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Abstract

We develop a dynamic model to study the formation of communication networks.

In this model, individuals periodically make decisions concerning the continuation

of existing information links and the formation of new information links, with their

cohorts. These decisions trade o� the costs of forming and maintaining links against

the potential rewards from doing so. We analyze the long run behavior of this process

of link formation and dissolution.

Our results establish that this process always self-organizes, i.e., irrespective of the

number of agents, and the initial network, the dynamic process converges to a

limit social communication network with probability one. Furthermore, we prove

that the limiting network is invariably either a wheel network or the empty net-

work.

We show in the (corresponding) static network formation game that, while a variety

of architectures can be sustained in equilibrium, the wheel is the unique e�cient

architecture for the interesting class of parameters. Thus, our results imply that the

dynamics have strong equilibrium selection properties.
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1 Introduction

The importance of communication networks has been extensively documented in empirical

work and their role in social learning has been highlighted in recent theoretical research.1

The �nding that communication networks matter naturally leads to the question: which

network structures are reasonable? This question motivates the formulation of a theory of

network formation.

In this paper, we propose an approach to network formation which is inspired by the fol-

lowing story: consider a group of individuals who have to periodically choose an action

without being fully informed about the true payo�s from the di�erent options. Each agent

has some information concerning the payo�s, which includes the agent's personal experi-

ences as well as information gathered from other individuals. Prior to choosing his next

action, an individual has an opportunity to contact2 a subset of agents to access their

information. In deciding with whom to form a link, the individual trades-o� the costs and

the potential bene�ts from doing so. His costs and bene�ts take into account the fact that

information has a public good aspect: well-connected people (i.e. those who possess infor-

mation collected from many sources) generate a positive externality, and the individual has

an incentive to contact such people directly rather than all the individual sources accessed

by them.

In this setting, we study the dynamic process of social communication. In particular, we

ask:

� Does the process of network formation settle down, and if so, what is the architecture

of the communication network that emerges?

� Given that information has some of the characteristics of a public good, what is the

relationship between socially e�cient networks and the networks derived from choices

made by self-interested individuals?

1See Allen (1982), Coleman (1966), Granovetter (1974) and Rogers and Shoemaker (1971) for early
work and Bala and Goyal (1993) for recent work and related references.

2The nature of this contact depends on the context. For a scientist who is about to carry out a new
project, and would like to know about recent research in related areas, reading a working paper constitutes
a contact. For a consumer wishing to �nd information about di�erent brands of cars, computers or mutual
funds, accessing a web page devoted to the evaluation of these products constitutes a contact.

1



The framework we use to address the above questions has the following structure. We

consider a group of n individuals, each of whom has (private) information which is worth

V > 0. This information can be augmented by forming pairwise links with other agents;

every link has an associated cost c > 0. The public good aspect of network formation

is captured by the following assumption: when an agent i forms a link with some other

agent j he gets access to all the information possessed by the latter, including the infor-

mation that j has acquired by forming links himself. At regular intervals, an individual

gets an opportunity to revise his links with other agents.3 When faced with this oppor-

tunity, an agent chooses a strategy { forms links with a subset of his cohorts { which is

a (myopic) best response to the existing set of links of the other agents. If more than

one strategy is optimal then he is assumed to randomize over the set of optimal pure

strategies.

The above action revision process generates a Markov chain on the state space of all net-

works. In analyzing the process of network evolution, we are naturally lead to the concept

of self-organization. We say that the dynamic process exhibits self-organization from an

initial network if the Markov chain converges (in �nite time) to a limiting network, with

probability one.

In our formulation, with n agents the total number of networks is given by 2n(n�1), im-

plying that the cardinality of the state space increases very rapidly with the number of

agents in the society. Intuitively, because the coordination problem becomes increasingly

complicated as the size of the society increases, it would seem that self-organization will at

best occur in small societies and perhaps only from certain initial networks. Nevertheless,

our main results, Theorems 3.1 and 3.2, yield the following startling conclusion: irrespec-

tive of the number of agents in the society, and the initial network, the learning process

invariably exhibits self-organization, i.e. converges with probability one to a limit network.

Our results also characterize precisely the architecture4 of the limiting networks: if the

value of private information with any agent V is more than the cost of forming a link c,

then the process almost surely converges to a wheel network, which is the unique e�cient

3Formally, in every period each agent, with positive probability, gets an option to form or dissolve links
with other agents. This probability is assumed to be independent across agents.

4By architecture we mean the equivalence class of all networks obtained by permuting the strategies of
agents in a given network. See the discussion in Section 2.
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architecture in our model.5 Thus not only is there self-organization, but it is also e�cient.

When V is less than c the process converges either to the empty network or to a wheel.

Thus self-organization also occurs in this case, but e�ciency may not be attained. In

fact, it is possible to show that the process exhibits path-dependence: starting from certain

initial networks, there is a positive probability of converging either to a wheel or to the

empty network.

The results on self-organization are striking for several reasons. The �rst reason is related

to the convergence of the dynamic process. Our theorems reveal that even when agents

pursue self-interested goals in a myopic way, and make no attempt to coordinate their

actions with other agents through a social planner or institution, they can nevertheless

achieve a stable pattern of communication links in the long run.

Secondly, we note that the static (one-shot) game has many equilibrium networks with

widely varying architectural and welfare properties (see Propositions 2.1-2.5).6 The dy-

namics thus possess remarkable equilibrium selection properties: while there are a number

of architectures which can be supported as Nash equilibria of the static game, the learning

process converges to a network having one of only two such architectures { the empty

network and the wheel.

The third reason relates to the rate of convergence. The value of Theorems 3.1 and 3.2

would be compromised if self-organization took place very slowly. Our simulations of

the learning dynamics suggest that the rate of convergence to a limiting network is ex-

tremely rapid both when communication costs are low (V > c) and when they are high

(V < c). In the former case, with n = 7 agents there are 2n(n�1) = 242 � 4 � 1012 pos-

sible networks, yet the process converges on average in less than 40 periods to a wheel!

When the communication costs are high (V < c) convergence is even more rapid. Fur-

thermore, in virtually all cases, the limit network is a wheel rather than the empty net-

work.

5The graph of a wheel has agents located on a circle, with each agent accessing his predecessor. We say
that a network is e�cient if it maximizes the net aggregate bene�t, i.e. the total value of information that
all the individuals acquire less the cost of all the communication channels that support the network (for
formal de�nitions see Section 2).

6See Figure 2 below for some examples of equilibrium networks in a society with n = 5 agents. In
addition, our computations reveal that if V > c then for n = 3; 4; 5 and 6 the number of equilibrium
networks in the one-shot game is 5, 58, 1069 and in excess of 20,000, respectively. This corresponds to 2,
5, 16 and more than 30 possible architectures for n = 3,4,5 and 6 respectively.
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In order to study the evolution of networks, we have chosen a particularly simple para-

metric model of social communication. Our choice is motivated by the need for analytical

tractability: even in such a basic model, a full characterization of the dynamics is quite

di�cult. One simplifying assumption we have made in particular is to suppose that in-

formation does not \decay" in the process of transmission across agents.7 To investigate

the robustness of our results on self-organization, we brie
y discuss an extension of the

model where the quality of information decays as it is communicated across agents. This is

a very complex problem: however, our preliminary analysis and simulations indicate that

in societies of moderate size, self-organization occurs with high probability and that the

limiting networks are natural generalizations of a wheel network. Interestingly, in this case,

self-organizing networks seem to be constituted of local neighborhoods: di�erent subsets of

agents form small wheels { the local neighborhoods { while other agents have links across

these wheels.8

Our paper is a contribution to the theory of network formation. There is a large literature

in economics (in addition to work in sociology and computer science) on the subject of

networks.9 Much of this work is concerned with the e�ciency aspects of di�erent commu-

nication networks within �rms and takes a `planner's problem' approach to characterize

optimal networks.10 By contrast, we are concerned with the self-organization properties

of networks and look at social and economic settings where individuals decide indepen-

dently on their sources of information and these decisions de�ne a social communication

network.

In recent years, Jackson and Wolinsky (1996), among others, have studied network forma-

tion in a similar spirit.11 The existing papers have been concerned with the relationship

between e�cient and sustainable networks, in static settings. This relationship is also one

of our concerns, but the present paper departs from the existing work by considering the

7Assuming no information decay is analogous to the assumption of \no friction" in physics, \markets
with perfect information" in a general equilibrium model and \zero transaction costs" in �nance.

8See Figure 18 below for some examples of such networks.
9For detailed reviews of this literature, see Antonelli (1992), Flament (1963), Harary (1972),

Luce (1951), Marshak and Radner (1972), Rogers (1971).
10For recent work in this tradition, see Bolton and Dewatripont (1994), Radner (1993), and the papers

referred to therein. Hendricks, Piccione and Tan (1995) use a similar approach to characterize the optimal

ight network for an unregulated airline which has to serve a given set of cities.

11Their paper draws upon the work of Myerson and Aumann, among others, which studies coali-
tion formation in (cooperative) game theoretic models. This work is surveyed in Myerson (1991) and
van den Nouweland (1993). See also Dutta, van den Nouweland and Tijs (1995) and Dutta and Mut-
tuswamy (1996).
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dynamics of network formation. We believe that the dynamics are important for several

reasons. Firstly, networks are observed to change over time and it is natural to study

their evolution. Secondly, a dynamic formulation allows us to consider phenomena such

as path-dependence which are of central importance and cannot be understood in a static

model. Finally, it helps us select between di�erent equilibria: the results in this paper are

especially useful in this context.

Our paper also departs from previous work in considering asymmetric link formation: we

allow for agent i to form a link with agent j without the converse being true. By con-

trast, previous literature has concentrated on models of symmetric link formation. This

di�erence in formulation is motivated by a wide range of examples where communication is

naturally viewed as asymmetric.12 In view of these di�erences, our work should be viewed

as complementary to the earlier analyses of networks.

More generally, the present paper should be seen as part of a research program in which the

structure of interaction among individuals is explicitly modeled and its aggregate implica-

tions are studied. This research problem has received growing attention in the recent work

on the evolution of conventions as well as on the di�usion of new technologies.13 For the

most part, this work takes as given the existence of some network structure and proceeds

to analyze its implications, see, e.g., the survey paper by Kirman (1993).14

We end this discussion by relating our results to the recent research on boundedly rational

players learning to play Nash equilibrium of the one-shot game (see e.g., Hurkens (1994)

and Sanchirico (1996)). This line of research shows, roughly speaking, that if the learning

process satis�es certain properties then the dynamics converge to a minimal `curb' set of

the one-shot game in the long run. The game we analyze in this paper is quite `large'

and the real issue here is: what do the minimal curb sets look like? Our main results,

Theorems 3.1 and 3.2, characterize the minimal curb sets as well as establish convergence.

12The examples mentioned earlier in the introduction fall in this category.
13For studies of interaction structure and evolution of conventions, see Anderlini and Ianni (1996), Elli-

son (1993), Goyal and Janssen (1993) and Goyal (1996). For work on di�usion of new technologies/products
see Allen (1982), An and Kiefer (1992), Bala and Goyal (1993), Besley and Case (1994), Coleman (1966),
Ellison and Fudenberg (1993, 1995) and Rogers (1971, 1983).

14An exception to this approach is the work by Mailath, Samuelson and Shaked (1992,1996), which
explores endogenous interactions within a matching model. They show that when agents may choose
whom they wish to interact with, heterogeneous outcomes which partition the society into groups with
di�erent payo�s can be evolutionarily stable. Our concern is not about heterogeneity of outcomes, but
whether agents can learn to attain a stable pattern of communication when information is a public good.
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We also note that since the learning process we study is di�erent, the convergence results

are of independent interest.

The plan of the paper is as follows. We introduce the basic model and present the static

results in Section 2. The dynamics are analyzed in Section 3. We consider a model with

information decay in Section 4, while Section 5 concludes. All the proofs are collected in

an appendix at the end of the paper.

2 The Model and Static Results

Let N be a set of agents and let i and j be typical members of this set. The agents are

numbered from 1 to n. To avoid trivialities, we shall assume throughout that n � 3. Each

agent has some private information which is commonly valued at V > 0. An agent can aug-

ment this information by communicating with other people; this communication takes time

and e�ort and is made possible via the setting up of pair-wise channels of communications,

each of which cost c > 0.15

A strategy of agent i 2 N is a (row) vector gi = (gi;1; : : : ; gi;i�1; gi;i+1; : : : ; gi;n) where

gi;j 2 f0; 1g for each j 2 Nnfig. The statement `gi;j = 1' is interpreted as saying that

agent i forms a link with agent j (in other words, has direct access to j's information) while

gi;j = 0 states that i does not directly communicate with agent j. The set of all strategies

of agent i is denoted by Gi. Since agent i has the option of forming or not forming a link

with each of the remaining n � 1 agents, the number of strategies of agent i is clearly

jGij = 2n�1. The set G = G1 � : : :�Gn is the strategy space of all the agents. A strategy

pro�le g = (g1; : : : ; gn) can be represented as a directed network . Figure 1 below provides

an example with n = 3 agents:

1 2

3

�
����
��	�

Figure 1

15Some of the material in this section is drawn from an earlier paper by Goyal (1993), which was
circulated under the title \Sustainable Communication Networks".
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Here agent 1 has formed links with agents 2 and 3, agent 3 has a link with agent 1 while

agent 2 does not link up with any other agent. Note that gi;j = 1 is represented by an edge

starting at j with the arrowhead pointing at i. Since there is a one-to-one correspondence

between the set of all networks with n vertices and the set of strategies G, we shall use the

terms `network' and `strategy pro�le' interchangeably.

Our model assumes that even if i does not form a link with j, i may be able to obtain

j's information indirectly, say by forming a link with someone who forms a link with

j, and so on. To formalize this notion, we require some additional de�nitions. In the

network g, let Nd(i; g) = fk 2 N j gi;k = 1g, i.e. Nd(i; g) is the set of agents with

whom i maintains a link. We next say that there is a path from j to i in the network

g if either gi;j = 1 or there exist agents j1, : : :, jm distinct from each other and from

i and j such that gi;j1 = gj1;j2 = : : : = gjm;j = 1. For example in Figure 1 there is

a path from agent 2 to agent 3. The notation \j
g
�! i" indicates that there exists a

path in the network g from j to i. Likewise j
g
 ! i indicates that there is a path from

i to j and also from j to i. The length of the path j
g
�! i is given by the number

of intervening links. Thus in Figure 1, the length of the path 2
g
�! 3 is 2. In more

complicated networks, there will typically exist more than one path between any two

points. A geodesic from j to i is a path from j to i of minimum length. If there is a

path from j to i in a network g, then the distance from j to i denoted by d(i; j; g) is

the length of a geodesic from j to i. We shall adopt the convention that if in a graph

g there exists no path between two points j and i then d(i; j; g) = 1. Also we shall

assume that a single agent i constitutes a trivial path and that d(i; i; g) = 0, for all

g 2 G.

Furthermore we de�ne N(i; g) = fk 2 N j k
g
�! ig [ fig. The set N(i; g) is the set of all

agents whose information i accesses either directly or through other agents. We use the

convention that i belongs to his own neighborhood, i.e. i 2 N(i; g) for all g 2 G. Finally,

let g�i denote the network obtained when all of agent i's links are removed. Note that the

network g�i can be regarded as the strategy pro�le where i chooses not to link with anyone.

The network g can be written as g = g�i � gi where the `�' indicates that g is formed

as the union of the links in g�i and gi. Agent i's payo� from the network g = g�i � gi is

de�ned as

�i(g) = jN(i; g)jV � jNd(i; g)jc: (1)
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In other words, i's payo� is V times the number of agents accessed in the network less c

times the number of agents with whom he forms links. Thus in Figure 1 agent 1's payo�

is 3V � 2c, agent 2's is V and agent 3's is 3V � c. Given a network g, the strategy gi is

said to be a best response of agent i to g�i if

�i(g�i � gi) � �i(g�i � g
0
i); for all g0i 2 Gi: (2)

The set of all of agent i's pure strategy best responses to g is denoted BRi(g). Lastly, a

network g = (g1; : : : ; gn) is said to be sustainable if agents are playing a Nash equilibrium,

i.e. for each j 2 N we have gj 2 BRj(g).

In our framework, the e�ectiveness with which useful private information gets communi-

cated across the society is of interest. Given the cost-reward structure developed so far,

this issue turns on the pattern and number of channels of communication in a network. The

main welfare property of networks we consider is aggregate e�ciency. A communication

network is said to be e�cient if it maximizes the di�erence between the aggregate payo�s

and the aggregate cost of the channels. Formally, the social welfare level of a network g is

given by

W (g) =
X
i2N

�i(g) =
X
i2N

jN(i; g)jV �
X
i2N

jNd(i; g)jc: (3)

A network g is said to be e�cient if W (g) � W (g0), for all g0 2 G. A communication

network g is called connected if for every pair of agents i,j 2 N , we have i
g
 ! j. This

is equivalent to saying that N(i; g) = N for all i 2 N . A network which is not con-

nected is referred to as being disconnected. Furthermore, a network is said to be empty

if N(i; g) = fig for all i 2 N . We denote the empty network as ge. Next, a network

g is said to be minimally connected if the deletion of any link in g renders the network

disconnected, i.e. if for any i,j 2 N satisfying gi;j = 1, the network created by setting

gi;j = 0 is disconnected.

Lastly, we make a distinction between a network and a network architecture. A network g

is simply an element of G. Two networks g 2 G and g0 2 G are equivalent if g0 is obtained

as a permutation of the strategies of agents in g. (For example, if g is the network in

Figure 1, and g0 is the network where agents 1 and 2 are interchanged, then g and g0 are

equivalent). The equivalence relation partitions G into classes: each class is referred to as

an architecture. While the relevant concept for agents in the game is the speci�c network

which is played, our primary interest in analyzing the game lies in the architecture of the

network.
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2.1 Sustainable and E�cient Communication Networks

We begin by characterizing sustainable and e�cient networks. Our �rst result considers

the implications of sustainability for the structure of networks.

Proposition 2.1 A sustainable network is either connected or empty.

This proposition highlights a general property of networks in which agents are symmetri-

cally located vis-a-vis information and costs of access: such networks cannot be partially

connected. The intuition underlying this property may be understood in terms of the in-

centives to form links in a network with (say) two distinct components. In a sustainable

network, if an agent forms links then she must be getting non-negative payo�s. It follows

then that any agent outside a component can always increase his payo� by simply linking

up with some member of this component. Thus either all members of a component are

getting negative payo�s, in which case the component cannot be part of a sustainable

network, or the network will be connected.

The set of connected networks is quite large and we would like to further specify the nature

of sustainable networks. This motivates the next two propositions. Recall that a network

is minimally connected if the deletion of any link renders it disconnected.

Proposition 2.2 Suppose V > c > 0. Then a network is sustainable if and only if it is

minimally connected.

This proposition characterizes the set of sustainable networks for the case where V > c.

The following `monotonicity' result concerns the case of higher cost levels. Given a pair of

values for V and c, let S(V; c) denote the set of sustainable networks.

Proposition 2.3 (a) Suppose V < c < c0. Then S(V; c0) � S(V; c). (b) If instead we have

0 < c < V < c0 then S(V; c0) � S(V; c) [ fgeg where ge is the empty network.

Figure 2a shows two important sustainable network architectures for V > c when there

are n = 5 agents. Note that in the �rst network every agent communicates with agent 4

and vice-versa. We refer to this as a star network gs. The other network in Figure 2a is
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termed a wheel network gw.16 Many other minimally connected (and hence sustainable for

V > c) networks may be found. Figure 2b provides some examples.

Taken together, Propositions 2.1-2.3 show that the set of sustainable networks consists of a

subset of the set of minimally connected networks and the empty network ge. In particular

we note the following:

Proposition 2.4 The architecture of sustainable networks is related to the cost levels.

(a) If 0 < c < V then the wheel and star, among other architectures, are sustainable. (b) If

V < c < (n � 1)V then the wheel is sustainable, but so is the empty network. The star is

not sustainable. (c) If c > (n � 1)V then the empty network ge is the unique sustainable

architecture.

The above results help us to understand the types of networks that will emerge when

individuals make link formation decisions, based on rational calculations concerning per-

sonal payo�s. Given this characterization, it is natural to ask: are individual incentives

for link formation consistent with aggregate (social) welfare maximization? The follow-

ing result responds to this question by providing a complete characterization of e�cient

networks.

Proposition 2.5 The e�cient architecture depends on the cost levels. (a) If 0 < c <

(n � 1)V then the wheel is the unique e�cient architecture. (b) If c > (n � 1)V then the

empty network is the unique e�cient architecture.

A comparison between Propositions 2.4 and 2.5 suggests both over-provision as well as

under-provision of communication links is possible (relative to the socially e�cient level).

Related to this is the �nding that the e�cient network is always sustainable. These results

point to a more general feature: there exist multiple equilibria in the (static) communica-

tion network game. These equilibria are welfare ranked and correspond to very di�erent

architectures.17 This fact motivates an inquiry into the dynamic stability of di�erent net-

works, a subject that is studied in the following section.

16Note that with n agents there are n possible `star' networks corresponding to which agent i acts as the
`central coordinator'. All of these come under the equivalence class of the star architecture. Likewise, the
wheel architecture is the equivalence class of (n � 1)! networks consisting of all permutations of n agents
in a circle. The empty architecture coincides with the empty network ge since there is only one network
with no links across agents.

17If we suppose c 2 (0; V ), then the number of sustainable networks equals 5, 58, 1069 and in excess of
20000 for n = 3,4,5 and 6 respectively, with the corresponding number of architectures being 2, 5, 16 and
more than 30.
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3 The Dynamics of Network Formation

We analyze a simple social learning model, which is based on a modi�ed version of the

best response dynamic. The �rst modi�cation is that agents exhibit `inertia': i.e. in each

period, with a �xed positive probability less than one, agent i maintains the action chosen

in the previous period. Furthermore, if the agent does not exhibit inertia, then he chooses

a myopic pure strategy best response to the actions of all other agents in the previous

period: if there are many such best responses, each of them is assumed to be chosen with

positive probability. The last assumption introduces a certain degree of `mixing' in the

dynamic process.18

To state these assumptions formally, let G�i denote the strategy space of all agents except

i and for given a set A, let �(A) denote the set of probability distributions on A. We sup-

pose that for each agent i there exists a number pi 2 (0; 1) and a function �i : G ! �(Gi)

where �i satis�es

�i(g) 2 Interior �(BRi(g�i)); 8g�i 2 G�i: (4)

For ĝi in the support of �i(g), the notation �i(g)(ĝi) denotes the probability assigned to ĝi

by the probability measure �i(g). If the network at time t � 1 is gt = gt�i�g
t
i , the strategy

of agent i at time t + 1 is assumed to be given by:

gt+1
i =

�
ĝi 2 support �i(g); with probability pi � �i(g)(ĝi);
gti ; with probability 1� pi.

(5)

Equation (5) states that with probability pi 2 (0; 1), agent i chooses a naive best response

to the strategies of the other agents. The function �i dictates how agent i randomizes be-

tween best responses if more than one exists. Furthermore, with probability 1� pi agent i

exhibits `inertia', i.e. maintains his previous strategy. Thus in the network of Figure 1

(reproduced below for convenience) assuming V > c, agent 2 has two best responses; to

form a link with either 1 or 3 (but not both). If agents 1 and 3 exhibit inertia, either

Figure 1' or Figure 1" can occur with positive probability.

1 2

3

�
����
��	�

Figure 1

1 2

3

�
����
��	� -

Figure 1'

1 2

3

�
����
��	�

@
@@R

Figure 1"
18In recent years, considerable work has been done using the best response dynamic process. For a

discussion of the behavioral and informational assumptions implicit in such a dynamic, see the discussion
in Mailath (1992).
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Supposing in addition that agents randomize independently of each other, our rules con-

cerning agent choices induce a transition matrix T mapping the statespace G to the set

of all probability distributions �(G) on G. Let fXtg be the stationary Markov chain

starting from the initial network g 2 G with the above transition matrix. The process

fXtg describes the dynamics of network evolution given our assumptions on agent behav-

ior.

To get a �rst impression of the dynamics we simulate a sample trajectory with n = 5

agents, for a total of twelve periods (Figure 3). The initial network (labelled t = 1) has

been drawn at random from the set of all directed networks with 5 agents.19 As can be

seen, the choices of agents evolve rapidly and settle down by period 11. The resultant

communication network is a wheel. Having reached a wheel, the process stays there for-

ever since the wheel is an absorbing state (formally, it is a strict Nash equilibrium and

all such equilibria are absorbing states). The simulation naturally suggests the concept of

self-organization in communication networks, which we now de�ne.

De�nition 3.1 Fix an initial network g. The stochastic process fXtg is said to exhibit self-

organization if starting at g the process converges to a limiting network, with probability 1.

If convergence occurs with probability less than 1, we say that there is incomplete self-

organization.

The notion of self-organization (when it occurs) is an appealing one because it implies that

agents who are myopically pursuing self-interested goals are nevertheless able to attain a

stable pattern of communication links in a �nite amount of time. Since the number of

possible networks increases very rapidly with the number of agents,20 it would seem that

self-organization can only be expected for small values of n, and even then perhaps only

from certain initial networks. We can however show the following result:

Theorem 3.1 Suppose V > c > 0. For any n and any initial network g the learning

process fXtg exhibits self-organization, i.e. converges with probability one in �nite time to

a limiting network. The limiting network is always a wheel.

19In period t � 2, the choices of agents who exhibit inertia have been drawn in uninterrupted lines, while
those whose choices are best responses have been drawn in lines interrupted by dots.

20Recall that for n agents there are 2n(n�1) networks.
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The broad strategy behind the proof is to demonstrate that every network di�erent from

the wheel gw is transient. We do this by showing that starting from any network g the

learning process converges to a wheel in �nitely many steps with positive probability. Since

a wheel (being a strict Nash equilibrium network) is an absorbing state, the conclusion then

follows from standard results in the theory of Markov chains.

The main ideas of the proof can then be understood in the context of a simple example

which we now discuss. Suppose that the initial `state' of the system is given by the network

g depicted in Figure 4. We initially suppose that there are seven agents labelled E1, : : :, E7

with links depicted as in the �gure. There is also a distinguished agent labelled `n' in the

network upon whom we focus: in the proof, given the initial network g, the distinguished

agent may be chosen arbitrarily.

We �rst characterize the best response of agent n given this network. Lemmas 3.1 to

3.3 in the Appendix show that this can be found as follows: �rst delete all the links

starting from or going to n in the graph g. Next, we can order the agents E1 to E7 in

the form of a `tree' as depicted in Figure 5 (ignore the arrows with dots for the mo-

ment). Note that agents E3, E6 and E7 represent the `tree-tops' as no other agents

observe these agents. Since V > c it is worthwhile for agent n to have a link with

each of these agents; furthermore since the `tree-top' agents observe every other agent,

n need not establish any other link in his best response. Consequently n's best response

is as shown by the red arrows in Figure 5. Since each agent independently chooses a

best response with probability pi 2 (0; 1), with probability of at least pn �
Q
j 6=n(1 � pj)

the stochastic process will move from g to the network g0 in Figure 5. We use this

idea repeatedly in the proof: at each stage we pick a suitably chosen agent, allow him

to play his best response and suppose that all other agents display inertia. Under the

assumptions of our learning process, the new network occurs with positive probability

given its predecessor. Before passing to the next step, we remark that the network g0

in Figure 5 does not depict links that other agents have with agent n which are unal-

tered when n chooses his best response. Thus in Figure 4, E1, E3, E5 and E7 have

links with n and these are not shown in g0. The reason for our omission is that given

the rules of the process, it does not matter for the proof whether or not these links ex-

ist.

In the next step, we pick agent E1 to play his best response, with all other agents ex-

hibiting inertia. Agent E1 is a `bottom' or `root' agent vis-a-vis agent n since, in g0, he
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does not observe any other agent (apart possibly from n himself). Furthermore we see

that agent n obtains information from all the agents in the society in g0. It follows that

agent E1 can obtain all the information in the society by establishing a link with n. Since

V > c, forming a link with n is in fact a best response for E1. The graph g00 in Figure 6

shows the new state of the system after E1 has played this best response (with of course

all other agents exhibiting inertia). We see that in Figure 6, E2 and E3 continue to be

`bottom' agents vis-a-vis agent n, i.e. they have no links apart (possibly) from n himself.

Thus a best response for E2 is to simply link up with E1, since in g00, E1 obtains all the

information in the society. Subsequently a best response for E3 is to have a link with

E2. In Figure 7, we have collapsed these two steps into one to show the resulting network

ĝ.

For the next step we see that E4 is a `second level' agent: she has a link with some of the

`bottom' agents of the tree in ĝ but with no one else (again, apart possibly from n). Thus

a best response of agent E4 to ĝ is simply to form a link with E3 since E3 now obtains all

the information in the society. The resulting network in shown in Figure 8. It now follows

that agent E5, who is a `third-rung' agent (i.e. observes no agent higher than `second-rung'

agents) can simply form a link with agent E4 as his best response. Furthermore, agent E6

can then link with E5 as his best response, to yield the network in Figure 9. The penul-

timate step occurs when agent 7 forms a link with E6 as a best response. The resulting

network is a `hyperwheel', i.e. a network which contains the wheel as a sub-network, as

in Figure 10. If agent n now chooses his best response, a wheel results (with positive

probability), as in Figure 11.

The complications which make the actual proof lengthier than the above description sug-

gests arise from the possibility thatE1 to E7 in the original network g of Figure 4 may not be

agents, but in fact groups of agents who all communicate with each other by links entirely

within the group. (In the proof such a group is referred to as a component). Lemmas 3.1

to 3.3 show that given any network g, and a distinguished agent n, the remaining agents

can be classi�ed into components E1, : : :,Em partially ordered as in Figure 5. Lemma 3.7

in the Appendix shows that when we move from the network like the one in Figure 5 to

the one in Figure 6, all the agents within the component E1 will (with positive probability)

arrange themselves in a linear `chain'. The same is shown at subsequent steps for the

components E2, E3, etc. (also in Lemma 3.7). The result then follows in the manner of

the above example.

14



We next examine the case where V < c. The analysis here is more complicated. To illus-

trate the main di�erences we present an example where n = 3. Clearly, if c > 2V then

the only sustainable network is the empty one. Furthermore, it is easy to see that in this

case, starting from any network, the process will converge to the empty network eventually.

The interesting case arises when c 2 (V; 2V ). We show that for this parameter range the

process may exhibit path-dependence: there exist initial networks g from which there is a

positive probability of the process converging either to a wheel or to the empty network.

To demonstrate the possibility of path dependency, suppose that the initial network is a

star as shown in Figure 12a.
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Figure 12c

Starting from the network in Figure 12a, note that a best response for agent 2 is to form

a link with agent 3 and disassociate from agent 1. If the other two agents exhibit in-

ertia, there is a positive probability of moving to the network depicted in Figure 12b.

Likewise, if agent 1 chooses his best response to the new network with the other two

agents maintaining their original links, the process transits to the wheel displayed in Fig-

ure 12c where it is absorbed. On the other hand, starting from the same network as

in 12a, it is easily established that if the agents choose their best response in the order

1, 3, 2 and 3 then the process will be absorbed into the empty network. Our analysis

thus shows that there is a `phase transition' in the dynamics when c crosses the threshold

V .

The above example raises the general question: under what circumstances does the pro-

cess display self-organization and if so, what are the limiting networks when V < c? The

following result provides a complete answer to this question.

Theorem 3.2 Suppose V < c. For any n and starting from any initial network g, the

(stochastic) network fXtg exhibits self-organization. The limiting network is either a wheel

or the empty network.

As in Theorem 3.1, the �rst point to note concerns the best response of agent n. When

V < c it is not always optimal to connect with all tree-tops. The proof exploits this
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idea and begins by dividing the set of networks into two subsets. The �rst subset con-

sists of networks with the property that the best response of every agent involves forming

no links. We observe that for this subset of networks the dynamic process converges to

the empty network, with probability 1. The second subset comprises those networks in

which at least one agent has a best response which involves link formation. The �rst step

here is to note that there is an agent n whose best response involves forming links with

some of the tree-tops. Consider the new network formed after n has chosen his best re-

sponse. The second step considers the best response of a bottom agent such as E1 (as

in Figures 4-7). Two cases arise here: �rst, that n observes all agent who observe him,

and second, that n is observed by other agents who are not observed by n. We focus on

the �rst case. We show that it is optimal for the bottom agent E1 to form a link with

agent n only and with no other agent. For the second case, we show that agent E1 forms

a link with some agent k 6= n who is linked with n and is \furthest" away from E1. The

subsequent steps follow along the lines of Theorem 3.1. The proof thus establishes that

starting from any network in this subset, there is a strictly positive probability of transit-

ing to a wheel (which is an absorbing network). This observation along with the example

above establishes that if the initial network lies in the second set then the dynamic pro-

cess converges with probability 1, and the limiting network is either a wheel or the empty

network.

Theorems 3.1 and 3.2 show that the process converges and characterize the limiting net-

works. The value of these results would be diminished if the rate of convergence was very

slow. In our setting a slow rate of convergence is a de�nite possibility since with as few as

n = 7 agents there are 242 � 4� 1012 possible networks. These considerations motivate an

examination of the rate of convergence.

In what follows we report on some simulations of the dynamic process for n varying from

3 to 7. In the simulations we assume that pi = p for all agents. Furthermore, let �̂ be such

that it assigns equal probability to all best responses of an agent given a network g. We

assume that all agents have the same function �̂. For a �xed value n, the initial network

g is chosen at random from the set of all networks with n vertices, and the process is sim-

ulated until it converges to a limiting network. When V > c > 0, the average convergence

times over 2000 simulations for di�erent values of n and p are shown in Figure 13. Note

that except for n = 3, the average convergence time increases if p is close to zero or one.

The intuition for this �nding is that when p is small, there is a very high probability that

the state of the system does not change very much from one period to the next, which
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raises the convergence time. When p is very large, there is a high probability that \most"

agents move simultaneously. This raises the likelihood of mis-coordination which slows

the process. The convergence time is thus lowest for intermediate values of p where these

two e�ects are balanced. Remarkably the minimum convergence time increases only slowly

as n increases. Even with over four trillion networks (n = 7), the average convergence

time for p = 0:4 is less than 40 periods! The average convergence times are even lower

when the communication cost is higher, as in Figure 14, which displays the results when

c 2 (V; 2V ).21 Overall, there is a strong tendency towards rapid self-organization in our

model.

We �nally comment on the role of two assumptions on the dynamic process: the random-

izing over best responses and the inertia hypothesis. Recall, that in the above process, if

an agent i has two or more best responses to a given network then he randomizes between

them according to the function �i. Given our observations in Section 2, it can be seen

that Theorems 3.1-3.2 will not hold in the absence of this condition. This is because in the

absence of randomization all Nash equilibria are absorbing and there are a large number of

equilibria in the one-shot link formation game. Randomization ensures that the dynamic

process moves away from non-strict Nash equilibria eventually and that only the strict

Nash equilibria are rest points of the system. This property of the dynamics is thus crucial

for equilibrium selection.

Our assumption that an agent i exhibits \inertia" with probability 1 � pi is also crucial

for the results. Consider the network depicted in Figure 15a and suppose that V > c >

0.
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It is easily veri�ed that in this network each agent has a unique best response. If pi = 1

for all i (every agent chooses his best response with probability one) then the network

in Figure 15b results. Likewise, starting from the latter network, the former results

if every agent chooses their best response, leading to a two-period cycle. This implies

21The faster convergence is not because the higher cost of communication results in a greater tendency to
converge to the empty network. In our simulations for n = 4, convergence to the empty network occurred
only once or twice per 2000 simulations and for n = 5,6 and 7 it was never once observed. The faster rate
of self-organization seems to be because there are fewer best responses for each agent when c > V .

17



that Theorem 3.1 no longer obtains if agents do not exhibit some inertia. The role of

the inertia assumption is thus to eliminate cycles which arise due to miscoordination by

agents.

4 Information Decay

While the results in previous section provide a sharp characterization of limit outcomes in

the learning process, they require the assumption that information does not \decay", i.e. in-

formation obtained through indirect links have the same value as that obtained through

direct communication. This assumption can possibly serve as a reasonable approximation

if the size of the society is \small", say n = 3,4 or 5. For large n, however, it is unlikely that

a network such as the wheel will be sustainable because information will be transmitted

through a long chain of links, with the attendant possibility that its quality gets degraded

in the process.

In general, the process of network formation in the presence of information decay is very

complex. In this section, we report some preliminary work which focuses on the issue of

how information decay a�ects our earlier results on self-organization.

We model the possibility of decay by introducing a parameter � 2 [0; 1]. Given a network

g, it is now assumed that if an agent i has a link with another agent j, i.e. gi;j = 1, then

agent i receives information of value �V from j. More generally if the shortest path in the

network from j to i is k � 1 links, then the value of agent j's information to i is �kV . Thus

decay is assumed to be geometric, and our earlier analysis of \no decay" corresponds to

the case � = 1. The costs of link formation are still taken to be c > 0 per link for each

agent.

The learning dynamics are taken to be the same as in Section 3. We start by noting

that what matters for our analysis are the relative values of c=V and �. It is easy to

show that if 0 < c=V < � � �2 then the dominant strategy for all agents is to form

links with every other agent. Hence the dynamic process will self-organize to the full

network with probability 1. Likewise, in a society with n agents, if c=V >
Pn�1

i=1 �
i

then it is easily seen that the dominant strategy for each agent is not to form links

with any other agent. Hence, self-organization to the empty network will occur with
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probability 1. The interesting range for studying self-organization is therefore as fol-

lows:

� � �2 <
c

V
<

n�1X
i=1

�i: (6)

If n = 3 or 4, the number of communication networks is relatively small, and it is possible

to prove self-organization in a number of situations in the above parameter range. We

characterize the outcomes in Figures 16 and 17.

Figure 16 covers the case of n = 3. It shows that if c=V 2 (� � �2; �) then the process

fXtg converges with probability 1 to a wheel, while if c=V 2 (�; � + �2) then the process

converges to a limit network with probability 1. In the latter case the limit network is

either a wheel or the empty network.22

Figure 17 summarizes the �ndings for the case of n = 4. We see that if c=V 2 (� � �3; �)

then fXtg process exhibits self-organization, and the limit networks are either a star or

a wheel, while if c=V 2 (�; � + �2 + �3) then self-organization also occurs, either to a

wheel or to the empty network.23 If c=V 2 (� � �2; � � �3) then our simulations reveal

that self-organization may be incomplete from certain initial networks, i.e. with strictly

positive probability convergence to a limiting network does not occur. This is related

to the fact that a wheel is no longer sustainable in this parameter region. Given a

choice of getting information third-hand (as will happen in a wheel with four agents)

each agent will strictly prefer to form two communication links. Thus agents continu-

ally attempt to form a wheel, but are always thwarted by individual incentives to behave

otherwise.

For higher values of n, analytical results are di�cult to obtain as the number of cases to

be considered becomes very large. Our simulations indicate that for each n there are pa-

rameter regions de�ned by complicated polynomial boundaries in which self-organization

and incomplete self-organization are seen to occur.24 By simulating the process at a grid

of parameter values25 in the range c=V 2 (� � �2;
Pn�1

i=1 �
i) we found that convergence

22With n = 3 there are 64 possible networks; these networks may be classi�ed into 3 possible types,
with each type having at most four subtypes. The above characterization is proved by showing that the
network of each subtype is transient and converges to a wheel or (depending upon the parameter values)
to a wheel or the empty network. The proof is available from the authors on request.

23With 4 agents in the society, the number of possible networks is 212 = 4096, which complicates the
analysis. The proof, which consists of examining about 120 di�erent subtypes of networks, is extremely
tedious and as in the case of n = 3, omitted.

24Based upon our simulations, we believe that these boundaries are de�ned by polynomials up to de-
gree n� 1.

25More than 2000 combinations of c=V and � for each n.
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to a limiting network occurred in 100%, 92:6%, 89:1%, 84:0%, 79:7%, 80:1% and 76:2%

of the parameter values as n ranged from n = 3 to n = 9. Since with n = 9 agents

there are more than 1021 networks, the high probabilities of self-organization are remark-

able.

The set of limiting networks in the presence of information decay is also of interest. When

c=V < �, limiting networks which are stars, wheels, or combinations of the two types tend

to occur. When c=V > �, the star, or star-like networks are no longer sustainable. In this

case, limit networks tend to be wheels, collections of wheels connected to each other or the

empty network. The (non-empty) self-organizing networks thus appear to be constituted

of local neighborhoods. Figure 18 displays some of the possible limit networks for di�erent

n.

To summarize our discussion, in moderately sized societies, self-organization occurs with

high probability, and the limiting networks are either the empty network or intuitive gen-

eralizations of the wheel. Thus, while our results on network formation in the presence of

information decay are not as clear-cut as in the earlier section, the simulations and analysis

suggest that Theorems 3.1 and Theorem 3.2 are fairly robust.

5 Conclusion

In this paper we present an approach to the theory of social communication based upon

the notion that information networks are created by individual decisions which trade o�

the cost of forming and maintaining communication links against the potential rewards

from doing so.

This approach is developed with the help of a simple dynamic model in which individual

agents decide to form or severe links with some subset of their cohorts, at regular intervals.

We examine the long run behavior of this process. Our results establish that this process

invariably self-organizes, i.e., starting from every initial con�guration of links it converges

to a limit social communication network, with probability one. Moreover, we show that

the limit network is either empty or a wheel, thus providing a complete characterization

of the set of self-organizing networks.

We show in the (corresponding) static network formation game that, while a variety of

architectures can be sustained in equilibrium, the wheel is the unique e�cient architecture
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for the interesting class of parameters. Thus, our results imply that the dynamics have

remarkable equilibrium selection properties.

Our analysis is carried out within the framework of a simple parametric model of social

communication. This framework is used for reasons of analytical tractability. In order

to investigate the robustness of our results, we consider an extension of the model which

allows for the quality of information to decay as it is communicated across agents. Prelimi-

nary work on this model suggests that in societies of moderate size, self-organization occurs

with high probability and that the limiting networks are natural generalizations of a wheel

network. Interestingly, in this case, self-organizing networks seem to be constituted of local

neighborhoods: di�erent subsets of agents form small wheels { the local neighborhoods {

while other agents have links across these wheels.

The results we obtain are striking and it seems worthwhile to examine further extensions of

the framework. In particular, we assume that all agents have the same amount of valuable

private information and the same costs of link formation. We also assume that maintaining

an already established link has the same cost as creating a new link. Finally, we suppose

that information links are entirely asymmetric, while in reality both asymmetric and sym-

metric communication are seen to occur. The implications of relaxing these assumptions

need to be explored in future research.

6 Appendix

Proof of Proposition 2.1: If V > c then it is obvious that a sustainable network will be

connected. We shall assume that V < c.26 Suppose g is a sustainable network which is not

empty. We show that it must be connected. The proof is by contradiction. Since g is not

the empty network, there exist distinct agents i and i0 such that gi;i0 = 1. As V < c and g

is sustainable, there must exist i00 62 fi; i0g such that gi0;i00 = 1, for otherwise i is better o�

by cutting his link with i0. By the same token there exists i000 62 fi0; i00g such that gi00;i000 = 1.

Since n is �nite, we see that eventually there is a cycle of agents D = fj1; : : : ; jmg such

that

gj1;j2 = gj2;j3 = � � � = gjm�1;jm = gjm;j1 = 1: (7)

26The proof for the case V = c is available from the authors upon request.
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Let �D be de�ned as

�D =
n
k 2 N j 9 j; j 0 2 D such that j

g
�! k and k

g
�! j 0

o
: (8)

The set �D consists of agents who observe some member of D and in turn are observed by

some member of D. It is easy to see by virtue of (7) that given k 2 �D, we have k
g
�! k0

and k0
g
�! k if k0 2 �D, while for k0 62 �D at least one of these conditions is violated. Now

de�ne the set F as consisting of those agents outside of �D who are accessed by at least one

agent in �D, i.e.

F =
n
i 2 Nn �D j 9 j 2 �D such that i

g
�! j

o
: (9)

We show that F is empty. Suppose i 2 F . Clearly there is no path in g from an agent

in �D to i or else i would belong to �D. Let j 2 �D be an agent who is at the short-

est distance from i, i.e. d(j; i; g) = minfj02 �Dg d(j
0; i; g). Then there exists i1,i2,: : :,is not

in �D such that gj;i1 = � � � = gis;i = 1. Clearly, fi1; : : : ; isg � F as well. As V < c,

there must be i0 such that gi;i0 = 1, for otherwise agent is would be strictly better o� not

forming a link with i. Moreover, we see that i0 62 �D, for otherwise i 2 �D contradicting

i 2 F . Hence i0 2 F as well. Arguing the same way, there must be i00 2 F such that

gi0;i00 = 1. Since F is a �nite set, there must be a cycle of agents D̂ = fk1; : : : ; krg � F

such that gk1;k2 = � � � = gkr;k1 = 1. Now suppose agent kr chooses to break the link

with k1 and instead form a link with agent j 2 D. If the new network is denoted g0

then �kr(g
0) � �kr(g) � j �DjV > 0 since the agent kr's cost is the same in both net-

works, while the agent also obtains the information of all agents in �D in the network

g0. Since kr can deviate and do better, g is not sustainable, contrary to supposition.

Hence F must be empty as required. In turn, this implies that for every j 2 �D we have

N(j; g) = �D.

We now demonstrate that if k 2 Nn �D, then j 0
g
�! k for some j 0 2 �D. If not, then by

de�nition, N(k; g) \ �D = ;, or equivalently N(k; g) \ N(j; g) = ; for all j 2 �D. But if

we consider the network g0 which is the same as g except that agent k forms an additional

link with some j 2 �D, then

�k(g
0)� �k(g) = jN(j; g)jV � c � jN(j; g)jV � jNd(j; g)jc = �g(j) � V > 0: (10)

where the �rst equality follows from the fact that agent k accesses the cycle �D in g0

and did not do so in g, and the last but one inequality follows because agent j is in-

dividually rational and must be getting at least as much payo� in g as by not form-

ing any links. This contradicts the assumption that g is sustainable. Hence for every
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k 2 Nn �D there is some j 0 2 �D such that j 0
g
�! k. Now let j be an agent in �D at the

closest distance to k, i.e. d(k; j; g) = minfj02Dg d(k; j
0; g). By construction of �D there

is some j� 2 �D with gj�;j = 1. Suppose agent j� deviates by cutting his link with j

and forming one with k instead: if g0 denotes the new network, then �j�(g
0) � �j�(g) �

V > 0. This holds because j�'s costs are the same in the two networks and j� accesses

all other agents in �D either through his remaining links with agents in �D or via k in

g0, and in addition gets k's information. Thus g is not sustainable as supposed. The

contradiction establishes that there does not exist k outside of �D, i.e. g is connected.

2

Sketch of Proof of Proposition 2.2: If a network g is sustainable and V > c it is

clearly connected. Suppose it is not minimally connected. Then there exist agents i and

j such that gi;j = 1, and the network ĝ obtained by setting gi;j = 0 is still connected.

Since c > 0, agent i obtains a higher payo� from ĝ than from g, which contradicts the as-

sumption that g is sustainable. In the reverse direction, suppose g is minimally connected.

This implies that for any agent i 2 N , gi;k = 1 only if k 2 E where E 2 T, i.e. agent

i forms one and only one link with each of the `top' maximal components of the graph

g0�i and no links with members of other maximal components.27 The proof now follows

from the characterization of an agent's best response which is given in Lemma 3.3 below.

2

Proof of Proposition 2.3: For part (a) we show that g 2 S(V; c0) ) g 2 S(V; c).

Proposition 2.1 implies that g is either connected or empty. If g is empty then the

claim is clearly true since an empty network is sustainable for all c > V . We there-

fore focus on the case that g 2 S(V; c0) is connected. The proof proceeds by contra-

diction. Suppose g 62 S(V; c). Then there exists an agent i and a strategy ĝi such

that

�i(g�i � ĝi j c) > �i(g�i � gi j c): (11)

where �i(� j c) is agent i's payo� when the communication cost is c. In other words,

jN(i; g�i � ĝi)jV � jNd(i; g�i � ĝi)jc > jN(i; g�i � gi)jV � jNd(i; g�i � gi)jc (12)

which is equivalent to

n
jN(i; g�i � ĝi)j � jN(i; g�i � gi)j

o
V >

n
jNd(i; g�i � ĝi)j � jNd(i; g�i � gi)j

o
c: (13)

27This terminology is de�ned in the proof of Theorem 3.1 which is presented later in this appendix.
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The connectedness of g implies that jN(i; g�i � gi)j = n. Since jN(i; g�i � ĝi)j � n =

jN(i; g�i � gi)j the above inequality implies jNd(i; g�i � ĝi)j < jNd(i; g�i � gi)j. As c
0 > c,

this implies that

n
jNd(i; g�i � ĝi)j � jNd(i; g�i � gi)j

o
c >

n
jNd(i; g�i � ĝi)j � jNd(i; g�i � gi)j

o
c0: (14)

From (13) and (14) we obtain, after rearrangement:

jN(i; g�i � ĝi)jV � jNd(i; g�i � ĝi)jc
0 > jN(i; g�i � gi)jV � jNd(i; g�i � gi)jc

0 (15)

or equivalently

�i(g�i � ĝi j c
0) > �i(g�i � gi j c

0): (16)

This contradicts the hypothesis that g 2 S(V; c0) and (a) follows. The proof for part (b)

is now straightforward. If g 2 S(V; c0) is the empty network ge then (b) holds trivially.

Otherwise the proof is exactly as in part (a). 2

Proof of Proposition 2.4: Consider part (a): since c < V any sustainable network

must be connected. Since the wheel and the star are minimally connected it is immediate

that no agent can pro�tably deviate from their speci�ed strategies, in these two cases. It

is easy to construct other networks, such as a sequence of stars linked together, which

are sustainable. Consider part (b) next: �rst note that the wheel is sustainable since

every agent is forming the minimum number of links, 1, thus incurring a cost c, while

getting the maximum amount of bene�ts, (n � 1)V . The empty network is sustainable

because no agent has an incentive to form a link with an isolated agent, since c > V .

Similar considerations lead to the conclusion that the star is not sustainable. Finally in

part (c) note that since c > (n � 1)V , the best response to any g�i is the strategy gi

with gi;j = 0; 8j 2 Nnfig. Thus the only sustainable network is the empty network.

2

Proof of Proposition 2.5: First consider part (a). We begin by noting that if a net-

work is connected then it must have at least n links. Furthermore, as proved in the

Claim below, if a connected network has exactly n links it must be a wheel. For V > c,

an e�cient network must be connected. Since the minimum number of links needed

to connect n agents is n, the above assertion thus directly implies that for these pa-

rameter values the wheel is the unique e�cient network. Next consider the case where
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V < c < (n � 1)V . Note that the welfare level provided by a wheel network gw is given

by

W (gw) = n2V � nc: (17)

By hypothesis, c < (n � 1)V and so it follows that W (gw) > nV . Since the empty net-

work ge provides welfare W (ge) = nV < W (gw), it is not e�cient. Let g be a network

in which the number of links L > n. Then W (g) � n2V � Lc < n2V � nc = W (gw)

so that g is not e�cient. Likewise, if L = n and g 6= gw then g is not connected and

is again dominated by gw. Consider a network g in which L < n, so that g is not con-

nected. Suppose g is e�cient. In such a network, at least n� L agents have no links with

other agents. Denote this set of agents by D. Since g is e�cient, W (g) � W (gw) > nV .

Thus at least one agent (say) k must be getting a payo� �k(g) > V . In particular, this

implies jNd(k; g)j � 1. Now construct a network g0 which has all the links in g and

in addition g0j;k = 1 for some j 2 D. By construction, the payo� in g0 of every agent

i 2 Nnfjg will be at least as high as in g. In addition the payo� of j is strictly higher

since

�j(g
0) = jN(j; g0)jV � c � jN(k; g)jV � c � �k(g) > V: (18)

Thus W (g0) > W (g), contradicting the hypothesis that g is e�cient. Hence an e�cient

network28 must have at least n links, and we have seen that gw is the unique architec-

ture which maximizes W (�) among all such networks. Consider part (b) next: note that

the minimum cost of link formation is c while the maximum bene�ts are (n � 1)V . For

c > (n � 1)V it is then immediate that the unique e�cient network must be the empty

network ge. 2

Claim: A connected network g with n links is a wheel.

Proof: Recall that to avoid trivialities we have assumed n � 3. Since g is connected

and has n links, for every i 2 N there is one and only one j 2 Nnfig such that gi;j = 1.

Consider agent 1. Renumbering the agents if necessary, let g1;2 = 1. If g2;1 = 1 as

well, then there is no path from agent 3 to either 1 or 2 which violates connectedness.

Hence g2;1 = 0 and suppose without loss of generality that g2;3 = 1. More generally,

suppose for some k < n we have g1;2 = g2;3 = � � � = gk�1;k = 1. If gk;i = 1 for some

i 2 I � f1; : : : ; k � 1g then there is no path from agent k + 1 to the agents in I, violat-

ing the connectedness of g. Thus gk;j = 1 for some j 2 NnI; renumbering if necessary,

let j = k + 1. Proceeding inductively we see that g1;2 = � � � = gn�1;n = 1. If gn;i = 1

28The existence of an e�cient network is guaranteed since the number of feasible networks is �nite.
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for some i > 1 then there is no path from 1 to agent n violating connectedness. The

contradiction proves that gn;1 = 1. Since all the n links are accounted for, g is a wheel.

2

Proof of Theorem 3.1

Our �rst objective is to characterize the best response of an agent to a network g 2 G. We

start by showing the following property of a best response. Recall that for a network g,

the network g�i is obtained by deleting all of i's links, i.e. replacing all edges of the form

gi;j = 1 with gi;j = 0.

Lemma 3.1 Given a network g = g�i�gi in G, let g
0
�i be the network obtained by replacing

all edges of the form gj;i = 1 with gj;i = 0 in g�i. Then BRi(g�i) = BRi(g
0
�i).

Proof: Consider a strategy �gi 2 Gi. Let �g = g�i� �gi. Clearly Nd(i; �g) = Nd(i; g
0
�i� �gi), so

that the cost of strategy �gi is the same in both networks. Since g0�i� �gi is a sub-network of

�g, we have N(i; g0�i� �gi) � N(i; �g). We show that N(i; �g) � N(i; g0�i� �gi) as well. Suppose

k 6= i belongs to the former set. Then by de�nition there is a path k
�g
�! i. Since the path

does not involve any link of the form �gj;i = 1, and the absence of such links constitutes

the only di�erence between �g = g�i � �gi and g0�i � �gi, we also have a path from k to i in

the network g0�i � �gi. Hence k 2 N(i; g0�i � �gi). Thus i's payo� is the same in both �g and

g0�i � �gi. The result follows. 2

Lemma 3.1 implies that to obtain a best response of agent i we can start from a net-

work in which all the links that other agents have with i have been removed. Next, for

a network g, given a set E � N of agents and two distinct agents i,j 2 E, we say that

there is a path from j to i in E if either gi;j = 1 or if there exist agents j1, : : :, jm 2 E

distinct from each other and i and j such that gi;j1 = : : : = gjm;j = 1. A path of this

type is denoted j
g;E
�! i. Note that the relation `

g;E
�!' is transitive. If both j

g;E
�! i and

i
g;E
�! j hold, we write this as i

g;E
 ! j. We can now de�ne the useful notion of a compo-

nent.

De�nition 3.1 A component of a network g is a set of agents E � N such that for all

i,j 2 E with i 6= j, we have j
g;E
�! i. A component E of g is called maximal if there is no

strict superset E 0
� N which is also a component of g.

A single agent in a network g vacuously constitutes a component of g. An agent who

either does not have links with other agents or whom nobody has a link with is a maximal

component of g. We now have the following technical result:
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Lemma 3.2 Given a network g and i 2 N , let g0�i be the network de�ned in Lemma 3.1.

Then there exists a unique partition of all agents in Nnfig into maximal components E1,

E2,: : :, Em of g0�i. The class of sets in the partition is denoted as E.

The proof of this result is omitted due to space constraints; a copy of the proof is avail-

able from the authors. Lemma 3.2 allows us to characterize the nature of the best re-

sponse for an agent. Henceforth to distinguish the role of agent i, he will be referred

to as agent n. We start by extending the relation `$' to sets of agents: given a net-

work g and disjoint sets E, E 0
� N , we write E

g
�! E 0 if for every j 2 E and every

j 0 2 E 0 we have j
g
�! j 0. We now apply this notion to the partition E obtained in

Lemma 3.2 associated with the network �g = g0�n. Given distinct E,E 0
2 E, it may be

veri�ed that E
�g
�! E 0 if and only if the following seemingly weaker condition holds:

there exist k 2 E and k0 2 E 0 such that k
�g
�! k0. Furthermore, E

�g
�! E 0 implies

E 0 �g
�! E cannot hold, since the two sets are maximal components. As the relation

`
�g
�!' on E is nonre
exive and transitive, it constitutes a strict partial order on E. We

de�ne the class T � E of `top' maximal components consisting of the largest elements

of E, i.e. E 2 T if there does not exist E 0
2 E such that E

�g
�! E 0. It can be

seen that the class T is non-empty. Furthermore note that if E 2 EnT then there

must exist Ê 2 T such that E
�g
�! Ê. We can now provide the following character-

ization of agent n's best response. Let T = [E2TE be the set of all `top' agents for

agent n.

Lemma 3.3 Suppose V > c > 0. Given the network g 2 G, ĝn 2 BRn(g�n) if and only

if for T as de�ned above for the network g0�n, we have for all j 62 T , ĝn;j = 0 and for all

E 2 T, ĝn;j(E) = 1 for exactly one agent j(E) 2 E.

Proof: By Lemma 3.1, we can consider the agent n's best responses to the network

�g = g0�n. Suppose ĝn is a best response to �g. Let E and T be as de�ned above. Fix

E 2 T and let k 2 E. Since V > c and there is no agent k0 2 NnE such that k
�g
�! k0

(by de�nition of T) it must be the case that ĝn;j(E) = 1 for some j(E) 2 E. Further-

more, it can easily be seen that N(j; �g) = N(j 0; �g) for all j,j 0 2 E. Hence if ĝn;j = 1

for some j 2 E other than j(E), the strategy obtained from ĝn by replacing ĝn;j = 1

with ĝn;j = 0 will yield a strictly higher payo�, as c > 0. The contradiction implies

that the agent j(E) must be unique. We now note that if k 62 T then there exists

E 2 T such that k 2 N(j(E); �g). Thus if ĝn;k = 1 the strategy obtained by deleting

this link would yield a strictly higher payo�. The contradiction shows that ĝn;k = 0
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must necessarily hold for all k 62 T . To show su�ciency, suppose ĝn satis�es the con-

ditions of the Lemma. It is clearly the case that N(n; �g � ĝn) = N . Suppose that ~gn

is a best response to �g. Then since V > c, we must have N(n; �g � ~gn) = N as well.

Hence for all E 2 T there must exist k(E) 2 E such that �gn;k(E) = 1. It follows that

jNd(n; �g � ~gn)j � jNd(n; �g � ĝn)j. Thus �n(�g � ĝn) � �n(�g � ~gn), and the result follows.

2

The proof of Theorem 3.1 repeatedly invokes the following useful property concerning the

best responses of an agent i.

Lemma 3.4 Let g be a network, and for i 2 N suppose gi 2 BRi(�g) where �g = g0�i. Let

K be a non-empty set of agents such that gi;k = 1 for all k 2 K. If k̂ is an agent satisfying

k
�g
�! k̂ for all k 2 K, then the strategy ĝi given by

ĝi;j = gi;j for all j 62 K [ fk̂g; ĝi;k = 0 for all k 2 K; and ĝ
i;k̂

= 1: (19)

is also a best response for agent i.

Proof: Note that by (19), jNd(i; g�i � ĝi)j � jNd(i; g�i � gi)j, so that agent i's cost for

strategy ĝi is at most that of using gi. The result is shown if N(i; g�i�gi) � N(i; g�i� ĝi),

which we now demonstrate. Let j belong to the former set. If j 2 K then since ĝi;k̂ = 1

and j
�g
�! k̂, j belongs to the latter set. If j = k̂ then obviously j 2 N(i; g�i � ĝi) as

well. Finally, suppose j 62 K [ fk̂g. If gi;j = 1 then ĝi;j = 1 by de�nition. Otherwise there

exist j1,: : :,jm distinct from each other and i and j such that �gj1;j = : : : = �gjm;jm�1
= 1

and gi;jm = 1. There are three cases: (a) If fj1; : : : ; jmg \ (K [ fk̂g) = ; then since

ĝi;jm = gi;jm we have j 2 N(i; g�i � ĝi). (b) If k̂ = jp for some jp 2 fj1; : : : ; jmg then

since j
�g
�! jp = k̂ and ĝ

i;k̂
= 1 we have j 2 N(i; g�i � ĝi). (c) Finally if k = jp for

some k 2 K and jp 2 fj1; : : : ; jmg, then j 2 N(i; g�i � ĝi) since j
�g
�! jp = k, k

�g
�! k̂

and ĝi;k̂ = 1. In all cases N(i; g�i � gi) � N(i; g�i � ĝi) from which the result follows.

2

We now come to the main steps required to prove Theorem 3.1. It is easy to see that the

wheel is an absorbing state of the Markov chain. The strategy of the proof is to show that

every network other than the wheel is transient. This is proved by showing that given an

arbitrary network g di�erent from the wheel, there is a positive probability of a transition

to the wheel in �nitely many periods.

Recall that the network g is the initial state of the Markov chain. Consider agent n

�rst. As above, suppose that E is the partition of maximal components induced by agent
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n in the network �g = g0�n formed by deleting all links to and from agent n. Recall

that T � E is the subclass of `top' maximal components. We now provide an alterna-

tive classi�cation of the sets in E. Let B1 � E consist of all the smallest elements of

E in the partial ordering `
�g
�!' i.e. E 2 B1 if there does not exist E 0

2 E such that

E 0 �g
�! E. Since E is �nite, B1 is non-empty. The class B1 consists of the `bottom'

maximal components, whose agents do not have links with any agent outside their com-

ponents in the network �g. For p � 1, having de�ned Bp, we then de�ne the class Bp+1

as:

Bp+1 = fE 2 EnEp j 9E
0
2 Bp with E

0 �g
�! E; and 6 9E 00

2 EnEp with E
00 �g
�! Eg:

(20)

where Ep = [1�q�pBq. Note that if EnEp is non-empty then so is Bp+1. We proceed

recursively until all sets E 2 E are exhausted. Let B1,: : :,Bs be the resulting collection of

classes. The classes B1 to Bs are pairwise disjoint and their union is E. We can regard the

sets in B1 as being `bottom' sets or on the lowest `level', those in B2 as the `second-lowest'

level and so on. The reason for our nomenclature is that in �g, by construction, an agent in

a set E 2 Bp can only be observed by agents in sets E 0 of level Bp+1, Bp+2 etc., and never

by agents in the class Bp (apart possibly from other agents in E) or agents in levels lower

than Bp. Formally, we write:

Remark: If j lies in some set E 2 Bp, and for some k 2 E 0 we have j
�g
�! k then either

E 0 = E or E 0
2 Bp0 for some p0 > p.

Note that for p � 1, the class Bp \ T may be non-empty, i.e. a component in E may be

both a `top' and belong to the pth level. Furthermore since Bs is the highest class in the

hierarchy, we must have Bs � T.

Now, by Lemma 3.3, agent n will choose a best response ĝn such that for all E 2 T,

ĝn;j(E) = 1 for exactly one j(E) 2 E and ĝn;j = 0 for all other j 2 N . Let g1 = g�n � ĝn.

We note that due to the inertia assumption, g1 occurs with strictly positive probability.

This is because each agent other than n independently maintains his original strategy with

positive probability, and agent n has a positive probability of choosing his best response ĝn.

In what follows, since it is quite di�cult to characterize the resulting network if more than

one agent chooses his best response simultaneously, we shall exploit this idea repeatedly:

we shall `pick' a particular agent, have him choose a best response (with certain proper-

ties), and construct the network in the next period assuming that every other agent has

displayed inertia. By the rules of the process, the resulting network occurs with positive

probability given its predecessor.
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The additional classi�cation of the sets in E into the classes fBqg
s
q=1 can now be used to

establish a special case: for a certain class of networks there is a positive probability of

converging to the wheel in �nitely many periods. We de�ne a hyperwheel to be a network

which contains the wheel as a sub-network.

Lemma 3.5 Suppose that the sets E 2 E are all singletons and that gj;n = 0 for all j,

i.e. no agent has a link with n in g (and hence also in g1). Then with positive probability,

the network g1 converges to a hyperwheel.

Proof: Let B1 � E consist of sets fB1
1 ; : : : ; B

q1
1 g. By assumption, each Bk

1 2 B1 consists

of a single agent. Refer to the agent in B1
1 as j11 . Consider the best response of j

1
1 . Since

V > c, we have N(n; g1) = N , i.e. n observes every agent in N . Thus if k 2 Nnfj11 ; ng

then k
g1

�! n. In fact, since j11 2 B1
1 2 B1, it must be the case that k

g1
�j1

1

�! n as well.

This follows because the network g1 is the same as g except for n's choice. Since by con-

struction j11 is a `bottom' level agent and therefore does not observe anyone in g, the same

is true in g1. Thus any path from k to n must exist in the network g1 independently

of j11 , i.e. k
g1
�j1

1

�! n as required. Now note that since k is arbitrary, there is a path from

every agent k to agent n in g1
�j1

1

. Hence by Lemma 3.4, we can choose agent j11 's best

response ĝj1
1

to g1 to be simply ĝj1
1
;n = 1, and ĝj1

1
;k = 0 for all k 6= n. In other words,

j11 need only form a link with agent n to obtain all the information in the society. Let

g2 = g1
�j1

1

� ĝj1
1

be the network formed when j11 chooses his best response in this way, with

all other agents exhibiting inertia. By the rules of the process, g2 occurs with positive

probability.

Next consider B2
1 2 B1. Refer to the agent in B2

1 as j21 . Note that in g2 the structure of

the network g1 is unaltered except for j11 's choice, which in turn is unaltered from g except

for n's choice. In particular, if k 2 Nnfj1; ng, then k
g2
�j1

1

�! n. However, since j21 2 B
2
1 2 B1,

j21 does not observe any agent in g, and hence, since he has displayed inertia throughout,

in g1 and g2 as well. Thus, for every k 2 Nnfj1; ng there is a path in g2 from k to n inde-

pendent of j21 as well, i.e. k
g2
�j2

1

�! n. It follows from Lemma 3.4 that j21 has a best response

ĝj2
1

satisfying ĝj2
1
;k = 0 for all k 62 fj1; ng. Furthermore, since g2

j1
1
;n
= 1 as well, applying

Lemma 3.4 again, j21 's best response can be chosen simply as ĝj2
1
;j1
1

= 1 with ĝj2
1
;k = 0 for

every other k. Let g3 = g2
�j2

1

� ĝj2
1

. Once again, there is a positive probability of getting

to g3 given g2.
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We now proceed in the same fashion until all sets in B1 are exhausted. The resulting

network (call it g4) has the property that the structure of the network for all levels above

B1 are the same as in g1, and g4
j1
1
;n

= g4
j2
1
;j1
1

= � � � = g4
j
q1
1
;j
q1�1

1

= 1. We now consider

sets in B2. Let them be numbered as fB1
2 ; : : : ; B

q2
2 g. Denote the agent in B1

2 as j12 .

Since all agents in B2 or higher levels have exhibited inertia, the network g4 has the

same structure for the sets in B2 and higher as in g1. In particular, given any k 2 E

for

E 2
n
B2

2 ; : : : ; B
q2
2

o
[

[
fE02Bp: p�3g

E 0 (21)

we have k
g4
�j1

2

�! n for the same reasons as before. Applying Lemma 3.4 again, we can choose

j12 's best response ĝj1
2

to satisfy ĝj1
2
;j
q1
1

= 1 with ĝj1
2
;k = 0 for all other k. The new network

(which again occurs with positive probability) is g5 = g4
�j1

2

� ĝj1
2

, assuming as before that

all other agents exhibit inertia.

We repeat the process in the same way for all the remaining sets in B2 and then for the

sets in each higher level in turn until all levels and each set in each level is exhausted. The

resulting network g6 satis�es

g6j1
1
;n = g6j2

1
;j1
1

= � � � = g6
j
q1
1
;j
q1�1

1

= g6
j1
2
;j
q1
1

= � � � = g6
j1s ;j

qs�1

s�1

= � � � = g6
j
qs
s ;j

qs�1

s
= 1: (22)

Furthermore, recall that Bs � T. Since agent n is assumed to display inertia from g1 to g6,

and in g1 we have g1n;j(E) = 1 for each E 2 T and some j(E) 2 E, we have (in particular)

g6
n;j

qs
s

= g1
n;j

qs
s

= 1. Thus the network g6 contains a wheel, i.e. it is a hyperwheel. The

result follows. 2

The following lemma establishes convergence to the wheel with positive probability for the

special case above.

Lemma 3.6 Suppose V > c and g6 is a hyperwheel as above. Then there is a strictly

positive probability that g6 will transit in one period to a wheel.

Proof: The only agent who potentially has super
uous links is agent n, since in g6 (as in

g1) he has a link with an agent in each E 2 T. We now assume that n alone chooses a

best response to g6. Note that by equation (22), there is a path from every j 62 fn; jqss g

to jqss in g6. Hence by Lemma 3.4, we can assume without loss of generality that agent n

chooses ĝn as his best response to g
6 de�ned as ĝn;jqss = 1 with ĝn;k = 0 for all other k. The

resulting network g7 = g6�n � ĝn is a wheel. 2
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In the more general case, if g is the original network, the maximal components E 2 E of

the network �g = g0�n may consist of many agents linked together. In addition, individual

agents j 2 E may have links with agent n in g, i.e. gj;n = 1. The proof now needs to be

extended to take into account these possibilities.

Recall that the network g1 = g�n � ĝn is obtained from the original network g after n

chooses his best response. As before E is the partition of maximal components induced

by g0�n and T is the collection of `top' maximal components. In addition, B1, B2, : : :, Bs

are exactly as de�ned prior to Lemma 3.5. Lastly, each class Bp consists of the maximal

components fB1
p; : : : ; B

qp
p g; unlike the special case considered earlier, these sets may not

be singletons.

We now proceed inductively. For some p � 1 and some m � 1 consider the set Bm
p 2 Bp.

Suppose that the current state of the Markov chain is a network g2 with the following

properties:

(a) g2n = g1n.

(b) For all k 2 F , where

F =
qp[

r=m+1

Br
p [

[
fE2Bp0 :p

0>pg

E (23)

we have g2k = g1k = gk.

(c) Property (b) also holds for k 2 Bm
p , i.e. g

2
k = g1k = gk.

(d) The agents in

J �
[

fE2Bp0 : p
0<pg

E [
m�1[
r=1

Br
p: (24)

are arranged as a `linear chain', i.e. J = fj1; : : : ; jwg where g2j1;n = g2j2;j1 = � � � =

g2jw;jw�1
= 1 and the agents in J do not have any other links.

We can then prove that the network g2 will transit with positive probability to a network

g3 where the chain J will be extended by the agents in Bm
p . The proof uses a technique

we label as `geodesic descent'. Consider a network ~g and recall that given two agents

i and j, a geodesic from j to i is a path of the shortest length from j to i in ~g. The

length of a geodesic from j to i is denoted d(i; j; ~g). (If no path exists from j to i, then

d(i; j; ~g) = 1 by convention). Furthermore, if E � N , and i,j 2 E, an E-geodesic from

32



j to i is a path of the shortest length, when only paths from j to i entirely within E are

considered. Furthermore, let d(i; j; ~g; E) denote the length of an E-geodesic from j to i. If

there is no path in E from j to i we write d(i; j; ~g; E) =1 as in the earlier case. We now

show:

Lemma 3.7 Let the state of the system be g2, where g2 satis�es properties (a) to (d).

Furthermore, denote the agents in Bm
p as fk1; : : : ; krg. Then there is a positive probability

that the system will move to a network g3 where properties (a) and (b) continue to hold, and

there is a linear chain J 0 = fj1; : : : ; jw; k1; : : : ; krg containing J which satis�es g3j1;n =

g3j2;j1 = � � � = g3jw;jw�1
= g3k1;jw = � � � = g3kr;kr�1

= 1. Furthermore, the agents in J 0 do not

have any other links in g3.

Proof: Suppose (a) to (d) hold in g2. Since V > c, g2n = g1n, and g1n is a best response to

g�n, we must have B
m
p � N(n; g2). Hence there exists some ku 2 B

m
p and some i0 2 F [fng

such that g2i0;ku = 1. Relabelling the agents for convenience, suppose ku is kr, i.e. g
2
i0;kr

= 1.

By (a) and (b) and the above argument, there is a path in g2 from kr to n which does not

involve any agent in Bm
p .

Recall that Bm
p is a component of �g = g0�n; by virtue of (c), it continues to be a component

of g2. Hence for every k 2 Bm
p nfkrg we have k

g2;Bm
p

�! kr. Choose an agent k 2 B
m
p nfkrg who

maximizes d(kr; k; g
2; Bm

p ), i.e. with whom kr has the longest B
m
p -geodesic. Relabelling the

agents again if necessary, suppose without loss of generality that k1 is this agent. We now

note that if k 2 fk2; : : : ; kr�1g then by the choice of k1, we have k
g2
�k1

;Bm
p

�! kr. (If this were

not true, then the shortest path within Bm
p from k to kr would have to pass through agent

k1, in which case d(kr; k; g
2; Bm

p ) > d(kr; k1; g
2; Bm

p ), which contradicts the de�nition of

k1).

Since for each k 2 fk2; : : : ; kr�1g we have k
g2
�k1

;Bm
p

�! kr, and there is a path from kr to

n independent of the agents in Bm
p , this implies k

g2
�k1

;Bm
p

�! n as well. Next note that

from (a) and (b), there is a path from every agent i0 2 F to n independently of the

agents in Bm
p . Finally, note from (d) that there is a path from n to jw also independent

of the agents in Bm
p . Using all these observations, we see that there is a path in g2�k1

from every k 6= k1 to jw. Hence, applying Lemma 3.4, agent k1 has a best response ĝk1
which is simply ĝk1;jw = 1 and ĝk1;j = 0 for any other agent. Let _g = g2�k1 � ĝk1 be

the network formed when k1 chooses this best response and all other agents show iner-

tia.
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Next consider the remaining agents in Bm
p . Fix k 2 fk2; : : : ; kr�1g. By the choice of k1 we

have k
g2
�k1

;Bm
p

�! kr. Since _g�k1 = g2�k1 by construction, k
_g
�k1

;Bm
p

�! kr as well, i.e. there is a

path from k to kr in _g independent of k1. In particular, d(kr; k; _g; B
m
p ) <1. Furthermore,

note that in _g the Bm
p -geodesic from k to kr cannot involve k1 since k1 has no longer any

links within Bm
p . Now choose an agent in fk2; : : : ; krg to maximize d(kr; k; _g; B

m
p ). Rela-

belling the agents if necessary let k2 be such an agent. Now, if k 2 fk3; : : : ; kr�1g then

k
_g
�k2

;Bm
p

�! kr as well. If not, all paths from k to kr (at least one exists since k
_g;Bm

p
�! kr) must

pass through k2. But then d(kr; k; _g; B
m
p ) > d(kr; k2; _g; B

m
p ), which contradicts the choice

of k2.

Since in _g there is a path from every agent k 2 fk3; : : : ; kr�1g to kr independently of k2

or k1, the same logic as used earlier with k1 leads to the conclusion that k2 can obtain

all the information in the society by forming a link with k1 alone; formally, he has a best

response ĝk2 which is ĝk2;k1 = 1, ĝk2;j = 0 for all other j. Let �g = _g�k2 � ĝk2 be the

new network formed in this way. We can then repeat the above steps with all the agents

fk3; : : : ; krg in succession to arrive a network g3 which satis�es the conditions of the lemma.

2

Note that the situation of Bm+1
p 2 Bp in g3 is identical to that of Bm

p 2 Bp in g2. Hence

we can continue the inductive step. In this way we exhaust all the maximal components

in Bp before moving on to the next level and so on until all levels are exhausted. The end

result is a hyperwheel g4, as in the special case of Lemma 3.5. Thus applying Lemma 3.6

to the hyperwheel g4, we see that every network has a positive probability of converging

to the wheel, which is an absorbing state. Theorem 3.1 now follows from standard results

on Markov chains.

Proof of Theorem 3.2: (Sketch) When V < c there exist networks g such that

the best response of every agent i to g�i is to form no links. Let the set of such net-

works be given by G1. Also de�ne G2 = GnG1 to the set of networks such that there

is at least one agent whose best response involves forming some links. It is easily ver-

i�ed that if g 2 G1 then the Markov process starting from g converges to the empty

network ge with probability 1. From now on we therefore concentrate our attention on

G
2.

Step 1 Consider a network g 2 G2. By de�nition, there is some agent n whose best re-

sponse to �g = g0�n involves forming some links. It is not di�cult to show the following

characterization of agent n's best response:
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ĝn 2 BRn(�g) only if for the network g0�n and T as de�ned above, we have (i) if j 62 T =

[E2TE then ĝn;j = 0 and (ii) if for some E 2 T, and j(E) 2 E we have ĝn;j(E) = 1,

then j(E) is unique.

As before, allow agent n to play his best response, with the remaining agents displaying

inertia. De�ne g1 = g�n � ĝn.

Step 2 There are two cases to be considered: (1) for all j such that n
g1

�! j we also have

j
g1

�! n, and (2) there exists a j such that n
g1

�! j but not j
g1

�! n.

We consider case (1) �rst. De�ne the classes fBqg
s
q=1 as before. Let B1 = fB

1
1 ; : : : ; B

q1
1 g

be the bottom components and start with B1
1 . Assume initially that it is a singleton, and

let j11 be this agent. There are two subcases: (i) j11
g1

�! n and (ii) there does not exist a

path in g1 from j11 to n.

In subcase (i) we show that j11 has a best response which involves forming a link with some

agent. If he forms no link he will obtain V . If he forms a link with n then he obtains a

payo� of jN(n; g1)jV � c. However,

jN(n; g1)jV � c � jN(n; g1)jV � jNd(n; g
1)jc � V: (25)

The �rst inequality is obvious since jNd(n; g
1)j � 1 by assumption. The second follows

because agent n must be obtaining at least V with his best response. Thus agent j11 has a

best response with a non-zero number of links. We next argue that j11 has a best response

ĝj1
1

such that

ĝj1
1
;n = 1 and ĝj1

1
;j0 = 0 for all other j 0: (26)

The proof is as follows. Suppose j11 has a best response which involves forming a link

with an agent j 0 di�erent from n and not forming one with n. If j 0 2 N(n; g1) then an

application of Lemma 3.4 shows that the link with j 0 can be replaced by a link with n

instead. Suppose j 0 62 N(n; g1). Since when n chose his best response he did not form a

link with j 0, it must be the case that

jN(n; g1)jV � jNd(n; g
1)jc � jN(j 0; g�n0)j � c: (27)

The left hand side is n's payo� by playing his best response, while the right is his payo�

from forming a link with j 0 instead in g�n. Since by (25) agent j11 obtains jN(n; g1)jV � c

by forming a link with n alone, which is at least as large as the left-hand side of (27), we

can assume that forming a link with n is as good as forming one with j 0 instead. The last
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situation to consider is when j11 has a best response which involves links with both n and

some j 0 62 N(n; g1). This can also be ruled out, because if n did not �nd it worthwhile

to form a link with j 0, then j11 cannot do so either. Thus we can assume without loss of

generality that (26) holds. Let the new network formed when j11 chooses his best response

in this way be given by g2 = g1
�j1

1

� ĝj1
1

.

In the more general situation of subcase (i), B1
1 may not be a singleton. Let B1

1 =

fj11 ; : : : ; j
r
1g and suppose there is a path from jr1 to n in g1. In this case we employ

the method of geodesic descent as in Lemma 3.7. Following the same logic, we can show

that the agents in B1
1 will align themselves with positive probability in a chain, i.e. there

will be a new network g2 formed where every agent outside B1
1 is unchanged from g1, and

the agents in B1
1 satisfy g2

j1
1
;n
= g2

j2
1
;j1
1

= � � � = g2
jr
1
;j
r�1

1

= 1.

We now come to subcase (ii), which is simpler. When B1
1 is a singleton fj11g, this is the

situation where there is no path from j11 to n in g1. Here a similar argument to (i) es-

tablishes that j11 has a best response which involves forming a link with n alone. In the

more general situation where B1
1 = fj

1
1 ; : : : ; j

r
1g we consider j

r
1 and arrange the remaining

agents in B1
1 in terms of decreasing geodesic distance. Starting with the agent having the

maximum distance, we show that he has a best response which involves forming a link with

n alone. The remaining agents are chosen as in the method of geodesic descent, to link up

as in subcase (i) to form the network g2.

Finally, we note that the above arguments apply in case (1). Recall that this is the

case where the best response of n is such that if there is a path from some j to n

in g1 the same is true in the opposite direction. The analysis of the complementary

case proceeds as follows: we start by noting that agent j11 2 B1
1 has a best response

in which he forms a link with the component which is \furthest" away from B1
1 rather

than forming a link with agent n. The arguments developed above can now be applied

with only slight modi�cation to allow for some relabelling of the ordering of the compo-

nents.

Step 3 We now proceed as in Theorem 3.1 to carry out the above operations on the

remaining components in B1 and then with the components in B2, B3, : : :, Bs. The

�nal outcome is a hyperwheel, after which we apply Lemma 3.6 to obtain the result.

2
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