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1.0 Introduction 

Porphyria cutanea tarda (PCT) is the most common form of all porphyrias with an 

estimated prevalence of at least 1:25,000 in the western part of Europe (1). 

The basic biochemical defect in PCT is a defective uroporphyrinogen decarboxylation in 

the liver (2·4). This leads to the overproduction and accumulation of uroporphyrins and 

heptacarboxylporphyrins in hepatocytes, followed by the accumulation in the skin. PCT 

can occur in families as an inherited disorder (2,4), but can also be produced in humans 

and animals by exposure to certain chemicals (1). Recent studies in humans with PCT and 

in animal models with uroporphyria suggest that the changes in uroporphyrinogen 

decarboxylase (URO·D) activity and the accumulation of porphyrins to the levels at which 

overt uroporphyria develops, requires the interaction between a number of inherited and 

acquired factors (1). 

One of the most important factors is iron, and indeed iron removal by repeated 

phlebotomy remains the mainstay of treatment of PCT, as shown by lppen in 1962 (5). 

Although many studies confirmed the important role for iron in the pathogenesis of PCT 

and experimental uroporphyria, the mechanism by which iron influences porphyrin 

metabolism has not been elucidated. 

1.1 The heme biosynthetic pathway 

The principal sites for heme biosynthesis in humans are the bone marrow and the liver. 

Heme serves as the prosthetic group of hemoproteins, which mediate oxygen transport 

and storage, the generation of cellular energy, the formation of certain steroid hormones 

and some reduction reactions and detoxifications. Heme is also involved in the regulation 

of protein synthesis and modifies cell development in experimental systems (6). 

1.1.1 Heme biosynthesis 

The synthesis of one molecule of heme requires 8 molecules of glycine and 8 molecules 

of succinyl CoA. The 8 enzyme steps required for heme synthesis are distributed between 

the mitochondrial and cytosolic compartments. The first and the last 3 steps occur in the 

mitochondrion and the intervening 4 steps in the cytosol (Figure 1). 

All the enzymes have been purified and their kinetic parameters have been described 

(6). Moreover, the genes for 6 of the 8 enzymes have also been identified (T), allowing the 
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Figure 1. The heme biosynthetic pathway. 
PLP, pyridoxal-5-phospbate: ALA, 5-Aminolevulinic Acid; PBG, Porphobilinogen; URO'gen, 
Uroporphyrinogen; COPRO'gen, Coproporphyrinogen; PROTO'gen, Protoporphyrinogen; Ac, Acetate; Pr, 
Propionate; Vi, Vinyl 
(by courtesy of Dr S.S. Bottomley) 

characterization of genetic defects of the pathway (the porphyrias) at the molecular level. 

Under normal circumstances, the sequence of the enzymatic reactions proceeds with 

little accumulation of substrates and less than 2.5% of the 5-aminolevulinic acid (ALA) 

has been estimated to be lost during heme biosynthesis (!). 
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1.1.2 Regulalion of heme biosynthesis 

Intracellular heme is involved in the regulation of its own synthesis by a negative 

feedback mechanism exercised at the level of ALA synthase (ALA-S). Presumably. "free" 

heme concentrations determine this effect. The regulatory "free" heme pool can be 

visualized as a relatively small pool with a rapid turnover rate. The size of this pool is 

determined by rates of synthesis of heme and rates of withdrawal of heme for 

combination with the apoproteins of cytochromes and other hemoproteins, and by the 

rate-limiting enzyme of its degradation, heme oxygenase (6). 

Certain steroids, drugs and chemical compounds induce hepatic ALA-S activity by 

inhibiting repression and in that way activating the transcription and increasing the 

amount of m-RNA for ALA-S (8). The induction probably results largely from depletion 

of the regulatory pool of heme by one or more of the following mechanisms (9): 

I. Accelerated depletion of heme (e.g., depletion or inactivation of cytochrome P-450 by 

chemicals or drugs). 

2. Inhibition of heme biosynthesis by inhibiting one or more of the enzymes of the heme 

pathway or by removal of the substrate. of the enzyme. 

3. Increased rate of combination of heme with apoproteins for synthesis or reconstitution 

of hemoproteins. 

1.1.3 Porphyrins 

Porphyrinogens and porphyrins are cyclic tetrapyrroles. The intermediate products 

formed in the heme biosynthetic pathway are the reduced forms of porphyrins, 

porphyrinogens (Figure 1). Porphyrinogens undergo rapid oxidation on exposure to 

oxygen to become porphyrins, which are the usual forms of the cyclic tetrapyrroles found 

in biologic specimens. With the exception of protoporphyrin, which is the substrate for 

ferrochelatase, all other enzymatic steps require porphyrinogens as substrate. 

Porphyrinogens have unique photo-optical properties. They are readily excited by light at 

around 400 nm to emit intense red fluorescence. In contrast, heme (Fe-protoporphyrin) 

does not emit fluorescence (1). 

The water-solubility of porphyrins decreases with reduction in the number of carboxylic 

acid side-chains. Thus, uroporphyrin (with 8 carboxylic groups) is most water-soluble and 

protoporphyrin (with 2 carboxylic groups) is least water-soluble. Protoporphyrin is 



7 

excreted only in bile, while uroporphyrin and coproporphyrin are excreted mainly in 

urine. 

Free porphyrins do not appear to have useful biologic functions. However, light 

activation of porphyrinogens causes cell damage: a) by injuring plasma and lysosomal 

membranes in the presence of oxygen-related free radicals (10), and b) by activating 

enzymes such as the complement system (II). In contrast, heme, chlorophyl and corrins, 

which are Fe, Mg, and Co chelates of porphyrins have important biologic functions. 

1.2 The porphyrias 

1.2.1 Dijfereru types of porphyria 

The porphyrias have traditionally been classified according to whether the liver or the 

bone marrow is the main source of excess porphyrin production. Nowadays, a 

classification is preferred based on whether patients suffer acute attacks, cutaneous 

manifestations, or both (Table I) (1,6,12). 

Clinically indistinguishable attacks of acute porphyria occur in ALA dehydratase 

deficiency, acute intermittent porphyria (AlP), hereditary coproporphyria (HC) and in 

variegate porphyria (VP). All the disorders causing an acute attack of porphyria have in 

Table 1. 
The different types of porphyria. 

Disorder 

ALA1 dehydrata._.;;e deficiency 
Acute intermittent porphyria 
Cong. erythropoietic porphyria 
Porphyria cutanea tarda 
Hereditary coproporphyria 
Variegate porphyria 
Erythropoietic protoporphyria 

Enzym~ 

dc:ficiency 

ALA dehydrar.au 
PBG;o; deamina._.;;e 

URO · gen3-III-synthase 
URO'gen decarboxylase 
COPRO'gen4 oxidase 
PROTO'gen5 oxidase 
Ferrochelatase 

Clinical features 

Acute Skin 
attacks symptoms 

+ 
+ 

+ 
+ 

+ + 
+ + 

+ 

Site of Inheritance 
porphyrin 
production 

liver Aut.-Rec.6 

"liver Aut.-Dom. 7 

bone marrow Aut.-Rec. 
liver Aut.-Dom. 
liver Aut.-Dom. 
liver Aut.-Dom. 
bone marrow Aut.-Dom. 
and/or liver 

ALA\ 5-Am.inolevulinic Acid: PBG;';. Porphobilinogen: URO'gen\ Uroporphyrinogen; COPRO'gen4
, 

Coproporphyrinogen; PROTO'gen5, Protoporphyrinogen; Aut.-Dom.~. Autosomal-Dominant; Aut.-Rec.7, 

Autosomal-Recessive 
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common the overproduction of the porphyrin precursors, ALA and porphobilinogen 

(PBG), and the liver is the main site of overproduction of these precursors. Almost all 

acute attacks start with symptoms of abdominal pain, which may be accompanied by 

psychiatric abnormalities and peripheral neuropathy (13). At least 75% of attacks are 

precipitated by drugs, alcohol, fasting or endocrine factors (13,14). Five percent of 

attacks that are severe enough to require hospitalization end fatally (1). 

Cutaneous manifestations caused by photosensitization due to porphyrinogens occur in 

all types of porphyria, except AlP and ALA dehydratase deficiency. Porphyrinogen 

photosensitization produces two distinct clinical syndromes: 

1. Acute photosensitivity on exposure to sunlight with erythema and oedema, which 

subsides between episodes to leave few visible changes of the skin. 

2. A syndrome in which subepidermal bullae, erosions, hypertrichosis and pigmentation 

occur in sun-exposed areas of the skin. 

The first of these is seen only in erythropoietic protoporphyria (EPP) and the second in 

all cutaneous porphyrias. In VP and HC, acute porphyric attacks and skin lesions may 

occur together or separately (15). 

1.2.2 Enzyme defects in porphyrias 

Each of the porphyrias results from a partial deficiency of one of the enzymes of heme 

biosynthesis. The porphyrias, with the exception of some types of PCT (see also 

paragraph 1.3), are inherited in either an autosomal-dominant or autosomal-recessive 

fashion (Table I). 

In each type of porphyria, the decreased rate of heme synthesis is compensated by the 

induction of ALA-S, which results in an increase in the concentration of the substrate of 

the defective enzyme. Intracellular accumulation and subsequent excretion of the substrate 

produces a pattern of liver, plasma, erythrocyte, urine and feces porphyrin precursors and 

porphyrins that is characteristic for that enzyme deficiency (1,6). 

Individuals who inherit the gene for one of the autosomal-dominant porphyrias have 

quantitatively similar enzyme deficiencies, yet probably < 10% ever develop symptoms. 

The remaining individuals in this group have "latent" or "subclinical" porphyria. All 

individuals who carry the gene for one of the autosomal-dominant acute hepatic 

porphyrias (AlP, VP or HC) are at risk of developing acute attacks in response to drugs 
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and other precipitants (1). 

latency may be a life-long state or follow a symptomatic phase. In PCT, urinary, fecal 

and plasma uroporphyrin concentrations may return to normal in some patients within a 

year of clinical remission. In AlP, VP and HC, evidence of heme precursor 

overproduction usually persists for many years after remission, but may eventually return 

to normal in some patients (1). 

A number of clinical variants have been described. Most of these appear to be 

homozygous forms of the autosomal-dominant porphyrias, for example 

hepatoerythropoietic porphyria (HEP), the homozygous form of PCT (16) (see also 

paragraph 1.3.10). Homozygous forms of HC (17), VP (18), EPP (19) and AlP (20) have 

also been identified. All these cases have in common that: a) symptoms appear in 

childhood; b) enzyme activities are usually around 10% of normal; c) sustained 

overproduction of porphyrins occurs from an early age; and d) erythrocyte protoporphyrin 

production is increased. This last characteristic provides a useful indicator to its existence 

(21). 

Very occasionally patients with porphyria may have porphyrin excretion patterns that 

suggest the presence of more than one enzyme defect. For example, the co-existence of 

two types of cutaneous porphyria, VP and PCT, has been reported from South Africa 

(22). In addition, more than one type of acute porphyria, AlP and VP, has been described 

in a family in the United Kingdom (23). 

1.3 Porphyria cutanea tarda 

PCT is the commonest of the porphyrias and refers to a heterogeneous group of 

porphyrias, characterized by cutaneous photosensitivity due to the increased production of 

uroporphyrinogens and heptacarboxylporphyrinogens and a 50% reduction of URO-D 

activity in the liver (2-4). 

Different types of PCT have been distinguished: 

L Sporadic PCT/ type I PCT (S-PCT), where decreased URO-D activity is restricted to 

the liver and not detectable in erythrocytes. There is no fantily history of PCT (3,24). 

2. Familial PCT/ type II PCT (F-PCT), which is transmitted as an autosomal-dominant 

disorder, where the enzymatic defect is apparently present in all tissues (2,4,24). 

3. Recently, a few patients with at least one other family member with PCT, but with a 
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normal URO-D activity in erythrocytes, have been reported (25-28). This form of PCT 

has been termed type Ill PCT. It has been suggested that these patients may have 

inherited an atypical form of URO-D that has enhanced susceptibility to inactivation by a 

liver-specific process, but which is indistinguishable from normals by standard kinetic and 

imrnunochemical measurements. An alternative possibility is that these patients have a 

normal URO-D gene, but inherited a factor which interferes with URO-D activity 

(28,29). 

The combined prevalence of familial forms of PCT has been reported to vary between 

22.5 and 51% of cases in different series (!,6,25-29). The remainder of patients can be 

classified as S-PCT. 

1.3.1 Enzymology 

URO-D catalyses the sequential removal of the 4 carboxylic groups of the acetic acid 

side-chains of uroporphyrinogen to yield coproporphyrinogen (30). Muketji and Pimstone 

provided evidence for the existence of 2 separate URO-D isoenzymes in human 

erythrocytes (31). However, at present, it seems most likely that only one URO-D 

enzyme (32-36), with 2 (32) or 4 (35) active sites, mediates the 4 decarboxylation steps. 

URO-D decarboxylates in vitro all 4 isomers of uroporphyrinogen, but the naturally 

most abundant type III isomer is decarboxylated most rapidly, followed by types IV, II 

and I isomers in decreasing order (37). Whether the decarboxylation mechanism of 

uroporphyrinogen type III isomer is clod:wise (30,38) or random (39) has not been 

established. 

URO-D, purified from human erythrocytes, has a molecular mass of 40,800 (33,35,40), 

an isoelectric point of 4.6 and a specific activity of 9970 Ulmg protein, using 

uroporphyrinogen Ill as substrate (35). 

1.3.2 Genetics & Molecular biology 

A eDNA complementary to URO-D mRNA from human erythroid cells has been cloned 

and sequenced (40) and the structure of the gene has been determined (36). URO-D is 

encoded at a single locus on the short arm of chromosome 1 (41-43). The gene contains 

10 exons spread over 3 kb and appears to be transcripted from the same promoter of all 

tissues to give major and minor mRNA species that arise from initiation start sites that 
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are 6 bases apart. The proportions of the two species are the same in erythroid and non

erythroid cells (36). 

In patients with F-PCT, two point mutations have been described (44,45). One mutation 

(gly ~val at amino-acid position 281) could not be identified in other unrelated pedigrees 

with F-PCT (44), however the other mutation (deletion of exon 6) could be detected in 5 

of 22 unrelated pedigrees with F-PCT (45). 

1.3.3 Activity of other heme biosymhetic en_rymes 

Whether the activity of the rate-limiting enzyme, ALA-S, is increased in PCT has been 

disputed (46). However, Moore et a!. (47) convincingly reported an increased hepatic 

ALA-S activity in patients with PCT. After ALA-S, porphobilinogen deaminase (PBG-D) 

has the next lowest endogenous activity of all enzymes in the heme biosynthetic pathway 

(1). An increased PBG-D activity in erythrocytes (48-52) and in livers (48,52) of patients 

with PCT has been described. Increased ALA-S and PBG-D activities suggest that these 

enzymes are probably necessary to maintain heme biosynthesis in PCT (1). 

In contrast to ALA-S and PBG-D, the activity of ALA dehydratase in liver biopsy 

specimens is decreased in PCT. However, ALA dehydratase activity greatly surpasses 

ALA-S activity in human liver, therefore, this is unlikely to interfere with heme 

biosynthesis (53). 

1.3.4 Clinicalfemures 

Lesions on sun-exposed skin are the most consistent clinical feature. The commonest 

lesions are superficial erosions from mechanical skin fragility, subepidermal bullae, 

hypertrichosis and pigmentation (54,55). Sclerodermatous changes, alopecia and 

onycholysis may occur in long-standing disease. Erosions and bullae, which may become 

infected, heal slowly with crusting, scars and milia. Long-term effects may range from 

minor scars to severe photomutilation, especially in sunny climates (55,56). Acute 

photosensitivity is uncommon. Histological changes and immunopathological findings of 

the skin are distinctive enough to be useful in PCT (57). 

PCT is uncommon before the age of 20 and most patients develop symptoms in the 5th 

decade or later. Patients tend to present in the early summer, before the skin has any 

protective pigmentation (46,54,58). 
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Both S-PCT and F-PCT are often triggered by environmental factors. The most 

frequently incriminated agents are: a) ethanol; b) estrogens; c) polyhalogenated aromatic 

hydrocarbons; and d) iron. 

a) Ethanol has long been recognized to exacerbate PCT. The incidence of ethanol-intake 

in different series of PCT patients varies from 25 to 100% (54,55,58). The degree of 

ethanol-intake may range from one or two drinks daily to frank alcoholism. The 

mechanism by which ethanol exacerbates PCT is not clear, but ethanol has been reported 

to increase the uptake of iron in patients with PCT (59), but also in normal subjects (60), 

and to increase liver iron content (see also paragraph 1.3.5). Moreover, ethanol has also 

been shown to stimulate the activity of ALA-S in livers of PCT patients (61) and to 

decrease URO-D activity in livers of rats (62). 

b) Estrogen administration to patients with carcinoma of the prostate, for postmenopausal 

replacement therapy or for contraceptive purposes has been associated with aggravation or 

precipitation of PCT (63). Pregnancy has also been reported to precipitate PCT (64). 

Interestingly, alcoholics sometimes display signs of hyperestrogenization (60). Increased 

hepatic ALA-S activity has been demonstrated in males receiving stilbestrol for carcinoma 

of the prostate (65), but otherwise few clues concerning the mechanism of these estrogen 

effects in PCT have been found. 

c) Polyhalogenated aromatic hydrocarbons (PAR's) have been associated with the 

development of PCT in humans. The best known example is a massive outbreak of about 

4000 cases of PCT from 1956 to 1961 in Turkey following the widespread ingestion of 

hexachlorobenzene-treated wheat (66). A 20 to 30 year follow-up study on 204 of these 

patients still found some patients with uroporphyria (67). A variety of other PAR's, used 

in induslfY, have also been implicated (68,69). Studies in laboratory animals have 

indicated that PAR's decrease activity of URO-D by an iron-dependent and a cytochrome 

P-450 system-dependent mechanism (see also paragraph 1.4). 

1.3.5 Role of iron 

Many observations point to an important role of iron in the pathogenesis of PCT. Most 

patients have increased hepatic iron stores: a variable degree of hepatic siderosis is 

present in 72-100% of patients with PCT (54,70-76). Moreover, phlebotomy or treatment 

with desferrioxamine leads to clinical and biochemical remission (5, 71, 75, 77-80), 
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whereas replenishment of iron stores after phlebotomy induces symptoms again (81-83). 

The explanation for hepatic siderosis in PCT is not clear. Data on iron-absorption are 

conflicting. Some studies have described an increased absorption of iron in PCT (84,85), 

while others have not found a consistent ferrokinetic abnormality (86,87). There are a few 

reports linking PCT to hemochromatosis (88,89), and it has been proposed that the 

inheritance of at least one allele for HLA-linked hemochromatosis is responsible for 

hepatic siderosis in PCT (90,91). Others have not confirmed this suggestion (92). 

Investigations on the interactions of ferrous and ferric iron with preparations of URO-D 

enzyme from human and other mammalian tissues have shown inhibition (93-97), 

activation (98) or no effect (35,99,100). 

Elder et al. (101) measured URO-D activities and URO-D protein concentrations in 

liver tissue of patients with S-PCT and F-PCT. In S-PCT, patients in remission following 

phlebotomy had normal URO-D activities and URO-D protein concentrations, whereas in 

symptomatic patients before phlebotomy, URO-D activities were decreased and URO-D 

protein concentrations increased. In F-PCT, patients in remission following phlebotomy 

had 50% reduced URO-D activities and URO-D protein concentrations, with a further fall 

in URO-D activities and a slight increase in URO-D protein concentrations in 

symptomatic patients. An inherited defect of URO-D, as in F-PCT, is clearly an 

important factor in determining susceptibility, but is not sufficient by itself to produce 

overt PCT. In S-PCT, genetic factors may also play a role, but these are not clearly 

defined (29,101). However, in both forrns, clinically-overt PCT is possibly precipitated 

by an iron-dependent process, which inactivates the active site(s) of URO-D molecule(s) 

in the liver (102). Whether this is a direct effect of iron on URO-D is not clear. Recent 

research has suggested that for the inactivation of URO-D additional factors might be 

important, such as the formation of reactive oxygen species and/or the formation of an 

inhibitor of URO-D. This will be discussed more extensively in paragraph 1.4. 

1.3. 6 Associated disorders 

Some authors describe an association of PCT with systemic lupus erythematosus 

(54,73,103-105) and with diabetes mellitus (54,73,106-108). However, it is not clear why 

the incidence of these disorders is increased in PCT. 

PCT has been described to occur more often in patients with renal failure than in the 



14 

normal population (109-113). In addition, in 58% to 100% of patients with renal failure, 

mildly elevated plasma uroporphyrin levels have been reported without clinical or 

biochemical evidence of PCT (109,114,115). The mechanism remains obscure. 

1.3.7 Liver disturbances 

Livers of patients with PCT reveal a broad spectrum of histological lesions ranging from 

minimal changes to cirrhosis (54,70,73,74,76,116-119), in addition to a variable degree 

of hepatic siderosis (54, 70-76). Of these findings, only the presence of needle-like 

structures in hepatocytes, representing uroporphyrin crystals (73), is characteristic 

(73,116-123). 

Serologic markers of a past or present hepatitis B virus (HBV) infection have been 

found in up to 47% of patients with PCT (54,124-127) and antibodies against hepatitis C 

virus (HCV) have been detected in 82% of Italian patients with PCT (128). In addition, 

17 cases of an association between PCT and human immunodeficiency virus (HIV) 

infection have been described [summarized in (129)]. This suggests that the virus 

infection is a precipitating factor. which could unmask the underlying porphyrin 

metabolism disorder. 

Ethanol, viral hepatitis and iron overload can all cause chronic hepatitis, fibrosis and 

cirrhosis, which makes it difficult to assess the role of porphyrin accumulation by itself, 

in the liver damage in patients with PCT. In these patients, more than one factor may be 

present. 

Many investigators have found an increased frequency of hepatocellular carcinoma in 

PCT (126,127,130-132), but this has not been confirmed in other series 

(54, 70, 74, 76,123, 133). 

1.3. 8 Diagnosis 

The clinical picture of PCT is fairly specific but can obviously be confused with other 

porphyrias (e.g., VP) and with non-porphyric diseases (e.g., systemic lupus 

erythematosus). 

The diagnosis of PCT is established by showing an increased excretion of uroporphyrins 

and heptacarboxylporphyrins in the urine, and an increased excretion of 

isocoproporphyrins and heptacarboxylporphyrins in the feces (12). Measurement of the 
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activity of URO-D in erythrocytes differentiates S-PCT patients from F-PCT patients, and 

detects latent forms of F-PCT (12,51). 

In children with PCT -like skin lesions, levels of erythrocyte protoporphyrins should 

always be measured, because in. patients with HEP, erythrocyte protoporphyrin 

concentrations are abnormal (21). 

1.3.9 Therapy 

PCT has been shown to respond to two therapeutic approaches: 

1. Depletion of iron stores by phlebotomy or subcutaneous infusion with desferrioxarnine 

(5,71,75,77-80,134). Interestingly, phlebotomy has been described to be also effective in 

the absence of a siderotic state (134). 

2. Low-dose chloroquine (135,136). Chloroquine complexes with uroporphyrinogens and 

promotes its release from the liver, possibly by stimulating exocytosis. Chloroquine may 

also inhibit porphyrin formation (135). Higher doses of chloroquine may cause severe 

hepatotoxicity when given to patients with PCT (136). 

Both treatments are effective, however, since iron plays an important role in the 

pathogenesis of PCT, depleting iron stores seems a more rational treatment. 

1.3.1 0 Hepatoerythropoietic porphyria 

HEP is a rare homozygous form of F-PCT with severe cutaneous symptoms that 

develops in early childhood. Twenty cases have been reported worldwide as of 1992 

[summarized in (137)]. The activity of URO-D in erythrocytes is markedly decreased (5-

27% of normal) (16). In contrast to patients with PCT, serum and liver iron 

concentrations are usually normal in patients with HEP (1). 

Seven different mutations of the URO-D gene have been described in patients with HEP 

(137). A mutation at one amino-acid position has been described both in F-PCT and HEP 

patients. In the F-PCT patient, the mutation at position 281 resulted in the substitution of 

a valine residue for the glycine residue (44). In the HEP patient, the mutation at position 

281 involved the substitution of a glutamic acid residue for the glycine residue (138). 

Avoidance of the sun and the use of topical sunscreens is essentially all that can be 

offered to these patients at present. Response to phlebotomy has not been observed in 

patients with HEP (139). 
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1.4 Experimental uroporphyria 

Following an outbreak of human uroporphyria in Turkey, the fungicidal agent 

hexachlorobenzene (HCB), a PAR, was suspected to be the cause. HCB was subsequently 

shown to induce hepatic uroporphyria in rodents (68), A low hepatic URO-D activity and 

the accumulation and excretion of uroporphyrins and heptacarboxylporphyrins were found 

to be important features of HCB-induced porphyria (140). A number of other PAR's have 

since been shown to have similar effects, both in experimental animals and in humans 

(68,69). In all cases, the biochemical and clinical manifestations are the same as in S

PCT (3,24). Both conditions can be exacerbated or precipitated by estrogens (63,141). 

Abnormalities in liver pathology are commonly encountered in the drug-induced condition 

in animals (142-146), as well as in S-PCT (54,70,72-76,116-123,126,127,130-133), 

ranging from minor degrees of hepatocellular damage to cirrhosis. Different species and 

strains vary remarkably in their susceptibility to the porphyrinogenic effects of PAR's 

(46), and a genetic predisposition of some kind has also been suspected in S-PCT (29). 

Both in HCB-induced uroporphyria (97,146-153) and in S-PCT (5,54,70-83), the 

condition is aggravated by iron overload, while iron deficiency (whether induced by 

phlebotomy or treatment with desferrioxarnine) prevents the overproduction of 

porphyrinogens in both conditions. 

In view of the similarities between HCB-induced uroporphyria and human S-PCT, HCB

induced uroporphyria has been used as an appropriate experimental animal model for the 

human condition. In the following, the more recent work on the possible mechanism(s) of 

experimental uroporphyria will be considered. 

I. 4.1 Reactive drug-metabolite hypothesis 

In 1974 Sinclair and Grannick put forward the hypothesis that, in order to produce 

uroporphyria, PAR's had to be converted by cytochrome P-450 (Cyt P-450) enzymes to 

metabolites capable of inhibiting URO-D (154). This hypothesis is supported by the 

following findings: 

a) Pretreatment of animals or cultured hepatocytes with certain inducers of Cyt P-450 

increases the degree of uroporphyria induced by PAH's (155-158). 

b) HCB, 2,3, 7,8,-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated or 

polybrominated biphenyls are themselves inducers of several forms of Cyt P-450 (159). 
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c) The responsiveness of two inbred strains of mice, the C57BU6 strain and the DBA/2 

strain and of their crosses, to the porphyria-inducing property of TCDD can be correlated 

with inducibility of certain forms of Cyt P-450 (159). 

d) In microsomal incubation experiments, HCB has been shown to be converted into one 

or more reactive metabolites capable of becoming covalently bound to proteins and 

therefore potentially able to modify URO-D (160,161). 

Metabolism of RCB however, has not been shown to correlate with in vivo toxicity 

(162, 163). Moreover, the hypothesis fails to account for the ability of iron to worsen the 

metabolic condition (97,147-153). 

1.4.2 Involvement of the cyrochrome P-450 system 

As the initial biochemical event, PAH's have been shown to interact with a soluble 

protein in hepatocytes known as the Ah receptor, the regulatory gene product of the Ah 

locus (164,165). This interaction results in the nucleus of the cell in the transcriptional 

activation of certain genes, leading to the induction of an isoenzyme of the Cyt P-450 

system: Cyt P-4501A2 (166, 167). This isoenzyme was formerly called Cyt P3-450 in 

mice, Cyt P-450d or Cyt P-448 in rats and Cyt P3-450 or Cyt P-450d in humans, but the 

recommended nomenclature at present is CYPIA2 (168). 

In Ah-responsive mouse strains, such as the C57BU10 strain, the receptor has a much 

higher affmity for PAR's than in Ah-non-responsive strains, such as the DBA/2 strain, 

where the receptor is either absent or has a much lower affinity for PAR's (164,165). 

Moreover, there is a marked difference between the different PAR's in receptor-binding 

affinity: TCDD is a strong, but RCB is a weak agonist for the Ah receptor (169). 

Mixtures of some PAR's have been reported to induce hepatic cytosolic binding 

components that are distinct from the Ah receptor, however their role remains to be 

established (170). Some PAR's, like 3,4,5,3.,4.,5.-hexabromobiphenyl, with the capacity 

to induce CYPIA2, bind to the cytochrome and inhibit catalytic activity of the 

cytochrome (171). 

Several chemically-unrelated drugs, such as the polycyclic aromatic hydrocarbons, like 

3-methylcholanthrene (MC), are also capable of inducing CYPIA2, without interacting 

with the Ah receptor and produce a RCB-type porphyria, both in hepatocyte cultures 

(151) and in intact rodents (172). Therefore, apart from the Ah-reSPOnsiveness, other 
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regulatory mechanisms must be involved in PAR-induced uroporphyria. In addition, both 

the effect of iron and the sex difference on the porphyrinogenic process are also 

independent of the Ah phenotype (173). 

1.4.3 Role of iron 

Iron has been implicated in the pathogenesis of PAR-induced uroporphyria; 

uroporphyria develops faster if animals are made siderotic (97,146-153,174). Iron 

deficiency due to bleeding (150) or treatment with desferrioxarnine (153) diminishes or 

completely prevents the development of uroporphyria. 

There is evidence for strain differences in sensitivity to PAR's, which is, at least partly, 

based on liver iron content (175). Moreover, female rats are much more susceptible than 

male rats to HCB-induced porphyria (176). A possible explanation for the increased 

susceptibility of female rats is that hepatic ferritin iron turnover is significantly greater in 

female than in male rats (177). 

1.4.4 Uroporphyrin accumulaJion by URO-D inhibition 

As has been described before, both polycyclic aromatic hydrocarbons, like MC 

(151,172), and PAR's, like HCB and TCDD (166,167), induce CYP1A2. Treatment with 

these compounds either in vivo (178,179) or in vitro (163,166,167,180,181), using hepatic 

microsomes from chick embryos, rats and mice, induces the hepatic oxidation of 

uroporphyrinogen to uroporphyrin in the liver. At the same time, a marked inhibition of 

hepatic URO-D activity has been found by several investigators (182-186). 

At present, the hepatic accumulation of uroporphyrins and the inhibition of URO-D 

activity in experimental uroporphyrin has been attributed to one or more of the following 

proposed mechanisms: 

1. Oxidation of uroporphyrinogen to uroporphyrin by cytochrome P-4501A2 (163,166, 

167,180-182, 187). 

2. Iron-mediated oxidative formation of a specific inhibitor of URO-D (183-186). 

3. Iron-mediated direct damage to URO-D enzyme (95,96). 

1.4.4.1 Uroporphyrinogen oxidaJion by cytochrome P-4501A2 

Uroporphyrinogen has been shown to be a substrate of (PAR-induced or MC-induced) 
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CYPIA2, leading to the oxidation of uroporphyrinogen to uroporphyrin (163,166,167, 

180-182,187). Because uroporphyrin is not a substrate for URO-D, accumulation of 

uroporphyrins results (188). Binding of the inducer is not required for rodent CYP1A2 to 

catalyze oxidation of uroporphyrinogen (189). The hypothesis of uroporphyrinogen 

oxidation, catalyzed by induced CYP1A2, is supported by the following observations: 

a) If uroporphyrinogen is a substrate of CYP1A2, then other substrates of CYP1A2 might 

competitively inhibit uroporphyrinogen oxidation. This has been shown for phenacetin and 

ketoconazole (167). 

b) Inhibitors of CYP1A2, like piperonyl butoxide, stop the accumulation of uroporphyrins 

in cultured chick embryo hepatocytes (163). 

c) The conversion of uroporphyrinogen to uroporphyrin follows saturation kinetics (190). 

The mechanism of uroporphyrinogen oxidation by itself does not explain a marked 

inhibition of hepatic URO-D activity, which can be observed simultaneously (182-186). 

Recently, it has been described that, under in virro conditions, oxidation of 

uroporphyrinogen could lead to the generation of a uroporphyrinogen oxidation product, 

which could act as an inhibitor of URO-D (182). This inhibitor has been supposed to be a 

labile product, since inhibition of the oxidation reaction by ketoconazole restores URO-D 

enzyme decarboxylation capacity (167). 

1.4.4.2 The iron-mediated oxidative mechanism 

Precipitating drugs, like HCB, may interact with the NADPH-dependent 

reductase/cytochrome P-450 system of hepatocytes, leading to the production of reactive 

oxygen species (191). Evidence in favour of a drug-dependent, oxidative mechanism has 

been obtained from three different laboratories with the demonstration that, in vitro, liver 

microsomes from PAR-treated rats, in the presence of NADPH, produce increased 

amounts of reactive oxygen species compared with microsomes from control rats (192). 

Liver microsomes from similarly-induced chick embryos, in the presence of NADPH, 

will catalyze the oxidation of porphyrinogens, especially when challenged with small 

amounts of a powerful uroporphyria-inducing chemical (180,181). From these 

experiments it can be concluded that two different drug actions are required for the 

microsomal oxidation of porphyrinogens: a) the drug first acts as an inducer of CYPIA2; 

b) it then interacts with the induced cytochrome to produce reactive oxygen species. 
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The role of iron in this mechanism can be explained by its known ability to participate 

in peroxidative and free-radical reactions (151,152,181,191-198). If in hepatocytes as a 

result of Cyt P-450 induction, reactive oxygen species are produced and "free" iron is 

also present, highly reactive oxygen-related free radicals could be formed by the Haber

Weiss reaction (193, 198). In the presence of free radicals, a variety of reactions can be 

initiated, such as the peroxidation of membrane lipids (199). Recently, it has been 

suggested that the process of lipid peroxidation is involved in the pathogenesis of 

experimental uroporphyria (152,196). 

Accelerated oxidation of porphyrinogens to porphyrins by iron is compatible with a 

peroxidase-type mechanism involving electron transfer and hydrogen transfer, but the 

resulting accumulation of uroporphyrins is unlikely by itself to explain the inhibition of 

URO-D and the formation of an inhibitor of the enzyme by iron. However, in the 

microsomal system (191), iron has also been found to promote modification of the 

porphyrinogen pigment, leading to a marked loss of its Soret absorbance. This indicates 

that degradation products might be produced (possibly following oxidative attack by 

hydroxyl radicals), which could act as inhibitors of URO-D (174,200). When the 

oxidative derivatives of uroporphyrinogens, which lack Soret absorbance, are tested in 

vivo for their effect on URO-D, they have been found to inhibit the enzyme, thus 

supporting the concept that iron is implicated in the oxidative conversion of 

uroporphyrinogen into an inhibitor of the enzyme (200). 

Evidence for an iron-mediated oxidative formation of a specific heat-stable inhibitor of 

URO-D has been provided from several laboratories (183-186,200). However, it has also 

been shown (see paragraph 1.4.4.1) that URO-D inhibition by an uroporphyrinogen 

oxidation product, without the generation of reactive oxygen species (201,202), can occur 

(182). Therefore, it seems likely that URO-D inhibition in experimental uroporphyria can 

occur by different mechanisms depending on the concentration of reactive ferrous iron. 

1.4.5 Iron-mediated danwge to URO-D enzyme 

Investigations on the interactions of ferrous or ferric iron with preparations of URO-D 

from human and other mammalian tissues have shown inhibition (93-97), activation (98), 

or no effect of iron on URO-D (35,99,100). Mukerji et al. (95,96) postulated on the basis 

of in vitro experiments, that URO-D inhibition by iron can occur without the involvement 
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of an induced hepatic Cyt P-450 system. Two mechanisms have been postulated: 

1. An oxygen-independent inhibition, where iron directly interacts with essential 

sulfhydryl group(s) at the catalytic site(s) of the URO-D enzyme (95,96). 

2. An oxygen-dependent inhibition, where iron is generating free radicals in the presence 

of cysteine, thereby damaging the URO-D enzyme (95). 

It is not clear whether the direct interaction of ferrous iron with URO-D also occurs in 

vivo. Moreover, Mukerji eta!. (95,96) have found that ferrous iron concentrations in the 

range of 0.1 - 1.0 mM are required in vitro to reduce the activity of partially purified 

URO-D. However, it seems unlikely that these ferrous iron concentrations can be met in 

vivo (203). 

1.5 Aims of the study 

The aim of the work described in this thesis was to examine further the mechanisms 

involved in the accumulation of uroporphyrins in the liver, i.e., the role of iron and an 

increased activity of one of the preceding enzymes in the heme biosynthetic pathway, 

PBG-D, in the porphyrinogenic process in experimental uroporphyria and in PCT. 

In the previous paragraphs, the proposed role of iron in the development of 

uroporphyria has been discussed. However, a study on the time-sequence relationship 

between iron accumulation and uroporphyrin production in the liver has not been 

performed. In addition, the nature of the iron pool involved in this process has not been 

established. The role of iron in uroporphyria has been explained by its ability to 

participate in peroxidative and free radical reactions. Desferrioxamine, an iron chelator, 

has been described to diminish uroporphyrin accumulation in the liver. At present, the 

specific effects of desferrioxamine on iron accumulation, free radical-mediated reactions, 

uroporphyrin accumulation and URO-D activity in the liver have not been studied in 

experimental uroporphyria. 

It has been reported that the activity of the enzyme PBG-D is increased in erythrocytes 

and livers of patients with PCT. It is not clear whether this increased PBG-D activity can 

be observed both in animals with experimental uroporphyria and in humans with sporadic 

and familial forms of PCT. An increased PBG-D activity could explain the absence of 

acute attacks in PCT. Moreover, an increased PBG-D activity could also provide an 

additional explanation for uroporphyrin accumulation in experimental and human 



22 

uroporphyria. 

Therefore, in the following chapters we investigated: 

L The site within the liver where iron accumulation and uroporphyrin production 

takes place, both in livers of C57BL/10 mice with experimental uroporphyrin 

(Chapter 3) and in livers of patients with PCT (Chapter 5). 

2. The effects of desferrioxamine on iron metabolism, lipid peroxidation, porphyrin 

accumulation and URO-D activity in livers of C57BL/10 mice with experimental 

uroporphyria (Chapter 4). 

3. The role of an intracellular pool of low molecular weight iron in livers of 

C57BL/10 mice with experimental uroporphyria (Chapter 4). 

4. The activity of the enzyme PBG-D in livers of C57BL/10 mice with experimental 

uroporphyria (Chapter 4) and in erythrocytes of patients with sporadic and fantilial 

forms of PCT (Chapter 6), and its possible role in the overproduction of 

uroporphyrins in uroporphyria. 

5. The mechanism of an increased erythrocyte PBG-D activity in patients with PCT 

(Chapter 6). 
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2.1 Materials 

2.1.1 Animals 

Male C57BL/10 mice (Centraal Proefdier Bedrijf, Zeist, The Netherlands) were 9 to 11 

weeks of age and weighed 20 gm at the beginning of the experiments. 

All animal studies were performed according to the "Regulations for use of laboratory 

animals in the Erasmus University Rotterdam" laid down by the Laboratory Animal 

Committee of the Erasmus University Rotterdam, The Netherlands. 

2.1.1.1 Treatment 

Treatment with hexachlorobenzene (HCB; Merck, Darmstadt, Germany) consisted of 

two intraperitoneal (ip) injections of 8 mg HCB (400 mg/kg body weight), dissolved in 

0.25 ml warm corn oil, with I week interval. Mice treated with iron dextran (ImferonR 

(IMP); Fisons Pharmaceuticals B.V., Leusden, The Netherlands) received a single ip 

injection of 12 mg (600 mg/kg body weight). When mice were treated with HCB and 

IMF, IMF was given three days after the second injection of HCB. HCB and IMF were 

injected under Enfluraan (EthraneR, Abbott B.V., Amstelveen, The Netherlands) 

anesthesia. 

Treatment with desferrioxamine (DesferaJR (DFx), Ciba-Geigy B.V., Arnhem, The 

Netherlands) consisted of daily intramuscular injections of 5 mg DFx (250 mg/kg 

bodyweight), dissolved in 0.05 ml sterile water, injected alternately in one of the hind

legs. 

2.1.1. 2 PerfUsion of livers for biochemical determinations 

In order to obtain blood-free livers, the vena cava inferior was cannulated and the liver 

was perfused with isotonic saline (NaCl, 0.15 mol/!) at room temperature, until the fluid 

leaving the liver was clear (the average perfusion time was 3 minutes). The procedure 

was performed under Enfluraan anesthesia. 

2.1.1.3 PerfUsion of livers for morphological studies 

The portal vein was cannulated and the liver was perfused with 3% glutaraldehyde in 

cacodylate buffer (0.14 moll!, pH 7.4, 275 mOsm). A perfusion rate of 10 ml/min, a 

perfusion pressure of 15 em Hg and a perfusion temperature of 37 oc were maintained 
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throughout the procedure. For the frozen sections, unperfused livers were removed and 

immediately frozen in liquid nitrogen. These procedures were performed under Enfluraan 

anesthesia. 

2.1. 2 Patients 

A diagnosis of the familial form of porphyria cutanea tarda (PCT) was based on a 

positive family history, skin symptoms and a characteristic pattern of porphyrins produced 

from porphobilinogen (PBG) by hemolysates (see paragraph 2.2.3). Patients with the 

sporadic form of PCT had a negative family history, characteristic skin-symptoms and an 

indirect uroporphyrinogen decarboxylase (URO-D) activity comparable to controls. 

Studies were performed in patients with skin-symptoms and an increased urinary excretion 

of uroporphyrins and heptacarboxylporphyrins before phlebotomy, and in patients without 

skin-symptoms and a normal urinary excretion of porphyrins following phlebotomy. 

Evaluation of each patient included a careful history. Serum bilirubin, aspartate 

transferase, alanine transferase, gamma-glutamyl transpeptidase, alkaline phosphatase, 

iron, ferritin and transferrin saturation were measured, and serum was assayed for a

fetoprotein (increased at levels of ;,20 ng/ml), using standard clinical chemistry 

laboratory methods. 

In some patients a percutaneous liver biopsy was performed. Most liver specimens of 

patients were obtained with a True-CutR needle (Travenol Lab, USA). A small number of 

liver biopsies was taken with the Menghini needle. Liver biopsies were processed for 

light microscopy (LM) and electron microscopy (EM). 

2.1.3 lien1olysates 

Erythrocytes in heparinized blood samples were washed three times in isotonic saline 

(NaCl, 0.15 moll!) at 4 °C. The cells were diluted 4 times with distilled water and 

incubated for 30 min at 0 °C. 

2.2 Biochemical methods 

Determinations of the amount of porphyrins in urine and in liver tissue, the indirect 

URO-D activity in erythrocytes and the URO-D activity in liver tissue, the activity of 

porphobilinogen deaminase (PBG-D) in erythrocytes and in liver tissue, the amount of 
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immuno-detectable PBG-D/100 units PBG-D activity in erythrocytes and the total amount 

of immuno-detectable PBG-D in erythrocytes were performed at the Department of 

Internal Medicine II, Academical Hospital Rotterdam-Dijkzigt under supervision of Dr 

F.W.M. de Rooij (Head: Prof. J.H.P. Wilson). 

Determinations of the total iron content in liver tissue, the amount of low molecular 

weight iron in liver tissue and the production of malondialdehyde in liver tissue were 

performed at the Department of Chemical Pathology, Erasmus University Rotterdam 

(Head: Prof.Dr H. G. van Eijk) 

Routine clinical chemistry laboratory determinations were performed at the Central 

Clinical Chemistry Laboratory (Head: Dr J. Lindemans). 

Serological Hepatitis B virus (HBV) markers and antibodies against Hepatitis C virus 

(HCV) were determined at the Department of Virology, Academical Hospital Rotterdam

Dijkzigt (Head: Prof.Dr N. Masurel). 

2.2.1 Porphyrins in urine 

A 2-rnl sample of urine was lyophilized in the dark. The residue was dissolved in 100 1'1 

of chloroform. Then, I ml H2S04 (10%) in methanol was added and the mixture was 

incubated for 60 min in the dark at 37 °C. Then, 2 ml of distilled water and 4 ml of 

chloroform were added. After shaking for I to 2 min, the sample was centrifuged at 

I ,800 g for 15 min and the (upper) water phase was removed. To neutralize the 

chloroform phase, I ml of NaHC03 (5%) was added and gently mixed. After 

centrifugation, this procedure was repeated if the pH of the water phase was still below 

7.0. The final neutralized chloroform layer was washed twice with 2 ml of distilled 

water. Then, the chloroform phase was evaporated under nitrogen at 40 oc in a Reacti

Therm Heating Module (Pierce, Rockford, USA). The porphyrin methyl-esters produced 

in this way were dissolved in a small volume of chloroform for separation and applied to 

a silica gel column (Merckosorb Sl 100, 20-l'm particle size; Merck, Darmstadt, 

Germany) for high-pressure liquid chromatography. A linear gradient of 

tetrahydrofuron/heptane (with increasing concentrations from 30% to 60%) was used to 

elute the porphyrin methyl-esters, which were detected in a fluorescence

spectrophotometer (excitation 400 nm; emission 625 nm; Perkin Elmer LS 40, 

Beaconsfield, UK). Concentrations were expressed in nmol/mmol creatinine (51,204). 
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2.2.2 Porphyrins in liver tissue 

Porphyrins in liver tissue were measured using a modification of the method described 

by Lim et aL (205). Briefly, 300 mg of liver tissue was homogenized in a Potter

Elvehjem homogenizer to yield a 10% homogenate in water, which was centrifuged at 

10,000 x g for 4 min. The supernatant was stored at -20 oc until further processing. To a 

sample of 0.1 ml of the homogenate, 0.1 ml of Tris-HCl (50 mmol/1, pH 8.0) and 0.8 ml 

of a "mix" were added. This "mix" contained: 25 ml dimethylsulphoxide (100% wt/vol), 

10 ml trichloracetic acid (50% wt/vol), 10 ml HCl (I moll!), p-Benzoquinon (2.3 mmol/1; 

Merck-Schuchandt, Hohenbrunn, Germany) and 35 ml of distilled water. This was stirred 

and centrifuged for 15 min at 1,800 x g. Free porphyrins in the supernatant were 

separated by reversed-phase liquid chromatography on a Hypersyl Sas Cl 5 Micron 

column (Alltech, Deerfield, USA), using a linear gradient of 95% Eluens A 

[ammoniumacetate (350 mmol/1), (NH4) 2HPO, (9 mmolll) and acetonitrile (8%, v/v)] to 

95% Eluens B [acetonitrile (8%, v/v) in methanol]. The free porphyrins were detected in 

a fluorescence-spectrophotometer (excitation 400 nrn; emission 625 nm; Perkin Elmer LS 

40, Beaconsfield, UK). The amount of porphyrins was expressed in pmollmg protein. 

2.2.3 Indirect URO-D activity in erythrocytes 

URO-D activity in erythrocytes was measured indirectly by analyzing the pattern of 

porphyrins formed during incubation of a fresh hemolysate in the presence of PBG under 

conditions identical to the PBG-D assay (see paragraph 2.2.5). The reaction was stopped 

by freezing the mixture, which was subsequently stored at -20 °C. Porphyrins were 

methylated and the formed methyl-esters were applied to a silica gel column (Merckosorb 

SI 100, 20 um particle size; Merck, Darmstadt, Germany) for high-pressure liquid 

chromatography. The methyl-ester porphyrins were measured in a fluorescence

spectrophotometer (excitation 400 nm; emission 625 nm; Perkin Elmer LS 40, 

Beaconsfield, UK). Using this method, the uroporphyrin + heptacarboxylporphyrin/ 

coproporphyrin ratio was calculated. This ratio was considered to be consistent with a 

diagnosis of the familial form of PCT, if > 2.80 (51). 

2.2.4 URO-D activity in liver tissue 

URO-D activity in liver tissue was measured using a modification of the method 
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described by Straka et a!. (206). To 0.1 ml of a !0% homogenate of liver tissue (as 

described in paragraph 2.2.2), 0.05 ml of DL-Dithiotreitol (30 mmol/1; Sigma Chemical 

Co., St. Louis, USA) in Tris-HCL (50 mmol/1, pH 8.0) was added to restore the activity 

of the enzyme uroporphyrinogen-ill-synthase (207) and incubated for 30 min at 4 °C. 

Then, 0.05 ml of porphobilinogen (0.8 mg) in 5 ml of EDTA (4 mmol/1) in Tris-HCI (50 

mmol/1, pH 8.0) was added, which was incubated for 60 min at 37 °C. The reaction was 

stopped by adding 0.8 ml of the "mix" (as described in paragraph 2.2.2). This was stirred 

and centrifuged for 15 min at I ,800 x g. The free porphyrins in the supernatant were 

separated by passage over a reversed-phase high-pressure liquid chromatography column 

and measured in a fluorescence-spectrophotometer (excitation 408 nm; emission 648 nm; 

Perkin Elmer LS 5B, Beaconsfield, UK). The amount of formed copro-(4-carboxyl-), 3-

carboxyl-, and proto-(2-carboxyl-)porphyrins was expressed in pmollmg protein/hour. 

2.2.5 PBG-D acriviry in erythrocytes 

For the PBG-D activity in erythrocytes, hemolysates were diluted 20-fold with Tris-HCI 

buffer (50 mmol/1, pH 8.0, at room temperature). Two hundred .ul of the diluted 

preparation was added to 400 _ul of a mixture containing PBG (!50 .umol/1) in Tris-HC! 

buffer (50 mmol/1, pH 8.0). This was incubated for 60 min at 37 °C. The reaction was 

stopped by the addition of 600 .ul trichloroacetic acid (25%). After centrifugation, the 

formed porphyrins were measured in the supernatant in a fluorescence-spectrophotometer 

(excitation 408 nm; emission 648 nm; Perkin Elmer LS 5B, Beaconsfield, UK). Results 

were expressed as total porphyrins (in pmollmg protein/hour), using coproporphyrin I as 

standard (208). 

2.2.6 Immww-derecrable PBG-D/100 units PBG-D acriviry in erythrocytes 

The amount of immuno-detectable PBG-D per 100 units of PBG-D activity (Ig PBG

D/100 U) in hemolysates was determined using rabbit lgG anti-human PBG-D, which was 

raised by use of human PBG-D, as described by De Rooij eta!. (209). Hemolysates were 

diluted to a standard PBG-D catalytic activity, and Ig PBG-D/100 U was detected as 

follows: 50 .ul of a Protein A-Sepharose suspension (Pharmacia, Woerden, The 

Netherlands) was placed in 6 x 2 microliter wells. Then, either 50 .ul of rabbit anti-human 

PBG-D antiserum in various dilutions, or 50 .ul of diluted control serum was added and 
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incubated for 60 min at room temperature. After 50 1'1 of the hemo!ysate was added, the 

mixture was incubated for 60 min at room temperature. The plates were centrifuged and 

the residual (unbound) PBG-D activity was determined in the supernatant (208,210). Ig 

PBG-D/100 U was defined as the amount of antibodies needed to bind 100 units of PBG

D (I unit of PBG-D activity is that producing l_pmol of uroporphyrinogen per hour at 37 

oq and was calculated using linear-regression analysis of the duplicate PBG-D-binding 

values found in flve different IgG dilutions (208,210). 

2.2.7 Total immurw-detectable PBG-D in erythrocytes 

The total amount of immuno-detectable PBG-D (Ig PEG-D) in erythrocytes, expressed 

in microliters of IgG per milligram of erythrocyte protein per hour, was calculated as the 

product of lg PBG-D/100 U (!'! IgGIIOO U) and the PBG-D activity (units/mg protein/ 

hour). 

2.2.8 PBG-D activity in liver tissue 

PBG-D activity in liver tissue was not measured separately, but was calculated from the 

incubation experiment for the URO-D activity in liver tissue (see paragraph 2.2.4), by 

summation of the total amount of formed porphyrins and expressed in pmol/mg 

protein/hour. 

2.2.9 Total iron content in liver tissue 

Total liver iron content was measured using a modification of the method described by 

Harris (211). Liver tissue was dried at 110 oc overnight. The dried liver tissue was 

weighed. To the dried tissue, 0.5 ml perchloric acid (70% wt/vol) was added and this was 

heated until the solution was colourless. After cooling, distilled water was added to a final 

volume of 2.0 mL From this solution, 0.2 ml was taken and 0.1 ml HCI (! moll!), 0.2 ml 

L-ascorbic acid (0.14 moll!), 0.1 ml sodium acetate (saturated) and 0.2 ml Ferrozine (10 

mmol/1; Sigma Chemical Co., St. Louis, USA) were added. This solution was thoroughly 

mixed and after 10 minutes the absorbance was measured at 562 nm against three 

standard iron solutions. The amount of iron was expressed in mmol/100 gm dry weight or 

in l'mol/gm dry weight. 
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2.2.10 Low molecular weigh! iron in liver tissue 

Low molecular weight (LMW) iron amounts were measured using a method described 

by Voogd et al. (212). Some modifications were necessary, due to the limited quantity of 

liver tissue available for analysis. 

A 10% (w/v) liver homogenate in Tris/HCl (100 mmoVl, pH 7.4) was centrifuged for 

15 min at 10,000 x g at 0 °C. To I ml of the supernatant, 100 ,ul desferrioxamine (DFx; 

22 mmol/1) was added and the samples were incubated for 5, 15, 30 and 60 minutes 

respectively, at 37 °C. To stop the reaction between the available iron and DFx, samples 

were passed through a SEPPAK CIS cartridge (Millipore Corp., Milford, USA), 

immediately after incubation. Prior to use, the cartridges were conditioned by means of 

pre-elution with 5 ml methanol, followed by 5 ml distilled water. After adding the 

samples, cartridges were flushed with 5 ml distillled water. In this way, Ferrioxamine 

(Fx) and DFx were retained, while most other compounds were eluted. Fx and DFX were 

subsequently eluted from the SEPPAK CIS cartridge with l ml methanol and the effluent 

was applied to a HPLC RP IS column (250 x 4 mm id; Merck, Darmstadt, Germany). 

The mobile phase consisted of SS% Na2HPO.fNaH2P04 (20 mmol/1), acetonitrile (12%), 

Na-EDTA (2 mmol/1) and arnmoniumacetate (I moll!). HPLC analysis was performed on 

a dual pump LKB-system with automatic sample injector and two variable wavelength 

detectors to measure Fx (430 nm) and DFx (229 nm) simultaneously in the effluent. The 

results (duplo samples, fourfold measurements per sample) were compared with three 

standard amounts of iron, treated in the same manner as the liver samples. The amount of 

LMW iron was expressed in nmol/gm wet weight liver tissue. 

2.2.1I Total protein measurement 

In liver tissue: 

A small sample of liver tissue was homogenized (Ultrathurax, Janke and Kunkel, 

Germany), which was followed by stepwise dilution. To 100 ,ul of the 0.1% (wlv) 

homogenate, 5 ml of Coomassie Brilliant Blue was added and after lO min the absorbance 

was measured at 595 nm. The results were compared with four different standard 

solutions of Bovine Serum Albumin (Pierce, Rockford, USA) in the range of 100-400 

,uglml. The amount of protein was expressed in ,uglgm wet weight liver tissue (213). 
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In hemolysates: 

The amount of protein in hemo1ysates was measured using the method described by 

Lowry et aL (214). 

2.2.12 Malondialdehyde content in liver tissue 

Malondialdehyde (MDA) content was measured using a method, described by Kombrust 

and Mavis (215). Four aliquots (of 0.25, 0.5, 0.75 and 1.0 ml respectively) of a !0% 

(w/v) liver tissue homogenate, which was dissolved in Tris-HC! buffer (5 mmolll, pH 

7.8), were filled out to a final volume of 1.0 ml with the same buffer solution. To each 

of these samples, 0.3 ml trichloracetic acid (20% v/v), 0.6 ml 2-thiobarbituric acid (0.05 

moll!) and 0.1 ml di(2,6)-tert-butrl-4-methylphenol (0.2% in ethanol, w/v) were added. 

The solution was mixed and centrifuged (!0 min, 2800 x g). The supernatant was heated 

for 8 min at 100 oc and immediately cooled. Subsequently, the absorbance was measured 

(535 nm; e= 156,000) and the results were compared with a standard solution of MDA, 

treated in the same manner. 

2.2.13 Serological HBVmarkers 

Hepatitis B surface antigen (HBsAg) and antibodies against hepatitis B core antigen 

(anti-HBc) were determined using the !Mx system microparticle enzyme immunoassay 

(Abbott Lab, USA). Antibodies against hepatitis B surface antigen (anti-HBs) were 

determined by an enzyme-immuno assay employing the AUSAB-EIA (Abbott Lab, USA), 

according to the instructions of the manufacturer. 

2.2.14 Antibodies against HCV 

Antibodies against HCV (anti-HCV) were determined by an enzyme-immuno assay, 

employing recombinant CI00-3 (Abbott Lab, USA). If samples were tested positive, they 

were subjected to a confirmatory neutralization enzyme-immuno assay (Abbott Lab, 

USA). A positive result in this assay was required for samples to be regarded as 

definitively positive. 

2.3 Histological study (Light microscopy) 

Histological studies were performed at the Department of Pathology, Erasmus 
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University Rotterdam (Head: Prof.Dr F.T. Bosman) and at the Department of Pathology, 

Academical Medical Centre, Amsterdam (Head: Prof.Dr F.J.W. ten Kate). 

All liver specimens underwent a macroscopical examination. In addition, as soon as the 

specimens were obtained, they were examined with an ultraviolet lamp for fluorescence. 

Light microscopy in animals: 

A part of the glutaraldehyde-perfusion fixed liver was dehydrated briefly through graded 

alcohol series, embedded in paraffin, serially sectioned and stained. The staining protocol 

included Gill's hematoxylin stain (with reduced water contact) (120), the ferric 

ferricyanide reduction test in Lillie's modification (216) and, Perl's Prussian blue stain for 

ferric iron (217). Histology, birefringence and fluorescence (excitation filter with a 

transmission range of 300-420 nm and an absorption filter with a transmission peak above 

610 nm) were studied with a Zeiss axioplan microscope. 

Light microscopy in patients: 

The most relevant staining procedures were: the hematoxylin-eosin stain (216), the 

periodic acid-Schiff stain with and without diastase digestion (216), the ferric ferricyanide 

reduction test in Lillie's modification (216) and, Perls' Prussian blue stain for iron (217). 

Liver biopsy specimens were blindly evaluated for: fibrosis (graded 0: no fibrosis, I: 

mild periportal fibrosis, 2: moderate periportal fibrosis with some porto-portal septum 

formation, 3: marked periportal fibrosis with extensive portoportal septum formation and 

4: cirrhosis); portal triad changes; lobular changes; ground glass hepatocytes; steatosis 

(graded 0: absent, I: mild, 2: moderate, 3: marked); siderosis (graded according to 

Scheuer et al. (217); 0: absent, 1: minimal, 2: moderate, 3: abundant and 4: massive); 

dysplasia, defmed by Anthony et al. (218) and hepatocellular carcinoma. Histology was 

studied with a Zeiss axioplan microscope. 

2.4 Ultrastructural study (Electron microscopy) 

Ultrastructural studies were performed at the Analytical Electron Microscopical Unit 

(Head: Dr W.C. de Bruijn) of the Department of Pathology, Erasmus University 

Rotterdam (Head: Prof.Dr F.T. Bosman). 

Because uroporphyrins have been described to be water-soluble (116, 120), two 

procedures were used for the preparation of the liver tissue from C57BL/10 mice: 

a) Small blocks were taken randomly from the fixed livers, dehydrated briefly through 
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graded acetone series and embedded in Epon (direct method). 

b) Paraffin-embedded liver blocks, in which uroporphyrin crystals were found with light 

microscopy, were deparaffined with xylol, followed by acetone-immersion and embedded 

in Epon (indirect method). 

Ultrastructurally, there were no essential differences between liver tissue processed 

according to either the "direct" or the "indirect" method (results not shown). 

For the ultrastructural study of the liver biopsies from patients with PCT, the "direct" 

method was used. 

Ultrathin sections (60 nm) were collected on copper grids and examined with and 

without conventional staining (uranyl acetate and lead citrate) in a Zeiss EM 902 

transmission microscope. This instrument is equipped with an integrated electron 

spectrometer, which allows: 

1. Electron spectroscopic imaging (ESI) for high resolution contrast-sensitive imaging 

with energy-filtered electrons. For technical details, see Sorber eta!. (219,220). 

2. Electron energy-loss spectroscopic imaging (EELS) for element-related images, i.e., 

for the detection of iron in ferritin. For technical details, see Cleton eta!. (221). 

2.5 Morphometrical analysis 

Morphometrical studies were performed at the Analytical Electron Microscopical Unit 

(Head: Dr W.C. de Bruijn) of the Department of Pathology, Erasmus University 

Rotterdam (Head: Prof.Dr F.T. Bosman). 

Unstained Epon sections, 500-750 nm thick, were visualized by way of reflection 

contrast microscopy with the use of a Zeiss antiflex planneofluar, 63x/1.25, Ph3, oil

immersion objective (222,223). Images were transferred to the image analyzer !BAS 2000 

(Kontron/Zeiss, Munich, Germany) with a sensitive camera mounted on a Zeiss Axioplan 

microscope (Zeiss, Oberkochen, Germany). In sections of livers from each treatment 

group of mice, 40 hepatocyte cytoplasmic areas of 8,100 p.m2 each were randomly 

selected. In liver biopsies of PCT patients, 25 hepatocyte cytoplasmic areas of 8,100 p.m2 

each were randomly selected. The area fractions (expressed as percentages of the total 

measured cytoplasmic frame area) of uroporphyrin crystals and of ferritin iron core 

particles, present in each area, were calculated. Grey-value frequency histograms were 

used for objective segmentation and discrimination between ferritin and uroporphyrin 
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crystals. For further technical details, see Cleton et al. (224) and Sorber et al. (219,220). 

2.6 Statistical analysis 

All measurements were presented as means ± standard deviation (SD). 

The statistical analysis for Chapters 3,5 and 6, comparing biochemical, morphological 

and morphometrical parameters of different treatment groups, was performed with 

Wilcoxon's rank·sum test for ordinal data and with Fisher's exact test for categorial data. 

Differences within and between groups in Chapter 4 were evaluated by a oneway 

analysis of variance. As multiple groups were compared, a oneway analysis procedure 

was used with a Bonferroni correction option in STAT A release 2 (Computing Resource 

Centre, Los Angeles, USA). 

The null hypothesis was rejected when p ;;,;0.05. 
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PART A. EXPERIMENTAL UROPORPHYRIA 
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3.1 Summary 

Hexachlorobenzene-induced porphyria is iron-dependent and characterized by a 

decreased activity of uroporphyrinogen decarboxylase and the accumulation of porphyrins 

in the liver. To establish the time-sequence relationship between iron accumulation and 

uroporphyrin crystal formation in livers of C57BL/10 mice, a biochemical, morphological 

and morphometrical study was performed in livers of these mice, which were treated with 

hexachlorobenzene (HCB), iron dextran (JMF) or the combination of HCB plus IMF. 

An increased total iron content and an accumulation of porphyrins were found in livers 

of mice treated with HCB plus IMF, but also in mice treated with IMF alone. 1n contrast, 

the amount of porphyrins was only slightly increased in livers of mice treated with HCB 

alone. Uroporphyrin crystal formation started in hepatocytes of mice treated with HCB 

plus IMF at 2 weeks and in mice treated with IMF alone at 9 weeks. In the course of 

time, uroporphyrin crystals gradually increased in size. Uroporphyrin crystals were 

initially formed in hepatocytes located in the periportal areas of the liver, in which also 

ferric iron staining was first detected. The amount and the distribution of the main storage 

form of iron in hepatocytes, ferritin, did not differ between the two treatment groups. 

Ferritin iron accumulation preceded the formation of uroporphyrin crystals in hepatocytes 

of both treatment groups. Moreover, uroporphyrin crystals were nearly always found 

close to ferritin iron. Only a few uroporphyrin crystals, surrounded by ferritin iron, were 

observed in hepatocytes of mice treated with HCB alone. 

Conclusions: In C57BL/10 mice, uroporphyria can be induced by iron-overload alone; 

HCB accelerates the effects of iron in porphyrin metabolism, but does not influence the 

accumulation of iron into the liver; uroporphyrin crystals are only formed in hepatocytes, 

in which also iron accumulates; and the morphological co-occurrence of uroporphyrin 

crystals and ferritin-iron in hepatocytes suggests a role for iron in the pathogenesis of 

uroporphyria. 

3.2 Introduction 

Several polyhalogenated aromatic hydrocarbons (PAR's), including hexachlorobenzene 

(HCB), produce in humans and animals uroporphyria closely resembling human porphyria 

cutanea tarda (PCT) (66,68). Both experimental uroporphyria and PCT are characterized 

by a decreased activity of uroporphyrinogen decarboxylase (URO-D) and the 
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accumulation of uroporphyrins and heptacarboxylporphyrins in the liver (1,46). 

The exact mechanism of experimental uroporphyria is not clear, however, any proposed 

mechanism has to take into account the role played by iron (97,146-153,174). It has been 

demonstrated that HCB, or other PAR's, cause the induction of cytochrome P-4501A2 

(CYPIA2) in hepatocytes (166,167). Because HCB is a poor substrate for the cytochrome 

P-450 (Cyt P-450) isoenzyme (169), a recently favoured theory proposed that induction of 

CYPIA2 by HCB leads to uncoupling of the microsomal system (191). If "free" iron is 

present in hepatocytes, highly reactive oxygen-related free radicals could be produced by 

the Haber-Weiss reaction (151,152,181,191-!98,225). These processes could, under 

certain circumstances, initiate the formation of a specific inhibitor of URO-D (183-

186,200). 

In PCT, earlier histological and ultrastructural [light microscopy (LM) and electron 

microscopy (EM)] studies revealed needle-like structures, representing uroporphyrin 

crystals (73), in hepatocytes (73,116-123). In HCB-induced uroporphyrin four 

morphological studies have also been published (142-145), of which only one study 

reported the presence of uroporphyrin crystals in hepatocytes (143). Both in PCT and in 

experimental uroporphyria, the nature of the endogenous iron pool involved and its 

correlation with the site within the liver where uroporphyrin production takes place are 

not clear. In PCT, one LM study investigated the histological relation between porphyrins 

and iron, reporting that there was no correlation between areas of porphyrinogen 

fluorescence and areas of stainable iron (226). Regarding HG:B-induced porphyria, no 

study on the morphological relationship between porphyrins and iron has been published. 

We therefore performed a biochemical, morphological (both. LM and EM) and 

morphometrical study in livers of C57BUIO mice, which were treated with HCB, iron

dextran or the combination of HCB plus IMF. We aimed to establish the time-sequence 

relationship between the accumulation of iron and the formation of uroporphyrin crystals 

in these livers at regular intervals from 1 week to 52 weeks. In addition, we tried to 

establish the nature of the iron pool involved. 

3.3 Materials & Methods 

The mice were divided into five groups: Group I (HCB plus IMF, 55 mice), Group 2 

(IMF alone, 55 mice), Group 3 (HCB alone, 25 mice), Group 4 (non-treated control 
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mice, 19 mice) and Group 5 (com oil alone, 10 mice). Biochemical measurements in 

livers of mice treated with HCB plus IMF and with IMF alone were performed at weeks 

10, 20, 30, 40 and 52. Morphological and morphometrical observations in livers of mice 

treated with HCB plus IMF and with IMF alone were performed at weekly intervals until 

week 15 and thereafter at weeks 20, 25, 30, 40 and 52. Biochemical measurements and 

morphological observations in livers of mice treated with HCB alone, with com oil alone, 

and in livers of control mice were performed at weeks 10, 20, 30, 40 and 52. Two mice 

were sacrified for the morphological and morphometrical studies and 3 mice were 

sacrified for the biochemical measurements. 

The methods of the biochemical measurements and the morphological and 

morphometrical observations have been described in Chapter 2, paragraphs 2.2.2, 2.2.9, 

2.3, 2.4 and 2.5. 

3.4 Results 

3.4.1 Biochemistry 

The results of the biochemical determinations at the different time intervals are given in 

Table 1. 

3.4.2 Liglu microscopy 

The lobular architecture of the livers from mice treated with HCB plus IMF, HCB alone 

and IMF alone remained intact during the experimental period, i.e., the portal tracts did 

not show inflammatory infiltration or fibrosis. Starting from week 3, the nuclei of the 

hepatocytes from mice treated with HCB plus IMF and with IMF alone appeared 

somewhat enlarged and some nuclei contained up to three nucleoli. This was more 

pronounced in livers of mice treated with HCB plus IMF than in livers of mice treated 

with IMF alone. In livers of mice treated with HCB, which was dissolved in com oil, and 

in livers of mice treated with com oil alone, there was a patchy, but similar distribution 

of lipid droplets in the hepatocytes (results not shown). 

During the whole period of the study, the pattern of (ferric) iron deposition was not 

different between livers of mice treated with HCB plus IMF and with IMF alone. Livers 

of mice treated with HCB alone did not accumulate iron. Immediately after the 

administration of IMF, iron-positive granules were observed in Kupffer's cells. Thereafter, 
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Table 1. 
Biochemical results in liver tissue of control mice and in liver tissue of mice treated with HCB alone, 
with HCB plus IMF and with IMF alone. 

Duration Treatment groups 
of study 

(weeks) Controls HCB HCB+IMF IMF 
Parameter 

Porphyrin 0 2.3 ± 0.5 n.d. n.d. n.d. 
content" 

10 n.d. 1.81 ± 0.4" 398 ± 61d 90 ± 11 

20 2.1 ± 0.4 2.66 ± 0.6° 891 ± 92d 212 ± 42 

30 n.d. 3.02 ± 0.7' 1298 ± !OSd 745 ± 98 

40 n.d. 3.58 ± 0.7° 1343 ± 101~ 1159 ± 98 

52 2.4 ± 0.5 3.84 ± 0.9' 1469 ± 122e 1324 ± 112 

Iron contenf> 0 0.3 ± 0.2 n.d. n.d. n.d. 

10 n.d. n.d 4,9 ± 0.6e 4.7 ± 0.7 

20 0.4 ± 0.2 0.5 ± 0.2" 11.2 ± 0.9" 11.6 ± 1.1 

30 n.d. n.d. 12.9 ± 1.2' 13.3 ± 1.4 

40 n.d. 0.4 ± 0.1' 10.5 ± 1.1' 9.9 ± 1.3 

52 0.4 ± 0.2 0.4 ± o.zc 9.2 ± 1.00 9.4 ± 1.2 

HCB, hexachlorobenzene; IMF, iron dextran: n.d., not determined; 
a mean (± SD) in pmol per mg protein; 
b mean (± SD) in mmol/100 gm dry weight; 
"HCB group not different from control group; 
d p <0.05 compared with IMF group; 
e HCB+ IMF group not different from IMF group 

the amount of iron-positive granules in Kupffer"s cells increased and many of these cells 

became enlarged. In addition, aggregates of iron-loaded macrophages ("siderophages") 

were formed. By the 2nd week, iron-loaded Kupffer's cells were observed to accumulate 

in the portal and periportal areas. but already spreading to the midzonal areas of the liver 

lobule as well (Figure 1). By the 5th week, both iron-containing Kupffer"s cells and 

siderophages, occurring singly or in small groups, were also noted in the centrilobular 

areas of the liver (Figure2). By the 2nd week. iron-positive granules were noted in hepatocytes, 
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Figure 1. 
Light micrograph (Perls' Prussian blue stain; x 25) of mouse liver tissue, 2 weeks after treatment with 
hexachlorobenzene and iron dextran. Note the staining (indicating ferric iron) in the (peri-)portal and 
midzonal areas of the liver. 
PT, Portal Tract; CV. Central Vein 

Figure 2. 
Light micrograph (Perls' Prussian blue stain; x 50) of mouse liver tissue, 5 weeks after treatment with 
bexachlorobenzene and iron dextran. Note the staining (indicating ferric iron) in the (peri-)portal, midzonal 
and ceotrilobular areas of the liver. 
PT, Portal Tract; CV, C~tral Vein 
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Figure 3. 
Light micrographs (x 650) of the same fidd in four sequential sections of a liver from a mouse treated with 
bexachlorobeozene and iron dextran. (a) Gill's hematoxylin stain. Uroporphyrin crystals in hepatocytes 
(arrows). (b) Polarized light. Uroporphyrin crystals display birefringence. (c) Ferric ferricyanide reduction 
k:st in Lillie's modification. Uroporphyrin crystals stain dark. (d) Perls' Prussian blue stain. Staining in 
hepatocytes and in Kupffer's cdls indicates ferric iron. 

mainly located close to the portal areas of the liver lobule, but soon spreading to the 

midzonal areas of the liver lobule (Figure 1). In the course of time, iron-positive staining 

in hepatocytes was spreading diffusely through the liver, across to the centrilobular areas 

of the liver lobule (Figure 2). At week 6, siderosis of the liver was graded massive [grade 

4 according to Scheuer et al. (217)]. After 52 weeks, Kupffer's cells and siderophages, 

but also hepatocytes in the liver lobule, were still staining iron-positive. At this time, the 

highest concentration of iron-positive granules seemed to be present in the periportal 

areas. 
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4a 

Figure 4. 
(a) Light micrograph (Phase contrast; x 1,000) of a frozen section of liver tissue of a mouse treated with 
iron dextran, showing uroporphyrin crystals. (b) Light micrograph (x 1.000) of the same field, showing the 
fluorescence in areas with uroporphyrin crystals of Figure 4a. Note that the fluorescence was more 
widespread and not limited to the uroporphyrin crystals. 

Needle-like structures, representing uroporphyrin crystals (Figure 3), were first noted in 

hepatocytes of mice treated with HCB plus !MF by the 2nd week. The first uroporphyrin 

crystals were observed in those hepatocytes in which the first iron depositions were also 

detected, i.e., in the periportal areas of the liver. In hepatocytes of mice treated with IMF 

alone, the first uroporphyrin crystals were observed by the 9th week. Both in livers of 

mice treated with HCB plus IMF and with IMF alone, uroporphyrin crystals were not 

regularly distributed, but were usually found in those hepatocytes, in which also the 

highest concentration of iron-positive granules seemed present, i.e., in the periportal areas 

and later, although to a lesser degree, in the centrilobular areas of the liver. Only at 

weeks 40 and 52, a few uroporphyrin crystals were observed in hepatocytes of mice 

treated with HCB alone. 

Fluorescence of liver tissue could only be demonstrated in frozen sections of liver tissue 

(Figure 4). In livers of mice treated with HCB plus IMF and treated with !MF alone, it 

was noticed that areas with uroporphyrin crystals (Figure 4a) displayed fluorescence 

(Figure 4b); however, fluorescence seemed more widespread and not limited to 

uroporphyrin crystals alone. 
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3.4.3 Electron microscopy 

Iron overload in hepatocytes of mice treated with HCB plus IMF and with IMF alone 

was initially seen as an increase and a clustering of cytoplasmic ferritin. From 2 weeks 

onwards, ferritin was also found in siderosomes (iron-containing lysosomes) in 

hepatocytes of mice treated with HCB plus IMF and with IMF alone (Figures 5,6). At 

week 6, the cellular organelles showed the characteristic signs of iron overload: swollen 

endoplasmic reticulum, flattened microvilli in the bile canalicular region, widened spaces 

Figure 5. 
Electron micrograph (electron spectroscopic image (ESI) of a stained section; bar= 1.1 p.m) of a mouse 
hepatic parenchymal cell, 6 weeks after treatment with bexachlorobenzene and iron dextran. Note the 
interdigitation of the lateral cell membrane (an-ows). 
S, siderosome (iron-containing lysosome); FCI, Ferritin Cluster; C, Collagen fibres; L, lipid droplet; N, 
Nucleus; *, hole in section 
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Figure 6. 
Electron micrograph (electron spectroscopic image (ESI) of an unstained section: bar= 0.6 ,urn) of a mouse 
hepatic parenchymal cell, 6 weeks after treatment iron dextran. 
S, Siderosome (iron-containing lysosome): FCI, Ferritin Cluster; CpF. Cytoplasmic Ferritin; M. 
Mitochondrion 

betv.reen cells sometimes containing collagen fibres and indented heterochromatic nuclei 

(Figure 5). The pattern of distribution and the storage forms of iron were not different 

between hepatocytes of mice treated with HCB plus IMF (Figure 5) and with IMF alone 

(Figure 6). 

Apart from an increased amount of lipid droplets in hepatocytes of mice treated with 

HCB (which was dissolved in corn oil), no other ultrastructural alterations were observed 

in hepatocytes of mice treated with HCB during the experimental period. 

Uroporphyrin crystals in hepatocytes could be examined best in unstained Epon sections. 

Uroporphyrin crystals were randomly located in hepatocytes, often close to ferritin. 

Throughout the study period, it appeared that uroporphyrin crystals gradually increased in 

size (Figure 7a,b). 
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Figure 7. 
Electron micrographs (electron spectroscopic images (ESI) of unstained sections; bar= 0.6 Jtm) of hepatic 
parenchymal cells of (a) a mouse, 6 weeks after treatment with bexachlorobenzene (HCB) plus iron dextran 
(IMF) and (b) a mouse, 20 w~ks after treatment with HCB plus IMF. Note the close association between 
the uroporphyrin crystal (UP) and ferritin in Figure 7b (arrows). 
FV, Ferritin-containing Vacuole; L, Lipid droplet 

In hepatocytes of mice treated with HCB alone, very little ferritin iron was present. 

Starting from week 30, a few uroporphyrin crystals were detected. However, if a crystal 

was observed in a hepatocyte, then it was always surrounded by ferritin (Figure 8). 

3.4.4 

At 20 weeks: 

Morphomerrical {]}Ul/ysis 

Morphometrical analysis was performed by reflection contrast microscopy. An example 

of a reflection contrast microscopical view is given in Figure 9. 

The results of the morphometrical analysis in livers of mice treated with HCB plus IMF 
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Figure 8. 
Electron micrograph (electron spectroscopic image (ESI) of an unstained section; bar= 0.6 JJ.ffi) of a hepatic 
parenchymal cell of a mouse, 52 weeks after treatment with hexachlorobenzene. Note the association 
between the uroporphyrin crystal (UP) and ferritin (F). 

Figure 9. 
Reflection contrast micrograph (x 500) of an unstained Epon section of liver tissue of a mouse, 20 weeks 
after treatment with iron dextran, showing uroporphyrin crystals (arrowheads) and ferritin iron cores 
(arrows). 
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Figure 10. 
Morphometrical analysis by reflection contrast microscopy of unstained, thin Epon sections, showing the 
linear relationship between area fractions of uroporphyrin crystals and area fractions of ferritin iron cores. 
The area fractions are expressed as percentages (%) of the total measured hepatocyte cytoplasmic frame 
area (40 areas of 8,100 J.Lrri} (a) Mice treated with bexachlorobenzene and iron dextran (HCB+IM:F). (b) 
Mice treated with iron dextran (IMP) alone. The calculated regression lines are indicated. 
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and in livers of mice treated with IMF alone, at week 20, are given in Figure 10. As can 

be seen from this figure, an increased hepatocyte area fraction (expressed as a percentage 

of the total measured cytoplasmic frame area) of uroporphyrin crystals, present in each 

area, was associated with an increased hepatocyte area fraction of ferritin iron. The 

difference between the two treatment groups was the increased area fraction of 

uroporphyrin crystals in livers of mice treated with HCB plus IMF compared with livers 

of mice treated with IMF alone. However, the ratio between uroporphyrin crystals and 

ferritin iron was the same in both treatment groups (HCB+IMF: Y= 0.41 + 2.02X and 

IMF: Y= 0.46 + 2.08X). 

Time-seouence: 

The results of the morphometrical analysis in hepatocytes of mice treated with HCB plus 

IMF and with IMF alone in the course of time are shown in Figure II. As can be seen 

from these figure, the mean (± SD) area fractions of ferritin iron in hepatocytes at the 

various time intervals were not different between mice treated with HCB plus IMF or 

with IMF alone. Up to 20 weeks, there was a steep increase in the mean area fractions of 

ferritin iron (HCB+IMF: Y= 0.13X + 0.07; IMF: Y= 0.13X + 0.05). Thereafter, the 

mean area fractions of ferritin iron gradually decreased in both treatment groups. In the 

course of time, the mean (± SD) area fractions of uroporphyrin crystals in hepatocytes 
' gradually increased in both treatment groups. Up to 30 weeks, the mean area fractions of 

uroporphyrin crystals were significantly different between livers of mice treated with 

HCB plus IMF and with IMF alone. At weeks 40 and 52 however, the mean area 

fractions of uroporphyrin crystals were not different between the two treatment groups. 

In Figure 12 the mean (± SD) ratios between the hepatocyte area fractions of 

uroporphyrin crystals and the area fractions of ferritin iron core particles at different time 

intervals are presented, this has been called the porphyrins per ferritin area fraction ratio. 

As can be seen from this figure, from 2 weeks up to 20 weeks in hepatocytes of mice 

treated with HCB plus IMF, these ratios were relatively constant, i.e., between 0.2 and 

0.3. In contrast, by the 9th week, in hepatocytes of mice treated with IMF alone, the 

porphyrins per ferritin area fraction ratios became positive at a lower level and increased 

in the course of time. By the 20th week, there was a similar and sustained increase in the 

porphyrins per ferritin area fraction ratios in both treatment groups in the course of time 

(HCB+IMF: Y= 0.004X + 0.208; IMF: Y= 0.004X + 0.118). 
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Figure 11. 
Morpbometrical analysis by reflection contrast microscopy of unstained Epon sections, showing the mean 
(± SD) area fractions of uroporphyrin crystals {Porphyrins) and of ferritin particles (Ferritin) at different 
time intervals in livers of mice treated with bexachlorobenzene plus iron dextran (HCB+Th1F group) and in 
livers of mice treated with iron dextran alone (IMF group). The calculated regression lines are indicated. 
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Morpbometrical analysis by reflection contrast microscopy of unstained Epon sections, showing the mean 
( ± SD) ratios of porphyrins per ferritin area fractions at different time intervals in livers of mice after 
treatment with iron dextran (IMP group) and after treatment with bexachlorobenzene plus iron dextran 
(HCB+ IMF group). For the period from 20 weeks up to 52 weeks, the calculated regression lines in both 
treatment groups are indicated. 

3.5 Discussion 

A biochemically increased amount of hepatic porphyrins (Table I) was found to 

coincide, histologically (Figures 3,4) and ultrastructurally (Figure 7a,b), with the presence 

of needle-like structures in liver parenchymal cells of C57BL/10 mice. It has been shown 

that needle-like structures represent uroporphyrin crystals, since uroporphyrin I and ill, 

crystallized in vitro, display the same ultrastructural characteristics (73). Uroporphyrin 

crystals were presumably synthesized in vivo in the liver, since they were found in frozen 

sections (Figure 4a). In the course of time, uroporphyrin crystals gradually increased in 
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size in both treatment groups (Figure 7a,b). In areas where uroporphyrin crystals were 

found, fluorescence could be detected as well (Figure 4b). The fluorescence was not 

limited to uroporphyrin crystals, but more widespread in the surrounding cytoplasm 

(Figure 4a,b). Therefore, it seems likely that the enlargement of uroporphyrin crystals in 

the course of time is caused by the synthesis and apposition from surrounding 

porphyrinogens. 

Our data on iron distribution in livers after administration of IMF were in agreement 

with observations by others, in that iron-positive staining initially was detected in 

Kupffer's cells and siderophages, followed by the presence of ferric iron in hepatocytes in 

both treatment groups (Figure I) (227-233). The main storage form of iron in both 

treatment groups was ferritin (Figures 5-7) (227,231-233). Morphometrically, no 

difference in the amount of ferritin was observed between hepatocytes of mice treated 

with HCB plus IMF and with IMF alone (Figures 10,11). In addition, at the 

ultrastructural level, the distribution pattern of ferritin was not different between the two 

treatment groups (Figures 5-7). Therefore, it can be concluded that HCB by itself does 

not influence the accumulation of iron into the liver. 

A time-dependent accumulation of uroporphyrin crystals (Figure 11) was found in livers 

of mice treated with HCB plus IMF, but also in livers of mice treated with IMF alone. 

The only difference was that uroporphyrin crystal formation developed more rapidly in 

livers of mice treated with HCB plus IMF than in livers of mice treated with IMF alone. 

Moreover, the morphometrical analysis revealed that for the formation of uroporphyrin 

crystals in hepatocytes of mice treated with IMF alone (as compared with mice treated 

with HCB plus IMF) much more iron (as ferritin) needed to be accumulated before 

uroporphyrin crystal formation was initiated (Figure 12). In livers of mice treated with 

HCB alone, without concomitant administration of iron dextran, the amount of porphyrins 

was only slightly increased (Table 1). 

Evidence on the role of HCB in experimental porphyria proposes that HCB induces 

CYP1A2 (166,167), leading to the uncoupling of the system (191). If "free" iron is 

present, highly reactive oxygen-related free radicals could be produced by the Haber

Weiss reaction (151,152,181,191-198,225). Induction of the Cyt P-450 system appears to 

depend on binding of the chemical to a receptor protein (Ah phenotype) (164,165). Greig 

et al. (173) found that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), another PAH, 
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induced uroporphyria both in C57BL/10 mice (Ah-responsive) and in AKR mice (Ah-non

responsive). TCDD did not induce porphyria in DBA/2 mice (also Ah-non-responsive). 

even with concomitant iron administration. These and our results suggest that induction of 

the Cyt P-450 system is not an absolute requirement for uroporphyria to develop. As a 

possible explanation for this observation, Cheeseman et al. (234) reported that 

NADPH/ADP-iron-dependent lipid peroxidation in microsomes of C57BL/6 mice (Ah

responsive) and AKR mice was two-fold increased ccmpared with microsomes of DBA/2 

mice, suggesting that iron-catalyzed free radical-mediated processes are important in 

inducing uroporphyria. This difference in lipid peroxidation was also found in 

microsomes of C57BL/10 mice compared with microsomes of DBA/2 mice (194). The 

role of iron is further illustrated by findings of Smith et al. (146), who described the 

development of uroporphyria in rats, which were treated with HCB alone, to depend on 

the endogenous iron content of the liver. 

Petryka et al. (226) were not able to demonstrate iron and porphyrinogen fluorescence 

in the same hepatocyte in livers of patients with PCT. They concluded that certain cells 

preferentially accumulate either porphyrins or iron. In contrast to their fmdings, we 

observed in hepatocytes of C57BL/10 mice that uroporphyrin crystals and ferritin-iron 

were located in the same hepatocyte (Figure 7a,b). Moreover, an increased hepatocyte 

area fraction of uroporphyrin crystals was associated with an increased hepatocyte area 

fraction of ferritin iron in each cytoplasmic area (Figure 1 0). Another fmding was that the 

single uroporphyrin crystal, found in a hepatocyte of a mouse treated with HCB alone, 

was also surrounded by ferritin aggregates (Figure 8), which was remarkable in the light 

of the scarcity of (ferritin) iron present in these livers. Our results suggest a role for iron 

(as ferritin) in the pathogenesis of (experimental) uroporphyria. Ferric iron however, is 

sequestered in ferritin as a non-toxic oxyhydroxide, complexed with phosphate; oxidation 

and storage of iron appear to be related processes and release of iron from ferritin 

requires reduction (235). Although in vitro release of ferrous iron from ferritin by liver 

microsomes has been described (174,225,236-238), it is not clear whether this also occurs 

in vivo. 

On the basis of these results, we postulate that in hepatocytes of C57BL/10 mice, either 

as a result of CYP1A2 induction (after administration of HCB) (166, 167) and/or as a 

result of a genetically-determined mechanism, as suggested by Smith and de Matteis 
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(191), an active oxidative metabolism exists. Above a certain level of iron accumulation 

in hepatocytes (Figures 10-12), toxic species could be produced (151,152,181,191-

198,225), which could react with uroporphyrinogen or another substance to form an 

inhibitor of URO-D (183-186,200), thus explaining the accumulation of uroporphyrin 

crystals in hepatocytes (191). Alternatively, damage to URO-D, either by a direct action 

of iron or by a free radical-mediated mechanism, has been postulated (95,96). 

In this Chapter, we proposed a role for iron (as ferritin) in the pathogenesis of 

uroporphyria. However, it has been suggested that a small fraction of intracellular iron is 

bound to a variety of molecules of low molecular weight (LMW) (239-242). This pool of 

LMW iron is thought to be more readily available for a catalytic role in the Haber-Weiss 

cycle. Morecver, a role for LMW iron has been demonstrated in the process of free 

radical formation in iron-loaded cells (212,243,244). Therefore in Chapter 4, we will 

investigate the possible role of this pool of LMW iron in the pathogenetic mechanism of 

uroporphyria. 
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CHAPTER 4 

The Effect of Desferrioxamine on Iron Metabolism, Lipid Peroxidation and 
Porphyrin Metabolism in Hepatocytes of CS?BL/10 Mice with Uroporphyria 
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4.1 Summary 

The effects of the iron chelator, desferrioxamine (DFx), on iron accumulation, 

malondialdehyde (MDA) production (as a marker of lipid peroxidation), porphyrin 

accumulation, uroporphyrinogen decarboxylase (URO·D) activity and porphobilinogen 

deaminase (PBG-D) activity were investigated over a period of 14 weeks in livers of 

C57BL/10 mice, which were treated with hexachlorobenzene (HCB), iron dextran (IMF) 

or the combination of HCB plus IMF. In addition, the amount of low molecular weight 

(LMW) iron was measured in these livers to determine a possible correlation with :MDA 

production. 

Treatment with HCB plus IMF and with IMF alone, resulted in an increased production 

of MDA and porphyrin accumulation, a reduced URO-D activity and an increased PBG-D 

activity, whereas treatment with HCB alone had no effect. DFx caused a reduction in 

MDA production and hepatic porphyrins, this reduction being more pronounced in livers 

of mice treated with IMF alone than in livers of mice treated with HCB plus IMF. The 

effects of DFx on URO-D activity were in agreement with the results on porphyrin 

accumulation. LMW iron measurements at 11 weeks correlated well with data on :MDA 

production in all treated groups in the same period CR'= 0.84), suggesting that both 

variables were interdependent. 

Conclusions: Iron plays an important role in porphyrin accumulation and decreased 

URO-D activity in livers of C57BLIIO mice; DFx is effective in reducing porphyrin 

accumulation, probably due to a reduction of the LMW pool of iron, thus diminishing the 

amount of iron available for a catalytic role in the generation of oxygen-related free 

radicals; the finding of an increased PBG·D activity could provide an additional 

explanation for the marked uroporphyrin accumulation. 

4.2 Introduction 

Human porphyria cutanea tarda (PCT) is characterized by a partial block in the heme 

biosynthetic pathway at the level of uroporphyrinogen decarboxylase (URO·D) and the 

accumulation of uroporphyrins and heptacarboxylporphyrins in the liver (1,46). 

Uroporphyria can be induced in rodents and humans by the administration of 

hexachlorobenzene (HCB), a polyhalogenated aromatic hydrocarbon (PAH) (66,68). 

Iron plays an important role in PAH·induced uroporphyria (97,146-153,174). Moreover, 
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it was shown in Chapter 3, that in livers of C57BU10 mice, uroporphyria can be induced 

by iron-overload alone. 

The effect of iron in experimental uroporphyria has been explained by its ability to 

participate in iron-catalyzed free radical-mediated processes. It has been suggested that 

there is a highly active oxidative metabolism in hepatocytes of C57BU10 mice, either as 

a result of cytochrome P-4501A2 (CYP1A2) induction by PAR's (166,167), or 

genetically-determined in these mice, as suggested by Smith and de Matteis (191). If 

"free" iron is present, highly reactive oxygen-related free radicals could be formed by the 

Haber-Weiss reaction (151,152,181,191-198,225). In addition, the intracellular presence 

of free ferrous iron by itself can induce the formation of o,· (superoxide) (243,245), and 

thus initiate the chain of reactions leading to the formation of oxygen-related free radicals. 

In the presence of oxygen-related free radicals, a variety of reactions can be initiated, 

such as peroxidation of membrane lipids (199). Recently, it has been suggested that the 

process of lipid peroxidation is involved in the pathogenesis of experimental uroporphyria 

(152,196). 

Since the effect of the iron chelator desferrioxamine (DFx) on liver iron accumulation, 

malondialdehyde (MDA) production (as a marker of lipid peroxidation), porphyrin 

accumulation and URO-D activity in the course of time has not been studied extensively, 

we decided to investigate these effects of DFx in livers of C57BL/10 mice, which were 

treated with HCB, iron-dextran (IMF), or the combination of HCB plus IMF. In addition, 

we studied the activity of porphobilinogen deaminase (PBG-D), one of the preceding 

enzymes of URO-D in the heme biosynthetic pathway. An increased PBG-D activity has 

been reported in livers of patients with PCT (48,52) and an increased PBG-D activity 

could provide an additional explanation for uroporphyrin accumulation in experimental 

uroporphyria. 

The nature of the iron pool involved in experimental uroporphyria is not clear. On the 

basis of the finding in Chapter 3, of a morphological co-occurrence of uroporphyrin 

crystals and ferritin iron in hepatocytes of porphyric C57BL/IO mice, a role for ferritin

bound iron in the pathogenesis of experimental uroporphyria has been suggested. 

However, ferric iron is sequestered in ferritin as a non-toxic oxyhydroxide, complexed 

with phosphate. The release of iron from ferritin requires reduction (235). Although in 

vitro release of ferrous iron from ferritin by liver microsomes has been described 
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(174,225,236-238), it is not clear whether this also occurs in vivo. An alternative 

possibility could be an intracellular pool of low molecular weight (LMW) iron (239-242). 

A role for this LMW pool of iron has been demonstrated in free radical formation in 

iron-loaded cells (212,243,244). A recently developed technique (212; see also paragraph 

2.2.10) to measure the amount of LMW iron in tissue homogenates was used to further 

elucidate this problem. 

4.3 Materials & Methods 

At weeks 4, 7, and 14, measurements were performed in livers of mice treated with 

HCB plus IMF (HCB+ IMF group, 25 mice), HCB alone (HCB group, 20 mice), IMF 

alone (IMF group, 25 mice), and in control mice (20 mice). In addition, subgroups of 

mice treated with HCB plus IMF and with IMF alone were treated with daily DFx 

injections. Daily DFx injections started either from the beginning of the experiment 

(HCB+ IMF + DFx group: 25 mice and IMF + DFx group: 25 mice) or started from week 

7 (HCB+IMF+DFx7 group: 15 mice and IMF+DFx7 group: 15 mice). In livers of mice 

in which DFx injections started at week 7, measurements were performed at weeks 7, II 

and 14. 

The amount of liver tissue in each mouse (average weigbt ± 2.1 gm) was too small to 

perform LM:W iron measurements in combination with the other measurements at all time 

intervals. We therefore chose to carry out these incubations at week II, as sufficient time 

should have elapsed for the biochemical discrimination of the different treatment groups. 

The methods of the biochemical determinations have been described in Chapter 2, 

paragraphs 2.2.2, 2.2.4, 2.2.8, 2.2.9, 2.2.10 and 2.2.12. 

4.4 Results 

4.4.1 Total iron content in liver tissue 

The results of mean (± SD) iron content in liver tissue at the different time intervals 

are given in Figure 1. Measurements were performed in duplo samples of liver tissue. 

Liver iron content in the IMF group was increased at week 4, but even in the following 

10 weeks a distinct rise could be measured. Liver iron content in the IMF+DFx group 

was lower at all times compared with the IMF group (p <0.001). In the IMF+DFx7 

group, liver iron content decreased after starting DFx administration at week 7, resulting 
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in about a 50% liver iron content reduction at week 14. The increase in liver iron content 

in the HCB+IMF group was equal to that in the IMF group. However, in the 

HCB+ IMF + DFx group, liver iron contents were elevated at all times compared with the 

iron results in the IMF+DFx group (p =0.008). In contrast, iron contents in livers of 

non-treated control mice and in livers of mice treated with HCB alone were low, with a 

mean of 3 I-' moll gm dry weight liver tissue. 
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Figure 1. 
Total liver iron content during the experimental period in liver tissue of C57BU10 mice. 
Open circles: Control group; Open triangles: Mice treated with iron dextran (IMF group); Closed triangles: 
Mice treated with IMF and desferrioxamine from the beginning of the experiment (IMF + DFx group); Open 
squares: Mice treated with hexachlorobenzene and IMF (HCB+IMF group); Closed squares: 
HCB+IMF+DFx group; Closed diamonds: Mice treated with IM:F and DFx from week 7 (IMF+DFx7 
group); 
Values sho\VD. represent the means ± SD. 
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4.4.2 Malondialdehyde content in liver tissue 

Results of mean (± SD) MDA production in liver tissue at the different time intervals 

are given in Figure 2. Measurements were performed in 4-fold in samples of liver tissue. 

All DFx-treated groups showed a distinct reduction in MDA production compared with 

the groups receiving the same treatment without DFx. In the Th1F + DFx group, :MD A 

production at week 14 was even lower than that in the control groups. Treatment with 

HCB+ IMF resulted in higher MDA concentrations than treatment with IMF alone. MDA 

production in mice treated with HCB alone did not differ from the non-treated control 

group of mice. 
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Figure 2. 
Malondialdehyde (MDA) content during the experimental period in liver tissue of CS?BL/10 mice. 
Open circles: Control group; Closed circles: Mice treated with hexacblorobenzene (HCB group); Open 
triangles: Mice treated with iron dextran (IMF group). Closed triangles: Mice treated with IM:F and 
desferrioxamine from the beginning of the experiment (IMF+DFx group); Open squares: HCB+IMF 
group; Closed squares: HCB+IMF+DFx group; 
Values shown represent the means ± SD. 
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4.4.3 Porphyrins in liver tissue 

Results of mean (± SD) porphyrin content in liver tissue at the different time intervals 

are given in Figure 3. Measurements were performed in duplo samples of liver tissue. 

Both in the HCB+IMP group and in the IMP group, but not in the HCB group, an 

increase in hepatic porphyrin accumulation was observed during the 14 weeks. Apart 

from the results at week 14, hepatic porphyrin contents were higher in the HCB+ IMP 

group than in the IMF group (p <0.001). The reduction in porphyrin accumulation was 

more pronounced in livers of the IMF + DFx group than in the HCB+ IMP+ DFx group. 
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Figure 3. 
Porphyrin content during the experimental period in liver tissue of C57BU10 mice. 
Open circles: Control group; Open triangles: Mice treated with iron dextran (IMF group); Closed triangles: 
Mice treated with IMF and desferrioxamine from the begin.niog of the experiment (IMP+ DFx group); Open 
squares: Mice treated with hexachlorobenzene and IMP (HCB+IMF group); Closed squares: 
HCB+IMF+DFx group; Closed diamonds: Mice treated with IMF and DFx from week 7 (IMF+DFx7 
group); 
Values shov.n represent the means ± SD. 
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4.4.4 URO-D activity in liver tissue 

Results of mean (± SD) URO-D activity (in percentages of values found in the control 

group) in liver tissue at the different time intervals are given in Figure 4. 

At week 4, URO-D activity in the HCB+!MF group and in the HCB+!MF+DFx 

groups diminished to ± !5% of control group values. URO-D activity in livers of mice in 

the !MF+DFx and !MF+DFx? groups showed an increase at week 14. A strong negative 

correlation, varying between -0.80 and -0.92, was found between liver porphyrin 

accumulation and liver URO-D activity data in all treatment groups. 
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F>gure 4. 
Uroporphyrinogen decarboxylase activities (in percentages of values found in the control group) during the 
experimental period in liver tissue of C57BU10 mice (100%: 161 ± 25 pmollmg protein/hour). 
Open circles: Control group; Open triangles: Mice treated with iron dextran (IMF group)~ Closed triangles! 
Mice treated with IMF and desferrioxamine from the beginning of the experiment (IMF + DFx group); Open 
squares: Mice treated with IMF and hexacblorobenzene (HCB+IMF group); Closed squares: 
HCB+IMF+DFx group; Closed diamonds: Mice treated with IMF and DFx from week 7 (IMF+DFx7 
group); 
Values shown represent the means ± SD. 
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4.4.5 PBG-D activity in liver tissue 

Results of mean (± SD) PBG-D activity (in percentages of values found in the control 

group) in liver tissue at the different time intervals are given in Figure 5. 

PBG-D activities in the HCB+ IMF group and in the HCB+ IMF + DFx group, and to a 

lesser degree in the !MF group and in the IMF+DFx group, were increased over the 14-

week:s observation period. At week 14, PBG-D activity was lower in the 

HCB+IMF+DFx group than in the HCB+IMF group (p <0.01), however, PBG-D 

activities in all treatment groups were still increased at that time. 
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Figure 5. 
Porphobilinogen deaminase activities (in percentages of values found in the control group) during the 
experimental period in liver tissue of C57BU10 mice (100%: 215 ± 36 pmol/mg protein/hour). 
Open circles: Control group; Open triangles: Mice treated with iron dextran (IMF group); Closed triangles: 
Mice treated with IMF and desferrioxamine from the beginning of the experiment (IMF + DFx group); Open 
squares: Mice treated with hexachlorobenzeoe and IMF (HCB+IMF group); Closed squares: 
HCB+IMF+DFx group; Closed diamonds: Mice treated with IMF and DFx from week 7 (IMF+DFx7 
group); 
Values shown represent the means ± SD. 
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4.4.6 Low molecular weight iron in liver tissue 

Results of mean (± SD) LMW iron measurements in liver tissue are given in Table I. 

LMW iron measurements were performed in duplo samples, with 4-fold measurements 

per sample. 

Both in the HCB+ IMF group and in the IMF group, treatment with DFx resulted in a 

decreased amount of LMW iron in the liver. When treatment with DFx started at week 7, 

DFx reduced the amount of LMW iron also in livers of mice treated with HCB plus IMF 

(as compared with the non-DFx-treated mice) and in livers of mice treated with IMF 

alone (as compared with the non-DFx-treated mice). Results of LMW iron measurements 

in the HCB group were not different from the control group of mice. 

In Figure 6, the results of the LMW iron measurements at week 11 were compared with 

data on MDA production at the same time. Calculations yielded a correlation coefficient 

of 0.84, thus indicating that both variables were interdependent. 

Table 1. 
Low Molecular Weight iron measurements in liver tissue of C57BL/10 mice at 11 weeks. 

Low molecular weight iron 
(in nmollgm wet weight liver tissue) 

Treatment group 

Controls 86 ± 9 

HCB 

HCB+IMF 190 ± 15' 

HCB+IM:F+DFx 136 ± 9 

HCB+IMF+DFx7 139 ± 26 

IMF 121 ± J5< 

IMF+DFx 55± 13 

IMF+DFx7 81 ± 17 

HCB, bexachlorobeo.zene; IMF, iron dextran; DFx, desferrioxamine from the beginning of the t~Xperiment; 
DFx7, desferrioxamine from week 7; 
.. HCB group not different from control group; 
b p <0.005 compared with all other groups; 
c p <0.01 compared with the control group, the IMF +DFx group and the IMF +DFx7 group 
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Figure 6. 
Low moleculair weight (LMW) iron concentrations in liver tissue compared with malondialdehyde (MDA) 
concentrations in liver tissue at 11 weeks. 
Open circles represent individual results. Calculations yielded a correlation coefficient of 0.84. 

4.5 Discussion 

We confinned that treatment of C57BL/10 mice with HCB plus IMF, but also with IMF 

alone, resulted in the accumulation of (uro)porphyrins in the liver. Moreover, in this 

strain of mice, HCB alone did not produce uroporphyria. These results point to an 

important role of iron in the pathogenesis of experimental uroporphyria. 

Two mechanisms for the role of iron in experimental uroporphyria have been proposed. 

(i) An oxygen-independent inhibition by direct interaction of iron (Fe2
•) with essential 

sulfhydryl group(s) at the catalytic site(s) of the enzyme (95,96), and/or an oxygen

dependent inhibition, where iron (in the presence of an electron donor) is generating free 
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radicals, thereby (directly) damaging the URO-D enzyme (95). 

(ii) An iron-mediated mechanism with the production of highly reactive oxygen-related 

free radicals by the Haber-Weiss reaction (151,152,181,191-198,225), which could react 

with uroporphyrinogen or another susceptible target to form an inhibitor of URO-D (183-

186,200), thus explaining the accumulation of uroporphyrins in livers of C57BU10 mice 

(191). 

In addition, an iron-independent oxidation of uroporphyrinogen to uroporphyrin has been 

proposed (166,167,180-182,187). Because uroporphyrin is not a substrate for URO-D, 

accumulation of uroporphyrin results (188). However, this mechanism of 

uroporphyrinogen oxidation does not explain the inhibition of URO-D, that can be 

measured at the same time. 

Experimental evidence for a direct (oxygen-independent) inhibitory effect of iron on 

URO-D activity has been obtained in vitro. Mukerji et al. (95,96) found that Fe'+ 

concentrations in the range of 0.1 - LO mM reduced the activity of partially purified 

URO-D. Since Kozlov et al. (203) recently have demonstrated that it is unlikely that these 

FeZ+ concentrations can be met in vivo, it is not clear whether a direct interaction of 

ferrous iron with URO-D also occurs in vivo. 

Oxygen-related free radicals can initiate a variety of reactions, such as the peroxidation 

of membrane lipids (199). The process of lipid peroxidation has been suggested to play a 

role in the pathogenesis of experimental uroporphyria (152, 196). In our experiments, 

treatment with HCB plus IMF, but also with IMF alone, resulted in an increased MDA 

production (as a marker of lipid peroxidation), which was maximal at 4 weeks, but was 

still significantly increased at 14 weeks (Figure 2). 

Both treatment with HCB plus IMF and with lMF alone, resulted in porphyrin 

accumulation (Figure 3) and a decreased URO-D activity (Figure 4). The differences 

between the HCB+IMF group and lMF group in MDA production (Figure 2), porphyrin 

accumulation and URO-D activity were statistically significant for all results, except for 

those at 14 weeks (p <0.004). In contrast, liver iron accumulation (Figure 1) showed 

more or less equal results in both groups. These findings on iron accumulation and 

porphyrin accumulation in the HCB+IMF group and the lMF group were also found in 

the morphological and morphometrical study reported in Chapter 3. 

The results support the suggestion that HCB stimulates the production of free radicals in 
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the presence of iron. In hepatocytes of C57BI/10 mice, as a result of induction of 

CYP1A2 by PAR's (166,167), but also in mice treated with IMF alone on the basis of a 

genetically-determined mechanism, as suggested by Smith and de Matteis (191), an active 

oxidative metabolism has been proposed. If "free" iron is present, highly reactive oxygen

related free radicals could be formed by the Haber-Weiss reaction (151,152,181,191-

198,225). HCB alone did not induce porphyrin accumulation in livers of C57BU10 mice 

(see also Chapter 3), neither did it affect the production of MDA (Figure 2). This might 

be due to the very low levels of total liver iron in non-treated animals (146,149,150). 

Our results suggest that DFx reduced the amount of iron available for a catalytic role in 

the generation of free radicals. This is clearly demonstrated by the finding that MDA 

production at 14 weeks in the IMF+ DFx group was significantly lower than in the IMF 

group (p <0.001), which could explain why URO-D activity was restored, despite the 

presence of an iron excess in the liver at that time (Figures 1,2,4). In the 

HCB+ IMF + DFx group, it appeared that URO-D activity was slightly (however, not 

statistically significant) increased at 14 weeks compared with the non-DFx-treated mice at 

that time, but measurements over a longer period will be necessary to confirm this trend. 

Moreover, the LMW iron results (mean ± SD in nmol/gm liver tissue) in the 

HCB+ IMF + DFx group (136 ± 9) and in the IMF + DFx group (55 ± 13) were lower 

than those in the HCB+ IMF group (190 ± 15) and IMF group (121 ± 15) respectively, 

and correlated closely with the data on MDA production (Figure 6). The discrepancy in 

LMW iron between the HCB+ IMF group and the IMF group could be the result of a 

reductive release of iron from ferritin (the main storage form of iron in hepatocytes), due 

to the generation of reactive oxygen species by HCB (174,181,237). 

There seemed to be a discrepancy between the results on MDA production and iron 

accumulation (Figures 1,2). After 4 weeks, MDA production decreased, while iron was 

still accumulating in the liver. It has been demonstrated in Chapter 3, that the transport of 

iron dextran from the injection site to the hepatocytes takes a considerable amount of 

time. However, once iron reaches the hepatocyte, ferritin synthesis is stimulated. It is 

reasonable to assume that ferritin synthesis will not be able to immediately accommodate 

this iron excess, since ferritin synthesis is a slow process, regulated by iron at the mRNA 

level (246). Iron storage in ferritin reduces the availability of catalytic iron for the 

generation of free radicals (235). Eventually, most iron will be stored in ferritin, but in 



70 

the meantime the amount of "free" iron (LMW iron) will probably be elevated, enhancing 

the generation of free radicals. 

It was remarkable to find an increased PBG-D activity in livers of mice treated with 

HCB plus IMF and IMF alone (Figure 5). An increased PBG-D activity has also been 

reported in livers of patients with PCT (48,52). The mechanism of an increased PBG-D 

activity in experimental uroporphyria (Figure 5) and in PCT (48,52) is not clear. Both 

HCB (247) and iron (248) have been demonstrated to increase the activity of the rate

limiting enzyme in the heme biosynthetic pathway, 5-aminolevulinic acid (ALA) synthase. 

This could result in an increased supply of ALA and porphobilinogen (PBG) (1,46). The 

enzyme PBG-D has been reported to be protected from degradation when the enzyme is 

bound to its substrate, PBG (249). An increased PBG-D activity could explain the absence 

of acute attacks in PCT. Moreover, an increased PBG-D activity could also provide an 

additional explanation for the marked uroporphyrin accumulation in experimental and 

human uroporphyria. 

These results support a mechanism of URO-D inactivation and uroporphyrin 

accumulation as a result of a free radical-mediated process. It is not clear whether this 

occurs directly by damage to URO-D itself (95,96), or indirectly, by the formation of an 

inhibitor of URO-D (due to free radical-mediated oxidation of uroporphyrinogen or 

another susceptible target) (183-186,200). However, the results on porphyrin 

accumulation, URO-D activity and PBG-D activity in the HCB+IMF+DFx group by 14 

weeks could be indicative of the presence of an inhibitor of URO-D, for both the amount 

of porphyrins and the PBG-D activity were already significantly diminished (p <0.001), 

whereas URO-D activity was still markedly decreased at that time (compare Figures 3-5). 

It is concluded that iron is an important factor, both in porphyrin accumulation and for a 

decreased URO-D activity, in livers of C57BL/10 mice. The effectiveness of DFx in 

reducing porphyrin accumulation is most likely the result of a reduction of LMW iron, 

thus diminishing the amount of iron available for a catalytic role in the generation of ' 

oxygen-related free radicals. An increased hepatic PBG-D activity could provide an 

additional explanation for the marked uroporphyrin accumulation. In the presence of free 

radicals, uroporphyrinogen or another compund, could be oxidated to an inhibitor of 

URO-D. 
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5.1 Summary 

We collected follow-up data on 49 patients with porphyria cutanea tarda (PCT), who 

had been seen over a period of 20 years. Five of these patients (10%) developed a 

hepatocellular carcinoma (HCC) during this follow-up period. In this study, we analyzed 

the differences in clinical, laboratory and liver morphological findings obtained at 

presentation, between patients who developed HCC during follow-up (HCC-group, n =5) 

and those who did not (PCT-group, n=44). In addition, in 45 liver biopsies, the histology 

was re-examined. In livers of 8 patients, of whom 3 had fantilial PCT (F-PCT) and 5 had 

sporadic PCT (S-PCT), ultrastructural findings were compared and in livers of 13 

patients, of whom 5 had F-PCT and 8 had S-PCT, a morphometrical analysis was 

performed to study the relationship between porphyrins and iron in hepatocytes. 

Patients in the HCC-group had skin-symptoms for a longer period (mean: 10.4 ± 1.1 

years) than patients in the PCT-group (mean: 1.8 ± 1.2 years) (p <0.001). No 

differences in routine laboratory findings were found. Although 15/49 (31 %) patients had 

serologic evidence of a past hepatitis B virus infection and 9/49 (18%) patients had 

antibodies against hepatitis C virus, no differences in these parameters were found 

between the PCT-group and the HCC-group. Only piecemeal necrosis (p <0.01) and 

advanced fibrosis or cirrhosis (p <0.001) were more common in liver biopsies of the 

HCC-group. 

Uroporphyrin crystals were detected in 15/45 (33%) liver biopsies. All patients had a 

variable degree of siderosis of the liver (PCT -group vs. HCC-group: NS; F-PCT patients 

vs. S-PCT patients: NS). The storage form of iron in hepatocytes was cytoplasntic ferritin 

and ferritin-like particles in lysosomal bodies. The amount and distribution of iron was 

not different between livers of F-PCT and S-PCT patients. Uroporphyrin crystals and 

ferritin iron were located in the same hepatocyte, often close to each other. The mean 

amount of uroporphyrin crystals to the mean amount of ferritin iron was increased in the 

F-PCT group compared with the S-PCT group of patients (p =0.008). 

Conclusions: Liver biopsies of patients with PCT reveal a broad spectrum of lesions, 

ranging from minimal changes to HCC; factors related to an increased risk of HCC in 

PCT are a long symptomatic period before start of treatment and the presence of chronic

active hepatitis and/or advanced fibrosis or cirrhosis in liver biopsies; uroporphyrin 

crystals are formed in hepatocytes of PCT patients (either with F-PCT or S-PCT), in 
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which also iron accumulates; F-PCT increases the susceptibility to the effects of iron in 

comparison with S-PCT; these results suggest an important role for iron in the 

pathogenesis of familial and sporadic forms of PCT. 

5.2 Introduction 

Porphyria cutanea tarda (PCT) is a disorder of porphyrin metabolism, characterized by a 

decreased activity of uroporphyrinogen decarboxylase (URO-D) and an overproduction of 

porphyrinogens, primarily uroporphyrinogens and heptacarboxylporphyrinogens, in the 

liver (1,46). Familial and sporadic forms of PCT have been described. In familial PCT 

(F-PCT), liver and extrahepatic URO-D activities are about 50% of normal (2,4,24). The 

enzymatic defect is inherited as an autosomal-dontinant trait. In the sporadic form of PCT 

(S-PCT), the enzyme defect is restricted to the liver and a decreased URO-D activity is 

only detected in the symptomatic phase (3,24). 

Possession of the enzyme defect in F-PCT is not enough to produce clinically-overt 

porphyria. Inheritance of the enzyme defect leads to clinical expression in only a minority 

of affected individuals (2,4,24). Similarly in S-PCT, URO-D activity in livers may 

remain low during clinical remission (3,24). Therefore, interaction between the hepatic 

enzyme defect and other factors seems necessary for PCT to become clinically-manifest. 

The most frequently incriminated agents are: ethanol (54,55,58), estrogens (63,64) and 

iron. Of these factors, iron has attracted most attention. Most PCT patients have 

increased hepatic iron stores: a variable degree of hepatic siderosis has been reported in 

72-100% of patients with PCT (54,70-76). 

Histological and ultrastructural [light microscopy (LM) and electron nticroscopy (EM)] 

studies of liver tissue in PCT have revealed a broad spectrum of lesions ranging from 

minimal changes to cirrhosis (54,70,73,74,76,116-1!9). An increased frequency of 

hepatocellular carcinoma (HCC) has been described in PCT (126,127,130-132), but this 

has not been confirmed in all series (54,70,74,76,123,133). Of the morphological 

fmdings, only the presence of needle-like structures in hepatocytes, representing 

uroporphyrin crystals (73), is characteristic (73,1!6-123). In PCT, one LM study 

investigated the histological relationship between porphyrins and iron in livers, reporting 

that there was no correlation between areas with porphyrin fluorescence and areas with 

stainable iron (226). 
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Clinical features and laboratory findings, obtained at presentation, were available in 49 

patients with PCT, seen during the previous 20 years. In 45 patients, a liver biopsy was 

performed. When 5/49 (10%) patients developed a HCC during follow-up, we analyzed 

whether there were differences in the parameters, obtained at presentation, between 

patients who developed HCC during follow-up, and those who did not. 

In addition, in the liver biopsies, the histology was re-examined systematically, the 

ultrastructural findings were compared and a morphometrical analysis was performed to 

study the relationship between iron and uroporphyrins in hepatocytes of PCT patients, 

either with F-PCT and S-PCT. 

5.3 Materials & Methods 

From 1973 to 1992, 49 patients were seen with symptomatic PCT in the Academical 

Hospitals of Rotterdam and Utrecht, of whom 44 developed no HCC (PCT-group, n=44) 

and 5 developed HCC (HCC-group, n=5) during this follow-up period. In 24/44 patients 

of the PCT -group and in 2/5 patients of the HCC-group, indirect erythrocyte URO-D 

activity was measured. Of these 26 patients, 7/26 (27%) had F-PCT and 19/26 (73%) had 

S-PCT. Both of the 2 tested HCC patients were found to have S-PCT. A diagnosis ofF

PCT was based on a positive family history and an indirect URO-D activity >2.80. A 

diagnosis of S-PCT was based on a negative fantily history and an indirect URO-D 

activity comparable to controls (51). All patients presented with characteristic skin

symptoms (bullae, skin fragility, hypertrichosis and pigmentary changes). At presentation, 

routine clinical chemistry laboratory results were obtained and serum from all patients 

was stored at -70 °C. Since assays for hepatitis B virus (HBV) and hepatitis C virus 

(HCV) only became available in recent years, stored serum samples were used for these 

determinations. In 45 patients, a percutaneous liver biopsy was performed at presentation. 

In these 45 liver biopsies, the histology was re-examined systematically. In liver biopsies 

of 8 patients, of whom 3 had F-PCT and 5 had S-PCT, ultrastructural fmdings were 

compared and in liver biopsies of 13 patients, of whom 5 had F-PCT and 8 had S-PCT, a 

morphometrical analysis was performed. Treatment resulted in a clinical remission in all 

patients. Therefore, liver biopsies were not repeated. Only in 4 of the 5 patients, who 

developed HCC during the follow-up period, the diagnosis of HCC was confirmed with a 

repeated liver biopsy. In the 5th patient a diagnosis of HCC was suspected, which was 
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based on: a) increasing levels of a-fetoprotein; b) a space occupying lesion in the liver at 

abdominal ultrasound and computerized axial tomography, and c) the histology of a 

vertebral tumour, consistent with a metastasis of HCC. 

The methods of the biochemical measurements and the morphological observations have 

been described in Chapter 2, paragraphs 2.2.3, 2.2.13, 2.2.14, 2.3, 2.4 and 2.5. 

5.4 Results 

5.4.1 Clinical findings 

The clinical findings of all patients are summarized in Table 1. 

The follow-up time in all patients ranged from I to 19 years (mean: 8.0 ± 5.9 years). 

HCC was detected after 1.5, 5.5, 7, 8 and 9 years, respectively. 

Of the clinical findings, only the symptomatic period was longer in patients of the HCC

group (n=5) than in patients of the PCT-group (n=44). The clinical findings were not 

different between F-PCT (n=7) and S-PCT (n=l9) patients (results not shown). 

Table 1. 
Clinical findings at presentation in patients with porphyria cutanea tarda, who developed no 
hepatocellular carcinoma (HCC) (PCT-group; n=44) and in patients who developed HCC (HCC
group; n=S) during follow-up. 

PCT-group (%) HCC-group (%) p-value• 
Clinical finding 

Sex (Male/Female) 27/17 4/1 NS 

Age (mean years ± SD) 49.2 ± 14.1 53.8 ± 4.3 NS 

Symptomatic period (mean years ± SD) 1.8 ± 1.2 10.4 ± 1.1 <0.001 

Symptom-provoking factors: 
Ethanol (>60 g/day) 30/44 (69%) 515 (100%) NS 
Estrogens 5/44 (II%) 
Ethanol + Estrogens 5/44 (11 %) 
No factor identified 4/44 ( 9%) 

Therapy: 
Phlebotomy 26/44 (60%) 515 (100%) NS 
Phlebotomy + Chloroquine 8/44 (18%) 
Chloroquine 5/44 (II%) 
Other 5/44 (11%) 

• p-value: comparing PCT-group with HCC-group 
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5.4. 2 Biochemistry 

Table 2 shows the amount and percentage of abnormal results of the excretion of 

urinary porphyrins and the routine clinical chemistry results. 

Serum levels of ferritin were increased in 41/49 (84%) patients with PCT [in 6/7 (86%) 

F-PCT patients and in 16/19 (84%) S-PCT patients]. Of all patients with PCT. 11/49 

(22%) had serum ferritin levels of >500 ng/ml and 8/49 (16%) had serum ferritin levels 

of > 1000 ng!ml. 

Treatment succeeded in normalization of the biochemical features in all patients. When 

HCC was detected, a-fetoprotein levels were found to be increased in 4 of the 5 patients 

in the HCC-group. 

Statistical analysis (with the absolute values) did not show a difference in any of these 

Table2. 
Biochemical features at presentation in patients with porphyria cutanea tarda who developed no 
hepatocellular carcinoma (HCC) (PCT-group; n=44) and in patients who developed HCC (HCC-
group; n=S) during follow-up. 

PCT-group (%) HCC-group (%) p-value .. 
Laboratory test 

Urinary porphyrins t 44/44 (100%) 515 (100%) NS 

Bilirubin t 13144 ( 30%) 115 ( 20%) NS 

AST I 28/44 ( 64%) 315 ( 60%) NS 

ALT I 28144 ( 64%) 3/5 ( 60%) NS 

gamma-GT 1 32144 ( 73%) 4/5 ( 80%) NS 

AP! 13/44 ( 30%) 115 ( 20%) NS 

Iron I 31144 ( 70%) 4/5 ( 80%) NS 

Tf sat t 24144 (55%) 3/5 ( 60%) NS 

Ferritin t 37144 ( 84%) 4/5 ( 80%) NS 

AFP! 0/44 ( 0%) 0/5 ( 0%) NS 

t, increased serum levels; AST, aspartate transferase; ALT, alanine transferase; gam.ma-GT, gamma
glutamyl t:ranspeptidase; AP, alkaline phosphatase; Tf sat, transferrin saturation; AFP, a:-fetoprotein; 
.. p-value: comparing (absolute) values in PCT-group with HCC-group 
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Table 3. 
Serologic markers of hepatitis B virus and of hepatitis C virus infection at presentation in patients 
with porphyria cutanea tarda who developed no hepatocellular carcinoma (HCC) (PCT-group; n=44) 
and in patients who developed HCC (HCC-group; n=S) during follow-up. 

PCT-group (%) HCC-group (%) p-value" 
Serologic marker 

HBsAg positive 0/44 ( 0%) 015 ( 0%) NS 

anti-HBs positive~> 12/44 (27%) 115 (20%) NS 

anti-HBc positive 13/44 (30%) 215 (40%) NS 

anti-HCV positivec 8/44 (18%) 115 (20%) NS 

HBsAg, hepatitis B surlace antigen; anti-HBs, antibodies against HBsAg; anti-HBc, antibodies against 
hepatitis B core antigen; anti-HCV, antibodies against hepatitis C virus; 
a p-value: comparing PCT-group with HCC-group; 
1> Patients who were anti-HBs positive, were also anti-HBc positive; 
c Patients who were anti-HCV positive, were also anti-HBs and anti-HBc positive 

laboratory findings between the PCT-group and the HCC-group and between F-PCT and 

S-PCT patients (results of F-PCT and S-PCT patients not shown). 

Table 3 shows the presence of serologic markers of HBV (HBsAg, anti-HBs, anti-HBc) 

and HCV (anti-HCV) infection. 

Patients who had antibodies against HCV, had also serological evidence of a past HBV 

infection. In none of the patients was evidence found of a persistent HBV infection. 

With respect to the serological markers, no differences were found between the PCT

group and the HCC-group and between patients with F-PCT and S-PCT (results of F-PCT 

and S-PCT patients not shown). 

5.4. 3 Light microscopy 

Table 4 summarizes the histological findings in the 45 biopsies, obtained at presentation. 

Uroporphyrin crystals could be detected in 15/45 (33%) biopsies (Figure 1). Piecemeal 

necrosis was found in 11/40 (27%) biopsies of the PCT-group (to a mild degree in all 

biopsies) and in all 5 biopsies of the HCC-group (in I biopsy to a marked degree and in 

the other 4 to a mild degree) (p <0.01). The presence of advanced fibrosis or cirrhosis 

correlated with the presence of piecemeal necrosis (p <0.05), as well as with a long 

symptomatic period (p < 0. 005). Histological evidence of a chronic HBV infection (ground 
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Table 4. 
Histologic f'mdings at presentation in patients with porphyria cutanea tarda who developed no 
hepatocellular carcinoma (PCT-group; n=40) and in patients who developed HCC (HCC.-group; n=S) 
during follow-up. 

PCT-group (%) HCC-group (%) p-value• 
Histologic finding 

Liver fluorescence 40/40 (100%) 515 (100%) NS 

Uroporphyrin crystals 14/40 ( 35%) !15 ( 20%) NS 

Fibrosis grade 0 13/40 ( 32%) 015 ( 0%) 
grade 1 17/40 ( 44%) 015 ( 0%) 
grade 2 7/40 ( 17%) 015 ( 0%) <0.001 
grade 3 3/40 ( 7%) 215 ( 40%) 
grade 4 (cirrhosis) 0/40 ( 0%) 315 ( 60%) 

Portal tract: 
Portal inflammation: 

-absent 9/40 ( 23%) 015 ( 0%) 
-mainly lymphocytes 28/40 ( 70%) 3/5 ( 60%) NS 
-mainly PMN' s 3/40 ( 7%) 2/5 ( 40%) 

Piecemeal necrosis 1!140 ( 27%) 515 (100%) <0.01 
Lymph follicle formation 5/40 ( 13%) !15 ( 20%) NS 
Bile duct abnormalities 7/40 ( 17%) !15 ( 20%) NS 

Lobular area: 
Liver cell necrosis 13/40 ( 32%) 3/5 ( 60%) NS 
Kupffer's cell proliferation 19/40 ( 48%) 315 ( 60%) NS 
Ceroid pigment in Kupffer's cells 11/40 ( 28%) 2/5 ( 40%) NS 
Mallory's hyaline bodies 6/40 ( 15%) !15 ( 20%) NS 

Steatosis grade 0 10/40 ( 25%) 015 ( 0%) 
grade 1 13/40 ( 32%) 315 ( 60%) 
grade 2 16/40 ( 40%) 2/5 ( 40%) NS 
grade 3 1/40 ( 3%) 0/5 ( 0%) 

Siderosis grade 0 0/40 ( 0%) 015 ( 0%) 
grade 1 8/40 ( 20%) 115 ( 20%) 
grade 2 20/40 (50%) 3/5 ( 60%) NS 
grade 3 9/40 ( 23%) 015 ( 0%) 
grade 4 3/40 ( 7%) !15 ( 20%) 

Dysplasia 6/40 ( 15%) 2/5 ( 40%) NS 

PMN's, polymorphonuclear leucocytes; 
• p-value: comparing PCT-group with HCC-group 

glass hepatocytes) was not found in any of the 45 biopsies. Antibodies against HCV 

correlated with the presence of follicular lymphocytic aggregates (p <0.001) and with 

bile duct abnormalities in the portal tracts (p <0.01). The amount and distribution of the 
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Figure 1. 
Light micrograph (ferric ferricyanide reduction test in Lillie's modification; x 560) of live:r biopsy material 
of a patient with sporadic porphyria cutanea tarda. Note the presence of uroporphyrin crystals (arrows). 

2 

Figure 2. 
Light micrograph (Perls' Prussian blue stain; x 50) of liver biopsy material of a patient with familial 
porphyria cutanea tarda. Note the staining (indicating ferric iron) in the (peri-)portal, midzonal and 
centrilobular areas of the liver. 
PT, Portal Tract; CV, Central Vein 
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Figure 3. 
Electron micrograph (electron spectroscopic image (ESI) of a stained section; bar= 2.5 p.m) of hepatic 
parenchymal cells of a patient with sporadic porphyria cutanea tarda. Note the following ultrastructural 
changes: 1. a heterochromatic nucleus; 2. lipid droplets; 3. the thickening of lateral cell membranes; 4. the 
loss of microvilli in the bile canaliculi; and 5. the presence of collagen fibres. 
*, hole in section 

steatosis was not different between biopsies of the PCT -group and the HCC-group. 

Siderosis was present in all liver biopsies (Figure 2), however, there was no difference in 

the localization and distribution of the siderosis between biopsies of the PCT -group and 

the HCC-group. In the 41 biopsies, in which it could be determined, the distribution of 
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the siderosis was mainly periportal in 22 (siderosis grade 1 and 2 in all biopsies) and 

diffuse in 19 biopsies (siderosis grade 2 in 6 biopsies and siderosis grade 3 or 4 in the 

remainder of biopsies). The localization of the siderosis in all 45 biopsies was mainly 

hepatocellular in 30, mainly in Kupffer's cells in 5, and both hepatocellular and in 

Kupffer's cells in 10 biopsies. Increased serum ferritin levels correlated with the grade of 

siderosis in liver biopsies (p <0.05). 

In 4 of the 5 patients of the HCC-group, a diagnosis of HCC was confirmed with a 

repeated liver biopsy. In 3 of these biopsies, "normal" and "malignant" liver tissue was 

evaluable. Neither in "normal", nor in "malignant" liver tissue was fluorescence or 

siderosis found. 

The histologic findings were not different between livers of patients with F-PCT and 

with S-PCT (results of F-PCT and S-PCT patients not shown). 

5.4.4 Electron microscopy 

Ultrastructural findings were studied in liver biopsies of 3 F-PCT patients and 5 S-PCT 

patients. 

In sections of all 8 liver biopsies, different degrees of ultrastructural alterations were 

detected (Figures 3-5), such as: indented heterochromatic nuclei, mitochondria with 

paracrystalline inclusions, swollen rough endoplasmic reticulum, vesicular smooth 

endoplasmic reticulum, interdigitation of lateral cell membranes, widened intercellular 

spaces sometimes containing collagen fibres, flattened microvilli in the bile canalicular 

region, lipofuscin pigment and an increased amount of glycogen rosettes. In hepatocytes 

of all 8 liver biopsies, an increased amount of lipid droplets was present. 

Iron in hepatocytes of all 8 liver biopsies was seen as cytoplasmic ferritin and as 

clustered ferritin particles. In hepatocytes of most patients, iron was also present in 

lysosomes. Moreover, some lysosomes contained less tightly-packed ferritin-like particles 

and amorphous non-iron electron-dense material without recognizable structure (Figures 

4,5). The iron or non-iron nature of tltis material in lysosomes was confirmed by electron 

energy-loss spectroscopic imaging (see paragraph 2.4). 

Uroporphyrin crystals were located in hepatocytes, either "free" in the cytoplasm or in 

vacuoles. In conventionally-prepared sections, "ghosts" of uroporphyrin crystals were 

found. Ferritin clusters were found close to uroporphyrin crystals in all patients (Figure 5). 
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Figure 4. 
Electron micrograph (electron spectroscopic image (ESI) of a stained section; bar= 0.4 JLm) of a hepatic 
parenchymal cell of a patient with familial porphyria cutanea tarda, showing a heterochromatic nucleus 
(arrow) and dilatation of the endoplasmic reticulum (arrowheads). Note the difference in density of 
lysosomal ferritin accumulation (LyF). 

In conclusion, although our results showed different degrees of alterations in the 

hepatocyte cellular ultrastructure, no differences were observed between liver biopsies of 

F-PCT and S-PCT patients. 



85 

Figure 5. 
Electron micrograph (electron spectroscopic image (ESI) of an unstained section; bar= 0.4 p.m) of a hepatic 
parenchymal cell of a patient with sporadic porphyria cutanea tarda, showing a uroporphyrin crystal (UP) 
surrounded by ferritin clusters (FCl). Note the presence of lysosomal ferritin-like material (arrows) and lipid 
droplets {L). 

5.4.5 Morphometrical analysis 

The results of the morphometrical analysis in liver tissue of 5 patients with F-PCT and 

8 patients with S-PCT are shown in Figure 6. As can be seen from this figure, an 

increased mean (± SD) area fraction (expressed as percentages of the total measured 
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Figure 6. 
Morpbometrical analysis by reflection contrast microscopy of unstained, thin Epon sections, showing the 
relationship between mean (± SD) area fractions of ferritin iron and mean (± SD) area fractions of 
uroporphyrin crystals. The mean area fractions are expressed as percentages (%) of the total measured 
hepatocyte cytoplasmic frame area (25 areas of 8,100 p..m~ in patients with familial (F-PCT) and sporadic 
(S-PCT) forms of porphyria cutanea tarda. 

hepatocyte cytoplasmic frame area) of ferritin iron was associated with an increased mean 

(± SD) area fraction of uroporphyrin crystals in both groups of PCT patients. Mean area 

fractions of ferritin iron were not different between livers of F-PCT patients and S-PCT 

patients. However, mean area fractions of uroporphyrin crystals were higher in livers of 

patients with F-PCT (1.62 ± 0.28) than in livers of patients with S-PCT (0.98 ± 0.23) 

(p =0.008). 
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5.5 Discussion 

Five of the 49 (10%) patients with PCT developed HCC. This is in accordance with 

findings of Salata et a!. (126), who described the development of HCC in 16% of PCT 

patients. In other studies (130,131), the risk of HCC in PCT patients varied between 39% 

and 4 7%, however, in these studies, risks were calculated on the basis of autopsies, 

which were performed in only a minority of PCT patients. 

Much emphasis has been laid on the importance of different causes of liver disease on 

the development of HCC. Since histological evidence of cirrhosis is found in up to 90% 

of cases of HCC, it has become clear that cirrhosis per se, rather than the causative agent 

of cirrhosis is an important risk factor for HCC (250). In this study, in all biopsies of the 

HCC-group (obtained before evidence of HCC was present), advanced fibrosis or 

cirrhosis was found, while at most advanced fibrosis was found in only 3/40 (7%) 

biopsies of the PCT-group (p <0.001). Moreover, all biopsies of the HCC-group showed 

piecemeal necrosis, while this was present in only 11/40 (27%) biopsies of the PCT

group (p <0.01). 

Piecemeal necrosis is the hallmark for a diagnosis of chronic-active hepatitis, whatever 

its cause. Cirrhosis is usually the end-stage of chronic-active hepatitis, particularly, if the 

causative agent persists (251). In PCT, several causes probably contributed to the 

presence of chronic-active hepatitis in livers of these patients, including ethanol, HBV, 

HCV, siderosis and perhaps porphyrinogens themselves. However, in our study, no 

correlation was found between any of these causes and ·histological (Table 4) or 

ultrastructural changes (Figures 3-5) in liver biopsies. Only the symptomatic period was 

longer in the group of patients that developed a HCC than in the group of patients that 

did not (p <0.001). A long symptomatic period correlated with the presence of advanced 

fibrosis or cirrhosis in liver biopsies. Therefore, it is speculated that a combination of 

causes, being present over a long period, caused advanced fibrosis or cirrhosis in livers of 

PCT patients with HCC. This could have resulted in the development of HCC. 

Serologic markers of a past infection with HBV were found in 15/49 (31 %) PCT 

patients. This has been described before in PCT (54,124-127), however, in some of these 

studies, patients were also positive for HBsAg. In this study, none of the patients had 

serological or histological evidence of a persistent HBV infection. Antibodies against 

HCV were detected in 9/49 (18%) patients. The reason for the high percentages of past 
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HBV infection (31 %) and antibodies against HCV (18%) in our patients with PCT is not 

clear and needs further elucidation. 

All liver biopsies, examined directly after biopsy with ultraviolet light, showed 

fluorescence, consistent with the presence of porphyrinogens. It has been described that 

prolonged contact of liver biopsy material with water should be avoided to preserve 

uroporphyrin crystals in liver tissue (116, 120). This could explain why uroporphyrin 

crystals were detected by LM in only 15/45 (33%) liver biopsies. Morphologically, 

uroporphyrin crystals were randomly distributed in hepatocytes of patients with F-PCT 

and S-PCT. All patients in this study had a variable degree of liver siderosis. In other 

studies, siderosis of the liver in PCT varied between 72% and 100% (54-70-76). In iron

storage disorders, independent of the etiology, siderosis is found predominantly in 

hepatocytes, and to a lesser degree in Kupffer's cells. Moreover, with advanced stages of 

iron-overload, stainable iron-deposits in parenchymal cells are deposited progressively in 

the periportal, the midzonal, and centrilobular areas of the liver lobulus (252,253). These 

findings are in agreement with our results on localization and distribution of siderosis in 

PCT. The storage form of iron in hepatocytes was cytoplasmic ferritin and ferritin-like 

particles in lysosomal bodies (Figures 4,5) (253,254). The amount and distribution of iron 

was not different between livers of F-PCT and S-PCT patients. 

Petryka et al. (225) were not able to demonstrate iron staining and porphyrinogen 

fluorescence in the same hepatocyte in livers of patients with PCT. They concluded that 

certain cells preferentially accumulate either porphyrinogens or iron. In contrast to their 

fmdings, we observed in hepatocytes of PCT patients that uroporphyrin crystals and 

ferritin iron were located in the same hepatocyte. Moreover, uroporphyrin crystals were 

often found close to ferritin iron (Figure 5). An increased mean area fraction of ferritin 

iron was associated with an increased mean area fraction of uroporphyrin crystals in each 

cytoplasmic area. A striking finding was that the mean area fractions of uroporphyrin 

crystals were significantly higher in livers of F-PCT patients (1.62 ± 0.28) than in livers 

of S-PCT patients (0.98 ± 0.23) (p =0.008) (Figure 6). These results suggest an 

important role for iron in the pathogenesis of PCT. Investigations on the interactions of 

ferrous or ferric iron with preparations of URO-D from human and other mammalian 

tissues have shown inhibition (93-97), activation (98) or no effect (35,99,100). Elder et 

al. (101) measured URO-D activities and URO-D enzyme concentrations in liver tissue of 
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S-PCT and F-PCT patients. In S-PCT, patients in remission following phlebotomy had 

normal URO-D activities and URO-D protein concentrations, whereas in symptomatic 

patients before phlebotomy, URO-D activities were decreased and URO-D protein 

concentrations increased. In F-PCT, patients in remission following phlebotomy had 50% 

reduced URO-D activities and URO-D protein concentrations, with a further fall in 

activities of URO-D and a slight increase in URO-D protein concentrations in 

symptomatic patients. An inherited defect of URO-D, as in F-PCT, is clearly an 

important factor in determining susceptibility, but is not sufficient by itself to produce 

overt PCT. In S-PCT, genetic factors may also play a role, but these are not clearly 

defmed (29,101). However, in both forms, clinically-overt PCT is possibly precipitated 

by an iron-dependent process, which inactivates the active site(s) of URO-D molecule(s) 

in the liver (102). Whether this is a direct effect of iron on URO-D is not clear. The 

increased mean amount of uroporphyrin crystals to the mean amount of ferritin iron in 

livers of F-PCT patients compared with that found in livers of S-PCT patients (Figure 6), 

is a good example of the interaction between genetic susceptibility and another factor (in 

this case iron). Moreover, the fact that iron overload by itself does not lead to 

uroporphyria in all humans (I ,92) and the findings of the morphometrical analysis (Figure 

6) suggest that even in F-PCT an extra factor, in addition to iron, might be involved. 

The exact mechanism involved in the development of cirrhosis in PCT patients has not 

yet been elucidated. However, it seems feasible that iron plays an important role in this 

process. In addition, treatment should start before irreversible liver damage (i.e., 

cirrhosis) has occurred. Similar findings have been described in hemochromatosis in 

which iron by itself is not the cause of HCC, however, once cirrhosis has developed, 

phlebotomy does not reduce the risk of HCC (255). The most important therapeutic 

option in PCT is phlebotomy or treatment with desferrioxamine, which leads to clinical 

and biochemical remission (5, 71,75, 77 -80). 
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6.1 Summary 

Porphyria Cutanea Tarda (PCT) is due to a metabolic block in the biosynthesis of heme 

at the level of uroporphyrinogen decarboxylase (URO-D), leading to the urinary excretion 

of uroporphyrins and heptacarboxylporphyrins. To determine whether an increased 

production of uroporphyrinogens, in addition to the reduced conversion of 

uroporphyrinogens to coproporphyrinogens by URO-D, contributes to these high levels, 

the activity of one of the preceding enzymes in the heme pathway, porphobilinogen 

deaminase (PBG-D), was measured in erythrocytes of 23 patients with the familial form 

of PCT (F-PCT) and 24 patients with the sporadic form of PCT (S-PCT), either 

symptomatic or asymptomatic. 

Erythrocyte PBG-D activity was increased in all four patient groups compared with 

controls. To study the mechanism of this increased PBG-D activity, the amount of 

immuno-detectable PBG-D per 100 units standard PBG-D activity (Ig PBG-D/100 U) and 

the total amount of immuno-detectable PBG-D (Ig PBG-D) in erythrocytes, using 

polyclonal antibodies, were determined in all patients and in controls. Both in F-PCT and 

S·PCT patients, the lg PBG-D/100 U was decreased (p < 0.05). Especially in 

asymptomatic patients of the F-PCT group, there was an inverse correlation between 

increasing PBG·D activity and Ig PBG-D/100 U (R2 = -0.90). In F-PCT patients, and to a 

minor degree in S-PCT patients, the increase in PBG-D activity was accompanied by an 

increase in Ig PBG-D (F-PCT: p <0.001; S-PCT: p <0.05). 

Conclusions: In patients with F-PCT and S-PCT, an increased erythrocyte PBG-D 

activity can, at least partly, be explained by a diminished degradation of PBG-D; in 

patients with F-PCT, in symptomatic more than in asymptomatic patients, and to a minor 

degree in patients with S-PCT, there is in addition an increase in the absolute amount of 

PBG-D enzyme. 

6.2 Introduction 

Porphyria cutanea tarda (PCT) is a disorder of porphyrin metabolism which usually 

presents in adult life with photosensitivity. The disease is characterized by the excretion 

of uroporphyrins and heptacarboxylporphyrins in the urine and by a decreased activity of 

the enzyme catalyzing the conversion of uroporphyrinogen to coproporphyrinogen, 

uroporphyrinogen decarboxylase (URO-D), in the liver (1,46). Sporadic and familial 
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forms of PCT have been distinguished. In sporadic PCT (S-PCT), a decreased URO-D 

activity is restricted to the liver and is not deteCtable in erythrocytes. There is no family 

history of PCT (3,24). Familial PCT (F-PCT) is transmitted as an autosomal-dominant 

disorder and the enzymatic defect is apparently present in all tissues (2,4,24). Clinical 

disease is produced when hepatic siderosis (54,70-76) and/or another disease-precipitating 

factor such as high ethanol-intake (54,55,58), estrogen-use (63,64) or ingestion with 

polyhalogenated aromatic hydrocarbons (66,68,69) is present. 

Normally, the sequence of enzymatic reactions in the heme biosynthetic pathway 

proceeds with little or no accumulation of enzyme substrates (Figure 1). However, 

reduced activity at any enzyme step can lead to accumulation of that enzyme's substrate, 

Figure 1. 
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The heme biosynthetic pathway with special reference to porphyria cutanea tarda. 
ALA-S, 5-aminolevulinic acid synthase; PBG-D, porphobilinogen deaminase; URO-D, uroporpbyrinogen 
decarboxylase; ALA, 5-am.inolevulinic acid; PBG, porphobilinogen; URO, uroporphyrinogen; C7, 
heptacarboxylporphyrinogen; C6, hexacarboxylporphyrinogen; CS, pentacarboxylporphyrinogen; COPRO, 
coproporphyrinogen 
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because decreased production and concentration of the end-product heme, will lead to the 

induction of the first enzyme, 5-antinolevulirtic acid synthase (ALA-S), and an increased 

production of porphyrin precursors (!). 

Two enzymes in the heme pathway, ALA-S and porphobilinogen deaminase (PBG-D), 

have low activities compared to the remaining enzymes (Figure I) (1). In all porphyrias, 

the rate-limiting enzyme ALA-S is increased (1,47). In patients with forms of porphyria 

associated with an acute attack (acute intermittent porphyria, hereditary coproporphyria, 

variegate porphyria and 5-antinolevulinic acid (ALA) dehydratase deficiency), induction 

of ALA-S is associated with an increased excretion of ALA and porphobilinogen (PBG); 

i.e., PBG-D forms a partial metabolic block (!). In PCT, however, plasma ALA and 

PBG levels are slightly increased (I ,48) and PCT is not associated with acute attacks of 

neurological dysfunction. 

Some authors have reported an increased PBG-D activity in erythrocytes (49-52) and in 

livers (48,52) of patients with PCT. However, most of these studies did not discriminate 

between patients with F-PCT or S-PCT or between symptomatic and asymptomatic 

uroporphyria. In addition, in Chapter 4, an increased PBG-D activity was demonstrated in 

livers of porphyric C57BL/IO mice. An increased PBG-D activity in PCT and in 

experimental uroporphyria could provide an additional explanation for the marked 

uroporphyrin accumulation observed in these disorders. 

For this reason, we studied erythrocyte PBG-D activity in F-PCT and S-PCT patients, 

both in the symptomatic (before phlebotomy) and asymptomatic (following phlebotomy) 

phase. When we found an increased erythrocyte PBG-D activity in both F-PCT and S

PCT patients, we extended the study to examine the mechanism of this increase in 

enzyme activity. 

In erythrocytes, PBG-D is still active even after long storage at -20 ·c. Under normal 

conditions during the lifetime of an erythrocyte, a part of this PBG-D is degraded and is 

no longer catalytically-active, although it is still immune-detectable. In this study, this has 

been called "Ig PBG-D/100 U", which is the amount of immuno-detectable PBG-D per 

100 units of standard PBG-D activity. In other publications (208,210,256), this has been 

called "cross-reacting immune material". Conditions which result in a relatively 

diminished PBG-D degradation result in higher levels of catalytically active PBG-D, and 

therefore a decrease in the Ig PBG-D/100 U in erythrocytes. 
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To study whether a change in erythrocyte PBG-D activity is somehow related to changes 

in PBG-D degradation, Jg PBG-D/100 U was determined in both groups of PCT patients 

and in control subjects. Apart from this, we also determined the total amount of immuno

detectable PBG-D (Jg PBG-D) in all four patient groups and in controls. 

6.3 Materials & Methods 

Observations were made in 23 patients with F-PCT (based on a positive family history, 

skin-symptoms and a characteristic pattern of porphyrins produced from PBG by 

hemolysates (indirect URO-D activity) (51), 12 with characteristic skin-symptoms and an 

increased urinary excretion of uroporphyrins and heptacarboxylporphyrins before 

phlebotomy (Fsym), and II symptom-free following phlebotomy and a normal urinary 

excretion of porphyrins (Fasym). In addition, 24 patients with S-PCT (based on a 

negative family history, skin-symptoms and an indirect URO-D activity comparable to 

controls) were studied, 12 with characteristic skin-symptoms before phlebotomy (SPsym) 

and an increased urinary excretion of uroporphyrins and heptacarboxylporphyrins, and 12 

symptom-free following phlebotomy and a normal urinary excretion of porphyrins 

(SPasym). Sixty individuals without liver disease served as controls. 

The methods of the biochemical determinations have been described in Chapter 2, 

paragraphs 2.2.1, 2.2.3, 2.2.5, 2.2.6 and 2.2.7. 

6.4 Results 

Male/female ratios and mean (± SD) ages in the different patient groups and in the 

control subjects were as follows: Fsym: 7/5, 49 ± 16; Fasym: 8/3, 52 ± 17; SPsym: 

8/4, 60 ± 10; SPasym: 8/4, 64 ± 14; and controls: 49/21, 41 ± 21. These parameters 

were not different between the different group of patients and controls. 

6.4.1 Porphyrins in urine 

The results of the urinary porphyrin measurements are given in Table 1. 

The urine analysis of both F-PCT and S-PCT patients with symptoms (before 

phlebotomy) showed the pattern of PCT with a predominant increase in urinary 

uroporphyrins and heptacarboxylporphyrins. Patients, who were treated by phlebotomy 

and without symptoms, showed a normal rate of urinary excretion of porphyrins. 
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Table 1. 
Uroporphyrins and heptacarboxylporphyrins in urine and the corresponding erythrocyte indirect 
uroporphyrinogen decarboxylase activity in porphyria cutanea tarda (PCT). 

URINARY' ERYTHROCYTE' 

C7 URO URO C7 COPRO URO+C7/ 
Group CO PRO 

Fsym 27 58 34.9 ± 9.8 14.4 ± 5.6 14.2 ± 5.9 >2.80 

Fasym 0.9 3.1 27.0 ± 4.2 11.2 ± 1.4 10.5 ± 1.8 >2.80 

SPsym 43 88 20.2 ± 4.0 9.1 ± 2.1 14.2 ± 3.7 <2.80 

SPasym 0.6 2.6 20.6 ± 5.3 9.3 ± 2.3 15.3 ± 3.8 <2.80 

Controls <3.2 <4.0 <2.80 

Fsym, familial PCT with symptoms; Fasym, familial PCT without symptoms; SPsym, sporadic PCT with 
symptoms; SPasym, sporadic PCT without symptoms; C7, heptacarboxylporphyrin; URO, uroporphyrin; 
URO+C7/COPRO, uroporphyrin + heptacarboxylporphyrin/ coproporphyrin; 
a mean values in nmol/mmol creatinine 
I> mean values (± SD) in pmol/mg protein/hour 

6.4.2 Indirect URO-D activiry in erythrocytes 

The indirect URO-D activity of patients with F-PCT showed an increased erythrocyte 

uroporphyrin + heptacarboxylporphyrin/ coproporphyrin ratio of > 2.80, whereas in 

patients with S-PCT this ratio was <2.80 (51) (Table 1). 

6.4. 3 PBG-D activiry in erythrocytes 

The results of mean (± SD) PBG-D activity in erythrocytes of patients with F-PCT and 

S-PCT and in the controls were as follows: Fsym: 136 ± 12, Fasym: Ill ± 16, SPsym: 

99 ± 17, SPasym: 97 ± 18 and controls: 80 ± 14. PBG-D activity was higher in all 

PCT patients than in controls (Fsym, Fasym and SPsym: p <0.001, SPasym: p <0.005). 

PBG-D activity was higher in the Fsym group of patients than in both groups of S-PCT 

patients (p < 0.005) (Figure 2). 

6.4.4 Immuno-detectable PBG-D/100 T.Uiits PBG-D activiry in erythrocytes 

Figure 2 illustrates PBG-D activity, lg PBG-D/100 U and lg PBG-D in the patients with 

F-PCT and with S-PCT and in controls. ln both groups of F-PCT and S-PCT patients, 
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Fogure 2. 
The bars (left to right) depict porphobilinogen deaminase (PBGD) activity in pmol/mg proteinlhr, the total 
amount of im.muno-detectable PBG-D per mg protein (Ig PBGD) in JLI lgG/mg protein and the amount of 
immuno-detectable PBG-D per 100 units of PBG-D activity (Ig PBGD/ 100 U) in Jt1 IgG/100 U in 
erythrocytes of controls and in patients with sporadic (SPasym and SPsym) and familial (Fasym and Fsym) 
porphyria cutanea tarda; (a) in absolute amounts and (b) relative to the control group. 
* p <0.05; ** p <0.001 

Ig PBG-D/100 U was less than in controls (p <0.05). 

Figure 3 illustrates the individual relation between PBG-D activity and Ig PBG-D/100 U 

in all four groups of PCT patients and in controls. Especially in the Fasym group, there 

was a strong inverse correlation (R2= -0.90) between individual increasing PBG-D 

activity and decreasing lg PBG-D/100 U. 

6.4.5 Total imnumtrdetectahle PBG-D in erythrocytes 

Ig PBG-D was found to be increased in patients with F-PCT (p <0.001). In S-PCT 

patients, lg PBG-D was only slightly increased (p <0.05). In Fsym patients, Ig PBG-D 

was more increased than in Fasym patients (p <0.01) (Figure 2). 

6.5 Discussion 

After the initial enzyme of the heme biosynthetic pathway, ALA-S, PBG-D has the next 

lowest endogenous activity of all eight enzymes in the heme pathway of the liver and some 
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other tissues (Figure 1) (!). This makes PBG-D a possible second control point in the 

heme biosynthetic pathway (50). 

This study demonstrated an increased erythrocyte PBG-D activity in F-PCT and S-PCT 

patients, both symptomatic and asymptomatic, compared with controls (Figure 2). Apart 

from an increased erythrocyte PBG-D activity (49-52), an increased PBG-D activity in 

liver cells has been described in PCT (48,52). Moreover, in Chapter 4, an increased 

PBG-D activity was demonstrated in livers of porphyric C57BLI!O mice. An increased 
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PBG-D activity could provide an explanation for the absence of acute attacks in PCT, but 

also for the marked uroporphyrin accumulation observed in this disorder. 

An increased erythrocyte PBG-D activity has been found in patients with liver cirrhosis 

(257), in patients with lymphoreticular malignancies (258) and also in reticulocytosis 

(259). Results of liver function tests (bilirubin, alkaline phosphatase and 

aminotransferases) were, however, within normal limits in our asymptomatic patients 

(results not shown). In addition, reticulocytosis has not been described in PCT and 

reticulocyte counts were normal in our patients. 

To our surprise, we found an increased erythrocyte PBG-D activity, both in 

symptomatic and asymptomatic patients with PCT, but also in S-PCT patients. S-PCT has 

been described to be confined to the liver, and a 50% reduction of URO-D activity in the 

liver has been reported only in the symptomatic phase of the disorder (3,24). An 

increased PBG-D activity in erythrocytes can either be due to decreased rates of 

inactivation of PBG-D enzyme, or to an increased amount of PBG-D enzyme protein. 

Results of Ig PBG-D/!00 U were found to be slightly decreased in both groups of 

patients with sporadic PCT (p <0.05) (Figure 2); especially in the Fasym group, there 

was a strong inverse correlation between an increasing activity of PBG-D and a 

decreasing Ig PBG-D/100 U in individual patients (R2 = -0.90) (Figure 3). These findings 

suggest that both in S-PCT and in F-PCT patients, an increased erythrocyte PBG-D 

activity can be explained, at least partly, by diminished degradation of PBG-D enzyme. 

The mechanism of this proposed diminished degradation is not clear, however, it can be 

speculated that in erythroid cells of PCT patients there is a small but increased production 

of the substrate of PBG-D, i.e., PBG. This seems likely because the rate-limiting enzyme, 

ALA-S, is increased in erythroid (l) and liver (47) cells of patients with PCT. Also, 

plasma ALA and PEG have been found to be slightly increased in PCT (1,48). These 

observations suggest an increased supply of PEG in erythroid cells, initiated by diffusion 

of ALA from plasma. PEG-D reportedly is protected from degradation when the enzyme 

is bound to its substrate, PEG (249). Therefore, it is proposed that in PCT an increased 

amount of PEG is bound to PEG-D, protecting the enzyme from degradation, which leads 

to a diminished Ig PEG-D/!00 U. 

Apart from a diminished degradation of PEG-D enzyme in PCT, there was, in addition 

in F-PCT patients, and to a minor degree in S-PCT patients, an increased total amount of 
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immunC>-detectable PBG-D in erythrocytes present (Figure 2). At the molecular level, 

there is a single PBG-D gene, which has two promoters, one housekeeping and one 

erythroid-specific, which yield two different exons by virtue of different splicing. The 

raised levels found both in erythrocytes (49-52, this study) and in livers (48,52) of 

patients with PCT suggest that, whatever mechanism is responsible for increased PBG-D 

activity in PCT, it might operate on both the erythroid and housekeeping gene products 

and could therefore be a post-translational phenomenon (260). However, the precise 

mechanism of the increase in enzyme protein is not clear and needs further elucidation. 
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7.0 Introduction 

Porphyria cutanea tarda (PCT) is the most common form of all porphyrias and is 

characterized by photosensitivity of the skin. The underlying disorder is an 

overproduction of uroporphyrins and heptacarboxylporphyrins due to a reduced activity of 

the enzyme which converts uroporphyrinogen to coproporphyrinogen, uroporphyrinogen 

decarboxylase (URO-D), in the liver (2-4,24). Familial and sporadic forms of PCT have 

been described. In familial PCT (F-PCT), liver and extrahepatic URO-D activities are 

about 50% of normal (2,4,24). The enzymatic defect is inherited as an autosomal

dominant trait. In sporadic PCT (S-PCT), the enzyme defect is restricted to the liver and 

a decreased URO-D activity is only detected in the symptomatic phase (3,24). 

Following an outbreak of human uroporphyria in Turkey, the fungicidal agent 

hexachlorobenzene (HCB), a polyhalogenated aromatic hydrocarbon (PAH), was shown to 

induce hepatic uroporphyria in rodents (68). HCB-induced uroporphyria is associated with 

a low hepatic URO-D activity and the accumulation of uroporphyrins and 

heptacarboxylporphyrins in the liver (140). The biochemical and clinical manifestations 

are similar to those of sporadic forms of PCT (3,24). Different species and strains vary 

remarkably in their susceptibility to the porphyrinogenic effects of PAR's (46), and a 

genetic predisposition of some kind has also been suspected in S-PCT (29). Both in HCB

induced uroporphyria (97,146-153) and in S-PCT (5,54,70-83), the condition is 

aggravated by iron overload, while iron deficiency (whether induced by phlebotomy or by 

treatment with desferrioxarnine) prevents the overproduction of porphyrinogens in both 

conditions. In view of the similarities between experimental HCB-induced uroporphyria 

and human S-PCT, HCB-induced uroporphyria has been used as an appropriate 

experimental model for the human condition. 

7.1 Experimental uroporphyria 

C57BUIO mice have been described to be susceptible to the porphyrinogenic effects of 

HCB (164). To examine the interactions between treatment with HCB, iron overload and 

porphyrin accumulation, the rates of accumulation of ferritin iron and of formation of 

uroporphyrin crystals were examined in livers of C57BU10 mice, which were treated 

with HCB, iron dextran (IMF) or the combination of HCB plus IMF, over a period of 52 

weeks. A time-dependent increase in total iron content and in the formation of 
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uroporphyrin crystals was observed in hepatocytes of mice treated with HCB plus IMF, 

but also in hepatocytes of mice treated with IMF alone. However, uroporphyrin crystal 

formation started more rapidly in livers of mice treated with HCB plus IMF than in livers 

of mice treated with IMF alone. In contrast, only a few uroporphyrin crystals were 

observed in hepatocytes of mice treated with HCB alone. Ferritin iron accumulation 

preceded the formation of uroporphyrin crystals in hepatocytes of mice treated with HCB 

plus IMF and with IMF alone. Moreover, uroporphyrin crystals were nearly always found 

close to ferritin iron in all treatment groups. 

Evidence on the role of HCB in experimental uroporphyria suggests that the drug acts as 

an inducer of cytochrome P-450IA2 (CYPIA2) (166,167). Subsequently, it interacts with 

the induced cytochrome to produce an active oxidative metabolism (191). The results in 

Chapters 3 and 4 clearly demonstrated that uroporphyria in livers of C57BLI!O mice can 

also be induced by iron-overload alone. Therefore, induction of the cytochrome P-450 

system by HCB, or another PAH, is not an absolute requirement for the development of 

uroporphyria. 

The effect of iron in experimental uroporphyria has been explained by its ability to 

participate in iron-catalyzed free radical-mediated processes. It has been suggested that 

there is a high! y active oxidative metabolism in hepatocytes of C57BLII 0 mice, either as 

a result of cytochrome P-4501A2 (CYP1A2) induction by PAR's (166,167), or 

genetically-determined in these mice, as suggested by Smith and de Matteis (191). If 

"free" iron is present, highly reactive oxygen-related free radicals could be formed by the 

Haber-Weiss reaction (151,152,181,191-198,225). It has been proposed that these free 

radicals could cause uroporphyrin accumulation and inhibition of URO-D by one of the 

following mechanisms (Figure 1): 

(i) Direct damage to URO-D by free radicals, generated in the presence of iron (95,96). 

(ii) The reaction of these reactive radicals with uroporphyrinogen or another (related) 

compound to form an inhibitor of URO-D (183-186,200). 

In addition, an iron-independent oxidation of uroporphyrinogen to uroporphyrin has been 

proposed (166,167,180-182,187). Because uroporphyrin, in contrast to uroporphyrinogen, 

is not a substrate for URO-D, accumulation of uroporphyrin results (188). However, this 

mechanism does not explain the inhibition of URO-D, that can be measured at the same 

time (182-186). 
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Of the postulated mechanisms, explaining uroporphyrin accumulation and URO-D 

inhibition in the liver, the iron-mediated oxidative mechanism (ii) has attracted most 

attention. Moreover, most experimental evidence is in favour of this mechanism (see 

paragraph 1.4.4.2). 

Oxygen-related free radicals can initiate a variety of reactions, such as the peroxidation 

of membrane lipids (199). In a study over a period of 14 weeks, in which C57BU10 

mice were treated with HCB plus IMF and with IMF alone, an increased 

malondialdehyde (MDA) production (as a marker of lipid peroxidation), with concomitant 

porphyrin accumulation and a decreased URO-D activity, were measured in livers of 

these mice. Following treatment with desferrioxamine (DFx), an iron chelator, MDA 

production was significantly lower in livers of mice treated with DFx than in livers of 

mice that were not treated with DFx. This suggests that DFx probably complexed with 

the iron fraction available for the production of free radicals, thus restoring URO-D 

activity and reducing uroporphyrin accumulation in livers of mice treated with IMF alone 

and to a lesser degree in livers of mice treated with HCB and IMF, despite the presence 

of excess liver iron stores at that time. 

The nature of the iron pool involved in experimental uroporphyria is not clear. On the 

basis of the finding in Chapter 3 of a morphological co-occurrence of uroporphyrin 

crystals and ferritin iron in hepatocytes of porphyric C57BU 10 mice, a role for ferritin

bound iron seemed possible. However, ferric iron is sequestered in ferritin as a non-toxic 

oxyhydroxide, complexed with phosphate (235). Although liver microsomes, in virro, 

promote the release of ferrous iron from ferritin (174,224,236-238), it is not clear 

whether this also occurs in vivo. An alternative to ferritin iron could be an intracellular 

pool of low molecular weight (LMW) iron (239-242). This LMW pool of iron has been 

shown to play a role in free radical formation in iron-loaded cells (212,243,244). In our 

study, LMW iron results were found to be increased in livers of mice treated with HCB 

plus IMF and with IMF alone. Treatment with DFx reduced the amount of LMW iron in 

both groups. Moreover, LMW iron measurements correlated well with MDA 

concentrations in all treatment groups (R2= 0.84), suggesting that both variables were 

interdependent. 

Porphobilinogen deaminase (PBG-D) is one of the enzymes which precedes URO-D in 

the heme biosynthetic pathway. PBG-D activity was found to be increased in livers of 
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mice treated with HCB plus IMF and in livers of mice treated with IMF alone. An 

increased hepatic PBG-D activity could provide an additional explanation for the marked 

uroporphyrin accumulation seen in experimental uroporphyria, separate from the 

inhibition of URO-D. 

Our studies support a free radical-mediated mechanism of URO-D inactivation and 

uroporphyrin accumulation. It is not clear whether this occurs directly by damage to 

URO-D itself (95,96), or indirectly, by the formation of an inhibitor of URO-D (183-

186,200). However, our results on porphyrin accumulation, URO-D activity and PBG·D 

activity in livers of mice treated with HCB plus IMF and with DFx at week 14 could be 

indicative of the presence of an inhibitor of URO-D, for treatment with DFx resulted in a 

lowering of the PBG-D activity and the amount of porphyrins in the liver, at a time that 

URO-D activity was still markedly decreased (Figure 1). 

Iron is an important factor in porphyrin accumulation and a decreased URO-D activity 

in C57BV10 mice. Desferrioxamine's effectiveness in reducing porphyrin accumulation is 

most likely the result of a reduction of the LMW pool of iron, which is proposed to be 

the iron pool with a catalytic role in the generation of free radicals. Increased PBG-D 

activity provides an additional explanation for the marked uroporphyrin accumulation 

(Figure l). 

7.2 Porphyria cutanea tarda 

Histological examination of 45 liver biopsies of patients with PCT (either with F-PCT 

or with S-PCT) revealed a broad spectrum of lesions, ranging from minimal changes to 

liver cirrhosis. Moreover, 5 of the 49 patients (10%) developed a hepatocellular 

carcinoma (HCC) during the follow-up period. Factors related to an increased risk of 

HCC in PCT were a long symptomatic period before start of treatment and the presence 

of chronic-active hepatitis and/or advanced fibrosis or cirrhosis in liver biopsies. 

Several causes probably contributed to the presence of chronic-active hepatitis in livers, 

including hepatitis B virus (HBV) infection, hepatitis C virus (HCV) infection, ethanol, 

siderosis and perhaps porphyrins themselves. Fifteen of the 49 (31%) patients had 

serologic evidence of a past HBV infection and 9/49 (18%) patients had antibodies against 

HCV. However, no correlation was found between any of these causes and histological 

and ultrastructural changes in liver biopsies. 
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In the 45 liver biopsies, the histology was re-examined. In addition, an ultrastructur.al 

study was performed in 8 liver biopsies of patients with PCT, of whom 3 had F-PCT and 

5 had S-PCT and a morphometrical analysis was performed in 13 liver biopsies of 

patients with PCT, of whom 5 had F-PCT and 8 had S-PCT. Uroporphyrin crystals were 

detected in 15/45 (33%) liver biopsies. All patients in this study had a variable degree of 

liver siderosis (PCT-group vs. HCC-group: NS; F-PCT patients vs. S-PCT patients: NS). 

The storage form of iron in hepatocytes was cytoplasmic ferritin and ferritin-like particles 

in lysosomal bodies. The amount and distribution of iron was not different between livers 

of F-PCT and S-PCT patients. Uroporphyrin crystals and ferritin iron were located in the 

same hepatocyte, with uroporphyrin crystals often close to ferritin. Strikingly, mean area 

fractions of uroporphyrin crystals were significantly higher in livers of F-PCT patients 

than in livers of S-PCT patients (p =0.008). 

Erythrocyte PBG-D activity was significantly increased in patients with F-PCT and with 

S-PCT, either symptomatic or asymptomatic. This increased erythrocyte PBG-D activity 

could be explained, partly by a diminished degradation of PBG-D and, partly by an 

increase in the absolute amount of PBG-D enzyme. Apart from an increased erythrocyte 

PBG-D activity, other investigators (48,52) have described an increased PBG-D activity in 

livers of PCT patients. 

The results in Chapters 5 and 6 suggest an important role for iron and an increased 

PBG-D activity in the pathogenesis of the human form of uroporphyria, PCT. 

Investigations on the interactions of ferrous or ferric iron with preparations of URO-D 

from human and other mammalian tissues have shown inhibition (93-97), activation (98) 

or no effect (35,99,100). Elder et al. (101) measured URO-D activities and URO-D 

enzyme concentrations in liver tissue of patients with S-PCT and F-PCT. In S-PCT, 

patients in remission following phlebotomy had normal URO-D activities and URO-D 

enzyme concentrations, whereas in symptomatic patients before phlebotomy, URO-D 

activities were decreased and URO-D enzyme concentrations increased. In F-PCT, 

patients in remission following phlebotomy had 50% reduced URO-D activities and URO

D enzyme concentrations, with a further fall in URO-D activities and a slight increase in 

URO-D enzyme concentrations in symptomatic patients. An inherited defect of URO-D, 

as in F-PCT, is clearly an important factor in determining susceptibility but is not 

sufficient by itself to produce overt PCT. In S-PCT, genetic factors may also play a role, 
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but these are not clearly defmed (29,101), However, in both forms, clinically-overt PCT 

seems to be precipitated by an iron-dependent process which results in the inactivation of 

the active site(s) of the URO-D enzyme in the liver (102), In addition, it is likely that an 

increased PBG-D activity contributes to the uroporphyrin accumulation seen in PCT, 

7,3 Conclusions 

In this thesis, some important similarities in the biochemical manifestations of 

experimental and human uroporphyria (PCT) were described. This was illustrated by the 

following observations: 

(i) Both in experimental uroporphyria and in PCT (either F-PCT or S-PCT), 

uroporphyria was precipitated by an iron-dependent process. 

a) A morphological co-occurrence of uroporphyrin crystals and ferritin iron was found in 

hepatocytes of porphyric C57BUJO mice (Chapter 3) and in hepatocytes of patients with 

F-PCT and S-PCT (Chapter 5). 

b) HCB has been described to induce uroporphyria, as a result of induction of CYP!A2 

(166,167), however, iron was an absolute requirement for uroporphyria to develop. 

Moreover, uroporphyria could also be induced by iron-overload alone in this strain of 

mice (Chapters 3 and 4). Similarly in PCT, an inherited defect of URO-D enzyme in F

PCT is an important factor in determining susceptibility, but clinically-overt PCT was 

caused by an iron-dependent process in livers of these patients (Chapter 5). 

c) The role of iron in experimental uroporphyria was further illustrated by the 

effectiveness of desferrioxamine to reduce porphyrin accumulation, probably by reducing 

the LMW pool of iron, thus diminishing the amount of iron available for a catalytic role 

(Chapter 4). In liver biopsies of PCT patients, advanced fibrosis or cirrhosis and the 

presence of HCC were only found in patients with a long symptomatic period before start 

of treatment, which suggested that treatment with phlebotomy or with DFx should start 

before irreversible liver damage has occurred (Chapter 5). 

(ii) Both in livers of mice with experimental uroporphyria (Chapter 4) and in 

erythrocytes of F-PCT and S-PCT patients (Chapter 6), the activity of one of the 

preceding enzymes in the heme biosynthetic pathway, PBG-D, was increased. An 

increased PBG-D activity could provide an additional explanation for the marked 

uroporphyrin accumulation observed in experimental uroporphyria and in PCT. 



109 

7.4 Future research 

On the basis of the results described in this thesis, two important issues remained 

unsolved: 

1. Use of isolaJed hepa1ocyre cultures 

a) In experimental uroporphyrin, accumulation of porphyrins and a reduced URO-D 

activity could be detected at the same time. However, whether URO-D inhibition was due 

to a direct interaction of iron with URO-D, or to the formation of an (iron-mediated) 

inhibitor of URO-D, is still not completely clear (Figure 1). 

b) An increased PBG-D activity in PCT and in experimental uroporphyria could provide 

an (additional) explanation for uroporphyrin accumulation in these disorders. It was found 

that this increased PBG-D activity could be explained by a diminished degradation of 

PBG-D enzyme and by an increase in the absolute amount of PBG-D enzyme. However, 

the precise mechanism of the increase in PBG-D activity is not clear. In addition, the role 

played by the rate-limiting enzyme of the heme pathway, 5-aminolevulinic acid synthase 

(ALA-S) and the other heme biosynthetic enzymes in PCT, needs further elucidation. 

It has been suggested that an approach to investigate the mechanism of uroporphyria in 

more detail, is to use cultures of isolated hepatocytes of C57BL/10 ntice (261,262). 

Recently, Sinclair et a!. (261) reported that hepatocytes of this strain of ntice can be 

maintained in culture for a longer period if matrigel is used, which is a tumour biomatrix 

prepared from the Engelbroth-Holm-Swarm mouse tumour (263). 

2. Antioxidams in uroporphyria 

In Chapter 4, an important role for oxygen-related free radicals in the pathogenesis of 

experimental (and human) uroporphyria was suggested. If radical formation does play a 

role in the pathogenesis of uroporphyria, antioxidants could, theoretically, modulate the 

disease process. Debets et a!. (155) found, in in vitro experiments with chick embryo 

hepatocyte cultures, that antioxidants, such as DL-a-tocopherol and ascorbic acid, 

completely prevented HCB-induced porphyrin accumulation. However, vitamin E, given 

orally, did not prevent toxicity in rats (264). Further work is needed to determine whether 

hepatic injury in uroporphyria can be prevented by oral antioxidants (152). 
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CHAPTERS 

Samenvatting (Summary in Dutch) 

In deze dissertatie wordt een aantal experimentele en klinische studies beschreven, die 

de rol van ijzer en het enzym porfobilinogeen deaminase bij experimentele uroporfyrie en 

porfyria cutanea tarda beschrijven. 

In Hoofdstuk 1 werd een overzicht gegeven van de acht opeenvolgende enzymstappen, 

die nodig zijn voor de synthese van heem. Ook werden de verschillende vormen van 

porfyrie besproken, die ontstaan als gevolg van een deficientie van een van deze 

enzymstappen. Vervolgens werd ingegaan op porfyria cutanea tarda (PCT), een vorrn van 

porfyrie die gepaard gaat met huidsymptomen en ontstaat als gevolg van een deficientie 

van het enzym uroporfyrinogeen decarboxylase (ORO-D). Hierdoor treedt in eerste 

instantie accumulatie van uroporfyrines en heptacarboxylporfyrines in de lever op, en 

vervolgens ook in de huid. In de urine kan de uitscheiding van deze porpfyrines gemeten 

worden. PCT kan worden ingedeeld in een sporadische (verworven) en een familiaire 

vorrn. In de sporadische vorrn van PCT (S-PC1) is een deficientie van URO-D slechts 

aanwezig in de lever en kan een deficientie van het enzym aileen worden aangetoond in 

de symptomatische fase van de aandoening. Daarnaast is er een autosomaal-dominant 

overervende vorrn, familiaire PCT (P-PC1), waarbij het enzymdefekt aanwezig is in alle 

weefsels, zowel in de periode met als zonder huidsymptornen. Tenslotte werd ingegaan op 

een vergelijkbare metabole stoomis, n.L uroporfyrie dat door het insecticide 

hexachloorbenzeen (HCB) word! geinduceerd. Deze experimentele vorrn van uroporfyrie 

word! gebruikt als een dierrnodel voor PCT om inzicht te krijgen in de pathogenese van 

PCT. Aan de hand van het overzicht in Hoofdstuk 1 werden de vraagstellingen van deze 

dissertatie besproken, n.L de rol van ijzer en het enzym porfobilinogeen deaminase bij het 

ontstaan en klinisch manifest worden van experimentele uroporfyrie en PCT. 

In Hoojdstuk 2 werden de patienten en de behandeling van de gebruikte proefdieren, n.L 

C57BUIO muizen, beschreven. Ook werden de methoden weergegeven, die bij deze 

studies gebruikt zijn. 

In Hoofdstuk 3 werden muizen behandeld met HCB, met ijzer-dextraan of met de 
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combinatie van HCB en ijzer-dextraan. Met behulp van licht-rnicroscopie (LM), 

electronen-microscopie (EM) en morfometrisch onderzoek werd over een periode van 52 

weken het verband vastgesteld tussen enerzijds de opname van ijzer en anderzijds het 

ontstaan van uroporfyrine kristallen in hepatocyten van C57BU10 muizen. De 

voomaamste conclusies waren dat experimentele porphyrie eveneens kan worden 

geinduceerd door een overmaat aan ijzer in levers van C57BU10 muizen. lndien, behalve 

ijzer-dextraan, ook HCB werd toegediend, werden de effekten van ijzer op het ontstaan 

van experimentele uroporfyrie versterkt, terwijl toediening van HCB, zonder ijzer

dextraan, geen effekt had. Uroporfyrine kristallen werden alleen aangetroffen in 

hepatocyten, waarin ook reeds ijzer, voornamelijk in de vorm van ferritine, aanwezig 

was. Dit leidde tot de conclusie dat ijzer een belangrijke rol speelt in de pathogenese van 

experimentele uroporfyrie. 

ln Hoofdstuk 4 werden C57BUlO muizen op dezelfde manier behandeld als beschreven 

in Hoofdstuk 3. Een dee] van de proefdieren werd !evens behandeld met desferrioxamine 

(DFx), een chelator van ijzer. De effekten van DFx op de ijzer-opname, de produktie van 

malondialdehyde (MDA) (een produkt van lipid peroxidatie), de accumulatie van 

porfyrines en de aktiviteit van de enzymen URO-D en porfobilinogeen deaminase (PBG

D) in levers van C57BUIO muizen werden gemeten over een periode van 14 weken. 

Peroxidatie van lipid-membranen treed! slechts op in aanwezigheid van vrije zuurstof 

radikalen. Als bovendien ijzer aanwezig is, wordt via de Haber-Weiss reaktie de 

produktie van deze radikalen versterkt. Daamaast werd de fraktie ijzer met laag 

moleculair gewicht (LMW-ijzer) gemeten, aangezien deze fraktie een afspiegeling vormt 

van de hoeveelheid "vrij" ijzer in de lever. Slechts deze fraktie van ijzer kan 

waarschijnlijk een rol van betekenis spelen in het optreden van schadelijke processen in de 

lever. De voornaamste conclusie was dat DFx de totale hoeveelheid ijzer, de accumulatie 

van porfyrines, de inhibitie van URO-D aktiviteit, de stimulatie van PBG-D aktiviteit, de 

produktie van MDA en de hoeveelheid LMW-ijzer in levers van C57BUIO muizen 

verminderde. Bovendien was er een lineair verband tussen de produktie van MDA en de 

hoeveelheid LMW-ijzer. Deze bevinding suggereert dat DFx een belangrijke rol speelt bij 

het verminderen van de hoeveelheid ijzer die beschikbaar is voor de produktie van vrije 

zuurstof radikalen. De aktiviteit van bet enzym PBG-D, een van de enzymen die aan 

URO-D voorafgaat in de synthese van heem, was ook verhoogd bij experimentele 
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uroporfyrie. Dit kan een extra verklaring geven voor de uroporfyrine accumulatie in 

levers van C57BUIO muizen. Mede op grond van recente literatuur-gegevens werd 

verondersteld dat uroporfyrinogeen en/of andere metabolieten, in aanwezigheid van ijzer, 

kunnen oxideren tot produkten die bet enzym URO-D remmen, waardoor uiteindelijk de 

accumulatie van uroporfyrines in de lever verklaard kan worden. 

In Hoofdstuk 5 werd in bet beloop van 5/49 (10%) patienten met PCT een 

hepatoceiiulair carcinoom (HCC) vastgesteld. Faktoren die gerelateerd waren met een 

verhoogde kans op bet krijgen van een HCC bij PCT waren: a) Een lange 

symptomatische periode voordat behandeling werd ingesteld, en b) de aanwezigheid van 

chronisch-aktieve hepatitis en/ of fibrose graad 3 of cirrhose in lever biopsieen. 

In hepatocyten van patienten met PCT (zowel met F-PCT als met S-PCT) werden ook 

uroporfyrine kristallen gevonden. Deze uroporfyrine kristallen werden, evenals in levers 

van proefdieren met experimentele uroporfyrie, aileen gevonden in hepatocyten waarin 

ook reeds ijzer (vooral in de vorm van ferritine) aanwezig was. Dit leidde tot de conclusie 

dat ijzer ook een belangrije rol speelt in de pathogenese van de humane vorm van 

uroporfyrie, PCT. 

In Hoojdstuk 6 werd de aktiviteit van bet enzym PBG-D gemeten in erythrocyten van 47 

patienten met F-PCT (23 patienten) en S-PCT (24 patienten). Een dee! van deze patienten 

was symptomatisch en nog niet behandeld met aderlatingen, terwijl een ander dee! van de 

patienten geen symptomen meer had na behandeling met aderlatingen. De aktiviteit van 

PBG-D was verhoogd in erythrocyten van F-PCT en S-PCT patienten, onafhankelijk van 

de aanwezigheid van huidsymptomen. Door middel van de bepaling van de 

immunologische reaktiviteit van PBG-D kon worden vastgesteld dat bet mechanisme van 

deze verhoogde PBG-D aktiviteit kon worden verklaard, enerzijds door een verminderde 

afbraak van bet PBG-D enzym, en anderzijds door een toename van de absolute 

hoeveelheid PBG-D enzym. 

In Hoojdstuk 7 werden aile resultaten besproken en de overeenkomsten tussen 

experimentele uroporfyrie en beide vormen van PCT (F-PCT en S-PCT) aangegeven. 

Tenslotte werden suggesties gedaan voor toekomstig onderzoek. 
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