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1 Introduction

Seasonal fluctuations are an important source of variation in many macroeconomic

time series. When such monthly or quarterly series are modelled, it is often assumed

that the seasonal pattern of the series is constant over time, in which case it may

be characterized by seasonal dummy variables, see Miron (1996) and Miron and

Beaulieu (1996), among others. On the other hand, it has been known for a long

time that seasonality in a series may change. As Kuznets (1932) remarked:

“For a number of years statisticians have been concerned with the problem of

measuring changes in the seasonal behaviour of time series.”

Possible causes for such changes have also been a longstanding object of interest.

After examining a number of employment series from various countries and regions,

Gjermoe (1931) wrote (in Norwegian):

“The strength of seasonal fluctuations has to do with the level of business

activity. A month in a year of low employment is more affected by seasonality

than the same month in a year of high employment.” (Author’s italics)

The possibility that seasonality is affected by the business cycle has been recon-

sidered in the more recent literature. For example, Canova and Ghysels (1994)

investigated it using quarterly US output. Their autoregressive model with seasonal

dummies for the first difference of the logarithmic series contained a set of extra

seasonal dummies that obtained nonzero values only if the NBER business cycle

indicator defined the corresponding quarter to be a recession quarter. Whether the

business cycle influences the seasonal cycle was examined by testing the null hy-

pothesis that the coefficients of the extra dummies were zero. Franses (1996, pp.

86-87) later argued that a more appropriate null hypothesis to test was that these

coefficients were equal but possibly non-zero. In that case, the autoregressive model

contained a business cycle influenced intercept under the null hypothesis. The em-

pirical results of these authors suggested that the seasonal pattern in the quarterly

US output series is indeed affected by the business cycle. See Cecchetti, Kashyap

and Wilcox (1997) and Krane and Wascher (1999) for other recent investigations of

the effect of the business cycle on seasonal patterns in US production, inventories

and employment.

Business cycle fluctuations are not the only possible reason for changes in the

seasonal pattern of output or employment series. In particular, technological change

and changes in institutions and habits may cause changes in seasonality as well. As

an example of the former, in the construction industry it has become possible to
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keep a construction site going in the winter in countries where, for a few decades

ago, work was interrupted for the winter months. As to the latter type of change,

the increase in paid leasure over the last few decades has gradually changed people’s

vacation habits, at least in some Scandinavian countries. It has become customary

to spend a week of the annual holiday in the winter, and this in turn has affected

output and consumption in the first quarter of the year. Yet another example may

be the increasingly efficient use of capital and just-in-time production techniques.

Many factories in Europe no longer close down for the summer vacation but the

production process is kept running without interruption. In all these examples, the

result has been that the seasonal pattern of output series has changed over time.

Our aim is to compare the effects on seasonality of gradual institutional and

technological change with the effects attributable to the business cycle. As for the

former, there do not seem to exist reliable aggregate measures for these changes.

We allow for the possibility that the aggregate change is steady and continuous and

simply use time as a proxy variable for it. This means that we in fact contrast

“Kuznets-type” unspecified change in seasonality with the “Gjermoe-type” caused

by fluctuations in economic activity. The main question we ask is: which one of

the two is more prominent in practice, if any? We shall investigate the problem

using industrial production series of the world’s leading market economies, the G7

countries.

The plan of the paper is as follows. In Section 2, we describe the output series

for the G7 countries, focusing on the properties of their seasonal cycles. In Section

3, we present our statistical tool, the time-varying smooth transition autoregressive

[TV-STAR] model. In Section 4, we use the TV-STAR framework for answering the

question of whether the changes in the seasonal patterns in the output series are

due to the effects of business cycle fluctuations or to technological and institutional

change or both. For all 7 series, we find convincing evidence that “Kuznets-type”

unspecified change is much more important than “Gjermoe-type” business cycle-

induced change. In Section 5 we specify and estimate TV-STAR models for our

series to gain further insight into when and how seasonality in the output series has

changed. Section 6 contains final remarks.

2 Preliminaries

2.1 Data

Our data set consists of quarterly seasonally unadjusted industrial production vol-

ume indexes for the G7 countries, taken from the OECD Main Economic Indicators.
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The sample period runs from 1960.1 until 1999.2, except for Canada for which the

series is available only from 1961.1. Obvious outliers in 1963.1 and 1968.2 for France

and in 1969.4 for Italy are replaced by the average of the index values in the same

quarter of the previous and the following year.

The importance of seasonal variation in the industrial production series may be

illustrated by regressing the first differences of the logarithmic series on a set of four

seasonal dummy variables. The coefficients of determination from these regressions

lie between 0.75 and 0.92 for the European series and Canada and are appreciably

lower only for Japan (0.29) and the United States (0.06). Incidentally, the correlation

between the seven standard deviations of the fitted values (the “seasonal cycle”)

and the corresponding residual standard deviations (the “business cycle” and noise)

equals 0.81. This accords well with the finding of Beaulieu, MacKiemason and Miron

(1992) that countries with large seasonal cycles tend to have large business cycles

as well.

We may also inspect the seasonal patterns in the series visually. Figures 1-7 show

graphs of the level, the first difference per quarter, and the seasonal difference of the

log industrial production series, as well as the range, defined as the maximum intra-

year variation in the first differences. The differenced and seasonally differenced

series are multiplied by 100 to express the changes in percentage points.

- insert Figures 1-7 about here -

A common feature for Canada and three European countries, Germany, France

and the UK, is that the seasonal variation in the industrial output series is dampened

over time, see panels (b) and (c). In particular, the drop in output in the third

quarter and the fourth-quarter peak have become less pronounced over time. This

is not true, however, for the remaining European country, Italy, where rather the

opposite occurs. This corresponds with results in Canova and Hansen (1995), who

test for structural change in the seasonal patterns of the four European series (over

the period 1960-1989) and find that rejections of the null hypothesis of constancy are

concentrated in the third and fourth quarters. The Japanese and the US series do

not show a third-quarter summer holiday decrease, and there is no visible tendency

in the amplitude of seasonal fluctuations in these countries. In the US, the quarterly

growth in the 1990s is actually highest in the third quarter and lowest in the fourth

quarter.

2.2 Deterministic and Stochastic Seasonality

In the case of nonstationary time series, time-varying seasonal patterns may often

be conveniently characterized by seasonal unit roots, see Hylleberg (1994). Autore-
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gressive models of seasonally differenced data are capable of generating series in

which the seasonal pattern evolves over time. For example, in realizations from such

models “summer may become winter” or, in general, seasons may “change places.”

Hylleberg et al. (1990) developed statistical tests for testing the seasonal unit root

hypothesis. When their HEGY test is applied to our time series, we can only reject

the presence of some seasonal unit roots for Japan, the UK and the US, see the upper

panel of Table 1. On the other hand, the picture is quite different if a single break is

allowed for in the deterministic seasonal pattern under the null hypothesis. In that

case, applying the test of Franses and Vogelsang (1998), the number of rejections

increases as shown in the lower panel of Table 1.

- insert Table 1 about here -

Structural time series models offer another way of modelling stochastically time-

varying seasonality; see Harvey (1989, Chapter 6). In this approach, the time series

is divided into components, of which the seasonal one is represented by a linear com-

bination of trigonometric functions with stochastic coefficients. If these coefficients

have zero variance, seasonality is deterministic.

Neither one of these alternatives, seasonal differencing or decomposition of time

series, is directly applicable to our situation. The reason is that we intend to consider

two types of time-varying seasonality, variation due to technological and institutional

change (“unspecified change”) and variation induced by cyclical fluctuations in the

economic activity, simultaneously. This requires a model within which we can dis-

tinguish these two types of changes from each other and thus compare the relative

importance of these two different sources of variation on the seasonal pattern of our

quarterly output series. Next we shall present such a model and discuss some of its

properties.

3 The TV-STAR Model

The model that we use to investigate the source of changes in seasonality in the G7

output series is the TV-STAR model introduced by Lundbergh, Teräsvirta and van

Dijk (2000). To suit our purposes, we augment the model by seasonal dummies,

such that for our quarterly time series it has the following form:

∆yt = [(φ′
1xt + δ′1Dt)(1−G1(wt)) + (φ′

2xt + δ′2Dt)G1(wt)][1−G2(t
∗)]

+ [(φ′
3xt + δ′3Dt)(1−G1(wt)) + (φ′

4xt + δ′4Dt)G1(wt)]G2(t
∗) + εt, (1)

where yt is the log-level of the industrial production index, wt a stochastic transition

variable, ∆ denotes the first differencing operator, defined by ∆kyt ≡ yt−yt−k for all
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k 6= 0 and ∆ ≡ ∆1, xt = (1, x̃′t)
′, x̃t = (∆yt−1, . . . , ∆yt−p)

′, Dt = (D1,t −D4,t, D2,t −
D4,t, D2,t − D4,t)

′, Ds,t, s = 1, . . . , 4 are seasonal dummy variables, with Ds,t = 1

when time t corresponds with season s and Ds,t = 0 otherwise, and t∗ ≡ t/T with T

denoting the sample size. The transition functions Gj(st) ≡ Gj(st; γj, cj), j = 1, 2,

are assumed to be given by the logistic function

Gj(st; γj, cj) = (1 + exp {−γj(st − cj)/σst})−1 , γj > 0, (2)

where the transition variable st = wt (j = 1) or st = t∗ (j = 2), and σst = [var(st)]
1/2

makes γj scale-free. As st increases, the logistic function changes monotonically

from 0 to 1, with the change being symmetric around the location parameter cj, as

Gj(cj − z; γj, cj) = 1−Gj(cj + z; γj, cj) for all z. The slope parameter γj determines

the smoothness of the change in the value of the logistic function. As γj → ∞,

the logistic function Gj(st; γj, cj) approaches the indicator function I[st > cj] and,

consequently, the change of Gj(st; γj, cj) from 0 to 1 becomes instantaneous at st =

cj. When γj → 0, Gj(st; γj, cj) → 0.5 for all values of st.

The TV-STAR model distinguishes four regimes corresponding with combina-

tions of G1(wt) and G2(t
∗) being equal to 0 or 1. The transition variable wt in (1)

is assumed to be a lagged seasonal difference, wt = ∆4yt−d, d > 0. As this variable

tracks the business cycle quite closely for our quarterly industrial production series

(see panels (d) of Figures 1-7), and because the logistic function Gj(st) is a mono-

tonic transformation of st, the regimes associated with G1(∆4yt−d) = 0 and 1 will

roughly correspond with recessions and expansions, respectively. Thus, using ∆4yt−d

as transition variable ensures that the TV-STAR model allows for “Gjermoe-type”

change in the seasonal pattern of yt. On the other hand, the function G2(t
∗) enables

the model to describe “Kuznets-type” unspecified change as well. It may be argued,

however, that GNP is a more representative and more commonly used indicator of

the business cycle than the industrial production. In fact, we repeated our tests

described in Section 4 using lagged seasonal differences of GNP instead of ∆4yt−d as

the transition variable. The results were very similar to the ones obtained by using

∆4yt−d and will therefore be omitted.

The reason for defining the elements of Dt as Ds,t−D4,t, s = 1, 2, 3, is that it ef-

fectively separates the deterministic seasonal fluctuations from the overall intercept.

For example, the coefficients in δ1 = (δ11, δ12, δ13)
′ measure the difference between

the intercept in the first three quarters of the year and the overall intercept, given

by the first element of φ1, in the regime G1(∆4yt−d) = 0 and G2(t
∗) = 0. The

difference for the fourth quarter is obtained as −∑3
s=1 δ1s. This parameterization

makes it easy, for example, to test constant seasonality while allowing for a business

cycle influenced intercept under the null hypothesis, cf. Franses (1996, pp. 86-87).
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The general TV-STAR model in (1) allows both the dynamics and the seasonal

properties of the growth rate of industrial production to vary both over the business

cycle and over time. By imposing appropriate restrictions on either the autoregres-

sive parameters or the seasonal dummy parameters or both, more restrictive models

can be obtained. Of particular interest here are models in which seasonality only

varies either over time or over the business cycle. A model in which seasonality is

constant over time is obtained if δ1 = δ3 and δ2 = δ4 in (1). Similarly, a model in

which seasonality is constant over the business cycle is obtained by setting δ1 = δ2

and δ3 = δ4. When δ1 = δ2 = δ3 = δ4, seasonality is linear and constant over time.

Imposing analogous restrictions on φi, i = 1, . . . , 4 results in models with constant

but nonlinear, linear but time-varying, and linear and constant autoregressive dy-

namics. If both the seasonal patterns and the autoregressive dynamic structure are

constant either over time or over the business cycle, the TV-STAR model reduces

to a STAR or TV-AR model, respectively. All these restrictions are testable, and

testing will be discussed in the next section.

Often a useful restricted TV-STAR model is an additive one, containing a non-

linear and a time-varying component. For example, a model in which the seasonal

dummy coefficients vary over time and the autoregressive parameters enter nonlin-

early can be written as

∆yt = φ∗′
1 xt + δ∗′1 Dt + φ∗′

2 xtG1(wt) + δ∗′2 DtG2(t
∗) + εt. (3)

In Section 5 we will use this form for the models for the industrial production series.

Finally, the TV-STAR model (1) is restrictive in the sense that it requires any

nonlinearity or structural change to be common across the autoregressive dynamics

and seasonal dummies. For example, if the coefficients of both the lagged growth

rates and the seasonal dummies are time-varying, the structural change is centred

at the same point in time, t∗ = c2, and occurs at the same speed, as determined by

γ2. It is straightforward to extend or modify the model to allow for different timing

and/or speed of the structural change of the two sets of coefficients. For example,

models of type (3) in which G1 and G2 have the same transition variable are not

excluded a priori.

4 Changes in the Seasonal Pattern and Their Causes

4.1 Testing Linearity and Parameter Constancy in the TV-
STAR Framework

The question posed in the Introduction about the causes of fluctuations in the sea-

sonal pattern is addressed in the framework of the TV-STAR model (1), in particular
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by testing hypotheses about the coefficients of the model. In the previous section,

it was emphasized that linearity or parameter constancy in the TV-STAR model

(1) may be achieved by imposing zero or equality restrictions on certain coefficient

vectors δi and/or φi. Note however that linearity or parameter constancy of both

the seasonal pattern and the dynamic autoregressive structure also results if the

smoothness parameter γj in the corresponding transition function Gj is set equal

to zero. This is an indication of an identification problem present in the model:

the TV-STAR model is only identified under the alternative, not under the null hy-

pothesis. For a general discussion, see Hansen (1996). In this paper, we follow the

approach of Lundbergh et al. (2000), see also Luukkonen, Saikkonen and Teräsvirta

(1988), and circumvent the identification problem by approximating the transition

functions by their first-order Taylor expansions.

Let the null hypothesis be H0 : γ1 = γ2 = 0, which is to be tested against

the alternative hypothesis H1 : γ1 > 0 and/or γ2 > 0. Under H0, model (1) re-

duces to a seasonality-augmented linear autoregressive model, which we assume to

be stationary and ergodic. Furthermore, we assume that the moment condition

E[(∆yt)
2(∆4yt)

2] < ∞ is satisfied, which is necessary for the asymptotic inference.

The first-order Taylor expansion of (1) around H0 becomes

yt = φ∗′
1 xt + δ∗′1 Dt + (φ∗′

2 xt + δ∗′2 Dt)t
∗ +

r∑
i=1

(φ∗′
3,ixt + δ∗′3,iDt)∆4yt−i

+
r∑

i=1

(φ∗′
4,ixt + δ∗′4,iDt)t

∗∆4yt−i + R(γ1, γ2) + εt, (4)

where R(γ1, γ2) is a remainder from the two Taylor expansions. Under the null

hypothesis of linearity and parameter constancy, R(γ1, γ2) ≡ 0, such that this re-

mainder does not affect the distribution theory.

Equation (4) is linear in parameters. Furthermore, and this is crucial, the pa-

rameter vectors φ∗
2 = γ2φ̃

∗
2(θ) and δ∗2 = γ2δ̃

∗
2(θ), φ∗

3 = γ1φ̃
∗
3(θ) and δ∗3 = γ1δ̃

∗
3(θ),

and φ∗
4 = γ1γ2φ̃

∗
4(θ) and δ∗4 = γ1γ2δ̃

∗
4(θ) where φ̃

∗
j(θ), δ̃

∗
j(θ), j = 2, 3, 4, are non-

zero functions of the parameters θ = (φ′
1, . . . , φ

′
4, δ

′
1, . . . , δ

′
4)
′. In view of this, the

original null hypothesis becomes

H′0 : φ∗
2 = φ∗

3,i = φ∗
4,i = 0, δ∗2 = δ∗3,i = δ∗4,i = 0, i = 1, . . . , r

in the transformed equation (4). In testing model (1) we only assume d ∈ {1, . . . , r},
that is, the true delay is unknown. This leads to the linear combination of lags of

∆4yt−d in (4); see Luukkonen et al. (1988). The tests reported below all set r = 4.

The standard χ2 statistic for testing H′0 has an asymptotic χ2 distribution with

7



(p+4)(1+2r) degrees of freedom under the null hypothesis. In practice, an F -version

of the test is recommended because its size properties in small and moderate samples

are much better than those of the χ2-based test statistic. It should be noted that,

depending on the values of p and r, certain terms φ∗2,i,0∆4yt−i and φ∗2,i,j∆yt−j∆4yt−i

should be excluded from (4) to avoid perfect multicollinearity.

In order to keep the notation simple, we so far have discussed the case of the

standard logistic function (2) being the transition function. It is useful to generalize

this slightly. Let

Gj(st; γj, cj) = (1 + exp{− γj

σk
st

k∏
i=1

(st − cji)})−1, γ > 0, cj1 ≤ ... ≤ cjk. (5)

This function allows more flexibility in the transition. When we test linearity against

the TV-STAR model (1) with (5), a first-order Taylor expansion of (5) leads to terms

with higher powers of ∆4yt−j and t∗ in equation (4); see, for example, Luukkonen

et al. (1988), Granger and Teräsvirta (1993, Chapter 6) or Lundbergh et al. (2000).

The dimension of the null hypothesis increases compared to the case k = 1, and the

moment condition required for the test becomes E[(∆yt)
2(∆4yt)

2k] < ∞. Below we

report results for k = 1, 2 and 3, and denote the corresponding statistics as LMk.

Finally, it should be pointed out that the lag length p in (1) is unknown. It is

selected from the linear seasonality-augmented autoregressive model using BIC with

the maximum order set equal to pmax = 12. As remaining residual autocorrelation

may be mistaken for nonlinearity, we apply the Breusch-Godfrey LM test to examine

joint significance of the first 12 residual autocorrelations in the model that is selected

by the BIC. If necessary, the lag length p is increased until the null hypothesis of no

error autocorrelation can no longer be rejected at the 5% significance level. Testing

is carried out conditionally on the selected lag length p̂.

4.2 Testing Hypotheses of Interest

The test just described is a general linearity test within our maintained TV-STAR

model (1). In this paper, however, the main interest lies in testing a set of sub-

hypotheses that place restrictions on seasonal dummy variables. We may also set

certain parameter vectors to zero (null vectors) a priori. This leads to a maintained

model that is a submodel of (1). For example, we may test constant seasonality

against the alternative that the seasonal pattern changes smoothly over time, con-

ditional on the assumption that seasonality is not affected by the business cycle and

that the autoregressive structure does not change. In terms of the parameters in
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(4), the corresponding null hypothesis is

HTV-AR
0 : δ∗2 = 0 | φ∗

2 = φ∗
3,i = φ∗

4,i = 0, δ∗3,i = δ∗4,i = 0, i = 1, . . . , r.

This is one of our hypotheses of interest. Another interesting one is

HSTAR
0 : δ∗3,i = 0 | φ∗

2 = φ∗
3,i = φ∗

4,i = 0, δ∗2 = δ∗4,i = 0, i = 1, . . . , r.

In this case, we test constant seasonality against the alternative that the seasonal

pattern is affected by the business cycle only. A test against the joint alternative

of smooth change and fluctuations ascribed to the business cycle may be formed

accordingly. The corresponding null hypothesis is denoted as HTV-STAR
0 .

These tests are based on the assumption of linearity. But then, the first difference

of the volume of industrial production may be a nonlinear or time-varying process.

One way of accounting for this possibility could be to relax the conditions in the

above tests. This variant of HTV-AR
0 becomes

HTV-AR∗
0 : δ∗2 = 0 | δ∗3,i = δ∗4,i = 0, i = 1, . . . , r.

Similarly, we have

HSTAR∗
0 : δ∗3,i = 0 | δ∗2 = δ∗4,i = 0, i = 1, . . . , r.

While testing these hypotheses is not difficult in practice, this may not be an optimal

way to proceed. Instead it may be better to test our two competing hypotheses

concerning seasonality within a model which allows the autoregressive structure to

change, either as a function of time (TV-AR) or as a function of the business cycle

(STAR). In that case, we may begin by testing linearity against STAR and TV-AR.

The relevant null hypotheses (assuming constant seasonality and unknown delay d)

are

HSTAR-ns
0 : φ∗

3,i = 0 | φ∗
2 = φ∗

4,i = 0, δ∗2 = δ∗3,i = δ∗4,i = 0, i = 1, . . . , r,

and

HTV-AR-ns
0 : φ∗

2 = 0 | φ∗
3,i = φ∗

4,i = 0, δ∗2 = δ∗3,i = δ∗4,i = 0, i = 1, . . . , r,

respectively. Assume for a moment that HSTAR-ns
0 is rejected and HTV-AR-ns

0 is not.

This implies that the dynamic behaviour of the process, excluding seasonality, may

be adequately characterized by a STAR model. We subsequently specify, estimate

and evaluate a STAR model for ∆yt. The issue is now the constancy of the coeffi-

cients of the seasonal dummy variables in the STAR model. The maintained model
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may be written as follows:

∆yt = φ′
1xt + φ′

2xtG(st) + {δ1 + δ2H1(∆4yt−e) + δ3H2(t
∗)

+ δ4H1(∆4yt−e)H2(t
∗)}′Dt + εt, (6)

where the transition functions H1(∆4yt−e), e > 0, and H2(t
∗) are logistic functions

as in (5). Note that we can choose either st = ∆4yt−d or st = t∗ in (6). The relevant

parameter constancy hypotheses can now be formulated within equation (6) in terms

of the slope parameters in the transition functions H1(∆4yt−e), e > 0, and H2(t
∗)

or in terms of the coefficient vectors δ2, δ3 and δ4. Asymptotic theory for inference

requires the assumption that the null model, (6) with δ2 = δ3 = δ4 = 0, is stationary

and ergodic. Testing is based on the Taylor approximation of H1(∆4yt−e) and H2(t
∗)

as described in Section 4.1; for a general account of STAR model misspecification

tests, see, for example, Teräsvirta (1998).

4.3 Results

Table 2 reports p-values of the F -statistics for testing HTV-AR
0 , HSTAR

0 and HTV-STAR
0

based on a linear null model. The column headings LM1, LM2 and LM3 correspond

to the tests based on the first-order Taylor expansion of the transition function (5)

with k = 1, 2 and 3, respectively. The rows correspond to tests involving both the

seasonal pattern and autoregressive structure (Ds,t, ∆yt−j), the seasonal pattern only

(Ds,t) and the autoregressive coefficients only (∆yt−j). All tests are computed with

the maximum value of the unknown delay r set equal to 4. A broad classification of

the results by the magnitude of the p-values appears in the upper panel of Table 3.

- insert Tables 2 and 3 about here -

This panel contains plenty of evidence to support the argument that seasonality

is changing for unspecified reasons, including institutional and technological change,

proxied by the time variable. The results for the LM1 statistic are mixed, but LM2

rejects the null hypothesis HTV-AR
0 at the 0.01 level in all seven cases, and LM3 in

six cases out of seven. On the other hand, there is much less evidence to support

the notion that seasonality varies with the business cycle. The p-values for the tests

corresponding to HSTAR
0 are considerably larger. The only occasions in which a p-

value lies below 0.01 are LM2 for France and LM3 for Japan. For Japan, there is

in fact substantial evidence of both nonlinearity and parameter nonconstancy in the

series. For the other five countries, it seems that business cycle fluctuations are not

a major cause for changes in the seasonal pattern.
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Finally, another fact obvious from Table 2 and the upper panel of Table 3 worth

mentioning is that testing against both types of changes in seasonality jointly has

an adverse effect on power. More information is gained by looking at the two al-

ternatives separately. Similarly, testing linearity of the seasonal pattern and the

autoregressive structure simultaneously can weaken the power and, furthermore,

complicate the interpretation of results.

Two objections may be made at this point. First, seasonality may not be fully

explained by the seasonal dummy variables. A part of the seasonal variation may be

absorbed in (explained through) the autoregressive dynamic structure of model (1).

Pierce (1978) discussed this possibility in connection with seasonal adjustment of

economic time series. This variation may be related to the business cycle. Second,

results on testing linearity against STAR in Table 2 (cells (∆yt−j, STAR)), suggest

that the dynamic behaviour of some of the industrial production series may be

nonlinear. For some other series a case can be made for a TV-AR process, that

is, the dynamic behaviour may be time-varying because of phenomena proxied by

time. It may therefore be argued that the results just presented are affected by

misspecification of the basic model and that in order to avoid this, the null model

should already accommodate non-seasonal nonlinearity.1

In order to consider this possibility we proceed as follows. Consider the row of

linearity tests (∆yt−j) in Table 2. We choose the type of transition variable, either

a lag of ∆4yt or t∗, for each series by comparing the p-values of the tests against

STAR and against TV-AR. If the p-value of the test against STAR is smaller than

the one for TV-AR, we choose a STAR model, otherwise we proceed with a TV-AR

model. In this case, all three LMk statistics yield the same result for France, Japan,

the UK (TV-AR), Germany and the US (STAR). For Canada and Italy, we obtain

conflicting results but, considering the three statistics jointly, it appears that the

evidence for TV-AR is stronger than the evidence for STAR for both countries. Next,

we specify and estimate a STAR/TV-AR model for ∆yt with the seasonal dummies

only entering linearly, following the modelling strategy described, for example, in

Teräsvirta (1998). We then test the constancy of the coefficients of the seasonal

dummy variables within this model. The p-values of the appropriate test statistics

can be found in Table 4, where the first column of the table gives the transition

variable of the model.

1An obvious modification of the tests presented in Table 2 would be to allow the overall intercept
to be affected by the business cycle when testing for “Gjermoe”-type changes in seasonality, and to
allow for the intercept to be time-varying when testing for “Kuznets”-type changes in seasonality,
cf. Franses (1996, pp. 86-87). Results from these tests are very similar to the ones shown in Table
2 and are therefore omitted.
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- insert Table 4 about here -

It is seen that the basic message is still the same, although the p-values are

somewhat higher than before. Obviously, some of the seasonal variation has been

absorbed by the re-specified dynamic structure of the model. Nevertheless it seems

that the seasonal parameters are still changing over time for unspecified reasons

rather than as a function of the cyclical fluctuations in the economy. The lower

panel of Table 3 gives a summary of the results. At the 5% level, HSTAR
0 can only be

rejected for some tests for Canada, France, Japan and the UK. Rejections against

TV-AR are still the rule, in particular when the test is LM3.

Canada is an interesting case. It is seen that LM1 now rejects constancy quite

strongly against “Gjermoe-type” change. It appears possible that both institutional

and technological change on the one hand and business cycle fluctuations on the

other may have affected the seasonal pattern of the Canadian output series. The

null model thus influences our view of the situation. Attention may also be drawn to

the US. The STAR model obviously characterizes most of the systematic variation

in the series. There is some evidence left suggesting that the seasonal pattern varies

over time due to unspecified reasons, but it is not very strong: the p-values of the

LMk tests equal 0.11, 0.081, and 0.11, for k = 1, 2 and 3, respectively.

Putting all this together, our general conclusion is that the institutional, techno-

logical and other changes proxied by time are the main cause for changes in seasonal

pattern in the output series of G7 countries. The results of this section also illustrate

the fact that our conclusions to some extent depend on the model used for carrying

out the relevant tests. This may not be surprising, and mentioning this fact may

even sound trivial. But then, we may also argue that our general conclusion seems

remarkably robust to the choice of the null model.

5 Modelling Changing Seasonal Patterns by TV-

STAR Models

Our test results in the previous section clearly show that seasonal patterns in the G7

ouput series are not constant over time. In this section, our aim is to characterize

this change with a parametric model, instead of just demonstrating its existence

through a number of hypothesis tests. We will attempt to build an adequate TV-

STAR model for each of the series and focus on the components related to seasonal

variation.

As the TV-STAR model is a rather flexible nonlinear model, we need a coherent

modelling strategy or modelling cycle in order to arrive at an acceptable parame-
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terization. We choose the “specific-to-general” strategy of Lundbergh et al. (2000).

The main features of this modelling cycle are the following. First, starting with

a seasonality-augmented linear autoregressive model, test linearity against STAR

(∆4yt−d being the transition variable) and TV-AR (t∗ being the transition variable).

Choose the submodel against which the rejection is strongest (if it is strong enough,

otherwise accept the linear model). Estimate the chosen model; this involves re-

peated estimation while reducing the size of the model through exclusion and equal-

ity restrictions on parameters. Evaluate the estimated model by subjecting it to a

number of misspecification tests. The results may either indicate that the estimated

model is adequate or they may point at the necessity of extending the model further,

for example towards a full TV-STAR model. A detailed account of the modelling

strategy can be found in Lundbergh et al. (2000). The misspecification test are

described, for example, in Teräsvirta (1998).

The estimated models are given in full detail in Appendix A together with a brief

account of the most important modelling events or decisions during the modelling

cycle. The appendix also contains a table with the results of the misspecification tests

of the final models. Here we concentrate on the deterministic seasonal components

of the models, as shown in panel (b) of Figures 8-14. The figures also contain the

deterministic components of the seasonality-augmented linear AR models. A striking

feature apparent in all figures is that the latter have a much smaller amplitude

than the corresponding components in the nonlinear models. Obviously, in a linear

model, the parameters of the dynamic structure have to explain a greater part of the

seasonality as the deterministic structure is assumed constant over time. Also, in

linear models a part of seasonal variation may remain unexplained. In this respect,

we note that the residual standard deviation of the nonlinear model is in all cases

about 70-80% of that of the corresponding linear AR model.

Of the individual graphs, those for France and the UK show a slowly changing

seasonal pattern with decreasing amplitude. The amplitude also ultimately decreases

for Germany. The start of the decrease in 1978 is rather abrupt and follows a slow

increase during the first part of the sample period. On the other hand, the German

unification has hardly affected the seasonal pattern of the industrial output of the

country. A similar abrupt shift occurs in the model for the US, but we have to

keep in mind that seasonal variation in the US industrial output is small compared

to the European G7 countries or Canada. The deterministic component obtained

from the Canadian output model accords with the visual information in Figure 1.

The amplitude of the seasonal pattern first slowly increases until a reasonably rapid

decrease takes place in the late 1980s.

As mentioned above, seasonality in a series need not be fully deterministic. It
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may even be argued that, within a STAR model, seasonality may sometimes change

from principally stochastic to mainly deterministic and vice versa. Consider the

UK TV-STAR model. The stochastic component of model (A.18) disappears almost

completely over time. Would it contain seasonality? One way of finding out is to

consider the roots of the lag polynomial

z9+(0.40z5−0.19z3+0.19z2+0.44)(1−G1(t
∗, 54.9, 0.36))+0.10z4G1(t

∗, 54.9, 0.36) = 0

at various values of the transition function G1(t
∗, 54.9, 0.36). For G1 = 0 (the be-

ginning of the period) the dominating root is a real root 0.975, but there exists a

complex pair of roots 0.08 ± 0.95i with modulus 0.95 and period 4.22 quarters. It

may be interpreted as representing a stochastic seasonal component that gradually

becomes less persistent and finally disappears. For example, for G1 = 0.5 the mod-

ulus of the corresponding pair of roots only equals 0.87 whereas the period length

equals 4.32 quarters. This is the only case among our models in which stochastic sea-

sonality is distinct in the sense that the estimated period length lies reasonably close

to four quarters while the component is at the same time persistent (the modulus

at least at some point of time exceeding 0.9).

Finally, the deterministic component in the industrial output of Japan shows

a very rich structure of change. Obviously, the seasonal pattern is affected by a

number of factors pulling in different directions at different times.

6 Final Remarks

The results of this paper suggest that seasonal patterns in quarterly industrial pro-

duction series for the G7 countries change over time. On the other hand, business

cycle fluctuations do not seem to be the main cause for this change. Our findings are

in contrast with Canova and Ghysels (1994) and Franses (1996), who considered US

output and concluded that the business cycle influences the seasonal cycle. Similarly,

Cecchetti et al. (1997) found that in the US seasonal fluctuations in production and

inventories vary with the state of the business cycle. There are at least two reasons

for differences between our results and the ones of the above authors. First, they

only considered US series and include the GNP and inventories. The second, and

perhaps the more important, reason is that those authors did not consider other

causes than business cycle fluctuations. Less restrictive considerations appear to

lead to rather different conclusions.

As the “Kuznets-type” unspecified change in seasonal patterns is in our work

proxied by time, we cannot give a definite answer to the question of what kind of

change, technological, institutional, or “other”, has been important in the industrial
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output series we have investigated. Nevertheless, some speculation may be allowed.

There is evidence for changes in inventory management affecting the seasonal pattern

of industrial output. Carpenter and Levy (1998) showed that inventory investment

and output are highly correlated not only at business cycle frequencies but also at

seasonal frequencies. Given the importance of inventories for (changes in) fluctu-

ations in output (see Sichel, 1994, and McConnell and Perez Quiros, 2000, among

others), it may well be that changes in inventory management such as the use of

“just-in-time” techniques have affected the seasonal cycle in inventory investment

and thereby changed the seasonal cycle in production. This would seem a plausible

explanation or a part of it in cases where the amplitude of the seasonal pattern has

decreased over time. On the other hand, very abrupt changes, such as the one in

the German industrial output series in 1978, may perhaps best be ascribed to the

agency producing the data, unless other information about the nature of the change

is available. In general, it may sometimes be relatively easy to suggest individual

causes for shifts in the seasonal pattern at the industry level. Because of aggrega-

tion this becomes more difficult when the volume of the total industrial output is

concerned.

As a whole, our research shows that seasonal patterns in output series tend to

change over time. This fact may also raise questions about the consequences of using

seasonally adjusted series in macroeconomic modelling. Investigating them in the

present context, however, has to be left for future work.
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Luukkonen, R., P. Saikkonen and T. Teräsvirta (1988), Testing linearity against smooth

16



transition autoregressive models, Biometrika 75, 491–499.

McConnell, M.M. and G. Perez Quiros (2000), Output fluctuations in the United States:
What has changed since the early 1980s?, American Economic Review 90, 1464–1476.

Miron, J.A. (1996), The Economics of Seasonal Cycles, Cambridge, MA: MIT Press.

Miron, J.A. and J.J. Beaulieu (1996), What have macroeconomists learned about business
cycles from the study of seasonal cycles?, Review of Economics and Statistics 78, 54–
66.

Ng, S. and P. Perron (1995), Unit root tests in ARMA models with data-dependent meth-
ods for the selection of the truncation lag, Journal of the American Statistical Associ-
ation 90, 268–281.

Pierce, D.A. (1978), Seasonal adjustment when both deterministic and stochastic sea-
sonality are present, in A. Zellner (ed.), Seasonal Analysis of Economic Time Series,
Washington, DC: US Department of Commerce, Bureau of the Census, pp. 242–269.

Sichel, D.E. (1994), Inventories and the three phases of the business cycle, Journal of
Business and Economic Statistics 12, 269–277.
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Appendix A Estimated TV-STAR Models

All models reported below are estimated over the sample period 1964:2-1999:2 (141 obser-

vations). Misspecification tests are given in Table 5. Figures 8-14 depict the value of the

deterministic seasonal components and the residuals from the TV-STAR model and the

best fitting subset AR model, and the transition functions.

Canada

In a seasonality-augmented linear AR model for Canada, linearity of the seasonal dummy

coefficients is rejected most strongly against “Kuznets”-type unspecified change. A TV-

AR model with a standard logistic transition function (2) does not satisfactorily capture

the variation in the seasonal pattern. This is not surprising given the way the seasonal

pattern evolves, as shown in panel (b) of Figure 1. A TV-AR model with a generalized

logistic function (5) with k = 2 also is inadequate, because the decline in the amplitude

of seasonal fluctuations after 1978 is different (both in terms of magnitude and speed)

from the increase during the first part of the sample, as shown in panel (c) of Figure 1.

We therefore use a TV-AR model with two standard logistic functions. After sequentially

deleting lagged first differences with insignificant coefficients and increasing the maximum

lag order to 11 to capture remaining autocorrelation in the residuals, we obtain the model

∆yt = 0.36
(0.080)

∆yt−1 + 0.33
(0.074)

∆yt−2 − 0.14
(0.087)

∆yt−3 − 0.21
(0.077)

∆yt−5 + 0.16
(0.071)

∆yt−10

− 0.24
(0.069)

∆yt−11 − 0.37
(1.06)

D1,t + 1.39
(1.44)

D2,t + 0.045
(0.94)

D3,t + 3.90
(1.07)

D4,t

+ ( 4.78
(1.51)

D1,t − 9.70
(1.96)

D2,t − 4.44
(1.45)

D3,t + 5.77
(1.62)

D4,t)×G1(t∗; γ1, c1)

+ (− 1.33
(0.78)

D1,t + 4.05
(0.83)

D2,t + 1.32
(0.79)

D3,t − 3.66
(0.73)

D4,t)×G2(t∗; γ2, c2) + ε̂t, (A.1)

G1(t∗; γ1, c1) = (1 + exp{− 3.15
(1.00)

(t∗ − 0.25
(0.033)

)/σt∗})−1, (A.2)

G2(t∗; γ2, c2) = (1 + exp{− 34.3
(33.1)

(t∗ − 0.73
(9.8E−3)

)/σt∗})−1, (A.3)

σ̂ε = 1.34, σ̂(TV-STAR/AR)= 0.82, SK = −0.13, EK = 0.42, JB = 1.40(0.50),
LMSC(1) = 0.059(0.81), LMSC(4) = 1.10(0.36), LMSC(12) = 1.05(0.41), ARCH(1) =
0.88(0.35), ARCH(4) = 4.24(0.37), AIC = −0.24, BIC = −0.011,

where OLS standard errors are given in parentheses below the parameter estimates, ε̂t

denotes the regression residual at time t, σ̂ε is the residual standard deviation, σ̂(TV-

STAR/AR)is the ratio of the residual standard deviations in the estimated TV-STAR and

AR models, SK is skewness, EK excess kurtosis, JB the Jarque-Bera test of normality of

the residuals, LMSC(j) is the LM test for no residual autocorrelation up to and including
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lag j, ARCH(q) is the LM test of no ARCH effects up to order q, and AIC and BIC

are differences between the Akaike and Schwarz Information Criteria, respectively, of the

estimated TV-STAR and the AR models. The numbers in parentheses following the test

statistics are p-values.

France

In the linear model for France, parameter constancy is rejected for both the seasonal dum-

mies and the lagged first differences (although rejection is stronger for the deterministic

terms). It turns out that the timings of these changes are different and hence we include

two logistic transition functions with time as transition variable. One of these is related to

the seasonal dummy parameters and the other to the autoregressive parameters. The diag-

nostic tests for this model reject the hypothesis of no remaining nonlinearity for the lagged

autoregressive parameters, with ∆4yt−1 indicated as the appropriate transition variable.

Adding such a nonlinear component, recursively deleting insignificant coefficients and im-

posing ± restrictions on the parameters of ∆yt−2, ∆yt−7, D1,t and D2,t, we arrive at the

following specification:

∆yt =− 0.31
(0.070)

∆yt−5 + 0.14
(0.11)

∆yt−6 + 3.43
(1.49)

D1,t − 0.58
(1.91)

D2,t − 20.0
(0.79)

D3,t + 19.9
(0.94)

D4,t

+ (− 0.31
(0.069)

∆yt−2 − 0.080
(0.042)

∆yt−7)×G1(t∗; γ1, c1)

+ (− 3.43
(1.49)

D1,t − 0.061
(1.54)

D2,t + 10.1
(1.41)

D3,t − 8.25
(1.00)

D4,t)×G2(t∗; γ2, c2)

+ ( 0.31
(0.069)

∆yt−2 + 0.21
(0.049)

∆yt−5 − 0.22
(0.074)

∆yt−6 + 0.080
(0.042)

∆yt−7)×G3(∆4yt−1; γ3, c3) + ε̂t,

(A.4)

G1(t∗; γ1, c1) = (1 + exp{− 4.55
(2.35)

(t∗ − 0.36
(0.036)

)/σt∗})−1, (A.5)

G2(t∗; γ2, c2) = (1 + exp{− 3.00
(0.89)

(t∗ − 0.64
(0.030)

)/σt∗})−1, (A.6)

G3(∆4yt−1; γ3, c3) = (1 + exp{− 500
(−)

(∆4yt−1 + 2.57
(−)

)/σ∆4yt−1})−1, (A.7)

σ̂ε = 1.50, σ̂(TV-STAR/AR)= 0.77, SK = −0.32, EK = 1.16, JB = 10.6(5.0E − 3),
LMSC(1) = 0.056(0.81), LMSC(4) = 0.47(0.76), LMSC(12) = 0.80(0.65), ARCH(1) =
0.11(0.74), ARCH(4) = 1.52(0.82), AIC = −0.42, BIC = −0.25.

Germany

For Germany, the results from the LM-type misspecification tests in the linear model

indicate that the seasonal dummy coefficients may be varying for unspecified reasons and

the autoregressive dynamics may be varying with the business cycle. The evidence for
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the latter disappears, however, once we allow the seasonal dummies to vary over time.

To capture the variation in the seasonal pattern, we find that three TV components with

standard logistic functions are required. The final specification is

∆yt = 0.26
(0.080)

∆yt−1 + 0.074
(0.074)

∆yt−2 + 0.068
(0.061)

∆yt−3 − 0.090
(0.070)

∆yt−4 − 0.17
(0.059)

∆yt−7

− 7.58
(1.06)

D1,t + 10.0
(1.67)

D2,t − 6.64
(1.45)

D3,t + 11.3
(1.02)

D4,t

+ (− 0.97
(1.11)

D1,t − 5.42
(0.67)

D2,t − 8.80
(2.27)

D3,t + 7.38
(1.37)

D4,t)×G1(t∗; γ1, c1)

+ ( 0.97
(1.11)

D1,t − 5.42
(0.67)

D2,t + 13.3
(1.61)

D3,t − 7.38
(1.37)

D4,t)×G2(t∗; γ2, c2)

+ ( 0.97
(1.11)

D1,t + 5.42
(0.67)

D2,t + 1.88
(1.75)

D3,t − 7.38
(1.37)

D4,t)×G3(t∗; γ3, c3) + ε̂t, (A.8)

G1(t∗; γ1, c1) = (1 + exp{− 3.36
(0.96)

(t∗ − 0.22
(0.042)

)/σt∗})−1, (A.9)

G2(t∗; γ2, c2) = (1 + exp{− 500
(−)

(t∗ − 0.42
(−)

)/σt∗})−1, (A.10)

G3(t∗; γ3, c3) = (1 + exp{− 3.58
(−)

(t∗ − 0.89
(0.039)

)/σt∗})−1, (A.11)

σ̂ε = 1.61, σ̂(TV-STAR/AR)= 0.70, SK = −0.24, EK = 0.80, JB = 5.26(0.072),
LMSC(1) = 4.12(0.045), LMSC(4) = 1.12(0.35), LMSC(12) = 1.66(0.086), ARCH(1) =
14.5(1.4E− 4), ARCH(4) = 16.5(2.4E− 3), AIC = −0.53, BIC = −0.24.

Even though the model contains three smooth transition components, the number of pa-

rameters is not excessively large as the parameters for the first, second and fourth quarter

in these components are restricted by equality and ± restrictions. Note that not all au-

toregressive parameters in (A.8) are significant - these are retained to keep the residual

autocorrelations small.

Italy

For Italy, constancy of the seasonal dummy parameters is rejected most strongly against

unspecified change. Misspecification tests of a TV-AR model in which only the seasonal

dummy coefficients are time-varying reject constancy of the coefficients of the lagged first

differences. Allowing these to be time-varying as well we find that the exclusion restric-

tions (the combined parameter equals zero when G1 = 1) on the autoregressive parameters

cannot be rejected. This means that the industrial production growth rate is a white noise

series with seasonal means after the smooth transition has been completed. The estimated

model has the form
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∆yt = 0.24
(0.10)

∆yt−2 − 0.53
(0.11)

∆yt−5 − 0.31
(0.12)

∆yt−6 + 6.07
(2.35)

D1,t + 5.32
(2.15)

D2,t

− 11.0
(0.82)

D3,t + 7.36
(1.61)

D4,t + (− 0.24
(0.10)

∆yt−2 + 0.53
(0.11)

∆yt−5 + 0.31
(0.12)

∆yt−6

− 4.16
(2.39)

D1,t − 3.65
(2.20)

D2,t − 9.65
(0.98)

D3,t + 11.2
(1.67)

D4,t)×G1(t∗; γ1, c1) + ε̂t, (A.12)

G1(t∗; γ1, c1) = (1 + exp{− 10.2
(4.76)

(t∗ − 0.40
(0.016)

)/σt∗})−1, (A.13)

σ̂ε = 2.16, σ̂(TV-STAR/AR)= 0.85, SK = 0.052, EK = 0.022, JB = 0.069(0.97),
LMSC(1) = 0.20(0.66), LMSC(4) = 0.38(0.82), LMSC(12) = 0.68(0.77), ARCH(1) =
10.4(1.2E− 3), ARCH(4) = 12.5(0.014), AIC = −0.27, BIC = −0.18.

Japan

For Japan, both linearity and parameter constancy are forcefully rejected for both the

lagged autoregressive parameters and the seasonal dummy coefficients. Starting with a

linear model with time-varying seasonal dummy coefficients, it appears necessary to have

two structural change components. In the resulting TV-AR model, linearity of the lagged

autoregressive parameters is rejected by the diagnostic tests. Accounting for this by in-

cluding a nonlinear component with ∆4yt−1 as transition variable, we finally obtain the

specification

∆yt = 0.072
(0.077)

∆yt−2 + 0.47
(0.38)

∆yt−3 − 1.70
(0.64)

∆yt−4 − 2.30
(0.59)

∆yt−5 + 0.032
(0.070)

∆yt−7 − 2.20
(0.56)

∆yt−10

− 0.80
(1.71)

D1,t − 0.60
(1.97)

D2,t + 1.18
(1.27)

D3,t + 3.78
(0.88)

D4,t + (− 6.02
(3.13)

D1,t + 7.15
(4.15)

D2,t

− 3.57
(2.42)

D3,t + 0.061
(1.58)

D4,t)×G1(t∗; γ1, c1)

+ ( 13.4
(13.9)

D1,t − 22.4
(22.3)

D2,t + 12.0
(12.3)

D3,t − 7.55
(7.54)

D4,t)×G2(t∗; γ2, c2)

+ ( 0.50
(0.080)

∆yt−1 − 0.47
(0.38)

∆yt−3 + 1.70
(0.64)

∆yt−4 + 2.30
(0.59)

∆yt−5 − 0.089
(0.074)

∆yt−8

+ 0.037
(0.070)

∆yt−9 + 2.21
(0.56)

∆yt−10 + 0.19
(0.061)

∆yt−11)×G3(∆4yt−1; γ3, c3) + ε̂t, (A.14)

G1(t∗; γ1, c1) = (1 + exp{− 3.24
(1.25)

(t∗ − 0.21
(0.052)

)/σt∗})−1, (A.15)

G2(t∗; γ2, c2) = (1 + exp{− 1.86
(1.36)

(t∗ − 0.96
(0.25)

)/σt∗})−1, (A.16)

G3(∆4yt−1; γ3, c3) = (1 + exp{− 3.08
(1.03)

(∆4yt−1 + 8.57
(1.77)

)/σ∆4yt−1})−1, (A.17)

σ̂ε = 1.30, σ̂(TV-STAR/AR)= 0.72, SK = −0.55, EK = 0.59, JB = 9.29(9.6E − 3),
LMSC(1) = 2.21(0.14), LMSC(4) = 0.86(0.49), LMSC(12) = 1.35(0.21), ARCH(1) =
1.01(0.31), ARCH(4) = 3.80(0.43), AIC = −0.41, BIC = −0.060.
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Note that the model contains some insignificant lagged first differences. These are retained

because removing them results in significant autocorrelation in the residuals.

United Kingdom

The test results for the UK are similar to the ones for France: constancy is rejected for

both the seasonal dummy parameters and the lagged autoregressive terms (although re-

jection is stronger for the deterministic terms). Again it turns out that the timing of these

changes is significantly different and, hence, we include two logistic transition functions

with time as transition variable, one operating on the seasonal dummy coefficients and

the other on the coefficients of the lagged first differences. After deleting insignificant

lagged first differences and imposing ± restrictions on the autoregressive parameters and

the coefficients for D1,t, the final specification is

∆yt =− 0.40
(0.091)

∆yt−4 + 0.19
(0.088)

∆yt−6 − 0.19
(0.088)

∆yt−7 − 0.44
(0.098)

∆yt−9 + 7.07
(1.84)

D1,t

− 4.98
(1.15)

D2,t − 11.0
(1.85)

D3,t + 13.5
(1.61)

D4,t + ( 0.40
(0.091)

∆yt−4 − 0.10
(0.068)

∆yt−5

− 0.19
(0.088)

∆yt−6 + 0.19
(0.088)

∆yt−7 + 0.44
(0.098)

∆yt−9)×G1(t∗; γ1, c1)

+ (− 7.07
(1.84)

D1,t + 0.22
(1.52)

D2,t + 8.47
(2.24)

D3,t − 5.52
(1.94)

D4,t)×G2(t∗; γ2, c2) + ε̂t, (A.18)

G1(t∗; γ1, c1) = (1 + exp{− 54.9
(82.0)

(t∗ − 0.36
(0.010)

)/σt∗})−1, (A.19)

G2(t∗; γ2, c2) = (1 + exp{− 1.78
(0.67)

(t∗ − 0.46
(0.072)

)/σt∗})−1, (A.20)

σ̂ε = 1.81, σ̂(TV-STAR/AR)= 0.83, SK = 8.7E − 3, EK = 1.19, JB = 8.58(0.014),
LMSC(1) = 0.090(0.76), LMSC(4) = 0.40(0.80), LMSC(12) = 1.00(0.45), ARCH(1) =
0.044(0.83), ARCH(4) = 13.6(8.8E− 3), AIC = −0.29, BIC = −0.15.

United States

For the US, constancy of the seasonal dummy coefficients and linearity of the autoregres-

sive parameters are rejected. Starting with a TV-AR model allowing for changing seasonal

parameters only, the hypothesis of linearity of the coefficients of the lagged first differences

is still rejected at conventional significance levels, most strongly if ∆4yt−3 is used as tran-

sition variable. Adding such a nonlinear component and deleting insignificant variables,

we arrive at the TV-STAR model
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∆yt = 0.38
(0.068)

∆yt−1 − 0.66
(0.099)

∆yt−2 + 0.19
(0.065)

∆yt−3 − 0.26
(0.097)

∆yt−4 − 0.28
(0.065)

∆yt−5

− 0.68
(0.14)

∆yt−7 − 0.44
(0.14)

∆yt−8 − 0.69
(0.39)

D1,t + 2.51
(0.42)

D2,t − 1.26
(0.43)

D3,t + 1.23
(0.38)

D4,t

+ ( 0.66
(0.099)

∆yt−2 + 0.49
(0.14)

∆yt−4 + 0.68
(0.14)

∆yt−7 + 0.44
(0.14)

∆yt−8)×G1(∆4yt−3; γ1, c1)

+ ( 1.23
(0.49)

D1,t − 2.51
(0.42)

D2,t + 2.71
(0.56)

D3,t − 2.14
(0.53)

D4,t)×G2(t∗; γ2, c2) + ε̂t, (A.21)

G1(∆4yt−3; γ1, c1) = (1 + exp{− 500
(−)

(∆4yt−3 − 0.61
(−)

)/σ∆4yt−3})−1, (A.22)

G2(t∗; γ2, c2) = (1 + exp{− 500
(−)

(t∗ − 0.44
(0.16)

)/σt∗})−1, (A.23)

σ̂ε = 1.18, σ̂(TV-STAR/AR)= 0.77, SK = −0.88, EK = 2.87, JB = 68.4(1.4E− 15),
LMSC(1) = 0.72(0.40), LMSC(4) = 1.56(0.19), LMSC(12) = 1.03(0.43), ARCH(1) =
0.18(0.68), ARCH(4) = 1.81(0.77), AIC = −0.37, BIC = −0.17.

The autoregressive order is increased to 8 in order to avoid rejections of the diagnostic tests

of no remaining nonlinearity in the autoregressive coefficients. The model is made more

parsimonious by imposing ± restrictions on the coefficients of ∆yt−2, ∆yt−7, ∆yt−8, and

D2,t, which are supported by the data. The skewness and excess kurtosis of the residuals

are caused entirely by the observations for 1975.1 and 1980.2, where large negative residuals

occur. The diagnostics tests reported in Table 5 show that parameter constancy is rejected

for the seasonal dummy coefficients. A model with a second time-varying component did

not render plausible estimates, however.
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Table 1: Seasonal unit root tests

Country k t1 t2 F34 Roots Break date
HEGY tests

Canada 8 −2.791 −1.571 6.091∗ ±1, ±i
France 5 −1.899 −0.828 2.051 ±1, ±i
Germany 7 −2.036 −1.037 4.902 ±1, ±i
Italy 8 −2.495 −2.588∗ 3.983 ±1, ±i
Japan 2 −2.390 −0.806 18.554∗∗∗ ±1
United Kingdom 5 −4.283∗∗∗ −1.486 6.993∗∗ −1
United States 4 −3.586∗∗ −1.661 18.296∗∗∗ −1

Franses-Vogelsang tests
Canada 8 −2.626 −2.886 7.762 ±1, ±i 1976.4
France 3 −1.490 −3.000 13.677∗∗ ±1 1984.4
Germany 1 −2.430 −7.354∗∗∗ 18.767∗∗∗ 1 1978.2
Italy 2 −2.719 −3.692∗ 27.713∗∗∗ ±1 1976.4
Japan 8 −2.833 −3.370 9.659 ±1, ±i 1992.2
United Kingdom 0 −3.609 −7.079∗∗∗ 64.820∗∗∗ 1 1983.2
United States 2 −3.981∗∗ −5.699∗∗∗ 18.121∗∗∗ − 1980.1

The upper panel contains results from the seasonal unit root tests of Hylleberg et al. (1990) [HEGY],
which are based upon the regression

∆4yt = µt + π1y1,t−1 + π2y2,t−1 + π3y3,t−2 + π4y3,t−1 +
k∑

j=1

φj∆4yt−j + εt, (24)

where

µt = µ1D1,t + µ2D2,t + µ3D3,t + µ4 + µ5t,

y1,t = (1 + B + B2 + B3)yt,

y2,t = −(1−B + B2 −B3)yt,

y3,t = −(1−B2)yt,

with B denoting the backshift operator. If π1 = 0, a non-seasonal unit root is present in yt; π2 = 0
corresponds with a seasonal unit root -1 at the bi-annual frequency; and π3 = π4 = 0 corresponds
with a pair of seasonal unit roots ±i at the annual frequency. One-sided t-tests are used to determine
the significance of the π1 and π2 coefficients, denoted as ti, i = 1, 2, and an F -test is used for the joint
significance of π3 and π4, denoted F34. The number of lagged seasonal differences k is determined
using the procedure of Ng and Perron (1995): starting with kmax = 8 lagged seasonal differences,
this number is reduced until the last lag included is significant at the 10% significance level (using
asymptotic standard normal critical values).
The lower panel contains results from the seasonal unit root tests of Franses and Vogelsang (1998),
which modify the HEGY-tests to allow for a one-time change in the deterministic terms by augmenting
the regression (24) with regressors Ds,tI[t > c] and ∆4Ds,tI[t > c], s = 1, . . . , 4, where I[A] is the
indicator function for the event A. The time of the break is chosen to maximize the F -test for the
significance of the coefficients of Ds,tI[t > c]. The estimated break date is shown in the right-most
column. The same data-dependent method for choosing k is used.
Entries marked with ∗, ∗∗ and ∗∗∗ are significant at the 10, 5 and 1% level, respectively.
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Table 2: Testing linearity and parameter constancy

Parameters STAR TV-AR TV-STAR
tested LM1 LM2 LM3 LM1 LM2 LM3 LM1 LM2 LM3

Canada (p̂ = 9)
Ds,t, ∆yt−j 0.32 0.12 0.15 0.57 0.028 0.018 0.52 − −
Ds,t 0.14 0.27 0.71 0.25 1.3E−4 9.4E−5 0.24 4.7E−3 0.13
∆yt−j 0.15 0.43 0.56 0.55 0.18 0.062 0.48 − −
France (p̂ = 8)
Ds,t, ∆yt−j 5.0E−3 0.18 0.58 2.5E−3 7.4E−4 2.7E−4 0.11 − −
Ds,t 0.019 7.1E−3 0.046 3.4E−4 1.3E−5 1.8E−6 5.2E−4 3.6E−3 6.6E−4
∆yt−j 0.062 0.13 0.42 2.9E−3 1.3E−4 4.0E−4 0.012 0.10 −
Germany (p̂ = 7)
Ds,t, ∆yt−j 0.011 0.030 0.068 0.021 4.5E−3 6.5E−3 0.030 − −
Ds,t 0.074 0.12 0.50 0.018 1.7E−3 4.9E−4 0.11 0.094 0.14
∆yt−j 8.3E−4 0.027 0.013 0.015 0.050 0.15 0.028 0.12 −
Italy (p̂ = 11)
Ds,t, ∆yt−j 0.20 0.20 − 0.030 7.5E−3 0.019 0.43 − −
Ds,t 0.19 0.25 0.28 0.068 1.2E−4 1.8E−4 0.43 0.11 0.43
∆yt−j 0.057 0.32 0.82 0.19 8.7E−3 0.053 0.14 − −
Japan (p̂ = 5)
Ds,t, ∆yt−j 0.010 7.9E−3 4.2E−3 4.4E−3 1.1E−5 1.1E−4 1.1E−3 0.57 −
Ds,t 0.029 0.010 3.1E−4 0.053 5.8E−6 2.8E−5 7.7E−4 2.9E−5 4.3E−3
∆yt−j 0.025 6.7E−3 0.016 0..015 1.5E−3 0.011 1.5E−3 2.2E−3 0.053

United Kingdom (p̂ = 9)
Ds,t, ∆yt−j 0.073 0.095 0.40 0.015 0.070 0.028 0.33 − −
Ds,t 0.040 0.11 0.078 5.1E−3 5.9E−4 1.9E−3 0.029 1.2E−3 1.7E−3
∆yt−j 0.070 0.15 0.13 0.012 0.038 0.020 0.11 − −
United States (p̂ = 7)
Ds,t, ∆yt−j 0.014 0.010 2.4E−3 0.13 0.17 0.56 0.11 − −
Ds,t 0.028 0.16 0.17 3.4E−3 5.0E−3 0.010 0.044 0.19 0.26
∆yt−j 4.1E−3 0.012 0.017 0.87 0.40 0.80 0.36 0.56 −

The table contains p-values of F -variants of the LMk, k = 1, 2, 3, tests of linearity and parameter constancy
within the TV-STAR model (1) with wt =

∑r
=1 αi∆4yt−i. The null hypotheses of the different tests are

linearity conditional on parameter constancy [STAR], constancy conditional on linearity [TV], and linearity
and constancy [TV-STAR]. The tests involving either the seasonal dummies (Ds,t) or the lagged growth rates
(∆yt−j) only are performed conditional on assuming that the remaining parameters enter linearly and with
constant parameters. A dash indicates that the test could not be computed due to a shortage in degrees of
freedom.
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Table 3: Summary of test results

Parameters STAR TV-AR TV-STAR
tested p-value LM1 LM2 LM3 LM1 LM2 LM3 LM1 LM2 LM3

Linear null model
> 0.05 3 3 4 2 3 1 5 1 0

Ds,t, ∆yt−j 0.01−0.05 3 2 0 3 0 3 1 0 0
< 0.01 1 1 2 2 4 3 1 0 0

> 0.05 3 5 5 3 0 0 3 3 4
Ds,t 0.01−0.05 4 1 1 1 0 1 2 0 0

< 0.01 0 1 1 3 7 6 2 4 3

> 0.05 4 4 4 3 2 4 4 3 1
∆yt−j 0.01−0.05 1 2 3 3 2 2 2 0 0

< 0.01 2 1 0 1 3 1 1 1 0

Nonlinear null model
> 0.05 4 4 6 5 2 2 6 5 5

Ds,t 0.01−0.05 3 3 0 1 2 1 0 0 2
< 0.01 0 0 1 1 3 4 1 2 0

The Table reports the number of series for which the p-values of the tests of linearity and parameter
constancy, shown in Tables 2 and 4, fall within the indicated category. The null hypotheses of the
different tests are linearity conditional on parameter constancy [STAR], constancy conditional on
linearity [TV], and linearity and constancy [TV-STAR].
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Table 4: Testing linearity and parameter constancy in STAR models

Transition STAR TV-AR TV-STAR
variable LM1 LM2 LM3 LM1 LM2 LM3 LM1 LM2 LM3

Canada
st = t∗ 0.020 0.15 0.27 0.35 0.022 0.072 0.19 0.47 0.21

France
st = t∗ 0.033 0.043 0.24 0.29 0.052 0.039 0.061 0.11 0.067

Germany
st = ∆4yt−1 0.35 0.059 0.19 0.043 1.7E−3 3.5E−4 0.21 0.061 0.35

Italy
st = t∗ 0.63 0.57 0.51 0.90 3.9E−3 9.7E−3 0.87 0.10 0.32

Japan
st = t∗ 0.083 0.021 5.3E−3 5.9E−3 1.1E−6 1.3E−6 5.1E−3 1.8E−4 0.012

United Kingdom
st = t∗ 0.040 0.030 0.11 0.15 0.023 3.2E−3 0.16 8.2E−3 0.029

United States
st = ∆4yt−3 0.16 0.36 0.58 0.11 0.081 0.11 0.12 0.30 0.51

The table contains p-values of F -variants of the LMk, k = 1, 2, 3, tests of linearity of the seasonal
pattern within the STAR model (6) with wt =

∑r
=1 αi∆4yt−i. The null hypotheses of the different

tests are linearity conditional on parameter constancy [STAR], constancy conditional on linearity [TV],
and linearity and constancy [TV-STAR].
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Table 5: Diagnostic tests of parameter constancy and no remaining nonlinearity
in TV-STAR models
Transition Ds,t ∆yt−j σ2

ε

variable LM1 LM2 LM3 LM1 LM2 LM3 LM1 LM2 LM3

Canada
t 0.73 0.63 0.93 0.81 0.85 0.91 0.50 0.039 0.084
∆4yt−1 0.54 0.57 0.54 0.40 0.30 0.44 0.49 0.69 0.59
∆4yt−2 0.56 0.26 0.15 0.21 0.40 0.48 0.65 0.90 0.74
∆4yt−3 0.84 0.76 0.84 0.35 0.58 0.34 0.72 0.76 0.72
∆4yt−4 0.51 0.70 0.78 0.41 0.58 0.63 0.73 0.89 0.38

France
t 0.83 0.31 0.55 0.74 0.43 0.71 0.87 0.46 0.64
∆4yt−1 0.13 0.36 0.65 0.35 0.42 0.27 0.82 0.53 0.70
∆4yt−2 0.35 0.69 0.76 0.23 0.70 0.62 0.61 0.52 0.42
∆4yt−3 0.87 0.72 0.60 0.95 0.94 0.80 0.73 0.83 0.77
∆4yt−4 0.96 0.96 0.92 0.99 0.79 0.73 0.72 0.86 0.92

Germany
t 0.79 0.59 0.27 0.72 0.97 0.97 0.45 0.19 0.35
∆4yt−1 0.73 0.36 0.41 0.20 0.46 0.71 0.076 0.20 0.25
∆4yt−2 0.34 0.17 0.19 0.41 0.33 0.59 0.26 0.53 0.74
∆4yt−3 0.64 0.15 0.47 0.67 0.71 0.84 0.37 0.59 0.74
∆4yt−4 0.79 0.58 0.83 0.53 0.58 0.87 0.28 0.47 0.54

Italy
t 0.31 0.30 0.45 0.40 0.81 0.87 0.40 0.22 0.16
∆4yt−1 0.62 0.74 0.46 0.14 0.29 0.55 0.37 0.26 0.32
∆4yt−2 0.83 0.90 0.89 0.21 0.46 0.48 0.17 0.26 0.28
∆4yt−3 0.58 0.64 0.60 0.24 0.58 0.81 0.12 0.28 0.39
∆4yt−4 0.75 0.89 0.83 0.64 0.86 0.63 0.36 0.63 0.82

Japan
t 0.84 0.76 0.28 0.95 0.99 0.99 0.91 0.98 0.99
∆4yt−1 0.93 0.80 0.37 0.95 0.81 0.82 0.76 0.28 0.37
∆4yt−2 0.39 0.38 0.14 0.80 0.78 0.82 0.26 0.39 0.52
∆4yt−3 0.44 0.18 0.50 0.78 0.83 0.69 0.16 0.36 0.56
∆4yt−4 0.64 0.81 0.84 0.95 0.56 0.66 0.12 0.30 0.44

United Kingdom
t 0.34 0.22 0.10 0.29 0.24 0.16 0.32 0.041 0.094
∆4yt−1 0.25 0.13 0.22 0.26 0.55 0.41 0.49 0.76 0.89
∆4yt−2 0.99 0.88 0.78 0.94 0.88 0.72 0.91 0.73 0.88
∆4yt−3 0.96 0.90 0.95 0.80 0.63 0.54 0.78 0.43 0.62
∆4yt−4 0.72 0.85 0.87 0.72 0.39 0.65 0.26 0.46 0.57

United States
t 4.8E-4 2.2E-3 5.7E-3 0.86 0.42 0.28 0.33 0.067 0.095
∆4yt−1 0.66 0.88 0.97 0.81 0.90 0.63 0.052 0.090 0.13
∆4yt−2 0.48 0.75 0.93 0.74 0.91 0.64 0.20 0.41 0.47
∆4yt−3 0.16 0.49 0.59 0.31 0.46 0.26 0.46 0.76 0.87
∆4yt−4 0.23 0.61 0.71 0.62 0.63 0.80 0.63 0.88 0.90

Diagnostic tests of parameter constancy and no remaining nonlinearity of seasonal dummy
coefficients (columns headed Ds,t), autoregressive parameters (columns headed ∆yt−j), and
residual variance (columns headed σ2

ε) in estimated TV-STAR models.
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(a) Level

(b) First difference per quarter

(c) Range

(d) Seasonal difference

Figure 1: Industrial production Canada
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(a) Level

(b) First difference per quarter

(c) Range

(d) Seasonal difference

Figure 2: Industrial production France
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(a) Level

(b) First difference per quarter

(c) Range

(d) Seasonal difference

Figure 3: Industrial production Germany

31



(a) Level

(b) First difference per quarter

(c) Range

(d) Seasonal difference

Figure 4: Industrial production Italy
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(a) Level

(b) First difference per quarter

(c) Range

(d) Seasonal difference

Figure 5: Industrial production Japan
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(a) Level

(b) First difference per quarter

(c) Range

(d) Seasonal difference

Figure 6: Industrial production United Kingdom
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(a) Level

(b) First difference per quarter

(c) Range

(d) Seasonal difference

Figure 7: Industrial production United States
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(a) First difference

(b) Seasonal intercepts AR (dashed line) and TV-STAR model (solid line)

(c) Residuals from AR (dashed line) and TV-STAR model (solid line)

(d) Transition functions in TV-STAR model

Figure 8: Characteristics of TV-STAR model for Canada
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(a) First difference

(b) Seasonal intercepts AR (dashed line) and TV-STAR model (solid line)

(c) Residuals from AR (dashed line) and TV-STAR model (solid line)

(d) Transition functions in TV-STAR model

Figure 9: Characteristics of TV-STAR model for France
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(a) First difference

(b) Seasonal intercepts AR (dashed line) and TV-STAR model (solid line)

(c) Residuals from AR (dashed line) and TV-STAR model (solid line)

(d) Transition functions in TV-STAR model

Figure 10: Characteristics of TV-STAR model for Germany
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(a) First difference

(b) Seasonal intercepts AR (dashed line) and TV-STAR model (solid line)

(c) Residuals from AR (dashed line) and TV-STAR model (solid line)

(d) Transition functions in TV-STAR model

Figure 11: Characteristics of TV-STAR model for Italy
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(a) First difference

(b) Seasonal intercepts AR (dashed line) and TV-STAR model (solid line)

(c) Residuals from AR (dashed line) and TV-STAR model (solid line)

(d) Transition functions in TV-STAR model

Figure 12: Characteristics of TV-STAR model for Japan
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(a) First difference

(b) Seasonal intercepts AR (dashed line) and TV-STAR model (solid line)

(c) Residuals from AR (dashed line) and TV-STAR model (solid line)

(d) Transition functions in TV-STAR model

Figure 13: Characteristics of TV-STAR model for United Kingdom
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(a) First difference

(b) Seasonal intercepts AR (dashed line) and TV-STAR model (solid line)

(c) Residuals from AR (dashed line) and TV-STAR model (solid line)

(d) Transition functions in TV-STAR model

Figure 14: Characteristics of TV-STAR model for United States
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