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Preface
A defining feature in the biology of higher vertebrates is their extended 

and complex nervous system that allows them to rapidly integrate and process 

environmental information, control body posture, regulate homeostasis of their 

internal organs and develop complex behaviour. The principal cell types that make 

up the nervous system are the neuron and glial cell. Neurons exist in a wide range 

of different shapes but are generally built up of a soma, containing the nucleus, its 

dendritic arborisation and its single axon (Figure 1).

Figure 1- Neurons have 
a variety of shapes as 
shown in A. Schematic 
presentation of different 
ways of connection 
between neurons leading 
to diverting, converging, 
reverberating, and 
parallel alter-discharge 
circuits.

 A typical neuron potentially receives input from thousands of other neurons 

whose axons terminate on the dendrites and soma, where they form specialised 

contacts called synapses. Glial cells support neurons directly and are involved in 

every aspect of neuronal shape and function. Communication between neurons 

and their peripheral targets relies on electrical impulses that travel the length of 

the axon, a length that can be considerable (more than one meter in humans). The 

speed with which an electrical impulse travels along the length of the axon depends 

on the internal resistance of the axon. The internal resistance inversely correlates 

with axonal diameter such that larger diameter axons propagate signals faster than 

smaller axons. It is evident that evolutionary pressure, in particular in the form 

of predation, calls for nervous systems with fast conducting axons. In principle, 
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animals can increase the diameter of their axons to allow fast escape responses. A 

case in point is the squid whose giant axon can be 10 cm in length, has a diameter 

of around 1mm and conducts impulses with a very high speed. However, there is 

an obvious limit to this strategy in the form of the huge energy costs associated 

with maintaining a resting potential over the vast axonal membrane. Most larger 

animals, in particular the vertebrates, have adopted an evolutionary novelty called 

myelin. The myelin sheath is a specialized membrane structure that spirals around 

the axon and is produced by glial cells: oligodendrocytes in the central nervous 

system (CNS)  and Schwann cells in the peripheral nervous system (PNS) (Figure 

2). An important functional consequence of myelin is that axonal depolarisations 

are restricted to the nodes of Ranvier and that the capacitance of the internodal 

axonal membrane is greatly reduced. As a consequence, conductance velocities of 

myelinated axons are one to two orders of magnitude faster than non-myelinated 

axons of similar diameter. Although it is generally believed that myelin is essentially 

a vertebrate adaptation, recent studies in copepods (small marine animals; 

zooplankton) have challenged this view (Davis et al., 1999).

With this adaptation also came new vulnerabilities as instability of the 

myelin sheath through genetic or environmental causes results in demyelination 

Figure 2- (A) A myelinated axon from a peripheral nerve. Each Schwann cell wraps its 
plasma membrane concentrically around the axon to form a segment of myelin sheath 
about 1 mm long. For clarity, the layers of myelin in this drawing are not shown compacted 
together as tightly as they are in reality. (B) An electron micrograph of a section from a 
nerve. Two Schwann cells can be seen; one near to bottom is just beginning to myelinate its 
axon; the one above has formed an almost mature myelin sheath (adapted from Molecular 

Biology of the Cell (Alberts et al., 2002)).
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and eventually, if myelin is not repaired, in axonal loss causing mild to severe 

neurological problems. Prime examples of such demyelinating diseases are multiple 

sclerosis and Charcot Marie Tooth (CMT) disease. In fact, CMT is one of the most 

common inherited diseases of the nervous system with an overall prevalence of 

1 in 4000. The observation that not all axons in the vertebrate nervous system are 

myelinated, raises the question how axons are selected to become myelinated or 

not. It is generally believed that during development specific cues are presented 

by the growing axon that induce Schwann cells to ensheath, proliferate and finally 

myelinate this axon. The identity of this cue or signal is still not known. Obviously, 

gaining a detailed understanding of the molecular mechanisms that underlie myelin 

formation and maintenance will provide a rational basis for clinical strategies to 

limit axonal damage and improve nerve regeneration. The focus of our studies has 

been to dissect the transcriptional cascade of myelination in the PNS. One of the 

transcription factors implicated in regulating the myelination program is the POU 

domain transcription factor Oct-6 (also referred to in the literature as SCIP, Tst-1 or 

pou3f1). Several studies have shown that Oct-6 is the first transcription factor to be 

up-regulated prior to myelination and its expression is axonal-contact dependent 

(Arroyo et al., 1998; Scherer et al., 1994). Oct-6 appears to function largely through 

the activation of a set of genes, including the zinc-finger transcription factor Krox-

20, involved in myelination such as the major myelin genes and those involved in 

lipid metabolism (Nagarajan et al., 2001). In order to determine the exact role of 

Oct-6 in myelination, it is of importance to understand how the Oct-6 gene itself 

is regulated throughout development and regeneration. The aim of the studies 

described in this thesis was to gain insight into Schwann cell specific regulation of 

the Oct-6 gene. Given Oct-6’s central role in myelination, a detailed understanding of 

the cis-acting sequences and the regulatory pathways that converge on them might 

be of immediate importance in developing strategies to combat the debilitating 

effects of demyelinating diseases.

1.1 General structure of myelin
Myelin is a highly organized membrane structure that is wrapped around 

the axon by Schwann cells in the PNS and oligodendrocytes in the central CNS. 

The myelin sheath can be divided into compact and non-compact myelin domains 
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(Scherer and Arroyo, 2002). The organization of ‘unwrapped’ myelin is depicted 

in Figure 3. Different sets of proteins are enriched in compact and non-compacted 

domains of the myelin sheath. Compact myelin contains myelin protein zero (P-

zero), peripheral myelin protein-22 (PMP22), and myelin basic protein (MBP) 

(Scherer and Arroyo, 2002). P-zero is a type I transmembrane protein with a single 

immunoglobulin-like motif in the extracellular part and a positively charged 

intracellular part. P-zero is the most abundant protein of compact myelin (50% of 

the protein content of myelin) and plays an important role in myelin compaction 

through homophilic interactions in cis and in trans (Suter and Scherer, 2003).

 Most of the mutations found in P-zero are associated with dominantly 

inherited neuropathies with a variety of phenotypes including Charcot-Marie Tooth 

type 1B (CMT1B), Dejerine-Sottas syndrome (DSS)/congenital hypomyelinating 

neuropathies (CHN), and hereditary neuropathy with liability to pressure palsies 

(HNPP) (Suter and Scherer, 2003). 

Figure 3- A and B show the schematic 
view of a myelinated axon in the PNS 
and the proteins of myelin sheathes. 
A- One myelinating Schwann cell 
has been unrolled revealing the 
regions that form non-compact 
myelin, the incisures and paranodes. 
Adherens junctions are depicted as 
two continuous lines; these form 
a circumferential belt and are also 
found incisures. Gap junctions are 
depicted as ovals; these are found 
between the rows of adherens 
junctions. B- In the PNS, compact 
myelin sheaths contain protein zero 
(P-zero), peripheral myelin protein 
22 kDa (PMP22), and myelin basic 
protein (MBP). The non-compact 
myelin contains E-cadherin, myelin-
associated glycoprotein (MAG), 
and connexin32 (Cx32). Note that 
P-zero and MAG have extracellular 
immunoglobulin-like domains 
(semicircles), and PMP22 and Cx32 
have four transmembrane domains. 
(Adapted from Arroyo and Scherer, 
2000).
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PMP22 is a small trans-membrane protein and plays a structural role in 

compact myelin (Adlkofer et al., 1995). PMP22 is able to form dimers or multimers 

and interacts with P-zero (D’Urso et al., 1999; Tobler et al., 2002; Tobler et al., 1999). 

PMP22 was originally identified as the gene mutated in the natural mouse mutant 

Trembler. Two different alleles have been described for Trembler; Trembler and 

TremblerJ. Trembler and TremblerJ differ greatly in severity of the peripheral nerve 

defect reflecting the situation in human where different mutations, loss or gain of 

PMP22 alleles cause very different clinical phenotypes. In contrast to P-zero and 

PMP22, MBP is a cytoplasmic protein that mediates the fusion of the intracellular 

myelin membrane to form the major dense line. In mice with a complete deletion 

of MBP (Shiverer mice), the major dense line does not form (Kirschner and Ganser, 

1980; Rosenbluth, 1980). As the PNS is not affected in Shiverer mice, it is suggested 

that the basic cytoplasmic domain of P-zero could effectively substitute MBP 

function (Martini et al., 1995).

In addition to proteins, the myelin sheath is highly enriched in specific 

lipids , in particular cholesterol and sphingolipids (such as galactocerebroside and 

sulfatide) (Kirschning et al., 1998; Schiff and Rosenbluth, 1995).

Non-compact myelin is found as paranodal loops that fold down to contact the 

axolemma and form the paranodal septate junction. Other regions of non-compact 

myelin are the Schmidt Lanterman incisures and nodal microvilli. These regions of 

non-compact myelin are enriched in E-cadherin, MAG, DM20, Connexin32 (Cx32) 

and an uncharacterized claudin (Scherer and Arroyo, 2002).

Myelin-associated glycoprotein (MAG) is a member of the Ig super gene 

family and is a transmembrane protein present in the apical/adaxonal membrane of 

the inner mesaxon. Due to this localization, it is suggested that MAG binds molecules 

on the axonal surface and plays a role in the stabilisation of the extracellular space, 

between the inner mesaxon and the axon (Collins et al., 1997; Li et al., 1994; Sawada 

et al., 1999).

Several junctional complexes are found in non-compact myelin. The most 

numerous junctions are adherens junctions, which are located in the mesaxon 

as well as in outermost layers of the paranodal loops and incisures (Scherer and 

Arroyo, 2002). Adherens junctions contain E-cadherin, α-catenin, and β-catenin, 

and are possibly linked to the actin cytoskeleton (Fannon et al., 1995; Scherer and 
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Arroyo, 2002). Gap junctions are found between the rows of adherens junctions in 

the paranodal loops and Schmidt-Lanterman incisures. One of the gap junction 

proteins is Cx32 (GJβ1) (Bergoffen et al., 1993; Chandross et al., 1996; Scherer et al., 

1995). Dye transfer studies have provided evidence for the role of gap junctions 

in the radial transport of small molecular weight molecules across the incisures 

(Balice-Gordon et al., 1998). Mutations in Cx32 in human lead to X-linked CMT 

(CMTX) (Bergoffen et al., 1993). The pathology of this particular form of CMT is 

still poorly understood.

1.2 Glia cells in the peripheral nervous system
Different types of glia cells exist within the PNS. These types include myelin-

forming Schwann cells, nonmyelin-forming Schwann cells, teloglia of somatic motor 

nerve terminals, satellite cells that envelope neuronal cell bodies in sympathetic, 

parasympathetic and sensory ganglia, and the astrocyte-like enteric glial cells in 

the autonomous ganglia in the gut wall (Gershon, 1998; Jessen and Mirsky, 1983; 

Pannese, 1981; Robitaille, 1998). All, or almost all, of the peripheral glia cell types 

originate from the neural crest, a transient embryonic structure that gives rise to 

a wide variety of cell types in the developing embryo (Kalcheim and Le Douarin, 

1986). In addition, experiments in chicken embryos have suggested that also the 

ventral neural tube contributes to the peripheral glia population, in particular to 

Schwann cells in the ventral nerve roots (Bhattacharyya et al., 1994).

In the following paragraphs of this introduction, I will focus on the Schwann 

cell, which is the main glia cell type in the peripheral nerve trunks and the subject 

of study in this thesis. In particular, I will review how neural crest cells commit 

to Schwann cells lineage (determination) and develop to mature Schwann cells 

(differentiation).

1.3 Neural crest cells: the origin of Schwann cells
Neural crest cells delaminate from the dorsal aspect of the neural tube and 

migrate along several pathways to give rise to a wide variety of cell types.

Several stages can be defined in the ontology of the neural crest. These stages 

are: specification, delamination or migration and fate decision (Christiansen et 

al., 2000; Garcia-Castro and Bronner-Fraser, 1999). Neural crest cells are specified 



 15 15

through the interaction of surface ectoderm and neurectoderm. In addition several 

studies have suggested that also the lateral plate mesoderm plays an important 

role in neural crest formation, in specific crest precursors of the melanocytic lineage  

(Bonstein et al., 1998; Selleck and Bronner-Fraser, 1995). Although there are many 

unanswered questions about the identity of the signals involved in neural crest 

cell generation, members of the Wnt, fibroblast growth factor (FGF) and bone 

morphogenetic protein (BMP) families have been implicated (Ikeya et al., 1997; 

Liem et al., 1995; Ruffins and Bronner-Fraser, 2000). During the next phase of 

development neural crest cells emigrate form the dorsal neural tube and adopt 

mesenchymal characteristics such as their ability to migrate (delamination). What 

factors trigger this epithelial to mesenchymal transition is still unknown. However 

a number of markers have been identified that are expressed in pre-migratory crest 

cells and might be involved in this transition. These are the transcription factor 

Slug and two cadherins, c-Cad-6B and cadherin-7 (Mayor et al., 1995; Nakagawa 

and Takeichi, 1998). In addition, it has been suggested that the coordinated activity 

of Noggin and BMP4 in the dorsal neural tube triggers delamination of specified, 

slug-expressing neural crest cells (Sela-Donenfeld and Kalcheim, 1999). Once 

neural crest cells delaminate, they migrate along specific pathways and produce 

diverse cell lineages. Powerful fatemapping techniques, in particular in the chick-

quail transplantation system developed by Nicole LeDourain and colleagues, have 

allowed the identification of the diverse cell lineages that originate from the neural 

crest. (Johnston, 1966; Johnston et al., 1973; Nichols, 1981; Teillet and Le Douarin, 

1983). These fate-mapping studies demonstrated that some lineages derive from 

a specific population of crest cells originating from a discrete section along the 

neuraxis while other lineages derive from all levels of the neuraxis. For example, 

the enteric nervous system derives from the vagal crest, which originates from the 

neural tube at the level of somite 1-7. In contrast, Schwann cells originate from 

crest cells at all levels of the neuraxis (Anderson, 1997) (Figure 4A). A number of 

growth factors have been implicated in the determination of neural crest cell fate 

in vitro (Figure 4B). For instance, it has been shown that glial growth factor (GGF) 

diverts neural crest stem cells (NCSC) towards a glial fate (Shah et al., 1994), while 

transforming growth factor β (TGF-β) promotes smooth muscle cell differentiation. 

In addition, bone morphogenic proteins 2 and 4 (BMP2/4) promote differentiation 
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of autonomic neurons and to lesser extent, smooth muscle in these NCSC cultures 

(Anderson, 1997; Shah et al., 1996). The importance of these factors for neural crest 

development has been underscored by expression studies in mice (Bitgood and 

McMahon, 1995; Carraway and Burden, 1995; Millan et al., 1991). For example, 

a reduction of glial cell numbers is observed in the peripheral nerves of GGF 

knock out embryos, underscoring the importance of GGF for glial cell formation 

in the PNS. Additionally, the importance of TGF-β for cardiac crest development 

is demonstrated by heart defects in developing TGF-β knockout mice (Dickson et 

al., 1995; Meyer and Birchmeier, 1995). An assessment of the role of BMP2 and 

4 in neural crest development has been precluded by the fact that these factors 

serve essential functions at an earlier stage of embryonic development and as a 

consequence BMP2 and 4-knockout mice die early during development (Lawson 

et al., 1999; Zhang and Bradley, 1996). 

Figure 4- (A) Variations in neural crest derivatives produced at different levels along the 
rostrocaudal extent of the neuraxis. Only major subdivisions of the neuraxis and a simplified 
subset of crest derivatives are shown. The results are based primarily on fate-mapping 
experiments in avian embryos. (Adapted from Anderson, 1997). (B) Summary of instructive 
effects of growth factors on rodent neural crest cell lineage commitment in vitro. Individual 
factors that promote self-renewal of the neural crest cells have not yet been identified. The 
illustration should not be taken to imply that the three differentiated fates shown are the 
only ones available to NCSCs, not that all three fates are necessarily available to the cells at 
every division. (Adapted from Shah et al., 1994). 
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The neural crest represents a stem cell population that gives rise to several 

lineages depending on the local embryonic environment to which the stem cells 

are exposed. However, some of the fate-restricted neural crest precursors are able 

to change their fate by transplanting them back into younger host embryos (Le 

Douarin, 1986; Weston, 1991). These and later experiments from David Anderson’s 

laboratory gave rise to the idea that neural crest stem cells gradually undergo 

restrictions in their development. Additionally, clonal analysis of neural crest stem 

cells suggests that crest cells are heterogeneous at different stages of development, 

even at the onset of migration (Dupin et al., 1998; Liu et al., 1990). These studies 

Figure 5- Model for the segregation and reprogramming of NCC lineage as inferred from in 
vitro clonal analysis of quail NCCs. The progenitors endowed with the capacity to give rise 
to cartilage, neurons (N), glial cells (G), and melanocytes (M) have been classified according 
to the number of cell phenotypes in their progeny. Data are consist with progressive 
developmental restrictions from ‘totipotent”cells to unipotent precursors (arrows). 
Those able to yield mesectodermal cartilage cells were identified in clones derived from 
mesencephalic NC and are excluded from the trunk NC. Those able to yield mesectodermal 
cartilage cells (in yellow) were identified in clones derived from mesencephalic NC and are 
excluded from the trunk NC. The main target cells of ET3 are shown in pink. Differentiated 
glia and melanocytes could be reprogrammed by ET3 and reverse to GM bipotent NCCs. 
(Adapted from Le Douarin and Dupin, 2003).
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demonstrated that neural crest cells represent a true stem cell population that is 

capable of self renewal (Stemple and Anderson, 1992) (Figure 5).

Peripheral nervous system neurons and glia derive from crest cells that arise 

at different levels along the rostro-caudal axis of the neural tube. One basic and 

important question is how neural crest cells migrating in the same environment 

choose a neuronal or glia fate. Previously, Shah et al., (1996) has shown that the 

BMP2/4 promotes neuronal cell fate in neural crest stem cell cultures through 

induction of proneural bHLH transcription factors such as Neurogenin and 

Mash-1. Later studies demonstrated that bHLH transcription factors also inhibit 

gliogenesis upon activation of the Notch receptors (Morrison et al., 2000). It has 

been hypothesized that activation of Notch, through interaction with its ligands 

(Delta/Jagged) promotes glial differentiation (Morrison et al., 2000). In addition, 

early migrating neural crest cells express ErbB2, which forms a heterodimer with 

ErbB3 and transduces the signal of Neuregulin. These cells differentiate into glia 

cells in response to Neuregulin in vitro (Shah et al., 1994). Targeted deletion of ErbB3 

mice show a lack of Schwann cell precursor, further reinforcing the important role 

of Neuregulin signaling in gliogenesis (Riethmacher et al., 1997).

1.4 Schwann cell lineage and differentiation
The development of the Schwann cell lineage critically depends on the 

association of post-migratory neural crest cells with a glia fate to contact outgrowing 

axons. Most likely, the first contact between neural crest cells and axons takes place 

in the anterior part of the somites during early stages of the development (Loring 

and Erickson, 1987; Mirsky and Jessen, 1996). Recent studies have provided 

evidence for a role of neurons in diverting crest cells to the glia lineage through 

activation of the Notch pathway (Morrison et al., 2000).

As mentioned earlier, neuregulin-1 plays an important role in promoting 

the transition from neural crest cells into glia cells (Shah et al., 1994). Neuregulin-

1 has been identified in a number of experimental settings and therefore carried 

originally a number of names reflecting these different systems. Neuregulin-1 had 

been identified as the ligand of the Neu oncogene and was therefore called Neu 

differentiation factor (NDF ;a and b isoforms). Purification and identification of a 

glial growth factor resulted in the name GGF. An agent that induces acetylcholine 
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receptor expression at the neuromuscular junction was called ARIA and identified 

as neuregulin-1. In a fourth system neuregulin was identified as the activity named 

sensory and motor neuron derived factor SMDF. The neuregulin-1 gene encodes, 

through alternative splicing and promoter usage, three distinct isoforms termed 

type I, II and III (Falls et al., 1993; Garratt et al., 2000a; Ho et al., 1995; Holmes 

et al., 1992; Marchionni et al., 1993; Wen et al., 1992). All isoforms of neuregulin-

1 bind to different combinations of heterodimeric receptors of the ErbB tyrosine 

kinase receptor family. Biochemical and genetic data indicate that the functional 

Neuregulin-1 receptor in the neural crest cells and Schwann cells is the ErbB3/ErbB2 

heterodimer and that all biological effects of Neuregulin are mediated through this 

receptor (Carraway and Cantley, 1994; Ho et al., 1995; Horan et al., 1995; Meyer 

and Birchmeier, 1995; Riese et al., 1995; Riethmacher et al., 1997). Tyrosine kinase 

activity is associated with the ErbB2 protein. ErbB3 does not have kinase activity 

by itself. As already alluded to earlier, a series of in vivo studies have demonstrated 

the significance of Neuregulin signaling in Schwann cell development. Most ErbB3-

/- mice die between E11.5 and E13.5 and show lack of Schwann cells and their 

precursors (Riethmacher et al., 1997). Mice with an erbB2 null allele die before E11 

as a result of dysfunctions associated with a lack of cardiac trabeculae (Lee et al., 

1995). In addition to the cardiac phenotype, these mutant mice fail to develop neural 

crest derived cranial sensory ganglia (Lee et al., 1995; Meyer and Birchmeier, 1995). 

Rescue of the cardiac defect by crossing the transgenic erbB2 mice into an erbB2 null 

background, demonstrated a severe loss of both sensory and motor neurons and 

absence of Schwann cell precursors in the PNS (Morris et al., 1999).

Another key factor in the differentiation of neural crest cells to Schwann cells 

is the transcription factor Sox10. Sox10 expression is initiated in the neural crest 

cells as they detach from the neural tube, and its expression is maintained during 

neural crest cell migration (Britsch et al., 2001). Subsequently, Sox10 expression 

is extinguished in all neural crest derivatives except in the glial and melanocyte 

lineages. Sox10 expression in these cells overlaps with ErbB3 (Kuhlbrodt et al., 

1998a; Kuhlbrodt et al., 1998b). Analysis of Sox10 mutants has shown a lack of 

Schwann cells, like in the ErbB3 mutant animals, however the defect is more 

severe in Sox10 mutant animals as no Schwann cells are produced at all (Britsch 

et al., 2001). In Sox10 mutants, the whole peripheral glia cell population including 
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Schwann cells and satellite cells is missing from a very early developmental stage 

onwards. It has been suggested that in the absence of Sox10, the neural crest cells 

cannot differentiate to a glia cell fate (Britsch et al., 2001).

Since only a subpopulation of Sox10 expressing crest cell will adopt the glia 

fate and maintain its expression, it is suggested that Sox10 alone is not sufficient for 

the generation of glia cells and needs co-operation with additional signals (Britsch 

et al., 2001). For instance, it is possible that a specific signal can modify Sox10 in 

cells that will form glia and induce glial differentiation. Another possibility is that 

Sox10 functions synergistically with other transcription factors such as Pax3, Krox-

20, and Oct-6 to induce glial differentiation (Kuhlbrodt et al., 1998a). However, 

none of the mutations in Pax3, Krox-20 or Oct-6 affect the differentiation of neural 

crest cells into glia (Epstein et al., 1991; Franz and Kothary, 1993; Jaegle et al., 1996; 

Kuhlbrodt et al., 1998a; Topilko et al., 1994) 

One of the earliest markers expressed in glial fated neural crest cells is the 

myelin protein P-zero (Hagedorn et al., 1999; Lee et al., 1997). These P-zero positive 

Schwann cell precursors are further defined by expression of a number of additional 

markers and growth and survival requirements. These cells can first be identified 

in he embryonic nerve trunks at day 12-13 of gestation in the mouse or day 14-15 

in the rat. Schwann cell precursors differentiate around E14-15 (mouse; E17 rat) 

into bi-potential immature Schwann cells, which subsequently differentiate into 

either myelin forming or non-myelin forming Schwann cells found in the mature 

nerve. These main transitions, from neural crest cells to Schwann cell precursors, 

from precursor to immature Schwann cells and finally the formation of the two 

mature Schwann cell types, are identified based on their antigenic properties and 

survival abilities in vitro (Jessen and Mirsky, 1999). Some of these main differences 

are shown in Table 1. In the developing nerve, ongoing proliferation of Schwann 

cell precursors and immature Schwann cells invasion of the axon bundles followed 

by radial sorting of individual axonal fibers and families of small fibers results in 

the establishment of separate axon-Schwann cell units. Each of these units consists 

of a large number of axons enclosed by a family of Schwann cells (Martin and 

Webster, 1973; Webster et al., 1973). The number of axons per unit falls gradually as 

Schwann cells continue to proliferate because some axons degenerate.
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Migrating crest cells Schwann cell precursors Immature Schwann cells
β-Neuregulin-1 does not 
promote survivalb

β-Neuregulin-1 promotes 
survivalc

β-Neuregulin-1 promotes 
survivald

P0 negatived,e P0 positivee P0 positive
PMP22 negativee PMP22 positivee

PLP negativef PLP positivef

GAP-43 negative GAP-43 positive
CD9 negativef CD9 positivef

B-FABP negativeh B-FABP positiveh

Desert Hedgehog RNA 
negative Desert Hedgehog RNA positivei Desert Hedgehog RNA 

positivei

Die by apoptosis when removed 
from axons and plated in vitro 
(absence of autocrine loops) g, k

Full survival under same 
conditions due to presence of 
autocrine loopsg, k

Cytoplasmic S100 negativeg Cytoplasmic S100 negativeg Cytoplasmic S100 positiveg

No mitogenic response to FGF in 
rat j, c, l

Mitogenic response to FGF 
in rat j, c, l

Flattened with extensive cell-cell 
contacts in vitrog Bi- or tri-polar in vitrog

O4 antigene negativec, m O4 antigene negativec, m O4 antigene positivec, m

GFAP negativen GFAP negativen GFAP positiven

High motilityg High motilityg Low motilityg

Table 1 - Some of the main differences between migrating crest cells, Schwann cell precursors 
and immature Schwann cells (adapted from (Jessen and Mirsky, 1999)). a- Migrating crest 
refers to crest cells in vivo that are on a level with the dorsal third of the neural tube. b- (Shah 
et al., 1994); c- (Dong et al., 1995); d- (Stewart et al., 1996); d- (Lee et al., 1997); e- (Hagedorn et 
al., 1999); f- Unpublished observation (Brennan, Calle, Mirsky, and Jessen); g- (Jessen et al., 
1994); h- (Britsch et al., 2001); i- (Parmantier et al., 1999); j- in mouse FGF is a mitogen under 
identical condition. k- (Meier et al., 1999); l- (Dong et al., 1999); m- At present, this has been 
thoroughly tested in the mouse. n- (Jessen et al., 1990).

Finally, the Schwann cell reaches a 1:1 ratio with one of axons, elongates along the 

axon and exits the cell cycle. These cells are referred to as promyelin stage Schwann 

cells (Figure 6). Around birth, most of the myelin-competent Schwann cells are at the 

pro-myelin stage and assemble basal lamina around the axon. Final differentiation 

or maturation of Schwann cells consists of wrapping of Schwann cell membrane 

around the axon in a process referred to as myelination. This process of myelin 

formation requires major cellular adaptations in gene expression and metabolism 

to allow the formation of specialized Schwann cell-axon structures at the node and 

internode, Schmidt Lanterman incisures and compaction of the myelin sheath. The 

mature non-myelinating Schwann cell appears later than myelin forming Schwann 

cells (Jessen and Mirsky, 1991). In general, non-myelinating Schwann cells ensheath 

a number of axons with a diameter smaller than 1 µm (Friede, 1972). There are 
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some similarities between molecular markers of non-myelinating Schwann cells 

and immature Schwann cells, such as GFAP and NGF receptors (Jessen and Mirsky, 

1991).

1.5 Schwann cell and nerve interactions
Reciprocal interactions between axon and Schwann cells are important for 

the generation of the peripheral nerves. Not only Schwann cells rely on neuron-

derived signals during development, in particular Neuregulin-1, but neurons also 

depend for their survival to a large extent on Schwann cell derived factors. This is 

especially true at early stages before axons have innervated their peripheral targets. 

In the following sections, I will briefly review some of these interactions. 

Figure 6- Schwann cell differentiation. Schwann cells originate in the neural crest (A) and 
migrate along the axons to the periphery. Before myelination, each Schwann cell surrounds 
multiple small axons (B). Myelination is preceded by Schwann cell division (C). One daughter 
cell isolates a single axon (D) and myelinates it (D’), while the other surrounds developing 
axons (E) and continues to divide (C) until all appropriate axons are myelinated. Many small 
diameter axons are not myelinated and are ensheated by non-myelinated Schwann cells (F). 
(Adapted from Lazzarini et al., 2004).
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1.5.1 Schwann cell precursors are dependent on axonal survival factors

It has been known for a long time that direct axonal contact stimulates 

proliferation of Schwann cell precursors (Salzer et al., 1980). It was also shown 

that glia growth factor (GGF), an isoform of Neuregulin-1, is able to prevent 

apoptotic death of Schwann cells in vivo (Trachtenberg and Thompson, 1996). 

These data suggest that direct contact is necessary for the survival of Schwann 

cells. The ErbB3 null mutation and rescue of erbB2 mice have given direct genetic 

evidence for the role of Neuregelin-1 in Schwann cell precursor maintanance, 

proliferation, and differentiation as I discussed in the previous section (Morris 

et al., 1999; Riethmacher et al., 1997; Woldeyesus et al., 1999). Further, analysis 

of the erbB2 conditional knockout mouse using a krox20-cre allele has shown a 

widespread peripheral neuropathy characterized by abnormally thin myelin 

sheaths, containing fewer myelin wraps (Garratt et al., 2000b). This study 

demonstrates that Neuregulin-1, in addition to its role in establishing the Schwann 

cell precursor, also plays a role in myelination. These results indicate a role for 

Neuregulin-1 signaling during myelination of Schwann cells. Thus, Neuregulin-

1 signaling has different roles during different developmental stages of Schwann 

cells. A recent study demonstrated a role for Neuregulin-1 signaling in regulating 

myelin thickness (Michailov et al., 2004). In particular, it was shown that reduction 

in the Neuregulin-1 gene dosage is sufficient to decrease myelin thickness, whereas 

no effect on myelin thickness was observed in the ErbB2+/- animals. Additionally, 

overexpression of type III Neuregulin-1 in transgenic mice (under control of the 

neuron-specific Thy1 promoter) induces hypermyelination. Therefore, Michailov 

and colleagues (2004) have suggested that axonal Neuregulin-1 represents at 

least one of the surface molecules regulating the amount of myelin wrapping by 

myelinating Schwann cells.

1.5.2 Schwann cells are the source of neurotrophic factors

Schwann cells release neurotrophic factors that are important for the survival 

of neurons (Jessen and Mirsky, 1999). Mice targeted for erbB3 and rescued for 

Erb2-/- showed the loss of most sensory and motor neurons besides the loss of 

Schwann cell precursors (Morris et al., 1999; Riethmacher et al., 1997; Woldeyesus 

et al., 1999). The loss of neurons is not due to ablation of Neuregulin signaling 
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in these cells since ErbB3 is not expressed in motor neurons and is found only 

in a subset of cells in dorsal root ganglia (Meyer et al., 1997; Riethmacher et al., 

1997). Examination of the number of neurons in these animals indicates that 

neurons are generated in normal numbers at first, but are gradually lost during 

embryonic development. In addition, absence of neuronal degeneration in erbB3-/- 

and chimeric mice indicates that the loss of neurons in erbB3-/- is indirect and is due 

to the absence of Schwann cells (Riethmacher et al., 1997). The role of Schwann cell 

precursors in supporting the survival of developing neurons was also evident in 

a study of targeted Sox10 mice, since these mice also lack Schwann cell precursors 

and show death of DRG and motor neurons (Britsch et al., 2001). It was reported 

that Schwann cells in vitro and in vivo express a variety of neurotrophic factors, 

including CNTF, GDNF, BDNF, LIF, PDGF, FGFs, NT3, TGF-β or IGF. Expression of 

these factors support maintenance of the sensory and motor neurons (Bunge, 1993; 

Jessen and Mirsky, 1999). In particular, these factors are strongly upregulated in 

denervated Schwann cells following nerve transection or damage and might thus 

contribute to nerve regeneration.

1.5.3 The organization of the myelinated nerve fiber

The reciprocal interaction between Schwann cell and axon directs the 

organization of the myelinated fiber in distinct domains. These domains include 

the nodes of Ranvier, the paranodal junction, the juxtaparanodes and the 

internodal regions, which all consist of a glial and an axonal component (Poliak 

and Peles, 2003) (Figure 7). The nodes of Ranvier are periodic interruptions of the 

myelin sheath with an interval of about 100 times the axon diameter. This nodal 

gap is filled with microvilli extended by the outer layer of Schwann cells and is 

ensheathed by a basal lamina. The nodal axolemma is characterized by a very high 

density of voltage-gated Na+ channels and other transmembrane and cytoskeletal 

proteins, including the cell-adhesion molecules (CAMs) of the immunoglobulin 

(Ig) superfamily, Nrcam and neurofascin-186 (Nf186), the cytoskeletal adaptor 

ankyrin G and the actin-binding protein spectrin βIV (Berghs et al., 2000; Davis et 

al., 1996; Kordeli et al., 1995; Poliak and Peles, 2003). Recent studies have revealed 

the presence of two K+ channels, Kv3.1 and Kcnq2, in the nodal membrane (Devaux 

et al., 2003; Devaux et al., 2004). Paranodal junctions are located at both sides of 
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the nodes of Ranvier and are formed by the lateral sides of Schwann cell sheaths 

At paranodes, the axonal membrane contains a complex of two cell-adhesion 

molecules, contactin-associated protein (Casper) and contactin, which are essential 

for the generation of the axoglial junction (Poliak and Peles, 2003). Absence of these 

proteins at paranodal junctions results in the disappearance of septa junctions and 

a widening of the space between axon and the paranodal loops (Boyle et al., 2001; 

Poliak and Peles, 2003). The zones just beyond the paranodal junctions are called 

juxtaparanodes. Juxtaparanodes are the location of heteromultimers of the delayed 

rectifier K+ channels of the shaker family, Kv1.1, Kv1.2, and Kvβ2, which are mainly 

present in the small axons in a complex with Casper2 (Poliak et al., 1999; Rasband 

et al., 1999; Rhodes et al., 1997; Wang et al., 1993).

One of the interesting issues in the formation of the axoglial apparatus is 

how different compartments are established within this superstructure. Several 

lines of evidence have indicated that during development, the positioning of Na+ 

channels at the node of Ranvier is directed by Schwann cells. During myelination, 

Na+ channels are expressed at the moving edge of the developing myelin sheaths 

and as two neighboring Schwann cells approach each other, the two hemi-nodal 

Figure 7- Schematic longitudinal cut 
of a myelinated fibre around the node 
of Ranvier showing a heminode. 
The node, paranode, juxtaparanode 
(JXP) and internode are labelled. The 
node is contacted by Schwann cells 
microvilli in the PNS. Myelinated 
fibers in the PNS are covered by a 
basal lamina. The paranodal loops 
form a septate-like junction (SpJ) 
with the axon. The internode extends 
from the juxtaparanodes and lies 
under the compact myelin. (Adapted 
from Poliak and Peles, 2003). 
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structures fuse to form the mature node (Poliak and Peles, 2003; Vabnick et al., 

1996). It has been speculated that a boundary macromolecular sieve composed 

of the neuronal and glial transmembrane proteins bound to the cytoskeleton of 

both axons and myelinating cells exists. This macromolecular sieve possibly is 

involved in clustering of Na+ channels when they are collected and moved as a 

group toward the future nodes (Pedraza et al., 2001). The importance of the myelin 

sheath in clustering the Na+ channels is further underscored by the observation that 

demyelination leads to disruption of Na+ clusters and spreading of channels over the 

demyelinated axonal membrane, which in turn, may lead to an axonal conductance 

block (Vabnick et al., 1996). In addition, during myelination potassium channels 

of the shaker type are excluded from the nodal axolemma and cluster in the juxta-

paranodal region under the compact myelin (Scherer and Arroyo, 2002; Vabnick 

et al., 1999). Although the importance of myelin formation for the organization 

of the axolemma and clustering of the channels in their appropriate domains is 

undisputed, several studies have suggested that in the CNS axonal domains are 

established through induction of a soluble factor in the absence of oligodendrocytes. 

This factor is not produced by Schwann cells. However, the presence of some 

sodium channel clustering in dystrophic mice suggest that myelin independent 

mechanisms of axonal domain organization might play a role in the PNS as well 

(Deerinck et al., 1997; Kaplan et al., 1997). Additionally, it has been suggested that 

axoglial contact in the CNS also plays a role in the developmental switch of Na+ 

channel isoforms in the nodes (Ishibashi et al., 2003; Rios et al., 2003; Ulzheimer et 

al., 2004). Although it is not completely clear what mechanisms operate to organize 

axonal domains, it is important to keep in mind that glia cells have a big impact on 

the distinct domains on the axolemma.

1.5.4 The role of myelinating Schwann cells on regulating axonal structure and 
neurofilament phosphorylation

It has long been known that myelinating Schwann cell influence the radial 

growth of axons (de Waegh et al., 1992). Study of nerves from Trembler mice with a 

defect in peripheral myelin protein 22 kDa (PMP-22), have shown three interesting 

points: first, clear reduction in average axonal caliber (de Waegh and Brady, 1990), 

second, increase in the axonal cytoskeletal elements (Low, 1976) and third decrease 

in axonal transport velocities (de Waegh and Brady, 1990). Grafting experiments 
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have indicated that these changes are spatially restricted to axon segments 

without normal myelination and are not observed in adjacent regions with normal 

myelination (de Waegh and Brady, 1990). Genetic studies have gathered adequate 

evidence for the role of neurofilament in determination of axonal diameter in 

myelinated regions (Eyer and Peterson, 1994; Jacomy et al., 1999; Ohara et al., 

1993; Zhu et al., 1997). Neurofilaments are heteropolymeric intermediate filaments 

composed of neurofilament light (NF-L), medium (NF-M), and heavy (NF-H) 

chain subunits (Lee et al., 1986). It is suggested that neurofilament phosphorylation 

is essential for proper axonal diameter, which is regulated by Schwann cells (de 

Waegh and Brady, 1990; Yin et al., 1998). A recent study has demonstrated that the 

COOH-terminal tail domain of NF-M is an essential target for myelin-dependent 

axonal radial expansion (Garcia et al., 2003). It has been suggested that myelin-

associated glycoprotein (MAG) plays a role in mediating the Schwann cell signal to 

the axon through the low affinity nerve growth factor receptor p75NTR in association 

with neuronal gangliosides GT1b and GD1a (Tcherpakov et al., 2002; Wang et 

al., 2002; Wong et al., 2002; Yamashita et al., 2002). In vivo support for the role of 

MAG dependent signaling in determining axonal caliber through neurofilament 

phosphorylation comes from two studies. First, peripheral nerves of MAG-deficient 

mice show a reduction in neurofilament phosphorylation, interfilament spacing, 

and internodal axonal caliber (Yin et al., 1998). Second, patients with anti-MAG 

demyelinating peripheral neuropathy show a significantly reduced axonal caliber 

(Lunn et al., 2002).

1.5.5 Formation of the perineurium

A protective epithelial sheath that is composed of two layers surrounds 

peripheral nerves. These two layers, called the perineurium and the epineurium 

respectively, surround the endoneurial compartment that contains the axons, 

Schwann cells, bloodvessels and resident macrophages. The peri- and epineural 

sheaths protect nerves and act as nerve-tissue barriers (Bunge et al., 1989; Olsson, 

1990). It has been shown that Schwann cells induce the formation of perineural sheath 

cells by secreting Desert Hedgehog, a member of the Hedgehog family of signaling 

molecules (Parmantier et al., 1999). Desert Hedgehog expression can be detected 

in developing nerves around E11.5 by cRNA in situ hybridization, while mRNA 
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expression of the hedgehog receptor Patched can be detected in the mesenchyme 

immediately around the nerve at E15.5 (Parmantier et al., 1999). Study of the 

peripheral nerves in dhh-/- mice has shown a severely abnormal perineurium and 

epineurium, which are thin and patchy and permeable to proteins and migratory 

cells, In addition, perineural cells have abnormal tight junctions and fail to express 

connexin43 (Parmantier et al., 1999). These results demonstrate that Schwann cells 

do not only interact with neurons, but also play a role in the development of tight 

junctions of connective tissue sheaths of the nerves. However, it has been suggested 

that other signals than Desert Hedgehog are involved in the initial recruitment of 

mesenchymal cells around the peripheral nerve, since the generation of these cells 

in the peripheral nerves of Dhh null mice is not affected (Parmantier et al., 1999; 

Salzer, 1999). 

1.5.6 Myelination

While it is well accepted that myelination by Schwann cells is controlled 

by axonal contact associated signals, the nature of these signals has remained 

largely uncharacterized (Mirsky and Jessen, 1999). It has been suggested that the 

neurotrophins, including BDNF and NT3, are important components of these 

signals. The neurotrophins BDNF and NT3 exert opposite effects on myelination 

in Schwann cells/dorsal root ganglia neuron co-cultures (Chan et al., 2001) (Figure 

8). While BDNF appears to stimulate myelination, NT3 acts as an inhibitor of 

myelination in these cultures. Additionally, injection of NT3 in the developing 

sciatic nerve of newborn animals inhibits myelin formation while BDNF stimulates 

myelination (Chan et al., 2001). Neurotrophins act through the Trk family (TrkA, 

TrkB and TrkC) of tyrosine kinase receptors and the neurotrophin receptor 

p75NTR . Several isoforms of TrkB and TrkC receptors exist which are generated 

through alternative splicing. Recently, Cosgaya and colleagues have suggested that 

p75NTR, TrkB-T1 (an isoform of the TrkB receptor), and full-length TrkC receptors 

are the main mediators of neurotrophin signaling in PNS myelination (Cosgaya et 

al., 2002). They propose that activation of TrkC during proliferation, elongation and 

ensheathment of Schwann cells prevents inappropriate activation of the myelination 

program. At the time that myelination is initiated, NT3 expression levels drop 

releasing the inhibitory effect of NT3. In addition, they suggest that p75NTR is the 
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functional receptor for BDNF, enhancing myelination in developing Schwann cells. 

The myelination process is ended by removing the extracellular BDNF through 

binding to the TrkB-T1 receptor, which functions as a decoy, and later through 

down-regulation of the neurotrophins and their receptors. Interestingly, p75NTR-/- 

knock out mice show a reduction of ≥50% in myelinated axons, which persists into 

adulthood (Lee et al., 1992). 

A series of in vitro studies have suggested the involvement of cyclic AMP 

and the PKA pathway in Schwann cell proliferation and differentiation. Elevating 

intracellular cAMP levels in proliferating cells (through the reversible adenyl 

cyclase activator forskolin or dibutyryl camp) potentiates the mitogenic response of 

Figure 8- Actions of endogenous neurotrophins and their receptors throughout myelination. 
During glial proliferation, elongation, and ensheathment, NT3 levels decrease whereas TrkC 
and p75NTR remain constant. The activation of TrkC by NT3 during these phases prevents the 
myelination program from proceeding. When myelination is initiated, NT3 protein levels 
have already become undetectable, thereby removing its inhibitory action. At the same time, 
BDNF acts as a positive modulator of myelination through the activation of p75NTR. Once 
active myelination is under way, extracellular BDNF is removed through its binding to the 
increased levels of TrkB-T1. After myelination is complete, all the neurotrophins and their 
receptors are down-regulated. (Adapted from Cosgaya et al., 2002).
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Schwann cells to growth factors, including neuregulins, fibroblast growth factors, 

platelet-derived growth factors, insulin-like growth factors, and TGF-βs (Dong et 

al., 1997). Additionally, it is possible to promote differentiation of Schwann cells by 

using forskolin or other cAMP elevating reagents in absence of serum (Dong et al., 

1997; Morgan et al., 1991). Several myelin related genes are upregulated in cultured 

Schwann cells following administration of forskolin. These genes include the 

myelin genes P-zero, MBP, P2, PMP-22, and connexin 32 (Lemke and Chao, 1988; 

Monuki et al., 1989; Scherer et al., 1995; Suter et al., 1994). Furthermore, forskolin 

induces expression of the Oct-6 and Krox-20 transcription factors and down-

regulates AP1. Oct-6 and Krox-20 are expressed in promyelinating Schwann cells 

(Monuki et al., 1989; Zorick and Lemke, 1996). Therefore, cAMP might function as 

a second messenger of an axonal signal(s) that promote myelination (Bermingham 

et al., 2001). Recently, it was shown that the NF-κβ signaling pathway also plays 

a role in myelinating Schwann cells. It was found that NF-κβ is up-regulated in 

Schwann cell precursors and treatment of Schwann cell/dorsal root ganglia neuron 

co-cultures with inhibitors of NF-κβ leads to a differentiation arrest before Schwann 

cells have established a 1:1 ratio with axons (Nickols et al., 2003). In addition, knock 

out DRG cultures from the p65-/- subunits of NF-κβ show a myelin deficiency in 

comparison to DRG explants derived from heterozygote and wild type littermates. 

Interestingly, inhibition of NF-κβ in cultured Schwann cells abolishes Oct-6 gene 

expression, suggesting a role for NF-κβ in regulating Oct-6 expression (Nickols 

et al., 2003). Oct-6 plays an important role in the timely onset of myelination in 

Schwann cells. These data suggest that the NF-κβ pathway is essential for PNS 

myelination, including regulation of Oct-6 gene regulation. 
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1.6 Transcriptional control of cellular differentiation
Multicellular organisms develop from one single cell, the fertilized egg. 

During embryonic development, this cell divides and gives rise to a great diversity 

of different cell types. The progression of cellular differentiation requires the 

differential recruitment of genetic information encoded within the base sequence 

of DNA in the chromosomes of the cell (the genome). The expression of this 

genetic information is regulated at multiple levels and involves the generation of a 

RNA intermediate, mRNA, which is translated by the ribosomes into protein. An 

important regulatory decision is made at the level of initiation of transcription, the 

process by which the DNA sequence is transcribed by RNA polymerase into an 

RNA intermediate. Three different RNA polymerases exist in eukaryotic cells, each 

involved in the transcription of different sets of genes. RNA polymerase II transcribes 

protein-encoding genes, while RNA polymerase I and III transcribe ribosomal RNA 

genes and tRNA genes respectively. In contrast with prokaryotic polymerases, 

eukaryotic RNA polymerases do not bind directly to the DNA but are recruited to 

promoter sequences through interaction with DNA binding proteins or protein-

complexes. In addition, the compaction of eukaryotic DNA into highly condensed 

chromatin fibers represents a major barrier for the transcription apparatus. Thus, 

in global terms, temporal cell-type specific expression of a particular gene requires 

a mechanism for overcoming this repressive barrier selectively and activation of 

the RNA polymerase containing complex that assembles at the gene promoter. 

Over the last decade it has become evident that chemical modifications of amino 

acids in histone proteins dramatically change the overall structure of the chromatin 

fiber and that these modifications correlate with gene activity. Such modifications 

include acetylation, methylation, phosphorylation, ubiquination and sumoylation 

of lysine, serine and arginine residues in the N-terminal tail of histone proteins (see 

for a recent review (Felsenfeld and Groudine, 2003)). Local chromatin remodeling 

is brought about by a host of enzymatic activities (histone acetylases, deacetylases, 

methylases) that are targeted to specific domains through interaction with 

sequence specific DNA binding proteins. Two important classes of DNA sequences 

can be distinguished within a gene locus. One is the gene promoter, which is 

operationally defined as the site at which the pre-initiation complex, including the 

RNA polymerase, assembles (see box). 
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Box-1 Basal transcription by RNA polymerase II

Transcription from a naked DNA template in the absence of regulatory 

elements is referred to as basal transcription. A polymerase II preinitiation 

complex (PIC) is assembled at the promoter of class II genes in a stepwise 

process. However, this process may never occur in vivo in the absence of the 

regulatory elements. The first step in the assembly is binding of the TATA box-

binding protein (TBP) to the TATA box of pol II promoters. The majority of TBP 

present in a cell is associated with TBP associated factors (TAFs). This complex 

of TBP with TAFs that binds to the pol II promoters is called TFIID and contains 

at least eight TAFs with a cumulative mass of about 750 kDa. It has been shown 

that TFIID is also essential for transcription of TATA-less promoters and that 

recombinant TBP alone is not sufficient for directing transcription from TATA-

less promoter containing initiator elements [Pugh and Tjian, 1990; Smale et al., 

1990]. Later, it was shown that TFIID is able to bind to the initiator elements of 

both TATA-containing and TATA-less promoters [Kaufmann and Smale, 1994; 

Purnell and Gilmour, 1993].

After binding of TBP to DNA, TFIIA binds directly to TBP and stabilizes its 

interaction with DNA. Next, TBP bound to DNA creates a binding site for TFIIB. 

TFIIB itself serves as a platform for TFIIF and polymerase II (pol II), which are 

present in a complex. The next two factors bound to pol II are TFIIE and TFIIH and 

finally this mega dalton complex is able to initiate transcription. The description 

of assembly of the pol II complex in here is very generalized. It is important 

to keep in mind that the eukaryotic transcription machinery is very complex 

and that eukaryotic promoters are very divers. Given these complexities, there 

are different mechanisms involved in transcription regulation in different steps 

including at the chromatin level. Some of the components of the pol II complex 

are very conserved from yeast to human.

The second class of sequences modulates the rate of transcription from the 

promoter through several distinct mechanisms. These sequences include upstream 

promoter elements, enhancers, silencers and locus control regions. All these DNA 

elements can be bound by sequence specific DNA binding proteins including 
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transcription factors and their accessory factors, to affect local chromatin structure 

and transcription initiation.

1.7 Regulatory elements involved in gene expression
In general, gene expression is controlled by multiple regulatory sequences 

that are usually distributed at a variable distance from the gene promoter. A 

gene might have different regulatory elements, which contribute individually 

or cooperatively to expression of the gene in a temporal and/or cell-type specific 

fashion. These regulatory elements consist of different types of sequences including 

promoter elements, insulators, Locus Control Regions (LCR), and enhancers. In 

the following paragraphs, I will briefly discuss what is known in general about 

regulatory sequences, the proteins they bind and how they affect the transcriptional 

output of a gene.

A gene promoter is usually thought to consist of two elements: The core 

promoter and the promoter-proximal regions. Core promoters are the site of 

transcription initiation and spread from –40 to +40 nucleotides relative to the 

transcription start site. Several DNA sequence motifs can be identified within core 

promoters including the TATA box, initiator (Inr), TFIIB recognition element (BRE), 

and down stream core promoter element (DPE) (Butler and Kadonaga, 2002). The 

promoter-proximal region is located immediately upstream of the core promoter 

and consists of binding sites for transcription factors such as SP1 and CTF (CCAAT-

binding transcription factor).

In general, enhancers are regulatory elements that can be located, at a 

considerable distance, either upstream or downstream of the transcription initiation 

site and in either orientation. Schaffner and colleagues first described enhancers 

in the early 1980s. They demonstrated that a 72bp tandemly repeated sequence 

upstream of the late viral promoter in the SV40 genome is capable of increasing 

the transcriptional output of a linked rabbit beta-globin gene (Banerji et al., 1981). 

Binding of specific combinations (dictated by the specific sequence of the enhancer) 

of ubiquitous and signal or cell specific transcription factors results in enhanced 

expression from the linked promoter. Enhancers consist of a number of transcription 

factor binding motifs and assembly of transcription factors on the enhancer leads 

to the formation of a nucleoprotein complex referred to as the “enhanceosome” 
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(Carey, 1998; Grosschedl, 1995; Kim and Maniatis, 1997). The assembly of the 

enhanceosome is dependent on the concentration of the relevant activators in a cell 

and their ability to engage in combinatorial interactions; subthreshold concentration, 

or altered positioning on the DNA prohibit cooperative binding (Carey, 1998). The 

binding of transcription factors to the enhancer is often cooperative; meaning 

that they promote the binding of each other and to DNA in a three-dimensional 

structure and this cooperativity results in “synergy” (Carey, 1998). The synergistic 

effect arises from an increase of the total free energy, translated into stability of 

the complex. In addition, assembly is a dynamic process as demonstrated for the 

formation of the interferon-β enhanceosome (IFNβ) (Munshi et al., 1998; Yie et al., 

1999). Some prototypical enhanceosomes have been studied in detail, including 

those of the T-cell receptor α (TCRα) and interferon-β genes (Giese et al., 1995; 

Kim and Maniatis, 1997, Mayall et al., 1997; Merika et al., 1998). The enhancesome 

of IFNβ consists of the transcription factors NF-κB (p50 and p65 subunits), IRF-1, 

ATF-2, c-Jun, and HMG I. The enhanceosome of TCRα include a lymphoid-specific 

HMG-domain protein (LEF-1), Ets-1, AML-1 (CBFα2, PEB2αB), and ATF or CREB 

bind to TCRα (Carey, 1998). The presence of architectural proteins such as LEF-1 

and HMG I in these nucleoprotein complexes is of special interest. These proteins 

exhibit sequence-specific DNA-bending properties and belong to the larger family 

of chromatin-associated high mobility group (HMG) proteins. Some of these 

proteins play a role in cooperativety and synergy. For example HMG I (HMGA1) 

facilitates binding of NF-κB to the INF-β enhancer by inducing a bend in the DNA. 

LEF-1 belongs to another class of HMG proteins and, unlike HMG I, has a context-

dependent activation domain. Specific binding of LEF-1 induces DNA bending 

allowing all the other transcription factors (AML-1, ETS, ATF, and CREB) assemble 

on the enhancer (Hernandez-Munain et al., 1998).

Several studies have shown that the enhanceosome directly interacts with 

the basal transcription machinery, in particular with TFIID, TFIIA, and the USA 

cofactor, resulting in the synergistic recruitment of TFIIB to the promoter (Kim et al., 

1998). The communication between the regulatory elements and promoter appears 

reciprocal. The enhanceosome recruits the pol II machinery, but the machinery 

reciprocally facilitates assembly of the enhanceosome (Carey, 1998; Kingston et al., 

1996). Nevertheless, it is still a matter of debate how exactly enhancer-promoter 
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communication is established. Several models have been proposed to explain 

long distance gene activation by the enhancer. Most of these models explain some 

aspects of enhancer-promoter communication but not others and there is no direct 

evidence available to distinguish between them. The three most compelling models 

are referred to as the looping model, the tracking or scanning model, and the 

accessibility (linking) model. The looping model proposes the direct interaction 

between enhancer-promoter by formation of a DNA loop (Ptashne and Gann, 

1997). The tracking or scanning model proposes that all the regulatory elements 

first assemble on the enhancer and then slide along the DNA until they reach the 

linked promoter. In the accessibility model, the recruitment of facilitator proteins 

to the enhancer modifies the entire chromatin domain between the enhancer and 

promoter and makes formation of higher order complexes along the chromatin 

fiber possible. Several recent studies have provided new evidence for the tracking 

and the looping model. Two different studies, employing different experimental 

approaches have shown direct interactions between enhancer and promoter in 

the β−globin locus (Carter et al., 2002; Tolhuis et al., 2002). However, Hatzis and 

Talianidis (2002) provided experimental evidence for a dynamic mechanism in 

HNF-4α enhancer-promoter communication such as suggested in the tracking 

model (Blackwood and Kadonaga, 1998).

1.8 POU domain transcription factors
The focus of research in this thesis is the role and regulation of the 

transcription factors Oct-6 and Brn-2. These proteins belong to the POU domain 

family of transcription factors. I will first review what is known about this family of 

proteins and then discuss the role of Oct-6 and Brn-2 in Schwann cell development. 

The review is further extended to include additional transcription factors known to 

be important for Schwann cell development and myelination.

The POU domain was originally identified as a region of high homology 

within the mammalian transcription factors Pit-1, Oct-1, Oct-2 and in the nematode 

unc-86 (Herr et al., 1988). The POU domain, which constitutes the DNA binding 

domain of these proteins, consists of a ~60 amino acid long homeo domain (the 

POU-homeodomain) connected by a short linker sequence (15-27 amino acids) to 

an amino terminal POU specific domain of ~75 amino acids (Ryan and Rosenfeld, 
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1997). More than 14 POU genes have been found in the human genome and they 

have been classified into six groups based on the amino acid sequence of their POU 

domains and on conservation of the variable linker region (Ryan and Rosenfeld, 

1997; Wegner et al., 1993). A summary of expression patterns of different classes of 

POU proteins, in addition to their different names, is shown in table 3.

These transcription factors contribute to controlled gene expression and 

provide a cell type-specific pattern of gene expression during different stages of 

development. Most POU proteins show a spatially progressive expression 

POU factor Species Expression Function
Embryo Adult

Class I
POU1F1= Pit-1/ 
GHF1

rodent/ human neural tube, 
pituitary

pituitary survival of three 
pituitary cell types

Class II
POU2F1= Oct-1

frog/ chicken/ 
rodent/ human

high in mid-/ 
forebrain anterior 
neural crest

ubiquitos gastrulation, 
apoptosis

POU2F2= Oct-2/ 
OTF-2 rodent/ human neural tube

lymphoid 
cells, nervous 
system

proliferation of 
maturing B-cells

POU2F3= Oct11/ 
Skn-1/Xlnr116/21 frog/ rodent epidermis thymus, testis

Pdm-1= dPOU19/ 
nubbin fruit fly neuroectoderm, 

sensory organs
none

segmentation, 
specification of 
neural identity, 
wing patterning

Pdm2= dPOU28/ 
miti-mere fruit fly neuroectoderm, 

sensory organs
none

segmentation,spec
ification of neural 
identity

ceh-18 nematode muscle, epidermis
gonadal 
sheath cells

oocyte cell cycle 
arrest, gonad 
migration, 
epidermal 
differentiation

Class III
POU3F1= Oct-
6/ Tst-1/ SCIP/ 
XIPOU1/ zp-50

zebrafish/ frog/ 
rodent/ human

ES cells, nervous 
system, skin

brain, testis, 
retina,
Schwann cells

Schwann cell 
differentiation, 
myelination, 
respiration

POU3F2= Brn-2/ 
N-Oct-3/XIPOU3

frog/ rodent/ 
human nervous system

brain/
Schwann cells

neural induction, 
development of 
hyothalamus

POU3F3= Brn-1/ 
ZfPOU1

zebrafish/ rodent 
/ human

nervous system, 
kidney

brain

POU3F4= Brn-4/ 
RHS2/ XIPOU2

frog/ rodent/ 
human nervous system brain neural induction, 

sense of hearing
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cfla= drifter/ 
ventral veinless fruit fly

trachea, epidermis, 
midline glia 
neurons, wing disc

migration of 
tracheal cells 
and midline glia, 
development of 
wings veins

ceh-6 nematode
Class IV
POU4F1= Brn-3/ 
Brn-3.0/ Brn-3A/ 
RDC-1

rodent/ human sensory neurons, 
pituitary

brain

neurite 
outgrowth, 
coordination, 
suckling

POU4F2= Brn3.2/ 
Brn-3B rodent/ human sensory neurons, 

retina, 
brain

development of 
retinal ganglion 
cells

POU4F3= Brn3.1/ 
Brn-3C/ XBrn3

zebrafish/ frog/ 
rodent/ human sensory neurons

development 
of hair cells in 
the inner ear

I-POU fruit fly
ganglia, ventral 
nerve code 
supraoesophageal

unc-86 nematode neural lineage neural cells specification of 
neural identity

Class V
POU5F1= Oct-3/ 
Oct-4/ OTF-3/ 
OTF-4

rodent/ human
ES/ EC cells, 
primordial germ 
cells

ovary, testis pluripotency

sprm-1 rodent male germ 
cells

pou2 zebrafish blastomeres, 
epiblast, hindbrain

gastrulation

Oct-25 Frog gastrula oocytes (low)

Oct-60= XIPOU91 Frog
Blastula, gastrula: 
mesoderm, 
ectoderm

oocytes

Oct-91= XLPOU91 Frog gastrula oocytes
Class VI
POU6F1= Brn-5/ 
POU[C]/ Emb/ 
mPOU/TCFβ1/

zebrafish /
rodent/ human

widespread high in 
nervous system

ubiquitous

RBF-1 rodent/ human retina, midbrain, 
spinal cord

retina,
medhabenula, 
hypothalamus

Table 2 - Classes of the POU domain genes and their expression sites and function. Adapted 
from (Veenstra et al., 1997). Systematic designation and frequently used names are listed. 

pattern early in development while later in development they are restricted to 

distinct patterns (He et al., 1989). Even Oct-1, a protein that is expressed in every 

cell-type and tissue tested (Scholer et al., 1989; Staudt et al., 1986; Sturm et al., 

1988), is subject to differential regulation (Hsu and Chen-Kiang, 1993; Veenstra et 

al., 1995). Veenstra et al., (1995) observed differential expression of Oct-1 RNA and 
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protein in ectodermal and mesodermal cell lineages of Xenoups embryos. During 

later stages of development, Oct-1 expression becomes restricted to specific brain 

structures and cranial neural crest derivatives. Based on these results, it has been 

suggested that Oct-1 plays a role in the specification and differentiation of neuronal 

and neural crest cells (Veenstra et al., 1995).

One important way in which the activity of a transcription factor can be 

regulated is by sequestration in the cytoplasm. The maternally inherited Oct-1 is 

retained in the cytoplasm during early development, and gradually translocates 

to the nucleus around the mid-blastula transition (Veenstra et al., 1999). Another 

example is the Oct-6 protein, which is expressed, in different cerebral and 

hippocampal subpopulations. It is reported that the Oct-6 expression profile changes 

with developmental time (postnatal) such that by postnatal week 28 expression is 

exclusively cytoplasmic before it finally disappears two weeks later at postnatal 

week 30 (Ilia et al., 2003). Posttranslational modifications of POU factors, such as 

phosphorylation and acetylation, are also known to play a role in regulating DNA 

binding activity or dimerization with other transcription factors (Augustijn et al., 

2002; Caelles et al., 1995; Tanaka and Herr, 1990).

As can be concluded from the expression patterns summarized in Table 2, 

many POU factors are expressed in overlapping patterns during development. 

Additionally, some of these factors have a similar DNA-binding preferences 

suggesting functional redundancy. This was shown for Oct-1 and OCA-B in Oct-

2 deficient B cells, Brn-1 and Brn-2 genes in cortical neuron development and 

recently in class III factors Oct-6 and Brn-2 in Schwann cell differentiation (Jaegle 

et al., 2003; Luo and Roeder, 1995; McEvilly et al., 2002; Sugitani et al., 2002). It was 

demonstrated that mPOU binds the octamer motif (ATTTGCAT) and other POU 

protein target sites. Another possibility for generating a cell type-specific pattern 

of gene expression is the interaction between POU proteins. For example Pit-1 and 

Oct-1/ mPOU (Fumoto et al., 2003) or with transcription factors from other families 

such as vitamin D receptors, N-CoR, and GATA-2 through the homeodomain of Pit-

1 (Augustijn et al., 2002). This results in either synergistic activation or repression 

of the target genes (Veenstra et al., 1997). 
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1.9 POU domain factors in development of the nervous system
Many of the known mammalian POU domain genes are expressed in 

the nervous and the neuroendocrine system. The only member of class I, Pit-1, 

is expressed from E14.5 onwards in the caudomedial region of the pituitary 

gland. In the adult Pit-1 regulates expression of the genes for growth hormone 

(GH), prolactin (PRL), growth hormone-releasing hormone (GHRH receptor), and 

thyroid hormone receptor beta type 2 (TSHβ) in three distinct cell types of the 

anterior pituitary gland; somatotropic, lactotropic, and thyrotropic cells (Rhodes 

et al., 1994). Pit-1 gene expression in the pituitary is maintained, at least in part, 

through a positive feedback loop that involves Pit-1 binding to its own promoter 

and to a distal enhancer (DiMattia et al., 1997; Rhodes et al., 1993). The study of 

mice homozygous for the Snell allele (a Pit-1 point mutation) or a Pit-1 null allele 

revealed that Pit-1 is necessary for the differentiation and survival of TSH-positive 

cells (Lin et al., 1994). Similarly, dominant and recessive mutations in Pit-1 were 

identified in human pituitary diseases (Cushman et al., 2002).

Oct-1 and Oct-2 were among the first POU proteins identified and both 

proteins belong to sub-class II. As stated earlier Oct-1 is expressed in every cell-

type examined. Oct-1 has been implicated in gonadotropin-releasing hormone (GnRH) 

and vasoactive intestinal peptid (VIP) gene regulation and in silencing of the TSHβ 

gene (Eraly and Mellon, 1995; Kim et al., 1996; Rostene, 1984). Oct-2 is prominently 

expressed in B-lymphocytes, as well as in the developing and adult nervous system 

(He et al., 1989; Stoykova et al., 1992). The Oct-2 gene is subject to alternative splicing 

and produces at least eight different transcripts (Wirth et al., 1991). Several studies 

have demonstrated that the different splice variants are expressed in different 

cell types and it has been suggested that the Oct-2 proteins encoded by the splice 

variants exercise different functions (Lillycrop and Latchman, 1992; Stoykova et 

al., 1992). Evidence from in vitro studies has suggested that the splice variants Oct-

2.4 and Oct-2.5 act as repressors in neuronal cells, while the predominant form 

in the B cells, Oct-2.1, has a stimulatory effect (Lillycrop and Latchman, 1992). 

Oct-2 null mice develop normally but die shortly after birth (Corcoran et al., 

1993). Unexpectedly, disruption of Oct-2 has no effect on the B cell development. 

However, B-cell maturation is disturbed in the absence of Oct-2 (Corcoran and 

Karvelas, 1994; Schubart et al., 2001). Although no gross structural abnormalities 
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were observed in the nervous system, it is suggested that functional defects in the 

nervous system cause the early postnatal death of Oct-2 mutant animals (Corcoran 

et al., 1993; Ninkina et al., 1995). 

Class III POU factors were first identified through a PCR-based cloning 

strategy and were shown to be expressed widely in the developing nervous system 

(He et al., 1989). Expression of Brn-1, Brn-2, and Brn-4 is detectable from E10 in the 

nervous system and in the primitive endocrine hypothalamus adjacent to the third 

ventricle (He et al., 1989). At E14, Brn-2 and Brn-4 are colocalized in the developing 

paraventricular (PVN) and supraoptic nucleus (SON) regions. In addition Brn-4 is 

expressed in the potential precursors of the anterior hypothalamus. Further, Brn-1 

is expressed dorsolaterally in the presumptive zona incerta and in a dorsoventral 

stripe lateral to Brn-4 expressing cells (Alvarez-Bolado et al., 1995; Andersen and 

Rosenfeld, 2001). In general, Brn-1 and Brn-2 show a different spatial expression 

pattern at the early stages of development, but an overlapped expression pattern in 

the adult brain. Brn-4 is widely expressed during development, but becomes more 

restricted in the adult (Alvarez-Bolado et al., 1995). Oct-6 exhibits very restricted 

expression early in the developing embryo, in particular the nervous system but 

its expression expands greatly at later stages of development (Alvarez-Bolado 

et al., 1995; Zwart et al., 1996). Homozygous deletion of the Oct-6 gene causes 

developmental abnormalities in the nervous system. In particular, development 

of the phrenic nucleus in the brain stem appears affected. As the phrenic nerve 

innervates the diaphragm it has been suggested that developmental defects in this 

brain-stem nucleus underlies the high early postnatal mortality in Oct-6 mutant 

animals (Bermingham et al., 1996). Additionally, Oct-6 is expressed in other 

nuclei involved in breathing rhythm and airway movement including the nucleus 

ambiguous, the nucleus tractus solitarius, and the glossopharyngeal nucleus. 

Furthermore, Oct-6 is expressed in the Schwann cell lineage of the PNS, which will 

be discussed later.

It has been suggested that class III POU factors play a role in defining 

different regions in the developing brain (Alvarez-Bolado et al., 1995). For example 

Brn-2 knock out mice show dramatic abnormalities in the hypothalamic/posterior 

pituitary gland and die before P6 (Nakai et al., 1995; Schonemann et al., 1995). 

Severely reduced neuronal cell numbers in the PVN and SON of the Brn-2 null mice 
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suggest a role in proliferation or survival of these neurons. In addition, decreased 

vasopressin and oxytocin expression levels suggest a role for Brn-2 in cell specific 

regulation of these neuropeptides (Nakai et al., 1995). Deletion of the Brn-4 gene in 

mice causes deafness in mice due to several developmental defects in the inner ear. 

No abnormalities in brain development were observed in Brn-4 mutant animals. 

Furthermore, it has been shown that mutations in Brn-4 cause non-sensory deafness 

in humans (de Kok et al., 1995; Minowa et al., 1999; Phippard et al., 1999). Brn-3a 

(Brn-3.0), Brn3-b (Brn-3.2), and Brn-3c (Brn-3.1, POU4F3) make up the subclass IV 

(Gerrero et al., 1993; Lillycrop et al., 1992). Expression studies of these factors imply 

a role for them in neuronal differentiation. Knock-out mice were generated for each 

of these factors. While Brn-3a null mice show widespread loss of the sensory and 

motor neurons and die directly after birth (McEvilly et al., 1996; Xiang et al., 1996), 

mice lacking Brn-3b and Brn-3c are viable and show loss of retinal neurons (Brn-

3b), leading to blindness, or vestibular neurons (Brn-3c) in the inner ear leading to 

deafness (Erkman et al., 1996). It is suggested that differences in the phenotypes of 

class IV knockouts reflect their expression pattern during development and in the 

adult brain (Latchman, 1999; Ninkina et al., 1993; Turner et al., 1994). 

The class VI POU protein Brn-5 is expressed in the developing and adult brain 

and some organs outside the nervous system, including kidney, lung, and testis 

(Andersen et al., 1993). Brn-5 is prominently expressed in post-mitotic neurons, 

suggesting a role in terminal neuronal differentiation (Cui and Bulleit, 1998).

1.10 Transcription factors involved in Schwann cell differentiation
As stated in previous sections, continued interactions between neuronal and 

Schwann cells is essential for the development of the peripheral nerve tissue. In order 

to understand the signaling cascades that regulate Schwann cell differentiation, we 

need to identify the transcription factors involved in this differentiation process. 

Moreover, we need to understand how these transcription factors are regulated 

during Schwann cell differentiation. In the next section I will discuss a number 

of transcription factors that have been implicated in Schwann cell differentiation 

(Figure 9).
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1.10.1 Pax-3

During embryogenesis, Pax-3 expression is detectable from embryonic day 

8.5 in the small number of cells located in the dorsal region of the neural groove 

and in the neural tube (Kioussi and Gruss, 1996). Pax-3 expression continues in 

the neural crest cells at the craniofacial level in the spinal ganglia of the mouse 

(Goulding et al., 1993). At E12.5, Pax3 expression is observed in Schwann cell 

precursors that populate the embryonic peripheral nerves (Kioussi and Gruss, 

1996). Kioussi and colleagues (1995) reported that Pax-3 expression is down 

regulated after E12.5 in proliferating Schwann cells until E18.5 (around birth in 

mouse) and re-expressed in terminally differentiating Schwann cells. After birth, 

Pax-3 expression is down-regulated in myelinating Schwann cells, but is maintained 

in non-myelinating Schwann cells. In contrast to these results, another group has 

reported continuous expression of Pax-3 in the sciatic nerve during Schwann cell 

proliferation (E12.5-E18.5) by RT-PCR (Blanchard et al., 1996). Due to the lack 

of in situ or immnuohistochemistry analysis, these data are not clear. It is also 

important to note that a significant number of neural crest-like cells and Schwann 

cell precursors are present in a developing nerve (Morrison et al., 1999), which 

possibly affected the results of Pax-3 expression in developing nerve.

Figure 9- Transcription factor expression profile during Schwann cell development. P-zero 
is shown as a marker for myelination. 
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Pax-3 acts as a repressor of myelin genes including P-zero and MBP and as an 

activator of non-myelinating markers including p75, the low affinity neurotrophin 

receptor by co-transfection studies in culture (Kioussi et al., 1995). It might be 

concluded from these results that Pax-3 is involved in fate decision between non-

myelinating and myelinating Schwann cells.

The early role of Pax-3 in generating Schwann cell precursors is suggested by 

study of natural mutants splotch (sp) and a milder form splotch delayed (spd) in mice. 

splotch mice die around E13.5 and sp around E18.5 due to abnormalities in neural 

crest derived tissues in which Pax-3 is normally expressed including Schwann cell 

precursors (Epstein et al., 1991). The peripheral nerves of sp mice lack Schwann 

cells while spd mice have reduced numbers of Schwann cells (Franz, 1990; Moase 

and Trasler, 1990). In human, homozygous mutation in Pax-3 results in a clinical 

condition referred to as Waardenburg syndrome (Waardenburg, 1951).

1.10.2 SOX10

This transcription factor belongs to the large family of high mobility group 

proteins, containing a DNA-binding domain named as HMG domain (Laudet et 

al., 1993). The Sox protein family constitutes a subgroup among the high mobility 

group proteins as they show highest similarity (more than 50%) to the HMG box 

of the testis-determining gene SRY (Sry box; sox) (Wegner, 1999). Sox proteins are 

divided into seven subgroups (A to G groups) (Wegner, 1999). Sox10 is a member of 

group E and is expressed in neural crest cells and some of its derivatives including 

Schwann cells (Kuhlbrodt et al., 1998a). Sox10 expression is maintained during 

all the Schwann cell development stages and is not completely down-regulated 

after Schwann cell differentiation. In the CNS, Sox10 expression is detectable in 

the oligodendrocyte precursors and later in mature oligodendrocytes (Kuhlbrodt 

et al., 1998a). 

The spontaneous mouse mutant Dominant megacolon (Dom) was shown to 

carry a mutation in Sox10 (Herbarth et al., 1998; Southard-Smith et al., 1998). In 

this mutant allele, a frame shift gives rise to a non-functional protein (Herbarth et 

al., 1998). Homozygous Dom mice die before embryonic day 13 and show a loss of 

neurons and glia cells in the PNS and lack of the enteric nervous system (resulting 

in the megacolon phenotype) (Herbarth et al., 1998; Southard-Smith et al., 1998). 



4444

Chapter 1

Mutations in Sox10 have also been identified in patients with Shah-Waardenburg 

syndrome and Hirschsprung disease. In both of these diseases, the clinical 

phenotype results from a loss of neural crest derivatives (Herbarth et al., 1998; 

Southard-Smith et al., 1998). In mice with Sox10 homozygously deleted, the whole 

population of peripheral glia cells are missing, including satellite cells, suggesting 

a role for Sox10 in glia cell fate decisions (Britsch et al., 2001). 

It has been demonstrated that Sox10 functions synergistically with Oct-6 

as a strong transcriptional activator of promoters containing adjacent Oct-6 and 

Sox10 binding sites (Kuhlbrodt et al., 1998a). Interestingly, this synergistic function 

is specific to Oct-6 since Brn-1, closely related to Oct-6, is not able to cooperate with 

Sox10. Another example of synergistic function of Sox and POU proteins is between 

Sox2 and Oct3/4 on the FGF-4 enhancer (Yuan et al., 1995). Therefore, Sox10 not 

only plays a role in glia fate decisions but probably also during differentiation of 

these cells.

1.10.3 Transcription factor AP1

The Activator Protein (AP) is a hetero-dimeric transcription factor family 

that participates in the regulation of a variety of cellular processes including 

proliferation, differentiation, and apoptosis (Chinenov and Kerppola, 2001). AP1 

can be composed of several combinations of basic-region-leucine zipper (bZIP) 

proteins that belong to the Jun (c-Jun, JunB, JunD), Fos (c-Fos, FosB, Fra-1 and 

Fra-2), Maf (MafB, MafA, MafG/F/K and Nrl) and ATF (ATF2, LRF1/ATF3, B-ATF, 

JDP1, JDP2) transcription factor families These dimeric proteins bind to the 12-

O-tetradecanoylphorbol-13-acetate (TPA) response element (5’-TGAG/CTCA-3) or 

the cAMP response elements (CRE, 5’-TGACGTCA-3’) (Shaulian and Karin, 2002). 

Previously it was demonstrated that c-Jun expression levels drop in Schwann 

cells during myelination in vivo and after induction of differentiation by cAMP 

in vitro (Awatramani et al., 2002; De Felipe and Hunt, 1994; Monuki et al., 1989; 

Shy et al., 1996; Stewart, 1995). Prior to initiation of myelination, Schwann cells 

exit the cell cycle and become resistant to developmental death signals such as 

TGF-β. (Brown and Asbury, 1981; Friede and Samorajski, 1968; Stewart et al., 1993). 

TGF-β is implicated as a death signal in developing nerves, where it is believed 

to induce apoptosis in nonmyelinating cells, sparing cells expressing myelin 
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proteins (Parkinson et al., 2001). Later studies demonstrated that activated c-Jun 

(phosphorylation at serine-63) acts as a key downstream event in TGFβ-induced 

Schwann cell death (Parkinson et al., 2001). 

Recently, Parkinson and colleagues showed that TGF-β death signals are 

inactivated through Krox-20, protecting cells from death trigger by growth factor 

deprivation (Parkinson et al., 2004). Furthermore, they showed that constitutive 

expression of Krox-20 in cultured Schwann cells results in down-regulation of the 

JNK-c-Jun pathway and prevents activation of this pathway by NRG-1 and TGF-β. 

It therefore appears the anti-proliferative function of Krox-20 is mediated through 

down-regulation of phosphorylated and unphosphorylated c-Jun protein and 

phosphorylated JNK (Parkinson et al., 2004). Interestingly, Krox-20-/- Schwann cells 

show a high rate of DNA synthesis and apoptosis during postnatal development 

(Topilko et al., 1994; Zorick et al., 1999). This phenotype could be explained by 

alteration of Krox-20 dependent cell autonomous responses to proliferative (NRG-

1) and apoptotic (TGF-β) signals (Parkinson et al., 2004).

1.10.4 The POU domain transcription factor Oct-6

Oct-6, also known as POU3f1, Tst-1, and SCIP, belongs to subclass III of the 

POU domain transcription factor family (see Table 2) (Herr et al., 1988; Meijer et 

al., 1990; Suzuki et al., 1990). The Oct-6 gene is located on the distal part of mouse 

chromosome 4 and on the short arm of the human chromosome 1 and consists, 

like the other members of this subclass, of a single exon (Avraham et al., 1993; 

Kuhn et al., 1991; Xia et al., 1993). This led to the suggestion that this subclass arose 

during evolution through a retroposon event in an early vertebrate ancestor (Hara 

et al., 1992; Kuhn et al., 1991). Indeed, the single class III genes in the genomes of 

Drosophila and C elegans do contain introns (NCBI database). The four class III POU 

genes are not genetically linked. Therefore, the extensive overlap in expression 

patterns of these genes must be the result of independent acquisition of regulatory 

elements at the site of integration or from common regulatory sequences associated 

with the transposed mRNA precursor (Alvarez-Bolado et al., 1995; Suzuki et al., 

1990; Zwart et al., 1996). 

In the Schwann cell lineage, Oct-6 expression is first observed in Schwann 

cell precursors at embryonic day 12 (E12). Oct-6 expression is greatly increased 
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in promyelinating Schwann cells and is then rapidly down-regulated once cells 

have initiated myelination (Arroyo et al., 1998; Blanchard et al., 1996; Scherer et al., 

1994). 

In cultured primary Schwann cells, Oct-6 expression is rapidly up-regulated 

after treating cells with an intracellular cAMP elevating agent, such as forskolin. In 

addition, cAMP stimulation in cultured cells leads to expression of myelin related 

genes including P-zero and P2 (Monuki et al., 1989). These results have suggested 

a role for Oct-6 in activating myelin genes (Monuki et al., 1989). However, co-

transfection studies in rat Schwann cells, using a P-zero promoter driven reporter 

construct and an Oct-6 expression cassette, suggested that Oct-6 represses myelin 

gene expression. (Monuki et al., 1993; Monuki et al., 1990). The repressive function 

of Oct-6 was shown to be associated with the amino-terminal domain of Oct-6. 

Repression of the P-zero promoter was not abolished by mutating all of the potential 

Oct-6 binding sites suggesting that Oct-6 represses this promoter indirectly, through 

titrating out a positive acting factor (squelching). However, the repressive function 

of Oct-6 was negated by a truncated form of Oct-6 (essentially consisting of the 

POU domain) (Monuki et al., 1993) These and other results led to assumption that 

interacting factors or adaptor molecules modulate the activity of Oct-6 in a cell type 

and promoter context-specific fashion (Meijer et al., 1992; Monuki et al., 1993).

In contrast to what was expected on the basis of these transfection experiments, 

Oct-6 knock out studies suggest that Oct-6 functions as a positive regulator of the 

promyelin to myelinating transition in Schwann cells. Mice homozygous for the 

mutated Oct-6 allele are born at normal Mendelian ratios but most of them die 

shortly after birth. A small percentage of Oct-6-/- mice (2-4%) survives for a longer 

period. These mice are smaller than their heterozygous littermates and exhibit 

occasional tremors in the second postnatal week (Bermingham et al., 1996; Jaegle et 

al., 1996). The high postnatal mortality in Oct-6 mutant animals has been attributed 

to respiratory distress and disorganization of the phrenic nucleus. Oct-6 is highly 

expressed in different parts of the brain, involved in breathing regulation, including 

the phrenic nucleus, the nucleus tractus solitarius, and the nucleus ambiguous. 

Apart from CNS defects, Oct-6 knock out animals demonstrate a transient arrest 

of Schwann cell development at the promyelin stage in the PNS (Bermingham et 

al., 1996; Jaegle et al., 1996). Microscopic examination of Oct-6 mutant nerves at 
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Figure 10- (A) Electron microscopic sections of Scitic nerves of p4 and p16 Oct-6 DSCE/βgeo. (B) 
Quantification of the promyelin-myelinating transition in percentages. The transition of the 
promyelin-myelinating transition is shown in wildtypes, Oct-6DSCE/+, and Oct-6DSCE/βgeo during 
days of postnatal development. 
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postnatal day 1 show normal numbers of Schwann cells at the sorting and promyelin 

stage of differentiation. However, during the first week of postnatal development 

most Oct-6 mutant Schwann cells arrest at the promyelin stage of differentiation. 

In contrast, wild type or heterozygous Schwann cells progress to the myelinating 

phase during this period. Only during the second and third postnatal week do 

Oct-6 mutant Schwann cells initiate myelination. Thus Oct-6 appears required in 

promyelin Schwann cells to initiate myelination (Figure 10) (Jaegle et al., 1996). It 

has been suggested that down-regulation of Oct-6 in myelinating cells also depends 

on Oct-6. This suggestion is based on experiments, where the β-galactosidase gene 

expression was introduced into the Oct-6 locus and showed as a marker for Oct-6 

during different developmental stages (Bermingham et al., 1996; Jaegle et al., 1996). 

While expression of β-galactosidase is completely lost in the adult nerve of Oct-

6+/- animals, Oct-6 knock out animals still express β-galactosidase after completing 

myelination (Jaegle and Meijer, 1998). This result suggests that the Oct-6 locus is 

not down-regulated in the Oct-6-/- nerves. Thus Oct-6 itself is needed for this down- 

regulation. 

The fact that Schwann cells, in the absence of Oct-6, do eventually initiate 

myelination suggested that an Oct-6 redundant factor exist in Schwann cells. 

Recently, such a factor (Brn-2) has been identified which is a member of the POU 

class III family (Jaegle et al., 2003). The Brn-2 expression pattern in Schwann cells 

is very similar to Oct-6. In Oct-6 deficient nerve, Brn-2 expression is normally up-

regulated as in wild type nerves but the peak of expression is protracted. Brn-2 

is down-regulated once myelination in Oct-6 mutant animals starts. In summary, 

Oct-6 gene expression in Schwann cells is under the control of axonal signals 

and possibly Oct-6 in turn regulates expression of down-stream genes involved 

in myelination, including Krox-20 (Ghislain et al., 2002; Topilko, 2001). Once 

myelination is underway, Oct-6 acts as a repressor by down-regulating its own 

expression (Jaegle and Meijer, 1998). It has been suggested that this functional 

change results from interaction of Oct-6 with different partners. 

To uncover the identity of axonal signals regulating Oct-6 gene expression, 

it is needed to understand how Oct-6 gene expression is regulated. Recently, 

we identified a Schwann cell specific regulatory element within the Oct-6 locus 

(Mandemakers et al., 2000). This element is sufficient to drive the temporally correct 
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expression of a reporter gene or of Oct-6 in the Schwann cell lineage of transgenic 

mice. 

1.10.5 Zinc finger transcription factors

Krox-24 (Egr-1) and Krox-20 (Egr-2) belong to the zinc finger transcription 

factor family also known as Egr (early growth response factor). All members of 

this family have a highly conserved DNA-binding domain consisting of three zinc 

finger motifs. Each motif binds to three nucleotides of a nine base pair GC-rich DNA 

element (Pavletich and Pabo, 1991). Krox-20 is involved in hindbrain segmentation, 

bone formation and Schwann cell development. Most Krox-20 mutant animals die 

shortly after birth although some survive for up to two weeks (Levi et al., 1996; 

Schneider-Maunoury et al., 1993; Swiatek and Gridley, 1993; Topilko et al., 1994). 

Krox-24 is involved in pituitary development where it has a direct role in regulation 

of the luteinizing hormone β-subunit. Krox-24-/- animals show growth defect and 

both sexes are sterile due to severe pituitary dysfunction. Despite the fact that Krox-

24 is expressed in Schwann cells, no developmental defects were observed in this 

cell lineage. (Lee et al., 1996; Topilko et al., 1998). Study of the Krox-24 expression 

pattern, using a β-galactosidase knock in reporter gene, revealed that Krox-24 is 

expressed in Schwann cell precursors from embryonic day 10.5 (E10.5) until E14.5 

in both cranial and spinal nerves (Topilko et al., 1997). Krox-20 expression is also 

reported around E10.5 but it is restricted to a small glial cell population close to 

the neural tube. These cells form the CNS/PNS boundary and are usually referred 

to as boundary cap cells. Around E15.5, Krox-24 expression is down regulated 

while Krox-20 expression becomes activated (Topilko et al., 1997). In a mature 

myelinated peripheral nerve, Krox-20 is expressed in the myelinated Schwann cells 

while Krox-24 expression is restricted to non-myelinating Schwann cells. During 

degeneration/regeneration, such as in a nerve lesion experiment, Schwann cells 

dedifferentiate distal to the site of lesion and after removal of myelin and cell debris 

(Wallerian degeneration), associate to regenerate axons and differentiate once 

more. It has been reported that several marker genes for mature myelinating cells, 

including Krox-20, are rapidly down-regulated while marker genes for immature 

Schwann cell, such as Krox-24, are up-regulated (Topilko et al., 1997). Although 

it has been suggested that the switch from Krox-24 to Krox-20 may regulate the 
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transition from Schwann cell precursor to immature Schwann cell, there is no 

direct evidence for such a role (Topilko et al., 1997). In the mouse, transition from 

Schwann cell precursor to immature Schwann cell happens around E14-E15 and 

in the absence of Krox-24 this transition still occurs. Further, in Krox-24 mutant 

animals no Schwann cell abnormalities are reported (Lee et al., 1996; Topilko et al., 

1998). Krox-20-/- animals have shown a clear role for Krox-20 in transition from the 

promyelinating to myelinating Schwann cells (Topilko et al., 1994). In the absence 

of Krox-20, Schwann cells show a permanent arrest at the promyelin stage in which 

Schwann cells establish a 1:1 ratio and ensheath axons but do not form a myelin 

sheath (Topilko et al., 1994). Examination of promyelin Schwann cells of Krox-20-

/- nerves at p12 showed high proliferation as well as apoptosis still resulting in a 

normal number of Schwann cells in comparison to wild type nerve (Zorick et al., 

1999). Oct-6 expression does not diminish in the peripheral nerve of the Krox-20 

mutants and these mutants show a severe reduction in myelin protein expression, 

including P0, MBP, and PMP22 (Topilko et al., 1994). It is also suggested that the 

high expression of Oct-6 in the Krox-20 knock out nerve causes the high proliferation 

rate of promyelinating Schwann cells. Besides proliferation, the increase in 

apoptosis is explained by competition for limited axon-associated survival signals, 

which is in disagreement with evidence suggesting the existence of an autocrine 

survival pathway in promyelin Schwann cells (Cheng et al., 1998; Dowsing et al., 

1999; Meier et al., 1999; Zorick et al., 1999). Recently, it has been suggested that 

Krox-20 is involved in altering the response of promyelinating Schwann cells to the 

Neuregulin and TGF-β pathways, which are involved respectively in proliferation 

and apoptosis in Schwann cells (Parkinson et al., 2001; Salzer et al., 1980).

Recent genetic studies demonstrated that Krox-20 expression is regulated by 

Oct-6 (Ghislain et al., 2002). This study has shown that Krox-20 expression is under 

the control of two different cis-acting regulatory elements, which independently 

act in immature and myelinating stages. These two elements are named as the ISE, 

active in immature Schwann cells and the MSE, active in myelinating Schwann 

cells. Both elements function in an axon-dependent manner. Interestingly, multiple 

potential Oct-6 binding sites are identified in the MSE, suggesting that Oct-6 directly 

regulates Krox-20 at the time of myelination. Subsequently, Krox-20 itself regulates 

multiple genes involved in myelin formation. Microarray expression analysis has 
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supported a role for Krox-20 in expression of genes like MPZ, PMP22, MBP, MAG, 

Cx32, and periaxin (Nagarajan et al., 2001). Krox-20 is also likely to be involved in 

regulating genes required for the synthesis of lipids and cholesterol.

Different Krox-20 mutations have been identified in patients with de- or 

dys-myelinating neuropathies, including congenital hypomyelinating neuropathy, 

Charcot-Marie-Tooth type 1 and Dejerine-Sottas syndrome. These diseases 

underscore the importance of Krox-20 in the myelination process. Until now, 

five dominant mutations have been identified in the zinc finger-binding domain 

of Krox-20 (Bellone et al., 1999; Timmerman et al., 1999; Warner et al., 1999). 

Nagarajan and colleagues (2002) have shown that the neuropathies associated 

with mutations in the DNA binding domain (DBD) of Krox-20 result in a dominant 

negative pathomechanism. The dominant negative inhibition of DBD mutations 

in Krox-20 can explain why Krox-20 heterozygous mice show no phenotype, while 

heterozygous Krox-20 DBD mutant patients are affected. In addition to dominant 

DBD domain mutations, a recessive mutation has been identified in the R1 

domain of Krox-20. This domain serves as an interaction interface for NGFI-A-

Binding Protein-1 (NAB1) and NAB2 proteins (Warner et al., 1999). These proteins 

negatively regulate the activity of Krox-20. It is suggested that in the absence of the 

inhibitory effect of NAB2, the higher amount of mutant protein in the nucleus leads 

to deregulation of target genes (Warner et al., 1999).

1.11. Scope of this thesis
In the introductory part of this thesis an overview of the current knowledge 

about Schwann cells and their development and the role of transcription 

factors during Schwann cell development has been provided. In part two of the 

introduction, several aspects of gene expression and cis-regulatory elements were 

discussed. In order to gain an understanding of the transcriptional regulatory 

networks that govern the development of the peripheral nerve tissue we analysed 

the cis-regulatory element within the Oct-6 locus that drive Schwann cell regulated 

expression. We demonstrated that this element is essential for Schwann cell 

regulated expression but does not contribute to other aspects of the Oct-6 expression 

pattern. The results of this study are described in chapter 2. Chapter 3 describes 

experiments in which we aimed to further define the functional domains within 
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the Schwann cell enhancer. The study described in chapter 4 identifies Brn-2 as an 

important Oct-6 redundant factor in Schwann cells. In addition, the results of the 

targeted deletion of Brn-2 and double Oct-6/Brn-2 knock out study are discussed in 

the same chapter. Finally, in chapter 5 the results obtained in the previous chapters 

are summarized and some future directions are discussed.
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Abstract
The Oct-6 Schwann cell enhancer (SCE) is both required and sufficient to 

direct regulated expression of the Oct-6 transcription factor gene during Schwann 

cell differentiation.  In this study we used a combination of functional reporter gene 

assays in transfected Schwann cells and transgenic mice and comparative genome 

analysis to identify regions within the 4.3 kb Schwann cell enhancer that are of 

functional importance. We identified two regions within the SCE that function as 

enhancers in transfected Schwann cells. These regions correspond to sequences 

that are highly conserved in the genomes of rat, human and dog and are named 

homology region 1 (HR1) and 2 (HR2). Although HR1, and to a lesser extent also 

HR2, functions as an enhancer in transfected Schwann cells, neither HR1 nor HR2 

has significant enhancer activity in Schwann cells of transgenic mice. However, the 

combination of HR1 and HR2 shows full activity, demonstrating that the Oct-6 SCE 

consists of at least two interdependent elements. These data suggest that multiple 

signalling pathways are integrated at the SCE to activate Oct-6 in Schwann cells at 

the appropriate time and level.

Introduction
Schwann cells, the main glia cells of the vertebrate peripheral nervous 

system (PNS), originate from the neural crest and differentiate in close association 

with axons through a number of developmental stages to give rise to the two 

morphologically distinct Schwann cell types that can be observed in the mature 

peripheral nerve. Myelinating Schwann cells generate and maintain a multi-lamellar 

insulating sheath around an associated axon while non-myelinating Schwann 

cells accommodate several smaller axons in cytoplasmic cuffs. The diversion of 

embryonic Schwann cells along a myelinating or non-myelinating differentiation 

route is primarily controlled by the axons with which the cells associate (Jessen 

and Mirsky, 2002).

Although the nature of the axonal signal(s) that promote myelination is 

unknown, two Schwann cell autonomous regulators of myelination have been 

identified and studied most extensively over the last decade. These are the POU-

domain transcription factor Oct-6/Tst-1/Scip/Pou3f1 (referred to as Oct-6 in this 

paper) and the zinc finger transcription factor Krox20 (Egr-2) (Topilko and Meijer, 
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2001). Both transcription factors are expressed dynamically in the Schwann cell 

lineage during development and nerve regeneration (Scherer et al., 1994; Zorick et 

al., 1996). Oct-6 expression is initiated in Schwann cell precursors and its regulated 

expression depends on continued axonal contact (Blanchard et al., 1996; Scherer 

et al., 1994). The highest levels of Oct-6 protein are observed at the promyelin 

stage of cell differentiation after which Oct-6 levels rapidly decline in actively 

myelinating Schwann cells (Arroyo et al., 1998). A role for Oct-6 in regulation 

of the myelination program is suggested by the analysis of the peripheral nerve 

phenotype observed in Oct-6 deficient and mutant mice (Bermingham et al., 1996; 

Jaegle et al., 1996; Jaegle and Meijer, 1998). In the absence of Oct-6, Schwann cells 

show a delay in the transition from the promyelin to the myelinating stage of cell 

differentiation. Similarly, Krox-20 deficient animals show a block at the promyelin 

stage of Schwann cell differentiation while mutations in the Krox-20 gene are 

associated with particular forms of hereditary motor and sensory neuropathies in 

man (Timmerman et al., 1999; Topilko et al., 1994; Warner et al., 1998). Genetic 

and cell biological studies have shown that Oct-6 and Krox-20 act in a genetic 

cascade (Topilko and Meijer, 2001). Oct-6 regulates the expression of a number of 

down-stream genes including Krox-20 (Blanchard et al., 1996; Ghislain et al., 2002). 

Consequently Krox-20 regulates an additional set of genes such as the major myelin 

genes and those involved in lipid metabolism (Nagarajan et al., 2001).

Since Oct-6 is the first transcription factor in this genetic hierarchy that is 

up-regulated in response to inter- and/or intra-cellular signals, it is important 

to understand how this gene is regulated. Previously, we identified a cis-acting 

regulatory element located 10 kilobases (kb) down-stream of the Oct-6 gene 

promoter and named it the Oct-6 Schwann cell enhancer or SCE. This 4.3 kb 

DNA element is characterized by the presence of two DNaseI hypersensitive 

sites (HSS) in chromatin of Oct-6 expressing cells (Mandemakers et al., 2000). We 

also demonstrated that the SCE is the decisive cis-regulating element governing 

Schwann cell-specific expression of the gene and that the SCE does not contribute 

to other aspects of the Oct-6 gene expression pattern (Ghazvini et al., 2002). To 

reveal the presence of putative cis-regulatory elements within the boundaries of 

the 4.3 kb SCE, we compared SCE orthologous sequences in the genomes of several 

mammalian species. This analysis revealed the presence of two highly conserved 
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regions, named HR1 and HR2, one of which (HR1) corresponds with one of the 

DNaseI HSS’s mapped in our earlier studies (Mandemakers et al., 2000). We first 

tested the relevance of these elements for SCE function in transfected primary 

Schwann cells and found that both conserved elements contribute to full enhancer 

activity. Subsequent analysis in transgenic mice revealed that neither HR1 nor HR2 

has significant enhancer activity. However, the combination of the two elements 

exhibits full SCE activity, suggesting that protein complexes assembled on both 

DNA elements act together to regulate expression from the linked promoter in 

Schwann cells.

Results

Phylogenetic analysis of the SCE

Comparative genomics is a powerful tool for identifying genes, functional 

domains and regulatory elements (Cooper and Sidow, 2003). Previously, we reported 

the identification of the human SCE and showed that this fragment, like its mouse 

orthologue, is sufficient to direct Schwann cell specific expression of a LacZ reporter 

gene in transgenic animals (Mandemakers et al., 2000). This result demonstrated 

that the regulatory elements for the Schwann cell specific expression of the Oct-

6 gene are conserved between human and mice. To further define this and other 

regulatory regions within the Oct-6 locus we compared the genomic sequence of 

the Oct-6 locus from mouse, human and rat using the Vista phylogenetic alignment 

tool (http://www-gsd.lbl.gov/vista) (Couronne et al., 2003; Shah et al., 2004). Figure 

1A illustrates the evolutionary conservation between the mouse Oct-6 locus and 

the human and rat Oct-6 locus as a percentage identity plot. Percentage identity 

is calculated for every nucleotide within a 100 bp wide window, 50bp upstream 

and 50bp down-stream of that nucleotide. The homology cut off is set at 50% for 

the human sequence and, because of the shorter evolutionary distance between 

mouse and rat, at 90% for the rat. The positions of previously mapped DNaseI 

hypersensitive sites are indicated above the graph (Mandemakers et al., 2000). As 

expected, high sequence conservation among the three mammalian species is found 

in the Oct-6 gene itself, including its long 3’UTR sequence. Additional regions of 

high sequence conservation are found up-stream and down-stream of the structural 
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gene. Some of these conserved sequences coincide with the previously mapped 

DNaseI hypersensitive sites (Figure 1).

 Within the limits of the previously defined Schwann cell enhancer element 

two conserved blocks of high sequence conservation are present (Figure 1B). We 

refer to these sequence blocks as Homology Region 1 (HR1) and Homology Region 

Figure 1
A. Genomic comparison of Oct-6 orthologous sequences in the genomes of mouse, human 
and rat using the VISTA alignment tool. Conservations levels greater than 50% are shown 
for the mouse versus human sequence comparison and 90% for the mouse rat comparison. 
The positions of the Oct-6 coding sequence, Oct-6 SCE, and DNaseI hypersensitive sites are 
indicated. The position of the different repeat elements such as SINE, LINE, and LTR are also 
shown above the plot. The homology above the 75% in mouse/human and above the 95% in 
mouse/rat has shown in colour. 
B. VISTA graph showing an enlargement of the conserved human and mouse Oct-6 SCE 
region. Two conserved blocks of high sequence conservation within the Oct-6 SCE are 
indicated and labelled homology 1 and 2 (HR1 & HR2). HR1 and HR2 both contain two 
separate highly conserved regions that are marked HR1a and HR1b, HR2a and HR2b.

2 (HR2). As shown in Figure 1B, DNaseI hypersensitive site 6 maps to HR1, while 

DNaseI HSS7 maps to non-conserved DNA sequences. The presence of HSS7 could 

be associated with the promoter region of a B2 repeat element.  

Deletion analysis of the SCE in transfected rat Schwann cells

To investigate which sequence elements within the SCE contribute to 

enhancer activity we generated a series of internal deletions and tested these for 

enhancer activity in transfected rat Schwann cells using a luciferase reporter assay. 
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Cultured primary rat Schwann cells express a number of genes that are normally 

expressed by non-myelinating Schwann cells in vivo. These genes include p75NTR 

(the low-affinity nerve growth factor receptor), brain derived neurotrophic factor 

(BDNF), and growth-associated protein 43 kDa (GAP-43) (Lemke and Chao, 1988). 

Elevation of intra-cellular cAMP levels results in up-regulation of myelination- 

associated genes such as Oct-6 and Krox-20 and down-regulation of genes associated 

with the non-myelinating phenotype (Figure 2A and (Arroyo et al., 1998; Monuki et 

al., 1989; Zorick et al., 1996). To test whether this in vitro differentiation paradigm 

could be used to dissect the Oct-6 SCE we first tested the responsiveness of the full 

enhancer. A luciferase reporter construct driven by the SV40 minimal promoter 

(pGL3 Promega) and the SCE cloned down-stream of the gene was transfected in 

rat Schwann cells in medium containing serum. Twenty-four hours later medium 

was removed and replaced by defined medium containing 20 µM Forskolin. 

Cells were harvested 24 hours later and tested for luciferase activity. As shown in 

Figure 2B, the SCE mediates an eight- to nine-fold activation of luciferase activity 

in response to the inductive signal, while a SV40 enhancer control is equally 

active in undifferentiated and differentiated cells. Activation of luciferase activity 

Figure 2 - A. Expression of Oct-6 in cultured rat Schwann cells, exposed to 20 mM Forskolin, 
is demonstrated in an electrophoretic mobility assay. Non-induced Schwann cells do not 
express Oct-6 (lane 1), while after induction of differentiation Oct-6 expression is detectable 
(lane 2). Addition of an Oct-6 polyclonal antibody results in the formation of a ternary 
complex with reduced electrophoretic mobility, confirming the presence of the Oct-6 protein 
in the complex (lane 3, SS=supershift). 2B. The Oct-6 SCE coupled to a luciferase reporter 
gene and a minimal SV40 promoter shows approximately ten times higher luciferase activity 
in differentiated Schwann cells versus non-differentiated Schwann cells. A generic enhancer, 
such as the SV40 enhancer is equally active in differentiated versus non-differentiated 
Schwann cells. Activation by the Oct-6 SCE of luciferase reporter gene expression depends 
on the presence of a minimal promoter, excluding the presence of a cryptic promoter within 
the Oct-6 SCE. 
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through the SCE is specific for Schwann cells, as the SCE does not mediate cAMP 

responsiveness in 3T3 cells (data not shown). 

Figure 3 - Schematic representation of the luciferase activity assay of Oct-6 SCE deletion 
constructs in Schwann cells. The position of the conserved HR1 and HR2 domains are 
highlighted. The position of DNaseI hypersensitive sites 6 and & 7 are indicated above the 
graph. Constructs 1 to 10 are overlapping deletions, generated in the context of the whole Oct-
6 SCE. Results are from one representative experiments performed in triplicate. Luciferase 
activity in cell extracts is normalized to β-galactosidase activity in the same cell extract. The 
values of luciferase activity are shown as a percentage of activity of the total SCE. The total 
experiment was performed at least three times and the results are reproducible.

We next tested the activity of the SCE deletion mutants in this differentiation 

paradigm (Figure 3).

Reporter gene activity of the various SCE deletion constructs is reported as 

a percentage of the full SCE activity. These results suggest that the major enhancer 

activity of the SCE is associated with sequences deleted in construct ∆3. Deletions 

in construct ∆10 result in a slight reduction of enhancer activity. The fact that ∆3 is 

located within the HR1, encouraged us to consider reduction in luciferase activity 

of deletion 10, since this deletion is also located within HR2. To determine whether 

the two regions HR1 and HR2 are relevant to SCE activity, we tested the luciferase 

activity of both regions in different combinations (Figure. 3). The combination of 
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both HR1 and HR2, as in construct ∆11, resulted in strong activation of reporter gene 

activity relative to the SCE. Also, HR1 alone (∆12) strongly activates transcription 

while HR2 only (∆13) marginally contributes to activity. These results suggest 

that indeed the major enhancer activity of the SCE is associated with HR1, in 

particular those sequences deleted in ∆3. We next tested whether these sequences 

(encompassing HR1a), deleted in ∆3, were sufficient to function as enhancer in 

Schwann cells. While HR1a sequences harbor considerable (D14 in Figure 3; 70% 

of full SCE activity) enhancer activity, its activity is further boosted when HR2a is 

included in the construct (D15 in Figure 3). Thus, HR1a and to a lesser extent HR2b 

function as enhancers in transfected Schwann cells and when combined, exhibit 

greater than additive activity. This analysis did not reveal a role for HSS7.

 
Deletion analysis in transgenic mice

In contrast to the data derived from the transfection studies described above, 

preliminary data from transgenic experiments did not reveal a role for HSS6/HR1 

or HR2 in SCE function (construct 2 and 3 in Figure 3B (Mandemakers et al., 

2000)). However, both these constructs terminated within HSS7, leaving open the 

possibility that HSS7 is required for HSS6/HR1 function in vivo. To resolve these 

issues we next examined the role of HSS6/HR1, HSS7 and HR2 in SCE function 

in vivo through the generation of transgenic mice carrying a LacZ reporter gene 

driven by the mouse heat shock protein 68 (hsp68) promoter (Rossant et al., 1991). 

LacZ reporter gene expression in neonatal Schwann cells was determined by whole 

mount X-Gal staining of founder transgenic mice. First we tested a construct that 

contains both HSS6 and HSS7. While around 80% of transgenic animals carrying a 

full SCE (construct 1 in Figure 4; 20 out of 26. This number is based on a summation 

of all transgenic animals generated with the full SCE) express the transgene in 

Schwann cells, only 1 out of 6 animals transgenic for construct 5 showed LacZ 

staining in the nerve, indicating that HSS6 and HSS7 are not sufficient to drive 

Schwann cell expression. Also, a construct containing HSS7 (construct 7) does not 

confer Schwann cell specific expression. Thus, both assays suggest that HSS7 does 

not play a role in activation of Oct-6 in Schwann cells. 

We next tested a set of constructs in which HR1, HR2 or both sequence 

elements are present. Neither HR1 nor HR2 alone is capable of directing Schwann 
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cell specific expression of the transgene (Figure 4 constructs 4 and 7 respectively). 

However, when both elements are combined 3 out of 4 founders expressed the 

Figure 4 - Functional 
dissection of the Oct-6 SCE 
in transgenic mice. The 
position of the conserved 
domains HR1 and HR2 are 
highlighted. The positions 
of the DNaseI hypersensitive 
sites 6 and & 7 are indicated 
above the graph. Transgenic 
founders were examined 
for expression of the lac-
Z reporter gene in sciatic 
nerve after 18 hours staining. 
In the columns next to the 
constructs, the number of 
the transgenics that express 
the reporter gene in Schwann cells are listed as #lacZ+ and the total number of the transgenic 
founders analysed as #tg.

reporter gene (Figure 4, construct 8) in Schwann cells, indicating that both elements 

are needed for full enhancer activity in vivo.

 

Phylogenetic comparison of SCE sequences from the mouse, human and dog 

genome (data not shown) reveals that HR1 and HR2 can be further subdivided in 

two regions (HR1a and b, HR2a and b respectively) of high sequence conservation 

(Figure 1A). As the luciferase assay suggests that the major enhancer activity of 

the SCE is associated with HR1a, we tested smaller versions of HR1 and HR2 in 

transgenic mice. First we tested HR1a alone. This element, like the entire HR1 

element, does not confer Schwann cell specific activation on the reporter gene 

(construct 3). However in combination with the HR2, 5 out of 5 transgenic animals 

now express the transgene in Schwann cells (construct 9). Next we tested the HR1a 

fragment in combination with the HR2b fragment and found that 3 out 5 transgenic 

founders express the transgene within the peripheral nerves (construct 10). Thus, 

the major enhancer activity within the boundaries of the SCE resides within 
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sequences covering HR1a and HR2b and these two elements are both required for 

Schwann cell specific activation of transcription.

Discussion
In the present study we have combined comparative genome analysis and 

functional analysis in cultured Schwann cells and transgenic mice, to identify and 

delineate two core elements that together make up the Schwann cell enhancer of 

the Oct-6 locus.

Comparative sequence analysis of mouse and human Oct-6 loci

Our initial comparative genome sequence analysis focused on approximately 

50kb surrounding the Oct-6 gene, a region for which HSS mapping data were 

available (Mandemakers et al., 2000; Mandemakers et al., 1999). This sequence 

analysis included human, mouse and rat sequences. In addition to the Oct-6 gene, 

including its promoter and long 3’ UTR, several strongly conserved sequences 

are found within the region analysed.  Two of the conserved regions correspond 

with the previously mapped HSSs 3 and 6. HSS6 is located within the Oct-6 SCE, 

approximately 10 kb down-stream of the Oct-6 CAP site (Mandemakers et al., 2000). 

HSS3 corresponds to a conserved sequence that is unique and that might be part of 

a transcription unit as one human est, derived from a pheochromacytoma, maps to 

this sequence. HSS3 is present in brain and ES cells, but not in liver or MES1 cells 

(Mandemakers et al., 2000). Additionaly, LacZ reporter constructs carrying DNA 

sequences encompassing HSS3 and HSS5 are expressed in the hair follicles of the 

skin (Mandemakers et al., 2000). It is therefore possible that HSS3 contributes to 

expression of Oct-6 in the skin. Further analysis of this element in transgenic mice 

should reveal the importance of this element for regulated expression of Oct-6 in 

these tissues. 

All other HSSs (2, 4, 5, 7 and 8) do not correspond to conserved sequences 

and most of them map to short repeat elements (SINE: see Figure 1). As many of 

these are actively transcribed by RNA polymerase III, it is likely that the DNaseI 

hypersensitivity is associated with transcriptional activity of these elements and not 

the Oct-6 gene (Deininger et al., 2003). Other conserved sequences could represent 

additional enhancer elements contributing to neuronal and skin expression of Oct-
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6. Alternatively, some of these sequences might be involved in interactions with the 

nuclear matrix as it has been shown that up to 10% of the conserved non-coding 

DNA sequences in the genome share characteristics of matrix attachment regions 

(MARs) (Glazko et al., 2003). Of specific interest is a conserved element located 

downstream of the SCE (grey arrowhead in Figure 1). This element shows 100% 

sequence conservation between mouse and human over a stretch of approximately 

250bp. This level of sequence conservation is even higher than that observed in the 

POU domain encoding region of the Oct-6 gene. Recently it was shown that this 

element is one of a family of approximately 500 DNA sequences, longer than 200bp, 

which are ultra-conserved in mammalian genomes (Bejerano et al., 2004). Some of 

these sequences are even conserved in the genomes of non-mammalian genomes. 

Also this ultra-conserved element in the Oct-6 locus is conserved in the genome of 

chicken and zebrafish (unpublished observations). Interestingly, the Brn-2 gene, 

which is expressed in Schwann cells in parallel with Oct-6, is also associated with 

an ultra-conserved sequence some 10 kb down-stream of the start codon of the Brn-

2 open reading fram. Indeed, these ultra-conserved DNA sequences are frequently 

found in close proximity or overlapping with genes encoding RNA and DNA 

binding proteins, particularly those involved in early embryonic development 

(Bejerano et al., 2004). The functional significance of these ultraconserved sequences 

is not known (Bejerano et al., 2004; Boffelli et al., 2004). 

Deletion analysis of SCE function

Deletion analysis in cultured Schwann cells revealed the presence of two 

regions within the SCE that exhibit enhancer activity. These regions correspond 

with sequences that are strongly conserved in mammalian genomes. Although 

both regions have enhancer activity in cultured Schwann cells, neither of the two 

have independent enhancer activity in vivo in transgenic mice. Instead, both the 526 

bp HR1a and 350 bp HR2b are required for activity in Schwann cells of transgenic 

mice. Why these elements behave different in the two assay systems is not clear. It 

is unlikely that these differences reflect the use of different minimal promoters (a 

minimal SV40 promoter in cultured Schwann cells versus a minimal hsp68 promoter 

in transgenic Schwann cells) or reporter genes in the different assay systems. Most 

likely these differences are caused by the difference in chromatin context (episomal 
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versus chromosomal) and cellular context (Schwann cells in a petri dish versus 

Schwann cells in a developing nerve). Such difference in behaviour of enhancers 

has been described for many enhancers and is generally attributed to the capacity 

of enhancers or locus control regions to influence chromatin structure or nuclear 

compartmentalization in a tissue–specific fashion (Dillon and Sabbattini, 2000). 

Conceptually, chromatin modulating activity and enhancer activity are functionally 

distinct mechanisms (Dillon and Sabbattini, 2000). Experimentally it is not possible 

to differentiate between these activities when reporter gene activity is the only 

experimental read out. It would therefore be of interest to investigate the histone 

acetylation status of the different transgene constructs and that of the DSCE allele 

in Schwann cells (Iizuka and Smith, 2003). At present, our data are compatible with 

the suggestion that enhancer function and chromatin modulating activity reside in 

two distinct elements. Alternatively, it is possible that HR1- and HR2-nucleoprotein 

complexes interact directly with complexes assembled at the promoter or through 

formation of a holo-complex. 

Enhancers are modular structures, which consists of arrays of transcription 

factor binding sites. Such arrays of high and low affinity binding sites are sufficient 

to integrate independent signals and convert them to a binary output: activation 

or repression of a linked gene promoter (Yuh et al., 1998). As discussed above, our 

data suggest that the SCE consist of at least two modules that are both required for 

activity in vivo. The signalling pathways that converge on these separate modules 

are not known yet. However, since Oct-6 mediates the initiation of myelin formation, 

signals that activate myelination in the PNS are likely candidates. It was shown 

by Lemke and colleagues that activation of PKA results in up-regulation of Oct-6 

levels in cultured Schwann cells (Monuki et al., 1989). We have tested our deletion 

constructs in Schwann cells in which PKA was activated by cAMP or forskolin. 

However, activation of reporter gene activity through the PKA pathway is probably 

indirect or requires additional Schwann cell specific factors, as the reporter cannot 

be activated by cAMP through the SCE in 3T3 cells, despite the presence of a CRE 

related sequence in HR1 (see supplementary information). Second, it has been 

suggested that the timing of myelination in the PNS results from counteracting 

neurotrophin signalling through the neurotrophin receptors p75NTR and TrkC 

(Chan et al., 2001; Cosgaya et al., 2002). This is of particular interest as it has been 



9090

Chapter 3

shown that signalling through p75NTR results in activation of NF-κβ. Recently it was 

demonstrated that NF-κβ is involved in the Schwann cell differentiation and that 

inhibition of NF-κβ results in a failure to up-regulate Oct-6 (Nickols et al., 2003). 

Whether NF-κβ directly regulates Oct-6 remains to be determined. No clear NF-κβ 

binding sites are present within the minimal SCE (HR1a and HR2b). In addition, it 

has been shown that the extent, and maybe the timing, of myelin formation in the 

PNS depends on Neuregulin-1 signalling through the ErbB2/ErbB3 heterodimeric 

receptor (Garratt et al., 2000; Michailov et al., 2004). 

It is not known yet which transcription factors are the targets of these 

intracellular signals. Searching for potential transcription factor binding sites within 

the SCE using bio-informatics is of limited use as transcription factor DNA binding 

sites are notoriously degenerate. In addition, binding sites that are not represented 

in the database will be missed. Phylogenetic filtering for conserved binding sites has 

not been successful yet as the mammalian SCE sequences that have been analysed 

are too homologous. It is expected that inclusion of orthologous sequences from 

non-placental mammals such as opossum and rat kangaroo will greatly increase 

the power of this comparative analysis. Such comparison will prioritise potential 

binding sites for functional analysis in rat Schwann cells and transgenic mice. 

Materials and methods

Primary Schwann cell cultures

Cultures of Schwann cells were set up from postnatal day 1 to 4 rat sciatic 

nerves as described before (Brockes et al., 1979; Morrissey et al., 1991) with some 

modification. During dissection, nerves were collected in L-15 Leibovitz. Nerves 

were transferred to L-15 medium containing 0.1% collagenase (Boehringer), teased 

by dissections needles and incubated for 30 min at 37°C by regularly pipeting up 

and down in order do disrupt the nerves. Collagenase reactions were stopped by 

washing cells in L-15, 10% FCS twice. After washing, cells were plated on PRIMARIA 

tissue culture dishes (Becton Dickinson) in CB medium (Einheber et al., 1993), and 

incubated overnight at 37°C in presence of 5% CO2. The next day, medium was 

replaced by CB + 10µM ARA-C (Sigma). For expansion of cultures, cells were grown 

in proliferation medium, containing Dulbecco's modified Eagle's medium (Gibco), 
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3% FCS, 2µM Forskolin (Sigma) and 1% penicillin-streptomycin. Oct-6 induction is 

achieved by changing medium to Defined medium containing DMEM/F12 (Gibco), 

N2 supplement, antibiotics and + 100µM CTP-cAMP or 20µM Forskolin.

Transfection and luciferase assays

Cells were seeded in 6-well PRIMARIA plates (Becton Dickinson) and grown 

to 70-80% confluence. Rat Schwann cells were transfected with 1.125µg luciferase 

construct and 0.375µg pCMVβgal expression plasmid in the presence of fetal calf 

serum, using the FuGENE 6 transfection reagent (Roche). Cells were washed 18 

hours after transfection, and medium was changed to DF medium + 100µM CTP-

cAMP (Sigma). 72 Hours after transfection, cells were washed with PBS and lysed 

in Reporter lysis buffer (Promega). β-Galactosidase (β-gal) levels were measured 

in an activity assay using 2-nitro-phenyl-galacto-pyranoside (ONPG) substrate. 

Luciferase was assayed on a luminometer (TOPCount NXTv2.13, Packard) using 

the Steady GLO luciferase assay substrate from Promega. All the experiments were 

performed at least three times each in triplets. 

Cloning (Plasmid constructs)

Mouse SCE sequence (4.5 kb) was amplified from a genomic subclone 

(129sv DNA), using primers 5’SAL SCE: ATCGCGTCGACCTTCAGGTCTCCGT

GAGTAG and 3’BglII SCE: GAAGATCTGGATAAAGCCTAAAGGTTGGCCAT

GAC and cloned into SalI-BglII site of pSP72 plasmid (Promega). Deletions 1 to 

8 were generated by amplification of SCE-pSP72 using two primers in opposite 

directions:

Deletion construct Primers

SCE D1 SCE1for primer (CGGAATTCGTCAAGTTCTGGGCTAAATGTAAGG)
3’BglII SCE (GAAGATCTGGATAAAGCCTAAAGGTTGGCCATGAC)

SCE D2 SCE1as primer (CGGAATTCAGGCTGTATCAACTATAGCTTCTTTGG)
SCE2for primer (CGGAATTCCAGAATCTGGGCACAGCTGG)

SCE D3 SCE2as primer (CGGAATTCTCGAGCTGAGTCCTCAGGGCC)
SCE3for primer (CGGAATTCAGGCAACCTCCAACCTACC)

SCE D4 SCE3as primer (CGGAATTCGGTCTGGCCCATCAGCCTACC)
SCE4for primer (CGGAATTCCATGAAGTAGCACCAACCCTCC)

SCE D5 SCE4as primer (CGGAATTCAAGTTGAATATGCAGGACAGTGGC)
SCE5for primer (CGGAATTCTGGCACCCCATTCTGTCTAATC)

SCE D6 SCE5as primer (GCGAATTCGGGAGGTTTCCAGGAGCTTGCC)
SCE6for primer (CGGAATTCGGCATATGTGTTGAAGTGCATG)
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SCE D7 SCE6as primer (CGGAATTCGAAACAGGTTTCTCTTTCTTTCCCCTC)
SCE7for primer (CGGAATTCTGTCTGAAGACAGCTACAGTGTACTTAC)

SCE D8 SCE7as primer (CGGAATTCCCATTACAGATGGTTGTGAGCC)
SCE8for primer (CGGAATTCAAGGTAGTGGGAGGGCAGAG)

SCE D9 SCE8as primer (CGGAATTCGTATTCGTGTGTGTCCGGCTGAC)
SCE9for primer (CGGAATTCAAGAAGTGGTGAGGAGGGCC)

SCE D10 5’SAL SCE (ATCGCGTCGACCTTCAGGTCTCCGTGAGTAG)
SCE9 as primer (CGGAATTCATCATGCTTGAAGGACTCCCCAG)

Amplified PCR products were digested with EcoRI and ligated back. Next, 

deletion fragments were isolated as a Sal I-Bgl II and cloned into Sal I-Bam HI 

sites of pGL3-promoter vector. SCE D11 is generated by cloning products of Sal I 

primer 10 (TGTCGACTTGAGGATGTCGCCTGCCCTCTAG) and EcoRI primer 11 

(AGAATTCCCAGTCCTTAGCAATGAAGC) as Sal I-EcoRI fragment and SCE8for 

and SCE3’BglII primers as a EcoR I-Bgl II fragment into Sal I-Bam HI site of pGL3-

promoter luciferase vector. D14SCE (HR1a) is generated by cloning product of 

SCE12for and SCE 12as primers as a Sal I-EcoRI into pSP72 vector. D15SCE (HR1a 

and HR2b) by cloning the Sal I- EcoRI fragment of HR1a (product of SCE12for and 

SCE12as primers) and EcoRI-Bgl II fragment of HR2b (generated by cloning the 

PCR product of primer SCE9for and 3’BglII SCE into EcoRI- Bgl II) into pGL3p 

vector. 

Transgenic mice

The generated deletion constructs were cloned into Hsp68-LacZ vector 

referred as p610ZA by (Mandemakers et al., 2000) with some adaptations. DNA 

fragments were excised from each deletion construct using appropriate restriction 

enzymes and isolated from agarose gel. The isolated DNA was purified using 

elutip-D-mini columns (Schleicher and Schull). The DNA was dissolved in injection 

buffer (10mM Tris-HCl pH 7.5, 0.08mM EDTA pH 8.0) and injected into fertilised 

eggs derived from a FVB/N x FVB/N mating as described (Hogan, et al., 1994). 

Pups born at postnatal day 1 were tested for the Lac-Z expression by whole mount 

β-galactosidase staining and analysed for genotype by Southern blotting.

 
Whole mount β-galactosidase staining

Postnatal day 1 mice were sacrificed by decapitation followed by fixation in 

lac-Z fixative (1% Formaldehyde, 0.2% Gluteraldehyde, 2mM MgCl2, 5mM EGTA, 
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0.02% NP40 in PBS) for 1 hour at room temperature (RT). Tissues were washed in 

PBS/0.02% NP40 for 3 times at RT. β-Galactosidase staining done overnight at RT 

in staining solution (5mM K3Fe(CN)6, 5mM K4Fe(CN)6.3H2O, 2mM MgCl2, 0.01% 

Nadeoxycholate, 0.02% NP40 and 1mg/ml X-gal). The staining was stopped by 

extensively washing in PBS/0.02% NP40 and post-fixed in a 4% formaldehyde/PBS 

fix. 
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Although it is generally accepted that the fate decision in immature 

Schwann cells to adopt a myelinating or a non-myelinating phenotype results 

from interactions with axons, the molecular identity of these interactions and the 

subsequent down-stream events within the Schwann cells are still largely unknown. 

In the last decade, a substantial body of information has been gathered about the 

intracellular signaling pathways and transcription factors underlying myelination. 

Given the complexity of the myelination process, which involves dramatic changes 

in cell morphology and metabolism, it seems reasonable to expect that multiple 

signaling pathways are involved in this process.

Signalling pathways will converge on transcription factors involved in the 

gene expression program of myelination. Prime targets are the transcription factors 

Oct-6 and Krox20. Genetic and cell biological studies have shown that Oct-6 is the 

first of these two transcription factors to be strongly activated in promyelinating 

cells. This results in the activation of Krox20 and up-regulation of myelin gene 

expression (Topilko and Meijer, 2001).

In this thesis, we focus on the role of the Schwann cell specific enhancer 

(SCE) in regulating Oct-6 gene expression during differentiation of Schwann cells. 

Previous studies in our group have shown that Oct-6 SCE is sufficient for correct 

temporal expression of the Oct-6 gene in Schwann cells of the developing and 

regenerating peripheral nerve tissue. One important question, addressed in this 

thesis, was whether the Oct-6 SCE is also required for Oct-6 expression in Schwann 

cells. This question is answered in chapter 2 through the generation and analysis of 

mice in which the SCE is homozygously deleted. We showed that the Oct-6 SCE is 

the decisive cis-regulatory element governing Schwann cell specific expression. In 

addition, we demonstrated that the SCE does not contribute to other aspects of the 

Oct-6 gene expression pattern. 

The peripheral nerve phenotype of Oct-6DSCE/DSCE mice is very similar to Oct-

6βgeo/βgeo mice, strongly indicating that the phenotype of Oct-6 null mice is Schwann 

cell autonomous. As the DSCE allele is a Schwann cell specific hypomorphic Oct-

6 allele and the peripheral nerve phenotype in Oct-6DSCE/DSCE mice is slightly less 

severe than in Oct-6 null mice, it is possible that the low residual amounts of Oct-6 

present in the DSCE homozygous Schwann cells results in a moderately increased 

rate of Schwann cell differentiation relative to Oct-6 null Schwann cells. Therefore, 
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we suggested that the level of Oct-6 is important for Schwann cell differentiation. 

This conclusion is supported by results from another study by Weinstein and 

colleagues. Transgenic mice expressing a truncated Oct-6 protein (DSCIP) under 

control of the P-zero promoter in Schwann cells (Weinstein et al., 1995) show 

premature myelination and hypermyelination. The use of the P-zero promoter 

results in premature high-level expression of DSCIP protein in immature Schwann 

cells. The premature myelination, hypermyelination and frequent polyaxonal 

myelination all suggest that DSCIP functions as a dominant positive form of Oct-6 

(Wu et al., 2001). Taken together, these results indicate that Oct-6 acts in a dosage-

dependent manner.

In chapter 3, we focused on the structure of the Oct-6 SCE. Through pairwise 

sequence comparison of SCE orthologous sequences in the genomes of human, 

mouse, dog and rat, we identified two highly conserved regions within the 

boundaries of Oct-6 SCE. Using a Schwann cell transfection assay we demonstrated 

that homology region 1 (HR1) acts as a strong enhancer while homology region 2 

(HR2) exhibits a weak enhancer activity in vitro. We also demonstrated that the 

major enhancer activities are contained within the HR1a and HR2b sub-regions. 

In contrast, neither HR1a nor HR2b exhibit any Schwann cell specific enhancer 

activity in transgenic animals. However, the combination of the two elements 

shows full SCE activity.

At present, we do not know what transcription factors bind to these elements 

and how they interact to form a functional enhancer. However, preliminary DNaseI 

footprinting experiments, using protein extracts of differentiated Schwann cells, 

indicated the presence of several putative binding sites for transcription factors 

within the HR1a sequence. The combined approach of DNAse I footprinting 

and using bioinformatics should produce candidate transcription factors whose 

relevance should study in details. 

We suggest that Oct-6 SCE consists of at least two separate modules that 

might independently or interdependently bind to PIC (Fig. 1). Most likely, each 

module includes multiple binding sites to recruit specific regulatory nucleoprotein 

complexes and architectural proteins, like in many other eukaryotic enhancers 

(Carey, 1998). What are the contributions of HR1a and HR2b to full enhancer 

activity? The current view for transcription of any gene is that diverse regulatory 
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cues integrate at the promoter to adjust the level of RNA transcription (Goodrich 

et al., 1996). It might be expected that different signaling pathways involved in the 

initiation of the myelination program, converge on these separate modules and 

activate Oct-6 gene expression, which in turn regulates the onset of myelination. In 

recent years, several signaling molecules and their receptors have been implicated 

in myelination of the PNS, including the neuregulin, adenosine triphosphate, 

steroid hormones, and the neurotrophins BDNF and NT3.

Several lines of evidence suggest that neurotrophins, in particular BDNF and 

NT3, have important roles not only during Schwann cell development (cell survival 

and growth) but also in myelination (Meier et al., 1999). It is known that BDNF 

and NT3 can bind to different receptors from the tropomyosine-related kinase 

(Trk) family of tyrosine kinase receptors (Roux and Barker, 2002) and p75, the low 

affinity neurotrophin receptor (p75NTR), a member of the TNF receptor superfamily 

(Baker and Reddy, 1998). It is assumed that during Schwann cell proliferation, NT3 

activation of TrkC inhibits myelination and at the same time enhances Schwann 

cell migration. TrkC induces the migration of the Schwann cells through the Rac1/

Cdc42/c-jun N-terminal kinase signaling pathway (Yamauchi et al., 2003). At the 

onset of myelination, NT3 expression is down-regulated, while BDNF continues to 

be expressed during myelination (Cosgaya et al., 2002). It has been demonstrated 

that activation of p75NTR by BDNF, prior to myelination, has two striking effect on 

promyelinating Schwann cell. First, the interaction of BDNF and p75NTR stimulates 

the Scr kinase-dependent activation of guanine-nucleotide exchange factors Vav2 

and RhoA, leading to inhibition of Schwann cell migration (Yamauchi et al., 2004). 

Second, this binding enhances myelination (Cosgaya et al., 2002). Schwann cells 

express p75NTR during development up to myelination, but this receptor is rapidly 

down-regulated at the onset of myelination. Therefore, it is proposed that p75NTR 

is required for the initiation of myelination but not myelination itself (Hempstead 

and Salzer, 2002). It is likely that p75NTR also plays a role in re-myelination following 

nerve injury, as it is rapidly up-regulated in reactive Schwann cells (Hempstead 

and Salzer, 2002). The signaling events associated with myelination down-stream 

of p75NTR are poorly understood. It is likely that p75NTR interacts with down-stream 

signaling elements through interaction with TNFR-associated factors (TRAFs). It 

has been demonstrated that some TRAFs link the TNF receptors to NF-κB signaling 
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(Bradley and Pober, 2001). Therefore, NF-κB is an attractive candidate regulator 

of Schwann cell myelination. Indeed, compelling evidence has been provided 

to suggest that NF-κB is involved in Schwann cell differentiation and possibly 

myelination (Nickols et al., 2003). Inhibition of NF-κB in neuron-Schwann cell co-

cultures or DRG explants of p65-/- mice, show a significant decrease in myelination 

and an arrest of Schwann cell differentiation at the promyelin stage. However, it 

remains unclear what the exact role of NF-κB is in myelin formation. Nickols and 

colleagues (2003) also demonstrate that in the absence of NF-κB, Oct-6 is not up 

regulated in promyelinating Schwann cells. It is therefore possible that Oct-6 is a 

direct target of NF-κB. If so, one would expect to find NF-κB binding sites within 

the Oct-6 SCE, in particular within the regions defined in this thesis, namely HR1a 

and HR2b. However, we could not find any potential NF-κB binding site within 

HR1a and HR2b, using the Mathinspector or Transfac algorithms. Furthermore, 

a constitutively active form of NF-κB does not activate a SCE reporter construct 

(unpublished observations). Therefore the link between NF-κB and Oct-6 in 

regulating myelination remains unclear.

Neuregulin-1 (Nrg-1) is not only involved in early survival of Schwann 

cell precursors but also provides, at later stages of development, a signal for the 

regulation of myelin sheath thickness (Michailov et al., 2004). It has been known for 

a long time that myelin sheath thickness (the number of myelin wraps) and axonal 

diameter correlate positively (Friede and Samorajski, 1967). Indeed, axonal cues 

determine the number of myelin wraps produced by oligodendrocytes or Schwann 

cells (Fanarraga et al., 1998). Using a transgenic approach, it was demonstrated that 

the amount of axonal Nrg-1 type III determines the number of wraps of Schwann 

cells around the axon (Michailov et al., 2004). Neuronal overexpression of Nrg-

1 causes hypermyelination of axons in vivo in transgenic animals. Furthermore, 

absence of ErbB2 expression in homozygous ErbB2 animals results in reduced 

numbers of myelin wraps. Thus, neuregulin-1 signaling is involved in the number 

of myelin wraps produced. It is not clear whether neuregulin-1 is also involved in 

the initiation of myelination. Previously, it has been shown that neuregulin-1 type III 

is required for survival of Schwann cell precursors during embryonic development 

(Garratt et al., 2000a; Garratt et al., 2000b; Lemke, 1996). In contrast, neuregulin 

induces demyelination and dedifferentiation of Schwann cells in myelinating 
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sensory neuron-Schwann cell co-cultures (Zanazzi et al., 2001). It appears that 

the effect of neuregulin-1 is strongly context dependent. One explanation of this 

phenomenon has been provided by Colognato and colleagues who suggest that 

the effect of Nrg-1 is modified by integrin signaling (Colognato et al., 2002). Their 

model suggests that interaction of Nrg-1/ErbB2 and integrins leads to activation of 

MAPK signaling for the Schwann cell survival, while interaction of Nrg-1 and ErbB 

receptors activate the phophatidyl-inositol-3-phosphate (PI3) kinase and induce 

differentiation. 

A third signal potentially involved in regulating the onset of myelination 

in the PNS is provided by electric activity of the axon. (Stevens et al., 1998). Some 

studies have shown that the low frequency impulse (0.1 Hz) activity of axons 

inhibits myelination, while higher impulse activity (1 Hz) has no effect (Stevens et 

al., 1998). In vitro studies showed that lower stimulation activity of axons decreases 

expression of the cell adhesion molecule L1-CAM. Previously, it was suggested 

that L1-CAM has a critical role in initiation of myelination (Seilheimer et al., 1989a; 

Seilheimer et al., 1989b; Wood et al., 1990). It is also suggested that during Schwann 

cell development, impulse activity might play a role in the onset of myelination, 

and that this effect is mediated through adenosine triphosphate (ATP) (Stevens 

and Fields, 2000). ATP activates the purinergic receptors expressed on the cell 

membrane of Schwann cells. As a result, Ca2+ is released from its intracellular 

stores, activating Ca2+/calmodulin kinase and MAP kinase. It is believed that these 

signals postpone the differentiation of Schwann cells until they become exposed to 

appropriate axon-derived signals (Stevens and Fields, 2000).

Another signaling pathway important for axonal ensheathment and 

myelination is laminin-2 and its receptor β1 integrin. It has been shown that 

β1 integrin in immature Schwann cells is important for ensheathing axons in a 

1:1 manner and to progress to promyelinating stage. Disruption of β1 integrin 

specifically in Schwann cells leads to inhibition of radial sorting in immature 

Schwann cells (Feltri et al., 2002). 

Taken together, the components of one or more pathways mentioned 

above can potentially be involved in regulation of Oct-6 through the Oct-6 SCE. 

Identification of the nuclear factors that bind to HR1a and HR2b will be instrumental 
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in unraveling the regulatory network up-stream of the Oct-6 transcription factor 

leading to onset of myelination.

To realize this aim it will be necessary to further narrow down the critical 

regions within the SCE by generating further deletions in the context of the HR1a 

and HR2b in a luciferase reporter construct. The fragments with significant enhancer 

activity might then be used in a DNA pull-down assay using biotin tagged dsDNA 

oligonucleotides and identification of bound proteins by mass spectrometry. 

In a parallel approach, biochemical experiments such as DNaseI footprinting 

are required to find out what the potential protein binding sequences are and which 

putative factors bind to these sequences. The role of these potential binding sites 

could be investigated by mutagenesis. Cultured rat Schwann cells allow us to test 

the functionality of these mutated sites in the context of HR1a and HR2b, coupled 

to a luciferase reporter gene. Subsequently, constructs with a critical binding 

sequence can be verified in vivo by mutagenesis or deletion through homologous 

recombination in mice. Moreover, these sequences might be used to identify the 

factors that bind to them by screening of a Schwann cell cDNA library in a yeast 

one-hybrid system.

In another approach, similar to the one described in the previous paragraph, 

one could generate a double strand oligonucleotide chip, on which overlapping 

fragments of the Oct-6 SCE sequence are spotted and determine which DNA 

fragments are bound by nuclear factors derived from P1 nerves or cultured Schwann 

cells. In principle, this approach would allow identification of all the proteins 

expressed in the Schwann cells nucleus, including activators and repressors, and 

thus potentially involved in the regulation of the Schwann cell specific expression 

of the Oct-6 gene. 

Further investigation of transcription factors up-regulated in Schwann cells 

between E18 and the day of birth, using a luciferase reporter assay might lead to 

identification of specific factors binding to HR1a and HR2b elements.

Another interesting question is how HR1a and HR2b elements activate 

transcription from the Oct-6 promoter. Using a transgenic mouse approach, 

described in chapter 3, we demonstrated that both HR1a and HR2b are required 

for enhancer activity in transgenic mice. It appears that the distance between these 

two elements has no dramatic effect on enhancer function, since in our transgenic 
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Figure 1- Schematic presentation of different mechanisms for activation of Oct-6 gene 
expression through HR1a and HR2b. 

5.1 Identifying Oct-6 redundant factor
In chapter 4, we demonstrated that the class III POU domain protein Brn-2 

functionally overlaps with Oct-6 during Schwann cell development. This conclusion 

is derived from two different genetic experiments. First, we showed that over-

expression of Brn-2, under control of the Oct-6 SCE, in Oct-6 deficient Schwann 

cells resulted in an increase of the number of myelinated Schwann cells, partially 

rescuing the Oct-6 mutant phenotype. Second, Schwann cell-specific deletion of 

Brn-2 in an Oct-6 deficient background resulted in an increase in severity of the 

delayed hypomyelinating phenotype. Although we concluded that Brn-2 shares a 

role with Oct-6 during Schwann cell development, we observed that a quantitatively 

higher amount of Brn-2 protein is required to initiate myelination on schedule. This 

difference in biological function of Brn-2 and Oct-6 could arise from differences 

in affinity for transcriptional cofactors or other transcription factors as discussed 

constructs these two elements are joind. At present we suggest that nucleoprotein 

complexes binding to HR1a and HR2b might either interact independently 

with components of the preinitiation complex (PIC) at the promoter (Fig 1A) or 

interdependently, through formation of a holocomplex (Fig. 1B). 
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in chapter 4. In particular it has been suggested that a specific POU/Sox protein 

combinatorial code exists (Kuhlbrodt et al., 1998). Since the cooperative activation 

of a synthetic reporter construct by Oct-6 and Sox10 requires the N-terminal domain 

of both proteins, it will be of interest to investigate whether swapping the amino-

terminal portions of Oct-6 and Brn-2 is sufficient to confer Sox10 cooperativity on 

Brn-2. This is of particular interest as Sox10 is strongly expressed in the Schwann 

cell lineage. Transgenic constructs in which the amino-terminal portions of the 

Oct-6 and Brn-2 protein are swapped have been generated in our group and are 

currently crossed into the Oct-6DSCE/DSCE background to study their ability to rescue 

the delayed myelination phenotype.

Another possible explanation for the difference in biological function 

between Oct-6 and Brn-2 is that Brn-2 function is modified or inhibited through 

interaction with another protein that does not interact with Oct-6. Such a protein 

has been described for Brn-2. This protein, which is called “poly-glutamine tract 

binding protein” or PQBP-1, was shown to interact with Brn-2 through its amino-

terminal glutamine stretch of 23 residues. This interaction inhibits Brn-2’s ability to 

activate an octamer containing reporter construct (Waragai et al., 1999). It is thus 

suggested that binding of PQBP-1 to polyglutamine tracts of regulatory proteins, 

including Brn-2, modulate transcription of target genes during differentiation. It 

will be of interest to investigate the role of PQBP-1 and its interaction with Brn-2 

during Schwann cell differentiation. Study of the expression level of PQBP-1 by 

semi-quantitative RT-PCR has shown that indeed PQBP-1 is expressed in Schwann 

cells. However, no difference in the level of expression of the PQBP-1 gene in Oct-6 

deficient Schwann cells is observed (M. Jaegle, unpublished data). If PQBP-1 does 

play a role in modulating Brn-2 activity it is anticipated that overexpression of 

PQBP-1in Schwann cells will result in a more severe Oct-6 mutant phenotype. Since 

both Oct-6 and Brn-2 are similarly expressed during Schwann cell development, 

it is possible that both of these genes are regulated through the same signaling 

pathways. The Schwann cell specific regulatory sequences in the Brn-2 locus are 

unknown. There is no obvious sequence homology between Oct-6 and Brn-2 

outside the POU domain. Potential regulatory sequences could first be identified 

through phylogenetic sequence comparison and subsequently tested for activity in 

transgenic mice or in cultured rat Schwann cells. 
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5.2 Schwann cell specific regulatory elements
To date, several Schwann cell specific cis-regulatory elements has been 

identified including the Oct-6 SCE, the subject of this thesis, Krox-20 SCEmse (Krox-

20 myelinating Schwann cell element) (Ghislain et al., 2002), MbpSCE1 (Forghani 

et al., 2001; Taveggia et al., in press), and a 10 kb region of the PMP22 (Maier et al., 

2002). 

Work described in this thesis demonstrated that the Oct-6 SCE is required for 

Oct-6 gene expression in Schwann cells during myelination and regeneration. One 

potential target of Oct-6 regulation is Krox20. Recently, Ghislain and colleagues 

have identified the cis-acting sequences that regulate Krox-20 expression during 

myelination and regeneration in an axon dependent manner (Ghislain et al., 

2002). Interestingly, they identified multiple candidate Oct-6 binding sites within 

the Krox-20 MSE by biochemical studies. These results indicate that Oct-6 might 

directly regulate transcription of Krox-20 (Ghislain et al., 2002). However, in chapter 

2 we showed that Krox-20 expression is activated through an Oct-6 independent 

mechanism in Schwann cells of Oct-6DSCE/DSCE mice, albeit with a delay. Although 

there is no evidence that the delayed activation of Krox-20 is mediated through this 

element, it is possible that another POU factor, related to Oct-6, can occupy Oct-6 

binding sites in the Krox-20 enhancer and activate the Krox-20 gene. Previously, 

it was suggested that Brn-5, a class VI POU domain protein, might be a potential 

candidate as Oct-6 redundant factor (Wu et al., 2001). However, we demonstrated 

that overexpression of Brn-5, under control of the Oct-6 SCE, in Oct-6 deficient 

Schwann cells is not able to rescue the differentiation delay. 

A recent publication about the mouse claw paw (clp) mutation indicates the 

existence of multiple parallel pathways for initiation of myelination in Schwann 

cells (Darbas et al., 2004). Similar to Oct-6 null mice, mice homozygous for the clp 

allele show a delay in initiation of myelination in the peripheral nerves. Although 

clp/clp Schwann cells express Oct-6 at high level, the expression of Krox-20 is 

delayed. 

Krox-20 plays an important role in the up-regulation of myelin genes 

including P-zero, MBP and PMP22 (Nagarajan et al., 2001; Topilko et al., 1994). 

Schwann cells of Krox-20-/- animals show a strong reduction of P-zero, MBP, and 
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Figure 2- Model of regulatory cascade of myelination.

In summary, intracellular pathways involved in myelination converge on 

HR1a and HR2b elements located within the Oct-6 SCE and activate expression 

of Oct-6. Subsequently, Oct-6 regulates the expression of its down-stream target 

genes including Krox-20. Oct-6 probably acts on the Krox-20 MSE and up-regulates 

Krox-20 expression. Krox-20 can also be activated through an Oct-6 independent 

mechanism as in clp Schwann cells. Although Oct-6 appears to be required for 

Krox-20 activation, it is not sufficient for the activation of Krox-20 and myelination 

as it seen in clp animals. Krox-20 is involved in the regulation of a set of genes 

involved in myelination, including myelin genes P-zero, MBP, and PMP22. The 

Oct-6 redundant factor Brn-2 is a positive regulator of myelination. Brn-2 and Oct-6 

expression are regulated independently.

PMP-22 expression. In Oct-6 SCE deficient Schwann cells, P0 level is upregulated 

after activation of Krox-20 (Ghazvini et al., 2002). In addition, in vitro studies have 

shown that Krox-20 transactivates the P0 promoter (Zorick et al., 1999). Surprisingly, 

mutation analysis demonstrated that none of the potential Krox-20 binding sites in 

the MbpSCE1 are necessary for activation of a Lac-Z reporter gene in the peripheral 

nerves of transgenic animals (Taveggia et al., in press; However, these experiments 

do not rule out a role for Krox-20 acting through non-consensus DNA binding 

sites. Another possibility is that additional regulatory elements, containing Krox-20 

binding sites, are involved in activation of the Mbp gene, as Forghani and colleagues 

have suggested (2001).
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Summary

The reciprocal interactions between Schwann cells and their associated 

axons are important during development, maintenance, and regeneration of the 

peripheral nervous system. Schwann cells arise from the neural crest cell and 

develop through different transitional stages to non-myelinating and myelinating 

Schwann cells found in the mature peripheral nerves. In recent years, evidence has 

accumulated to suggest that in particular two transcription factors play pivotal roles 

in regulation of the myelination program. These transcription factors are Oct-6, 

and Krox-20. Genetic studies have shown that the POU domain transcription factor 

Oct-6 is a major regulator of Schwann cells assuring the timely progression of cell 

differentiation from the promyelinating to myelinating stage. Additionally, it was 

shown that expression of Oct-6 in Schwann cells is under control of axonal signals, 

which ultimately converge on the Oct-6 Schwann cell specific regulatory element 

(Oct-6 SCE). The Oct-6 SCE is sufficient to drive the correct expression of the Oct-6 

gene or a reporter gene, during development or regeneration. Consequently, Oct-6 

regulates a set of down-stream genes, including the zinc-finger protein Krox-20. 

Homozygous deletion of Oct-6 or Krox-20 in mice leads to arrest of Schwann cells 

at the promyelin stage. While the differentiation block of Oct-6 deficient Schwann 

cells is transient, this block is permanent in Krox-20-/- Schwann cells. 

In this thesis, we demonstrated that the Oct-6 SCE is not only sufficient, but 

also required for correct spatial and temporal expression of Oct-6 in the Schwann 

cell lineage. Moreover, our results demonstrate that Oct-6 acts in a dose dependent 

mechanism and that Oct-6 function is required in the Schwann compartment of the 

developing nerve. 

Our structural analysis of the SCE identified two regions that together function 

as an enhancer of the Oct-6 gene in vitro and in vivo. In our transgenic studies we 

showed that both these elements are required for full enhancer activity. Therefore, 

we suggested that Oct-6 SCE enhancer activity depends on the interdependent 

interaction of these elements with the basal transcription factors assembled at the 

promoter.

Further, we identified Brn-2, a POU domain transcription factor closely 

related to Oct-6, as an Oct-6 redundant factor in Schwann cell development. We 
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showed that Brn-2 expresses in Schwann cells in a similar developmental profile as 

Oct-6. While overexpression of Brn-2, under control of the Oct-6 SCE, can partially 

rescue the developmental delay of Oct-6 deficient Schwann cells, ablation of Brn-2 

and Oct-6 in Schwann cells results in a more severe phenotype.

The studies presented in this thesis, deepen our insight in the molecular 

mechanisms of myelination and the role Oct-6 plays in this important and 

fascinating cellular differentiation process. It is hoped that this deepening of our 

understanding of the molecular processes that underlie nerve development and 

homeostasis will one day result in the development of rational strategies to combat 

the many debilitating diseases of the peripheral and central nervous system. 
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Nederlandse samenvatting
Meercellige organismen ontwikkelen zich uit één enkele cel, namelijk 

de bevruchte eicel. De eicel vermenigvuldigt zich gedurende de embryonale 

ontwikkeling. Celdeling leidt tot het ontstaan van een groot aantal cellen die 

vervolgens verschillende karakteristieke functies aannemen in een proces dat 

celdifferentiatie heet. Celdifferentiatie zorgt voor het ontstaan van een grote variatie 

van cellen, zoals bloedcellen, spiercellen, zenuwcellen, huidcellen, levercellen enz. 

De genetische informatie die nodig is voor het bouwplan en het functioneren 

van de cellen is opgeslagen in het DNA in de vorm van genen (het genoom). 

Elke cel bevat hetzelfde DNA, maar door activiteit van een bepaalde set genen 

en onderdrukken van andere genen, ontstaan verschillen in de functie van cellen. 

Activiteit van een gen houdt in dat door een heel gereguleerd proces, een gen 

kan worden afgelezen (komt tot expressie). Hierbij ontstaat een RNA molecuul 

(transcriptie) dat vervolgens omgezet wordt in een eiwit (translatie). Eiwitten zijn 

de functionele onderdelen van de cel. Het is van belang dat elke cel de juiste set van 

genen op het juist moment vertaalt naar eiwitten. Dit wordt verzorgd door (eigen) 

controle-mechanismen in elk celtype. Een deel van de celcontrole-mechanismen 

wordt uitgevoerd door transcriptie factoren. Transcriptie factoren zijn speciale 

eiwitten die specifiek op bepaalde plaatsen aan het DNA kunnen binden en zorgen 

dat een gen afgelezen kan worden of juist niet. 

Het onderzoek dat in dit proefschrift wordt beschreven, is gericht op de rol 

van een transcriptie factor genaamd Oct-6. Het Oct-6 gen komt tot expressie in 

verschillende cel types zoals bepaalde zenuwcellen in de hersenen, haar follikels 

en in Schwann cellen. Schwann cellen groeien naast de zenuwbanen (axonen) in 

het perifere zenuwstelsel en vormen een isolerende vetlaag rond de axonen. Deze 

vetlaag heet de myeline schede. De aanwezigheid van deze myeline schede is 

belangrijk voor het sneller geleiden van zenuw signalen in de vorm van elektrische 

impulsen. De aanmaak van de myeline schede is afhankelijk van contact met axonen. 

Echter, niet alle axonen in het perifere zenuwstelsel zijn gemyelineerd. Axonen met 

een kleinere diameter dan 1 µm zijn weliswaar geassocieerd met Schwann cellen, 

maar ze worden niet gemyelineerd. Het is niet bekend hoe de axonen Schwann 

cellen kunnen instrueren voor de aanleg of het niet aanlegen van de myeline schede. 

Het is wel bekend dat beschadiging of instabiliteit van de myeline schede leidt tot 
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een verslechterde geleiding van signalen langs deze zenuwbanen. Dit resulteert in 

ernstige neurologische problemen. Bekende voorbeelden van ziektes waarbij de 

myeline schede is aangedaan zijn onder andere de auto-immuun ziektes multiple 

sclerose (MS) en Guillain-Barré of de genetische afwijkingen Charcot-Marie-Tooth 

(CMT), Dejerine Sottas en Perlizaeus-Merzbacher.

Er is aangetoond dat een tijdige aanwezigheid van het Oct-6 eiwit in 

Schwann cellen belangrijk is voor het tijdig vormen van de myeline schede. Een van 

de centrale vragen in dit proefschrift is hoe het Oct-6 gen wordt gereguleerd om 

op het juiste moment in Schwann cellen actief te zijn. Voorafgaande experimenten 

binnen onze onderzoeksgroep hebben laten zien dat binnen enige afstand van het 

Oct-6 gen een gebied van 4000 base paren (bp), genaamd de Oct-6 Schwann Cell 

Enhancer (SCE), belangrijk is voor de expressie van het Oct-6 gen. Dit element is in 

staat om een reporter gen (dat een zichtbare blauwe kleur kan vormen) in Schwann 

cellen tot expressie te brengen in dezelfde periode en met hetzelfde patroon van 

het Oct-6 gen. Dit suggereert dat de expressie van het Oct-6 gen in Schwann cellen 

gecontroleerd wordt door dit element.

De proeven beschreven in hoofdstuk 2, laten zien dat de SCE inderdaad 

het regulerende element is voor de aanwezigheid van het Oct-6 eiwit op het juiste 

moment in Schwann cellen maar niet in andere type cellen waar Oct-6 wel tot 

expressie komt. Tevens is de SCE ook betrokken bij expressie van het Oct-6 gen 

tijdens regeneratie. Dit maakt de SCE aantrekkelijk met het oog op de ontwikkeling 

van toekomstige therapieën in ziektes die ontstaan door een defect gen in de 

Schwann cellen.

In hoofdstuk 3, hebben wij verder gezocht welk gedeelte binnen de SCE 

belangrijk is voor het binden van transcriptie factoren die vervolgens het Oct-6 

gen expressie in Schwann cellen op tijd kunnen aan- en uitschakelen. Voor deze 

proeven hebben we drie verschillende benaderingen gekozen. Als eerste hebben 

we de DNA sequentie van de SCE in muizen vergeleken met die van de mens en 

de rat in een specifiek computer programma. Aangezien de sequentie van genen en 

de belangrijke regulator elementen tijdens de evolutie geconserveerd zijn gebleven, 

is het mogelijk dat een geconserveerde regio binnen de SCE sequentie op zulke 

elementen duiden. Binnen de SCE hebben we inderdaad twee zeer geconserveerde 

regios gevonden, genaamd HR1 en HR2. Verder hebben we de functie van deze 
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twee regios getest in onze gekweekte Schwann cellen met gebruik van een in vitro 

(op een schaal) experiment en in transgene muizen (in vivo). Met deze experimenten 

hebben we laten zien dat HR1 en HR2 belangrijke sequenties bevatten voor het 

binden van transcriptie factoren, die vervolgens het Oct-6 gen activeren. Verder 

hebben we verschillende deletie constructen gemaakt door de steeds weglaten 

van 500 base paren van de SCE sequentie in een construct inclusief een reporter 

gen. Vervolgens konden we de activiteit van deze deletie constructen in onze 

gekweekte Schwann cellen testen door te kijken naar de expressie van het reporter 

gen Uit deze proeven zijn twee regios naar voren gekomen die belangrijk zijn voor 

de activiteit van het reporter gen. Deze twee regios vallen binnen de voorgaande 

geïdentificeerde HR1 en HR2. Vervolgens hebben we de functie van deze twee 

kleinere fragmenten getest in transgene muizen en geconcludeerd dat deze twee 

regio samen nodig zijn voor de expressie van het Oct-6 gen in Schwann cellen. 

In gewervelde dieren vormen Schwann cellen de myeline schede na de 

geboorte. Voorafgaande experimenten binnen onze groep en andere groepen 

hebben aangetoond dat de Oct-6 transcriptie factor belangrijk is voor de juiste 

timing van de aanleg van de myeline schede. In afwezigheid van het Oct-6 eiwit 

in een proefdier model, zoals de muis, wordt de myeline schede met twee weken 

vertraging gevormd. Hier ontstaat de vraag waarom in afwezigheid van Oct-

6, Schwann cellen uiteindelijk alsnog de myeline schede kunnen aanleggen. Het 

is aannemelijk dat een ander eiwit in Schwann cellen aanwezig is die de functie 

van het Oct-6 eiwit kan overnemen. De experimenten die in hoofdstuk 4 staan 

beschreven hebben aangetoond dat een andere eiwit, Brn-2, inderdaad na enige tijd 

de functie van Oct-6 in de Schwann cellen overneemt. Wij hebben laten zien dat een 

verhoogde expressie van het Brn-2 eiwit in Schwann cellen van een muis met een 

defect Oct-6 gen, de Schwann cellen gedeeltelijk eerder beginnen met de myeline 

aanleg vergeleken met Oct-6 deficiënte Schwann cellen. Verder, het inactief maken 

van het Oct-6 en het Brn-2 gen in Schwann cellen van muizen met behulp van 

genetische technieken (homologe recombinatie) leidt tot veel ernstigere effecten 

op Schwann cellen; zelfs na 3 maanden is de formatie van de myeline schede niet 

compleet. Dit experiment laat zien dat Brn-2 inderdaad de functie van Oct-6 in 

Schwann cellen kan overnemen. 
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In het laatste hoofdstuk bediscussiëren we verschillende signalering routes 

die kunnen leiden tot Schwann cellen een myelinerende lot nemen.

Aan de hand van een model suggereren we hoe de geïdentificeerde HR1a 

en HR2b elementen op DNA niveau de Oct-6 gen expressie kunnen reguleren. 

Vervolgens hebben we verschillende vervolg-experimenten besproken voor het 

voorzetten van dit onderzoek.
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