different

from zero, we introduce extra censoring on the transformed durations, because then some units

with ∆ = 1 have ∆U(θ) = 0.

4 Instrumental Variable Linear Rank Estimation

In this section we introduce the Instrumental Variable Linear Rank (IVLR) estimator of

the GAFT model. The estimator is based on independence of the transformed durations

{Ũ(θ0),∆
U(θ0)} and R. The IVLR is motivated by (14) and is defined on the possibly cen-

sored durations Ũ(θ).
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4.1 The IVLR estimator

For the population parameter vector θ0 the hazard of U0, κ0(u), is independent of the instrument

history up to h−1
0 (u). This independence can be used to construct test statistics close to the

linear rank test (see Prentice (1978)).2 The IVLR also exploits this independence and is the

estimation procedure derived from these rank tests.

The data is a random sample T̃i,∆i, Di(Ti), Ri, i = 1, . . . , N . For some θ this random sample

can be transformed to Ũi(θ),∆
U
i (θ), D

U

i

(

Ũi(θ)
)

, i = 1, . . . , N and this is the sample that is used

in the statistic

Sn(θ;W ) =
n

∑

i=1

∆U
i (θ)

{

W
(

Ũi(θ), Ri

)

−W
(

Ũi(θ)
)

}

(17)

where

W
(

(Ũi(θ)
)

=

∑n
j=1 I

(

Ũj(θ) ≥ Ũi(θ)
)

W
(

Ũi(θ), Rj

)

∑n
j=1 I

(

Ũj(θ) ≥ Ũi(θ)
) ,

the average of the weight function evaluated at Ũi(θ) among the individuals still under ob-

servation at that (transformed) duration. Note that we used ∆U
i (θ) instead of ∆i to assure

independence of the instruments and the transformed durations for all uncensored observa-

tions. The estimating equation that defines the IVLR estimator contains a left–continuous

weight function W . The dimension of W is greater than or equal to the dimension of θ0. The

weight function may depend on Ũi(θ) and R. The variance of the IVLR estimator depends on

W and in section 4.2 we discuss the optimal choice of this function.

The interpretation of Sn(θ;W ) is that it compares the weight function for a transformed du-

ration that ends at Ũi(θ) to the average of the weight functions at that transformed duration for

those individuals that are still under observation. The independence suggests that the difference

of the weight function for individual i and the average weight function for the individuals still

under observation is zero at the population parameter value θ0. In large samples this is correct

if we choose for instance W
(

Ũi(θ), Ri

)

= Ri, because for θ = θ0 the transformed duration U0

is independent of Ri. For θ = θ0 the transformed durations U0i are identically distributed and

this implies that the rank statistic is zero in large samples for this choice of W .

The expression for the rank statistic simplifies if we order the observations by increasing trans-

formed duration

Ũ(1)(θ) ≤ Ũ(2)(θ) ≤ . . . ≤ Ũ(N)(θ)

2Hausman and Woutersen (2005) derive an instrumental variable estimator based on Kendall’s rank-
correlation for the MPH model.
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In the ordered transformed durations we obtain

SN(θ,W ) =
N

∑

i=1

∆U
(i)(θ)

{

W
(

Ũ(i)(θ), R(i)

)

−
∑N

j=iW
(

Ũ(i)(θ), R(j)

)

N + i− 1

}

(18)

The function SN is not continuous in θ. The points of discontinuity are values of θ that make

e.g. Ũ(k)(θ) and Ũ(k+1)(θ) equal. If ∆(k)(θ) = ∆(k+1)(θ) = 1, the discontinuity is

W
(

Ũ(k)(θ), R(k+1)

)

−W
(

Ũ(k)(θ), R(k)

)

N − k
(19)

and this goes to 0 if N increases. Lemma 1 in the appendix shows that SN is asymptotically

equivalent to a linear (and hence continuous) function in θ.

Thus, the statistic Sn(θ;W ) has mean zero at the population parameters and, therefore,

we base our estimator on the roots of Sn(θ;W ) = 0. However, the estimating functions are

discontinuous, piecewise constant, functions of θ and a solution may not exist. For that reason

we define the Instrumental Linear Rank estimator (IVLR) θ̂n(W ) as the minimizer of the

quadratic form, i.e.

θ̂n(W ) = inf{θ | Sn(θ;W )′Sn(θ;W )} (20)

If Sn(θ;W ) were differentiable with respect to θ, then asymptotic normality can be proved

using Taylor series expansion in a neighborhood of θ0. Tsiatis (1990) showed that, if Sn(θ;W )

is not differentiable, as in the current problem, we can still use a linear approximation of

n−1/2Sn(θ;W ). Using this approximation and the asymptotic normality of Sn(θ0;W ), we can

show that
√
n(θ̂n(W )−θ0) is asymptotically normal. Let a(u; θ0) be the probability limit of the

average weight function (see assumption C6 in the appendix) evaluated at u, C0 the transformed

censoring time for θ = θ0. The asymptotic properties of the IVLR estimator are summarized

in the following two theorems that use the following terms: Let di0(u) the derivative of the

hazard of U(θ) w.r.t. θ evaluated at θ = θ0 and V (u, θ) is the probability limit of the covariance

between di0(u) and W (u,Ri) at u. The assumptions are given in the appendix.

Theorem 1 (Consistency).

If assumptions C1 to C7 hold θ̂n(W ) converges in probability to θ0.

Proof: See the appendix.

Theorem 2 (Asymptotic Normality).
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If assumptions C1 to C9 hold and Q(W ) has full rank, then

√
n(θ̂n(W ) − θ0)

d→ N
(

0, Q−1(W )Ω(W )Q′−1
(W )

)

(21)

where

Ω(W ) =

∫ C0

0

a(u; θ0)κ0(u) du (22)

is the asymptotic variance of n−1/2Sn(θ0;W ) and,

Q(W ) =

∫ C0

0

V (u, θ0) du (23)

the limiting covariance matrix of the processes W (u,Ri) and di0(u)/κ0(u).

Proof: See the appendix.

4.2 Efficiency of the IVLR estimator

Many different choices of the weight functions lead to consistent estimates of the parameters. By

properly choosing the weight function the asymptotic variance of the IVLR can be minimized.

Tsiatis (1990) has shown that for the AFT model with exogenous covariates weight functions

proportional to uκ′0(u)/κ0(u)X minimize the asymptotic variance of the estimated regression

parameters. In general the distribution of U0 is unknown. This distribution can, however, con-

sistently be estimated from the implied U from any IVLR with a weight function not involving

these functionals.

The IVLR estimation is based on a vector of mean restrictions on weight functions of the co-

variates, instrument and the transformed durations. GMM estimation is also based on moment

conditions and in GMM estimation it is feasible to get the most efficient GMM estimator in just

two steps. A similar reasoning applies to the IVLR-estimator. This justifies an adaptive con-

struction of an efficient estimator. In the next section we address the practical implementation

of an adaptive estimation procedure. First, we introduce the optimal weight function.

Theorem 3 (Optimal weight function in IVLR).

The weight–function that gives the smallest asymptotic variance for θ̂n(W ) is

Wopt(u,R)) ∝ di0(u)

κ0(u)
(24)

The asymptotic covariance matrix of the optimal IVLR estimator reduces to

Ω−1(Wopt) = Q−1(Wopt). (25)
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Proof of theorem 3. From

1√
n

(

Sn(ϑ0;W )
Sn(ϑ0;Wopt)

)

d→ N

(

0,

(

Ω(W ) Q(W )′

Q(W ) Ω(Wopt)

))

follows that the matrix

Z =

(

Ω(W ) Q(W )′

Q(W ) Ω(Wopt)

)

is non–negative definite, the same is true for its inverse. In particular, the submatrices on the

main diagonal of the inverse are non-negative definite. Hence the matrix

Q−1(W )Ω(W )Q′−1
(W ) − Ω−1(Wopt)

is a non-negative definite matrix.

Consider, for example, a GAFT model with a piecewise constant λ function,

λ(t, α) =
J

∑

j=0

eαjI(tj < t ≤ tj+1) (26)

with t0 = 0 and tL+1 = ∞ and the hazard on the last interval is normalized to 1, αL = 0.

Assume that the model has a constant treatment coefficient then by (24) the optimal weight

functions are

Wopt,αj
=

(

1 + u
κ′0(u)

κ0(u)

)

·
(

RI1
j (u) + (1 − R)I0

j (u)
)

+ (27)

+R

[

(

1 + uκ0(u)
)f0(u|1, R) − f0(u)

f0(u)
+ u

f ′
0(u|1, R) − f0(u)

f0(u)

]

I1
j (u) +

+ (1 −R)

[

(

1 + uκ0(u)
)f0(u|0, R) − f0(u)

f0(u)
+ u

f ′
0(u|0, R)− f0(u)

f0(u)

]

I0
j (u)

Wopt,γ = R

[

1 + u
κ′0(u)

κ0(u)

]

+ (28)

+R

[

(

1 + uκ0(u)
)f0(u|1, R) − f0(u)

f0(u)
+ u

f ′
0(u|1, R) − f0(u)

f0(u)

]

where f0(u|D,R) is the density of U0 given D and R, f ′
0(·) is the derivative of the density and

IDj (u) = I
(

mj(D) < u ≤ mj+1(D)
)

for

mj(D) =

∫ tj

0

λ(s, α)eγD ds
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4.3 Estimation in practice

The statistic Sn(θ;W ) is a multi–dimensional step–function. Therefore, the standard Newton–

Raphson algorithm cannot be used to solve (20). One of the alternative methods for finding a

zero of a non–differentiable function is the Powell-method. This method is a multidimensional

version of the Brent algorithm, see Press et al. (1986, §10.5) and Powell (1964).

Related to the computation of optimal weight function is the estimation of the variance

matrix for an arbitrary weight function.3 The difficulty in estimating the covariance matrix lies

in the calculation of the matrix Q(W ) and not in the calculation of the variance matrix of the

estimating equation. The latter can be consistently estimated by

Ω̂ =
1

n

n
∑

i=1

∆U
i (θ̂)

[

W
(

u,Ri

)

−W (u, θ̂)
][

W
(

u,Ri

)

−W (u, θ̂)
]′

(29)

The optimal weight functions, the covariance matrix and the most efficient estimators are

estimated in two steps. The first step consists of obtaining a consistent estimate of θ0 using a

weight function that does not depend on the distribution of U0. For the example of a GAFT

model with a piecewise constant λ and a time-invariant treatment coefficient, a choice for the

weight functions are Ij(u) and R. The transformed durations for these parameter values are

estimates of the unobserved population transformed durations. The second step concerns the

estimation of the unknown distribution of U0. Many different methods are available to get a

reasonable estimate of an unknown distribution. We shall not apply the commonly used kernel

based method. Although kernel–smoothed hazard rate estimators have been developed and

adjusted to deal with the boundary problems inherent to hazard rates these methods can be

difficult to implement due to the choice of the bandwidth. It is also unclear how the boundary

corrections can be incorporated in the kernel estimates of the derivative of the hazard. We

therefore choose to use a series approximation of the distribution.

Suppose the distribution of U0 can be approximated arbitrary well using orthonormal poly-

nomials. We base our approximation on Hermite polynomials using the exponential distribution

as a weighting function:

g0(u) =
ae−au

∑L
l=0 b

2
l

[

L
∑

l=0

blLl(u)
]2

(30)

3Robins and Tsiatis (1991) suggested to use a numerical derivative of n−1Sn(θ; W ) that does not need an
estimate of the optimal W–function to get Q̂(W ). This numerical derivative is sensitive to the choice of the
difference in θ. We found it hard to get stable results.
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where

Ll(u) =

l
∑

k=0

(

l

k

)

(−au)k
k!

(31)

are the Laguerre polynomials. The unknown parameters of this approximation are a and

b0, . . . , bL. If bl ≡ 0 for all l > 0 the distribution of U0 is exponential. Even for L as small

as three (30) allows for many different shapes of κ0(u) and its derivative. Both can be derived

analytically given the estimates of the parameters. The parameter estimators can be obtained

from standard maximum likelihood procedures on the observed (Ũi(θ̂n(W )),∆i).

If a consistent but inefficient estimator θ̂n(W ) of θ0 is available and we have estimated the

parameters of the polynomial approximation of the distribution of U0 we can obtain an efficient

estimator θ̂opt in just one additional step. From the linearization of the estimating equations,

given in (43) in the appendix, we obtain an efficient estimator from

θ̂opt = θ̂n(W ) − Q̂(W )−1Sn(θ̂n(W );Wopt)/n (32)

This procedure is related to obtaining an efficient GMM estimator in two steps from a consistent,

but possible, inefficient GMM estimator. It also possible to obtain the efficient estimator directly

from minimizing the quadratic form. However, this involves again the minimization of a multi–

dimensional step function.

5 Application to the Illinois Re-employment Bonus Ex-

periment

Between mid–1984 and mid–1985, the Illinois Department of Employment Security conducted

a controlled social experiment.4 This experiment provides the opportunity to explore, within a

controlled experimental setting, whether bonuses paid to Unemployment Insurance (UI) ben-

eficiaries or their employers reduce the time spend in unemployment relative to a randomly

selected control group. In the experiment, newly unemployed claimants were randomly divided

into three groups: a Claimant Bonus Group, a Employer Bonus Group and, a control group.

The members of both bonus groups were instructed that they (Claimant group) or their em-

ployer (Employer group) would qualify for a cash bonus of $500 if they found a job (of at

least 30 hours) within 11 weeks and, if they held that job for at least four months. Each newly

4A complete description of the experiment and a summary of its results can be found in Woodbury and
Spiegelman (1987).
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unemployed individual who was randomly assigned to one of the two bonus groups had the

possibility to refuse participation in the experiment.

Woodbury and Spiegelman (1987) concluded from a direct comparison of the control group

and the two bonus groups that the claimant bonus group had a significantly smaller average

unemployment duration. The average unemployment duration was also smaller for the employer

bonus group, but the difference was not significantly different from zero. These results are

confirmed in table 1. Note that the response variable is insured weeks of unemployment. Because

UI benefits end after 26 weeks, all unemployment durations are censored at 26 weeks. In table 1

no allowance is made for censoring. In the table we distinguish between compliers, those who

agreed to be eligible for a bonus if assigned to a bonus group, and non-compliers. We see that

the claimant bonus only affects the compliers and that the average unemployment duration of

the non-compliers and the control group are almost equal.

Table 1: Average unemployment durations:control group and (non-)compliers.

Control Claimant Employer
Group Bonus Bonus

All Compl. Non-compl. All Compl. Non-compl.

Benefit
weeks

18.33 16.96 16.74 18.18 17.65 17.62 17.72

(0.20) (0.20) (0.22) (0.50) (0.21) (0.26) (0.35)
N 3952 4186 3527 659 3963 2586 1377

standard error of average in brackets.

About 15% of Claimant group and 35% of the employer group declined participation. The

reason for this refusal is unknown. Bijwaard and Ridder (2005) showed that the participation

rate is significantly related to some observed characteristics of the individuals that also influence

that re–employment hazard. Hence, we cannot exclude the possibility of unmeasured variables

that affect both the compliance decision and the re–employment hazard. Meyer (1996) ana-

lyzed the same data with a PH model with a piecewise constant baseline hazard. He used the

randomization indicator instead of the actual bonus-group agreement indicator as an explana-

tory variable. Thus he used the ITT estimator. He found a significantly positive effect of the

claimant bonus. However, as shown by Bijwaard and Ridder (2005), the ITT has a downward

bias.

We calculate the IVLR estimate of the effect of the claimant and employer bonus on the

unemployment duration in a GAFT model and compare these estimates with the IVLR esti-

mates of an AFT model, with ITT estimates in an MPH model and the ML estimates of an
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MPH model that ignores the endogeneity of the decision to participate in the bonus group.

We consider the two interventions separately: thus Claimant Bonus group versus Control group

and Employer Bonus group versus Control.

We consider two alternative specifications for the treatment function of the bonus on unem-

ployment duration: (i) constant treatment function and, (ii) a change in the treatment function

after 10 weeks, in line with the end of the eligibility period of the bonuses. Thus, the implied

transformed durations are

U(θ) =

∫ T

0

λ(s;α)e(γ1I1(s)+γ2I2(s))Dds (33)

with I1(t) = I(0 ≤ t < 11) and I2(t) is its complement. We employ two different specifications

for λ(t;α0): (i) AFT model, i.e. λ(t;α0) ≡ 1; and (ii) GAFT model with a piecewise constant

λ on six intervals 0–2, 2–4, 4–6, 6–10, 10–25 and 25 and beyond.

For identification we need to set one of the parameters of the piecewise constant λ equal to

one (or the log equal to zero). We let the base interval, the interval on which λ = 1, start on

the last week before the end of the observation period, at 25 weeks. This allows us to capture

the spike in the observed unemployment duration just before the UI eligibility period ends. The

end of the UI eligibility period, at 26 weeks, is for all individuals the same and thus provides

the potential censoring time.

For both the AFT and the GAFT specifications we estimate a first stage IVLR using the

Powell-method and the one step optimal IVLR. The first stage IVLR uses the values of the

bonus group assignment indicator (constant treatment function) or the bonus group assignment

indicator times the interval indicators on the transformed duration, R · I1(u) and R · I2(u)
(time-varying treatment function) and, (only for the GAFT-model) the interval indicators on

the transformed duration, Ij(u) as the weight functions. From these first stage IVLR’s the

implied transformed duration are obtained. Then, we estimate the parameters of the polynomial

approximation of the distribution of U conditional on R and D as mentioned in section 4.3.

From these estimated parameters we calculate the hazard and its derivative of the transformed

duration. These functions are then used as inputs to derive the optimal weight functions (see

Theorem 3), which in turn are necessary to calculate the covariance matrix. We also calculate

the 1-step efficient estimates with these optimal weight functions. In the case of a constant

treatment function, the optimal weight function are given in (27) and (28). For a time-varying

treatment function the optimal weight function in (28) is more complicated and therefore not
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spelled out here.

Table 2: Instrumental Variable Linear Rank estimates for the coefficient of the Bonus
Claimant group

Constant effect
AFT GAFTa MLE ITT

First stage 0.1446 0.1024 - -
(0.0493) (0.0523) - -

1–step optimal 0.1596 0.0932 0.1039 0.1117
(0.0460) (0.0380) (0.0285) (0.0303)

Time varying effect
First stage
0-10 0.2955 0.1433 - -

(0.0523) (0.0907) - -
10+ -0.0720 0.0063 - -

(0.0608) (0.0886) - -
1–step optimal
0-10 0.3865 0.1439 0.1601 0.1516

(0.0486) (0.0578) (0.0361) (0.0378)
10+ -0.0437 -0.0411 - -

(0.0572) (0.0850) - -

Employer group

Constant effect
AFT GAFTa MLE ITT

First stage 0.1011 0.0721 - -
(0.0646) (0.0470) - -

1–step optimal 0.1332 0.0696 0.0387 0.0516
(0.0612) (0.0425) (0.0318) (0.0307)

Time varying effect
First stage
0-10 0.2304 0.1103 - -

(0.0710) (0.0736) - -
10+ -0.0783 -0.0048 - -

(0.0836) (0.1253) - -
1–step optimal
0-10 0.6334 0.1279 0.0881 0.0800

(0.0674) (0.0521) (0.0402) (0.0384)
10+ 0.0330 -0.0747 - -

(0.0745) (0.0882) - -
a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25,
25 →; Notes: Standard error in brackets.

The estimation results for the bonus effects are reported in Table 2. The results for the

piecewise constant λ can be found in Table 3. A comparison of the results that AFT overesti-
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Table 3: Estimated λ in GAFT model for the Bonus data
Claimant

Constant Bonus effect Time varying Bonus effect
interval first opt. first opt.
0–2 0.8098 0.7500 0.8625 0.9328

(0.4638) (0.2052) (0.5262) (0.2409)
2–4 0.3146 0.2348 0.3542 0.2309

(0.3691) (0.1462) (0.4048) (0.1799)
4–6 -0.0782 -0.0415 -0.0390 0.0318

(0.2646) (0.1220) (0.3015) (0.1552)
6–10 -0.2743 -0.1859 -0.2341 -0.2085

(0.2392) (0.1133) (0.2807) (0.1369)
10–25 -0.6868 -0.6655 -0.6077 -0.6345

(0.1626) (0.1006) (0.1758) (0.1261)
Employer

Constant Bonus effect Time varying Bonus effect
interval first opt. first opt.
0–2 0.7095 0.8929 0.7088 0.5647

(0.3063) (0.1450) (0.4375) (0.1716)
2–4 0.2540 0.4451 0.2542 0.1464

(0.2134) (0.0939) (0.3344) (0.1227)
4–6 -0.1217 -0.1178 -0.1195 0.0875

(0.2008) (0.0925) (0.2330) (0.1050)
6–10 -0.4552 -0.2707 -0.4526 -0.4098

(0.1516) (0.0751) (0.2255) (0.0975)
10–25 -0.7492 -0.6826 -0.7180 -0.6057

(0.0971) (0.0372) (0.1015) (0.0491)

Notes: Standard error in brackets.
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mates the effect and that both ML and ITT estimators underestimate the effect of the employer

bonus. The results clearly indicate that the bonuses only influence the chances to find a job in

the first ten weeks. This is in line with the bonus eligibility period: those who find a job after

that period would not get the bonus. The effect of the Claimant Bonus increases from about

10% higher probability to find a job at every unemployment duration to about 15% higher

probability to find a job in the first ten weeks (and no effect thereafter). The bonus for the Em-

ployer group raises the job finding probability with about 7% at every unemployment duration

or with about 12% in the first ten weeks of unemployment. From Table 3 we can derive that

the shape of the estimated λ’s indicate a U–shaped λ.

An indication that the AFT is not the right model is the difference between the first stage

and one–step optimal estimators for the AFT model. For a correctly specified model both

estimators are consistent and, therefore, do not differ much. In the GAFT model the first stage

and one–step estimator are of the same magnitude. The estimated standard errors of the latter

are, as expected, substantially lower in most situations.

In the GAFT (and AFT) model the treatment effect of the bonus is defined in terms of

the change in the quantiles dtq(1)/dtq(0) , see (11). In an AFT model with a time-constant

treatment coefficient for the bonus the treatment effect is constant. In a GAFT model the λ

function influences the treatment effect. Using the distribution of U0, already calculated to

estimate the optimal IVLR and the variance-covariance matrix, we can derive the treatment

effect of the bonus in the GAFT depending on the quantile of the distribution. In Table 4 we

present the effect for the 80%, 60% and 40% survival, together with the AFT treatment effect

(first stage). Figure 1 and Figure 2 depict the change over the survival quantile of the treatment

effect of the bonus in the GAFT model.
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Table 4: Effect of the Bonus on the length of unemployment duration

Claimant Employer

Constant Time-varying Constant Time-varying
AFT 0-10 0.865 0.744 0.904 0.794

10+ 0.865 1.075 0.904 1.081
GAFT reference individual
80% tq(0) 3.9 3.7 2.8 4.3

tq(1) 3.5 2.9 2.5 3.7
effect 0.911 0.866 0.933 0.823

60% tq(0) 12.8 12.6 8.9 12.7
tq(1) 10.4 9.4 7.8 10.0
effect 0.911 0.571 0.933 1.078

40% tq(0) 25.7 25.7 20.7 24.3
tq(1) 22.8 23.1 18.3 22.5
effect 1.772 1.973 0.933 1.078
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Figure 1: Treatment effect of Bonus on quantiles of unemployment duration, constant treatment
coefficient
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Figure 2: Treatment effect of Bonus on quantiles of unemployment duration, treatment coeffi-
cient that changes after 10 weeks
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Note that an effect smaller than one indicates that the bonus decreases the duration till

re-employment and an effect bigger than one increases the duration. We see from the table

(and more pronounced in Figure 1 ) that even for a time-constant γ the effect of the bonus on

the unemployment duration in the GAFT changes with the duration. The huge spike in the

effect at the survival quantile of 40% for the claimant group is because re–employment rate

of unemployment durations exhibits a spike just before the time that unemployment benefits

are exhausted at 25 weeks. For the individuals in the control group the 40% survival time is

just before 26 weeks, while in the claimant bonus group it is at 23 weeks. Thus the control

group individuals are in the re-employment spike while the claimant bonus group are not. The

interval boundaries of the other intervals of λ also cause, although not as pronounced, spikes.

These spikes are downward because the λ is jumping to a lower level at these boundaries. The

spikes are also visible in the effect of a time-varying coefficient of the bonus, see Figure 2. Here,

the change in γ at a duration of 10 weeks, after which the coefficient is negative, is reflected is

a upward shift of the effect curve.

6 Conclusion

In this article we proposed and implemented an instrumental variable estimation procedure to

estimate treatment effects for duration outcomes based on a Generalized Accelerated Failure

Time (GAFT) model. The GAFT model is based on a transformation of the durations that

encompasses both the Accelerated Failure Time (AFT) and the Mixed Proportional Hazards

(MPH) model. The interpretation of the treatment effect in the GAFT model is in terms of

shifting the quantiles of the distribution.

The proposed Instrumental Variable Linear Rank (IVLR) estimation procedure is based

on the inverse of an extended rank-test. It exploits that for the population parameters any

(weight)function of the instrument is independent of the distribution of the transformed dura-

tions. It implies that the expected difference between the value of the weight function to the

average of the weight functions for those individuals that are still under observation on the

transformed duration scale is zero. The estimation procedure is related to the Rank Preserving

Structural Failure Time Model estimator of Robins and Tsiatis (1991). The main difference

with the RPSFT-model is that it assumes an AFT model while the IVLR allows for the more

general GAFT-model, that includes duration dependence. The procedure is also related to the

2 stage Linear Rank (2SLR) estimation procedure of Bijwaard and Ridder (2005). The 2SLR
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assumes an MPH model and is a 2-steps procedure, while the IVLR is a one-step procedure.

The IVLR is based on a vector of mean restrictions and, therefore, it is related to the well-

known GMM estimation procedure. Similar to the GMM estimation choosing the right weight

functions can improve the efficiency. However, again similar to the GMM, these optimal weight

functions are not directly observable. Fortunately, an adaptive (or even 2 step) procedure can

provide the efficient IVLR. We show that a counting process framework simplifies the derivation

and interpretation of the IVLR. The counting process framework also enables us to derive the

large sample properties of the IVLR.

The empirical application shows that the ML and ITT estimates give downward biased

treatment effects if the there is selective treatment choice. We also find that incorrectly assuming

an AFT model can give misleading conclusions about the treatment effects of a bonus on the

unemployment duration. In the Illinois bonus re-employment experiment many unemployed

found a job just before their UI-benefits expires. This induces a spike in the re-employment

hazard. In the GAFT model, even with a constant treatment coefficient, such a spike leads to

an effect that changes over the quantiles. This has important implications for the evaluation of

the treatment effect.

There are several issues that need further research. First, the current approach to adjust for

endogenous censoring implies loss of information and depends on the (unknown) parameters

of the model. An important improvement would be to find a method to adjust for endogenous

censoring that is parameter independent and minimizes the loss of information. Further research

on more general censoring patterns also deserve attention. A second issue for further research

is the extension of the IVLR to recurrent duration data, like repeated unemployment spells.
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A Counting process interpretation

The density and the survival function of a duration T can be expressed as functions of the

hazard rate. These expressions can be used to obtain a likelihood function. We use a different

(but of course equivalent) representation of the relation between the hazard rate and the random

duration. In particular, we use the framework of counting processes (see e.g. Andersen et al.

(1993) and Klein and Moeschberger (1997)). The main advantage of this framework is that it

allows us to express the duration distribution as a regression model with an error term that

is a martingale difference. This simplifies the analysis of estimators. The conditions for non

selective observation can be precisely stated in this framework. The same is true for conditions

on time–varying covariates.

The starting point is that the hazard of T is the intensity of the counting process {N(t); t ≥
0} that counts the number of times that the event occurs during [0, t]. The counting process has

a jump +1 at the time of occurrence of the event5. A jump occurs if and only if dN(t) = N(t)−
N(t−) = 1. For duration data, the event can only occur once. In many unemployment studies

the unit are only observed until re-employment or censoring. So, at most one jump is observed

for any unit. To account for this we introduce the observation indicator Y (t) = I(T̃ ≥ t)

that is zero after re–employment. By specifying the intensity as the product of this observation

indicator and the hazard rate we effectively limit the number of occurrences of the event to one.

We assume that the observation indicator only depends on events up to time t. The observation

process is assumed to have left–continuous sample paths. We define the history of the process

up to time t by H(t) = {Y (t), D(t)}, where Y (t) = {Y (s), 0 ≤ s ≤ t}. The history H(t) only

contains observable events.

Let V be some unobserved variables that both influence the treatment choice and the

duration. An example is the, usually, unobserved search intensity of unemployed looking for

a job. Denote HV (t) = {H(t), V }, the history that also includes the unobservables. As with

dynamic regressors in time-series models, the time-varying treatment D(t) may depend on the

dependent variable up to time t but not after time t (conditionally on V ). Thus D only depends

on HV (t). In the counting process literature such a time-varying covariate is called predictable.

We will use the econometric term predetermined.

If the conditional distributions of N(t) given HV (t) or H(t) are well-defined (see Andersen

5The sample paths are assumed to be right-continuous.
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et al. (1993) for assumptions that ensure this) we can express the probability of an event in

(t− dt, t] as6

Pr(dN(t) = 1 | HV (t)) = Y (t)κ
(

t | D(t), V
)

dt (34)

with κ(t | ·) is the hazard of T at t given D(t) and V . By the Doob-Meier decomposition

dN(t) = Y (t)κ
(

t | D(t), V
)

dt+ dM(t) (35)

with {M(t); t ≥ 0} a (local square integrable) martingale. The conditional mean and variance

of this martingale are

E
(

dM(t) | HV (t)
)

= 0 (36)

Var
(

dM(t) | HV (t)
)

= Y (t)κ
(

t | D(t), V
)

dt (37)

The (conditional on H(t)) mean and variance of the counting process are equal, so that the

disturbances in equation (35) are heteroscedastic. The probability in equation (34) is zero, if

the individual is not at risk.

A counting process can be considered as a sequence of Bernoulli experiments, because if dt

is small equations (34) and (37) give the mean and variance of a Bernoulli random variable.

The relation between the counting process and the sequence of Bernoulli experiments is given

in equation (35), which can be considered as a regression model with an additive error that is a

martingale difference. This equation resembles a time-series regression model. The Doob-Meier

decomposition is the key to the derivation of the distribution of the estimators, because the

asymptotic behavior of partial sums of martingales is well-known.

A.1 Transformed Counting process

The GAFT model transforms the observed duration T to a baseline duration U0. The transfor-

mation involved a parameter vector θ0 = (γ′0, α
′
0)

′. We denote the transformation for parameter

vectors θ 6= θ0 by U(θ) with U0 = U(θ0). The distribution of U(θ) can also be represented by a

(transformed) counting process {NU(u); u ≥ 0}. The relation between the original and trans-

formed counting process, the observation indicator, and the time-varying exogenous covariates

is

NU(u; θ) = N
(

h−1(u; θ)
)

Y U(u; θ) = Y
(

h−1(u; θ)
)

DU(u; θ) = D
(

h−1(u; θ)
)

IUk (u; θ) = Ik
(

h−1(u; θ)
)

6Because the sample paths of {Y (t), X(t), t ≥ 0} are assumed to be left-continuous (as is the baseline hazard),
we can substitute t for t − dt in (34).
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with h(T ; θ) = h
(

T,D(T ); θ
)

. For θ = θ0 we denote h0(T ) = h(T ; θ0). The corresponding

history is HU(u; θ) = {Y U
(u; θ), D

U
(u; θ), I

U

k (u; θ)}. In the sequel we suppress θ and write

Y U(u), NU(u), D
U
(u), I

U

k (u) and HU(u) for θ 6= θ0 and Y0(u), N0(u), D0(u), Ik0(u) and H0(u)

for θ = θ0. The intensity of the transformed counting process with respect to history HU(u) is

(see Andersen et al. (1993), p. 87)7

Pr
(

dNU(u) = 1 | HU(u)
)

= Y U(u)E

[

λ
(

h−1(u; θ);α0

)

λ
(

h−1(u; θ);α
)

× exp
(

K
∑

k=1

(γk0 − γk)I
U
k (u)DU(u)

)

κ0

(

h0

(

h−1(u; θ)
)

)

∣

∣

∣

∣

HU(u)

]

du (38)

We implicitly integrate with respect to the distribution of the unobserved V conditional on

HU(u). Note that these unobserved covariates are only introduced to ascertain the predictabil-

ity of the endogenous treatment process. Although the distribution of those variables determines

the distribution of U0, the consistency of the IVLR is independent of that distribution. Unfor-

tunately, even for the population parameters θ0 the hazard of U0, κ0(u), still depends on the

treatment path (through the correlation with V ). If we condition on the instrument instead of

the actual treatment we do get the desired independence.

We must add the instrument R to the conditioning variables in (38) if we consider instru-

menting the endogenous treatment. Let the UR–history, HUR(u) = {Y U(s), R; 0 ≤ s ≤ u}, be

the history on the transformed durations in which the treatment indicator D is replaced by the

instrument, the treatment assignment indicator R. Then, another application of the innovation

theorem gives the intensity of the transformed process on the UR–history

Pr
(

dNU(u) = 1 | HUR(u)
)

= Y U(u)E

[

λ
(

h−1(u; θ);α0

)

λ
(

h−1(u; θ);α
)

× exp
(

K
∑

k=1

(γk0 − γk)I
U
k (u)DU(u)

)

κ0

(

h0

(

h−1(u; θ)
)

)

∣

∣

∣

∣

HUR(u)

]

du (39)

which for the population parameters simplifies to Y U
0 (u)κ0(u)du with HUR

0 (u) = HUR(u; θ0).

Note that (38) and (39) only differ in the history the intensities are conditioned on.

The intensity in (39) is independent of R if we substitute the population parameter values,

but not for other values of the parameters. This result is the basis for identification of the

7If U = h(T ) and κT is the hazard rate of the distribution of T , then the hazard rate of the distribution of
U is

κU (u) = κT

(

h−1(u)
) 1

h′

(

h−1(u)
)
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parameters. Independence of R and the hazard rate of U0 implies that the quantiles of the

distribution of U0 do not depend on R. By choosing CU
0 such that Pr(U0 ≤ CU

0 ) = q we restrict

the independence to the quantiles up to the q–th. For further reference we denote the intensity

in (39) by κUi (u; θ) such that

Pr
(

dNU(u) = 1 | HUR(u)
)

= Y U(u)κUi (u; θ)du

which reduces to κ0(u) for the population parameters.

The counting process interpretation allows for an alternative formulation of the estimating

equations in (17). The relevant counting measure, NU
i (u), can be seen as a discrete ’proba-

bility distribution’ that assigns weight unity to uncensored transformed durations and is zero

elsewhere. Then the estimating equations can be expressed as an integral with respect to that

counting process

Sn(θ;W ) =

n
∑

i=1

∫ CU
i

0

{

W
(

u,Ri

)

−W (u; θ)
}

dN Ũ
i (u) (40)

where CU
i is the transformed censoring time defined in (16).

B Asymptotic properties of the IVLR

In this section we discuss the asymptotic behavior of the Instrumental Variable Linear Rank

estimator. The IVLR estimator is an extension of the linear rank estimator for the parameters

in a censored regression of Tsiatis (1990). Robins and Tsiatis (1991) used similar estimation

equations to deal with non-compliance in a randomized experiment. They consider a Accelerated

Failure Time (AFT) model. This corresponds to the assumption of λ = 1 in the GAFT model.

We assume a piecewise constant λ and the additional parameters α are estimated by adding

extra estimation equations with weight functions based on Ik(u). We also allow for a time-

varying treatment coefficient.

We make the following assumptions:

C1: Random assignment of treatment at time 0. The randomization indicator is denoted by

R with R = 1 for the treatment group and R = 0 for the control group. The path of the

treatment {D(t); t ≥ 0} is predetermined at time 0 and the duration of the treatment is

known and exogenous.
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C2: The observation process Y (t) is cadlag and Y (t) is predetermined. Moreover,

Pr
(

dN(t) = 1 | Y (t) = 1, H(t)
)

= Pr
(

dN(t) = 0 | Y (t) = 0, H(t)
)

C3: The population distribution of T given X and D satisfies

∫ T

0

λ(s;α0)e
ψ(s,D;γ0) ds = U0

The absolutely continuous distribution of U0 does not depend on R. The p.d.f. of U0 is

bounded. 0 < limt↓0 λ(s;α0) <∞

C4: The transformed observation process Y U(u) = I
(

Ũ(θ) ≥ u
)

is cadlag and predetermined,

with Ũ(θ) = min
(

U(θ), CU
)

and CU defined in (16).

C5: The weight function W is bounded and left–continuous.

C6: The intensity of U(θ), κUi (u) given history HUR(u) in (39) can be linearized in a neighbor-

hood of θ0 as a function of θ, i.e. there exist µ(u) and ǫ > 0 such that for ‖θ − θ0‖ < ǫ

∣

∣κUi (u; θ) − κ0(u) − (θ − θ0)
′di0(u)

∣

∣ ≤ ‖θ − θ0‖2 µ(u)

for u ≤ C0 = CU(θ0) with

di0(u) =
∂κUi (u; θ)

∂θ

∣

∣

∣

θ=θ0

C7: There exists a continuous function a(u; θ) of θ in a neighborhood B of θ0 such that

sup
u≤C0

sup
θ∈B

∥

∥W (u; θ) − a(u; θ)
∥

∥

p→ 0

where

W (u; θ) =

∑n
j=1 Y

U
j (u)W

(

u,X
U

j (u), Rj

)

∑n
j=1 Y

U
j (u)

C8: There exists a continuous matrix function A(u; θ) of θ in a neighborhood B of θ0 such that

sup
u≤C0

sup
θ∈B

∥

∥

∥

∥

1

n

n
∑

i=1

[

W
(

u,Ri

)

−W (u; θ)
]

×
[

W
(

u,Ri

)

−W (u; θ)
]′

Y U
i (u) −A(u; θ)

∥

∥

∥

∥

p→ 0

C9: There exists a continuous matrix-function V (u; θ) of θ in a neighborhood B of θ0 such

that

sup
u≤C0

sup
θ∈B

∥

∥

∥

∥

1

n

n
∑

i=1

[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]

× di0(u)
′Y U
i (u) − V (u; θ)

∥

∥

∥

∥

p→ 0
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The assumptions are similar to those of Tsiatis (1990) and Robins and Tsiatis (1991).

The starting point is (40), which can, for θ in a small neighborhood of θ0, be rewritten as

Sn(θ;W ) =

n
∑

i=1

∫ Ci0

0

{

W
(

u,Ri

)

−W (u; θ)
}

dNU
i (u)

+
n

∑

i=1

∫ Ci0

CU
i

{

W
(

u,Ri

)

−W (u; θ)
}

dNU
i (u) (41)

Substitution of the Doob–Meier composition in the first term on the right for NU
i gives

Sn(θ;W ) =
n

∑

i=1

∫ Ci0

0

{

W
(

u,Ri

)

−W (u; θ)
}

dMU
i (u)

+

n
∑

i=1

∫ Ci0

0

{

W
(

u,Ri

)

−W (u; θ)
}

κUi (u)Y U
i (u) du (42)

We consider both terms separately. The first term is, for θ close to θ0, close to Sn(θ0;W ) and

for the second term we have

(θ − θ0) ·
n

∑

i=1

∫ Ci0

0

{

W
(

u,Ri

)

−W (u; θ)
}

× ∂κUi (u)

∂θ

′

Y U
i (u) du+Op

(

‖θ − θ0‖2)

Returning to (41) we note that the second term in this equation equals

n
∑

i=1

{

[

W
(

Ci0, Xi0(Ci0), Ri

)

−W
(

Ci0; θ0
)

]

×θ0(Ci0)Yi(Ci0)
}

+Op

(

‖θ − θ0‖2)

The term between brackets is the covariance between θ0(Ci0) and W
(

Ci0, Xi0(Ci0), Ri

)

which

is zero, because R is randomly assigned. Thus this whole term is zero for θ close to θ0 and we

have

S̃n(θ;W ) = Sn(θ0;W ) + n

∫ C0

0

Z(u; θ0) du · (θ − θ0) (43)

The proof of the consistency and asymptotic normality are both based upon this asymptotic

linearity of Sn(θ;W ) in the neighborhood of the true value θ0. We follow the reasoning of

Tsiatis (1990). Instead of a mean and variance condition, we have a mean and three covariance

conditions. Let S̃n(θ;W ) be the right-hand side of (43). The following lemma shows that the

linearization in (43) is uniformly close to the original estimating function

Lemma 1. In neighbourhoods of O(n−1/2) of θ0

n−1/2
∥

∥

∥
S̃n(θ;W ) − Sn(θ;W )

∥

∥

∥

converges uniformly to zero.
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This lemma implies that n−1/2S̃n(θ;W ) and n−1/2Sn(θ;W ) are asymptotically equivalent in

a neighbourhood close to θ0.

Proof: This can be proved in lines of Tsiatis (1990) Lemma (3.1) and (3.2) and theorem (3.2)

and this is, because of the analogy, not repeated here.

Hence, approximately for the IVLR estimator θ̂n(W )

√
n(θ̂n(W ) − θ0) =

[
∫ C0

0

Z(u; θ0) du

]−1
1√
n
Sn(θ0;W ) (44)

Proof of theorem 1 and theorem 2. According to lemma 1 are n−1/2Sn(θ;W ) in a neighbour-

hood close to θ0 asymptotically equivalent to n−1/2S̃n(θ;W ). Then the estimates θ∗ and θ̂, with

S̃n(θ
∗;W ) = 0, will also be asymptotically equivalent. Clearly, θ∗ converges in probability to θ0.

Hence, if we show that
√
n(θ̂−θ∗) p→ 0 then this would imply that θ̂ also converges in probability

to θ0. Tsiatis (1990) argues that lemma 1 suffices to proof this. This proves theorem 1.

According to the Mann–Wald theorem convergence in probability implies convergence in

distribution. We note that
√
n(θ∗−θ0) = n−1/2Q−1(W )Sn(θ0;W ) clearly converges to a normal

distribution with mean zero and variance matrix Q−1(W )Ω(W )Q′−1(W ). This completes the

proof of theorem 2.

Remark. To establish detailed conditions on when S̃n(θ;W ) has a unique root is rather

tedious; however Ying (1993) gave an excellent general treatment on rank estimation, which

can also be used for the estimating equations in this article.
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