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Abstract

Inventory policies for joint remanufacturing and manufacturing have recently received much
attention. Most efforts, though, were related to (optimal) policy structures and numerical
optimization, rather than closed form expressions for calculating near optimal policy param-
eters. The focus of this paper is on the latter. We analyze an inventory system with unit
product returns and demands where remanufacturing is the cheaper alternative for manu-
facturing. Manufacturing is also needed, however, since there are less returns than demands.
The cost structure consists of setup costs, holding costs, and backorder costs. Manufacturing
and remanufacturing orders have non-zero lead times. To control the system we use certain
extensions of the familiar (s,Q) policy, called push and pull remanufacturing policies. For
all policies we present simple, closed form formulae for approximating the optimal policy
parameters under a cost minimization objective. In an extensive numerical study we show
that the proposed formulae lead to near-optimal policy parameters.

Keywords: Inventory control, remanufacturing, heuristics.

1 Introduction

Environmental considerations, government regulations, and economic incentives motivate many
businesses to engage in recovery activities (Fleischmann [4]). Recycling of materials is a well-
known example. In recent years, more and more companies have initiated value-added recovery
operations such as remanufacturing. Remanufacturing brings a product or product part up to
an ‘as-new’ quality. Since remanufacturing is often cheaper than manufacturing, this type of
recovery can lead to considerable cost savings. Items that are remanufactured nowadays include
machine tools, medical instruments, copiers, automobile parts, computers, office furniture, mass
transit, aircraft, aviation equipment, telephone equipment and tires (see Ayres et al. [1], Ferrer
[3] [2], Graedel and Allenby [6], Guide [7], Heyman [8], Kandebo [10], Lund [12], Schrady [15],
Sivinski and Meegan [18], Sprow [19], and Thierry et al. [22]).

A typical example of remanufacturing operations that need to be coordinated with manu-
facturing operations is the management of spare car parts. Volkswagen, for instance, retrieves
and remanufactures used car parts and resells them as spare parts (Van der Laan [23]). Reman-
ufactured parts come with the same quality and warranty as new parts, but are produced for
less than halve of the cost. The availability of remanufacturable parts varies through time, so
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Figure 1: Inventory system with remanufacturing.

occasionally the stocks of serviceable spare parts have to be replenished by (expensive) newly
manufactured parts. Both types are sold for the same price, though.

Figure 1 gives a graphical representation of the inventory system in the above practical
situation. Note that since remanufactured items have the same quality as manufactured items
and are sold for the same price in the same market, we do not need to distinguish between the
two. Both types are serviceable and are used to satisfy the same customer demands. Clearly, in
order to control such a system efficiently, manufacturing and remanufacturing decisions have to
be coordinated.

There has been a considerable number of contributions dealing with inventory control for
joint manufacturing and remanufacturing. Reviews are provided by Fleischmann et al. [5] and,
more recent, by Van der Laan et al. [25]. However, only a few authors have proposed heuristic
procedures for approximating optimal policy parameters.

In an early account, Simpson [17] studies a periodic review inventory system with general
demand and return processes. The remanufacturing process is not modelled explicitly, but the
probability density function for the remanufacturing output per time unit is assumed to be fixed
and known. Manufacturing lead times are stochastic. The inventory policy is characterized
by the order-up-to level for manufacturing. Under both a service objective (minimize holding
costs under a fill rate constraint) and a cost objective (minimize holding and backorder costs),
Simpson derives a simple newsboy equation for the order-up-to level.

Mahadevan et al. [13] study a slightly modified version of Simpson’s model. Here, returns
are remanufactured only at the time of review. The remanufacturing lead time is non-zero,
but constant as is the manufacturing lead time. The analysis is restricted to cases with Poisson
demand and return processes. Three heuristics for determining the order-up-to level are proposed
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and tested.
Muckstadt & Isaac [14] model the remanufacturing process explicitly as a queueing system

with Poisson arrivals (the returns) and general service times. Manufacturing orders are triggered
by a standard (s,Q) policy (reorder Q when inventory position drops to s). The objective is
to minimize the average total cost, consisting of manufacturing setup costs, holding costs for
serviceable inventory, and backorder costs. Using Markov Chain analysis and approximating
the distribution of net inventory with a normal distribution, closed-form formulae for the order
level and order quantity are derived.

Van der Laan et al. [24] extend the model of Muckstadt & Isaac by including a disposal
option for returned items. A returned item is disposed of if there is already a certain number (the
dispose-down-to level) of other returns waiting to be remanufactured. They propose an iterative
algorithm for calculating a near-optimal order level, order-up-to level, and dispose-down-to level.

The above approaches have one thing in common: the remanufacturing process is au-
tonomous and is not controlled through an inventory policy. In contrast, Kiesmüller and Minner
[11] study a discrete time, continuous review inventory system with constant lead times for man-
ufacturing and remanufacturing in which both processes are controlled by order-up-to policies.
The objective is to minimize the total average costs, including holding costs and backorder costs,
but no fixed costs. Closed-form formulae for the order-up-to levels are derived for cases where
(1) lead times are equal, (2) the manufacturing lead time is larger, and (3) the remanufacturing
lead time is larger.

We present a heuristical approach for general demand and return processes. The reman-
ufacturing process and remanufacturable inventory are explicitly modeled. Lead times for (re-
)manufacturing are equal, non-zero constants. Aside from holding costs, backorder costs and
set-up costs for manufacturing, we also include set-up costs for remanufacturing. In order to
control such an intricate system, we consider more versatile inventory control policies than the
ones mentioned above. Multiple types of policies are analyzed. All use the same (s,Q) type
policy for manufacturing, but they differ in the way that they push or pull remanufacturing
orders. For all policies we present simple, closed form formulae for approximating the optimal
policy parameters under a cost minimization objective. In an extensive numerical study we show
that the proposed formulae lead to near-optimal policy parameters.

The remainder of the paper is organized as follows. In Section 2, the inventory system and
the policies are described in detail. The formulae for approximating the optimal order levels
and order quantities for the push and pull policies are developed in Sections 3, 4, and 4.3,
respectively, and tested numerically in Section 5. We end with a summary and conclusions in
Section 6.

2 System, policies, and notation

The inventory system is as depicted in Figure 1. Manufacturing and remanufacturing have
the same lead time distribution with mean L. Demand and return are driven by independent
continuous stochastic processes with (average) rates λ and γ, respectively. The density function
and distribution function of demand during the lead time are denoted by fD and FD, respectively.

The objective is to minimize the average total cost over an infinite planning horizon, that
is, to minimize the average total steady state cost. The following costs are incurred.

• Manufacturing cost: There is a set-up cost Km for each manufacturing order.
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Figure 2: Inventories with push control for stochastic demand and return.

• Remanufacturing cost: There is a set-up cost Kr for each remanufacturing order.

• Backorder cost: There is a fixed cost b for each backordered demand, i.e. for each demand
not met directly.

• Holding cost: There are holding costs hn and hs per item per time unit for (returned)
non-serviceable and (manufactured/remanufactured) serviceable items, respectively.

To control the inventory system we consider three policies. All use the same (s,Q) control
for manufacturing, but the policies differ in how remanufacturing orders are triggered.

The PUSH policy is defined is follows. Whenever the stock of returned items reaches Qr,
those items are remanufactured. Whenever the serviceable inventory position (inventory on hand
+ everything on order) drops to sm, a batch of size Qm is manufactured. This is illustrated in
Figure 2.

A disadvantage of the PUSH policy is that it can cause large stocks of serviceable items,
especially in situations with high return rates where periods with more returns than demands
can occur. Pull policies prevent large stocks by using an order level for remanufacturing. We
consider two types of pull policies. The simple PULL policy uses the same order level for
manufacturing and remanufacturing. The general PULL policy allows different order levels.

The simple PULL policy is defined as follows. Whenever the serviceable inventory position
drops to the common order level s, a batch of size Qr is remanufactured if enough returned items
are available and a batch of size Qm is manufactured otherwise. This is illustrated in Figure
3. The general PULL policy is defined in a similar way, but uses separate order levels sm for
manufacturing and sr for remanufacturing. See Figure 4.
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D Demand per time unit with mean λ
R Returns per time unit with mean γ
L Lead time
Km (Kr) Fixed manufacturing (remanufacturing) cost
hs (hr) Holding cost rate for serviceables (remanufacturables)
b Backorder cost per occurrence
Qm (Qr) Order quantity for manufacturing (remanufacturing)
sm (sr) Order level for manufacturing (remanufacturing)
s Common order level for manufacturing and remanufacturing (simple PULL pol-

icy)
Tm (Tr) Average time between two manufacturing (remanufacturing) orders
SS(s) Safety stock for order level s
CS(Qm, Qr) Expected cycle stock for order quantities Qm and Qr

f(.) Probability density function for lead time demand
F (.) Probability distribution function for lead time demand

Table 1: Notation.

The added flexibility of using different order levels sometimes leads to a reduction in the
average total cost, as we will see in Section 5. On the other hand, applying a policy with separate
order levels is more complex. Furthermore, the choice of order levels is not unrestricted. The
condition sm ≤ sr ≤ sm + Qm is needed to ensure that the remanufacturing order level can
actually be reached (see Teunter et al. [21] for a detailed discussion). Push and pull policies
were first proposed and analyzed by Van der Laan et al. [23], and some variations have since
been studied by a number of authors.

Table 1 lists the notations that are used in the remainder of the paper.

3 Heuristics for push control

A stochastic analysis of the system at hand is rather complicated, since we have to deal with a
two-dimensional state space (inventory position and remanufacturable inventory) that are mu-
tually dependent. Since the classic EOQ formula has proved to be very robust in stochastic
settings, we propose a similar approach and analyse a deterministic model in order to approx-
imate the optimal order quantities (Section 3.1). Given these order quantities, in Section 3.2,
we approximate the optimal order level in the original stochastic setting.

3.1 Approximately optimal order quantities

In order to derive EOQ formulae for Qr and Qm, we consider a deterministic system with
continuous demand and return flows with rates λ and γ, respectively. The derivation is not
as straightforward as that of the traditional EOQ without returns since, as we will show, dif-
ferent patterns of manufacturing and remanufacturing batches lead to different formulae. We
will consider two distinct patterns, (Case A) one manufacturing batch is followed by multiple
remanufacturing batches and (Case B) one remanufacturing batch is followed by multiple man-
ufacturing batches. Though other patterns can also occur due to the stochasticity in demand
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Figure 5: Inventories with push control for deterministic demand and return. Case A: Tm integer
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and return, these are most likely since there are either more remanufacturing batches or more
manufacturing batches on average. For both cases A and B, we will derive a pair of EOQ for-
mulae. For practical reasons, rather than to propose conditions under which either pair should
be used, we then combine the two pairs into a single one that is to be used in all situations.

Case A and Case B are illustrated in Figures 5 and 6, respectively, for L = 0. Note that the
lead time does not influence the optimization in any way. Note further that in order to obtain a
stationary policy, manufacturing and remanufacturing are synchronized so that either the time
Tm = Qm/(λ − γ) between two successive manufacturing batches is an integer multiple of the
average time Tr = Qr/γ between two successive remanufacturing batches (Case A), or Tr is an
integer multiple of Tm (Case B). Moreover, the serviceable inventory is minimized by letting it
drop to 0 just before a manufacturing batch starts, and also just before a remanufacturing batch
that is followed by a manufacturing batch starts.

Case A: Tm is an integer multiple of Tr

By adding some help-lines to Figure 5, as is done in Figure 7, it is easy to see that the average
serviceable inventory is

Qm + Qr

2
− Qm(Qr/λ)

Tm
=

Qm + Qr

2
− Qm(Qr/λ)

Qm/(λ− γ)
=

Qm + Qr

2
− Qr(λ− γ)

λ
.

So the total average inventory plus ordering costs costs as a function of Qr and Qm reads

TCA(Qm, Qr) =
(λ− γ)Km

Qm
+

γKr

Qr
+ hs

(
Qm + Qr

2
− Qr(λ− γ)

λ

)
+ hr

(
Qr

2

)
.

Though this expression is simple, the restriction that Tm = Qm/(λ−γ) is an integer multiple of
Tr = Qr/γ prevents an easy determination of the optimal values for Qm and Qr. However, the
cost expression does hold approximately if the restriction is not satisfied. Since our objective
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is to find simple heuristics, we will therefore ignore the restriction. Minimizing TCA(Qm, Qr)
then gives the following EOQ-type formulae for Qm and Qr.

QA
m =

√
2Km(λ− γ)

hs
, QA

r =

√
2Krγ

hr − hs + (2γ/λ)hs
. (1)

Note that QA
m reduces to the traditional EOQ formula if γ = 0 (manufacturing only), and

that QA
r reduces to the traditional EOQ formula if γ = 1 (remanufacturing only).

Case B: Tr is an integer multiple of Tm

It is easy to show (see Teunter, 2001) that the total average inventory plus ordering costs costs
as a function of Qr and Qm reads

TCB(Qm, Qr) =
(λ− γ)Km

Qm
+

γKr

Qr
+ hs

[(
1− γ

λ

) (
Qm

2

)
+

(γ

λ

) (
Qr

2

)]
+ hr

(
Qr

2

)
.

Similar to Case A, we ignore the restriction that Tr = Qr/γ is an integer multiple of Tm =
Qm/(λ− γ), and determine Qm and Qr that minimize TCB(Qm, Qr). This gives the following
EOQ-type formulae.

QB
m =

√
2Kmλ

hs
, QB

r =

√
2Krγ

hsγ/λ + hr
(2)

Again, the EOQ formulae for manufacturing and remanufacturing reduce to the traditional
EOQ formula if γ = 0 or γ = λ, respectively.

One set of approximate formulae for Cases A and B

The preferred type of policy and the associated pair of EOQ formulae (associated with Case A
or Case B) can be determined by comparing TCA(QA

m , QA
r ) with TCB(QB

m, QB
r ). It is simpler

and therefore more practical, however, to work with a single pair of EOQ-formulae without
having to calculate the associated costs. Moreover, as will be discussed in Section 3.2, in a real
life setting with stochastic demand and return, for which the EOQ formulae are intended, cases
A and B cannot be distinguished anyway. In the remainder of this section we will therefore
propose a single pair of approximate EOQ formulae, based on the above results, to be used in
all situations. The arguments that we use are similar to those in Teunter [20].

It is easy to see that QA
m and QB

m are approximately equal if the return rate γ/λ is small.
They only differ considerably if the return rate is large. In situations with a high return rate,
policies with multiple remanufacturing batches per manufacturing batch (Case A) are often
preferable. Therefore, we propose to use the EOQ formula for push remanufacturing from Case
A in all situations.

Q∗
m := QA

m =

√
2Km(λ− γ)

hs

Similarly, QA
r and QB

r are approximately equal if the return rate γ/λ is large. They only
differ considerably if the return rate is small. In situations with a small return rate, policies

9



with multiple manufacturing batches per remanufacturing batch (Case B) are often preferable.
Therefore, we propose to use the EOQ formula for push remanufacturing from Case B in all
situations.

Q∗
r := QB

r =

√
2Krγ

hsγ/λ + hr

3.2 Approximately optimal order level

In the previous section, we proposed a pair of EOQ formulae for determining batch quantities
for manufacturing and remanufacturing. In this section we assume that the batch quantities are
fixed to their EOQ values and focus on the manufacturing order level s. It is clear that this should
be done in a stochastic setting, i.e., with a stochastic demand and return process. See Figure 2
and note that the time between manufacturing batches and the time between remanufacturing
batches is no longer constant due to the stochastic nature of the demands and returns. The
derivation of the optimal s does not depend on the actual pattern of remanufacturing batches.
Therefore, it is not necessary to consider two different cases, as was done in Section 3.1. In fact,
the time between successive (re)manufacturing batches varies, and therefore such cases cannot
be distinguished.

In order to determine the optimal s, we use the following two approximations.

A1 The expected on-hand inventory is approximately equal to the expected net inventory.

A2 The probability that a remanufacturing batch arrives too late is negligible.

A1 is a standard approximation for deriving the optimal order level (see e.g. Silver et al.
[16]) in systems without product returns. Obviously, the approximation works best if the average
backorder position is small. If A2 holds then there are no backorders outstanding at the time
that a remanufacturing order comes in. For the backorder position we only have to focus on the
incoming manufacturing orders. The justification for approximation A2 is that the inventory
position is always (well) above s when a remanufacturing batch is started (see Figure 2).

Similar to Silver et al. [16], it is easy to see that the expected net inventory is equal to the
sum of the safety stock SS (the expected inventory just before a manufacturing order arrives),
which depends on s, and the expected cycle stock CS, which is a constant given Qm and Qr.
Since all orders that arrive within leadtime L are contained in the inventory position , the safety
stock is just given as the inventory position at the time of a manufacturing order (s) minus the
demand during the lead time: SS = s− Lλ.

Under assumption A2, the average number of backorders per time unit is approximately

1
Tm

∫ ∞

s
(x− s)f(x)dx (3)

Hence, under assumptions A1 and A2, the total cost per time unit is approximated as

hs (s− Lλ + CS) +
b

Tm

∫ ∞

s
(x− s)f(x)dx

Taking the derivative w.r.t. s and equating the result to zero gives

hs −
b

Tm
(1− F (s)) = 0.
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So the optimal value for s is approximately

s∗ = F−1

(
1−

(
hs

b

) (
Qm

λ− γ

))
(4)

Note that for γ = 0 this reduces to the formula that Silver et al. [16] derive for the classical
model without returns.

4 Heuristics for pull control

As was done for push control in the previous section, we first approximate the optimal order
quantities under the assumption that demand and return are deterministic (Section 4.1) and
then approximate the optimal order level in a stochastic setting (Section 4.2).

4.1 Approximately optimal order quantities

The analysis is similar to that for push control in Section 3.1. We consider a deterministic system
with continuous demand and return flows with rates λ and γ, respectively. Since the lead time
and the setting of the reorder levels do not affect the optimization, we can just consider L = 0
and do not need to distinguish between the simple and general PULL policies.

Again case A (Tm is an integer multiple of Tr) and case B (Tr is an integer multiple of Tm)
are considered, which are illustrated in Figures 8 and 9, respectively. Note that the inventories
in Figure 9 are identical to those in Figure 6, but the interpretation is slightly different (push
vs pull).

Case A: Tm is an integer multiple of Tr

The total average inventory plus ordering costs costs as a function of Qr and Qm reads (see
Schrady [15])
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TCA(Qm, Qr)

=
(λ− γ)Km

Qm
+

γKr

Qr
+ hs

((
1− γ

λ

) Qm

2
+

(γ

λ

) Qr

2

)
+ hr

(γ

λ

) (
Qm + Qr

2

)
. (5)

Optimizing for Qm and Qr leads to the following EOQ-type formulae.

QA
m =

√
2Km(λ− γ)

γ/λhr + (1− γ/λ)hs
, QA

r =
√

2Krγ

hr + hs
. (6)

Case B: Tr is an integer multiple of Tm

As remarked before, the cycle inventories for this case are the same as for case B with push
control. Therefore, the optimal ordering sizes are equivalent to the ones for push control:

QB
m =

√
2Kmλ

hs
, QB

r =

√
2Krγ

hr + hsγ/λ
. (7)

One set of approximate formulae for Cases A and B

For practicality, we prefer a single set of EOQ formulae that can be used in all situations. Using
similar arguments as in Section 3.1, we choose

Q∗
m := QA

m =

√
2Km(λ− γ)

γ/λhr + (1− γ/λ)hs
and Q∗

r := QB
r =

√
2Krγ

hr + hsγ/λ
.
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4.2 Approximately optimal order level for simple PULL

The analysis is similar to that in Section 3.2. But since remanufacturing batches are pulled
now, we no longer assume that the probability that a remanufacturing batch arrives too late is
negligible (A2). Indeed, remanufacturing batches are just as likely to be late as manufacturing
batches (see also Figure 3). The expected number of backorders per time unit is obtained by
dividing the backorder position per (re)manufacturing cycle,

∫∞
s (x− s)f(x)dx, by the expected

length of a (re)manufacturing cycle. Approximating the expected on-hand inventory by the
expected net inventory (A1), we get the following approximate total cost:

hs (s− Lλ + CS) + b

(
1

Tm
+

1
Tr

) ∫ ∞

s
(x− s)f(x)dx,

where the cycle stock CS does not depend on order level s. Taking the derivative w.r.t. s and
equating the result to zero gives

hs − b

(
1

Tm
+

1
Tr

)
(1− F (s)) = 0.

So the optimal value for s is approximately

s∗ = F−1

1− hs

b
(

λ−γ
Qm

+ γ
Qr

)
 . (8)

Note that for γ = 0 this again reduces to the formula that Silver et al. [16] derive for the
classical model without returns.

4.3 Approximately optimal order level for general PULL

The average net inventory in a period between two successive times that the inventory position
crosses level sr is (see also Figure 4) sm −Lλ + Qm/2 if a manufacturing order is placed in that
period and sr − Lλ + Qr/2 if a remanufacturing order is placed. Approximating the expected
on-hand inventory by the expected net inventory as before (approximation A1), the expected
total cost becomes

λ− γ

λ
h(sm−Lλ+

Qm

2
)+

γ

λ
h(sr−Lλ+

Qr

2
)+b

λ− γ

Qm

∫ ∞

sm

(x−sm)f(x)dx+b
γ

Qr

∫ ∞

sr

(x−sr)f(x)dx.

This leads to the approximations

s∗m = F−1

(
1− hsQm

bλ

)
, s∗r = F−1

(
1− hsQr

bλ

)
. (9)

Note that these are both applications of the traditional formula that Silver et al. [16] derive for
the approximately optimal order level.

Recall from Section 2 that the heuristic general PULL policy can only be implemented if
s∗m ≤ s∗r ≤ s∗m + Q∗

m. If this condition is not satisfied, then the simple PULL policy should be
used instead.
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5 Numerical evaluation

The above analysis has lead to the following heuristic expressions.

policy Q∗
m Q∗

r 1− F (s∗m) 1− F (s∗r)

PUSH
√

2Km(λ−γ)
hs

√
2Krγ

hrγ/λ+hs

hsQm

b(λ−γ) –

simple PULL
√

2Km(λ−γ)
γ/λhr+(1−γ/λ)hs

√
2Krγ

hrγ/λ+hs

hs

b
(

λ−γ
Qm

+ γ
Qr

) hs

b
(

λ−γ
Qm

+ γ
Qr

)
general PULL†

√
2Km(λ−γ)

γ/λhr+(1−γ/λ)hs

√
2Krγ

hrγ/λ+hs

hsQm

bλ
hsQr

bλ

† provided that s∗m ≤ s∗r ≤ s∗m + Q∗
m.

Studying the table above we observe the following similarities and differences among the
heuristics.

- The order quantity for remanufacturing is the same for all push and pull policies.

- The manufacturing order quantity for PUSH does not depend on the remanufacturable
holding cost rate, in contrast with the manufacturing order quantities of both pull policies.

- With respect to the order quantities there is no distinction between the simple and general
PULL heuristic.

- The reorder levels differ for all three policies

For the numerical evaluation of the various heuristics we generate a large set of scenar-
ios by varying six parameters according to the following values: γ ∈ {3, 5, 7}, L ∈ {2, 4, 6},
hr ∈ {0, .5, 1}, b ∈ {10, 50, 100}, Km ∈ {10, 30, 100}, Kr ∈ {10, 30, 100}. These values can be
interpreted relative to those of λ and hs, which remain constant at the values of 10 and 1, respec-
tively, for all scenarios. We employ a full factorial design, which results in 36 = 729 scenarios.
Since each heuristic is tested in each scenario, the total number of experiments is 2187. For all
experiments the long run average costs are evaluated by analyzing an appropriate Markov chain
along the lines of Van der Laan et al. (1999). These costs are compared to the costs associated
with the optimal policy parameter settings obtained through a search of the decision variables
in an appropriate subspace.

We use the relative error with respect to the optimum as an evaluation criterium. For
example, the relative error in the long run average cost is defined as follows.

Relative cost error =
(

long run average costs of heuristic
optimal long run average costs

− 1
)
× 100%

Figure 10 summarizes the results for all scenarios together. Each vertical line displays the
minimum, maximum, and average relative error observed for the costs and policy parameters.
On average, the relative cost error for each heuristic is well below 1.5%, even below 1% for the
pull policies. The PUSH heuristic has a worst case error of 18.4%, while the pull heuristics
always score lower than 2.6%. We may conclude that the pull heuristics show an excellent
performance both with respect to average and worst case behavior. The poorer performance of
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Figure 10: Policy performance over all scenarios.
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the push heuristic can be explained by looking at the relative errors in the policy parameters.
While the order levels are ’unbiased’ in the sense that the average error is close to 0% for all three
heuristics, the maximum error is larger for the push heuristic. Moreover, the largest errors for
the PUSH heuristic are negative, implying that the push heuristic underestimates the optimal
order levels. The cost function is more sensitive to an underestimation than to an overestimation
of the order level, since the backorder cost is large relative to the holding cost rate.

Figure 10 also shows that each heuristic always underestimates the order quantities. This is
expected, since in calculating the order quantities the heuristic ignores the (expected) backorder
cost. It does not take into account that increasing the order quantity leads to less orders and
therefore less backorder cost per time unit.

Decreasing the backorder cost, b, results in an increased expected number of backorders
in the optimal policy. This deteriorates the performance of all the heuristics in two ways.
First, the order quantities are further from optimal, since backorder costs are ignored in their
determination. Second, the error in the order level is generally larger, since the backorder
position is ignored in the calculation of the on-hand inventory. The combined result of these
two effects is that the heuristics perform best for large b (Figure 11a). The PUSH policy is
particularly sensitive with respect to b, since approximation A2 is less appropriate if b is small.

Remark: The PUSH policy’s large worst case peak for b = 10 makes it hard to do a (graphical)
comparison among the different policies. Therefore, in Figure 11c–g we leave out the scenarios
related to b = 10. While this eliminates the outliers, it hardly affects the analysis.

Like decreasing the backorder cost, increasing the lead time results in an increased expected
number of backorders for the optimal policy. So, this deteriorates the performance of all the
heuristics in the same way as for changes in the backorder cost (Figure 11b). Again, the PUSH
heuristic is the more sensitive to these changes. Note that dropping the scenarios with b = 10
dramatically improves the worst case performance of PUSH: All cost errors are now below 2.5%.

The performance of the simple PULL heuristic is rather robust regarding changes in the
return rate (Figure 11c). Increasing the return rate slightly decreases the performance of the
other two heuristics, while the general PULL heuristic appears to be a bit more sensitive to
changes than the push heuristic.

An increase in the holding cost rate for remanufacturables, hr, hardly affects the perfor-
mance of the push heuristic (Figure 11d). This is understandable, since the computation of the
average remanufacturable inventory for the push heuristic is exact. This does not hold for the
pull heuristics, which are clearly affected by changes in hr.

Figures 11e–f show that the performance of the heuristics improves when the fixed manufac-
turing cost or remanufacturing cost increases. This explained through Figure 10, which shows
that an increase in the fixed manufacturing/remanufacturing cost reduces the relative error in
the manufacturing/remanufacturing order quantity.

5.1 Comparison of optimal policies

Although the main objective of this paper is to develop the push and pull heuristics and study
their performance, an important issue is the comparison of the policy types. The use of a more
complex policy, like general PULL, only pays off if there is a considerable reduction in cost.
Figure 12 compares the cost of the optimal PUSH policy and optimal simple PULL policy to
that of the optimal general PULL policy.

Since the simple PULL policy is a special case of the general PULL policy, optimal general
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Figure 11: Model parameter sensitivity analysis.
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Figure 12: Cost comparison of the optimal PUSH, simple PULL, and general PULL policies.

PULL never performs worse than optimal simple PULL. Figure 12 shows that the relative cost
difference is however small, never more than 3.2%. For the PUSH policy the cost difference is
more than 5% higher for 250 out of the 729 scenarios and can be as large as 29.3%. There are,
however, 251 cases where PUSH performs better (up to 10.8%).

6 Summary and conclusion

We analyzed an inventory system with product returns, where remanufacturing is an alternative
for manufacturing and both have the same lead time. Heuristics were developed for three types
of inventory policies: push, simple PULL, and general PULL. The push policy remanufactures
Qr items as soon as they are available. It manufactures Qm whenever the serviceable inventory
position drops to sm. The simple PULL policy starts a lot if the serviceable inventory position
drops to s. A batch of size Qr is remanufactured if enough returned items are available and
a batch of size Qm is manufactured otherwise. The general PULL policy is similar, but uses
separate order levels sm for manufacturing and sr for remanufacturing.

Following the common approach for traditional inventory systems without returns, we first
developed order size formulae based on a deterministic model, and then developed order level
formula(e) in a stochastic setting. The heuristics were tested in an extensive numerical study.
It turns out that all three heuristics perform well, with an average cost increase (compared to
the optimal policy of the same type) of less than 1.3%. The pull heuristics perform especially
well, with a maximum cost increase of 2.6% (for PUSH 18.4%).

The numerical experiments also reveal that the optimal general PULL policy performs only
slightly better (at most 3.2%) than the simple PULL policy, but that it can outperform the
PUSH policy by up to 30%. Combined with the simple structure and excellent performance of
the simple PULL heuristic, we recommend its use in practise.
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A limitation of this study is the assumption that the lead times for manufacturing and
remanufacturing are equal. The inventory position is then defined in the traditional way: on
hand + on order - backorders. For the case that the lead times are different, it is not clear how
the inventory position should be defined (see Kiesmüller and Minner [11], Inderfurth, and Van
der Laan [9], and Teunter et al. [21]). We remark that numerical results in the latter two papers
indicate that in situations with comparable lead times for manufacturing and remanufacturing
(not differing by a factor more than 2), the performance of order level, order quantity policies
with the traditional definition of inventory position is usually improved by adjusting the smaller
lead time to the larger one. With such an adjustment, our heuristical approach can also be
applied to cases with different lead times for manufacturing and remanufacturing as long as
they do not differ too much. However, more research into this issue is needed. If lead times
differ by a factor more than 2, then policies with separate order levels for manufacturing and
remanufacturing, such as the general PULL policy, seem more appropriate. Further research
is needed for these situations with unequal lead times. That research should also address the
complicated issue of how to define the inventory position.

Other directions for future research are to consider stochastic lead times and to consider a
service objective instead of a cost objective. Similar to the model with deterministic lead times
and a cost objective that we studied, heuristical results/arguments for the traditional model
without returns can be extended to the situation with product recovery.
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