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Abstract

Stylized facts show that average growth rates of US per capita consumption
and income differ in recession and expansion periods. Since a linear combination
of such series does not have to be a constant mean process, standard cointegration
analysis between the variables to examine the permanent income hypothesis may
not be valid. To model the changing growth rates in both series, we introduce a
multivariate Markov trend model, which accounts for different growth rates in con-
sumption and income during expansions and recessions and across variables within
both regimes. The deviations from the multivariate Markov trend are modeled by
a vector autoregressive model. Bayes estimates of this model are obtained using
Markov chain Monte Carlo methods. The empirical results suggest the existence of
a cointegration relation between US per capita disposable income and consumption,
after correction for a multivariate Markov trend. This results is also obtained when
per capita investment is added to the vector autoregression.
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1 Introduction

The permanent income hypothesis implies that there exists a long-run relation between

consumption and disposable income; see for example Flavin (1981). One may translate

this theoretical result to time series properties. Most studies on the univariate properties

of consumption and income series suggest that they are integrated processes; see the

applications following Dickey and Fuller (1979). Hence, both series have to be cointegrated

for the permanent income hypothesis to hold. As a result, recent empirical research on

the permanent income hypothesis focuses on cointegration analysis between consumption

and income; see Campbell (1987) and Jin (1995) among others.

In these studies it is usually assumed that the logarithm of real income is a linear

process. However, Goodwin (1993), Potter (1995) and Peel and Speight (1998) among

others argue that the logarithm of many real income series contain a nonlinear cycle.

This nonlinear cycle is often interpreted as the business cycle in real income. A popular

model used to describe the business cycle in time series is the Markov switching model of

Hamilton (1989). This model allows for different average growth rates in income during

expansion and recession periods, where the transitions between expansions and recessions

are modeled by an unobserved first-order Markov process. We refer to the trend that

models this specific behavior as a Markov trend. Hall et al. (1997) consider the permanent

income hypothesis under the assumption that real income contains a Markov trend. They

show that in that case the difference between log consumption and log income is affected by

changes in the mean, caused by changes in the growth rate of the real income series. The

difference between log consumption and income series is not a constant mean process such

that standard cointegration analysis in linear vector autoregressive models may wrongly

indicate the absence of cointegration; see Nelson et al. (2001) and Psaradakis (2001, 2002)

for some results in univariate time series.

Several studies already consider the effects of deterministic shifts on cointegration re-

lations; see, for example, Gregory and Hansen (1996), Hansen and Johansen (1999) and

Martin (2000). In this paper, we analyze the long-run relationship between quarterly sea-

sonally adjusted aggregate consumption and disposable income for the United States [US],

where we allow for the possibility of a Markov trend in both the income and consumption
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series. Our paper differs from previous studies in several ways. We consider a full system

cointegration analysis in a nonlinear model. Cointegration is tested in a vector autore-

gression, which models the deviation of log per capita consumption and income from a

multivariate Markov trend. This differs from the approach of Hall et al. (1997), who

consider a single equation analysis and use an ad hoc procedure for cointegration analy-

sis. Our model is a multivariate generalization of Hamilton’s (1989) model and nests the

theoretical results in Hall et al. (1997). Furthermore, the model allows the growth rate of

consumption to be different from the growth rate in income in each stage of the business

cycle as suggested by a simple stylized facts analysis. Hence, we analyze the presence of a

cointegration relation between consumption and income series while allowing for different

growth rates in expansion and recession periods via the multivariate Markov trend. We

investigate the robustness of our results by including an investment variable in the model.

To perform econometric inference on the presence of a stable long-run relation between

per capita consumption and income we follow a Bayesian approach. We apply Markov

chain Monte Carlo methods to evaluate posterior distributions and construct Bayes factors

to determine the cointegration rank. Our Bayesian cointegration analysis is an extension

of the techniques of Kleibergen and van Dijk (1998) and Kleibergen and Paap (2002) to

the case of a nonlinear vector autoregressive model containing a Markov trend.

The outline of this paper is as follows. In Section 2 we give a short review on the

current state of the literature on the permanent income hypothesis in case income is

assumed to contain a Markov trend. In Section 3 we discuss some stylized facts of US

per capita income and consumption series. In Section 4 we propose the multivariate

Markov trend model and discuss its interpretation. Given the main application of this

paper, we limit the discussion to a bivariate model, but it can easily be extended to

more dimensions as shown in Section 9. Section 5 deals with prior specification and in

Section 6 we propose a Markov chain Monte Carlo algorithm to sample from the posterior

distribution. Section 7 deals with Bayes factors used to determine the cointegration rank.

In Section 8 we apply our multivariate Markov model to the US series and relate the

posterior results to suggestions made by economic theory and the stylized facts analysis.

To analyze the robustness of our results, we consider in Section 9 a Markov trend model

for US per capita income, consumption and investment series. We conclude in Section 10.
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2 The Permanent Income Hypothesis and a Markov

Trend

The permanent income hypothesis states that current aggregate consumption is equal to

a weighted average of expected future real disposable incomes. More precisely, aggregate

consumption ct can be written as

ct =
r

1 + r

∞
∑

j=0

1

(1 + r)j
E[yt+j|Ωt], (1)

where yt is real disposable income1 at time t, r is the interest rate and Ωt denotes the

information set that is available to economic agents at time t. Straightforward algebra

shows that (1) is the forward solution of the following expectational difference equation

ct =
r

1 + r
E[yt|Ωt] +

1

1 + r
E[ct+1|Ωt]. (2)

If one subtracts yt from both sides of (1) one obtains

ct − yt =
r

1 + r

∞
∑

j=0

1

(1 + r)j
E[yt+j − yt|Ωt], (3)

which shows that there exists a stationary relation between current consumption and

income if the first difference of yt is stationary; see for example Campbell (1987)2. In

many studies it is therefore assumed that real income follows a random walk process; see

for example Jin (1995). Several other studies, however, suggest that the log income series

contains a nonlinear cycle, which corresponds to the business cycle; see Goodwin (1993),

Potter (1995), Peel and Speight (1998) among others. To capture this business cycle, one

often assumes that log real income is the sum of a random walk process and a Markov

trend as suggested by Hamilton (1989). To explain the role of the Markov trend on the

permanent income hypothesis, we now discuss briefly the approach of Hall et al. (1997).

The logarithm of real income is written as

ln yt = nt + zt, (4)

1In Flavin’s (1981) formulation yt denotes labor income solely in which case one has to add real wealth
to (1). We follow Sargent’s (1978) assumption that the annuity value of future capital income is equal to
the value of real financial wealth, see Flavin (1981) for a critique on this assumption.

2Note that yt+j − yt =
∑j

i=1 ∆yt+i.
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where zt is a standard random walk process

zt = zt−1 + εt, (5)

with εt ∼ NID(0, σ2), and where nt is a so-called univariate Markov trend. This Markov

trend is defined as

nt = nt−1 + γ0 + γ1st, (6)

where γ0 and γ1 are parameters and st is an unobserved binary random variable, which

models the business cycle. In the remainder of this paper we will assume that st = 0

corresponds to an expansion observation, while st = 1 corresponds to a recession. This

implies that during an expansion the slope of the Markov trend equals γ0, while during

a recession the slope is given by γ0 + γ1. The random variable st is assumed to follow a

first-order two-state Markov process with transition probabilities

Pr[st = 0|st−1 = 0] = p, Pr[st = 1|st−1 = 0] = 1− p,
Pr[st = 1|st−1 = 1] = q, Pr[st = 0|st−1 = 1] = 1− q;

(7)

see Hamilton (1989) for details.

As Hall et al. (1997) show, equations (2) and (4)–(6) with Ωt = {yt, yt−1, . . . , st, st−1, . . . }
imply that ct = eκ0yt for st = 0 and ct = eκ0+κ1yt for st = 1 with

κ0 = ln

(

r + peκ0E0 + (1− p)eκ0+κ1E1
1 + r

)

κ0 + κ1 = ln

(

r + (1− q)eκ0E0 + qeκ0+κ1E1
1 + r

)

,

(8)

where E0 = eγ0+
1
2
σ and E1 = eγ0+γ1+

1
2
σ. As st is an unobserved random process, one

obtains the following relation between log consumption and log income

ln ct = κ0 + κ1st + ln yt, (9)

where κ0 and κ1 result from (8), that is,

κ0 = ln

(

r(1 + (1− p− q)(1 + r)−1E1)

(1 + r − pE0 − qE1)− (1 + r)−1(1− p− q)E0E1

)

κ1 = ln

(

(1 + r) + (1− p− q)E0
(1 + r) + (1− p− q)E1

)

.

(10)
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If one substitutes (4) in the consumption-income relation (9), one notices that the log of

consumption can be written as

ln ct = nt + κ0 + κ1st + zt, (11)

where zt and nt are defined in (5) and (6), respectively. It follows that log consumption

is build up of the same Markov trend as log income and hence it corresponds to the

idea that growth rates of consumption and income are the same during expansions and

recessions. Note that (4) and (11) with (5) and (6) imply a stochastically singular system

for yt and ct. To describe consumption and income series with this model one has to add

extra noise to (11). Equation (9) implies that the difference between log consumption

and log income is different across the phases of the business cycle and is described by the

process wt = κ0 + κ1st. This process can be written as wt = µ + ρwt−1 + κ1vt, where

µ = (1−ρ)κ0+κ1(1−p), ρ = (−1+p+q) and where vt is a martingale difference sequence;

see Hamilton (1989). This implies that (9) can be seen as a cointegration relation between

log consumption and income with non-Gaussian innovations. If the transition probabilities

p and q are near 1, that is, if both regimes are persistent, it may be difficult to distinguish

the process wt from a random walk process; see also Nelson et al. (2001) and Psaradakis

(2001, 2002). In turn, this may complicate the detection of a stationary relation between

log consumption and income using a standard cointegration analysis approach.

To test the presence of a stationary relation between US log consumption and income,

when the log of real income contains a Markov trend, we propose in Section 4 a multivari-

ate Markov trend model. As the economic theory in this section may be too simplistic in

describing reality, we allow for a more flexible structure than the theory suggests. This

flexible structure will be based on a simple stylized facts analysis of the US per capita

income and consumption series given in the next section.

3 Stylized Facts

Figure 1 shows a plot of the logarithm of quarterly observed seasonally adjusted per capita

real disposable income and private consumption of the United States, 1959.1–1999.4. The

series are obtained from the Federal Reserve Bank of St. Louis. Both series are increasing

over the sample period with short periods of decline, for example in the middle and the
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Figure 1: The logarithm of US per capita consumption
and income, 1959.1–1999.4.

end of the 1970s. These periods of decline are more pronounced in the income series

than in the consumption series but seem to occur roughly simultaneously. The average

quarterly growth rate of the income series is 0.67% per quarter. For the consumption

series the average quarterly growth rates equals 0.62%. The growth rates in both series

seem to be roughly the same.

To analyze the effect of the business cycle on real per capita income and consumption

we split the sample in two subsamples. The first subsample corresponds to quarters

which are labeled as a recession according to the NBER peaks and troughs3. The average

quarterly growth rates of per capita income during recessions equals −1.03%, while for

consumption the average growth rate equals −0.24%. The second subsample contains

quarters, which corresponds to expansion observations. During expansions, the average

quarterly growth rate in per capita income is 0.93%, while the average quarterly growth

rate in per capita consumption is 0.75%. Although the average quarterly growth rates

based on the whole sample are roughly the same across the two series, the average growth

rates in both subsamples seem to be different.

The differences in the average growth rates in the consumption and income series in

3The NBER peaks and troughs can be found at http://www.nber.org/cycles.html.
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Figure 2: Difference between log per capita consumption
and log per capita income, 1959.1–1999.4.

recessions and expansions may have consequences for analyzing the permanent income

hypothesis. A simple cointegration analysis in a linear (vector) autoregressive model as

for example in Jin (1995) may lead to the wrong conclusion. If the growth rates in

both series are different in both stages of the business cycle it is unlikely that a linear

combination of the two series has a constant mean. To make this more clear we depict

in Figure 2 the difference between log per capita consumption and log per capita income.

The graph shows that the mean of this possible cointegration relation is not constant over

time but displays a more or less changing regime pattern. This switching patterns seems

to coincide with the NBER-defined business cycle.

If we relate the stylized facts to the simple model in Section 2, we notice that the

possible changes in the mean of the difference between log consumption and income are

captured by the switching constant κ0 + κ1st in (9). The differences in growth rates of

both series in each stage of the business cycle are however not captured by the model, as

relation (11) implies that the growth rates in both series during recessions and expansions

have to be the same. A consumption-income relation which allows for the former behavior

is given by

ln ct = κ0 + κ1st + β2 ln yt. (12)
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The trend in consumption now equals β2nt, where nt is the Markov trend in log income

defined in (6). If β2 < 1, κ0 > 0 and κ0 + κ1 < 0, the growth rate in consumption

during expansions is smaller than in income, while during recessions it is larger, which

corresponds to our earlier findings. We note that relation (12) corresponds to a nonlinear

relation between consumption and income, that is, ct = eκ0+κ1styβ2

t .

To analyze the permanent income hypothesis for the US consumption and income se-

ries, we propose in the next section a multivariate Markov trend model. This multivariate

model is an extension of Hamilton’s univariate model. The models contains a multivari-

ate Markov trend, which allows for different growth rates in the consumption and income

series during recessions and expansions. The deviations from the Markov trend are mod-

eled by a vector autoregressive model. To analyze the presence of a consumption-income

relation, we perform a cointegration analysis on these deviations from the multivariate

Markov trend. Additionally, we check whether the mean of the possible cointegration

relation is affected by changes in the business cycle as suggested by the economic theory

in Section 2.

4 The Multivariate Markov Trend Model

In this section we propose the multivariate Markov trend model on which we base our

analysis of the consumption-income relation. This model is a multivariate generalization of

the model proposed by Hamilton (1989), where the slope of the multivariate Markov trend

is different across series and across the regimes. The regime changes occur simultaneous in

all series. The deviations from the Markov trend are modeled by a vector autoregressive

model, which may contain unit roots. A similar representation was suggested by Dwyer

and Potter (1996).

In Section 4.1 we discuss representation, while in Section 4.2 we deal with model

interpretation. In Section 4.3 we derive the likelihood function of the model. Although

we explain the model for bivariate time series, the discussion can easily be extended to

more than two time series as shown in Section 9.
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4.1 Representation

Let {Yt}Tt=1 denote a 2-dimensional time series containing the log of per capita consump-

tion and income series. Assume that Yt = (ln ct ln yt)
′ can be decomposed as

Yt = Nt +Rt + Zt, (13)

whereNt represents a trend component, Rt allows for possible level shifts and Zt represents

the deviations from Nt and Rt. The 2-dimensional trend component Nt is a multivariate

generalization of the univariate Markov trend (6), that is,

Nt = Nt−1 + Γ0 + Γ1st, (14)

where Γ0 and Γ1 are (2 × 1) parameter vectors, st is an unobserved first-order Markov

process with transition probabilities given in (7). Kim and Yoo (1995) add an extra

normally distributed error term to (14) but this is not pursued here as it a priori imposes

a unit root in the series Yt; see also Luginbuhl and de Vos (1999). We only allow unit

roots to enter Yt through Zt; see also Section 4.2. The value of the unobserved state

variable st models the stages of the business cycle. If st = 0 (expansion) the slope of

the Markov trend is Γ0, while for st = 1 (recession) the slope equals Γ0 + Γ1; see also

Hamilton (1989). The values of the slopes of the trends in the individual series in Yt do

not have to be the same although the changes in the value of the slope occur at the same

time. The latter assumption can be relaxed; see for example Phillips (1991), but this

extension is not necessary for the application in this paper. The expected slope value of

the Markov trend equals Γ0+Γ1(1−p)/(2−p− q); see Hamilton (1989). Hence, one may

have different slopes values in each regime but the same expected slope. The backward

solution of (14) equals

Nt = Γ0 (t− 1) + Γ1

t
∑

i=2

si +N1, (15)

where N1 denotes the initial value of the Markov trend, which is independent of t. Hence,

the Markov trend consists of a deterministic trend with slope Γ0 and a stochastic trend
∑t

i=2 si with impact vector Γ1.

The component Rt models possible level shifts in the first series of Yt during recessions

Rt =

(

δ1
0

)

st = δst, (16)
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such that δ = (δ1 0)
′. This term takes care of level shifts in the consumption series during

recessions as suggested by the theory in Section 2. We refer to Krolzig (1997, Chapter 13)

for a similar discussion about the role of this term. The parameter δ1 turns out to be

related to the κ1 parameter in (9), as will be shown at the end of Section 4.2.

The deviations from the Markov trend and Rt, that is, Zt are assumed to be a vector

autoregressive process of order k [VAR(k)]

Zt =
k
∑

i=1

ΦiZt−i + εt, (17)

or using the lag polynomial notation

Φ(L)Zt = (I− Φ1L− · · · − ΦkL
k)Zt = εt, (18)

where εt is a 2-dimensional vector normally distributed process with mean zero and a

(2× 2) positive definite symmetric covariance matrix Σ, and where Φi, i = 1, . . . , k, are

(2× 2) parameter matrices.

4.2 Model Interpretation

For our analysis of a potentially stationary relation between log consumption and income

it is convenient to write (17) in error correction form

∆Zt = ΠZt−1 +
k−1
∑

j=1

Φ̄j∆Zt−j + εt, (19)

where Π =
∑k

j=1Φj − I and Φ̄i = −∑k

j=i+1Φj, i = 1, . . . , k − 1. The characteristic

equation of the Zt process is given by

|I− Φ1z − · · · − Φkz
k| = 0. (20)

We can now distinguish three cases depending on the number of unit root solutions

of the characteristic equation (20). The first case corresponds to the situation where the

solutions of (20) are outside the unit circle. The process Zt is stationary and hence Yt is

a stationary process around a multivariate Markov trend. This is in fact the multivariate
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extension of the model proposed by Lam (1990). We can write

(∆Yt − Γ0 − Γ1st − δ∆st) = Π(Yt−1 − Γ0(t− 2)− Γ1

t−1
∑

i=2

si −N1 − δst−1)+

k−1
∑

i=1

Φ̄i(∆Yt−i − Γ0 − Γ1st−i − δ∆st−i) + εt, (21)

where Π a full rank matrix. The vectors Γ0 and Γ0 + Γ1 contain the slopes of the trend

in Yt during expansions and recessions respectively. The initial value of the Markov trend

N1 is unknown and plays the role of an intercept parameter vector. The δ1 parameter

models a level shift in the intercept of the Markov trend during recessions for the log

consumption series. If st = 0 the initial value of the Markov trend equals N1, while for

st = 1 this value equals N1 + δst.

The second case concerns the situation of two unit root solutions of (20) with the

remaining roots outside the unit circle. In that case Π = 0 and (21) becomes

(∆Yt − Γ0 − Γ1st − δ∆st) =
k−1
∑

i=1

Φ̄i(∆Yt−i − Γ0 − Γ1st−i − δ∆st−i) + εt. (22)

The first difference of Yt is a stationary VAR process with a stochastically changing mean

(= Γ0 + Γ1st). Note that the initial value of the Markov trend N1 drops out of the

model. If st = st−1, ∆Yt is not affected by Rt. If however st 6= st−1 the growth rate in

consumption is δ1 larger or smaller than the growth rate in income. A change in the stage

of the business cycle leads to a one time extra adjustment in the growth rate of per capita

consumption. This adjustment is absent if δ1 = 0, in which case the model simplifies to

the one considered by Kim and Nelson (1999a), who a priori impose that Π = 0; see also

Hamilton and Perez-Quiros (1996).

The third case corresponds to the situation where only one of the roots equals unity,

while the other roots are outside the unit circle. The series in Zt are said to be cointe-

grated; see Johansen (1995) for a discussion on cointegration. Under cointegration the

rank of Π equals one and we can write Π as αβ ′, where α and β are (2×1) vectors. The β

vector describes the cointegration relation between the elements of Zt and hence β ′Zt is a

stationary process. The α vector contains the adjustment parameters. Since the number

of free parameters in α and β is larger than in Π under rank reduction, the parameters
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in α or β have to be restricted to become estimable. We choose to impose the following

restriction: β = (1 − β2)
′. Under cointegration model (21) becomes

(∆Yt − Γ0 − Γ1st − δ∆st) = αβ ′(Yt−1 − Γ0(t− 2)− Γ1

t−1
∑

i=2

si −N1 − δst)+

k−1
∑

i=1

Φ̄i(∆Yt−i − Γ0 − Γ1st−i − δ∆st−i) + εt. (23)

The cointegration relation is given by β ′Yt = β′(Nt + Rt + Zt). For β ′Γ0 = β′Γ1 = 0,

κ0 = β′N1 and κ1 = β′δ we obtain the consumption-income relation (12). The extra

condition β2 = 1 leads to relation (9). Finally note that the restriction β ′Γ1 = 0 removes

the Markov trend from the cointegration relation. Dwyer and Potter (1996) refer to

this phenomenon as reduced rank Markov trend cointegration. Note that in their model

δ1 = 0.

4.3 The Likelihood Function

To analyze the multivariate Markov trend model we derive the likelihood function. First,

we consider the likelihood function of the least restricted Markov trend stationary model

(21) conditional on the states st. The conditional density of Yt for this model given the past

and current states st = {s1, . . . , st} and given the past observations Y t−1 = {Y1, . . . , Yt−1}
is given by

f(Yt|Y t−1, st,Γ0,Γ1, N1, δ1,Σ,Π, Φ̄) =
1

(
√
2π)2

|Σ|− 1
2 exp(−1

2
ε′tΣ

−1εt), (24)

where εt is given in (21) and Φ̄ = {Φ̄1, . . . , Φ̄k−1}. Hence the likelihood function for model

(21) conditional on the states sT and the first k initial observations Y k equals

L2(Y T |Y k, sT ,Θ2) = pN0,0 (1− p)N0,1 qN1,1 (1− q)N1,0

T
∏

t=k+1

f(Yt|Y t−1, st,Γ0,Γ1, N1,Σ,Π, Φ̄), (25)

where Θ2 = {Γ0,Γ1, N1, δ1,Σ,Π, Φ̄, p, q} and where Ni,j denotes the number of transitions

from state i to state j. The unconditional likelihood function L2(Y T |Y k,Θ2) can be

obtained by summing over all possible realizations of sT

L2(Y T |Y k,Θ2) =
∑

s1

∑

s2

· · ·
∑

sT

L2(Y T |Y k, sT ,Θ2). (26)
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The unconditional likelihood function for the Markov trend model with one cointegration

relation (23) follows directly from (26)

L1(Y T |Y k,Θ1) = L2(Y T |Y k,Θ2)|Π=αβ′ , (27)

with Θ1 = {Γ0,Γ1, N1, δ1,Σ, α, β2, Φ̄, p, q}. In case of no cointegration (22) the uncondi-

tional likelihood function is given by

L0(Y T |Y k,Θ0) = L2(Y T |Y k,Θ2)|Π=0, (28)

with Θ0 = {Γ0,Γ1, N1, δ1,Σ, Φ̄, p, q}. Note that the subscript r of Θr and Lr refers to the

number of cointegration relations in Zt.

In the next section we discuss the prior distributions for the model parameters of the

multivariate Markov trend model presented in this section.

5 Prior Specification

In order to perform inference on the parameters of the multivariate Markov trend model

and on the presence of a stationary relation between consumption and income, we opt

for a Bayesian approach. We have chosen to impose prior information, which is relatively

uninformative compared to the information in the likelihood. The Markov trend model

is nonlinear in certain parameters, which leads to local non-identification for certain pa-

rameters in the model. In sum, we have to deal with three types of identification issues,

namely, the initial value identification (N1), the regime identification (Γ0 and Γ1) and

the identification of β2 in the reduced rank model (23). To tackle these identification

problems, we proceed as follows.

It follows from (21) that the parameter N1 drops out of the model in case Π = 0.

Even in the case of rank reduction in Π it follows from (23) that we can only identify

βN1. Specifying a diffuse prior onN1 implies that the conditional posterior ofN1 given Π is

constant and non-zero at the point of rank reduction. The integral over this conditional

posterior at the point of rank reduction is therefore infinity, favoring rank reduction;

see Schotman and van Dijk (1991a,b) for a related discussion of identification problems

associated with the intercept term in univariate autoregressions. To circumvent this

identification problem we follow the prior specification of Zivot (1994); see also Hoek
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(1997, Chapter 2). The prior distribution for N1 conditional on both Σ and the first

observation Y1 is normal with mean Y1 and covariance Σ

N1|Y1,Σ ∼ N(Y1,Σ). (29)

For Σ we take a standard inverted Wishart prior with scale parameter S and degrees of

freedom ν

p(Σ) ∝ |S| 12ν |Σ|− 1
2
(ν+3) exp(−1

2
Σ− 1

2S). (30)

If we do not want to impose an informative prior for Σ we opt for p(Σ) ∝ |Σ|−1, which
results from (30) by letting the degrees of freedom approaching zero; see Geisser (1965).

The prior distributions for the transition probabilities p and q are independent and

uniform on the unit interval (0, 1)

p(p) = I(0,1)

p(q) = I(0,1),
(31)

where I(0,1) represents an indicator function which is one on the interval (0,1) and zero

elsewhere. Under flat priors for p and q special attention must be payed to the priors for

Γ0 and Γ1. It is easy to show that under Π = 0 the likelihood has the same value if we

switch the role of the states and change the values of Γ0, Γ1, δ, p and q into Γ0 + Γ1,

−Γ1, −δ, q and p respectively. This complicates proper posterior analysis if we specify

uninformative priors on Γ0 and Γ1. There are several ways to identify the parameters.

One could for example impose specify appropriate matrix normal prior distributions for

Γ0 and Γ1. We however define priors for Γ0 and Γ1 on subspaces which identify the

regimes for all specifications of the model. Several specifications for these subspaces are

possible. With our application in mind we restrict the growth rates in the income series

to be positive during expansions and negative in recessions. This results in the following

prior specification

p(Γ0) ∝
{

1 if Γ0 ∈ {Γ0 ∈ R2|Γ0,2 > 0}
0 elsewhere,

p(Γ1|Γ0) ∝
{

1 if Γ1 ∈ {Γ1 ∈ R2|Γ0,2 + Γ1,2 ≤ 0}
0 elsewhere.

(32)

We note that since we have identified the two regimes by the prior on Γ0 and Γ1 we may

use an improper prior for δ1

p(δ1) ∝ 1. (33)
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For the autoregressive parameters apart from Π we also use flat priors

p(Φ̄i) ∝ 1, i = 1, . . . , k − 1. (34)

The three model specifications are different with respect to the rank of Π. Under

cointegration the rank of Π equals 1 and we can write Π = αβ ′. It is easy to see that

if α = 0, β2 is not identified; compare Kleibergen and van Dijk (1994) for a general

discussion. To solve this identification problem we follow the approach of Kleibergen

and Paap (2002); see also Kleibergen and van Dijk (1998) for a similar approach in

simultaneous equation models. A convenient by-product of this approach is a Bayesian

posterior odds analysis for the rank of Π; see also Section 7. The analysis is based on the

following decomposition of the matrix Π

Π = αβ ′ + α⊥λβ
′
⊥, (35)

where α⊥ and β⊥ are specified such that α′
⊥α = 0 with α′

⊥α⊥ = 1 and β ′
⊥β = 0 with

β′
⊥β⊥ = 1. It is easy to see that cointegration (rank reduction in Π) occurs if λ = 0

and hence the parameter λ can be used to test for cointegration. The matrix (α⊥λβ
′
⊥)

models the deviation from cointegration. The row- and column-space of this matrix are

spanned by the orthogonal complements of the vector of adjustment parameters α and the

cointegrating vector β, respectively. The decomposition in (35) is however not unique. To

identify α and β we impose that β = (1 − β2)
′, as is often done in cointegration analysis.

To identify λ α⊥ and β⊥ in α⊥λβ
′
⊥, we relate λ to the smallest singular value of Π. Note

that singular values determine the rank of Π in an unambiguous way.

The singular value decomposition of Π is given by,

Π = USV ′, (36)

where U and V are (2×2) orthonormal matrices, S is an (2×2) diagonal matrix containing

the positive singular values of Π (in decreasing order); see Golub and van Loan (1989,

p. 70). If we write

U =

(

u11 u12
u21 u22

)

, S =

(

s11 0
0 s22

)

and V =

(

v11 v12
v21 v22

)

, (37)

with uij, sij, vij, i = 1, 2, j = 1, 2 scalars and use that

(α α⊥)

(

1 0
0 λ

)

(β′ β′
⊥) = USV ′, (38)
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we obtain the following expressions for α and β2

α =

(

u11s11v11
u21s11v11

)

β2 = −v21/v11.
(39)

The identification of λ follows from the fact that we have to express α⊥ and β⊥ in terms

of u11, u21, v11, v11 and v21 to obtain a 1-1 relation with the singular value decomposition.

Kleibergen and Paap (2002) show that if we take

α⊥ =
√

u222

(

u12u
−1
22

1

)

and β⊥ =
√

v222

(

v−122 v12
1

)

(40)

λ is identified by

λ =
u22s22v22
√

u222
√

v222
= sign(u22v22)s22, (41)

where sign(·) denotes the sign of the argument. Hence, the absolute value of λ is equal

to the smallest singular value of Π which corresponds to s22. Note that λ can be positive

and negative in contrast to the singular value s22 which is always positive. Golub and

van Loan (1989) show that the number of non-zero eigenvalues of a matrix completely

determine the rank of a matrix. Restricting the scalar λ to equal zero is therefore an

unambiguous way of restricting the rank of Π and imposing cointegration.

To construct priors for the α and β2 parameters, which take into account the identifi-

cation problem, we take as starting point the prior for Π given Σ denoted by p(Π|Σ). As
the matrix Π can be decomposed using (35), p(Π|Σ) implies the following joint prior for

α, λ and β2 given Σ

p(α, λ, β2|Σ) ∝ p(Π|Σ)|Π=αβ′+α⊥λβ
′
⊥
|J(α, λ, β2)|, (42)

where |J(α, λ, β2)| is the Jacobian of the transformation from Π to (α, λ, β2). The deriva-

tion and expression of this Jacobian are given in Appendix A. As restricting λ to equal

zero is an unambiguous way of restricting the rank of Π and imposing cointegration, we

construct the joint prior for α and β2 by restricting (42) in λ = 0

p(α, β2|Σ) ∝ p(α, λ, β2|Σ)|λ=0
∝ p(Π|Σ)|Π=αβ′ |J(α, λ, β2)|λ=0.

(43)

The posterior resulting from this prior leads to proper posterior distributions for α and β2;

see Kleibergen and Paap (2002). Additionally, the posteriors are unique in the sense that
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they do not depend on the ordering of the variables in the system and the normalization to

identify α and β (in our case β = (1 −β2)′). The proposed strategy for prior construction

for α and β2 can be carried out for a proper or an improper prior specification on Π given

Σ. In this paper we opt for a normal prior on Π given Σ with mean P and covariance

matrix (Σ⊗ A−1)

p(Π|Σ) ∝ |Σ|−1|A| exp(−1

2
tr(Σ−1(Π− P )′A(Π− P ))). (44)

Hence the prior for α and β2 is given by

p(α, β2|Σ) ∝ |Σ|−1|A| exp(−
1

2
tr(Σ−1(αβ ′ − P )′A(αβ ′ − P )))|J(α, λ, β2)|λ=0. (45)

If one prefers a noninformative prior one may consider p(Π|Σ) ∝ 1 in combination with

p(Σ) ∝ |Σ|−1. The resulting prior for α and β2 given Σ is in that case p(α, β2|Σ) ∝
|J(α, λ, β2)|λ=0.

The joint priors for the Markov trend models with different numbers of unit roots

follow from the marginal priors in this section. The joint prior for the Markov trend

stationary model (21), p2(Θ2), is given by the product of (29)–(34) and (44). The prior

for the Markov trend model with one cointegration relation (23), p1(Θ1), is the product

of (29)–(34) and (45), while the prior for the model without cointegration (22), p0(Θ0), is

simply the product of (29)–(34).

6 Posterior Distributions

The posterior distributions for the model parameters of the multivariate Markov trend

models is proportional to the product of the priors, pr(Θr), and the unconditional likeli-

hood functions, Lr(Y T |Y k,Θr), r = 0, 1, 2. These posterior distributions are too compli-

cated to enable the analytical derivation of posterior results. As Albert and Chib (1993),

McCulloch and Tsay (1994), Chib (1996) and Kim and Nelson (1999b) demonstrate, the

Gibbs sampling algorithm of Geman and Geman (1984) is a very useful tool for the compu-

tation of posterior results for models with unobserved states. The state variables {st}Tt=1
can be treated as unknown parameters and simulated alongside the model parameters.

This technique is known as data augmentation; see Tanner and Wong (1987).
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The Gibbs sampler is an iterative algorithm, where one consecutively samples from the

full conditional posterior distributions of the model parameters. This produces a Markov

chain, which converges under mild conditions. The resulting draws can be considered as

a sample from the posterior distribution. For details on the Gibbs sampling algorithm we

refer to Smith and Roberts (1993) and Tierney (1994). In Appendix B we derive the full

conditional posterior distributions associated with the most general Markov trend sta-

tionary model (21). The full conditional posterior distributions associated with the other

models can be derived in a similar way. Unfortunately, the full conditional distributions

of the α and the β2 parameters are not of a known type. To sample these parameters we

need to build in a Metropolis-Hastings step in the Gibbs sampler; see Chib and Greenberg

(1995) for a discussion.

7 Determining the Cointegration Rank

To determine the cointegration rank we begin by assigning prior probabilities to every

possible rank of Π

Pr[rank = r], r = 0, 1, 2. (46)

This is equivalent to assigning prior probabilities to the different possible number of

cointegration relations, r. The prior probabilities imply the following prior odds ratios

[PROR]

PROR(r|2) = Pr[rank = r]

Pr[rank = 2]
, r = 0, 1, 2. (47)

The Bayes factor to compare rank r with rank 2 equals

BF(r|2) =
∫

Lr(Y T |Y k,Θr) pr(Θr) dΘr
∫

L2(Y T |Y k,Θ2) p2(Θ2) dΘ2
, r = 0, 1, (48)

where Lr(Y T |Y k,Θr) and pr(Θr) denote respectively the unconditional likelihood function

and the joint prior of the model with rank r. The posterior odds ratio to compare rank

r with rank 2 equals prior odds ratio times the Bayes factor, POR(r|2) = PROR(r|2) ×
BF(r|2), and the posterior probabilities for each rank are simply

Pr[rank = r|Y T ] =
POR(r|n)

∑2
i=0 POR(i|2)

, r = 0, 1, 2. (49)

19



The Bayes factors in (48) are in fact Bayes factors for Π = 0 and λ = 0 respectively.

They can be computed using the Savage-Dickey density ratio of Dickey (1971), which

states that the Bayes factor for Π = 0 (or λ = 0) equals the ratio of the marginal posterior

density and the marginal prior density of Π (λ), both evaluated in Π = 0 (λ = 0)

BF(0|2) = p(Π|Y T )|Π=0

p(Π)|Π=0

BF(1|2) = p(λ|Y T )|λ=0
p(λ)|λ=0

.

(50)

This means that we need the marginal posterior densities of Π and λ to compute these

Savage-Dickey density ratios. The marginal posterior density of Π can be computed

directly from the Gibbs output by averaging the full conditional posterior distribution

of Π in the point 0 over the sampled model parameters; see Gelfand and Smith (1990).

This approach cannot be used for λ, since the full conditional distribution of λ is of an

unknown type. To compute the height of the marginal posterior of λ we may use a kernel

estimator on simulated λ values; see for example Silverman (1986). Another possibility

is to use an approximation of the full conditional posterior of λ in combination with

importance weights; see Chen (1994). Kleibergen and Paap (2002) argue that the density

function g(λ|Θ1, Y T ) defined in (74) is a good approximation. This results in the following

expression to compute the marginal posterior height at λ = 0

p(λ|Y T )|λ=0 ≈
1

N

N
∑

i=1

|J(αi, λ, βi2)|λ=0|
|J(αi, λi, βi2)|

g(λ|Θi
1, Y

T )|λ=0, (51)

where N denotes the number of simulations. Note that one can avoid the importance

weights if one uses numerical integration to determine the integrating constant of the full

posterior conditional distribution of λ in every Gibbs step.

As we have a closed form for the prior density of Π, the prior height of Π at Π = 0

can be computed directly. To compute the prior height of λ we follow a similar procedure

as for the posterior height. First, sample from the prior of Σ and Π given Σ. Next,

perform a singular value decomposition on the sampled Πi (37) resulting in λi αi and βi2.

To compute the marginal prior height of λ at λ = 0 one may use a kernel estimator on

the sampled λi. It is again also possible to use an approximation of the full conditional

prior of λ in combination with importance weights. The prior height can be computed as
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follows

p(λ)|λ=0 ≈
1

N

N
∑

i=1

|J(αi, λ, βi2)|λ=0|
|J(αi, λi, βi2)|

h(λ|Θi
1)|λ=0, (52)

where h(λ|Θ1) is an approximation of the full conditional prior distribution of λ. An

appropriate candidate for h turns out to be

h(λ|Θ1) = (2π)−
1
2 |α⊥Σ

−1α′
⊥|

1
2 |β′

⊥Aβ⊥|
1
2

exp(−1

2
tr(β ′

⊥Aβ⊥(λ− l)α⊥Σ
−1α′

⊥(λ− l)′)), (53)

with l = (β ′
⊥Aβ⊥)

−1β′
⊥A(P − βα)Σ−1α′

⊥(α⊥Σ
−1α′

⊥)
−1.

Finally, if one specifies an improper prior for Π and λ, the height of the marginal prior

at Π = 0 and λ = 0 is not defined. The Bayes factors in (50) are therefore not properly

defined in case of diffuse priors. Kleibergen and Paap (2002) argue that a Bayesian

cointegration analysis under a diffuse prior specification on Π is possible if one replaces

the prior height by the factor (2π)−
1
2
(2−r)2 . This leads to a Bayes factor that corresponds

to the posterior information criterion [PIC] of Phillips and Ploberger (1994). We opt for

the same solution in this paper.

8 US Consumption and Income

In this section we analyze the presence of a long-run relation between the US per capita

consumption and income series considered in Section 3. We first start in Section 8.1 with

a simple analysis of cointegration between the two series in a vector autoregression with a

linear deterministic trend to illustrate the effects of neglecting the presence of a possible

Markov trend in the series. In Section 8.2 we analyze the presence of a long-run relation

between consumption and income using the multivariate Markov trend model proposed

in Section 4.

8.1 A VAR model without Markov Trend

If we restrict Γ1 and δ1 in the Markov trend model (21) to zero, we end up with a vector

autoregression for Yt with only a linear deterministic trend. In this subsection we analyze

the presence of a cointegration relation between US per capita consumption and income
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in this vector autoregression for Yt = 100 × (ln ct, ln yt)
′. The priors for N1 and Σ are

given by (29) and (30), with S = I and ν = 3. For Π given Σ we opt for a g-type prior;

see Zellner (1986). This prior is given in (44) with P = 0 and A = τ/T
∑T

t=1 Ȳ
′
t Ȳt for

different values of τ , where Ȳt denotes the demeaned and detrended value of Yt. As we

are dealing with non-stationary time series, we divide by the number of observations T ;

see Kleibergen and Paap (2002) for a similar approach. A smaller value of τ implies less

precision in the prior information on Π|Σ. For Γ0 and Φ̄i we take flat priors p(Γ0) ∝ 1

and p(Φ̄i) ∝ 1.

Before we start our analysis we have to choose the lag order k of the VAR model. To

determine the lag order we sequentially test for the significance of an extra lag using PIC

based Bayes factors starting with k = 1. Given this strategy we find that k = 2. We

note that the same lag order is found if one uses the BIC of Schwarz (1978) to determine

k. For the cointegration analysis, we assign equal prior probabilities to the possible

cointegration ranks (46), i.e. Pr[rank = r] = 1
3
for r = 0, 1, 2. The prior for α and β2 for

the cointegration specification (rank=1) is given by (45).

Columns 2 to 7 in the first panel of Table 1 shows log Bayes factors and posterior

probabilities for the cointegration rank r for different values of τ . The results show that a

model where the rank of Π is 0 or 1 is preferred to a model with full rank for Π. The log

Bayes factors computed for the model with rank 0 versus the model with rank 1, are 4.20

(6.69–2.49), 7.64 and 11.09 for τ equal to 1, 0.1 and 0.01, respectively. Hence, the model

with no cointegration relation is preferred to the model with 1 cointegration relation. The

Bayes factors lead to the assignment of 98% posterior probability to the model with no

cointegration relation if τ = 1 and 100% for the other values of τ . In sum, there is no

evidence for a long-run equilibrium between US per capita consumption and income in

a VAR model with only a linear deterministic trend4. Unreported results show that this

results is robust with respect to the chosen lag order. The log Bayes factors for models

with order 2 < k ≤ 5 are very similar to the ones reported in Table 1.

The results in Table 1 show that if we increase the prior variance of Π by decreasing

τ , the evidence for rank reduction and hence the presence of unit roots increases. This is

4The standard Johansen (1995) trace tests for rank reduction also do not indicate the presence of a
cointegration relation between the two series.
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Table 1: Log Bayes factors, posterior probabilities for the cointegration rank in a linear
VAR model (k = 2) and the multivariate Markov trend model (k = 1).

τ = 1 τ = 0.1 τ = 0.01 PIC
r lnBF(r|2) Pr[r|Y T ] lnBF(r|2) Pr[r|Y T ] lnBF(r|2) Pr[r|Y T ] lnBF(r|2) Pr[r|Y T ]

Linear VAR model

0 6.69 0.98 11.28 1.00 15.88 1.00 11.66 1.00
1 2.49 0.02 3.64 0.00 4.79 0.00 4.55 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Markov trend model

0 < −5 0.00 < −5 0.00 < −5 1.00 < −5 0.00
1 1.82 0.86 2.98 0.95 4.27 0.99 3.96 0.98
2 0.00 0.14 0.00 0.05 0.00 0.01 0.00 0.02

1 A log Bayes factor lnBF(r|2) > 0 denotes that a cointegration model with r cointegration relations
is more likely than a model with 2 cointegration relations.

2 The posterior probability of the cointegration rank Pr[r|Y T ] is defined in (49) and based on equal
prior probabilities (46) for every rank r.

3 Posterior results are based on 400,000 iterations with the Gibbs sampler neglecting the first 100,000
draws.

due to the fact that our prior is centered at Π = 0. When we increase the prior variance,

the prior height at Π = 0 decreases. The posterior height at Π = 0 remains almost the

same since the value of τ is so small that the prior has only a minimal effects on the

posterior. From Section 7 we have seen that the Bayes factor for Π = 0 equals the ratio

of the posterior and prior heights at Π = 0 and hence too small a value of τ leads to

rank reduction being favored, no matter what the nature of the sample evidence. This

phenomenon is known as the Lindley Paradox; see Zellner (1971). In the second last

column of the first panel of Table 1 we report the log Bayes factors for improper priors

on Π and Σ, that is, p(Π,Σ) ∝ |Σ|−1. Under this prior specification Bayes factors are not

properly defined. Instead, we report a PIC based Bayes factor, where we replace the prior

heights in (50) by the penalty function (2π)−
1
2
(2−r)2 . These Bayes factors again indicate
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that rank reduction is preferred to the full rank case and lead to the assignment of 100%

posterior probability to the model with no cointegration relation.

With no cointegration imposed, the estimated VAR model is

Ŷt = N̂t + Ẑt,

N̂t = −







481.70
(0.69)

469.61
(1.03)






+







0.63
(0.06)

0.68
(0.07)






(t− 1),

Ẑt =







1.11 0.08
(0.10) (0.06)

0.59 0.94
(0.16) (0.10)






Zt−1 +







−0.09 −0.11
(0.10) (0.06)

−0.47 −0.07
(0.16) (0.10)






Zt−2 + ε̂t, with

Σ̂ =







0.48 0.45
(0.06) (0.07)

0.45 1.14
(0.07) (0.13)






,

(54)

where the point estimates are posterior means based on the improper prior specification

discussed above, and where posterior standard deviations appear in parentheses. Note

that this model is equal to (13)-(17) with Γ1 = 0, δ1 = 0 and k = 1. The posterior means

of the slopes of the deterministic trends in the consumption and income series are 0.63%

and 0.68% respectively. They differ by about 0.01% from the average quarterly growth

rates reported in Section 3. Note that this difference is small compared to the posterior

standard deviations of the slopes.

8.2 A Bivariate Markov Trend Model

The VAR model with a deterministic trend assumes that the quarterly growth rates of

consumption and income are constant over time. However, the stylized facts suggest that

the long-run average quarterly growth rates are roughly the same, but that there may

be different growth rates in both series during expansions and recessions. To allow for

the possibility of different growth rates in consumption and income during recessions and

expansions, we consider the Markov trend model (21). The prior for the model parameters

is given by (29)–(34) with S = I and ν = 3. For Π given Σ we again use the same g-

type prior as for the non-Markov model. The prior is given in (44) with P = 0 and

A = τ/T
∑T

t=1 Ȳ
′
t Ȳt, where Ȳt denotes the demeaned and detrended value of Yt.
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Again, we perform a cointegration analysis but now we analyze the presence of a

cointegration relation in the deviations from a Markov trend instead of a deterministic

trend. To determine the lag order of the VAR part of the model we use the same strategy

as for the non-Markov model. It turns out to be that one lag is sufficient and hence

we impose k = 1. We assign equal probabilities to the possible cointegration ranks,

i.e. Pr[rank = r] = 1
3
for r = 0, 1, 2. The prior for α and β2 for the cointegration

specification (r = 1) is given by (45). Columns 2 to 7 of the second panel of Table 1

report the log Bayes factors and posterior probabilities for the rank of Π for different

values of τ . If we compare the corresponding results in the first panel, where we show

the results for the model without Markov trend, we see that all log Bayes factors are

smaller. Not surprisingly, there is more posterior evidence for rank reduction if we allow

for a Markov trend instead of a deterministic trend. For all values of τ , the model with

2 unit roots (r = 0) is clearly rejected against both the cointegration (r = 1) and the

Markov trend stationary (r = 2) specifications. The posterior probabilities assign more

than 86% posterior probability to the cointegration specification. For τ = 0.01 we find the

least evidence for cointegration although the evidence is certainly not weak. As discussed

before, under this prior specification we a priori favor the presence of two unit roots

and no cointegration as the prior height at Π = 0 in the second Bayes factor in (50) is

relatively small. The final two columns of the second panel of Table 1 refers to the case

where we impose an improper prior on Π and Σ. We report again a PIC based log Bayes

factor, where replace the prior heights in (50) by the penalty function (2π)−
1
2
(2−r)2 . The

log Bayes factors imply an assignment of 98% posterior probability to the cointegration

specification.

Overall, the Bayes factor analysis suggests that the multivariate Markov trend model

with one cointegration relation (23) is suitable to model the logarithm of US per capita
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consumption and income. The estimated model is given by

Ŷt = N̂t + R̂t + Ẑt,

N̂t = −







481.89
(0.63)

469.85
(0.81)






+







0.83
(0.13)

1.16
(0.17)






(t− 1)−







0.60
(0.21)

1.33
(0.20)







t
∑

i=2

si,

R̂t =





0.15
(0.22)

0



 st,

∆Ẑt =







0.24
(0.08)

0.55
(0.19)







(

1 −0.81
)

Zt−1 + ε̂t, with Σ̂ =







0.40 0.26
(0.06) (0.07)

0.26 0.66
(0.07) (0.11)






,

(55)

where the point estimates are posterior means5 and posterior standard deviations appear

in parentheses. The posterior means of the transition probabilities equal

p̂ = 0.86 (0.05) and q̂ = 0.76 (0.10).

The posterior results are based on the prior specification (29), (31)–(34), p(Σ) ∝ |Σ|−1

and p(α, β2|Σ) ∝ |J(α, λ, β2)|λ=0 and are obtained by including a Metropolis-Hastings

step in the Gibbs sampler to sample α and β2; see Appendix B. The candidate draw for

α and β2 was accepted in about 70% of the iterations. Note that a noninformative prior

does not lead to problems if one just wants to estimate the model parameters without

testing the rank.

Figure 3 shows the posterior density of β2. The posterior mode of the cointegration

relation parameter is −0.81. The 95% highest posterior density region [HPD] region for

β2 is (−1.05,−0.65) and hence −1 is just included in this region. There is only weak

evidence for the consumption-income relation (9). The adjustment parameters 0.24 and

0.55 are both positive, which indicates that there is no adjustment towards equilibrium

for the consumption equation. Note that this does not imply that the series move away

from the equilibrium, since the adjustment of income towards equilibrium is larger than

the non-adjustment in consumption; see also Johansen (1995, p. 39–42).

5As the posterior distribution of β2 may have Cauchy-type tails, we report the posterior mode. This
is also done for other posterior quantities which involve β2.
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Figure 3: Posterior density of β2

The posterior mean of the δ1 parameter equals 0.15. The 95% HPD region for this

parameter is (−0.31, 0.59) and hence it is very likely that δ1 equals 0. The posterior means

of the quarterly growth rates of the income series are 1.16% during an expansion regime

and −0.17% (= 1.16− 1.33) during a contraction regime. For the consumption series we

get 0.83% and 0.23% (= 0.83 − 0.60), respectively. Hence, during recessions the growth

rate in consumption is larger than the negative growth rate in income. To correct for this

difference in the growth rates, the growth rate in income has to be larger than the growth

rate in consumption during expansions.

Reduced rank Markov trend cointegration (β ′Γ1 = 0) is not likely as the posterior

mode of β ′Γ1 equals 0.44 and its 95% HPD region is (0.20, 0.89). The 95% HPD re-

gion of β ′Γ0 is (−0.39, 0.37) with a posterior mode of −0.08. Hence, the existence of a

consumption-income relation (9) which requires that both β ′Γ1 and β′Γ0 equal 0 is not

likely. On the other hand the results suggest that during recession periods the growth

rate in consumption is larger than in income, which is compensated for in the expansion

periods where income grows faster than consumption.
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The posterior means of the expected slope of the Markov trend are 0.65%6 for the

income series and 0.60% for the consumption series. These values only differ 0.02 from

the average quarterly growth rates reported in Section 3. The 95% HPD region of the

expected slope of the Markov trend in the cointegration relation is (−0.10, 0.46) and the

posterior mode equals 0.08. During recessions the posterior mode of the growth of the

cointegration relation β ′(Γ0 + Γ1) is 0.34 (0.21, 0.62), while during expansions it equals

−0.08 (−0.39, 0.37) as reported before.

Finally, we analyze how the estimated Markov trend relates to the NBER business

cycle. The posterior mean of the probability of staying in the expansion regime is 0.86,

which is larger than the posterior mean of the probability of staying in a recession 0.76.

The posterior probability that p is larger than q is 0.88, which indicates the existence

of an asymmetric cycle. The posterior expectations of the states variables E[st|Y T ] are

shown in Figure 4. Values of these expectation which are close to one correspond to

recessionary periods. Figure 5 shows the difference between the logarithm of US income

and consumption. The shaded areas correspond to the recessionary periods, where the

growth rate in consumption is larger than the growth rate in income.

Table 2 shows the estimated peaks and troughs based on the posterior expectation

of the states variables together with the official NBER peaks and troughs. We define a

recession by 2 consecutive quarters for which E[st|Y T ] > 0.5. A peak is defined by the last

expansion observation before a recession. A trough is defined by the last observation in a

recession. We see that the estimated turning points correspond very well with the official

NBER peaks and troughs. However, we detect two extra recessionary periods, which do

not correspond to official reported recessions. Note that the consumption income analysis

in this paper is based on per capita disposable income. If we look at the government

purchases on goods and services, which are used to create the disposable income series,

we see that government expenses increase during recessions resulting in an extra decrease

in disposable income. However, there was also a large increase in government expenses

during the two periods which are incorrectly reported as recession. This resulted in a

small decline or a smaller growth in disposable income during these two periods, which

explains the detection of the two extra recessions in our data.

6The expected slope of the Markov trend equals Γ0 + Γ1(1− p)/(2− p− q); see Hamilton (1989).
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Figure 4: Posterior expectations of the state variables
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recessionary periods.
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Table 2: Peaks and troughs based on the
posterior expectations of the unobserved state
variables1.

US NBER
peak trough peak trough

1960.1 1960.4 1960.2 1961.1
1966.1 1967.4
1968.2 1970.4 1969.4 1970.4
1973.2 1975.1 1973.4 1975.1
1979.3 1980.2 1980.1 1980.3
1981.3 1982.4 1981.3 1982.4
1984.4 1987.3
1989.2 1991.1 1990.3 1991.1

1 A recession is defined by 2 consecutive quarters for
which E[st|Y T ] > 0.5. A peak corresponds with the
last expansion observation before a recession and a
trough with the last observation in a recession.

In summary, the multivariate Markov trend model provides a good description for the

US per capita income and consumption series. The multivariate Markov trend captures

the different growth rates in both series during recession and expansion periods. After

detrending with the Markov trend we detect a stationary linear combination between log

per capita income and consumption. This cointegration relation is not found if we use a

regular deterministic trend instead of a Markov trend for detrending.

9 US Consumption, Income and Investment

In the previous section we have seen that there exist a cointegration relation between

log per capita income and consumption only if we allow for a Markov trend. One may

investigate whether the inclusion of a third variable with a more pronounced cyclical pat-

tern may help to improve the model. Therefore we consider in this section a multivariate

Markov trend model for per capita real disposable income, private consumption and pri-

vate investment of the United States, 1959.1–1999.4. The consumption and income series

are the same as in the previous section. The investment series is also obtained from the
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Figure 6: The logarithm of US per capita consumption,
income and investment, 1959.1–1999.4.

Federal Reserve Bank of St. Louis. Figure 6 shows a plot of the log of the three series.

It is clear that the investment series shows a more pronounced cyclical pattern than the

other two series.

To describe the three series we consider in Section 9.1 a VAR model without a Markov

trend. In Section 9.2 we introduce the multivariate Markov trend in the model, where we

allow the growth rates in the three series to be different across the series and across the

stages of the business cycle.

9.1 A VAR model without Markov Trend

In this subsection we analyze the presence of a cointegration relations in a VAR model

without Markov trend (Γ1 = 0 and δ1 = 0 in (21)) for Yt = 100×(ln ct, ln yt, ln it)
′, where it

denotes per capita investment series. The priors for model parameters are the same as in

the previous example. The priors for N1 and Σ are given by (29) and (30), with S = I and

ν = 4. The g-type prior for Π given Σ is given in (44) with P = 0 and A = τ/T
∑T

t=1 Ȳ
′
t Ȳt

for different values of τ , where Ȳt denotes the demeaned and detrended value of Yt. For

Γ0 and Φ̄i we take flat priors p(Γ0) ∝ 1 and p(Φ̄i) ∝ 1.

The lag order determination is done in the same way as in Section 8. The resulting
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Table 3: Log Bayes factors, posterior probabilities for the cointegration rank in a linear
VAR model (k = 2) and the multivariate Markov trend model (k = 1).

τ = 1 τ = 0.1 τ = 0.01 PIC
r lnBF(r|3) Pr[r|Y T ] lnBF(r|3) Pr[r|Y T ] lnBF(r|3) Pr[r|Y T ] lnBF(r|3) Pr[r|Y T ]

Linear VAR model

0 < −5 0.00 < −5 0.00 < −5 0.00 < −5 0.00
1 14.75 1.00 10.15 1.00 5.58 1.00 15.23 1.00
2 2.30 0.00 1.15 0.00 0.01 0.00 3.06 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Markov trend model

0 < −5 0.00 < −5 0.00 < −5 1.00 < −5 0.00
1 15.54 1.00 9.58 1.00 5.28 0.99 14.93 1.00
2 2.47 0.00 1.39 0.00 0.27 0.01 3.33 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 A log Bayes factor lnBF(r|3) > 0 denotes that a cointegration model with r cointegration relations
is more likely than a model with 3 cointegration relations.

2 Posterior results are based on 400,000 iterations with the Gibbs sampler neglecting the first 100,000
draws.

order is 2, which is also obtained if one uses the BIC to determine k. The Bayesian

cointegration analysis is a multivariate extension of the analysis in Section 7. The prior for

α and β2 for the cointegration specifications (rank 1 and 2) are similar to (45). We assign

equal prior probabilities to the possible cointegration ranks (46), i.e. Pr[rank = r] = 1
4

for r = 0, 1, 2, 3.

The first panel of Table 3 displays the log Bayes factors together with the posterior

probabilities for different values of τ . For all values of τ the Bayes factors lead to 100%

probability of a VAR model with rank 1 cointegration relation7. This is also true if one

chooses to consider the PIC based Bayes factors.

7The standard Johansen (1995) trace tests do not indicate the presence of a cointegration relation
between the three series if one restricts the deterministic trend within the cointegration space.
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The posterior results suggests that we have to consider a VAR(2) model with 1 coin-

tegration relation. The estimated model is given by

Ŷt = N̂t + Ẑt,

N̂t = −













481.78
(0.69)

470.22
(1.08)

651.48
(4.28)













+













0.70
(0.13)

0.74
(0.17)

0.84
(0.52)













(t− 1),

∆Ẑt =













0.03
(0.04)

0.01
(0.07)

−0.22
(0.34)













(

1 −0.95 0.24
)

Zt−1 +













0.20 −0.07 0.04
(0.14) (0.16) (0.03)

0.68 −0.17 0.04
(0.21) (0.25) (0.05)

3.80 −0.98 0.18
(0.86) (0.98) (0.20)













∆Zt−1 + ε̂t, with

Σ̂ =













0.49 0.46 0.61
(0.06) (0.07) (0.25)

0.46 1.19 3.91
(0.07) (0.14) (0.50)

0.61 3.91 18.37
(0.25) (0.50) (2.15)













,

(56)

where again the point estimates are posterior means (except for the cointegration relation

parameters) and posterior standard deviations appear in parentheses. The posterior re-

sults are based on a diffuse prior specification. The posterior modes of the cointegration

relation parameters are −0.95 for the consumption series and 0.24 for the investment

series. The corresponding 95% HPD regions are (−0.47, 1.07) and (−2.19, 0.04), respec-
tively. Note that the HPD regions are quite large, which is due to the relatively small

values of the adjustment parameters.

The posterior means of the slope parameters of the consumption and income series

are somewhat larger than for the bivariate model discussed in Section 8.1. The posterior

mean of the slope parameter of the investment series matches corresponds reasonably well

with the average quarterly growth rate of the series which is equal to 0.89%.

9.2 A Multivariate Markov Trend Model

To allow for the possibility of different growth rates across the series and across the stages

of the business cycle, we consider the Markov trend model (21). We take similar prior
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distributions as for the bivariate model in Section 8.2. Hence, the prior distributions

for the model parameters are given by (29)–(44) with S = I, ν = 4, P = 0 and A =

τ/T
∑T

t=1 Ȳ
′
t Ȳt, where Ȳt denotes the demeaned and detrended value of Yt.

The lag order selection procedure for the VAR part of the model results in k = 1.

The prior for α and β2 for the cointegration specifications are similar to (45). We assign

again equal probabilities to the possible cointegration ranks, i.e. Pr[rank = r] = 1
4
for

r = 0, 1, 2, 3. The second panel of Table 3 report the log Bayes factors and posterior

probabilities for the rank of Π for different values of τ . The values of the log Bayes

factors are similar to the values in the first panel of the table. Hence, adding a Markov

trend to the model does not change the posterior probabilities concerning the number of

cointegration relations.

The selected model by the Bayes factor is a VAR(1) model with 1 cointegration rela-

tion. The estimated model is given by

Ŷt = N̂t + R̂t + Ẑt,

N̂t = −













481.95
(0.61)

469.78
(0.79)

648.54
(3.03)













+













0.86
(0.11)

1.15
(0.15)

2.80
(0.49)













(t− 1)−













0.66
(0.16)

1.32
(0.16)

5.12
(0.62)













t
∑

i=2

si,

R̂t =







0.34
(0.14)

0
0






st,

∆Ẑt =













0.22
(0.07)

0.50
(0.14)

2.02
(0.64)













(

1 −0.71 −0.06
)

Zt−1 + ε̂t, with Σ̂ =













0.40 0.27 −0.15
(0.05) (0.06) (0.22)

0.27 0.72 2.21
(0.06) (0.11) (0.41)

−0.15 2.21 12.72
(0.11) (0.41) (1.93)













,

(57)

where again the point estimates are posterior means and posterior standard deviations

appear in parentheses. The posterior results are based on a diffuse prior specification.

The posterior means of the transition probabilities equal

p̂ = 0.86 (0.05) and q̂ = 0.76 (0.10),

which are equal to the bivariate Markov trend model in Section 8.2.
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The posterior modes of the cointegration relation parameters are −0.71 and −0.06
for consumption and investment series, respectively. The corresponding HPD regions

are (−1.00,−0.35) and (−0.18, 0.06), which are clearly smaller than for the linear VAR

specification. The adjustment parameters are more than two posterior standard deviations

away from zero and hence the cointegration relation seems to be more relevant than in

the model without the Markov trend. The HPD region of the cointegration relation

parameter for investment contains zero, which suggests that contribution of investment

to the cointegration relation is of minor importance.

The posterior means of the Markov trend parameters of the consumption and income

series are almost the same as for the bivariate model in Section 8.1. For the investment

series the posterior mean of the quarterly growth rate during expansions is 2.80%, while

during recessions we have a growth rate of −2.32% (2.80− 5.12). Reduced rank Markov

trend cointegration (β ′Γ1 = 0) is again not very likely as the posterior mode of β ′Γ1 equals

0.45 and its 95% HPD region is (0.19, 0.99).

In sum, we have seen that Bayes factors suggest 1 out of 3 possible cointegration

relations in a VAR model with deterministic trend for per capita consumption, income

and investment. This implies that there are still two unit roots remaining in the system

as was also the case in our bivariate specification in Section 8. Although Bayes factors

suggest the presence of one cointegration relation, the relevance of the error correction

term is small. If we turn to a multivariate Markov trend model, the error correction term

becomes more relevant and the contribution of investment to the cointegration relation

is negligible. The inclusion of a Markov trend now does not lead to a decrease in the

number of unit roots in the system as in the bivariate case. Although investments seems

to partly replace the role of the Markov trend in the linear VAR, the posterior results of

the Markov trend model role suggest that the Markov trend remains important.

10 Conclusion

In this paper we have proposed a multivariate Markov trend model to analyze the possible

existence of a long-run relation between per capita consumption and income of the United

States. The model specification has been based on suggestions by simple economic theory
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and a simple stylized facts analysis on both series. The model contains a multivariate

Markov trend specification, which allows for different growth rates in the series and differ-

ent growth rates during recessions and expansions. The deviations from the multivariate

Markov trend are modeled by a vector autoregressive model. To analyze US series with

the multivariate Markov trend model, we have chosen a Bayesian approach. Bayes factors

are proposed to analyze the presence of a cointegration relation in the deviations of the

series from the multivariate Markov trend.

The posterior results suggest that there exists a stationary linear relation between log

per capita consumption and income after correcting for a Markov trend. The Markov

trend models the different growth rates in both series during recessions and expansions.

The growth rate in consumption is larger than the negative growth rate in income during

recessions. To compensate for this difference the growth rate in income is larger than the

growth rate in consumption during expansion periods. If we replace the Markov trend by

a deterministic linear trend posterior results do not indicate the presence of a stationary

linear relation between both series.

To analyze the robustness of our approach we included per capita investment to the

model as this series has a more pronounced cyclical pattern. Hence, we consider a multi-

variate Markov trend model for log per capita consumption, income and investment series.

Posterior results suggest the presence of only one cointegration relation between the three

series. This result is found for both the Markov trend and the linear deterministic trend

specification. Hence, adding a possible non-stationary variable to the Markov trend model

therefore does not increase the number of cointegration relations in the system. Although

Bayes factors suggest cointegration in the linear VAR model with deterministic trend, the

posterior standard deviations of the adjustment parameters show that the cointegration

relation is of minor importance. In the multivariate Markov trend model, the error cor-

rection term is more relevant and investment does not have a significant contribution to

the cointegration relation.

We end this conclusion with some suggestion for further research. The multivariate

Markov trend model we proposed in this paper is linear in deviation from the Markov

trend. Possible cointegrating vectors and adjustment parameters are not affected by

regime changes. We may however also allow that the adjustment parameters or the
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cointegrating vector have different values over the business cycle. This implies a nonlinear

error correction mechanism in consumption and income; see also Peel (1992). It is then

even possible that the series are only cointegrated in expansions and not in recessions.

Testing for the presence of cointegration in the different regimes may however be difficult

as the number of observations for recessionary periods is usually very small. Furthermore,

the dynamic properties of such models are not easy to derive; see Holst et al. (1994) and

Warne (1996). Finally, we may also consider alternative multivariate nonlinear models

to analyze the consumption and income series, like threshold models; see for example

Granger and Teräsvirta (1993) and Balke and Fomby (1997).
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A Jacobian Transformation

In this appendix we derive the Jacobian of the transformation from Π to (α, λ, β2) for

a 2-dimensional vector autoregressive model. For larger dimensions; see Kleibergen and

Paap (2002). Define α = (α1, α2), where α1 and α2 are scalars and θ2 = −α2/α1 such

that α = α1θ with θ = (1 − θ2)
′. The derivation of the Jacobian of the complete

transformation from Π to (α1, α2, λ, β2) is for notional convenience split up in the Jacobian

of the transformation of Π to (α1, θ2, λ, β2) and then the transformation of θ2 to α2. As

θ⊥ ∈ α⊥ we can write

Π = αβ ′ + α⊥λβ
′
⊥

= (α α⊥)

(

1 0
0 λ

)(

β′

β′
⊥

)

=

(

1 θ2/
√

1 + θ22
−θ2 1/

√

1 + θ22

)(

α1 0
0 λ

)(

1 −β2
−β2/

√

1 + β22 1/
√

1 + β22

)

= α1

(

1 −β2
−θ2 θ2β2

)

+
λ

√

(1 + θ22)(1 + β22)

(

−θ2β2 θ2
−β2 1

)

.

(58)

The derivatives of Π with respect to α1, θ2, λ and β2 read

J1 =
∂ vec(Π)

∂α1
=









1
−θ2
−β2
θ2β2









J2 =
∂ vec(Π)

∂θ2
=









0
−α1
0

α1β2









+
λ

√

(1 + θ22)(1 + β22)









−β2 + θ22β2/(1 + θ22)
θ2β2/(1 + θ22)
1− θ22/(1 + θ22)
−θ2/(1 + θ22)









J3 =
∂ vec(Π)

∂λ
=

1
√

(1 + θ22)(1 + β22)









−θ2β2
−β2
θ2
1









J4 =
∂ vec(Π)

∂β2
=









0
0
−α1
α1θ2









+
λ

√

(1 + θ22)(1 + β22)









−θ2 + θ2β
2
2/(1 + β22)]

−1 + β22/(1 + β22)
−θ2β2/(1 + β22)
−β2/(1 + β22)









.

(59)

The Jacobian from θ2 to α2 is simply

G =

∣

∣

∣

∣

∂θ2
∂α2

∣

∣

∣

∣

= − 1

α1
. (60)
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Hence, the Jacobian for the total transformation equals

J(α, λ, β2) = |J1 J2 J3 J4| |G|. (61)

B Full Conditional Posterior Distributions

Full Conditional Posterior of the States

To sample the states, we need the full conditional posterior density of st, denoted by

p(st|s−t,Θ2, Y T ), t = 1, . . . , T , where s−t = sT\{st}. Since st follows a first-order Markov

process, it is easily seen that

p(st|s−t) ∝ p(st|st−1) p(st+1|st), (62)

due to the Markov property. Following Albert and Chib (1993), we can write

p(st|s−t,Θ2, Y T ) =
p(st|s−t,Θ2, Y t) f(Yt+1, . . . , YT |Y t, s−t, st,Θ2)

f(Yt+1, . . . , YT |Y t, s−t,Θ2)

∝ p(st|s−t,Θ2, Y t) f(Yt+1, . . . , YT |Y t, s−t, st,Θ2). (63)

Using the rules of conditional probability, the first term of (63) can be simplified as

p(st|s−t,Θ2, Y t) ∝ p(st|s−t,Θ2, Y t−1) f(Yt, st+1, . . . , sT |Y t−1, st,Θ2)

∝ p(st|st−1,Θ2) f(Yt|Y t−1, st,Θ2)

p(st+1|st,Θ2, Y t) p(st+2, . . . , sT |st+1,Θ2, Y t)

∝ p(st|st−1,Θ2) f(Yt|Y t−1, st,Θ2) p(st+1|st,Θ2), (64)

where we use the fact that {st+2, . . . , sT} is independent of st given st+1. The second term

of (63) is proportional to

f(Yt+1, . . . , YT |Y t, st,Θ2) ∝
T
∏

i=t+1

f(Yi|Y i−1, si,Θ2). (65)

Next, using (64) and (65) the full conditional distribution of st for t = k + 1, . . . , T is

given by

p(st|s−t,Θ2, Y T ) ∝ p(st|st−1,Θ2) p(st+1|st,Θ2)
T
∏

i=t

f(Yi|Y i−1, si,Θ2), (66)
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where f(Yt|Y t−1, st,Θ2) is defined in (24) and the constant of proportionality can be

obtained by summing over the two possible values of st. At time t = T the term

p(sT+1|sT ,Θ2) drops out. The first k states can be sampled from the full conditional

distribution

p(st|s−t,Θ2, Y T ) ∝ p(st|st−1,Θ2) p(st+1|st,Θ2)
T
∏

i=k+1

f(Yi|Y i−1, si,Θ2), (67)

for t = 1, . . . , k, where at time t = 1 the term p(st|st−1,Θ2) is replaced by the uncondi-

tional density p(s1|Θ2), which is a binomial density with probability (1− p)/(2− p− q).

As Albert and Chib (1993) show, sampling of the state variables is easier if Π = 0.

Under this restriction only the first (k − 1) future conditional densities of Yt depend on

st instead of all future conditional densities. However, sampling is possible in the same

way: take the most recent value of sT and sample the states backward in time, one after

another, starting with sT . After each step, the t-th element of sT is replaced by its most

recent draw.

Full Conditional Posterior of p and q

From the conditional likelihood function (25) if follows that the full conditional posterior

densities of the transition parameters are given by

p(p|sT ,Θ2\{p}, Y T ) ∝ pN0,0(1− p)N0,1

p(q|sT ,Θ2\{q}, Y T ) ∝ qN1,1(1− q)N1,0 ,
(68)

where Ni,j again denotes the number of transitions from state i to state j. This implies

that the transition probabilities can be sampled from beta distributions.

Full Conditional Posterior of Σ

It is easy to see from the conditional likelihood (25) that the full conditional posterior of

Σ is proportional to

p(Σ|sT ,Θ2\Σ, Y T ) ∝ |Σ|− 1
2
(T−k+2+λ) exp(−1

2
tr(Σ−1(S + (Y1−N1)(Y1−N1)

′ +
T
∑

t=k+1

εtε
′
t)),

(69)

and hence the covariance matrix Σ can be sampled from an inverted Wishart distribution;

see Zellner (1971, p. 395).
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Full Conditional Posterior of N1, Γ0 and Γ1

To derive the full conditional posterior distribution of N1, Γ0 and Γ1 we write (21) as

Σ− 1
2Φ(L)Yt = Σ− 1

2Φ(L)(Γ0(t− 1) + Γ1

t
∑

i=2

si +N1) + Σ− 1
2 εt

= −Σ− 1
2

k
∑

j=1

Φj(Γ0 Γ1 N1)





Lj(t− 1)

Lj
∑t

i=2 si
1



+ Σ− 1
2 εt,

(70)

where Φ0 = −I. Without the Φj matrices, we have a multivariate regression model in the

parameters N1, Γ0 and Γ1 and the full conditional distribution would be matrix normal.

To reverse the order of Φ(L) and the parameters (Γ0 Γ0 N1), we apply the vec operator to

both sides of (70). Using the vec notation and the fact that vec(ABC) = (C ′⊗A)vec(B),

we can write (70) as a linear regression model and hence the full conditional distributions

of vec(N1), vec(Γ0) and vec(Γ1) are normal.

Full Conditional Posterior of δ1

We write (21) as

Σ− 1
2Φ(L)(Yt −Nt) = Σ− 1

2φ(L)δRt + Σ− 1
2 εt, (71)

with Φ0 = −I. Applying the vec operator to both sides leads to a standard regression

model with regression parameter δ1. The full conditional posterior of δ1 is therefore

normal.

Full Conditional Posterior of Π and Φ̄

To sample from the full conditional posterior of the autoregressive parameters we use that

conditional on Γ0, Γ1, N1 and the states {st}Tt=1, equation (21) can be seen as a multi-

variate regression model in the parameters Π and Φ̄. From Zellner (1971, chapter VIII)

if follows that the full conditional posterior distribution of the parameter matrices are

matrix normal. A draw from the full conditional distribution of λ can be obtained by

performing a singular value decomposition on the sampled Π and solving for λ using (39).
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Sampling of α and β2

To derive the full conditional posterior distributions for α and β2 we rewrite (23) such

that conditional on Φ̄, N1, Γ0, Γ1 and the states {st}Tt=1 it resembles a simple VAR(1)

model. Using Zt = Yt −Nt −Rt−1 we can write

∆Zt −
k−1
∑

i=1

Φ̄i∆Zt−i = αβ ′Zt−1,+εt

∆Z∗
t = αβ ′Z∗

t−1 + εt,

(72)

where ∆Z∗
t = ∆Zt −

∑k−1
i=1 Φ̄i∆Zt−i and Z∗

t−1 = Yt−1 − Nt−1 − Rt−1. It is easy to see

that the full conditional posterior distributions of α and β2 are non-standard. Therefore

Kleibergen and Paap (2002) propose a Metropolis-Hastings algorithm to sample α and

β2 in this simple VAR model. Chib and Greenberg (1994, 1995) show that it is possible

to build such a Metropolis-Hastings algorithm into the Gibbs sampling procedure. The

Metropolis-Hastings algorithm step works as follows. First, draw in iteration i of the

Gibbs sampler Πi from its full conditional posterior distribution; see above. Perform a

singular value decomposition on Π and solve for αi, λi and βi2 using (39). Now accept this

draw of αi and βi2 with probability min
(

w(αi,λi,βi

2
)

w(αi−1,λi−1,βi−1

2
)
, 1
)

, where i denotes the current

draw, i− 1 the previous draw and

w(α, λ, β2) =
|J(α, λ, β2)|λ=0|
|J(α, λ, β2)|

g(λ|Θ1, Y T )|λ=0, (73)

where

g(λ|Θ1, Y T ) = (2π)−
1
2 |α′

⊥Σ
−1α⊥|

1
2 |β′

⊥(A+ Z∗′
−1Z

∗
−1)β⊥|

1
2

exp(−1

2
tr((β ′

⊥(A+ Z∗′
−1Z

∗
−1)β⊥)(λ− λ̃)(α′

⊥Σ
−1α⊥)(λ− λ̃))), (74)

with

λ̃ = (β ′
⊥(A+ Z∗′

−1Z
∗
−1)β⊥)

−1β′
⊥(A(P − βα′) + Z∗′

−1(∆Z
∗ − Z∗

−1βα
′))Σ−1α⊥(α

′
⊥Σ

−1α⊥)
−1,

(75)

and Z∗
−1 = (Z∗

k . . . Z
∗
T−1)

′, ∆Z∗ = (∆Z∗
k+1 . . .∆Z

∗
T )

′. If the draw of αi and βi2 is rejected,

one has to take the previous draw i.e. αi = αi−1 and βi2 = βi−12 .
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