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Abstract

Two-mode clustering is a relatively new form of clustering that
clusters both rows and columns of a data matrix. To do so, a cri-
terion similar to k -means is optimized. However, it is still unclear
which optimization method should be used to perform two-mode clus-
tering, as various methods may lead to non-global optima. This pa-
per reviews and compares several optimization methods for two-mode
clustering. Several known algorithms are discussed and a new, fuzzy
algorithm is introduced. The meta-heuristics Multistart, Simulated
Annealing, and Tabu Search are used in combination with these al-
gorithms. The new, fuzzy algorithm is based on the fuzzy c-means
algorithm of Bezdek (1981) and the Fuzzy Steps approach to avoid
local minima of Heiser and Groenen (1997) and Groenen and Jajuga
(2001). The performance of all methods is compared in a large sim-
ulation study. It is found that using a Multistart meta-heuristic in
combination with a two-mode k -means algorithm or the fuzzy algo-
rithm often gives the best results. Finally, an empirical data set is
used to give a practical example of two-mode clustering.
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1 Introduction

Clustering can be seen as one of the cornerstones of classification. In this
paper, we limit ourselves to clustering into partitions of objects. Consider a
typical two-way two-mode data set of respondents by variables. Often, clus-
tering algorithms are applied to just one mode of the data matrix, which can
be done in a hierarchical or non-hierarchical way. Among the non-hierarchical
methods, k -means clustering (Hartigan, 1975) is one of the most popular non-
hierarchical methods. Moreover, it has the advantage of a loss function being
optimized.

A relatively new form of clustering is two-mode clustering. In two-mode
clustering, both rows and columns of a two-mode data matrix are assigned
to clusters. Each row of a two-mode data matrix is assigned to a row cluster,
and each column to a column cluster. Elements of the data matrix which are
both in the same row cluster and in the same column cluster should be close.
DeSarbo (1982) described such a two-mode clustering method, called the
GENNCLUS model. Another form of two-mode clustering is blockmodeling,
which is often used in social network analysis (see, for example, Noma and
Smith, 1985). An extensive overview of two-mode clustering methods can be
found in Van Mechelen, Bock, and De Boeck (2004).

In this article, we focus on partitioning the sets of rows and columns using
a least-squares criterion that models the elements of the data matrix belong-
ing to the same row and column cluster by their average. Several optimiza-
tion methods for finding the optimal partitioning for two-mode clustering
are known from the literature. However, these methods are not guaranteed
to find the global optimum and often get stuck in local minima. Therefore,
we study the local minimum problem of two-mode clustering. In addition,
a new optimization method for two-mode clustering is introduced, based on
the fuzzy c-means algorithm of Bezdek (1981). Here, we review and com-
pare these optimization methods. By a simulation study, we identify the
methods that perform well under most circumstances, within a reasonable
computational effort. All methods are based on meta-heuristics that aim to
find globally optimal solutions in an acceptable amount of CPU time. In our
comparisons we use both simulated and empirical data.

The remainder of this article is organized as follows. In Section 2, we
introduce the notation and give an overview of the optimization problem,
including two local search algorithms. Section 3 describes the implementation
of three meta-heuristics for two-mode clustering, which also uses the two local
search algorithms. In Section 4, we introduce the fuzzy two-mode clustering
method and give some theoretical background behind this method. In Section
5, we compare the performance of the methods using an extensive simulation
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study. Section 6 uses an empirical data set to compare the methods and to
give a practical example of two-mode clustering. Finally, we draw conclusions
and give recommendations for further research.

2 Overview of Optimization Problem

To define the two-mode clustering problem, consider the following notation:

Xn×m = (xij)n×m Two-mode data matrix of n rows and m columns.
Pn×K = (pik)n×K Cluster membership matrix of the rows with K the

number of row clusters, and pik = 1 if row i belongs
to row cluster k, and pik = 0 otherwise.

Qm×L = (qjl)m×L Cluster membership matrix of the columns with L
the number of column clusters, and qjl = 1 if column
j belongs to column cluster l, and qjl = 0 otherwise.

VK×L = (vkl)K×L Matrix with cluster centers for row cluster k and col-
umn cluster l.

En×m = (eij)n×m Matrix with errors from cluster centers.

Usually, the rows (the first mode) of X correspond to objects, and the
columns (the second mode) of X refer to variables. The elements of X can be
associations, confusions, fluctuations, etc., between row and column objects.
It only makes sense to apply to two-mode clustering if the values in the data
matrix can be compared amongst each other. Therefore, if one of the modes
refers to variables, the values among the variables must be comparable, stan-
dardized, or measured on the same scale. In the remainder of this paper, we
assume that this condition is satisfied by the data.

Two-mode clustering assigns each element of X to a row cluster and a
column cluster. If L equals m, every column can be placed in a cluster by
itself, so that two-mode clustering reduces to one-mode k -means clustering,
and the same is true if K = n. The matrix V can be interpreted as the
combined cluster means. The cluster memberships are given by the matrices
P and Q. Together, these three matrices P, Q, and V approximate the
information in X by PVQ′. To make this approximation as close to X as
possible, we use the additive model

X = PVQ′ + E, (1)

where E is the error of the model.
Two-mode clustering searches for the optimal partition P, Q and cluster

centers V that minimize the sums of squares of E. This objective amounts
to minimizing the squared Euclidean distance of the data points to their
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respective clusters centers in V. Therefore, the criterion to be minimized
can be expressed as

f(P,Q,V) = ‖X−PVQ′‖2 =
K∑

k=1

L∑
l=1

n∑
i=1

m∑
j=1

pikqjl(xij − vkl)
2. (2)

It is not required to use the Euclidean metric; other metrics have been
used as well, especially in one-mode clustering (see, for example, Bock, 1974).
However, in this study, we restrict ourselves to the Euclidean metric. The
optimal cluster membership matrices must satisfy the following constraints.

1. The cluster memberships of each row and column object must sum to
one, so that

∑K
k=1 pik = 1 and

∑L
l=1 qjl = 1.

2. All cluster membership values must be either zero or one, thus pik ∈
{0, 1} and qjl ∈ {0, 1} .

3. None of the row or column clusters is empty, that is
∑n

i=1 pik > 0 and∑m
j=1 qjl > 0.

The first two constraints require that each row of P and Q contains
exactly one element with the value 1. Hence, each row and column object
is assigned to exactly one cluster. These two constraints are necessary and
sufficient for the second equality in (2) to hold. A partition that violates
the third constraint cannot be optimal according to (2), so, in principle,
the third constraint is not required during the estimation. However, some
algorithms may lead to a partition with empty clusters. Therefore, we adapt
these algorithms to correct for potential empty clusters or prevent them from
happening.

No polynomial time algorithm is known for the global minimization of
f(P,Q,V). Even for small n and m, the number of possible partitions can
become extremely large and a complete enumeration of the possible solutions
is almost always computationally infeasible. However, when two of the three
matrices P, Q, and V are known, the optimal value of the third matrix
can be computed quite easily. When both P and Q are known, the optimal
cluster centers V can be computed as

vkl =

∑n
i=1

∑m
j=1 pikqjlxij∑n

i=1

∑m
j=1 pikqjl

, (3)

which is simply the average of the elements of X belonging to row cluster k
and column cluster l. When V and either P or Q are known, the problem
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of minimizing f(P,Q,V) becomes a linear program. As this linear program
is particularly simple, its solution can be given in a closed form expression.
When V and Q are known, the optimal value of P can be computed as
follows. Let cik =

∑m
j=1

∑L
l=1 qjl(xij − vkl)

2. Then,

pik =

{
1 if cik = min1≤r≤K cir,
0 otherwise.

(4)

When P and V are known, the optimal matrix Q can be computed in a
similar fashion.

A number of algorithms for finding an optimal two-mode partition have
been proposed in the literature. Two of these algorithms are discussed in the
remainder of this section. Both algorithms are deterministic and perform a
local search of the solution space. In the next section, we will discuss methods
that adapt these local search algorithms to perform global optimization.

2.1 Alternating Exchanges

The Alternating Exchanges algorithm was introduced by Gaul and Schader
(1996). It tries to improve an initial partition by making a transfer of either
a row or a column object and immediately recalculating V. The advantage
of this approach is that updates can be obtained relatively fast. It performs
the following steps:

1. Choose initial P and Q, and calculate V according to (3).

2. Repeat the following, until there is no improvement of f(P,Q,V) in
either step.

(a) For each i, k, transfer row object i to row class k and re-calculate
V according to (3). Accept the transfer if it has improved
f(P,Q,V), otherwise return to the old P and V.

(b) For each j, l, transfer column object j to column class l and re-
calculate V according to (3). Accept the transfer if it has improved
f(P,Q,V), otherwise return to the old Q and V.

The Alternating Exchanges algorithm always converges to a local mini-
mum, as it decreases the value of f(P,Q,V) in every iteration, it is defined
on a finite set, and f(P,Q,V) is bounded from below by 0.
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2.2 Two-mode k-Means

The k -means algorithm (Hartigan, 1975) is used frequently in one-mode clus-
tering. It is one of the simplest and fastest ways to obtain a good partition,
which accounts for its popularity in one-mode clustering. In addition, it can
easily be extended to handle two-mode clustering. The so-called two-mode
k -means algorithm tries to improve an initial partition using (3) and (4). It
consists of the following steps.

1. Choose initial P and Q.

2. Repeat the following, until there is no improvement of f(P,Q,V) in
any step.

(a) Update V according to (3).

(b) Let cik =
∑m

j=1

∑L
l=1 qjl(xij − vkl)

2. Then update P according to

pik =

{
1 if cik = min1≤r≤K cir,
0 otherwise.

(5)

(c) Update V according to (3).

(d) Let djl =
∑n

i=1

∑K
k=1 pij(xij − vkl)

2. Then update Q according to

qjl =

{
1 if djl = min1≤r≤L djr,
0 otherwise.

(6)

The two-mode k -means algorithm will always converge to a local opti-
mum, as the value of the criterion f(P,Q,V) cannot increase in any step.
However, it can happen that one or more clusters become empty after Step
2b or 2d. This situation is immediately corrected by transferring the row
or column object with the highest value of

∑K
k=1 pikcik or

∑L
l=1 qjldjl to the

empty cluster. As this transfer always improves the value of the criterion,
the algorithm will still converge.

3 Meta-Heuristics for Global Optimization

The two algorithms introduced in the previous section only attempt to find
locally optimal partitions. As no known polynomial time algorithm is capable
of finding the global optimum in every instance, we revert to meta-heuristics
instead. These methods indeed aim for global optima but are not guaranteed
to find them. In this section, we discuss the use of the three meta-heuristics
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Multistart, Simulated Annealing, and Tabu Search. By combining these
with the two local search algorithms (Alternating Exchanges and two-mode
k -means), we obtain four stochastic global optimization methods. The Fuzzy
Steps method, which uses the Multistart heuristic, is introduced in the next
section. Other algorithms and meta-heuristics have also been used for two-
mode clustering. Hansohm (2001) used the genetic algorithm, but found
it does not perform as well in two-mode clustering as it does in one-mode
clustering. Gaul and Schader (1996) implemented a penalty algorithm, but
concluded that it does not compare favorably with the Alternating Exchanges
algorithm.

3.1 Multistart

The most simple heuristic is Multistart, which performs a given number
of repetitions of a certain algorithm with random starting values in every
repetition. The best result out of all repetitions is the final result of the
Multistart heuristic. This method prevents the algorithm from incidentally
reaching very bad solutions. Also, the Multistart heuristic will always find
the global optimum if the number of repetitions is large enough. However,
it depends on the function and the data how large the number of repetitions
needs to be. In our case, the number of repetitions becomes prohibitively
large to be able to guarantee a global minimum. However, even with a
reasonable number of repetitions, Multistart often performs well.

We apply the Multistart heuristic to the Alternating Exchanges and the
two-mode k -means algorithms described in the previous section. The initial
partitions of the resulting optimization methods were chosen by randomly
assigning each row and column object to a cluster, with uniform probability.

3.2 Simulated Annealing

Simulated Annealing is a meta-heuristic that simulates the slow cooling of
a physical system. Similar to Alternating Exchanges, Simulated Annealing
also performs a local search. However, to avoid getting stuck in local minima,
Simulated Annealing also accepts, with a positive probability, transitions that
increase f(P,Q,V); see Laarhoven and Aarts (1987) for more details on the
Simulated Annealing meta-heuristic. Trejos and Castillo (2000) also applied
Simulated Annealing in two-mode clustering.

The Simulated Annealing method uses as parameters a cooling rate γ < 1
and the number of iterations r in which the temperature remains constant.
It also chooses an initial value of the temperature T , and a maximum num-
ber of iterations without accepted transitions, denoted by tmax. Simulated
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Annealing consists of the following steps.

1. Choose initial P and Q and calculate V according to (3).

2. Choose the parameters r, γ, and a large, initial value of T .

3. Repeat the following until there is no change in P and Q for the last
tmax values of T .

(a) Do the following r times:

i. Choose one of the two modes with equal probability.

ii. Choose one of the objects of this mode with uniform probabil-
ity and transfer it to another cluster, also chosen with uniform
probability.

iii. Update V according to (3) and calculate ∆f as the change
in f(P, Q,V) achieved by the transfer and the subsequent
updating of V.

iv. Always accept the transfer if ∆f < 0, otherwise accept it with
probability exp(−∆f/T ).

(b) Set T = γT .

The partition with the lowest value of f(P,Q,V) found during estimation
is retained as the final solution.

3.3 Tabu Search

The Tabu Search meta-heuristic was introduced by Glover (1986). Tabu
Search also performs a local search, but tries to move away from local op-
tima by maintaining a tabu list. The tabu list is a list of partitions that
are temporarily not accepted. Here, we use the following method for Tabu
Search in two-mode clustering, which is based on the Alternating Exchanges
algorithm. Note that many other versions of Tabu Search are possible. We
refer to Castillo and Trejos (2002) for a more detailed description of this
method.

Define Z(P,Q) = minV f(P,Q,V). The algorithm performs the follow-
ing steps.

1. Start with an initial partition (P,Q) and an empty tabu list.

2. Choose the number of iterations tmax and a maximum length of the
tabu list.
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3. Perform the following steps tmax times.

(a) Generate a neighborhood of partitions N , consisting of the parti-
tions that can be constructed by transferring one row or column
object from (P,Q) to another cluster.

(b) Choose the partition (P,Q)cand as the partition in N with the
lowest value of Z(P,Q) that is not on the tabu list.

(c) Set (P,Q) = (P,Q)cand. If Z((P,Q)cand) < Z((P,Q)opt), then
(P,Q)opt = (P,Q)cand.

(d) Add (P,Q) to the tabu list. Remove the oldest item from the tabu
list, if the list exceeds its maximum length.

The final solution of the algorithm is given by (P,Q)opt.

4 Fuzzy Two-Mode Clustering

Fuzzy methods relax the requirement that an object belongs to a single clus-
ter, so that the cluster membership can be distributed over the clusters. For
single mode clustering, the best known method is fuzzy c-means (Bezdek,
1981; for adaptations of this method see Groenen and Jajuga, 2001, and
Tsao, Bezdek, and Pal, 1994). These methods try to make the optimization
task easier by allowing for cluster membership values between 0 and 1. Here,
we extend single mode fuzzy algorithms to the two-mode case. Below, we in-
troduce a fuzzy two-mode clustering criterion. Section 4.1 gives an algorithm
for finding an optimal fuzzy partition, based on Bezdek (1981). Section 4.2
describes the Fuzzy Steps method, that reduces the fuzziness of the solution
in steps until a crisp partition is found.

Simply relaxing the constraint that cluster membership values must be
0 or 1 by allowing for values between 0 and 1 does not lead to an optimal
partitioning that is fuzzy. A crisp partition will still minimize f(P,Q,V) in
that case, though a fuzzy partition might be equally good. Fuzzy optimal
partitions can be obtained if the criterion f(P,Q,V) is altered by raising
the cluster membership values to a power s, with s ≥ 1. Then, the fuzzy
two-mode clustering criterion is defined as

fs(P,Q,V) =
K∑

k=1

L∑
l=1

n∑
i=1

m∑
j=1

ps
ikq

s
jl(xij − vkl)

2. (7)

This criterion can have fuzzy optimal partitions and the fuzziness parameter
s determines how fuzzy the optimal partition is. For s = 1, the fuzzy criterion
coincides with the crisp criterion.
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4.1 The Two-Mode Fuzzy c-Means Algorithm

The algorithm for the optimization of fs(P,Q,V) is based on iteratively
updating each set of parameters while keeping the other two sets fixed. Given
optimal Q and V, one can find the optimal P using the Lagrange method
for each row i of P. The Lagrangian is given by

Li(P,Q,V) =
K∑

k=1

ps
ik

(
L∑

l=1

m∑
j=1

qs
jl(xij − vkl)

2

)
− λ

(
K∑

k=1

pik − 1

)
. (8)

Defining cik =
∑L

l=1

∑m
j=1 qs

jl(xij − vkl)
2 and taking partial derivatives of Li

gives

∂Li

∂pik

= sps−1
ik cik − λ and

∂Li

∂λ
=

K∑
k=1

pik − 1.

Now, setting these derivatives to zero and solving for pik yields

pik =
c
1/(1−s)
ik∑K

k=1 c
1/(1−s)
ik

. (9)

However, (9) does not apply if one or more of the cik are zero for a cer-
tain row i. In that case, any partition with pik = 0 whenever cik > 0 and∑K

k=1 pik = 1 is optimal. Finding the optimal Q given P and V can be done
in a similar fashion. When s is large enough, the optimal values of the cluster
memberships become pik ≈ 1/K and qjl ≈ 1/L, which can easily be derived
from (9). In practice, the cluster membership values approach these values
quite rapidly for reasonably large s. For s = 3, the cluster membership val-
ues often differ only slightly and for s > 10 they are usually equal to each
other within the numerical accuracy of current computers. As s approaches
1, 1/(1 − s) approaches minus infinity and the fuzzy optimization formula
(9) becomes its crisp counterpart (4). In that case, the optimal partition of
(7) also approaches the optimal crisp partition. Hence, higher values of s
correspond to fuzzier optimal partitions, and s close to 1 to crisp partitions.

The optimal V can be obtained by setting the derivative of (7) to zero
and solving for vkl, which gives

vkl =

∑n
i=1

∑m
j=1 ps

ikq
s
jlxij∑n

i=1

∑m
j=1 ps

ikq
s
jl

. (10)

Now, for a given value of s, the two-mode fuzzy c-means algorithm can
be constructed as follows.
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1. Choose initial P and Q, which can be either crisp or fuzzy and calculate
V according to (10).

2. Repeat the following, until the decrease in fs(P,Q,V) is small.

(a) Define cik =
∑L

l=1

∑m
j=1 qs

jl(xij − vkl)
2 and update P as pik =

c
1/(1−s)
ik /

∑K
k=1 c

1/(1−s)
ik .

(b) Define djl =
∑K

k=1

∑n
i=1 ps

ik(xij − vkl)
2 and update Q as qik =

d
1/(1−s)
jl /

∑K
k=1 d

1/(1−s)
jl .

(c) Update V according to (10).

The algorithm lowers the value of fs(P,Q,V) in every iteration, until con-
vergence has been achieved. Hence, this algorithm will always converge to a
local minimum or a saddle point.

4.2 Fuzzy Steps

The two-mode fuzzy c-means algorithm generally converges to a fuzzy parti-
tion. To ensure that the two-mode fuzzy optimization method converges to
a crisp partition, we adopt the Fuzzy Steps approach by Heiser and Groenen
(1997). Our Fuzzy Steps algorithm starts with an initial value of s that is
greater than 1. It uses the two-mode fuzzy c-means algorithm to minimize
fs(P,Q,V) for a given value of s. It gradually lowers s to avoid local minima
and obtain a good crisp partition. The Fuzzy Steps algorithm performs the
following steps.

1. Choose an initial value of s, a fuzzy step size γ < 1 and a threshold
value smin.

2. Choose initial P0 and Q0, and calculate V0 according to (10). The
initial P0 and Q0 can be either crisp or fuzzy.

3. Repeat the following while s > smin.

(a) Perform the two-mode fuzzy c-means algorithm starting with P0,
Q0, and V0. The results are in P1, Q1, and V1.

(b) Set s = 1 + γ(s− 1), and set P0 = P1, Q0 = Q1, and V0 = V1.

4. Apply the two-mode k -means algorithm starting from P0, Q0, and V0.

The formula in Step 4 for decreasing s gives an exponential decay of
(s − 1), as shown in Figure 1. The value of smin should generally be set to
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Figure 1: The decrease of the value of s in the Fuzzy Steps approach, using
γ = 0.9

a value slightly higher than 1, for example, 1.001. The two-mode k -means
algorithm is performed at the end of the Fuzzy Steps method, to ensure that
a crisp solution is obtained. Although the two-mode k -means algorithm was
defined as a crisp algorithm in Section 2.2, it can also be used in combination
with fuzzy initial partitions

It is possible that the optimization algorithm gets stuck in a saddle point.
This happens if two or more row or column clusters become equal. In that
case, these clusters and their corresponding cluster membership values will
remain equal for any value of s. Preliminary tests with the algorithm suggest
that it often reaches a saddle point, if the starting value of s is too high.
Therefore, it is important not to set the starting value of s too high, for
example, s ≤ 1.2.

5 Simulation Study

To compare the performance of the algorithms described in the previous sec-
tions, we use a large-scale simulation study. The simulation study aims to
determine which of the algorithms perform well under most circumstances
and to compare the algorithms thoroughly under varying circumstances. The
simulation study also determines how well the algorithms can retrieve a clus-
tering structure. First, we describe the setup of the simulation study and
how the results are represented. We then give the results of the simulation
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study and interpret them.

5.1 Setup of the Simulation Study

Many papers discussing two-mode clustering algorithms often only perform
a small simulation study. However, the performance of the optimization
methods may depend strongly on the features of the data set. Therefore, we
will perform a larger simulation study to compare the methods.

We generate the data matrix X in every problem instance by simulating
P, Q, V, and E, and then using (1) to construct X. Generating simulated
data this way comes natural and has the advantage that some clustering
structure exists in the data. Also, the P, Q, and V used in generating X
can give a useful upper bound on the optimal value of f(P,Q,V).

A large number of factors can be varied in a simulation study for two-
mode clustering, such as the values of n, m, K, and L, the size and the
distribution of the errors, the number of elements in the clusters, and the
locations of the cluster centers. Using a full factorial design with seven or
more factors and multiple levels per factor, would require a prohibitively large
number of simulations. Therefore, the number of factors and the number of
levels for each factor are limited as follows.

The simulation study is set up using a three-factor design, and is loosely
based on the approach of Milligan (1980). The first factor is the size of the
data matrix X and the number of clusters. The three levels of this factor are
as follows.

• First level: n = 60, m = 60, and K = L = 6.

• Second level: n = 150, m = 20, and K = L = 5.

• Third level: n = m = 100, and K = L = 3.

The second factor is the size of the error perturbations. All elements of
E are normally distributed with mean 0 and standard deviation equal to
0.5, 1, or 2 for the three levels of this factor. Standard deviations of 0.5
and 1 give a reasonable amount of noise in the simulated data, whereas a
standard deviation of 2 can make clustering difficult. The third factor is the
distribution of the objects over the clusters. For the first level of this factor all
objects are divided over the clusters with equal probability. For the second
and third levels, one cluster contains exactly 10% respectively 60% of the
objects. The remaining objects are then divided over the remaining clusters
with uniform probability. Constructing one cluster with 10% of the objects
represents a small deviation from a uniform distribution, whereas a cluster
with 60% constitutes a large deviation.
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Figure 2: Graphical representation of simulated data set with sizes n = m =
100, K = L = 3, error standard deviation 0.5, and a uniform distribution of
the objects over the clusters.

Empty clusters are not allowed in the generated data sets. If a simulated
data set contains an empty cluster, it is discarded and another data set is
simulated. Finally, the locations of the cluster centers vkl are chosen by ran-
domly assigning the numbers Φ( i

K×L+1
), i = 1, . . . , K × L to the elements of

V, where Φ(.) is the inverse standard normal cumulative distribution func-
tion. As a result, the elements of V appear standard normally distributed,
and a fixed minimum distance between the cluster centers is assured. Note
that this setup of the simulation study does not account for certain features
of empirical data sets, such as heteroscedasticity and non-normality.

We visualize the effects of some of these choices in Figures 2-4. These
figures give a visual representation of the simulated X for various levels of
the factors. In these figures, the rows and columns are ordered according to
their cluster. The values of the elements of X are represented by colors, and
similar colors correspond to similar numerical values for the elements of X.
The color bars at the right-hand side show what values the colors represent.
Figure 2 gives an example of a data set, where the choices for the levels of the
factors ensure that the original clusters can easily be recognized. In Figure
3, the original clusters are more difficult to recognize, and in Figure 4, this is
almost impossible. The optimal clustering should generally be easier to find,
when the number of clusters is low, the error standard deviation is small and
the objects are evenly divided over the clusters.

These three factors give a total of 3× 3× 3 = 27 possible combinations.
To avoid drawing spurious conclusions based on a single data set, we simulate
50 data sets for each combination and all five methods are performed for each
data set. In total, 6750 clustering methods are performed.

All algorithms require an initial choice for P and Q. One can choose P
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Figure 3: Graphical representation of simulated data set with sizes n = m =
60, K = L = 6, error standard deviation 1 and 10% of the objects in one
cluster.
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Figure 4: Graphical representation of simulated data set with sizes n = m =
60, K = L = 6, error standard deviation 2 and 60% of the objects in one
cluster.
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and Q random by simply assigning each row and column object to one of the
clusters with equal probability. This choice is used for the Multistart AE and
Multistart k -means methods. However, many other optimization methods
perform better when the initial partitions are relatively good. Therefore,
the initial partitions of the Simulated Annealing, Tabu Search, and Fuzzy
Steps methods are chosen by applying the two-mode k -means algorithm to
a randomly chosen partition.

Some algorithms also require choosing additional parameters. The pa-
rameters of these algorithms are chosen as follows:

• Multistart Alternating Exchanges: The Multistart Alternating Ex-
changes method performs the Alternating Exchanges algorithm 10
times.

• Multistart k -means: The Multistart k -means method performs the k -
means algorithm 500 times.

• Simulated Annealing: Initial temperature T=10, r = 2(nL + mK),
γ = 0.85, and tmax = 10.

• Tabu Search: The length of the tabu list is 2
√

n(K − 1) + m(L− 1)

and the number of iterations tmax = 6
√

n(K − 1) + m(L− 1).

• Multistart Fuzzy Steps: The initial value of s is 1.05, the fuzzy step
size γ is 0.9, and the threshold value smin is 1.001. The Fuzzy Steps
algorithm is repeated 10 times for every simulated data set.

The values of these parameters have been chosen after some experimentation,
and should give an adequate performance and a comparable computation
time for the five methods.

We use multiple criteria to evaluate the results of the simulation study.
First, we do not use the value of f(P,Q,V), but the Variance Accounted
For (VAF) criterion. The VAF criterion is defined as

VAF = 1−
∑K

k=1

∑L
l=1

∑n
i=1

∑m
j=1 pikqjl(xij − vkl)

2∑n
i=1

∑m
j=1(xij − x̄)2

, (11)

where x̄ = (NM)−1
∑n

i=1

∑m
j=1 xij. It can be derived that maximizing VAF

corresponds to minimizing f(P,Q,V). The optimal value of VAF ranges
from 0 to 1 and is equivalent to the R2-measure used in regression analysis.
We report the average VAF value for all algorithms and the average VAF of
the P and Q used to generate the data.
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Second, we report the average Adjusted Rand Index (ARI), which was
introduced by Hubert and Arabie (1985). This metric is used to show how
well the clustering found by the algorithms approximates the original clus-
tering. It is invariant with respect to the ordering of the clusters, which is
arbitrary in two-mode clustering. ARI is based on the original Rand Index,
which is defined as the fraction of the pairs of elements on which the two
clusterings agree. The original Rand index can only take values from 0 to
1. If random partitions are selected, the expected value of the Rand index
lies between 0 and 1, and depends on the parameters of clustering problem.
To ensure a constant expectation, the ARI is a linear function of the Rand
index, so that its expectation is always 0 and its maximum value is 1. It is
defined as

ARI =

∑P
i=1

∑P
j=1

(
aij

2

)
−
∑P

i=1

(
ai.

2

)∑P
j=1

(
a.j

2

)
/
(

a
2

)
1
2
[
∑P

i=1

(
ai.

2

)
+
∑P

j=1

(
a.j

2

)
]−
∑P

i=1

(
ai.

2

)∑P
j=1

(
a.j

2

)
/
(

a
2

) , (12)

where aij is the number of elements of X that are simultaneously part of
cluster i of the original clustering and cluster j of the retrieved clustering,
ai. =

∑
j aij, a.j =

∑
i aij, and a =

∑
i

∑
j aij. Here we consider a pair of

elements to be in the same cluster only if they are both part of the same
column cluster and of the same row cluster.

The final criterion used to compare the algorithms is the average CPU
time required by the algorithms, which is of great practical interest. All
algorithms are written in the matrix programming language Matlab 7, and
are executed on a Pentium IV 2.8 GHz computer.

Dolan and Moré (2002) discuss a convenient tool, called performance pro-
files, for graphically representing the distribution of the results of a simulation
study. Performances profiles are especially useful when trying to determine
which algorithms perform reasonably well almost every time the algorithm
is run. They can be constructed as follows. First, one has to identify a
performance measure. We will use the VAF criterion for this and define
VAF(p,s) as the VAF achieved by algorithm s in problem instance p. Then,
the performance ratio ρ(p,s) is defined as

ρ(p,s) =
maxs VAF(p,s)

VAF(p,s)
. (13)

Finally, the cumulative distribution function of the performance ratio can be
computed as

Φ(s)(τ) =
1

50
#{ρ(p,s) ≤ τ ; p = 1, . . . , 50}. (14)

By drawing Φ(s)(τ) in one figure for all algorithms, the performance of the
algorithms can be compared quite easily.
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Table 1: Average VAF for data sets with n = m = 60, K = L = 6.

object distribution uniform distribution 10%-cluster 60%-cluster
error st. dev. .5 1 2 .5 1 2 .5 1 2
Multistart AE .7672 .4604 .1886 .7602 .4608 .1918 .7209 .4167 .1838
Multistart k -means .7693 .4616 .1883 .7667 .4610 .1912 .7379 .4229 .1834
Simulated Annealing .7553 .4554 .1890 .7442 .4498 .1913 .7068 .4110 .1864
Tabu Search .7036 .4360 .1673 .7066 .4356 .1728 .7010 .3968 .1678
Multistart Fuzzy Steps .7637 .4607 .1897 .7617 .4604 .1925 .7247 .4179 .1871
Original partition .7693 .4613 .1799 .7667 .4605 .1810 .7413 .4215 .1568

Table 2: Average VAF for data sets with n = 150, m = 20, K = L = 5.

object distribution uniform distribution 10%-cluster 60%-cluster
error st. dev. .5 1 2 .5 1 2 .5 1 2
Multistart AE .7601 .4424 .2060 .7491 .4493 .2083 .7145 .4223 .2104
Multistart k -means .7616 .4425 .2070 .7530 .4512 .2089 .7323 .4271 .2121
Simulated Annealing .7564 .4407 .2083 .7398 .4450 .2103 .7003 .4161 .2138
Tabu Search .7232 .4294 .1756 .7155 .4299 .1802 .6909 .4043 .1870
Multistart Fuzzy Steps .7616 .4425 .2089 .7521 .4510 .2102 .7285 .4249 .2131
Original partition .7615 .4378 .1742 .7529 .4458 .1727 .7321 .4157 .1607

5.2 Simulation Results

We will now give the results of the simulation study. Tables 1-3 show the
average VAF values of all algorithms for each combination of the factors.
The results of the best performing algorithms are shown in italics, for each
combination of the factors. The average VAF value of the original partition
is also shown.

From these tables, it is clear that the optimization methods with a Multi-
start heuristic perform very well, in particular the Multistart k -means meth-
ods. It always has the best average performance when the error standard
deviation is 0.5 or 1. The results are somewhat different in data sets with an
error standard deviation of 2. The best performance is then often achieved by
the Multistart Fuzzy Steps method. The Multistart AE and the Simulated
Annealing methods often also have a good performance. The Tabu Search
method does not perform as well as the other algorithms in the simulated
data sets.

Tables 4-6 give the average values of the Adjusted Rand Index, based
on the original P and Q. The best results in these tables are again given
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Table 3: Average VAF for data sets with n = m = 100, K = L = 3.

object distribution uniform distribution 10%-cluster 60%-cluster
error st. dev. .5 1 2 .5 1 2 .5 1 2
Multistart AE .7032 .3692 .1317 .6884 .3524 .1225 .6749 .3392 .1228
Multistart k -means .7032 .3692 .1317 .6884 .3527 .1226 .6768 .3392 .1233
Simulated Annealing .7032 .3692 .1317 .6840 .3511 .1221 .6663 .3337 .1208
Tabu Search .6772 .3533 .1287 .6656 .3444 .1195 .6530 .3311 .1192
Multistart Fuzzy Steps .7032 .3692 .1317 .6856 .3527 .1218 .6762 .3392 .1219
Original partition .7032 .3690 .1302 .6884 .3525 .1198 .6768 .3392 .1211

Table 4: Average Adjusted Rand Index in data sets with n = m = 60,
K = L = 6.

object distribution uniform distr. 10%-cluster 60%-cluster
error st. dev. .5 1 2 .5 1 2 .5 1 2
Multistart AE .985 .969 .531 .961 .966 .500 .588 .353 .124
Multistart k -means 1.000 .980 .557 1.000 .972 .502 .888 .485 .133
Simulated Annealing .913 .912 .524 .873 .861 .480 .587 .318 .130
Tabu Search .788 .797 .314 .783 .796 .324 .674 .313 .106
Multistart Fuzzy Steps .966 .966 .564 .980 .960 .516 .698 .370 .132

in italics. These tables are especially useful for determining the absolute
performance of the algorithms. It is clear that a high value of the ARI
almost always corresponds to a high value of VAF. In addition, the original
partition is often exactly retrieved when the error standard deviation is small
and all clusters have approximately the same numbers of objects.

The best performing algorithm usually has an average Adjusted Rand
Index above 90% or even 99% if the conditions of the simulated data sets
are favorable. This fraction rapidly decreases however, when the problem
instances become harder. The original partitions are especially hard to re-
trieve, if the error standard deviation is 2 or if 60% of the objects are located
in one cluster. The Adjusted Rand Index never becomes negative or very
close to 0, which indicates that it always is possible to retrieve some of the
structure in the data set.

Another important conclusion is that the differences in the average Ad-
justed Rand Indices between the methods can be large. The difference can
sometimes be as large as 30%, whereas the differences in VAF are just a few
percentage points. Therefore, the choice of the optimization method can be
quite important, if one wants to find the ‘true’ clustering.
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Table 5: Average Adjusted Rand Index in data sets with n = 150, m = 20,
K = L = 5.

object distribution uniform distr. 10%-cluster 60%-cluster
error st. dev. .5 1 2 .5 1 2 .5 1 2
Multistart AE .990 .880 .340 .975 .850 .337 .680 .428 .159
Multistart k -means .994 .882 .364 .994 .869 .345 .957 .595 .173
Simulated Annealing .960 .854 .381 .923 .796 .348 .635 .367 .171
Tabu Search .855 .773 .187 .864 .704 .185 .654 .349 .113
Multistart Fuzzy Steps .994 .883 .378 .988 .865 .351 .854 .491 .167

Table 6: Average Adjusted Rand Index in data sets with n = m = 100,
K = L = 3.

object distribution uniform distr. 10%-cluster 60%-cluster
error st. dev. .5 1 2 .5 1 2 .5 1 2
Multistart AE 1.000 .992 .858 1.000 .978 .749 .984 .990 .749
Multistart k -means 1.000 .992 .858 1.000 .984 .752 1.000 .990 .786
Simulated Annealing 1.000 .992 .859 .976 .962 .721 .937 .931 .641
Tabu Search .878 .884 .802 .911 .898 .642 .906 .915 .611
Multistart Fuzzy Steps 1.000 .992 .860 .977 .984 .721 .992 .990 .704
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Table 7: Average CPU time of all algorithms in seconds.

size of data sets n = m = 60 n = 150, m = 20 n = m = 100
error st. dev. .5 1 2 .5 1 2 .5 1 2
Multistart AE 7.5 9.1 13.4 12.0 14.6 17.5 8.3 9.4 14.5
Multistart k -means 12.4 16.1 19.1 12.0 16.6 18.2 8.4 10.3 15.2
Simulated Annealing 22.8 23.0 24.1 28.9 30.9 28.9 27.0 29.8 35.4
Tabu Search 24.8 25.3 25.4 33.2 30.0 29.3 25.0 25.2 25.0
Multistart Fuzzy Steps 7.5 10.5 20.9 7.1 10.9 19.4 4.1 6.8 15.7

Finally, we give the average CPU time in seconds used by all methods
in Table 7, for each problem size and value of the error standard deviation.
Note that the CPU times strongly depend on the type of computer used
and how the methods have been implemented. They should only serve as a
general indication of the amount of computation that optimization methods
require. The impact of the distribution of the objects over the clusters on the
computation time is small and is not shown here. The size of the error stan-
dard deviation has a clear positive effect on the computation time, especially
for the Multistart Fuzzy Steps method. A higher error standard deviation
also leads to longer computation times for the Alternating Exchanges and
the two-mode k -means algorithms.

The most important determinants of the CPU times of the methods are
the size of the data set and the number of clusters. The computation time
does not increase with m, n, K, and L for all algorithms in the same manner.
Therefore, the choice of the method should depend on the size of these factors.
The computational load of the Simulated Annealing and Tabu Search meth-
ods is somewhat greater than for the other optimization methods, though
the computation times of the methods are still roughly comparable.

The average VAF values in Tables 1-3 do not show the distribution of the
VAF values. For example, it is possible that a method usually performs well,
but occasionally gives very poor results. We will show performance profiles
of the VAF values for all methods. As drawing these profiles for each of the
27 combinations of the factors requires too much space, we will give three
examples. These examples are shown in Figures 5-7.

Figure 5 gives a performance profile of 50 data sets with a low error stan-
dard deviation. The value of the graph at the y-axis gives the fraction of
times that a method achieved the best VAF value of all method. The Mul-
tistart k -means method found the best partition in every problem instance
and the Multistart AE method also performed well. Most methods, except
Tabu Search, retrieved the initial partition in more than 50% of the problem
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Figure 5: Performance profile of data sets with sizes n = m = 60, K = L = 6,
error standard deviation 0.5, and a uniform distribution of the objects. The
lines represent the methods Multistart AE (dashed line), Multistart k -means
(dotted line), Simulated Annealing (dash-dot line), Tabu Search (thin, solid
line), and Multistart Fuzzy Steps (thick, solid line).
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Figure 6: Performance profile of data sets with sizes n = 150, m = 20,
K = L = 5, error standard deviation 2, and one cluster containing 10% of
the objects. The lines represent the methods Multistart AE (dashed line),
Multistart k -means (dotted line), Simulated Annealing (dash-dot line), Tabu
Search (thin, solid line), and Multistart Fuzzy Steps (thick, solid line).
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Figure 7: Performance profile of data sets with sizes n = 150, m = 20,
K = L = 5, error standard deviation 2, and one cluster containing 60% of
the objects. The lines represent the methods Multistart AE (dashed line),
Multistart k -means (dotted line), Simulated Annealing (dash-dot line), Tabu
Search (thin, solid line), and Multistart Fuzzy Steps (thick, solid line).

instances.
Figures 6 and 7 show performance profiles of data sets with a large error

standard deviation, where the optimal partition was hard to find. In these
cases, no algorithm performed at least as good as all others in every problem
instance. The Simulated Annealing and Multistart Fuzzy Steps methods of-
ten performed well. The performance of the Multistart AE, and Multistart
k -means was somewhat worse. The Tabu Search method is clearly outper-
formed by other methods. In both figures, the best average VAF value was
achieved by the Simulated Annealing method.

The conclusions of the simulation study can be summarized as follows.

• The Multistart k -means method has the best average performance in
most situations with a small amount of error.

• The Multistart Fuzzy Steps method often is the best performing
method if the amount of error is high, although its overall performance
is slightly worse than that of the Multistart k -means method.

• The Multistart AE and Simulated Annealing methods have a good
overall performance, but usually not as good as the Multistart k -means
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and Multistart Fuzzy Steps methods. The performance of the Tabu
Search method seems to be inferior for the simulated data sets.

• The average Adjusted Rand Index ranges from 14% to 100% in the
simulated data sets, and is significantly influenced by the choice of the
algorithm and by varying the factors of the simulation study

• Performance profiles show that the performance of each algorithm
varies greatly when the algorithm is performed multiple times. There-
fore, the Multistart heuristic of algorithms seems to be a very useful
strategy.

6 Empirical Data

Here, we present an empirical data set to illustrate two-mode clustering. As
marketing is an important area of application for clustering methods, we will
use a data set from this area. The data set is used to compare the algorithms
and to determine whether the conclusions of the simulation study are valid
in a practical data set.

The data set is based on a questionnaire about the Internet. It consists
of evaluations of 22 statements about the Internet by 194 respondents. The
statements were evaluated using a seven-point Likert scale, ranging from 1 -
completely disagree to 7 - completely agree. The average scores in the data
set can differ significantly per individual and per statement. A sample run
of the two-mode clustering methods shows that, if the raw data set is used,
the individuals and the statements will mostly be clustered based on their
average scores. We correct for this problem by double centering X, that is,
by replacing each xij with x̃ij, where

x̃ij = xij −
1

n

n∑
i′=1

xi′j −
1

m

m∑
j′=1

xij′ +
1

nm

n∑
i′=1

m∑
j′=1

xi′j′ , (15)

so that the column and row averages of X̃ are zero.
As it is not clear what numbers of clusters should be chosen, we use the

following procedure for choosing K and L. First, we perform the clustering
methods on X̃, for all K and L such that K +L = i, for i = 4 . . . 16. For each
value i we use the optimization method and values of K and L that yield the
best VAF. For each value of i and for each method, the best resulting VAF
value is shown in Figure 8. The algorithms use the same parameters as in
the simulation study.
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Figure 8: Best VAF values found in Internet data set, for K + L = 4 . . . 16.
The lines represent the methods Multistart AE (dashed line), Multistart k -
means (dotted line), Simulated Annealing (dash-dot line), Tabu Search (thin,
solid line), and Multistart Fuzzy Steps (thick, solid line).

The Multistart k -means, Simulated Annealing, and the Multistart Fuzzy
Steps methods all had good performances. The Multistart Alternating Ex-
changes method performed slightly worse, and the Tabu Search method per-
formed rather poorly. These results support the conclusions of the simulation
study.

The maximum VAF value shown in Figure 8 increases smoothly with the
number of clusters and so it is not entirely clear which values of K and L
should be chosen. We decide to use K = L = 5 for further interpretations,
which gives a best VAF value of 20.3%. The differences between the clus-
ter centers are shown in Table 8 in combination with the sizes (number of
elements) of the clusters. The differences between the cluster centers are rea-
sonably large. One of the statement clusters (columns) consists of a single
statement, suggesting that this statement might be an outlier.

The statements in each statement cluster are shown in Table 9. These
statement clusters have quite clear interpretations. Whereas the first cluster
only consists of one statement, the second cluster mainly consists of state-
ments that consider using the Internet expensive. The statements in the third
cluster generally apply to experienced Internet users. The statements in the
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Table 8: Average evaluations per cluster, cluster sizes, and interpretations.

respondent statement clusters
clusters 1 2 3 4 5 size interpretation

1 -1.53 0.72 -0.19 -0.34 0.74 34 price-conscious
2 1.69 0.00 -0.32 0.44 -0.60 55 safety-conscious
3 -1.51 -1.25 0.91 -0.19 0.12 26 experts
4 -2.07 0.11 0.36 0.31 -1.05 38 enthusiasts
5 1.88 0.09 -0.33 -0.48 1.09 41 skeptics

size 1 4 8 6 3
interpret. regulation expensive experience enthusiastic unreliable

fourth cluster are associated with people who are enthusiastic about the In-
ternet. The statements in the fifth cluster consider the Internet unreliable. It
is also possible to interpret the respondent clusters, by using the interpreta-
tions of the statement clusters and the values of the cluster centers in Table
8. The respondents in the first cluster mainly think that using the Internet
is expensive, but they still like it. The second cluster consists of people, who
mainly want more regulation on the content of web sites. Parents of young
children could be in this cluster. The third cluster of respondents consists of
experienced Internet users. Even though they find using the Internet quite
cheap, they seem to have lost some of their enthusiasm about it. The fourth
cluster is a group of ordinary Internet users, who think positively about the
Internet. The respondents in the final cluster seem to dislike using the In-
ternet and think it is unreliable. All these interpretations are summarized in
Table 8.

The clustered data set is graphically represented in Figure 9, as was done
before with simulated data sets in Figures 2-4. The bar at the right-hand side
of the figure shows to what values the colors refer. The clusters of the data
matrix can easily be recognized, though they can account for only 20.3% of
the total variance.

The Internet data set gives a useful example of how two-mode clustering
can summarize the information in a data set. The interpretations of both
row and column clusters seem quite natural. Two-mode clustering not only
divides the respondents and the statements into clusters, but also shows what
the opinions of the people in each cluster are.
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Table 9: Statement clusters in Internet data set, with interpretations of the
clusters between brackets.

Cluster 1 (regulation):
The content of web sites should be regulated

Cluster 2 (expensive):
Internet offers many possibilities for abuse
Internet phone costs are high
The costs of surfing are high
The prices of Internet subscriptions are high

Cluster 3 (experience):
Paying using the Internet is safe
I always attempt new things on the Internet first
I know much about the Internet
I like surfing
I like to be informed of important new things
I often speak with friends about the Internet
I regularly visit web sites recommended by others
Internet is addictive

Cluster 4 (enthusiastic):
Internet is fast
Internet is easy to use
Internet is the future’s means of communication
Internet is user-friendly
Internet offers unbounded opportunities
Surfing the Internet is easy

Cluster 5 (unreliable):
Internet is unreliable
Transmitting personal data using the Internet is unsafe
Internet is slow
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Figure 9: Graphical representation of the Internet data set, ordered by clus-
ters using K = L = 5.

7 Conclusions

Two-mode clustering seems a powerful statistical technique. However, var-
ious algorithms exist but no algorithm is guaranteed to find the optimal
clustering. Therefore, it is still unclear which algorithm should be used in
practice. We have tried to alleviate these problems, by giving an overview
of existing algorithms and introducing several new methods. Five methods
have been compared. All methods use one of the heuristics Multistart, Tabu
Search, and Simulated Annealing.

A simulation study has been performed to compare these methods and
to determine how effective they are at finding the optimal clustering. A
full-factorial design was used to assess the effects of characteristics of the
clustering problem on the performance of the methods. The sizes of the
data matrix, the number of clusters, the size of the errors and the distri-
bution of the objects over the clusters were varied in the simulation design.
The optimal clustering is often much easier to find if the number of clusters
and the size of the errors is small, and if all clusters have approximately
the same size. It turns out that the application of the Multistart heuristic in
combination with the k -means algorithm usually has the best average perfor-
mance, especially if the problem is easy. As it requires relatively little CPU
time and is easy to implement without supervision, we recommend using
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this algorithm for most instances. When optimal clustering is hard to find,
the Simulated Annealing and Multistart Fuzzy Steps methods often perform
best. As the optimal clustering is probably hard to find in empirical data sets
of reasonably large size, these algorithms can be useful in these cases. Using
Multistart in combination with the Alternating Exchanges algorithm often
also performs well. The performance of the Tabu Search method generally
is inferior; we do not recommend using this algorithm in conditions similar
to this simulation study.

The results of the methods on an empirical data set did not deviate from
what we found in the simulation study. The empirical data set also gives
a useful example of the potential applications of two-mode clustering. The
clusters found in this data set are meaningful and provide additional insight.

Research in the area of two-mode clustering algorithms is still ongoing
and far from complete. For example, we cannot exclude the possibility that
some algorithms can be improved by choosing their parameters differently.
Besides further theoretical research, further practical experience also is re-
quired. Practice can show the real merits and drawbacks of using two-mode
clustering.
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