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Preface 

Preclinical and clinical data on different aspects of leukemia and its treatment 
have been accumulated at the former Radiobiological Institute TNO during the 
past decades. The variety of data should be organized, sorted and combined 
properly, to be used for optimization of therapy. Mathematical modeling is a 
good method to reveal the important variables and their relations. 
With this thesis archives are created that summarize (results of) scientific 
research efforts with respect to mathematical modeling and computer simulation 
of leukemia growth and chemotherapy, during the period 1981-1990, showing 
ways and giving recommendations for further investigations. 

The investigations described in this thesis were supported by several grants of 
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Flow cytometer measurements of anthracyclines 
Late effects of supralethal chemoradiotherapy prior to bone 
marrow transplantation 

Project IKR 84-6: Computer simulation of leukemia growth with emphasis on 
minimal residual disease 

Project IKR 86-1: Quantitative analysis of chromosomal anomalies in malig­
nant tumors employing dual beam flow cytometry 

Project IKR 87-12: Influence of tumor load on the pharmacokinetics and ef­
ficacy of anticancer drug treatment in rodent models for 
leukemias and solid tumors 

Project RRTI 88-8: Research and treatment of drug resistance in patients with 
solid tUIllors, leukemias and non-Hodgkin's lymphomas 

Project IKR 89-3: Molecular basis of cyclophosphamide resistance in neoplas­
tic cells 

Contributions by the Dutch Ministry of Welfare, Public Hcalth and Cultural 
Affairs and by the Technical University Delft are acknowledged. 

Financial support for printing this thesis was obtained from TNO-ME (Instituut 
voor Milieu- en Energietechnologie, Apeldoorn), the 'Dutch Cancer Society' 
(Nederlandse Kankerbestrijding, Amsterdam) and the Erasmus University 
Rotterdam. 
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Chapter 1 
General Introduction and Scope of the Thesis 

1.1 LEUKEMIA 

Leukemia is a malignant disease of the hemopoietic tissues. This form of cancer 
causes a continuous large overproduction of mal functioning immature blood 
cells, at the expense of the production of normal blood cells. Other blood cell 
cancers are the lymphomas and multiple myeloma, related to uncontrolled 
growth of, respectively, cells that make up the lymphatic system and of plasma 
cells in the bone marrow. 

1.1.1 Normal Hemopoiesis 

Functional blood cells have a limited lifetime. They are destroyed when worn 
out. They also may get lost in disastrous events (e.g., a bleeding wound). 
Therefore, a continuous process of replacement is required, of which the 
regulation mechanisms now are getting better understood. 

Normal blood cell production mainly takes place in the red bone marrow. 
According to the current concept, hemopoiesis starts with the pluripotent stem 
cell (PSC). This cell type is maintaincd by proliferation, i.e., cell division 
(mitosis) generates new PSCs. Some daughter cells are no longer PSCs but 
appear to have changed (differentiation). They have become committed stem 
cells (CSCs), i.e., the precursor cells of one line of specialized blood cells. Five 
such lines can be distinguished, each eventually yielding different functional end 
cells: erythrocytes (red blood cells), lymphocytes, granulocytes, monocytes 
(white blood cells), and thrombocytes. At each division CSCs and their daughter 
cells evolve to a more mature stage until, finally, the end cells result. They then 
have lost the ability of cell division. Migration out of the bone marrow takes 
place (e.g., to the lymph nodes for lymphocyte maturation). 

Blood cells of different lines and in different .stages of maturation can be 
recognized by morphology or other cytological and immunophenotypical char­
acteristics. The same holds for the malignant countelparts of the normal hemo­
poietic cell types, although usually specific properties distinguishing the cell 
populations (normal-malignant) are missing. 

1.1.2 Frequency of OCCUl'rence of Leukemia 

In the year 1988 death from leukemia amounted to 2.8% of the mortality caused 
by any form of cancel', and to 0.8% of all deaths in The Netherlands (in num­
bers, per 100,000 inhabitants there were 7 deaths for leukemia, 239 for all 
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cancers and 839 for all causes, respectively [CBS, 1991]). Compared to other 
forms of cancer-e.g., cancer of the respiratory tract killed 59 out of evelY 
100,000 inhabitants-leukemia must be regarded as a less frequent, but by far 
not insignificant cause of death. Death due to traffic accidents, for example, 
shuck 9 out of 100,000 inhabitants. Therefore, all effort put into finding ways 
to cure this disease is easily justified. 

1.1.3 Types of Leukemia 

Van Dongen et al. [1988] have presented (hypothetical) schemes of the differen­
tiation of hemopoietic cells. The schemes can be used to classify their malignant 
counterparts according to the stage of maturation where they turned malignant, 
i.e., started proliferation in an uncontrolled way without further maturation, thus 
overrunning and suppressing the functioning of the normal hemopoietic system. 
Two main types of leukemia can be distinguished: lymphocytic and myelocytic 
leukemia. Lymphocytic leukemia concerns the lymphoid paths of differentiation 
and comprises: acute undifferentiated leukemia, acute lymphoblastic leukemia 
(null, common, pre-B-cell, B-cell, immature T-cell, common thymocytic T-cell 
and mature T-cell), chronic lymphocytic leukemia (B-cell, T-cell), prolympho­
cytic leukemia (B- and T-cell) and hairy cell leukemia. Myelocytic leukemia con­
cerns die myeloid paths, comprising: acute undifferentiated leukemia, acute 
myeloid leukemia (several subclasses according to the FAB classification 
[Bennett et ai., 1985], among which progranulocytic, rnyelomonocytic, mono­
cytic, elythroleukemia and megakaryocytic), chronic myeloid leukemia. 

Many leukemias may occur in two forms, i.e., acute and chronic disease. In 
acute leukemia the immature hemopoietic cells are involved. Cells of the more 
mature differentiation stages are associated with the chronic form, which is 
characterized by an oscillating severity of illness. Acute leukemia often occurs 
early in life, chronic myeloid leukemia during mid-life, and chronic lymphocytic 
leukemia is mostly a geriatric disease. 

For therapy, various cytostatic agents (most often as combinations) are 
applied. Especially for younger patients, high-dose chemo-/radiotherapy follow­
ed by bone marrow transplantation is a recent life-saving treatment. 

In this thesis only acute myelocytic leukemia (AML) and childhood acute T­
cell lymphoblastic leukemia (T-ALL) will be considered. 

1.2 CYTOSTATIC DRUGS 

Certain chemical compounds are able to kill cells directly or to interfere with 
cellular maturation processes and inhibit or prevent mitosis. These compounds 
are called cytostatic agents. Not only tumor cells are affected, but normal tissue 
cells as well. Loss of hair, damage to the intestinal tract, neurotoxicity and/or 
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suppression of hemopoiesis often result as side effect of the treatment. Therefo­
re, in general, certain dose limits should not be exceeded to avoid unacceptable 
damage to normal tissues. Also, a therapy course may be interrupted to provide 
the opportunity for normal tissue cells to repair (sublethal) damage. Obviously, 
tumor cells then 'profit' as well from this rest period, but usually normal tissues 
recover faster than tumor tissue. 

Cytostatic drugs that are commonly used for treatment of leukemia can be 
classi fied as follows [Perry, 1992]: 
A) Agents that damage the DNA template 
1) Alkylating Agellls form electrophilic carbonium ions that alkylate (covalent 

bonds) nucleophilic groups (e.g., in guanine of DNA), causing cross linking 
and abnormal base pairing, thus interfering with the DNA replication 
function. Also, reactions with sulfhydryl, phosphate or amine groups result 
in multiple lesions in both dividing and non-dividing cells. Subclasses are 
a) Nitrogen mustards, e.g., cyclophosphamide (cytoxan), chlorambucil 

(leukeran), melphalan and mechlorethamine 
b) Nitrosoureas, e.g., carmustine (BCNU) and semustine (methyIlCCNU) 
c) Others, e.g., triethylenethiophosphoramide (Thio-TEPA), busulfan 

(myeleran), hexamethylmelamine, dacarbazine and mitomycin C 
2) Agents that cause double-strand cleavage via topoisomerase II 

a) Antibiotics, e.g., doxorubicin (adriamycin), daunorubicin (daunomycin), 
mitoxantrone, idarubicin, epirubicin and amsacrine 

b) Podophylotoxills, e.g., etoposide and teniposide 
B) Antimetabolites are compounds which inhibit protein or DNA synthesis, or 

the formation of various enzymes necessary for a cell's normal metabolic 
processes. Subclasses are 
a) Dihydrofolate reductase, e.g., methotrexate (amethopterin) 
b) DNA polymerase, e.g., cytosine arabinoside (cytarabin) 
c) PllOspllOribosylpyrophosphate aminotransferase, e.g., 6-mercaptopurine 

(purinethol) and 6-thioguanine 
d) Ribonucleotide reductase, e.g., hydroxyurea (hydrea) 
e) Adenosine dealllillase, e.g., deoxycoformycin (pentostatin) 

C) Spindel Poisons. These are the Vinca alkaloids, e.g., vinblastine (velban), 
vincristine (oncovin) and vindesin 

D) Horll/onal and Antihonnonal Agents 
Various classes of hormones and antihormones have shown the ability to 
cause regression of malignant cell populations. A well-known example of 
the class of Adrenocorticosteroids, useful against leukemia, is prednisone 

E) Biological Response Modifiers, e.g., the interferons. Retinoic acid deriva­
tives, now clinically used against acute promyelocytic leukemia, may be 
classified in this category. They induce the leukemic cells to relinquish their 
malignant phenotype and enter a program of normal cellular differentiation 

-5-



and death [Warrell et aI., 1993; Cline 1994] 
F) Miscellaneolls Compounds, e.g., I-asparaginase. 
Effects of only a few dl1lgs will be discussed in this thesis. 

1.3 PHARMACODYNAMICS AND PHARMACOKINETICS 

Pharmacodynamics is the study of the time course and the intensity of biological 
responses arising from exposure to or treatment with particular chemicals [e.g., 
Conolly and Andersen, 1991]. Biological responses manifest both as beneficial, 
therapeutic effects (dl1lgs) and as noxious, deleterious effects (toxic chemicals). 
To be able to describe quantitatively the relationship between the exposure of an 
organism and the time course of the response, a pharmacodynamic (PO) model 
must be used. Such a model may-in order of increasing sophistication- A) be 
of correlational nature (e.g., a correlation of percentages surviving bone 
marrow cells observed at different time points as biological effect and the blood 
concentration of a certain cytotoxic drug at the observation times); B) consist of 
empirical equations, whose parameter values are obtained by fitting to observed 
data (in an empirical model a mathematical stl1lcture is selected to be consistent 
with the observed data, but it need not necessarily be a precise description of the 
underlying physical processes); and C) be biology-based (BB), i.e., if know­
ledge exists about the biology of the test species it should be possible to de­
scribe, in a physically correct way, I) the concentration-time course of an 
administered chemical at a site of interest; 2) how the chemical interacts with 
exposed tissues; and 3) how these tissues respond to this interaction. 

Item I) can be seen as a separate subject of study, which is known as the 
field of pharmacokinetics (PIC). In other words, a PIC model is part of a BB-PO 
model. While the BB PO model describes (the time-dependent) relation between 
blood concentration of a chemical and a biological effect, the PK model gives 
the relation between the chemical's concentrations in blood and in the tissue of 
interest. Schematically, 

PK = exposure => blood concentration => tissue concentration 
PO = exposure => blood concentration => tissue concentration => 

=> interaction, chemical-tissue => tissue response => biological effect 

A phanl1acokinetic model oftcn is multicompartmental, each compartment corre­
sponding with a tissue region or body fluid, and consists of polyexponential 
equations that describe passive diffusion processes. For example, 

(I.l) 

where T denotes time; At and Ab, amount of drug in a tissue (t) and in the 
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Fig. 1.1 General curves that describe a relation between a drug effect in a tissue and the 
amount of drug in that tissue (Eq. 1.2) 
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blood (b), respectively; ~,b and kb t> transfer rate constant, to t from b and in 
the opposite direction, respectively.' 
A biological effect is most often described with an empirical function, which 
shows (log)linear behavior at low concentrations and saturation behavior at high 
concentrations, e.g., 

(1.2) 

where A50t denotes the amount of dl1lg required for 50% effect in t; and E, 
effect, which may be the death of the malignant cells. Exponent g is a numerical 
constant. Its value determines the shape of the curve (Fig. 1.1). In this thesis 
'pharmaco' modeling is limited to pharmacokinetics. 

1.4 MODELING AND SIMULATION 

A general definition of a system is an efficiently arranged set of related objects 
and their components. To deal with its complexity, the world around us is sim-
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plified by partitioning it into systems, subsystems, subsubsystems, etc. Thus 
broken down, the (independent) parts can be understood separately, often with 
the help of models that are further simplifications and idealizations of reality. 
Mathematical models are representations of reality, describing it in terms of 
mathematical formulae. Static and dynamic models can be distinguished [e.g., 
Rice, 1983). Static models are a collection of equations, formulae, definitions, 
tables, relationships and data that describe a situation or phenomenon, presum­
ably with sufficient completeness. Dynamic models are a collection of the same 
objects that describe how a situation changes from one state to the next one. An 
advantage is that in this form the model becomes explicit and can (relatively 
easily) be implemented on a (digital) computer to produce answers from the 
formulae that are a function of data, parameters and variables. 

Next, simulations can be performed, i.e., subsequent states of the model as 
function of time can be calculated. Predictions of the real-life behavior of the 
system thus are acquired. Instead of a system, a process may be considered as 
well. A process is defined here as a sequence of actions within or between sys­
tems. 

Simulation (including modeling) serves two main purposes, process descrip­
tion (including identification) and process control. Both correspond with a more 
or less systematic way of generating knowledge in contrast to the empirical 
methods of trial and error. 

Process description yields insight into the process in an efficient way by 
extracting relations from a large quantity of diverse information. In particular, 
simulation is useful when no sensors are available to observe essential variables 
directly, as often happens with biomedical systems or processes. Through 
modeling, assorted experimental observations can be correlated and interpreted 
better than with the empirical approach, by explaining phenomena from the 
viewpoint of the underlying mechanisms that are incorporated in the model. 
Simulation techniques comprise the following components [e.g., Avula, 1987): 
modeling, i.e., arranging the knowledge about the process in a model; perfor­
ming calculations with the model, e.g., a systematic series of input/output 
calculations enabling the reconstruction of (the time histOlY of) the state of the 
studied system; comparing the model predictions-simultaneously adjusting 
model parameters, i.e., characteristic constants in the model equations, to their 
optimal values-with actual observations to assess the probability of the as­
sumptions used when building the model. If various models can be conceived 
of, this approach enables discrimination between them and selection of the most 
appropriate one. There is a systematic validation of theories based on interac­
tions between results of simulation and measured results, leading to the (re)­
drafting of work hypotheses. The model is revised and refined until the simula­
tion results no longer conflict with any observed natural phenomenon, unless 
discrepancies can be explained and their reasons understood. A qualitative and 
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quantitative description of the process results. Through quanti fication of the 
model parameters the (relative) sensitivity of the process for certain input stimuli 
is obtained. 

Based on the possibility to predict the behavior of the now identified 
process, even beyond the observed range, process control deals with finding 
those input stimuli that will result in some desired process output as function of 
time. Thus, simulation is used to learn how to employ and control a process in 
the most favorable way. 

Computer simulation techniques can very well be applied in the field of 
biomedicine as a tool to direct experimental research and synthesize results of 
various experiments into general concepts. Knowledge and understanding of the 
behavior of biomedical systems often is difficult to obtain through measurements 
only. The implications of work hypotheses-expressed in the model equations 
that also account for established facts-can be tested through simulations with 
the computer model. Comparing the results to experimental observations yields 
the probability of the various assumptions. 

The other way around, simulation results may lead to the formulation of 
new hypotheses about the mechanisms behind a process. Furthermore, based on 
simulation results it is possible to determine what additional experiments must 
be conducted to verify the chosen model. Model validation, i.e., checking 
whether the model predictions do not conflict with any actual observations, is 
always required to establish the model's appropriateness and usefulness for the 
intended applications. 

1.5 MATHEMATICAL MODELING AND CANCER CHEMOTHER­
APY 

Cancer is a disease characterized by disturbances in the normal development of 
somatic cells causing an uncontrolled sequence of cell divisions. The malignant 
cells invade and destroy healthy tissues. Three basic methods are used to cope 
with the various forms of cancer, i.e., removal (surgel}'), application of ionizing 
radiation (radiotherapy) and treatment with cytostatic drugs that suppress tumor 
growth (chemotherapy). The action of the drugs may be based on different prin­
ciples (see the Section on Cytostatic Drugs). Dming the past thirty years chemo­
therapy has become increasingly successful. On the one hand because of the 
introduction of new, more effective cytostatic agents, on the other hand because 
of the improved administration schemes based on accumulated (empirical) know­
ledge from clinical experience and (pre)clinical research (experiments with la­
boratolY animals). For example, for leukemia the percentage cure, in terms of 
five year disease free survival, has increased from 15 to 40-50, depending on 
the type of leukemia: acute, chronic, lymphocytic, myelocytic; and other fac­
tors, like the age of the patient and the treatment strategy employed. Still, many 
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problems remain to be solved, among which the treatment of minimal residual 
disease (MRD) and handling the development of drug resistance. 

Relations and interactions between elements of scientific theories can be under­
stood as system models [Brock and Schneider, 1984]. In a model the actual 
conditions are deliberately reduced to a limited number of important aspects. If 
the general elements (variables) are of a quantitative nature, i.e., if numerical 
values can be assigned to them, then mutual links and relationships can also be 
expressed quantitatively in the form of mathematical functions or equations. 
Thus, the system becomes a mathematical model. 

Biological systems are inherently complex. In general, they are more com­
plex than most technical systems [Garfinkel, 1984] and less observable. Fur­
thermore, often only little theoretical knowledge is available concerning the even 
elementary processes in living organisms, though much experimental informa­
tion is available and still rapidly being accumulated. Scattered detail information 
should be combined in comprehensive models. Thus, a considerable data reduc­
tion can be achieved, scientific knowledge is consolidated, and a general picture 
is presented in a formalized, distinct and clear way. The state of the art of 
computer modeling shows a shift from saving computations (trying to reduce the 
need for expensive computation time) to considerations of how to represent 
biology better, and pulling together knowledge embodying both heuristics and 
incomplete or even contradictOlY information. Another important function of 
modeling is the interaction with experiments, not only for interpretation of 
observed results, but to help design experiments, as well as to see to it that the 
experiments aChlUlly do determine what is needed to be measured. 

For cancer chemotherapy [Brock and Schneider, 1984] the experiments with 
living tumor-bearing animals are the basis for both a) the evaluation of scientific 
theories (modeling; models are used for checking theories and they provide 
insight and new information, leading to new model concepts); and b) the 
inference to clinical conditions (e.g., induction therapy to remove the bulk of 
the malignant cells, maintenance therapy to consolidate the disease-free state, 
toxic side effects). 

Continuing development and integration of rational biomathcmatical models 
based on principles already identified, and testing them for compatibility with 
much already available experimental and clinical data will lead to models that 
will help in planning more effective treatment regimens for cancers that are now 
classified as moderately or very refractory to chemotherapy [Skipper, 1986]. 
For fmitful progression it is important that both the biological concepts and the 
arithmetic to be used for modeling are equally good. 

Variables to be incorporated in the models comprise tumor and treatment 
variables. To the former category belong a) the initial composition of the hnllor 
with respect to sensitive, single and multiple drug resistant subpopulations; b) 
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the IIIlItation rates from sensitive to single dl1Ig resistant cells, and subsequently 
from single to multiple drug resistant cells; and c) the poplIlation doubling time 
(which is assumed to be constant for all sublines, as well as time invariant, i.e., 
there is exponential growth). Treatment variables are d) the log cell kill jactor 
per dose of each dl1Ig; and e) the treatlllent combination, i.e., the number of 
doses of each dl'Ug and the time interval between them. Skipper [1986] per­
formed computer simulations with these variables and a model for two-drug 
combinations. 

But also the tumor environment should be considered. Saiga et al. [1985] 
have derived a coefficient of cell variation to describe the heterogeneity of a 
malignant population, considering mutational transformations at different rates 
(cell sublines adapt better or worse to the tumor environment). Michelson and 
Slate [1987] modeled the influences of a dnlg therapy on the tumor environment 
as a reduced capability of supporting a tumor burden of certain size. Rosen 
[1986] introduced an element of competition between sensitive and resistant 
cells, beside time-dependent drug influence functions. 

Acheraya and Sundareshan [1984] point out that systems theOlY principles 
can and should be used in the development of optimal drug administration strat­
egies. Finding the minimum drug dosage that can be administered for killing the 
number of tumor cells present, while maintaining the proliferation of normal 
cells at a safe level, constitutes an optimization problem. This approach differs 
from the trial and error simulation runs as performed by Skipper [\986]. 

While Acheraya and Sundareshan [1987] do not consider resistance phenom­
ena in their model, Birkhead et al. [1984, 1986] do. They allow repeated doses 
of a single cytostatic agent, as well as the presence and accumulation of drug 
resistance. The latter comprises two elements: that already present at diagnosis 
and that acquired in response to and during treatment (e.g., spontaneous muta­
tion or host defense reactions). The log cell. kill hypothesis is assumed, as well 
as exponential growth and constant treatment intervals, though possibilities for 
model extensions are indicated. This model results in expressions for quantities 
such as the fractional tumor reduction due to each dl1lg dose, the minimum 
tumor size achieved by a treatment, the changing composition of a tumor, etc. It 
is useful with respect to evaluating the influences of several a priori assumed 
variables and exploring the consequences of the hypotheses on which the clin­
ician builds his treatment strategies. The likely results of his choices can be 
studied more fundamentally, replacing decisions on purely empirical basis. 

Elements from the theories advocated by Skipper [1986] are incorporated in 
the models by Cold man and Goldie [1985, 1986a,b] and Goldie et al. [1979, 
1982, 1983, 1985, 1986], who illustrated in their papers the use of mathematical 
modeling in relation to the development of chemotherapy strategies. They 
assumed a spontaneous somatic mutation rate from drug sensitivity to dl'Ug resis­
tance and related it to the drug response of tumors as well as to the expectation 
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of cure. Allowing the emergence of cells that are resistant to multiple drugs, 
which in fact result in incurability, they could give a rationale for the application 
of alternating non-cross resistant chemotherapy as the most effective, risk 
minimizing strategy. 

The somatic mutation model predicts a specific quantitative relationship 
between tumor size and probability of cure. The latter is related to both tumor 
size and mutation rate to resistance. The most effective way to utilize two 
equivalent (i.e., same killing capacity and same rate of mutation) dmgs-not 
concurrently, e.g., because of toxicity-is in an alternating fashion. 

In a later model Goldie and Goldman [1985] found an explanation for the 
fact that advanced stage tumors (slow growers) are less curable than smaller 
tumors (fast growers). Allowing more cell loss to account for slow growth, it is 
obvious that more replication cycles are necessary to reach a certain tumor size. 
By consequence, a slowly growing tumor will contain more resistant cells, 
because of the higher probability that mutations have occurred, than a fast 
growing tumor of equal size. 

To evaluate the link between the clinical situation and mathematical model­
ing Dembo [1984], for example, looked into the implications of the somatic 
mutation model by Goldie et al. with respect to the management of ovarian 
cancer. As this model explains clinical observations (e.g., better response to 
first than to later course chemotherapy) better than the constant log cell kill 
model, the former's reconimendations of early timing of chemotherapy and 
applying alternating non-cross resistant combination chemotherapy should be 
considered seriously. 

Hokanson et al. [1986] presented a computer based model that simulates the 
characteristic features of the clinical time course of human myeloma (Kahler's 
disease, a neoplastic disorder of plasma cells). In this model therapy resistance 
is caused by kinetic differences between myeloma cells. Faster cycling cells are 
more sensitive. If the duration of the cycle time is a property with a high degree 
of heredity, the model is compatible with clinical results for various therapy 
schemes (pulsed intermittent or low dose continuous administration). 

The purpose of mathematical modeling [Goldie and Coldman, 1986] is to 
provide deeper insight into natural phenomena and through this insight to make 
accurate predictions about the behavior of such phenomena. Verification of these 
predictions will produce further understanding of the processes being studied, 
which in turn may lead to modification and enhanced sophistication of the basic 
model, which was derived from a set of hypotheses. The experiment for model 
validation has to be a fair test of these hypotheses. This requires careful atten­
tion to the assumptions of the model when the experiment is planned. It is better 
to utilize models in which the assumptions and relationships are explicit and 
well-defined rather than ones that are ill-defined and purely phenomenological. 

-12-



Mathematical models incOlporating descriptions of tumor growth kinetics, in­
cluding drug resistance development, and the effects of cytostatic chemotherapy 
on established tllmors and their microenvironment can be IIsed to investigate the 
potellfial of hypothetical chemotherapy strategies and to identify general prin­
ciples for sllccessful treatment. 

1.6 PROBLEM DEFINITION 

In acute leukemia (Fig. 1.2) at diagnosis the average patient (75 kg) already 
carries a leukemic cell load of approximately 10 12 cells (I kg). With chemother­
apy it is possible to induce a complete remission (CR) in the majority of cases, 
i.e., the leukemia disappears below the clinical detection level. The problem is, 
that with conventional cytological tools one can detect 1 abnormal cell in 20. 
One in 100 is the lowest (clinical) detection level. This means that the patient in 
remission, feeling well and ~parently cured, may still invisibly cany a leuke­
mic cell burden of up to 101 cells. This situation is called the state of minimal 
residual disease (MRD). Effort is put in shrinking the region of invisibility. But 
even under ideal circumstances, with advanced techniques like the polymerase 
chain reaction (PCR; see Chapter 7) the level of detection is at best 1 in 10' to 
106 cells [Hagenbeek, 1992]. In spite of maintenance therapy courses, of which 
the efficacy inevitably is much a matter of guesswork due to the unmeasurable 
response during MRD, the residual leukemic cells often grow out, sooner or 
later causing a relapse of the disease when their numbers have once again 
reached detectable levels. 

A second problem is the possible presence of drug resistant subpopulations 
of leukemic cells. As stated before they may be naturally present or may 
develop through natural mutation. They may develop as well under influence of 
the exposure to the drug (acquired resistance). From clinical experience it is 
known that identical chemotherapy courses, given sequentially, tend to become 
less effective. Therapy outcome can be improved by switching to other cyto­
static drugs. 

The clinician's problem therefore is, whether, which and how long mainte­
nance chemotherapy must be given during the phase of complete remission. It 
wou Id be a great help if the growth of the malignant cell population during 
MRD and the development of drug resistance could be monitored or predicted. 

The success of cancer chemotherapy depends on a large number of variables 
whose values must be within certain ranges. They must operate in concert, but 
few variables can be controlled directly. When administration schemes are 
designed, decisions must be made about monotherapy or combination therapy 
and, for each drug, about the choice of I: the individual dosage level; 2: the 
illfervol between doses; 3: the number of administrations; 4: the dllration of the 

-13-



Fig. 1.2 Definition of Minimal Residual Disease in Acute Leukemia 
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treatment (=2X3); 5: the total dose (=3Xl); and 6: the dose intensity (=5/4). 
The route of administration also plays a role, e.g., oral administration or intra­
venous injections (intermittent) or infusion (continuous). Because, these varia­
bles determine the processes of drug distribution in and elimination from the 
body, as well as the metabolic processes, that, in turn, determine how long and 
with what concentration the cytostatic agent can interact with the tumor. The 
problem is that knowledge about the influence of each (separate) variable is very 
poor. Yet, the ability to steer the concentration-time courses is velY important. 
On the one hand the tumor must be exposed as intensely as possible to achieve 
the maximum therapeutic effectivity. It is desired that all tumor cells disappear 
quickly. On the other hand, just as do most dmgs, cytostatic agents show 
adverse effects. Nausea and vomiting, loss of hair commonly occur, but also 
damage to the bone marrow, intestines and cardiac muscles. Therefore, the 
organs concerned should be exposed as little as possible. 

Through mathematical modeling imd computer simulation the three discussed 
problems can be tackled. 
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Fig. 1.3 Survey of the Research Area in Cancer Chemotherapy 
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1.7 MATHEMATICAL MODELING AND SIMULATION TO OP­
TIMIZE TREATMENT 

As discussed above, cancer chemotherapy necessitates seeking compromises, 
weighing profits and penalties to derive the optimal therapeutic ratio. Therefore, 
chemotherapy is a velY suitable subject for the application of optimization tech­
niques in order to improve-in advance, by evaluating several possible treatment 
strategies-the probability of good treatment results. The modeling approach 
should be applicable throughout the whole trajectory from basics to clinical 
application (Fig. 1.3). 

Given a certain patient, suffering from a certain type of cancer, and given 
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Fig. 1.4 Approaches to MODEL CONSTRUCTION for Process or System Simulation 
[Schweppe, 1973) 
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- conduct experiments (data acquisition) 
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data (identification & validation) 
- perform simulations to develop control strategies 

the present spectl1l111 of available cytostatic drugs, ideally it should be possible 
to determine 1) the dl1lg or combination of drugs, 2) the total dose, 3) the dose 
rate, i.e" the time schedule for continuous or intermittent administrations, and 
4) the route of administration that would yield the best results, 

The objective is to cure the patient by killing all malignant cells as quickly 
as possible, with a minimum of complications and discomfort, as caused for in­
stance by inevitable adverse effects of the presently used cytostatic agents, 

Of course it will be difficult, if possible, to generalize treatment strategies 
because of interpatient variability, not only concerning tumor load and tumor 
location (even for a same type of cancer) but the response of both tumor and 
healthy tissues to the cytostatic drugs as well. However, best treatment strategies 
for certain classes of patients and tumors may be identified, 

To that purpose, a patient and the cancer growing inside him can be regard­
ed as a system, which is to be perturbed by the chemotherapy. The state of the 
system may be given by the number of tumor cells and the number of normal 
tissue cells at risk. 

A requirement is the existence of (mathematical) models, or the feasibility to 
develop them, A mathematical model allows concise but compact description of 
the qualitative and quantitative system behavior in terms of the dynamic respon-
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Fig 1.5 Scheme of FACTORS to be Considered for MODELING CHEMOTHERAPY of 
LEUKEMIA 

Cell (Sub)Population Size as Function of Time 

is determined by 
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(population size at diagnosis, type of leukemia) 

GROWTH MODEL 
(cell proliferation, migration, mutation to resistance, relation with chronological time 
andlor cell population size) 

CHEMOTHERAPY MODEL 
(administration regimen, pharmacokinetics (processes of distribution, metabolism, 
elimination on tissue level; natural processes vs artificial enhancement ("magic 
bullets")), drug effect (log cell killl, pharmacodynamics (processes on cellularl 
molecular level), recruitment {accelerated cell proliferation triggered by treatment}, 
relation with chronological time and/or cell population size) 

BOUNDARY CONDITIONS 
(e.g., max growth rate, toxicity related restrictions, patient characteristics (e.g., 
age, weight, organ function)) 

se to a certain input in the form of a drug administration schedule. Moreover, 
next to providing convenient means of analytical evaluation mathematical model­
ing also allows time-saving numerical manipulations on the computer. Such 
models must be based upon the insight into the population dynamics of tumor 
cells. This means that it must be known how a tumor grows, first without inter­
ference, next when a certain dmg administration regimen is applied. Such know­
ledge often is not, or only fragmentarily present, or must be deduced first from 
several unrelated sources. Therefore, the most appropriate way of setting up a 
model is the gray box approach (Fig. 1.4 [Schweppe, 1973; Bohlin, 1994]). 
Both theoretical and experimental considerations are used to select the proper 
model and thus identify the studied system. Numerical values of model param­
eters can be obtained by, for instance, maximum likelihood estimation. 

Maximum Likelihood Estimation (MLE) requires the formulation of a func­
tion that expresses the likelihood of the measured data in terms of a set of 
unobserved parameters that represent the source distribution. This likelihood 
function is defined by the joint probability density function (pdf) of the measur­
ed data in terms of the unobserved parameters to be estimated in the task. 
Maximizing this likelihood function with respect to the unobserved parameters 
yields estimates with which the measured data are most consistent [Brailean et 
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Fig 1.6 Schematic View 01 the Cell Cycle 
Just after birth the cell is functionally active in the G1 phase. After a certain time 
preparations for cell division are started; in the S phase the cell synthesizes DNA (duplica~ 
tion of genetic materiall to double the original amount. The cell then pauses some time in 
G2 phase. Next, actual cell division takes place 1n M phase (mitosis). Two daughter cells 
are produced, each starting in G1• The cycle time, T c required to complete the cell cycle is 
a variable distributed between a certain minimum value and infinity (the exact shape of the 
distribution depends on the type of cell); after a certain time interval, cells that started at 
the same time point thus may be at different positions in the cycle. Some (resting) cells 
stay in G1 for a very long time. An equivalent model can be built by allowing each cell a 
constant time interval T c to complete the cycle and then assuming that it yields on 
average A (lsAs2) daughter cells. The quantity A-l characterizes the cell production in 
relation to the potential cell production, and is called the growth fraction, GF. Together 
with To and the cell loss factor, ell (a measure of the difference between cell production 
and actual population doubling time), GF determines the growth of the cell population. 
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Figure 1.5 gives a subdivision of factors that should be considered for 
modeling. On the one side is the tumor growth model with initial and boundary 
conditions, on the other side there is the chemotherapy model with pharmaco­
kinetic processes (distribution/elimination) and dose-effect relationships (log 
cell kill per unit dose). 

Of course, as with many biomedical systems, there remains the problem of 
observability, or better, lack of observability. Therefore, look separately at 
subsystems first: unperturbed tumor growth, drug distribution and clearance, 
response of tumor and normal tissue cells to exposure to drug concentrations. 
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Fig. 1.7 Stochastic Model for Population Growth 
8J Given a certain initial population size, the cells are distributed over a number of age 
compartments, corresponding with the cell cycle which is assumed to last a constant 
value of T c' The allocation takes place with the aid of a random number generator (RNG). 
assuming that an unperturbed cell population has an exponential age distribution (twice as 
many new born cells as mitotic cells [Matthews, 1988)). 
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.§) The development of the population is simulated by moving cells from one compartment 
to the next one during small time increments. When moving a cell hom the last compart· 
ment back into the first one, first it is determined (again with the RNG) whether the cell 
wlU disappear (chance P2' e.g., natural cell death). If not, it is checked whether the cell 
will divide (chance P1) into two cells. 
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Fig. 1.7 (Continued) 
,C,) For large cell populations the relation en = en_l' (1 -I- P ,-P2-P t'P 2) can be derived for 
growth during consecutive cycle times. In this way growth curve are generated (popula­
tion size as function of time). The chances PI and P2 may vary as function of the popula­
tion size. For the leukemias considered in Fig. 1.8, T c i':< 14 h (BNML) and T c "'" 3.2 d 
(median value for AML, range 0.7-12.2, determined by in vivo BrdUrd and 3H-Thymidine 
double labeling (Raza et al .. 1987)). 
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With a few illustrations an impression is given of how simulation for cancer 
chemotherapy may be applied. Note that not all model assumptions used in the 
simulations have been verified (yet). 
Figure 1.6 shows how cells move through a cell cycle before reproduction. A 
model for cell proliferation is shown in Fig. 1.7. Figure 1.8 demonstrates that 
such a model can yield realistic growth curves, assuming that during tumor 
development cells keep a constant chance of dying while Oleir chance of produc­
ing offspring decreases linearly with the population size (the latter property is 
also seen in normal tissues: an organ grows only to a certain size). 

Figure 1.9 divides a cell population into fractions that are sensitive or 
resistant to two cytostatic dl11gs. Simulation results for two different treatment 
strategies based on this model are given in Fig. 1.10. The validity of the log cell 
kill hypothesis [Skipper, 1986] is assumed when modeling the effect of a dl11g 
dose, i.e., a same dose always kills a constant fraction of the (sensitive) cell 
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Fig. 1.8 Growth of Leukemic Cell Populations 
Panel A shows the growth of leukemic (BNML) cells in the bone marrow of the BN rat, 
after i. v. inoculation of 107 BNML cells on day zero. The measured points are derived from 
various laboratory experiments. The fitted growth curve (least squares method) consists of 
an exponential component (constant population doubling time, 0.8 d) and a contiguous 
Gompertz curve (from day 8.6 on, at a population size of 1.8x108 cells, the doubling time 
T d increases exponentially, with retardation constant 0.4 d- l ). 
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population. The magnitude of such a fraction is experimentally determined for 
each cytostatic drug, e.g., as shown in Fig. 1.11 for the drugs cyclophospha­
mide (CFA) and acridinyl anisidide (AMSA). By doihg simulations with the cell 
cycle model it is possible to check whether the drug might be cell cycle phase 
specific, i.e., whether the drug affects cells only when they are in a certainphase 
of the cell cycle (Chapter 2.3). Likewise, the instantaneous nature of the cell 
killing effect of a drug can be tested by using instantaneous and gradual drug 
influence models and checking simulation results against experimental observa­
tions (Chapter 2.2). 

1.8 AIM OF THE THESIS 

The purpose of tilis thesis is to show advantages of the application of techniques 
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Fig. 1.8 (Continued) 
Panel B shows similar curves, obtained for human acute myelocytic leukemia (AML, 
observed median value of T c ~ 3 d) with the simulation model of Fig. 1.7 by keeping the 
death probability (P2) constant while decreasing the probability of cell division (Pl) linearly 
with population size. 
Relapse (5x10 10 cells) on day 240 after treatment (clinically observed median value after 
autologous bone marrow transplantation (ABMT)) may originate from different quantities 
of residual cells as long as the true course of T d remains unknown. 
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developed in general systems theory to salve biomedical problems and generate 
knowledge. Biological systems are complex and often understood to a very 
limited extent only. In general, the predictability of system responses is cor­
respondingly poor. Through modeling, it will be possible to explain at least part 
of the observed system responses. Thus, fluctuations in a response may not fully 
disappear-e.g., due to variation in individual patients-but they will be 
reduced. 

Two different worlds have to be united. That of the clinicians, who have to 
live with large unexplained variations in observed (system) responses, face appa­
rently contradicting results of a multitude of different (experimental) treatments 
that each throw light on only a limited aspect of the studied phenomena, there­
fore are obliged to base pragmatic solutions ("mles of thumb") for their individ-
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Fig. 1.9 Schematic View on Relations between Subpopulations 
There are four subpopulations: cells in compartment S are sensitive for both cytostatic 
agents A and B; cells in RA are resistant for drug A; cells in RB are resistant for drug B; 
and cells in RAB are resistant for both drugs. Double resistant cells develop from single 
drug resistant cells by mutation; single drug resistant cells in turn develop from sensitive 
cells. Per unit time and per cell in every subpopulation b cells are born and d cells 
disappear. A fraction m of the difference mutates into another subpopulation, the 
remainder stays in the same subpopulation. In principle the value of m may differ for the 
different subpopulations, but in this case the somatic mutation rate m = 10-6 leukemiais 
kept constant. This also applies to the band d values in the subpopulation: no difference 
between subpopulations, though (b-d) may be dependent on total population size. 
The equations for population size as function of time (C denotes the total number of cells) 
can be written as: 

C(t+Llt) = C(t) + LIt . dC(t)/dt, where 

d C(t)/d t = d Sid t + dRA/dt +dRB/dt + dRAB/dt and 

dS/d t (1-2m) 0 0 0 S 

d RAidt m (1-m) 0 0 RA 
(b-d) . 

d RB/d t m 0 (1-m) 0 RB 

d RAB/dt 0 m m 1 RAB 

b ~~ M, (b-d) 

s ( i-M )( b- d) 

( 1-2M )( b- d) 

(i-M )( b-d) 
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Fig. 1.'10 Example of Chemotherapy Simulations in the BNML 
At the start of the simulation the leukemic cell population consists of 1.65xl0 9 sensitive 
cells that would double in 19 h if unperturbed exponential growth is allowed. Drug 
resistance develops at a spontaneous mutation rate of 1 cell in 106 divisions. Drug 
administration reduces the sensitive population with a dose dependent number of decades 
(q log cell kill means a reduction with a factor of 10-Q) according to an experimentally 
determined dose-effect relationship (see Fig. 1.11). Different treatment strategies are 
compared. 
Monotherapv, Two high doses of AMSA (20 mg/kg causing 4,7 LCK each) at 12 and 84 h 
are given, and nine low doses (5 mg/kg causing 1.2 LCK each) divided over two series, 
e,g, to prevent toxicity problems, at 24, 36, 48, 60, 72 and 96, 108, 120 and 132 h, The 
total dose amounts to 85 mg/kg, administered in 132 h, so dose intensity is 85/132=0.64 
mg/(kg.h). At first the cell population decreases but after 330 h it appears to reach the 
initial size again. The simulation model predicts that AMSA treatment could have been 
stopped after 72 h. Further treatment has been in vain as al/ sensitive cells had already 
been eradicated at that moment and the remaining resistant cells are not affected by 
AMSA. Worse, normal tissues have been unnecessarily put at risk. 
Combination therapy, Next to low doses of AM SA (5 mg/kg causing 1.2 LCK) at 12, 24, 
36, 48 and 108, 120, 132, 144 h a few doses of CFA are given (60 mg/kg causing 2,7 
LCK) at 60, 72, 84 and 96 h, The total dose, expressed in AMSA equivalents-the same 
LCK is attained with a CFA dose which is 5.2x as large as the required AMSA dose-as 
8x5 + 4x60/5,2 = 86 mg/kg is given in 144 h, so dose intensity is 86/144 = 0,60 
mg/(kg.h). Despite the almost equal exposure of the patient with respect to the monother­
apy the model now predicts cure « 1 cell left). The total population is destroyed in 120 h. 
The last two AMSA administrations at 132 hand 144 h have apparently been superfluous. 
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Fig. 1.11 Dose Effect Relationships for BNML and Two Cytostatic Drugs 
Observations for AMSA (acridinyl anisidide) and CFA (cyclophosphamide) and BNML celts. 
Regression lines show linear relationships between dose and log cell kill (correlation 
coefficient, r = 0.93 and r = 0.87, respectively). 
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ual patients on some hazy notions about the true mechanisms behind the proces­
ses. And that of the theoretic physicists, striving for exact formalisms to 
describe and understand the processes, but who sometimes are more fixed on the 
elegance of their mathematics than on gathering experimental "evidence", per­
haps by lack of laboratOlY facilities and skilled technicians' assistance, and who, 
conversing in "clyptic" formulae, can happily live with 1.75 children and allow 
0.24 viable cells. Obviously, there must be fruitfulness in sharing views. Other 
interested parties may be those educated in biology, biochemistry or pharma­
cology. 

As an illustrative example the problem of optimization of chemotherapy of 
leukemia is chosen. In this rather vast field a limited number of subproblems are 
addressed. They mainly concern a myelocytic leukemia growing in a laboratolY 
rat (BNML). The subproblems considered include the identification of a system 
of pharmacokinetics of a cytostatic agent, and leukemia growth under various 
boundalY conditions. 
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1.9 EXPERIMENTAL DATA 

1.9.1 Laboratory Animals 

The ill vivo data discussed in this thesis were obtained, in general, from ex­
periments conducted with inbred Brown Norway rats, BN/Bi/Rij, raised in the 
Rijswijk colony. Animals used were 10-12 weeks old at the start of the ex­
periments. The total body weights of male animals were about 165 g, of female 
animals about 150 g. Occasionally, older rats were used, with ages between 13 
and 16 weeks and average weight of males: 220 g. In view of the expected life 
span of 36 months for rats, these animals can be considered young adults. The 
rats always had free access to water and pelleted rat food. 

1.9.2 Brown Norway Rat Leukemia Model (BNML) 

In the early seventies a leukemia was discovered at the Radiobiological Institute 
TNO in a female BN rat that had been repeatedly injected with carcinogenic di­
methyl-benzanthracene (DMBA). Thc disease appeared to be an acute promyelo­
cytic leukemia and was called Brown Norway rat Myelocytic Leukemia 
(BNML). The BNML cell line can be maintained by transplantation, i.e., leuke­
mic cells that in a late stage of the disease have been isolated from the spleen or 
the bone marrow of a leukemic animal are able to replicate in a normal BN rat. 
This ability persists if the isolated BNML cells have been kept stored in frozen 
condition for quite some time. Transfer of small numbers of donor BNML cells 
by means of intravenous (i. v.), subcutaneous (s.c.) or intraperitoneal (i.p.) 
injection of single cell suspensions causes leukemia in recipient rats. As few as 
25 BNML cells i. v. yield a 50% risk of leukemia development (see Chapter 
6.2). 

Because of various similar properties, the BNML is considered a velY good 
model for human acute (pro)myelocytic leukemia (AML) [Hagenbeek and Van 
Bekkum, 1977; Van Bekkum and Hagenbeek, 1977]. The most important among 
such properties are: 
- I) Striking similarities with respect to cytology, cytochemistlY and histology 
-2) Absence of leukemia-specific antigens 
-3) No viral activity has been demonstrated to serve as an etiological agent 
-4) Relatively slow growth, due to a low growth fraction (40-50%) and a high 

cell loss rate (80-90%) at later stages of the disease; the median survival 
time of BN rats after i. v. inoculation of 107 BNML cells amounts to 22 
days, the leukemic cell load then being about 4xl01O BNML cells (see 
Chapter 2.1) 

-5) Signs of diffuse intravascular coagulation when the leukemia progresses 

-26-



-6) A dramatic decrease in numbers of normal hemopoietic stem cells results in 
a severe suppression of normal hemopoiesis 

-7) Similar response of BNML and human AML to chemotherapeutic agents 

Another property that makes the BNML such a convenient model is the presence 
of leukemic clonogenic cells. As BNML can be quantified in an ill vivo colony­
formation assay (Chapter 2.1), a variety of experiments can be conducted to 
generate data on the behavior of the leukemic cell population. In contrast, 
clinical data can never be that extensive. 

The BNML rat leukemia model has been, and still is, used in over a dozen 
European and American research centers for various preclinical investigations 
on the diagnosis and treatment of human AML. A comprehensive survey of 
BNML studies performed at the fonner Radiobiological Institute TNO can be 
found in Hagenbeek and Martens [1991] and Martens et a!. [1990a,b]. 

1.9.3 Generation of Data 

For cell kinetics experiments the BN rats were inoculated intravenously U. v.) 
with leukemic cells, usually 107 , so as to induce disease. The development of 
the leukemia as function of inoculum size and growth perturbation (none, 
cytostatic drug administration or total body irradiation) was monitored in several 
ways (see Chapter 2.1). 

For pharmacokinetics experiments leukemic BN rats were injected U. v.) 
with a single dose of an anticancer drug. Its concentrations were measured in 
various organs at various time points after the treatment (see Chapter 4). 

The BNML has been studied extensively with respect to problems met in the 
area of bone marrow transplantation (BMT) [Martens et a!., 1990a]. Among 
these studies are the conditioning regimens (marrow ablative chemo-radiother­
apy) before BMT, the removal of malignant cells from an autograft, and treat­
ment-related complications such as interstitial pneumonia and graft-versus-host 
disease [e.g., Hagenbeek and Martens, 1983, 1987; Hagenbeek et a!., 1989; 
Kloosterman et a!., 1993; Van Bekkum, 1993]. Mathematical analyses and 
deductions about BMT made in this thesis (Chapter 6) are based on the basic 
experiments conducted with the BNML and on clinical observations (survival 
data of patients that are treated in different ways) derived from the literature. 

1.10 OUTLINE OF THE THESIS 

In the following chapters the modeling approach is applied to address the 
problems raised in Chapter 1. Mathematical models are built and-employing 
parameter estimation and system identification techniques-tested on the basis of 
available biological data, and results of computer simulations are analyzed to 
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better understand various processes that are relevant for chemotherapy of leuke­
mia. 

First, more must be learnt about how the leukemic cell population develops 
ill vivo, especially in the situation of MRD. In Chapters 2 alld 3 the cell popula­
tion dynamics of leukemia growth will be dealt with. In Chapter 2 the BN rat 
leukemia (BNML) will be discussed. To show how the necessary input data for 
the developing the models were obtained, in Chapter 2.1 an overview is given 
of the basic experiments. Their results are important for the remainder of the 
thesis. In Chapter 2.2 growth of the BNML cell population is examined, as well 
as the influence of chemotherapy, applied as a single dose of the cytostatic agent 
cyclophosphamide. In Chapter 2.3 a simulation study is described to further 
investigate the influence of chemotherapy. Here, the cytostatic drug AM SA is 
given as a series of daily doses. A first approach to modeling the development 
of drug resistance is the subject of Chapter 2.4. The model for BNML growth 
should be validated to see whether the knowledge gained can be applied to 
human leukemia. Clinical data on human AML-probably the most appropriate 
for testing the model-was not available. However, data on the growth, and 
regrowth during and after therapy, of childhood T-cell acute lymphocytic leuke­
mia was willingly supplied by the Department of Immunology of the Erasmus 
University Rotterdam. In Chapter 3 these data are analyzed for malignant cell 
growth in peripheral blood'. 

Control of ill vivo drug distribution is another important factor for optimal 
chemotherapy. Before control is possible, more must be learnt about the mech­
anisms behind the distribution processes. This requires studies in laboratory 
animals. In Chapter 4 system identification techniques are applied to the phar­
macokinetics of the drug daunomycin and its metabolite daunomycinol in the 
Brown Norway rat. 

The system identification technique developed in the previous chapter is 
generally applicable. In Chapter 5 it is used in a new method to analyze flow 
cytometric DNA histograms. With this tool the cell kinetics of (malignant) cell 
populations can be studied. This may yield new information on the progression 
of the leukemic cell populations, in addition to the results of Chapter 2. 

Bone marrow transplantation is a recent development in the treatment of 
leukemia. In Chapter 6 the application of mathematical analysis to a few of its 
problems is discussed. After an introduction to the subjcct (Chapter 6.1) pos­
sibilities for improving the probability of disease free survival after allogeneic 
bone marrow transplantation are examined (Chapter 6.2). The contributions of 
minimal residual disease and leukemic cells reinfused with an autologous bone 
marrow graft to the risk of leukemia relapse are compared (Chapter 6.3). 

Finally, Chapter 7 comprises a general discussion and comments on a few 
developments. It is concluded that in the vast area of optimization of treatment 
of leukemia there are many problems that can, and should, be analyzed using 
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mathematical models. The problems focussed upon in this thesis form a small, 
but important, subset to start with. 
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Chapter 2 
Cell Population Dynamics of Leukemia Growth in the Brown 
Norway Rat 

In this chapter the dynamics of ill vivo leukemia growth will be examined. The 
unperturbed development of leukemic cell populations, as well as the influence 
of radio-/chemotherapy in terms of log cell kill and development of dlllg resis­
tance, were studied first in the BNML laboratory model. Later, the application 
of preclinical findings to actual clinical data is discussed, i.e., the treatment of 
several cases of childhood T-cell acute lymphocytic leukemia (Chapter 3). 

2.1 Basic Experiments and ill vivo Growth 

2.1.1 BASIC EXPERIMENTS 

Various experiments have been conducted to generate basic data on ill vivo 
growth of BNML in the BN rat [Hagenbeek and Martens, 1981, 1982, 1985, 
1987a]. 

2.1.1.1 Homing and Lodging ot' BNML Cells in the Recipient Rat 

Labeling with radioactive chromium (yielding measurable quantities of SI Cr in 
more than 90% of the BNML cells) revealed that the bulk of the BNML cells, 
injected i. v., goes to and settles in the liver, the spleen and the bone marrow. 
Within a few hoUl'S 55%, 10% and 2.5%, respectively, of the inoculum is found 
in these organs. VelY low percentages arrive in other organs. Apparently, only 
in the liver, the spleen and the bone marrow BNML cells may find favorable 
spots where they can start the process of reproduction (proliferation). 

2.1.1.2 BNML Cell Numbers Tmnsferred and Leukemia Induction 

When a number of malignant cells is inocu lated i. v. only a fraction will home to 
and lodge in favorable places in the recipient such that offspring can be produc­
ed that leads to overt disease. A certain size of the inoculum is required to let 
the disease develop in 50% of the recipients. This inoculum size is called the 
EDso value [Hewitt, 1958]. 

The EDso value for BNML was determined by inoculating rats i. v. with low 
numbers of BNML cells (l to 1000). In each group of 6 rats, who were given a 
same dose of BNML cells, the percentage of leukemia-free survivors was 
recorded. A probit analysis of the datapoints yielded the EDsO = 24.7 BNML 
cells i. v. being required to induce leukemia in 50% of the eases (see Fig. 2.1). 
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2.1.1.3 BNML Cell Numbers Transferred and Median Survival Time of 
the Recipient Hat 

Various amounts of BNML cells-dose (C) in the range from 103 to 107-were 
inoculated i. v. into recipient rats (6 rats per datapoint). Death by leukemia was 
awaited and the survival time since inoculation was noted. The median survival 
time (MdST) was calculated for each dose of BNML cells. By linear regression 
of the MdST -log(C) datapoints the following relationship was established (Fig. 
2.2); 

C = 1O-0.25XMdST + 12.5. (2.1) 

The MdST after 107 BNML cells i. v. amounts to 22 days. Equation (2.1) im­
plies that each tenfold reduction in cell dose (I log) corresponds with 4 days ex­
tra survival. The other way around, from an observed increase in life span the 
corresponding decrease in cell numbers (dose) can be calculated from Eq.(2.1). 

2.1.2 DETECTION AND QUANTIFICATION METHODS 

Several methods are available to detect and quantify leukemic cells in a (tissue 
or body fluid) sample. The methods mentioned below-in order of increasing 
sensitivity, i.e., ability to detect cells that are present in decreasing frequen­
cies-are applicable only to preclinical studies. There, experimental animals can 
be sacrificed andlor many (large) samples can be obtained. Exceptions may be 
the methods of direct counting and of flow cytometry, which may be used with 
human (blood) samples and lor (tissue) biopsies. In those cases, however, malig­
nant cells will only be detected if their frequency in the sample is relatively 
high. Because clinical samples generally are small, due to processing time lim­
itations andlor ethics in patient handling. The clinical detection level-below 
which the presence of malignant cells goes unnoticed-amounts to more than 
1010 malignant cells, i.e., I % of the typical leukemic cell load of 1012 leukemic 
cells (1 kg) at diagnosis. With new detection methods (see Chapters 3 and 7) 
malignant cells may be detected when they are present in frequencies of one in 
104 or 105. 

2.1.2.1 Organ Weights 

When, after i.l'. inoculation, BNML cells home to and lodge in the liver and 
spleen of the rat the weights of these organs slowly increase with time as several 
BNML cells will form growing colonies. Therefore, the excess weight (= total 
weight - normal organ weight in a healthy animal) may be attributed to the 
leukemic cell load. The weight of 109 BNML cells being I g, the excess organ 
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Fig. 2.1 Determination of the E050 value for BNML. Shown are observed data points and 
the dose-response relationship with 95% confidence limits after probit analysis 
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Fig. 2.2 Relationship between i.v. inoculated dose, C of BNML cells and median survival 
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weight can be converted to a number of cells. 
The organ weight parameter obviously yields very rough estimates of the 

leukemic cell burdcn. The increase in weight must be considerable before a 
significant deviation from normal values (spleen: 0.5 g, liver: 10 g) can be 
detected. Thus, basically, the method is useful in late stages of the disease, 
when the fraction of leukemic cells is larger than 0.1. 

In Fig. 2.3 the development of spleen, liver and total body weight after 
inoculation of 107 BNML cells is illustrated. 

2.1.2.2 Counting based on Morphology (Quantitative Cytology) 

Based on cytological staining procedures and morphological characteristics it is 
possible to detect and count leukemic cells under the microscope if they are 
present in frequencies of 0.01 or larger. The leukemic cell load is estimated 
from the sample counts by correcting for the total numbers of cells per organ as 
determined by cell counting or organ weights. 

2.1.2.3 Flow Cytometl'Y 

The monoclonal antibody (MCA), Rm-124, specifically binds to an antigen that 
is present in high density on the surface of BNML cells. This MCA itself can be 
conjugated with fluorescein isothiocyanate (FITC). Thus, when running a cell 
suspension through a flow cytometer, BNML cells-if they are present in 
frequencies larger than 0.000 I-can be distinguished from other cells because of 
the high intensity fluorescent signal evoked from the FITC + Rm-124 label by 
laser light excitation. (See [Martens et aI., 1984; Martens and Hagenbeek, 1985] 
for details on this method; see Chapter 5 for the principle of flow cytometry). 

2.1.2.4 Clonogenic Leukemic Stem Cell Assay 

This method is also known as the "leukemic colony forming unit-spleen" assay 
(LCFU-S; see Table 2-1). It is based on the fact that a certain fraction of the 
BNML cells that are inoculated i. v. into a normal recipient rat will cause the 
development of cell colonies on the surface of tile spleen, i.e., white spots that 
can be easily seen and counted on day 19-20. 

It is assumed that each colony is founded by one inoculated BNML cell. It 
was experimentally determined [Van Bekkum, 1977] by an assay based on the 
one for normal hemopoietic stem cells [Lahiri et aI., 1 970]-as briefly described 
in Appendix A-that, on average (with an accuracy of approximately 10%), one 
out of every 500 BNML cells present in the inoculum yields a spleen colony. 

Thus, if an inoculum from a donor rat contains leukemic cells, the actual 
number can be deduced from the counted number of colonies on the surface of 
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Fig. 2.3 Development of spleen, liver and total body weights after i. v. transfer of 107 

BNML cells on day 0 (solid lines). On day 13 a single dose of cyclophosphamide (100 
mg/kg) is given i. v. (dashed lines). Bars represent 1 SE (sometimes hidden within 
symbol); n = 3 rats per data point 
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Table 2-1 Injection of known numbers of leukemic (L) cells (a,b) results in a number 
of colonies to be counted on the spleen (f x a,f x b)' An experimental method to deter­
mine the dilution factor f is described in Appendix A. The other way round, when an 
unknown quantity of L-cells is injected and c colonies are counted, it can be deduced 
that this unknown quantity must have been elf L-cells 

LCFU-S ASSAY 
linear relation between the number of leukemic cells injected i. v. 

and the number of colonies on the spleen surface 

nr. of L·cells 
on day 0 

a 
b 

clf 

nr. of spleen colonies 
on day 20 

fxa 
f x b 
c 
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Fig. 2.4 Limits of detection of leukemic cells in the BNML Ifrom Hagenbeek, 1992J 
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the spleen of the recipient rat, multiplied by 500. Subsequently, by assuming a 
homogeneous distribution of leukemic and normal cells in the organ from which 
the inoculated sample was taken, the leukemic cell load in that organ can be 
estimated. The detection limit of this method is at the level of one leukemic cell 
in 105 - 106 normal cells. 

2.1.2.5 Survival Time Bio-Assay 

This assay is based on the established relationship (Section 2.1.1.3) between the 
number of i. v. inoculated BNML cells and the median slll'vival time. Several 
rats are inoculated with cells from a sample, e.g., a bone marrow sample from a 
leukemic rat that has been treated a certain time before with a cytostatic drug. 
After registering the rats' survival times the MdST is determined, The unknown 
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Fig. 2.5 Growth of leukemia in the liver after i.v. inoculation of 107 BNML cells on day 
0, as observed with various detection methods during unperturbed growth (A) and during 
regrowth after cyclophosphamide treatment (single i.p. dose, 100 mg/kg) on day 13 (B). 
(0-0: microscopy counts; v-v: flow cytometry; 0-0: survival time bio-assay. Bars 
represent 1 SO; n ~ 3) 
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quantity of BNML cells in the donor rat's sample, C, then can be estimated 
using Eq.(2.1). Strictly spcaking, the method is valid for the quantification of 
leukemic cell numbers between 103 and 107, co'rresponding with MdSTs 
between 38 and 22 days. Outside this range the direct C-MdST relationship 
may no longer hold with good accuracy. If used for detection purposes only, 
however, the method is suitable for leukemic cell frequencies from 10,8 to 1. 

Figure 2.4 summarizes the detection limits of the methods mentioned above. 
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Fig. 2.6 Growth of leukemia in the spleen after i.v. inoculation of 107 BNML cells on 
day 0, as observed with various detection methods during unperturbed growth (A) and 
during regrowth after cyclophosphamide treatment (single i.p. dose, 100 mg/kg) on day 
13 (8). (0-0: organ weight; 0-0: microscopy counts; v-v: flow cytometry; 0-0: survival 
time bio-assay. 8ars represent 1 SO; n=3) 
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2.1.3 IN VIVO LEUKEMIA GROWTH 

At various time points during 25 days after i. v. inoculation of 107 BNML cells 
groups of 5 BN rats were sacrificed and the leukemic cell loads in four main 
target organs-liver, spleen, bone marrow and blood-were determined. All of 
the detection and quantification methods discussed were used. 

Actually, the leukemic cell numbers in liver and spleen samples were 
measured; the total leukemic cell loads in these organs were then calculated on 
the assumption of a homogeneous distribution of BNML and normal cells. The 
leukemic cell load in bone marrow is based on measurements in femoral bone 
marrow; it is assumed that femoral bone marrow accounts for 2.5% of the total 
amount of bone marrow [Colly et aI., 1984a]. In peripheral blood the number of 
leukemic cells was determined per ml. 
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Fig. 2.7 Growth of leukemia in the bone marrow after i. v. inoculation of 107 BNML cells 
on day 0, as observed with various detection methods during unperturbed growth (AI 
and during regrowth after cyclophosphamide treatment (single i.p. dose, 100 mg/kgl on 
day 13 (8). (0-0: microscopy counts; v-v: flow cytometry; !.I-A: LCFU-S assay; 0-0: 

survival time bio-assay. Bars represent 1 SO; n::::: 3) 
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By repeating the experiments several times, with quite large time intervals in 
between, it was checked that the resulting growth patterns are reproducible. 

Results are shown in panels A of Fig. 2.5 (liver), Fig. 2.6 (spleen), Fig. 2.7 
(bone marrow) and Fig. 2.8 (peripheral blood). In panels B of the same figures 
results are presented from similar experiments, which examine leukemia re­
growth after treatment rather than unperturbed leukemia growth. The animals 
were now followed for 42 days. Treatment consisted of a single i.p. dose of 100 
mg/kg cyclophosphamide (CFA) on day 13. 

For any random measurement time point, the spread in the observations is 
considerable, both for individual data from a same detection method and for data 
from different detection methods. General patterns in the time courses, however, 
can be recognized. They are similar for all organs. Concave time-courses of the 
data on the semi-log plots indicate decelerating growth rates. 

The experimental data were used for modeling unperturbed and chemother­
apy perturbed leukemia growth. Best fit parameter values of growth curves, cor-
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Fig. 2.8 Growth of leukemia in the peripheral blood after i. v. inoculation of 107 BNML 
cells on day 0, as observed with various detection methods) during unperturbed growth 
(A) and during regrowth after cyclophosphamide treatment (single i.p. dose, 100 mg/kg) 
on day 13 (B). (7~7: flow cytometry; .6-.6: LCFU-S assay; 0-0: survival time bio-assay. 
Bars represent 1 SD; n = 3) 
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responding with several different models, were determined and compared to 
identify the best description of the development of the leukemic cell population 
(see Chapter 2,2). 
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2.2 BNML Growth Perturbation by Cyclophosphamide' 

At present, treatment of human acute leukemia often starts successfully with the 
induction of a comBlete remission by chemotherapy. Initial treatment reduces a 
typical load of 10 2 leukemic cells (1 kg) by at least a factor 100. As it is 
impossible to detect a tumor of 10 g or less by standard clinical cytologic 
methods, all that can be said is that the actual number of surviving cells may be 
anything between zero and LOIO. Because no information is available on the 
residual tumor load, also called minimal residual disease (MRD), maintenance 
of the state of complete remission is still a major problem. To try and eradicate 
MRD either maintenance chemotherapy or high-dose chemotherapy (e.g., with 
cyclophosphamide, CFA) combined with total body irradiation (TBI) and bone 
marrow transplantation (BMT) is applied. Failure of these methods, i.e., not all 
clonogenic leukemic cells are eliminated, means a relapse of the disease eventu­
ally. 

Therefore, it is velY important to gain knowledge about the kinetics of 
growth of the leukemic cell population, especially in the "invisible" area of 
MRD. If changes in the tumor load, due to both natural (re)growth and under 
influence of chemotherapy, can be accurately quantified, then relapse can be 
predicted earlier and more effective treatment strategies can be designed. 

A way to track down the time course of the size of the leukemic population 
is by performing computer simulation studies, using mathematical models for 
growth under both unperturbed and under therapy conditions. Various hypo­
thetical growth curves can be tested for adequate description of data obtained 
from in vivo experiments. The best fitting curves may be used for extrapolation 
into the experimentally invisible area. As long as they do not contradict any 
other known physical facts, they may be considered as the most likely descrip­
tion of the growth properties of MRD. 

In the past many investigators have employed mathematical models for 
tumor growth. It is generally assumed that a natural human tumor develops from 
a single transformed cell. Starting at time t = 0 with a single cell the growth of 
a population may be modeled with a linear birth process. The popUlation size, 
C, will increase exponentially with time if a constant probability of cell birth, p, 
is assumed [Iversen and Arley, 1950], i.e., 

1 A manuscript has been published as: 
F.W.Schultz, A.C.M.Martens and A.Hagenbeek (1987) Computer simulation of the progression 
of an acute myelocytic leukemia in the Brown Norway rat. Comput Math Applic 14:751-761, 
and in: M.\Vitten (ed) Mathematical Models in Medicine, Advances in Mathematics in Comput­
ers and Medicine 2 (1988) Pergamon Press, New York. 
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C(t) = exp(p·t). (2.2) 

This will still be the case if, more realistically, a death process is modeled as 
well, again with a constant probability [Neyman and Scott, 1967]. The growth 
rate will be 

dC(t)ldt = GF· C(t), (2.3) 

where the growth fraction GF is a constant depending on the characteristics of 
the specific tumor investigated (i.e., cell cycle time, fraction of resting cells, 
death rate). 

In practice, experiments starting with a single cell generally will yield some 
distribution of population sizes at time t. At some time after initiation the tumor 
may even become extinct. Thus, to some extent tumor growth is a stochastic 
process, requiring stochastic models. Tumor initiation itself also may be model­
ed as a stochastic transformation process [Whittemore and Keller, 1978]. 

Also, at some time during their development most tumors appear to deviate 
from growing exponentially. The growth fraction obviously depends on popula­
tion size. To account for this phenomenon many researchers have investigated 
various growth laws to explain their data, e.g., the logistic equation [Steel, 
1977] or the Gompertz equation [Simpson-Herren and Lloyd, 1970]. The ap­
propriateness of these functions is based on empirical curve fitting rather than 
on any underlying physical or biological arguments. Especially when a large 
range of tumor sizes is involved the Gompertzian law has been demonstrated to 
be the most applicable [Steel, 1977; Simpson-Herren and Lloyd, 1970; Laird, 
1964; Hanson and Tier, 1982; Sullivan and Salmon, 1972]. The growth fraction 
then decreases with increasing tumor size according to 

GF = A 'In( Cma/C(t», (2.3) 

where Cmax is the maximum population size for t-->oo, and A is either a constant 
or, if an aspect of randomness in growth must be introduced, A may be replaced 
by a Gaussian white noise process [Smith and Tuckwell, 1974]. Effects of 
heredity, i.e., absolute randomness being restricted by the fact that daughter 
cells behave more like their mother than do their nieces, may be considered 
[Prajneshu, 1979l. For similar results with respect to the qualitative aspects 
tumO!' growth with a size dependent growth fraction also may be modeled by a 
non-Gompertz equation [Wette et aI., 1974]. Again different models consider 
tumor size dependent birth and death rates [Dubin, 1976; Swan, 1977], 

In the present study the growth characteristics of an acute myelocytic 
leukemia in various organs of the Brown Norway rat, and in the bone marrow 
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also the influence of chemotherapy, will be evaluated along the above indicated 
lines of curve fitting and simulations. The cell numbers dealt with are relatively 
large. The experimental data are assumed to reveal the development of the mean 
population size. Therefore, no stochastic effects will be considered, but only a 
population size dependent growth fraction. 

2.2.1 MATERIALS AND METHODS 

2.2.1.1 The Rat Leukemia Model (See also Chapters 1.9 and 2.1.1) 

The Brown Norway acute myelocytic leukemia (BNML) was induced with 
9,lO-dimethyl-l,2-benzanthracene in a female Brown Norway (BN) rat. Within 
the BN/BilRij rat strain BNML is transplantable by cellular transfer. As few as 
25 i. v. inoculated BNML cells cause the development of leukemia in 50 % of 
the test animals [Hagenbeek and Martens, 1985]. The principal target organs are 
the liver, the spleen and the bone marrow. The leukemic cell load at the time of 
death amounts to 2xlOtO . The fact that BNML behaves very much like human 
acute myelocytic leukemia (AML) explains the relevance of the disease for use 
in experimental tumor treatment studies. Some major properties are: a) a slow 
growth rate; b) the presence of clonogenic leukemic cells; c) a severe suppres­
sion of hemopoiesis owing to an absolute decrease in normal hemopoietic stem 
cells (CFU-S); d) a response to chemotherapy similar to that of AML. 

2.2.1.2 The Cytostatic Agent Cyclophosphamide (CFA) 

CFA was discovered in 1958 and since has been the most commonly used alkyl­
ating agent in studies of clinical and experimental cancer chemotherapy and 
immunosuppression [Friedman et aI., 1979]. Applied in doses of 50-250 mg/kg 
the compound is metabolized by hepatic microsomal enzymes and thus activated 
into its cytotoxic form. 

2.2.1.3 Experiments 

Data concerning the growth pattern of BNML in the BN rat's bone marrow 
could be derived from the following experiments that had been conducted with 
14 weeks old male BN/Bi/Rij rats. 

a) a dose-response experiment (See Chapter 2.1.1.3 and Fig. 2.2). 
b) c/onogenic lellkemic stem cell assays (LCFU-S) (See Chapter 2.1.2.4). At 

various times after i. v. inoculation with 107 BNML cells groups of five rats 
were sacrificed and the leukemic cell load in the bone marrow was determined 
in the following way. Femoral bone marrow was inoculated i. v. into recipient 
rats that were sacrificed 19 days laler. It was experimentally determined-by an 
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assay based on the one for normal hemopoietic stem cells [Lahiri et aI., 1970]­
that, on average (with an accuracy of approximately 10%), one out of evelY 500 
BNML cells present in an inoculum produces a spleen colony (seen as a white 
spot on the spleen surface). Thus, by counting the spleen colonies, the total 
number of BNML cells originally present in the donor rat's marrow can be cal­
culated. It is assumed that a femur contains 2.5 % of the total bone marrow, 
and that the BNML cells in the bone marrow are homogeneously distributed. 

To check the reproducibility of the results this experiment was repeated 
several times. Four times with and twice without the inclusion of chemotherapy 
consisting of a single i.p. bolus dose of 100 mg/kg CFA at day 13. For both 
cases median survival times were determined as well. 

c) dose-survival time bio-assay (See Chapter 2.1.2.5). This experiment 
resembles the one described under b. The recipient rat is not sacrificed for 
spleen examination, but its time of death owing to leukemia is awaited. Using 
the dose-response relationship (Eq.(2.1) from experiment a), the number of 
BNML cells originally present in the donor rat's bone marrow can be calculated 
from the median survival time (MdST) of the recipient rats. 

d) flow cytomel1y (See Chapter 2.1.2.3). Flow cytometlY measurements 
have the advantage that no recipient rats are required for the quantification of 
the number of (residual) leukemic cells in a bone marrow sample. The donor 
rat's bone marrow is incubated in suspension with a monoclonal antibody 
(MCA), RM124, that binds' to BNML cells [Martens and Hagenbeek, 1985]. 
This MCA is conjugated with fluorescein isothiocyanate (FITC) , a dye that 
emits fluorescence when excited by laser light. When the cell suspension is run 
through a flow cytometer, in this way the fluorescing cells are recognized as the 
malignant ones. This allows their quantification with respect to the total number 
of bone marrow cells. 

(Un)perturbed growth of leukemic cells in the liver and the spleen after 107 

BNML cells inoculated i.v. was monitored using the same detection methods as 
for bone marrow. Perturbation consisted of a single rapid CFA dose (100 mg/kg 
i.p.) on day 13. 

2.2.1.4 Data Analysis; Basic Growth Cm'ves 

Unperturbed Growth. A general equation that expresses the growth of a cell 
population can be written as: 

dC(t)/dt = GF(C)' C(t), (2.5) 

in which dC/dt denotes the growth rate, C(t) the population size and GF(C) the 
growth fraction. GF(C) can be regarded as the fraction of the population that 
doubles its size during time interval (t,t+dt), and includes many contributOlY 
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Fig. 2.9 Basic Growth Curves; AI exponential growth, at various doubling times, to (d); 
B) Gompertz growth, for several values of the retardation constant, A (d-'); and C) expo­
nential growth with time delay, Tid) 
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factors like natural cell loss and tumor environment. If the growth fraction as 
fll11ction of the population size is known, then Eq,(2.5) can be solved, yielding 
an analytical expression for the development of the population size with time t. 

Plotting the LCFU-S datapoints on semi-log paper reveals that unperturbed 
growth is characterized by an exponential phase (constant population doubling 
time) followed by a plateau phase (constant population size), This growth might 
be empirically best described by either a contiguous exponential and Gompertz 
curve, or by a Gompertz curve alone [Hanson and Tier, 1982], 

In exponential phase GF(C) is a constant, ke' and so is the population 
doubling time, given by te = ln2/ke' The growth rate is directly proportional to 
the population size and increases exponentially (Fig, 2.9a), Equation(2,5) 
becomes a Gompertz curve if GF(C) decreases exponentially, i.e" 
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dCF(C)/dl = -A·CF(C). (2.6) 

The larger the retardation constant A, the faster the curve reaches a plateau 
level (Fig. 2.9b). The growth rate first increases to a maximum value, then 
decreases to zero. A state of accelerating growth also can be simulated by 
making use of a lillie delay 7: 

CF(C) = ke ' (1 - exp( -Ih)}. (2.7) 

If 7 = 0, then OF reduces to ke; if 7 > 0 and t becomes large, then the growth 
curve will tend to the original exponential curve, but shifted a distance 7 

forwards in time (Fig. 2.9c). 

Perturbed Growth. The influence of chemotherapy can be modeled by sub­
tracting a growth inhibition term, D(C,t), from Eq.(2.5). This term can be 
regarded as the cell quantity removed from the population during time increment 
dt. It depends on the therapy regimen and the tumor sensitivity, and includes 
environmental changes and augmented cell loss caused by the dI1lg. If D is large 
enough the growth rate becomes negative and the tumor regresses. It was found 
for laboratolY cell lines growing exponentially that a certain dI1lg level kills a 
fixed percentage of the population. In clinical practice, where Oompertzian 
tumor growth is rather common, medium size tumors often are the most sen­
sitive for chemotherapy. A hypothetical expression for D that agrees with these 
findings was derived by Norton and Simon [1977). In a multiplicative way D is 
proportional to the level of therapy, L(t), which comprises drug dose, route of 
administration, bioavailability and other pharmacokinetic factors; to the popula­
tion size; and to the (unperturbed) growth fraction. Thus: 

dC(/)/dt = CF(C)'C(t) - K·L(t)·CF(C)·C(/). (2.8) 

In exponential phase OF is a constant, so, for given level L(t), growth inhibition 
in Eq.(2.8) becomes proportional to C(t). In Oompertzian growth the relative 
effect of some given L is maximal for intermcdiate C, for OF· C then is largest. 
Therefore, Eq.(2.8) is potentially in accordance with clinical experience. 

Several assumptions can be made concerning the shape of the function L(t). 
Rapid administration combined with a short plasma half-time (20' [Donelli et 
aI., 1984]) of CFA allows an instantaneous dI1lg effect model, in which L(t) is 
pulse-shaped. On the other hand CFA must first be metabolized by liver micro­
somes to become an active (alkylating) compound. Secondly, prolonged pres­
ence of CFA in the bone marrow has been demonstrated (e.g., 14 % of the 
given dose still after 12 h [Houghton et aI., 1976]). Furthermore, cells show an 
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Fig. 2.10 Hypothetical functions to describe therapy level (Eq.(2.91); 1) pulse 
(instantaneous); 2) block function; 3) exponential decay; 4) 2 and 3 combined; 5) 
parabolic increase and decrease (modes 2-5: gradual drug influence models) 
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enhanced rate of death for some three days after a 3 h exposure to CFA [Pohl J, 
personal communication, 1986). So, longer lasting drug influence models also 
should be considered. For instance, the therapy level might remain constant for 
some time. In view of the nature of drug distribution processes in general 
(diffusion and possibly saturation effects) an exponentially decreasing L(t) is 
another obvious choice. Also, a combination might be adequate. Finally, the 
course of the drug level also might be well described with a parabolic increase 
and decrease. The model equations are, for subsequent modes: 
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I K'L(I) ~ H' 5(lt) jor 1"2 It, 

2 K'L(I) ~ H jor It~I~Ii' 
3 K'L(I) ~ H' exp{ -kt • (I-It) } jor 1"2 II' (2.9) 
4 K'L(I) ~ k2 ' H· exp{ -kt • (I-It) }/[k3 + H· exp{ -kt • (I-lt)}J jor 1"2 It, 

5 K'L(I) ~ H' {(It-Ii - (I-Ii) jor It~I~2'lf - II' 

where It is time of drug administration, 5(~) is the unit pulse and H, tf , k/, k2 
and k3 are positive constants (model parameters). Outside the given time 
intervals K· L(t) equals zero. The functions are shown in Fig. 2.10. Integration 
of K· L(t) over time results in an "area under the curve" (AUC) that reflects the 
intensity and/or duration of the drug influence. 

2.2.1.5 Data Analysis; Model Evaluation 

CUl've Fitting. For unperturbed growth the model equations (Eq.(2.5» were 
solved analytically, using the basic exponential and contiguous Gompertz curves. 
The time course of the population size then is given by: 

C(I) 

C(I) 

Cg ' exp{l1l2' (1-1 g)/Ie) 

Cg ·exp{ln2·[1 - exp{-A-(l-lg)}J/(A'le)} 

jor O~I~lg' 

jor 1>lg • 
(2.10) 

The model parameters are the doubling time in exponential phase, te; the tran­
sition point: time tg and population size Cg; and the retardation constant A. If 
only Gompertzian growth is concerned, then tg = O. To find the optimum 
parameter values (considered as elements of the vector l!) the curves (Eq.(2.1O» 
were fitted to the M observed datapoints Cob/ti) using a nonlinear least squares 
method. The computer algorithms for either a gradient or a grid search, starting 
from some initial estimate, were derived from [Bevington, 1969]. In minimizing 
the error function: 

(2.11) 

three weighting options were available: W = I (normal situation, equal 
weights); W = IICobs(t;) (statistical weight, favoring smaller observed values 
over larger ones); W = l/sdobs(ti) (instrumental weight, putting emphasis on the 
more accurate data by looking at the observed standard deviations). For the 
separate optimization runs each option was evaluated and the one yielding the 
best fit was maintained. 
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To simulate chemotherapy the optimum parameter values for unperturbed 
growth were substituted in Eq.(2.8). Additional parameter values related to each 
particular mode of dl1lg action, Eq.(2.9), were estimated by fitting curve: 

e(t + M) = C(t) + f.,t· (d C(t)/ II t) (2.12) 

to observed datapoints (where f.,t = 0.1 and dC/dt is given by Eq.(2.8)), using 
the same least squares routines. 

Goodness of Fit. The growth curve that results in the best fit of the observed 
data is the best model-if it does not contradict any known physical facts. As a 
criterion for the fit the residual sum of squares, SSR can be used: 

SSR = :E (lIel'J / varil, 1, ... ,M (2.13) 

where 

(2.14) 

(2.15) 

Low SSR values mean better fits. Also, especially to compare the fit of several 
curves to a same set of observations, the total correlation coefficient, TCC is a 
useful measure. As it is defined as: 

( " 2" 2 }'/' Tee = I - L., lIel'i / L., Cobs'; , (2.16) 

the closer TCC tends to I, the better the fit. 
In general, the simplest model that explains observed data adequately is to 

be preferred' to any other adequate but more complex model. The Akaike Infor­
mation Criterion, AIC, balances the goodness of fit and the model complexity 
by considering the number of observations, M; the SSR; and the number of 
model parameters, p, as follows [Akaike, 1974]: 

Ale = M·ln(SSR) + 2·p. (2.17) 

Thus, the model with the lowest AIC value is to be preferred. 

Computation. All programs were written in FORTRAN 5 and used on a DATA 
GENERAL Eclipse MV/IOOOO minicomputer. 
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Fig. 2.11 Bone marrow: Fitted growth curves and data points (with standard devia­
tions) from a single series of LCFU-S experiments; instantaneous CFA influence model 
unperturbed growth 
6: Exponential + Gompertz, TCC = 0.98895, SSR = 4.00, to = 8 .20 ± 1.88 d, 

Cg =1.24xl08 ±1.25xl08 , t,=0.83±0.31 d, A=0.19±0.23 (1/d); 
!l.: Gompertz, TCC=.98480, SSR=4.70, to=O.O d, Cg =3.07Xl03 ±3.03xl03, 

t, = 0.30 ± 0.03 d, A = 0.15 ± 0.02 (l/d1; 
CFA treated 
J;;: TCC<O.OOOOl, SSR=5.30, 5.5 LCK, regrowth as6; 
Q: TCC<O.OOOOl, SSR=5.30, 7.4 LCK (correction for MdST). regrowth asA; 
!C: Exponential+Gompertz, TCC=0.98367, SSR=4.06, 7.36 LCK, tg =24.85±1.27 d, 

Co = 1.45xl07 ± 1.37xl07, t,=0.67 ±0.32 d, A=0.34±0.21 (1/d); 
E: TCC =0.98367, SSR =4.05, as!C, 4.5 d time delay to correct for 5.5 LCK 
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Test Data. To test the least squares optimization routines' performance with 
respect to the reliability of the resulting parameler values two sets of test data 
were created. Twelve points, equidistant in the range 3-25 d, and seven non-
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equidistant points, were calculated from Eq.(2.10), using te = 0.75 d, tg = 8.5 
d, Cg = 0.2x109 and A = 0.45 d· l . Reconstruction of the original curve from 
these sets was attempted, starting with initial parameter estimates both 10 % 
above and below true values. Good fits were obtained (TCC > 0.9999). Some 
starting point dependency was observed. Parameter uncertainty (the estimated 
standard deviations can be rather large) decreases slightly with increasing 
number of observations. The optimum estimates for te and tg as returned by the 
routines tend to their (me values, larger relative deviations occur in Cg (10 %) 
and, to lesser extent, in A (5 %). 

2.2.2 RESULTS AND DISCUSSION 

The observations in the bone marrow pertaining to a single set of LCFU-S 
experiments were taken first to find the best descriptive model for unperturbed 
growth. Next, using this model, the various functions describing drug influence 
were evaluated. The resulting best fitting models for growth and regrowth were 
subsequently examined with respect to the datapoints from all LCFU-S experi­
ments taken together. The results are presented below. 

2.2.2.1 Single LCFU-S Dataset 

Unperturbed Growth of BNML in Bone Marrow. The datapoints were fitted 
with an exponential and contiguous Gompcrtz curve (EG), and a Gompertz 
curve alone (G). The results are shown in Fig. 2.11, curves A and E, respec­
tively. The EG curve yields the best fit in terms of TCC and SSR. The popula­
tion starts with 1.3xloS cells (1.3 % of inoculum) and at time of death (day 22) 
has grown to 7.3xl09 (18.3 % of overall BNML burden at death). The G curve 
starts with very few cells (0.03 % of dose), and, though this model also fits the 
data, a main (biological) argument that can be raised against its validity is that 
the initial popUlation doubling time amounts to 7.2 h, whereas the cell cycle 
time is almost twice as large (14 h according to previous autoradiography 
experiments). Being too fast in early phase, this model is not further considered. 

Perturhed Growth; Instantaneous Drug Influence Model. First two simula­
tions were performed, based on the assumption that after instantaneous size 
reduction the population will regrow in a way identical with the unperturbed 
pattern. 

CFA treatment at day 13 prolongs the rats' life by 22 days (MdST = 44 d 
instead of 22 d). According to the experimentally established dose response 
(Eq.(2.1»-i.e., evelY 4 d increase in lifespan means a factor of 10 reduction in 
cell number-this should correspond to a leukemic cell load reduction of 5.5 
decades (= 22/4), or 5.5 log cell kill (LCK). In other words, at day 13 the cell 
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population drops from 1.7xl09 to S.5xI03. Subsequent regrowth identical with 
growth (curve C, Fig. 2.11) results in an expected MdST = 3S.S d. 

To match expected and observed MdST a second simulation shifts the 
growth curve (D) to the right. This, however, necessitates 7.4 LCK, which is 
rather large. Furthermore, neither simulation fits the observed datapoints. 

Abandoning the "regrowth equals growth" hypothesis an EG curve fitted to 
the data (E, Fig. 2.11) proves much better although 7.4 LCK is found here too. 
By allowing a time delay, 7 = 4.5 d in early exponential phase this value can be 
reset to 5.5 (curve F), without improving the goodness of fit. In this model 
regrowth after chemotherapy is faster than unperturbed growth, the plateau 
phase is reached sooner and death occurs for fewer BNML cells. 

Perturbed Growth: Gradual Drug Influence Models. The hypothetical func­
tions that describe gradual dmg influence (Fig. 2.10, modes 2 through 5) were 
tested by fitting them to the observed datapoints, using the unperturbed EG 
curve as basis. For each mode the best fits are shown in Fig. 2.12, in sequence 
curves G, H, I, J. Mode 2, constant therapy level for some time, is the least 
satisfactory. The other modes do not differ velY much in goodness of fit. The 
TCC, SSR and AIC criteria appear to be not quite unanimous. 

For intermediate ccll numbers all curves lie rather to the right of the 
observations. Also, the predicted MdST lies beyond the observed value, unless 
death occurs at a somewhat lower malignant cell load after treatment than after 
unperturbed growth. By modifying the growth equation (Eq.(2.S» improvement 
(left shift) can be achieved: gradual dn.g influence is modeled with therapy 
level, K·L(t), according to mode 4, but the GF factor is omitted in the second 
right-hand term and it is made a function of C times a positive constant F, 
F > 1, in the first term on the right: 

dC(f)ldf = GF(F' C), C(l) - K'L(f)' cef). (2.IS) 

Thus, by the former modification, a given thcrapy level L(t) causes cell loss 
proportional to the population size C(t) (constant percentage kill). The biological 
meaning of the latter modification is not yet clear: after therapy the GF at a 
certain population size equals the GF of an F times larger unperturbed popula­
tion. In other words, therapy makes the transition to Gompertzian growth occur 
sooner, and the plateau phase level lower. Curve K in Fig. 2.12 shows the best 
fit of the last model to the datapoints. 

2.2.2.2 All LCFU-S Datasets Combined 

The procedure as described above was repeated with all datapoints acquired 
from several similar experiments, whose purpose was the confirmation of the 
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Fig. 2.12 Bone marrow: Fitted growth curves and data points (with standard devia-
tions) from a single series of LCFU-S experiments; gradual CFA influence models 
unperturbed growth 
6.: see Fig. 2.11; 
CFA treated 
11.: TCC=0.95844, SSR=6.53, K·L(t)=5.74, 13<t<16.7, AUC=21.2; 
!:!: TCC=0.99335, SSR=6.34, K,L(T)=8.58·exp{-OA·(1-13)), AUC=21A; 
1: TCC=0.99333, SSR=6.57, 

K· L(t) =8.61 '15 ·exp{-1.2· (1-13))/1{1 + 15 ·exp{-1.2· (1-13)JI' AUC = 19.9; 
4: TCC=0.99327, SSR=6.12, K.L(I)=8.{(13-14.2)2_(1-14.2) ), AUC=16.1; 
15;: TCC=0.99733, SSR=4.90, Eq.(2.13), F=10.02, max 5.8 LCK al day 16.5, 

K· L(t) = 5.12'86.01 • exp{-1.6· (t-13))/[1.5 +86.01 ·exp{-1.6· (1-13))1. AUC = 13.0 
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slope of the growth curve in exponential phase and of the level of the plateau 
phase. The different datasets (Fig. 2.13) show some shift along the time axis, 
probably owing to variance in the inoculation circumstances. As development of 
leukemic cells in the spleen and bone marrow is likely to correlate independent 
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Fig. 2.13 Bone marrow: Fitted growth curves and data points (with their standard 
deviations) from all series of LCFU-S experiments 
unperturbed growth 
b: Expanential+Gampertz, TCC~0.88075, SSR~22.1, tg~8.60±3.35 d, 

Cg~1.82xl08±3.76xl08, t,~0.78±0.40 d, A~0.44±0.30 (lId); 
CFA treated, instantaneous model 
M: Exponential + Gampertz, TCC - 0.85023 (overall: 0.88030), SSR ~ 7.82 (overall: 

29.8),6.03 LCK, tg~27.40±5.90 d, Cg~2.70xl07±5.90Xl07, t,~0.97±0.53 d, 
A~0.23±0.54 (lid); 

1'!: TCC ~0.85023 (0.88030), SSR ~ 7.82 (29.8), as M, time delay T ~ 1.7 d to correct 
for 5.5 LCK; 

CFA treated, gradual model 
Q: TCC ~ 0.84915 (0.88028), SSR ~ 7.99 (21.4), Eq.(2.14), F ~ 4.39, 

K' L(t) ~4. 78·86.02 ·exp{-1.6' (t-13)}/11.5 +86.02' exp{-1.6' (t-13)}1. AUC ~ 12.2 
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on inoculum size, using spleen weight as reference in future experiments, rather 
than absolute time, may result in better reproducibility. 

In exponential phase the EG curve that fits the joined unperturbed data best 
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(Fig. 2.13, curve L) does not differ much in slope, nor in predicted day zero 
population size, from the best single dataset fit. A difference exists in the 
plateau phases, which now attains a lower level with 1.3x 109 BNML cells in the 
marrow at death (3 % of total burden). 

Chemotherapy again is modeled as an instantaneous or a gradual event. In 
the former case, by fitting a EO curve to the perturbed datapoints, 6.0 LCK 
results at day 13. Introducing a time delay, 7 = 1.72 days in the initial expo­
nential phase allows the size reduction to stop at a 5.5 LCK value, again without 
effect on the goodness of fit (Fig. 2.13, curves M and N). 

The necessity for the time delay is not immediately apparent from the shown 
data. The 5.5 value is based on the observed delay in MdST after therapy and 
thus concerns what happens on average in the total animal. It might be possible 
that the dI1Ig effect is larger in the bone marrow, and accordingly smaller in, 
say, the liver (an organ that by nature better copes with toxic compounds). On 
the other hand preliminary data from numing experiments with both chcmo- and 
radiotherapy combined suggest that the LCK cannot be this large, otherwise 
many more 'cures' should have been seen. 

In contrast to the single dataset case, regrowth after therapy here appears to 
be slower (te = 0.97 d) than unperturbed growth (te = 0.78 d). Though the 
standard deviations of the observations are rather large, the difference in 
doubling time therefore not velY significant, this phenomenon would agree with 
the reported greater CFA sensitivity of rapidly proliferating cells [Dewys, 
1972]. It would imply that the BNML cells are heterogeneous with respect to 
cell cycle time, faster cycling cells preferably being killed. This hypothesis may 
be tested by reinoculating rats with BNML cells that have survived CFA 
treatment, and see whether the growth kinetics differ from the growth pattern of 
non-treated cells. If not, another hypothesis is that cellular growth properties 
themselves remain constant, but greatcr cell loss occurs in the treated rat 
because some natural defense mechanism (immunology?) has had time to 
develop. CFA intluence on the tumor environment also may play some role. 

To model gradual drug intluence, mode 4 therapy level was chosen in 
combination with the modified growth equation (Eq.(2.18». The resulting curve 
(Fig. 2.13, 0) fits the data only slightly poorer than the instantaneous model 
(curve N). The difference in goodness of fit is evcn smaller for the whole 
curves (fit to both perturbed and unperturbed data). 

Table 2-2 summarizes again all curves that, in their categOlY, fitted the 
LCFU-S in bone marrow data best. It shows the values of the goodness of fit 
criteria. 

2.2.2.3 The Dose-Sul'vival Bio-assay and Flow Cytometl'Y Data 

The dose-survival bio-assay experiments were conducted to yicld more informa-
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TABLE 2-2 GOODNESS OF FIT CRITERIA OF CURVES FITTED TO LCFU-S 
DATAPOINTS (BONE MARROW) 

See Figs. 2.11 through 2.13; 

EG: exponential + Gompertz; EGT: exponential + Gompertz + time delay; 
In: instantaneous drug effect; Gr: gradual drug effect; mode numbers: see 
Eq.(2.9) (mode 4a: Eq.(2.18)); 
TCC: total correlation coefficient (Eq.(2.16)); SSR: sum of squared residuals 
(Eq.(2.13)); AIC: Akaike's Information Criterion (Eq.(2.17)) 

curve type drug mode nr of nr of 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
o 

L+M 
L+N 
L+O 

EG 
G 
EG 
EG 
EG 
EGT 
EG 
EG 
EG 
EG 
EG 
EG 
EG 
EGT 
EG 
EG 
EGT 
EG 

In, 1 
In, 1 
In, 1 
In, 1 
Gr,2 
Gr,3 
Gr,4 
Gr,5 
Gr,4a 

In, 1 
In, 1 
Gr,4a 
In, 1 
In, 1 
Gr,4a 

parameters data points 

4 
4 
5 
5 
4 
5 
6 
6 
8 
6 
9 
4 
4 
5 
9 
8 
9 
9 

6 
6 
5 
5 
5 
5 
5 
5 
5 
5 
5 

25 
7 
7 
7 

32 
32 
32 

TCC 

0.98895 
0.98480 
<0.00001 
<0.00001 
0.98367 
0.98367 
0.95844 
0.99335 
0.99333 
0.99327 
0.99733 
0.88075 
0.85023 
0.85023 
0.84915 
0.88030 
0.88030 
0.88028 

SSR 

4.00 
4.70 
5.30 
5.30 
4.06 
4.05 
6.53 
6.34 
6.57 
6.12 
4.90 

22.10 
7.82 
7.82 
7.99 

29.80 
29.80 
21.40 

AIC 

16.32 
17.28 
18.34 
18.34 
15.00 
16.99 
21.38 
21.23 
25.41 
21.05 
25.95 
85.39 
22.40 
24.40 
32.55 

124.62 
126.62 
116.03 

tion on the residual malignant cell load just after therapy. As the method is able 
to detect BNML cells at lower frequencies compared with the LCFU-S assay a 
convincing justification for introducing a time delay might be found. However, 
the results, also plotted in Fig. 2.13, show a very steep descent of the growth 
curve, suggesting an instantaneous rather than gradual chemotherapy effect. The 
reduction in population size is high (7 LCK) and, in contrast with the LCFU-S 
data, subsequent regrowth is very fast. Too fast in fact to be explained by 
proliferation of the surviving BNML cells alone; the population doubling time of 
12 h is less than the cell cycle time (14 h). Besides, it disagrees with the 
expected CFA effects of enhanced death and greater kill of cells with short cycle 
times. An explanation might be a BNML cell repopulation by migration from 
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Fig. 2.14 The inverse of Fig.2.1: Inoculated BNML cell population size related to 
median survival time (MdST); A) linear regression of the datapoints (0) yields Eq.(2.1). 
For some high MdST value a larger BNML load is found if: B) the true relationship 
deviates from the extrapolated regression line A); or C) another (linear) relationship is 
valid in the post-treatment situation 
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other organs like liver and spleen. Therefore, the BNML growth kinetics in 
those organs must be examined first. 

The discrepancy, however, between the LCFU-S and bio-assay data remains 
to be explained. The results of the flow cytometry measurements seem to 
confirm the LCFU-S data (Fig. 2.13). Of course, they are available only in the 
region of relatively large population sizes. Still, two of the three independent 
experimental methods yielding comparable results, this throws doubt on the 
survival time bio-assay data. 

Perhaps the straight line relationship between. MdST and the log of the 
inoculated cell dose has been extrapolated too far. That might make that the cell 
doses calculated for large MdSTs are underestimated (Fig. 2.14). Another 
explanation for the bio-assay data being so unexpectedly far below the LCFU-S 
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TABLE 2-3 UNPERTURBED GROWTH CURVE PARAMETER VALUES (EQ. 2.10) 

liver 
spleen 
bone marrow 

te (d) 

0.8467 
0.8120 
0.7854 

tg (d) 

13.308 
11.900 
8.605 

Cg x 108 

14.84 
4.91 
1.82 

A (d· l ) 

0.3369 
0.7294 
0.4394 

Fig. 2.15 A) BNML growth curve for bone marrow, as in Fig. 2.13. More data points 
(6.-6. microscopy counts, 0_0 flow cytometry, 0-0 LCFU-S assay, e-o survival time bio­
assay) and exponential increase of population doubling time are shown; B) Fitted curves 
for unperturbed growth of BNML cells in liver (short dash)' spleen (long dash) and bone 
marrow (dash-dot) after inoculation of 107 BNML cells i.v. on day zero. Total population 
growth (solid line) is estimated by addin~ the organ values at each time point. On day 
zero the population starts with 1.5 x 10 proliferating cells. This is abo'ut half the number 
of iniected ED50 units (of 25 cells each; see Chapter 6.3) 
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results is, that the mentioned dose-response relationship may not hold tlUe for 
the CFA-treated animals. Using this relationship when the actual (CFA-treated) 
BNML cell popUlation grows at a slower rate, also yields an underestimation of 
the cell population size (Fig. 2.14). This last explanation is supported by the fact 
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that it implies that for low MdSTs the calculated cell population sizes should be 
overestimations, as compared to the measured LCFU-S data. This indeed 
appears to be the case. 

2.2.2.4 lin perturbed BNML Growth in Liver and Spleen 

Parameters of the unperturbed growth curves (Eq. 2.10) for liver and spleen 
were determined by fitting the respective observed datapoints. Results are listed 
in Table 2-3. The fitted curves are shown in Fig. 2.15. The variation in doub­
ling time during exponential phase is not large; in bone marrow the population 
grows faster than in the liver. Transition to Gompertz phase occurs first in bone 
marrow, perhaps due to the more rigid spatial confinement in this organ, then in 
the spleen and last in the liver. In the spleen the plateau phase is reached 
relatively soon after the transition, the retardation constant A being much larger 
in this organ as compared to the other organs. The increase in population size 
continues longest in the liver. 

Neglecting growth in other organs, the total population growth is determined 
by adding the numbers of BNML cells in liver, spleen and bone marrow for 
each time point. The total BNML cell population tends to grow to a plateau 
level of 1.98XIOlO cells, the contributions of liver, spleen and bone marrow 
being 1.68 X IOlO, 1.58 X 109 and 1.36 X 109 cells, respectively. The initial size 
of the population that starts growing on day zero appears to amount to about 
only 1.4 % of the inoculum. 

2.2.2.5 In Conclusion it can be said that unperturbed growth of the BNML 
population in the BN rat bone marrow, initiated by i. v. inoculation of BNML 
cells, is characterized by an exponential phase followed by a Gompertzian 
phase. This is also true for unperturbed growth in liver and spleen. Different 
parameter values apply for the different organs. Only a very small fraction of 
the inoculated cells grows out. 

In the bone marrow, the effect of a single high dose of CFA is an instan­
taneous reduction in population size of some 6 decades (logs), after which a 
similar regrowth pattern follows. The regrowth rate after treatment may be 
slightly lower. The necessity of introducing a time delay during initial residual 
disease, or just the opposite, i.e., modeling cell import from elsewhere, has not 
yet clearly been demonstrated. Explanations for the discrepancy between the 
LCFU-S and bio-assay data must still be verified as well. 
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2.3 Cell Cycle Specificity of AMSA? (A Simulation Study)1 

Within the framework of a larger study [Hagenbeek and Martens, 1986] a series 
of ill vivo experiments involved testing the leukemic cell kill capability of the 
cytostatic drug AMSA (acridinyl anisidide). The drug, which intercalates into 
DNA [Jehn and Heinemann, 1991] and is nowadays clinically applied for rein­
duction of remission in acute non lymphoblastic leukemia [Freund et aI., 1991; 
Miller et aI., 1991], was given either as a one-time dose or in a fractional way. 
The survival of the leukemic cells was measured some time later. The apparent 
non-constancy of the cell kill pattern in the case of fractionation gave reason to 
suspect that cell cycle phase specificity possibly plays a role. In other words, the 
drug may preferentially kill cells when they are at a certain stage on their 
maturation pathway. The present simulation study investigates this hypothesis. 

2.3.1 METHODS 

2.3.1.1 The Rat Leukemia Model (BNML) (See Chapter 1.9.2) 

Some time ago a myelocytic leukemia (BNML) was developed that is trans­
plantable in the Brown Norway (BN) rat by cellular transfer. Its characteristics 
and those of human acute n)yeloid leukemia (AML) are similar to the extent that 
the former disease can be considered a very relevant laboratOly model for the 
latter. It is, for example, velY useful for evaluating chemotherapy regimens. 

2.3.1.2 Experimental Animals (See Chapter I. 9.1) 

The experiments were conducted with male BN rats (Rijswijk inbred strain). 
Age varied between 13 and 16 weeks (240 g mean body weight). 

Leukemia was induced by i. v. inoculation of 107 viable BNML cells on day 
zero. It was either allowed to develop without interference, yielding the death of 
the animals on day 22 (median), or drug therapy was given, starting on day 13. 

2.3.1.3 LCFU-S Assay (See Chapter 2.1.2.4) 

The leukemic clonogenic cell assay is based on the fact that injecting graded 
numbers of leukemic cells hito 'normal BN rats results in macroscopically visible 

IChapter 2.3 has also been published as: 
Schultz FW, Martens ACM and Hagenbeek A (1991) Simulation studies on the cell cycle phase 
specificity of the cytostatic drug AMSA. In: Vichnevetsky R. Miller JJH (eds) IMACS'91, 
Proceedings of the 13th JMACS World Congress on Scientific Computation, 1991; Vo1.3, 
Modelling and Simulation of Biomedical Systems, pp 1456·1457 
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cell colonies on the spleen surface some 19-20 days later. This relationship can 
be exploited reversedly. As each colony is assumed to be initiated by a single 
clonogenic leukemic cell, counting the number of colonies is a measure of the 
(unknown) number of clonogenic leukemic cells contained in and injected with, 
for instance, a bone marrow sample. 

2.3.1.4 Unperturbed Leukemia Growth 

The unperturbed growth of the BNML cell population in femoral marrow has 
been analyzed before (Chapter 2.2 and [Schultz et aI., 1987]). Assuming that the 
femoral marrow is representative for total bone marrow, the development of 
BNML after transfer of 107 viable cells can be characterized by an exponential 
phase (constant population doubling time, Td = 0.78 d) until the number of 
1.82xl08 cells has been reached on day 8.6, followed by a Gompertz phase 
during which the doubling time increases (retardation constant, A = 0.44 dol) 
and the popUlation grows to a plateau level of 1.36xlo'l cells. 

Knowing the growth curve parameters, the number of cells in the population 
at any time can be calculated. 

2.3.1.5 AMSA Administration 

AMSA (acridinyl anisidide; Bristol Myers Co., New York) was administered 
i. v. as either a single 20 mg/kg dose on day 13 or as single doses of 5 mg/kg on 
four consecutive days (13,14,15 and 16). See Fig. 2.16. 

2.3.1.6 Log Cell Kill (LCK) 

Based on his observations Skipper [1986a] formulated the now generally 
accepted "log cell kill principle". It says that a certain drug dose always kills a 
same fraction rather than a same number of cells. Thus, a dose causing U LCK 
reduces a popUlation of C cells to C'IO-u cells. This is assumed to happen 
instantaneously in the case of a rapid i. v. injection. 

2.3.1.7 Surviving Fraction 

This variable is the ratio of the number of BNML cells found in an animal at a 
certain time after a treatment and the number of BNML cells found simul­
taneously in a similar animal that was not subjected to that treatment. 

At present such cell numbers, and the surviving fraction, in the rat's 
femoral marrow were always assessed one day after each drug dose [Hagenbeek 
and Martens, 1986]. By considering (exponential) regrowth during the day after 
the drug dose while knowing how the leukemic cell population would have de-
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Fig. 2.16 Scheme of the AMSA Administration Regimens 
(with definitions of surviving fraction and log cell kill) 

EXPERIMENTAL SET-UP 

induction: 

107 BNML 

cells i. v. 

AMSA 

1 x 20 mg/kg, or 

4 x 5 mg/kg Iq24h) 

o 13141516 

Treatment 

Control 

day 

n = 4 rats per group 

at 24 h after each drug dose, for bone marrow: 

LCFU-S assay => number of leukemic cells IL) 

CFU-S assay => number of stem cells IS) 

Surviving Fraction: SF = Ltreatment/Lcontroll Streatment/Scontrol 

Log Cell Kill: LCK = _lOlog ISF) 

veloped without treatment, the cell number ratio on the treatment day itself 
could be calculated and, subsequently, the LCK factor caused by the drug dose. 

2.3.1.8 Leukemia Regrowth 

It is assumed that BNML regrowth after d11lg therapy is not significantly 
different from the unperturbed growth pattern. 

2.3.1.9 Mathematical Model for Simulating Leukemia (Re)Growth and 
Leukemic Cell Kill 

Proliferating cells move through fOllI: phases that make up the cell cycle (Fig. 
1.6). A newborn cell starts in phase G,. When it duplicates its DNA it is in 
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phase S, after which it arrives in phase 02' To complete the cycle, cell division 
takes place in phase M. Ideally, the cycle lasts a certain time, Te, and each cell 
produces two daughters. This would yield exponential growth with (minimum) 
doubling time T d = Te' 

The distribution of cell ages, between 0 and Tc' also would be exponential 
[Matthews, 1988], with twice as many new 01 cells as late M cells. In practice, 
cell cycle times are distributed. This can be expressed as B (I 5 B 5 2) 
daughter cells per cell being born in Tc' or in the growth fraction, OF = B-1 
[Steel, 1977]. Furthermore, cells may die, assumably anywhere during the 
cycle. The relative difference between the rate of cell production and the 
population's growth rate is expressed in the cell loss factor, <P [Steel, 1977; 
Schultz and Hagenbeek, 1991]. 

In the mathematical model (Fig. 1.7) the cell cycle is divided into 50 age 
compartments of 0.02xTe duration each. The 0l-phase comprises the first 3 
compartments and compartments 4-38, 39-48 and 49-50 represent the S-, 02-
and M-phases, respectively. The number of compartments selected for each 
phase corresponds with the BNML phase durations, as established before 
[Martens et aI., 1990]: 0.8, 10, 2.7 and 0.5 h for 01' S, 02 and M, respec­
tively. The total cycle time amounts to Tc = 14 h. 

First, the cells of the unperturbed day I3 population are put into the age 
compartments. This is done according to the theoretical distribution [Matthews, 
1988] although growth on day 13 is no longer truly exponential. Then, a drug 
sensitive region is chosen, e.g., all S-phase compartments or only compartments 
corresponding to early, late or mid S, or to 01 and 02' or to 02 and M, etc. 
Drug action is represented by deleting a fraction of the cells in each compart­
ment (U LCK, where U is chosen from the range 0-3), and on top of this, by 
deleting a second fraction of the cells in the selected drug sensitive compart­
ments only (I{ LCK, where V is chosen between 0 and 8). 

Next, the remaining cells are moved from one compartment to the next with 
each time increment of 0.02xTc' Before moving the cells from the last com­
partment to the first one, a fraction P2 is deleted and of the remainder a fraction 
PI is duplicated. It has been shown before [Schultz and Hagenbeek, 1991; also 
see Appendix B] that OF and <P can be expressed in terms of PI and P2 and vice 
versa. So, either OF and <P or PI and P2 determine, together with Tc' the 
dynamic behavior of the cell population. It was shown as well, that this model 
can be used to describe exponential and Oompertz growth by keeping P2 con­
stant while varying PI linearly with the total population size. In exponential 
phase, however, PI is nearly constant. For the considered phase of exponential 
BNML regrowth the value of OF is estimated to be 80%. Then, given that Tc = 

14 hand Td = 0.78 d, it follows that <P = 12.4%. This, in turn, yields PI = 
0.8 and P2 = 0.07. 

After letting the cells progress in this way for a simulated 24 h, the next 
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TABLE 2-4 CALCULATION OF THE LOG CELL KILL (LCK) FACTOR 

time nr. of BNML surviving nr, of cells surviving LCK5 

(d) cells; no fraction, on day T + 1, on day T 
treatment 1 day T + 12 (obs.)3 (calc.)4 

13 
dose: 1x 10 mg/kg i.v. 

1.0x109 1.9x104 4.73 
14 1.lx109 4.1x10-5 4.6x104 

dose: 4x 5 mg/kg i.v. 
13 1.0x109 1.6x106 2.60 
14 1.lx109 5.5x10-3 6.2x106 1.2x106 0.70 
15 1 .2x1 09 2.5 10.3 3.0x106 1.6x105 1.26 
16 1.3x109 3.2x10-4 4.0x105 1.4x103 2.46 
17 1.3x109 2.7xlO-4 3.5x103 

1. from fitted growth curve: unperturbed growth in bone marrow after 107 

BNML cells i. v. on day 0 [Schultz et aI., 1987J 
2. observed (LCFU-S assays [Hagenbeek and Martens, 1986]); T ~ treatment 

time 
3. from 1. and 2. 
4. calculated from 3., assuming one day of exponential regrowth with doubling 

time T d ~ 0.78 d 
5. -Iog(nr. of cells after/nr. of cells before treatment); variation of about 0.2 in 

LCK results from variation (SO) in observed surviving fraction (see 2.) 

drug dose is given, again causing U and V LCK. The procedure is repeated 
until the last drug dose has been given. 

Since track is being kept of the numbers of cells in each compartment, the 
total population size is known at every moment. The overall size reduction due 
to each drug dose, or LCKeffective' can be calculated and compared to the LCK 
pattern derived from experiment. If identical patterns are found, the correspond­
ing U and V values and any specific dl1lg sensitive regions of the cell cycle will 
have been identified. 

2,3.1.10 Software 

Computer code for the simulation runs with the above mentioned model was 
written in TurboPascal 3.2 and implemented on a PC (IBM-XT compatible). 

2.3.2 RESULTS 

Calculated LCK values for the dose of 20 mg/kg and for each dose of 5 mg/kg 
are derived in Table 2-4. Figure 2.17 shows the corresponding (re)growth 
curves. Simulation runs with the model were not successful in reproducing the 
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Fig. 2.17 Leukemia Development in Bone Marrow and AMSA Treatment 
dotted curve: unperturbed growth (Schultz et al" 1987J 
dashed curve: 1x20 mg/kg AMSA, day 13 (4.73 LCK) 
solid curve: 4x5 mg/kg AMSA, days 13 (2.60 LCK), 14 (0.70)' 15 (1.26) and 16 (2.46) 
AMSA curves are based on LCFU-S survival data points .(open circles, SO indicated 
(Hagenbeek and Martens, 198B}); regrowth identical with unperturbed growth; instan­
taneous drug action 
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observed LCK pattern. As example, for selected values of U and V, Fig. 2.18 
illustrates a few results for the case of various fractions of S cells (early, late, 
all) being extra vulnerable to AMSA. None of the patterns agrees with the ob­
served LCK sequence, Figure 2.19 shows the age distributions of the cells on 
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Fig. 2.18 Simulations of BNML Cell Kill 14x5 mg/kg AMSA) 
dotted curve: unperturbed growth fSchultz et aI., 1987) 
short-dashed: U~0.5 LCK + for all S cells V~2.5 LCK lage cmpts 4-38) yields 

1.08, 1.62, 2.75, 2.40 LCKeff 
long-dashed: U ~ 0.5 LCK + for early S cells V ~ 4.0 LCK lage cmpts 4-22) yields 

0.76,0.80, 1.23, 3.72 LCKeff 
solid curve: U ~ 1.0 LCK + for late S cells V ~ 2.0 LCK lage cmpts 22-38) yields 

1.16,1.21,1.59,2.21 LCKeff 
from experiment: 2.60,0.70, 1.26, 2.46 LCK. ff 
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consecutive days, just before and after treatment, for the case of late S cells 
being sensitive. The effect of the drug dose on cells of the various ages as well 
as the effect of a day's regrowth can be seen, Figure 2.20 compares the ob-
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Fig. 2.19 Age distributions of the BNML cell population on consecutive days just 
before (-I and just after (+) the dose of 5 mg/kg AMSA. Each dose causes U = 1 LCK in 
all compartments and an extra V:::: 2 LCK in compartments 22-38 (late S) 
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Fig. 2.20 Comparison of LCK effect of 4 doses of AMSA (5 mg/kg) for several 
combinations of U and V and either late S-cells or G1 and G2 cells being sensitive to the 
drug 
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_ Obs c:=J U=.5 ~ U= 1 [:2] U= 1 ~ U=2 

V=4 V=2 V=5 V=1. 5 
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served LCK pattern to those obtained by several simulations using various U 
and V values, for the case that either late S cells or G j and G2 cells are drng 
sensitive. Again, no agreement is seen. 

2.3.3 DISCUSSION 

Effective LCK values for each dose of AMSA were calculated from observed 
surviving fractions, assuming that a) a previously found relationship between 
time and the size of an unperturbed BNML cell population in bone marrow 
holds tme, b) the drug causes an instantaneous reduction in BNML cell popula­
tion size, and c) the regrowth pattern after a dmg dose is similar to that of 
unperhll'bed growth. In Fig. 2.17 it can be seen that under those circumstances 
three daily doses of 5 mg/kg are about as effective in killing BNML cells as the 
single 20 mg/kg dose. Thus, fractionation yields a 25 % dose reduction for equal 
cell kill. 

Striking, the LCK caused by the small drug dose is not constant. This seems 
to contradict Skipper's hypothesis. The first 5 mg/kg has much effect: the LCK 
is about half the LCK due to the 4x larger 20 mg/kg dose. The 2nd, 3d and 4th 
5 mg/kg correspond to LCKs that are about 27 %, 48 % and 95 % of the first 
LCK value, respectively. If the LCK would have continuously decreased the 
development of AMSA resistance might have been an explanation. The present 
decrease-increase pattern sooner suggests some cell cycle phase specific action 
of the dmg. Especially when considering that the dosage interval (24 h) is 
almost as long as the population doubling time (Td = 19 h) and twice as long as 
the cell cycle time (Tc = 14 h; Fig. 2.21). Therefore, the first dose (with large 
LCK) may have had a synchronizing effect, i.e., cells at sensitive stages of the 
cycle are killed by preference and cells in other positions are killed much less. 
Two cycle times later the majority of the surviving cells will have rehlrned to 
their original insensitive positions. When now the second drug dose is given, it 
will obviously exert much less effect. Because the drug schedule and the cycle 
time are not perfectly in concert, and some cells cycle faster than others, desyn­
chronization will occur and the original killing potential of the drug dose again 
becomes manifest later. 

Furthermore, some experimental evidence has become available recently, 
that an AMSA derivative, amsacrine (m-AMSA), specifically kills promyelocy­
tic leukemia cells in S-phase [Hotz et aI., 1992; Gorczyca et aI., 1993) and 
causes arrest in G2-phase [Del Bino et aI., 1991; Rius et aI., 1991). 

Indeed it was demonstrated with the model, designed to test this hypothesis, 
that, in principle, non-constancy of the LCK by subsequent equal drug doses can 
be attributed to cell cycle phase specificity. However, results from systematical­
ly performed computer simulations show, in general, an increasing LCK pattern. 
The actually observed LCK pattern for AMSA could not be reproduced. 
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Fig. 2.21 Comparison of sequence of treatment times, T, (24 h intervall to cell cycle 
time, T, (14 h) and cell population doubling time, Td (19 h in exponential growth phase) 
of BNML 
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Consequently, no cell cycle phases were identified as morc sensitive to AMSA 
than others. 

A weakness of the model is that no exact data is available on the regrowth 
doubling time, the initial age distribution, and the PI,P2 values. Evaluation of 
how the varying of these parameters influences the simulation results should be 
a next step. 
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2.4 Drug Resistance 

This chapter will deal with various aspects of dl1lg resistance. An overview of 
relevant literature about investigations on (multiple) dl1lg resistance in cancer 
chemotherapy is given first. Then, the development of drug resistant sublines 
from the BNML cell population is discussed. These subpopulations, either in 
pure form or to a variable extent diluted with the sensitive parent BNML cell 
line, can be used for ill vivo experiments on cell kinetics of leukemia growth 
and response to chemotherapy. Finally, resistance to the cytostatic dl1lg cyclo­
phosphamide (CFA) is mathematically modeled and the implications of the 
model are investigated. 

2.4.1 SUMMARY OF RELEVANT LITERATURE 

2.4.1.1 Evidence for Development of Drug Resistance 

It is generally recognized that there is a degradation of the cell kill potential of a 
certain dose of a cytostatic drug when treatment is given at later stages in the 
development of a cancer. From experience with experimental cancer chemo­
therapy between 1955 and 1975 it appears that the neoplastic cell burden is 
inversely related to curability by any drug or combination of drugs [Skipper, 
1986a]. The total tumor burden that still is curable, varies widely though, 
depending on the type of neoplasm and the chosen treatment regimen. For 
example, the apparently less effective result of identical treatment on larger 
sized human tumors was secn in choriocarcinoma [Goldstein, 1975], multiple 
myeloma [Sullivan and Salmon, 1972] and chronic lymphocytic leukemia [Rai et 
aI., 1975]. The cause, as hypothesized already by DeVita [1983], may be found 
in the direct relationship between the neoplastic cell burden and the probability 
of the presence of permanently dl1lg resistant cells. 

For most anticancer drugs a given dose always kills a constant fraction 
rather than a constant number of cells (log cell kill concept; [Skipper et aI., 
1964; Wilcox, 1966]). This concept has been accepted by many. Hlyniuk and 
Bush [1984] showed that there is a direct relationship between the observed 
temporary response rate of advanced breast cancer and the average relative dose 
of the individual dl1lgs in combinations. Norton and Simon [1986], however, 
pointed out that, while the log cell kill concept implies that larger tumors should 
regress fastest, as a clinical observation intermediately sized tumors respond best 
to chemotherapy. This might be explained by the presence of genetically stable 
biochemical dl1lg resistance in larger tumors. But another explanation is based 
on kinetic grounds, assuming that the cell kill might be affected by the growth 
fraction (Norton/Simon hypothesis, i.e., only proliferating cells, forming only a 
small part of a large tumor growing in Gompertzian fashion, are killed). 
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Other possible causes of heterogeneity in antitUIllor drug response can have their 
bases in the variation in the composition of equally sized tumors, in terms of 
subpopulations with various cellular characteristics (i.e., tumor heterogeneity; 
[Dexter and Leith, 1986]); in host factors like immune response and pharmaco­
kinetics [Nooter et aI., 1985, 1986); and in the fact that some cytostatic agents 
exhibit vcry steep dose-response curves, which may cause large response fluc­
tuations for relatively small changes in dose. 

To a large extent, however, chemotherapeutic failure can be attributed to 
resistance phenomena, also in leukemias [e.g., Beck, 1983; Holmes et aI., 
1989). The selection and overgrowth of resistant cells is a major factor limiting 
the clinical utility of cytostatic drugs in curative cancer chemotherapy. There­
fore, the mechanisms of drug action and of resistance must be studied [Nelson, 
1985; Griswold, 1986) to design new clinical treatment strategies that discourage 
the outgrowth of resistant cells. Chemotherapy regimens must be dcsigned to 
kill both sensitive and resistant cells faster than they can regrow in the intervals 
between treatment, until all neoplastic stem cells have been eradicated [Skipper, 
1986a). In fact, the limitations of the effectiveness of the presently known 
cytostatic anticancer agents, at concentrations that can be safely employed, 
dictate the need for improved diagnostic tools, careful disease staging and the 
most appropriate treatment scheduling [Griswold, 1986) aimed at killing all 
tumor cells but also at the prevention of diversification, i.e., tumor cells 
growing increasingly aggressive and highly resistant [Nicolson and Lotan, 1986) 
that cspecially occurs with acute leukemias and small cell lung cancers [Curt et 
aI., 1984), It is recommended to study experimental systems that have obvious 
relevance to clinical treatment planning and drug usage [Curt et aI., 1984). 

2.4.1.2 Classification of Different Types of' Drug Resistance 

DeVita (1983) distinguishes two types of resistance, both tumor mass dependent. 
They are temporal), and pennonent resistance. Temporary resistance is related 
to environmental influences, like the physical position of the cells that makes 
them less accessible to chemotherapy. Cells may grow in an anatomical sanctu­
my (e.g., the testes [Jackson et aI., 1983)) or behind some pharmacological 
barrier (e.g., blood-brain barrier shielding the central nervous system from 
certain i. v. administered cytostatic drugs). It also may be related to the position 
of the cells in their cell cycle (kinetic resistance, e.g., resting cells are less 
sensitive than proliferating cells as hypothesized by Norton and Simon [1986]). 
Permanent resistance may be caused by some genetically stable mutation, which, 
in contrast to temporary resistance, is irreversible. 

A second distinction may be in vitro or in vivo resistance with, perhaps, 
different underlying mechanisms. 

Another distinction [Selby, 1984; Kaye and MeI'lY, 1985; Skipper, 1986b) 
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can be given as intrinsic or natural resistance versus acquired resistance. The 
former develops before any therapy has been given, e.g., by spontaneous 
mutation. Acquired drug resistance develops after the cell population has been 
challenged with the drug. 

Muitidl'llg resistance (MDR) is a term used for cells that exhibit resistance 
to a range of structurally unrelated cytostatic agents [Gerlach et aI., 1986; Stark, 
1986]. 

2.4.1.3 Mutation to Dl'Ilg Resistance 

Luria and Delbliick [1943] observed that bacteria have an inherent capacity to 
mutate toward resistance to agents they have never seen. There is a natural 
mutation frequency, and the size of the resistant population in different subcul­
tures depends on the time point at which the mutation, i.e., a permanent genetic 
change, took place. Skipper [1983] considered the applicability of the mutation 
theory with respect to cancer chemotherapy. MacKiIlop [1986] drew attention to 
the fact that in relatively advanced malignancies sometimes primary failure of 
chcmotherapy is observed, suggesting that at the initiation of treatment specific­
ally and permanently drug resistant tumor cells must be present. In other words, 
drug resistant variant cells emerge and increase in number during the evolution 
of tumors, before treatment. Stephens et al. [1984] indeed identified a sub­
population of methyl-cyc1ohexyl-chlorethyl nitrosourea (MeCCNU) resistant 
cells in previously untreated Lewis lung tumors. Later [Stephens et aI., 1986] it 
was shown that selective pressure of in vivo MeCCNU treatment could lead to 
an increasing growth advantage of resistant tumor cells. Shoemaker et al. [1983] 
also found that resistant cells in human cell lines (among which small cell lung 
cancer) may be present before the treatment. 

Fig. 2.22 Scheme of emergence of multidrug resistant cells [Skipper, 1986a) 
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Dl1lg resistant cell lines also can be made by challenging a drug sensitive parent 
cell line with small amounts of the drug. Schmid et al. [1976] found that 
repetitive passage of leukemia cells in animals treated with a 6-dl1lg com­
bination, delivered either simultaneously or in sequence, selected sublines that 
were specifically resistant against one, then two, three, four, five or six drugs in 
the combination. Skipper [1986a] suggests that in general the sensitive parent 
line mutates first to single dl1lg rcsistant sublines that in turn mutate to double 
dl1lg resistance and afterwards may mutate to multidrug resistance (Fig. 2.22). 

The rate of mutation to resistance can be experimentally determined by 
exposing cell samples to a Icthal dose of a drug at certain time intervals and 
subsequently measuring the uptake of bromodeoxyuridine (BrdUrd). Only 
resistant cells (survivors) will take up the BrdUrd, which can be quantified by 
flow cytometry after labeling with a specific fluorescent marker [DeFazio and 
Tattersall, 1985]. Flow cytometry is also useful for measuring other cell kinetic 
properties that are relevant to experimental chemotherapy, with emphasis on the 
mechanisms that lead to cell death in tumors [Tannock, 1986]. Changed cell 
kinetic properties might explain the apparent discrepancy noticed by Van Putten 
[1986] that transplanted cell lines in the mouse retain their drug sensitivity in 
spite of somatic mutation. The problem is solved if unchallenged sensitive cells 
grow faster than mutants, so that in an otherwise unperturbed situation the latter 
will soon be outnumbered. Zajicek [1986] remarks that acquired resistance must 
be cell type specific, because normal tissues, e.g., gastrointestinal mucosa or 
bone marrow, remain drug sensitive despite repeated chemotherapeutic treat­
ment. 

Another way of measuring the rate of resistance development is by examin­
ing growth delay and clonogenic cell survival, as described by McMillan et al. 
[1985] for MT murine mammary carcinoma treated with melphalan, cisplatinum 
and cyclophosphamide. 

2.4.1.4 Mechanisms of Drug Resistance 

Carter [1984], comparing drug resistant cells to their dl1lg sensitive counter­
parts, recognizes next to the already mentioned mechanisms of kinetic and 
pharmacological nature also a biochemical factor in the emergence of resistance. 
An inventolY of possible mechanisms of drug resistance is given by Curt et al. 
[1984] and for acute leukemias in particular by Hall et al. [1989], e.g., defec­
tive drug transport (which may include reduced membrane permeability [Ling 
and Thompson, 1974] as well as changed dl1lg uptake characteristics (active 
efflux) through the cell membrane [Colvin, 1984]), defective metabolism, 
enhanced DNA repair [Colvin, 1984], gene amplification, or altered target 
proteins. Mechanisms associated with different dl1lgs are mentioned; e.g., 
increased deactivation of damaging cyclophosphamide metabolites by glutathione 
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S-transferase enzymes in a cyclophosphamide resistant Yoshida sarcoma cell line 
was reported [McGown and Fox, 1986], though in the BNML the detoxification 
enzyme aldehyde dehydrogenase seems more important [De Groot et aI., 1992), 
The role of these enzymes in cyclophosphamide resistance is reviewed by 
Morrow and Cowan (1990) and Waxman (1990). 

Beck (1984) summarizes that MDR is related to a changed pharmacology 
(less drug accumulation, faster release, weaker binding) due to inherited 
membrane alterations (diminished permeability) based on chromosomal changes 
(gene amplification and increased transcription of the PI70 glycoprotein [Kart­
ner et aI., 1983)). The presence of an MDR phenotype with an activated drug 
efflux pump has been demonstrated in many mammalian tumor cell lines, among 
which human ovarian tumors, carcinomas and sarcomas [Ling et aI., 1983; Fojo 
et aI., 1985; Gerlach et aI., 1986; Pastan and Gottesman, 1987], as well as 
acute myeloblastic leukemia [Ma et aI., 1987; Holmes et aI., 1989). Biomolecu­
lar studies [Roninson et aI., 1984; Stark, 1986; Roninson, 1987; Goldstein et 
aI., 1989; Hayes and Wolf, 1990; for leukemias, e.g., Tsuruo et aI., 1987] have 
identified the responsible gene (MDRl) associated with the membrane protein 
that regulates transport of toxic compounds across the membrane (energy depen­
dent efflux pump). The degree of resistance correlates with the increased 
expression, due to MDRI gene amplification, of the PI70 glycoprotein. There­
fore, quantification of this membrane protein during some time may be another 
way of finding the rate of resistance development. 

Reversal of the drug resistance may be achieved by using calcium channel 
blockers, e.g., verapamil or cyclosporin A, or other membrane transport 
modifiers that restore the intracellular drug accumulation by counteracting the 
efflux pump [Curt et aI., 1984]. This is true, e.g., for acute myelocytic leuke­
mia [Nooter et aI., 1989, 1990a). 

2.4.2 DEVELOPMENT OF DRUG RESISTANT BNML CELL LINES 

The original BNML cell line is sensitive to the cytostatic agents cyclophos­
phamide (CFA; [Hagenbeek and Martens, 1982)), cytosine arabinoside (ARA-C; 
[Colly et aI., 1984b)) and anthracyclines like doxorubiein (DOX; [Sonneveld et 
aI., 1981)) and daunomycin (DAU; [Nooter et aI., I 990b)). To study the 
phenomenon of drug resistance ill vivo it was attempted to develop BNML 
sublines that are no longer sensitive to these drugs. The ill vivo development of 
three BNML sublines, resistant to treatment with CFA, ARA-C and DAU, was 
successful [Hagenbeek et aI., 1987b; Martens et aI., 1991). A fourth resistant 
variant, against the orally very potcnt drug Acetyldinaline, was developed 
recently [EI-Beltagi et aI., 1993). The procedures used are very similar. As an 
example, the CFA case is briefly described below. 
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TABLE 2-5 RESPONSE OF THE PARENT BNML LINE AND THE CYCLOPHOSPHAMIDE 
RESISTANT LINE TO TREATMENT WITH CYCLOPHOSPHAMIDE, IFOSPHAMIDE AND 
MAPHOSPHAMIDE [Martens et aI., 19911 

The response of the parent BNML cell line to treatment with three closely related drugs, 
cyclo-, ifo- and maphosphamide (ASTA Werke AG, Bielefeld, Germany) is compared with 
the response of the resistant line. The drug analogs were studied to provide additional 
information on possible cross resistance. The dose of each drug was chosen such that a 
significant antitumor effect could be expected. The resistant line appeared not to be 
sensitive to either cyclophosphamide (CFA) or ifosphamide (IFA) at the doses tested. 
Interestingly, maphosphamide (MFA) treatment resulted in slightly more than 1 log cell 
kill. A difference in drug activation-MFA is an already activated form of CFA, whereas 
the latter itself must be metabolized first-might be a factor responsible for the observed 
difference in response. 

TREATMENT MdST ILS SURVIVING FRACTION 
{da~sl {da!lsl QE I EI..!KEMIC CELLS 

BNML PARENT LINE 
EXP 1: CONTROLS 22.5 

CFA 45 22.5 2.3x10·6 

IFA 39 16.5 7.5x10-5 

EXP 2: CONTROLS 22 
MFA 35 13 5.6x10·' 

CFA RES/STANT LINE 
EXP 1: CONTROLS 19.5 

CFA 20 0.5 7.5x10-1 

IFA 19.5 0 1 
EXP 2: CONTROLS 20 

MFA 25 5 7.5x10-2 

MdST: median survival time after i. v. transfer of 107 BNML cells 
CFA: 100 mg/kg i.p. } 
IFA: 200 mg/kg i.p. at day 13 after leukemia transfer 
MFA: 154 mg/kg i. v. (n ~ 5 rats/group) 
ILS: increase in life span 
The surviving fraction is deduced from the known relationship that 1 decade of tumor 
load reduction corresponds to 4 days ILS (Eq.(2.1)) 

2.4.2.1 A Cyclophosphamide Resistant Subline 

Leukemic BN rats (leukemia induction with 107 BNML cells injectcd i. v. at day 
zero) were treated repeatedly at intervals of two weeks with CFA doses of 100 
mg/kg i.p. Under these conditions each dose induces a 5 log cell kill (LCK) in 
the drug sensitive leukemic cell population, as can be derived from known cell 
kinetic properties and observed survival timcs of the animals with respect to 
untreated controls. During the two week periods after treatment the surviving 
BNML cell population regrows until the next challenge with a CFA injection. 

-76-



Fourteen days after the last of a total of seven injections with CFA the 
leukemia was transferred (l07 BNML cells) to a fresh group of rats. The new 
recipients received twice the periodical CFA treatment. At this stage the first 
signs of drug resistance became apparent. The leukemia was transplanted once 
more and again was treated with two doses of CFA at days 8 and 22 after the 
transfer. This procedure was continued until the sub line of leukemic cells had 
been exposed 17 times to CFA drug doses of 100 kg/mg each. 

From time to time the sensitivity of the subline for CFA was tested by 
scoring increased lifespan (ILS) of animals treated with 100 mg/kg CFA with 
respect to untreated controls. With an increasing number of exposures to the 
drug the resistance increased-as indicated by shortening ILS-until total resis­
tance was attained (Table 2-5). 

Many CFA resistant BNML cells were frozen and stored in liquid nitrogen, 
forming a stock supply for further experimentation. 

2.4.2.2 Mechanism of Cyclophosphamide Resistance 

CFA requires bioactivation to become cytotoxic. Therefore, an ill vivo approach 
was chosen, employing the CFA resistant and the sensitive parent BNML cell 
lines, to investigate the molecular mechanism(s) of CFA resistance [De Oroot et 
aI., 1994]. 

It appeared that the CFA-detoxifying enzyme, aldehyde dehydrogenase 
(ALDH) plays an important role. The level of ALDH activity in the drug 
resistant cells was about six times as high as in cells of the parent line. When 
ALDH was counteracted by pretreatment of rats, canying resistant BNML cells, 
with the ALDH-inhibitor disulfiram (DSF), the ill vivo cytotoxicity of CFA was 
fully restored. Log cell kill ill vitro of CFA resistant BNML cells by maphos­
phamide (MFA, an activated CFA derivative) increased by 2-3 when these cells 
had been pretreated with DSF. This partial restoration of cytotoxic effect could 
be deduced from the differences in median survival times of groups of rats, 
injected with resistant BNML cells incubated with either MFA alone or MFA + 
DSF. 

Another CFA-detoxification pathway involves glutathione (OS H) and 
glutathione dependent enzymes (OSTs). This pathway is probably much less 
important with respect to the CFA resistance phenomenon. Differences in OST 
contents of resistant and sensitive BNML cells are only moderate to small. 
Furthermore, OSH depletion by buthionine sulfoximine did not increase the 
sensitivity of CFA resistant cells. 
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2.4.3 MODELING CYCLOPHOSPHAMIDE RESISTANCE: SIMULA­
TION STUDIES I 

At the concentrations that may safely be employed, the presently known 
anticancer agents show a limited curative effectiveness [Griswold, 1986]. It is a 
well-known observation that identical treatment schedules, when applied in 
sequence, have less and less effect on the growth of the population of malignant 
cells. Assuming, as supported by an analysis of growth data in a case of 
lymphocytic leukemia [Schultz et aI., 1989], that the intrinsic cell kinetic 
parameters themselves have not been altered by the treatment, a likely explana­
tion may be that drug resistance has developed, causing the surviving fraction to 
grow larger in every successive treatment course. Figure 2.23 shows a nonlinear 
decrease wilh time in cell kill in the brown Norway rat acute myelocytic 
leukemia (BNML) by successive doses (100 mg/kg i.p.) of the dl1lg cyclophos­
phamide (CFA). 

It also is a clinical observation that a large tUlllor mass at diagnosis will 
respond relatively poorer than a small one to an identical treatment regimen. 
This may be so because of a large tumor containing relatively more resistant 
cells [DeVita, 1983]. This would imply that drug resistant mutant cells are 
developing "naturally" (in contrast to "acquiring" resistance afterwards because 
of the contact with the cytostatic agent [Selby, 1984]). 

Thus, the failure of eradicating tUlllors with chemotherapy may, at least 
partly, be attributed to the development of (multi)dl1lg resistance. To be able to 
formulate optimal therapy regimens it is necessalY first to gain insight into the 
dynamics of cell population growth and the process of resistance development, 
under unperturbed as well as under chemotherapy conditions. Such insight may 
be gained in an efficient way through mathematical modeling and computer 
simulation [Garfinkel, 1983]. Based on available knowledge a model is pos­
tulated. Its implications are examined and, ideally, tested against observations 
from real-life experiments. The model and its underlying hypothetical mecha­
nisms thus are validated; they are either accepted to (sufficiently) describe the 
real processes or it turns out that they should be rejected, which implies a redef­
inition of the model. 

Below, a simple model is examined for its relevance wilh respect to the 
growth of the BNML leukemia that is treated with different single doses of CFA 
at several stages of the disease. 

iLarge palis of Chapter 2.4,3 have been published as: 
Schultz FW, Martens ACM, de Vries AJ and Hagenbeek A (1989) Modeling cyclophosphamide 
resistance in the brown norway rat acute myelocytic leukemia: a first approach. In: Eisenfeld J, 
Levine DS (eds) Biomedical Modelling and Simulation, JC Baltzer AG Scientific Publishing 
Co., pp. 47-49 
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Fig. 2.23 Curves showing the BNML cell population in the bone marrow as function 
of time after i. v. transfer of 107 (CFA-sensitive) leukemic cells. Assuming "regrowth:::: 
growth". by backwards extrapolation of the unperturbed growth curve (Fig. 1.8) and 
matching observed MdST to cell number at death (:::: 1.36 x 109), effect of consecutive 
CFA doses (arrows: 100 mg/kg i.p.) can be calculated. Also environmental influences, 
i.e .. effect of retransplantation into a fresh recipient rat (bars) can be seen. Apparently, 
LCK is not constant, but variation is not a monotonous decrease either, as expected in 
case of developing drug resistance 
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2.4.3.1 LABORATORY EXPERIMENTS 

The Rat Leukemia Model. BNML (See Chapter \.9.2). BNML was chemically 
induced in a female Brown Norway (BN) rat and appeared to be cellular 
transferable within this strain, yielding a reproducible growth pattern. As few as 
25 BNML cells inoculated i. v. will cause leukemia in 50% of the BN rats (EDSO 
= 25). The principal target organs for the development of the malignant cell 
population are the bone marrow, the liver and the spleen. The characteristics of 
the disease show striking similarities with human acute myelocytic leukemia 
(AML). Therefore, experimental BNML studies bear great importance to 
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clinical treatment of AML. 

Unperturbed BNML Growth (Chapter 2.2 and [Schultz et aI., 1987]). The 
development of the leukemic cell population after i. v. inoculation of 107 BNML 
cells has been investigated in the major target organs (bone marrow, liver, 
spleen). The number of BNML cells present at various time points could be 
experimentally determined in several ways, ranging from counting cells-mor­
phologically or after labeling with tumor cell specific fluorescent dyes-to more 
complex bio-assay methods. Figure 1.8 shows the datapoints for bone marrow, 
as well as the growth curve found by nonlinear least squares fitting. The curve 
consists of an exponential part (constant population doubling time, Tct) that at a 
certain population size (2x 108) changes into a Gompertz curve. T ct then in­
creases exponentially and the population growth decelerates to a constant steady 
state plateau level. For liver and spleen similar growth curves were found. The 
size-time course of the total population is reflected by the sum of the three 
separate curves (Fig. 2.15). The animals die on day 22 (median value) with a 
tumor burden of some 2x 1010 BNML cells. 

Of the 107 inoculated cells on day zero only some 1.5x 105 appear to grow 
out. This corresponds well with the fact that the EDso amounts to 25 cells, Le., 
a unit of 25 cells has a 50150 chance to be "destroyed" (zero cells grow out: no 
tumor) or to yield 1 cell growing out (a tumor may develop from a single 
malignant cell!). When 107 cells are considered as 4xloS EDso units, each with 
50% chance to contribute 1 cell or 0 cells to grow out, then the expected initial 
population size becomes 2xloS. Likewise, should 106 cells be inoculated, a 
factor of 10 reduction, then an expected number of 2x 1 if would remain to grow 
out. 

CFA and an ill vi!'o CFA Resistant BNML Cell Line. A few remarks about 
the drug CFA are given in Chapter 2.2.1.2. The development of an ill vivo CFA 
resistant BNML cell line is discussed in Chapter 2.4.2.1. 

The Log Cell Kill (LCK) Hypothesis. In experimental cancer chemotherapy for 
most cytostatic agents an invariable dose (intensity) response is observed, from 
which the first order LCK hypothesis can be deduced [Skipper, 1986al. It states 
that a same dose of a certain drug always kills a same fraction of a cell popula­
tion rather than a same number of cells. Thus, a drug dose causing q LCK 
reduces a cell population of C cells to C'IO-q cells. This LCK hypothesis has 
been widely accepted and will be applied in this study to describe CFA action. 

Relation between Incl'ease in Lifespan (lLS) and LCK. By transferring 
various numbers of BNML cells (parent line) i. v. to BN rats and observing the 
subsequent median times of death (MdST) a dose-response relationship has 

-80-



Fig. 2.24 Assuming the growth pattern after 107 BNML cells i.v. as standard (thick 
line; MdST = 22 d), a certain ILS can be achieved by a) another inoculation size or b) a 
single drug dose whose effect should decrease with increasing treatment time. E.g., 2 
LCK on day 5 or 8, or 1.5 LCK on day 13 (thin line) yields ILS = 6 d (n.b., 2 LCK on day 
13 yields ILS = 7 d (broken line)). 
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been established (Eq.(2.1); Fig. 2.2), from which it can be deduced that every 4 
d ILS corresponds with a reduction by a factor of 10 (l log) in the number of 
cells. This result can be generalized to: 

q = 0.25 X ILS, (2.19) 

relating the ILS (d) to q LCK (i.e., a reduction of IO-q in cell number). 

Actually, a correction to Eq.(2.19) is needed, because of the Gompertzian 
nature of the BNML cell population's growth curve. It is assumed that the 
BNML growth pattern will always be identical (same constant T d in exponential 
phase, followed by Gompertzian growth beyond a certain population size), both 
in the unperturbed situation and when treatment is given. Treatment just causes 
an instantaneous reduction in the cell number. Then, given one size-time 
datapoint the population size development can be (re)constructed by horizontal 
shift of the basic growth curve in Fig. 2.24, for which the total BNML popula-
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tion growth curve of Fig. 2.15 is taken. 
Starting with inoculating 107 BNML cells an MdST of 22 d is observed. To 

postpone the MdST to day 28 (ILS = 6 d; shift the basic growth curve 6 days 
to the right), a 2 LCK drug dose should be given on day 5, or 1.95 LCK on day 
8 or only 1.44 LCK on day 13. A drug dose of 2 LCK on day 13 would yield 7 
d ILS. For 12 d ILS a drug dose of 4, 3.9 or 3.5 LCK would be required on 
days 5, 8 or 13, respectively. Thus, for achieving a same ILS, late treatment 
requires less LCK (a smaller dose of the drug) than eady treatment, because of 
the Gompertzian nature of population growth in later stages. The other way 
around, giving a certain drug dose (i.e., a certain LCK) late rather than early 
would yield a larger ILS. This effect is more pronounced when treatment is 
given later andlor the LCK induced is smaller. 

An unsolved discrepancy is the fact that 6 d ILS after 2 LCK on day 5 does 
not quite agree with the 8 d ILS expected, when 105 (of which 1.5 x 103 should 
grow out) BNML cells are inoculated on day zero. 

Dose-effect Measurements with CFA. BN rats were inoculated i. v. with 107 

BNML cells of the parent cell line and treated on different days (5, 8, 9, 11, 
13) with single i.p. doses of CFA of various magnitudes (10, 60, 80, 100, 120, 
140, 160 mg/kg). The times of death due to leukemia were measured and the 
MdSTs were calculated and converted to LCK values as described above 
(Eq.(2.19». The results are shown in Fig. 2.25. No correction for the deviation 
due to Gompertzian growth was made, as the assumption on identical growth 
patterns is uncertain. So for smaller doses at later time points the shown net log 
cell kill, q, might be calculated somewhat too high. 

Nowrousian and Schmidt [1984] experimentally found a linear relationship 
between CFA dose and the logarithm of the surviving fraction (SF) of pluri­
potential (CFU-S) and granulocytic (CFU-C) progenitor cells in mouse bone 
marrow. Thus, 

10g(S!,) = -Ii . dose. (2.20) 

where h is a positive constant. Let the dose correspond to q LCK, then 

(2.21) 

where C+ and C are the numbers of cells just after and before the drug 
administration, respectively. Substituting Eq.(2.21) into Eq.(2.20) yields 

q = Ii . dose. (2.22) 

Knowing that the dose-LCK relation is linear, regression lines (going through 
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Fig. 2.25 Observed dose~effect relations for CFA: net LCK, q (instantaneous total 
population size reduction factor) for different CFA doses given at different treatment 
times. Linear regression through the origin yields lines whose slopes decrease with 
increasing treatment time: a certain dose given later, has less effect 
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the origin, zero dose has zero effect) can be drawn. The slope of the regression 
lines appears to decrease with increasing treatment time; contralY to what 1V0uid 
be expected from the growth dynamics, a cel'laill dose, given later, shows less 
effect (lower q). Is this due to relatively more CFA resistant cells occurring in a 
well-developed tumor, or are the assumptions on the growth dynamics non­
valid? 

Experiments with Mixed Populations of BNML Cells from the Parent Line 
and the CFA Resistant Line. Mixtures of different ratios of cells of the parent 
BNML cell line and the ill vivo developed CFA resistant cell line were inoculat­
ed i. v. into BN rats in quantities of 107 cells. Death due to leukemia was 
awaited without further treatment (control) or with an i.p. injection of lOa 
mg/kg CFA on day 13. MdSTs and ILSs were calculated (Table 2-6). As could 
be expected, starting with more initial CFA resistant cells results in earlier death 
and less effect of the same drug dose. 
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TABLE 2-6 MdST AND ILS AS FUNCTION OF INITIAL SIC RATIO 

percent So SOICO MdST ILS 

100 1.00 22 control 
44 22 CFA 

99 0.99 nd nd control 
39.5 nd CFA 

90 0.9 nd nd control 
34 nd CFA 

0 0 29 control 
29 0 CFA 

107 cells i.v. on day zero; CFA: 100 mg/kg cyclophosphamide i.p. on day 13; MdST: 
median survival time; ILS: increase in lifespan; S: drug sensitive cells; C: total nr of cells 

Fig. 2.26 Scheme of the proliferation model (birth/death rates: bid) tor drug sensitive 
(S) and drug resistant (R) cells, and mutation (rate m) from S to R. 

M, (b-d ) 

( 1- M )( b- d) b-d 

2.4.3.2 MODELING AND SIMULATION 

The Model for Resistance Development and the Gl'Owth of CFA-Sensitive 
and -Resistant Subpopulations. The relations between the two proliferating 
sUbpopulations are schematically shown in Fig. 2.26. Looking at the sensitive 
cells (CFAIS) , per unit of time and per cell, b cells are born and d cells 
disappear (e.g., natnral death). Of the difference, a constant fraction m (spon­
taneous mutation rate) changes into resistant cells (CFA/R); the rest returns to 
Ole CFA/S compartment. The CFA/R population also has birth and loss rates, 
assumably equal to band d. The growth rates of the subpopulations can be 
written as (a dot above a symbol denotes the time-derivative): 
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[$] [1-11/ 0] [S] = (b-d) . . 
R 11/ 1 R 

cells I IIlIil lill/e. (2.23) 

Starting from initial population sizes, So and Ro, the development of the 
population with time, t, is obtained from integration of Eq.(2.23) under the 
assumption that band d are constant (b - d = k > 0): 

The total population, 

. [eXP{k' (l-II/H)] . 
exp{k'l} 

C = S + R. 

(2.24) 

(2.25) 

If m-->O then the subpopulations grow independently in identical ways. If 
m->l then all cells produced become resistant: S = So remains constant and R 
= Co·exp{k·t} - So grows. 

The assumption of band d being constant is valid in exponential growth 
when the population doubling time, Td, is constant (k=ln2/Td)' Real popula­
tions will grow (nearly) exponentially during some time span and then Td starts 
to increase more and more until the population size reaches a steady state 
plateau level (see Fig. 1.8, where actual growth data are fit with contiguous 
exponential and Gompertz curves). Computer simulations (not further discussed 
here) revealed that this type of growth can be the result of a constant d, while b 
decreases linearly with population size. The linear decrease, however, is such, 
that the value of b can be considered a constant for a long period. 

Development of the RIB Ratio. Let the initial population consist of a mixture 
of CFA/S and CFA/R cells, i.e., 

So = f' CO and Ro = (l-fi" Co; 0::; J::; I. (2.26) 

The RIS ratio at time t follows from Eq.(2.26) and Eq.(2.24), if f .= 0 then: 

RIS = exp{bl/'I}/J - I, (2.27) 

with time-derivative 
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(R! S) = (bn If) . exp{bl/' t}, (2.28) 

which both are :2: 0 always. So, if m > 0 then the RIS ratio increases with 
time. However, substitution of some probable values, i.e., k = 0.65/d (Td = 
1 d); f = 0.9; m = 1O~4 (100 times the estimated somatic mutation rate of 1 
cell in a million [Goldie and Coldman, 1985]), reveals that RIS increases from 
0.11 to only 0.12 in over 100 d. Thus, practically spoken the RIS ratio remains 
fairly constant. 

Because C = R + S, Eq.(2.27) can be rewritten as: 

SIC =!'exp{-k·/II·t}. (2.29) 

Net Log Cell Kill by a Single D"ug Dose. Starting with Co cells at time zero, 
of which f· Co are sensitive, at time t~ just before treatment the population has 
grown to C- cells. The numbers of Sand R cells then amount to: 

(2.30) 

Treatment consists of a single drug dose causing p log cell kill (p LCK) to 
sensitive cells, i.e., the drug sensitive population is instantaneously reduced by a 
factor of lO~p. This value p can be considered as a potential LCK, i.e., it is the 
maximum attainable value. As resistant cells may be present, which will not be 
affected, in general the net LCK, q, will be smaller. So, just after treatment at 
time t + the population will be reduced to: 

(2.31) 

C+ = S+ + R+ C·[l + (lO-P - l),/,exp{-k-IIl·t)]. (2.32) 

By definition, C+ = c-· IO-q. (2.33) 

From Eq.(2.32) and Eq.(2.33) the net LCK becomes: 

q = -Iog[l +(lO-P -1),/,exp{-k·lIl·t)]. (2.34) 

Again it follows that q < P if m > O. Furthermore, for constant p the value of 
q will decrease with time; in other words, due to the phenomenon of resistance 
development a same drug dose given at a later time point will kill a smaller 
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Fig. 2.27A/B Relation between net LCK, q, and potential LCK, p, for different 
treatment times t (days 1,5,8 or 13), mutation rates m (10A, 10-6 or 10-B) and f-factor 
(1.0, 0.9 or 0.5: initially, all cells are sensitive (A) or there are 10% or 50% resistant 
cells (8), respectively). q reflects the total population reduction, C + = C'· 10-Q and p re­
flects the reduction in sensitive cells, S+ =S-'10'P (+1- denotes population size just 
after/before drug administration) 
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fraction of the total population than when given earlier. 
The relation between q and p, according to the model, is shown in Fig.s 

2.27A and 2.27B for various treatment times, mutation rates and [-fractions, 
chosen from probably realistic ranges. If f = 1, starting with all cells being 
drug sensitive, p and q remain approximately equal over a large range (larger 
when m is smaller, or, when m is constant, larger when treatment is given 
earlier). Then, a rather abrupt conversion occurs and q tends to stay constant 
with increasing p. 77lis suggesls nOI only Ihar Ireallllelll should be given as early 
as possible, bill also Ihal increasing Ihe drug dose above a certain level would 
be ralher useless. 77le nel LCK is no longer increased by increasing Ihe polen­
tial LCK. 

If the f-factor decreases, i.e., if the initial population already partly consists 
of resistant cells (10% or 50% shown in Fig. 2.27B), the conversion level 
decreases considerably while no treatment time dependency is seen anymore. 
Then there is even less point in giving high dose treatment. 

2.4.3.3 VALIDATION 

How well does the model describe the tumor growth including formation of 
drug resistant cells? 

Comparing Fig.s 2.25 and 2.27 the linear q,CFA-dose relationship is not 
quite reflected by the model derived q,p relationship, unless perhaps the 
mutation rate is very low « 10-9) and the population does not initially contain 
drug resistant cells (SIC = 1; if resistant cells arc present initially, according to 
the model high values of q cannot be achieved at all). Still, the observed 
decrease of q with treatment time cannot be explained quantitatively by the 
model, as is shown in Table 2-7. Perhaps m is not a constant but increases 
progressively with population size? 

Evaluation of the experiments with mixed cell types (RIS = 01100, 1/99, 
10/90, Oil 00) being inoculated shows that a considerable net LCK can be 
achieved, if it is assumed a) that growth curves before and after treatment with 
CFA have identical shapes, b) that these shapes are not influenced by the 
population's RIS composition, and c) that death from leukemia occurs at a 

. constant BNML cell burden (I.8x 109 cells in the bone marrow). Backwards 
extrapolation of the growth curves (Fig. 2.7) from the time of death until just 
after treatment time (day 13), and comparing the calculated cell number with the 
number of cells just before treatment (unperturbed growth curve) yields the 
sought net LCK values (Table 2-8). 

Except for the case of 1 % resistant cells the predicted near-constancy of the 
RIS ratio is confirmed. Splitting the population size just before treatment in an S 
and R component based on the initial RIS ratio, and reducing only the S cells by 
a factor of 10-4.8 while leaving the R cells unaffected, nearly yields the required 
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TABLE 2-7 OBSERVED AND MODEL DERIVED DECREASE IN NET LCK, q, AS FUNC­
TION OF TREATMENT TIME AND MUTATION RATE, FOR CFA = 100 mg/kg 
AND SolCo = 1 

treatment observed Q model derived q 
time Id) m-1O-8 10-9 10-10 

8.0 9.0 10.0 
5 8.99 7.3 8.3 9.3 
8 5.99 7.1 8.1 9.1 

11 5.0 7.0 8.0 9.0 
13 4.49 6.9 7.9 8.9 

TABLE 2-8 CALCULATION OF NET LCK, q, AS FUNCTION OF INITIAL RIS MIXTURE 

initial RIS ratio 0/100 1/99 10/90 10010 
death 11.8xl09 cells) on d.ay 44 39.5 34 29 
nr of cells after treatment 1.6xl04 8.4xl0' 1.lxl08 1.0xl09 

nr of cells before treatment 1.0xl09 1.0xl09 1.0xl09 1.0xl09 

LCK Iq) 4.8 3.1 0.9 0.0 

day 0: 107 BNML i.v.; ': day 13, 100 mg/kg CFA ip.; "regrowth=growth" 

TABLE 2-9 BNML CELL POPULATION SIZE AFTER CFA-TREATMENT FOR VARIOUS 
RIS MIXTURES; CALCULATION AND OBSERVATION 

nr of cells before treatment 
tatala 1.0xl09 1.0xl09 1.0xl09 1.0xl09 

assume: R-/S- 0/100 1/99 10/90 100/0 
::} resistant, W 0 1.0xl07 1.0xl08 1.0xl09 

=:) sensitive, S~ 1.0xl09 9.9xl08 9.0xl08 0 

nr of cells after treatment 
sensitiveb , S + 1.6xl04 1.6xl04 1.4xl04 0 
resistantC

, R + 0 1.0xl07 1.0xl08 1.0xl09 

total 1.6xl04 1.0xl07 1.0xl08 1.0xl09 

total, observedd 1.6xl04 8.4xl0' 1.lxl08 1.0xl09 

'unperturbed growth, day 13 after 107 BNML cells i.v. 
b100 mg/kg CFA causes 4.8 LCK to sensitive cells Isee Table 2-8), so, S+ = S-·1O-4.8 

cCFA leaves resistant cells unaffected, thus, R + = R" 
dfrom MdST and "regrowth=growth", see Table 2-8 
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number of cells after treatment again (Table 2-9). 
By exploring a few properties of a simple model for cell proliferation and 

formation of dl1lg resistant cells it appeared that results of laboratory experi­
ments could be simulated nicely to some extent, although by this first approach 
a few observed phenomena could not yet be explained to satisfaction. Therefore, 
the model must be refined and more detailed investigations, in particular on the 
validity of its assumptions, will be necessalY. 

For example, four days ILS for a factor of 10 smaller inoculum of BNML 
cells implies a population doubling time of 1.2 d for the concept of the inoculum 
being equivalent to a number of ED50 units to hold. Fitting the growth data, 
however, results in some 0.8 d. Are these values, thus the mentioned concept, 
really incompatible, or is the difference not significant and merely due to 
biological variation? 

To help finding answers to questions like this, the sensitivity of the model 
behavior to changes in the values of variables should be looked into. This way it 
should be possible to discriminate between absolute model errors (corresponding 
to established biological impossibilities) and less severe inaccuracies originating 
from uncertainties in the biological data. 
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Chapter 3 
Cell Population Dynamics of Childhood T-Cell Acute Lympho­
blastic Leukemia I 

The average adult leukemia patient will cany at time of diagnosis a leukemic 
cell load of some 1012 cells (approx. 1 kg). With modern (remission induction) 
chemotherapy most patients (children 95 %, adults 80%, [Smith et aI., 1986]) 
will soon enter an apparent disease free state (complete remission), i.e., the 
symptoms disappear and in standard tests no leukemic cells can be found any­
more. However, that the number of malignant cells has disappeared below the 
clinical level of detection does not mean that all clonogenic leukemic cells have 
been eradicated. This is revealed by the fact that in many patients (children 
30-40%, adults 70-80%) the disease will return eventually (relapse), due to re­
growth of surviving cells. The clinical detection level is now about 1 percent, 
i.e., the occurrence of less than I malignant cell in 100 normal cells will go 
unnoticed [Hagenbeek and Martens, 1985]. In other words, an apparently 
healthy person having I kg of marrow may carry an undetectable malignant cell 
burden (minimal residual disease) of some 0.0 I kg, corresponding with IOlO 
leukemic cells. The clinician's problem is how to anticipate an imminent relapse 
and how to tune his (maintenance) chemotherapy schedule to prevent or delay it, 
bearing in mind that patients should be spared the unnecessary toxicity that is 
inherent to intensive chemotherapy. So, in fact this makes up an optimization 
problem. 

Therefore, it is most important to gather information on the time-history of 
the malignant population during and after treatment. Before treatment optimiza­
tion can be dealt with, it must be known how the malignant population develops, 
how it reacts-in terms of surviving cell numbers-to the drngs administered, 
and how it will regrow after the chemotherapy. 

In the present study datapoints were gathered by means of immunological 
marker analysis [Van Dongen et aI., 1986] revealing at certain time instants 
during therapy the size of the population of malignant cells in the peripheral 
blood (PB) and the bone marrow (BM) of several children with T-cell acute 
lymphoblastic leukemia (T-ALL). The raw PB data are examined and compared. 
Through simulation and curve fitting it is tested whether certain models for 
popUlation growth and drug action are applicable. A particular case is studied in 
detail. The time-histOlY of this population is regarded as the output of a dynamic 

ITo a large extent the contents of this chapter were published in: 
Schultz FW, Van Dongen JJ, Hahlcn K and Hagenbeek A: Time-history of the malignant 
population in the peripheral blood of a child with T-cell aClIte lymphoblastic leukemia: a pilot 
study. Comput Math Applic (1989) t8:929-936 
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system that responds to an input signal consisting of the clinically applied 
chemotherapy schedule. The relation between in- and output, as well as the 
unperturbed output behavior, must be identified. In the first instance, (partially) 
making use of already accumulated knowledge, it is tried to describe the evo­
lution of the population in mathematical terms, in such way that the observed 
datapoints can be explained. 

3.1 METHODS AND MATERIALS 

3.1.1 Detection and Quantification of T-ALL Cells by Immunological 
Markel' Analysis 

The malignant cells in nearly all cases of T-ALL express the nuclear enzyme 
terminal deoxynucleotidyl transferase (TdT) and T-cell markers such as the CD5 
antigen on the membrane. Normally, cells with the CD5+ ITdT+ phenotype are 
found in the thymus only [Van Dongen et aI., 1985]. The presence of these cells 
on locations outside the thymus is therefore indicative of the presence of 
T-ALL. By use of the CD5+ ITdT+ double immunofluorescence (IF) staining 
technique, it is possible to detcct one CD5+ I TdT+ cell among 10,000 or even 
100,000 normal cells, as has been established in a series of previous dilution 
experiments [Van Dongen et aI., 1986]. 

During remission induction (RI) and follow-up of several T-ALL patients 
many peripheral blood and bone marrow samples were taken and analyzed for 
the presence of residual T-ALL cells by use of the CD5/TdT double IF staining. 
For this purpose the mononuclear cells (MNC) were isolated from the obtained 
PB and BM samples by ficoll density centrifugation (Ficoll-Paque; density 1.077 
g/cm3). The MNC were incubated with the anti-CD5 monoclonal antibody 
(McAb) Leu-I (Becton Dickinson, Sunnyvale, CAl and subsequently with a 
tetramethylrhodamine-isothiocyanate (TRITC) conjugated goat anti-mouse 
immunoglobulin (Ig) antisenllll. Afterwards, at least two cytocentrifuge prepara­
tions per sample were made, each containing at least 25,000 cells. These 
preparations were fixed in methanol and subjected to an indirect staining for 
TdT by use of a goat anti-TdT antiserum (Supertechs, Bethesda, MD) and a 
fluorescein-isothiocyanate (FITC) conjugated goat anti-rabbit Ig antiserum as a 
second step reagent. The cytocentrifuge preparations were evaluated on Zeiss 
fluorescence microscopes, equipped with phase-contrast facilities and filter com­
binations for the selective visualization of FITC and TRITC, The CD5+ ITdT+ 
cells (i.e., T -ALL cells) present were quantified as percentages double positive 
cells per MNC, always by first determining the fraction of TdT+ cells per 
MNC, followed by counting those TdT+ cells that were also positive for the 
second marker. For this purpose at least 1000 TdT+ cells were evaluated each 
time. 
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TABLE 3-1 T-ALL PATIENT INFORMATION 

patient sex birth date patient sex birth date 

1 MZ f 190777 5 ER m 010281 
2 IA f 131279 6 KG f 140876 
3 RS m 190772 7 CDJ f 170375 
4 PM m 010980 

TABLE 3-2 QUALITATIVE DESCRIPTION OF COURSE OF DISEASE BASED ON 
'RAW DATA' 

patient 

MZ 

IA 

RS 

PM 

T-ALL celis/mm3 

of PB at start 
of therapy 

1.48xl08 

1.46xl08 

3.08xl05 

1.33xl08 

3.95xl07 

ER 4.8 xl 06 

KG 4.9 xl05 

CDJ 2.0 xl05 

9.14xl02 

time until 
remission 
(wks) 

3 

3 

3 

1 

1 

time until 
relapse 
(wks) 

126 

59 

14 

'1 

'2 

'3 

'4 

24 

23 

IF neg. IF pos. 
period at (wk) 
(wks) 

9-98 111 

13-34 58 

remains positive 

6-20 27x 

3-30+ 

7-12 + 

10-13 + 

remains positive 

4-12 16 

2.57xl02 1 14 remains positive 

'i: stili in remission after 143 wks (i ~ 1), 30 wks (i ~ 2), 12 wks (i ~ 3), 13 
wks (i~4) 

+: latest observation; still IF negative (i.e., nothing detected by immuno-
fluorescence) 

x: alternatingly positive and negative with approx. 21 wk period 

remission: < 105 malignant celis/mm3 PB « 1 0 2 for CDJ) 
relapse: at 105 malignant celis/mm3 PB (102 for CDJ) 

For the mathematical analysis of the data the percenlages of T -ALL cells per 
MNC were recalculated to the absolute number of T -ALL cells per mm3 of PB 
or BM. It is a small complication that within the MNC population after ficoll 
density centrifugation still up to 15-20% myeloid cells are present. Those 
myeloid cells can easily be detected, since they strongly express the CDI5 
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antigen, which can be marked by use of the McAb VIM-OS. Therefore, the per­
centage of T -ALL cells per MNC (= Z) was first corrected for the presence of 
CDIS+ cells per MNC (= X) to obtain the pcrcentage of T-ALL cells per 
"true" MNC (i.e., MNC not polluted with myeloid cells). The percentage of 
myeloid cells per total leukocytes (= Y) was obtained from differential counts 
of the PB or BM. This percentage was used to convert the percentage of T-ALL 
cells per "true" MNC to the percentage of T-ALL cells per total leukocyte 
population (= Z·(100 - Xrl.(IOO - Y». Subsequently, the total number of 
T-ALL cells per nun3 was calculated by use of the BM cell count or tlle white 
blood cell count (WBC) per mm3 (= C). 

These calculations can be summarized in the following formula: 

nl'. ofT-ALL = Z'IO-2 '(100 - Xl- I '(100 - I)'C, (3.1) 

where nl'. of T -ALL denotes the total number of T -ALL cells per mm3 PB or 
BM. 

3.1.2 Patients 

A total of seven patients has been followed with respect to the time-course of 
their disease, starting at diagnosis of T-ALL (Tables 3-1 and 3-2). The initial 
leukemic cell load varied from l.Sxl08 to 2xlO5 T-ALL cells per mm3 in 
peripheral blood. In all patients remission was induced within I to 3 weeks 
(patients with high leukemic cell loads took longer). Four patients (RS, PM, 
ER, KG) remained in first remission without detectable residual disease. Follow­
up times, however, are still rather short for them (12-30 weeks), except for 
patient RS (143 weeks) in whose PB by use of IF techniques low levels of T­
ALL cells were found regularly after week 27. 

Two patients, MZ and lA, relapsed after 126 and 59 weeks, respectively. 
This could be foretold a few weeks in advance, in view of the increase of the 
malignant cell load as seen with the IF method. A second RI therapy in patient 
IA apparently was successful within I week and lasted until week 14. The 
remission was not as deep as the first one, as is shown not only by the shorter 
duration of the remission, but also by the continuous presence of T -ALL cells 
during 1I1is period (according to the IF method). The last patient, COl, relapsed 
twice. As the data for this patient are the most extensive, she will be discussed 
in detail below. 

3.1.3 Case Report for Patient CDJ 

After T -ALL had been diagnosed the 8 year old girl COl was monitored during 
a period of about 500 days. During this follow-up period the patient had two 
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relapses of the disease. High intensity chemotherapy to obtain remission induc­
tion was applied three times, starting on days 0 (diagnosis), 198 (first relapse) 
and 365 (second relapse). Such RI therapy was given during 3 weeks, always 
employing a same multi-dl1Ig combination according to a standard RI protocol. 
The first two RI therapies were successful and were therefore followed by a 
constant low intensity continuous maintenance therapy (CMT) schedule consist­
ing of 6-mercaptopurine/methotrexate and, during the first remission, of two 
additional cycles of prednisone treatment, starting on days 121 and 177. The 
second relapse did not respond sufficiently to chemotherapy and the patient died. 

3.1.4 Mathematical Analysis 

Only time courses of T -ALL cell population sizes in PB have been analyzed 
because in this compartment the observations were the most abundant. 

Four phases of analysis can be distinguished: 
1- Inspection of raw data, i.e., the patterns of the observed numbers of T-ALL 

cells per mm3 in PB plotted semi-logarithmically against time. 
2- Log-linear regression of cell numbers, C, on time, t, to find halftimes and 

doubling times (T'h and T 2, respectively) at various stages of therapy and 
follow-up, between times t and to when growth or decline of the malignant 
cell population is presumably exponential: 

C(I) = C(to)' exp{ In?) . (t -IO)}, (3.2) 

where T = -T,;, or T = T2• 

3- Simulation studies; to estimate the cell kill effect of daily drug doses, under 
the assumption that a same drug dose kills a same fraction of cells (log cell 
kill hypothesis [Skipper et aI., 1964]; see below, section 3.1.4.4) and 
exponential regrowth with doubling times as determined under 2. 

4- Curve fitting; malignant cell population growth and the influence of therapy 
can be modeled by some mathematical function that, after successful fitting 
to the datapoints, yields an empirical description of the development of this 
cell population. 

3.1.4.1 Inspection of Raw Data. By simply plotting the observations on 
semi-log paper a first impression is obtained about how the malignant cell 
population evolves with time. It allows any correspondence-or noncorre­
spondence-with known events, e.g., start and end of a therapy course, to be 
noticed at a glance. 

The estimated accuracy of the cell population size as observed with im­
munofluorescence in general is better than 10 percent. However, when the 
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uncorrected percentage of T-ALL cells per MNC (Z in Eq.(3.1» is less than 
0.1, the uncertainty may rise up to 200%. For some datapoints the degree of 
contamination of the MNC population with myeloid cells (percentage X in 
Eq.(3.1)) could not be determined. An average value for X was substituted then. 
Therefore, the datapoints concerned are slightly less certain. Further remarks on 
the accuracy of the observations can be found in Appendix C. 

3.1.4.2 Log-linear Regression. From the inspection of raw data (section 
3.1.4.1) it appears that the T-ALL cell populations in the periods just after start 
of RI therapy and just before and after relapse evolve almost according to 
exponential growth. Application of log-linear regression to the datapoints 
concerned therefore seems appropriate to estimate the corresponding halftimes 
and doubling times. 

3.1.4.3 Simulations. For various patients (PM, ER, KG) the influence of 
the periodically administered drug doses was evaluated by modeling a constant 
fraction of T -ALL cells being killed by each separate dose. Dealing with equal 
doses and constant time intervals (mostly daily administrations) the cell popula­
tion decreases exponentially and a halftime can be calculated. The killing effect 
of each dmg dose, expressed as a number of logs (log cell kill, LCK; see 
section 3.1.4.4), can be estimatcd by matching the simulation results to the 
actually observed population size-time datapoints. 

3.1.4.4 Curve fitting. A very general growth equation describing the time 
course of a cell population of size C(t) at time t is given by: 

C(t + b.i) = C(t) + I1t. d C(t) . 
dt 

(3.3) 

In the present case the time increment I1t was chosen 0.01 d in a series of 
computer simulations. The growth rate dC/dt was derived from the experimental 
data, bearing in mind some already available knowledge about tumor growth 
[Steel, 1977], both under unperturbed circumstances and under influence of 
chemotherapy, which will be briefly elucidated below. 

Unperturbed grolVth. The unperturbed development of a population of leukemia 
cells is often characterized by exponential growth, i.e., the population doubling 
time, T 2' is constant and on a log-linear plot a straight line is seen. In particular 
this is commonly true in the early stage of the disease. At a later stage the 
doubling time may decrease more and more with time, and the population evol­
ves to a steady state plateau phase (constant size). For instance, in the Brown 
Norway rat acute myelocytic leukemia-whose characteristics correspond closely 
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to the human acute myeloid leukemia [Van Bekkum and Hagenbeek, 1977)­
such behavior is observed. After an exponential growth phase T2 starts decreas­
ing exponentially, which can be described with a Gompertz function [Schultz et 
aI., 1986). 

In general the increase of the population size per unit time can be related to 
the current population size as follows: 

dC(t) = GF'C(t), 
dt 

(3.4) 

where GF = In2fT 2 is constant in the exponential growth phase, and for Gom­
pertzian growth GF = A .In(CmaxfC), thus depends on the current and the 
maximum population size (plateau phase), as well as on a retardation constant, 
A [time-I). 

This growth fraction GF can be regarded as that part of the population that 
doubles its size during time interval dt. It is related to biological variables like 
the generation time of the cell line (time from birth of a cell until cell division), 
the ratio of resting and actively proliferating cells, the loss of cells from the 
population, and environmental factors. 

Difluence of chemotherapy. Based on experiments measuring the increased 
lifespan of tumor bearing laboratory animals due to chemotherapy the "log cell 
kill" hypothesis [Skipper et aI., 1964) says that a given dose of a given cyto­
static agent always kills a constant fraction of cells, rather than a constant 
absolute number. After this instantaneous reduction in cell number the dI1Ig 
effcct has disappeared and the surviving population reg rows in a way similar to 
the unperturbed growth. This hypothesis has been widely accepted for describ­
ing chemotherapeutic impact on the size of a cell population (e.g., [Birkhead 
and Gregory, 1984]). Thus, a drug dose is said to have an effect of B log cell 
kill if the population sizes just before (time r) and just after (time t+) the 
administration are related by: 

(3.5) 

If a series of equally spaced constant dI1Ig doses are administered to a popula­
tion in exponential growth, and assuming that the doubling time during regrowth 
will be identical with that of the original unperturbed population, then, on a 
log-linear plot, the population's time-history will be a regular saw-tooth shaped 
curve. Because each sequential dose will kill a constant fraction of cells this 
curve will progress along a straight line, whose slope (either up- or downward) 
depends on the log cell kill factor per dose and on the value of T 2' 

The time-history of the average population size-i.e., C(t) = 
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Fig. 3.1 Qualitative influence of remission induction and maintenance chemotherapy 
(high and low intensity, respectively) on the size of a cell population under a) solid line: 
the "log cell kill" hypothesis or b) broken line: development of therapy resistance. The 
thin solid lines show a "smoothed" time-history (connecting data points just before each 
new drug administration) 

REMISSION INDUCTION 
THERAPY MAINTENANCE THERAPY 

1/,{CCr)+CCt+)}-can then be described with the equation: 

d eel) = GF' {l - K·L(t)}· e(t) 
dt ' 

time 

(3.6) 

where-as in [Norton and Simon, 1977]-K is a scaling constant and L(t) a 
function that describes the therapy level, in this case having a constant value as 
well. Substitution of Eq.(3.6) into Eq.(3.3) will yield a "smoothed" time-history 
of the population's size (not showing every single saw-tooth) that can be used 
even when-like in the present case-the drug doses are not evenly spaced, nor 
constant with respect to the log cell kill factor. If K· L(t) is less than one the 
population will increase (exponentially) in size despite the therapy, if it is 
greater than one the malignant population will become (exponentially) smaller. 
The latter situation will correspond with RI therapy, the former situation may 
exist during less severe CMT that eventually results in a relapse as soon as the 
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Fig. 3.2 Patient COJ: Experimental datapoints showing population size at various times; 
open symbols are less certain points (see text, section 3.2.1); start and duration of 
remission induction therapy is shown (thick a"rrows); thin arrows indicate additional 
treatment. 8M: bone marrow; PB: peripheral blood 
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population size exceeds a nllnlll1Um value (clinical detection level) again (see 
Fig. 3,1), Of course, deviations from the exponential curves may occur if, for 
any reason (e.g., spontaneous mutation [Goldie and Coldman, 1979], cell kinetic 
changes [Norton and Simon, 1986], or-in this case with one PB compartment 
not very likely-pharmacological changes [Jackson et al., 1983]) drug insen­
sitive (sub)populations start to develop. The constant log cell kill hypothesis is 
valid for qlUg sensitive cells only; gradually arising dnlg resistant cells will 
lower the achieved log cell kill factor more and more, 

Application to data of patient CD}. In the present case no tendency toward 
Gompertzian growth was observed. Inspection of the datapoints suggested 
exponential regrowth under CMT, identically for all three cycles, and, at least 
initially, an exponential decrease in population size during RI therapy. This 
decrease seems to continue later at a lower rate (Fig. 3.2). 
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For the recoristruction of the (smoothed) time-history of the population by 
computer simulation the influence of chemotherapy was split into two parts: 

1) as at a first glance there were no signs in the observed datapoints that 
would suggest the formation of therapy resistant subpopulations, a constant 
influence corresponding with CMT is assumed for the total treatment interval. 
K·L(t) in Eq.(3.6) is smaller than one, and OF·{I - K.L(t)) is a positive 
constant, OF,. 

2) the initial high intensity chemotherapy corresponding with RI therapy 
-from which the already accounted for influence due to modeling CMT as in I) 
is subtracted-is modeled to have an ever decaying influence according to: 

KL(t) ~ Ho' exp( -R·t), (3.7) 

where R is a measure of the rate of decay from the initial therapy level Ho' For, 
at first sight, phenomena like therapy resistance formation may playa role here. 

Thus, the resulting growth equation can be written as: 

C(t + M) ~ C(t) + GF,.· {I - Ho' exp( -R' t)) . M. (3.8) 

The value of OF, was estimated from a log-linear regression analysis of the 
experimental PB datapoints for CMT. The values of ~ and R were estimated 
for the three treatment cycles by fitting the simulated curve of Eq.(3.8) to the 
observed datapoints, using a standard routine for least squares fitting to a 
non-lineal' function with parabolic expansion of chi-square [Bevington, 1969J. 

3.2 RESULTS AND DISCUSSION 

3.2.1 PB Data of Patient CDJ 

Figure 3.2 shows the datapoints observed after immunological marker analysis. 
It should be noted that for several datapoints the degree of contamination of the 
MNC population with myeloid cells (percentage X in Eq.(3.1)) could not be 
determined. An average value for X was substituted then, yielding datapoints 
that are slightly less certain. The fate of the ALL cells in the bone marrow seem 
to be reflected in the blood. The patterns of PB and BM data look alike, except 
perhaps at the end of tile time interval (day 400). Being the most abundant, the 
PB data were used for further mathematical analysis. 

Log-linear regression analysis in the regrowth phases, when influence of RI 
therapy has virtually vanished and only CMT influence remains, revealed that 
the population doubling time remained approximately constant, T2 = 6.7, 5.8 
and 7.7 d, respectively, for the three consecutive cycles. (N.B., in the first 
cycle the datapoints between the additional prednisone treatments were taken). 
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Fig. 3.3 Results of regression analyses performed on the peripheral blood (PS) data­
points of patient CDJ: halftime (t 1/2 ), doubling times (t2) and correlation coefficients (r) 
are shown. As in Fig. 3.2, open symbols are less certain observations 
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These differences are not significant and after pooling of the data the mean 
doubling time amounted to 6.5 d (correlation coefficient r = 0.991), which 
corresponds with a constant OF, = In2/Tz = 0.106 d- l (Fig. 3.3). 

This indicates that the growth kinetic properties of the regrowing population 
will not have changed during the courses of treatment, and that the population 
remains in exponential growth phase even under CMT, without any evidence 
that therapy resistant cells are being formed here. 

In the same wayan estimate of the halftime was obtained in the declining 
phase of the growth curve (Fig. 3.3). 

With the thus derived estimate for OF, the remaining parameters describing 
the therapy level, Ho and R in Eq.(3.8), were found for each treatment cycle by 
filling E~.(3.8) to the corresponding datapoints, starting from 2xlOs T-ALL 
cells/mm blood on day zero. The resulting values are listed in Table 3-3. The 
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Fig. 3.4 Patient CDJ: Computer simulation of the time-history of the population after the 
start of each treatment (thick arrows: remission induction therapy or thin arrows: 
additional prednisone treatment), i.e., least squares fit of Eq.(3.8) to the data points (open 
symbols are tess certain observations, see text (section 3.2.1)); parameters in Table 3-3 
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resulting fitted curves representing the time-history of the T -ALL population in 
PB are shown in Fig. 3.4. 

As can be seen in Fig. 3.4 the fitted curves predict a minimum of about 0.1 
T-ALL cell per 01013 of peripheral blood in the range of day 230-280. The data­
points observed in this time interval-indicated in Fig. 3.4, although not been 
used for curve fitting purposes-have been arbitrarily set to 0.01, but in this 
range the actually observed numbers amount to zero. These observations do not 
contradict the model output. A typical sample size for the immunological marker 
analysis in this region is 10 ml blood, containing 3000 cells per 01013. Accord­
ing to the model the frequency of the leukemic cells then is 0.113000 = 
3.3xlO-s. This value is within the margin of the stated sensitivity of this detec­
tion method, i.e., 1 leukemic cell in 104 to 105 normal cells will be detectable 
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TABLE 3-3 PATIENT CDJ: RESULTS OF CURVE FITTING TO PB DATA 

GFr~0.106 d· l T2~6.52 d 
start of 
therapy 

d 
Ho ± sd R ± sd AUC LCK (dC/dtl/C 

, 0 
121 
177 
'198 
'365 

6.972 0.264 
1.503 0.005 
2.856 0.004 
5.086 0.008 
2.386 <0.001 

d· l 

0.0304 0.0013 
0.1137 0.0003 
0.2256 0.0004 
0.0277 <0.0001 
0.0207 <0.0001 

* = remission induction therapy 

d d· 1 

229.34 6 -0.63 
13.22 0.09 -0.05 
12.66 0.99 -0.19 

183.61 4 0.10 -0.43 
115.27 1 0.10 -0.15 

B A 

GFr, T 2: growth fraction and doubling time in maintenance therapy phase 
Ho' R: initial therapy level and decay rate 
AUC: area under therapy level curve LCK: log cell kill 
(dC/dt)/C: relative growth rate, just (Blefore or (Alfter start of therapy 

[Van Dongen et aI., 1985). Furthermore, a simple calculation using Poisson 
statistics reveals that, if the chance Ihat a cell is leukemic equals 3.3xlO-5, the 
probabilities of finding zero and of finding one such cell in a sample of 30,000 
(l0 ml blood) will be equally large, namely 37 %. 

That the effectivity of the RI part of the therapy is reduced in every new 
treatment cycle can be deduced from (Table 3-3): 
A) the initial therapy level Ho decreases with the cycle number; the rate of 
decay R does not change velY much. The halftime of this decay amounts to 
some 23 d, which is nearly as long as the duration of a RI therapy protocol. 
N.B., for the prednisone treatments just the reverse is observed, i.e., Ho 
increases to double the value and so does R. However, this may be an artifact 
due to too few datapoinls in these regions. For instance, for the first prednisone 
treatment an almost equally good fit could be oblained by assuming Ho = 335.6 
and R = 20.86, i.e., a velY steep decay from a very high initial level. So, to 
evaluate the most appropriate parameter values more datapoints are necessary; 
B) the area under the L(t) curve, which may serve as a measure of the therapy 
efficiency and can be calculaled by integration of Eq.(3.7) from time zero until 
infinity (yielding Ho/R), goes down with the cycle number. N.B., for the 
prednisone cases the area under the curve goes down a lillie as well; 
C) by looking at the ratio of the population size at the start of each RI and the 
minimum population size achieved in that cycle, decreasing overall log cell kill 
values can be derived; 

-109-



D) the relative growth rate just after the start of treatment shows ever decreas­
ing values, showing that the decline of the population size is less and less steep. 
Just before treatment the relative growth rate always shows an approximately 
constant value, indicating that the state of the growing population is the same 
each time. Prednisone treatments again show a deviant behavior. 

3.2.2 PB Data of Other Patients 

Figures 3.5 through 3.12 show the datapoints-in general the datapoints were 
acquired just before therapy was applied-simulations and fitted growth curves 
concerning the development of the T-ALL cell populations in peripheral blood. 
An overview of the characteristics of these time histories is given in Table 3-4 
Craw' data), Table 3-5 (regression lines), Table 3-6 (simulations) and Table 3-7 
(curve fitting). 

Three patients started with equally high leukemic cell loads at diagnosis 
('" 1.4xI08hnm3). The other patients had a lower (up to 3 logs) initial leukemic 
cell load (Fig. 3.13). First remission (tumor load < loS cells/mm3) was suc­
cessfully induced in all patients, within I to 3 weeks. During at least some time 
the leukemic cell load dropped below detectable levels, which is here about 3 
leukemic cells per mm3 blood. (N.B., assuming 5 I peripheral blood per patient, 
the theoretical minimal malignant cell frequency that can lead to relapse is 
115000 = 2xI0-4). Three pa'tients relapsed (MZ, lA, CD]), two of which were 
given a second RI therapy (lA, CDJ). Their malignant cell loads then were 1.5-
2.5 logs below the levels at first diagnosis. Both relapsed again and for one 
patient (CDJ) third RI therapy was started, leukemic cell load now being 3 logs 
below that at first diagnosis. 

For patient ER three distinct phases during first RI treatment can be 
distinguished, with starting malignant cell loads at two and three logs, respect­
ively, below that of diagnosis. Patient KG shows two distinct phase during first 
RI, the second phase starting with a leukemic cell load of 1.5 logs below that of 
diagnosis. 

The rates at which the patients went into remission are not very different; 
the population halftime is about 2 days (varies "interpatient" between 0.5 and 3 
days). In this respect, per patient, there is hardly any difference between first or 
second RI period, nor-where applicable-per phase of the first RI period. 
More, but certainly no spectacular, variation is seen in the doubling time of the 
regrowing cell populations (Fig. 3.13). Thus, the time histories of the T-ALL 
cell populations in PB are characterized by stages of exponential decline and ex­
ponential regrowth. 

In a few patients (PM, ER, KG) the influence of the daily dlUg doses could 
be simulated by letting them cause a constant LCK/dose. By choosing a con­
stant, "average", population doubling time of 6.52 d (3.25 d in one case), and 
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Fig. 3.5 T~ALL cell population in PB of patient MZ. Datapoints are shown with estimated 
accuracies; values below 0.01 mr' have been drawn on the 0.01 level. Halftimes (Th 
{dJ) andlor doubling times (Td {dJ) between certain data points are indicated, The best­
fitted curve has an unrealistic minimum of 2,06xl0-14 T~ALL cells/mm3 on day 275 
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Fig. 3.6 T-ALL cell population in PB of patient lA, Best-fitted curves are drawn for both 
remission (induction) periods. See also legend of Fig. 3.5 
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Fig. 3.7 T-ALL cell population in PB of patient RS. Large fluctuations in population size 
are being 'smoothed' by the fitted curve. See also legend of Fig. 3.5 
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Fig. 3.8 T-ALL cell population in PB of patient PM. The fitted curve has an unrealistic 
minimum of 2.4x10-33 T-ALL cells/mm3 on day 314 and predicts the return to the 105 

cells level to happen at day 1232. See also legend of Fig. 3.5 
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Fig. 3.9 T·All cell population in PB of patient PM, focussed on the first 100 days. Fitted 
curve A predicts eradication of the malignancy (but is physically impossible as it implies 
ever increasing therapy influence), curve B predicts a too early return to the 105 cells 
level at day 100. Curve C represents an exponential decrease. All curves yield equal 
goodness of fit values (tee). The simulation (0), assuming that each daily drug dose 
causes 0.57 LCK and regrowth doubling time is 6.52 ct, follows the datapoints rather 
well. See also legend of Fig. 3.5 
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Fig. 3.10 T-All cell population in PB of patient ER during the first 100 days. The 
period is divided in two parts: before and after day 40. Points before day 40 were fitted 
(Fit 03) and the same curve was used after day 40 (Sim 03). Splitting the first period 
once more, at day 14, both parts were fitted (Fit 01 and Fit 02, respectively) and either 
curve was used to simulated the period after day 40 (Sim 01, respectively, Sim 02). All 
curves predict about 104 T -ALL cells per ml on day 100 
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Fig. 3.11 T-ALL cell population in PB of patient ER during the first 100 days. A 
simulation with daily drug doses on days 0-6, 14-20 and 42+ causing 0.47 LCK each. 
Regrowth doubling time is set to 3.25 d (instead of 6.52 d) 
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Fig. 3.12 T-ALL cell population in PB of patient KG during the first 100 days. 
Observations may be explained with a simulation with daily drug doses causing 0.18 LCK 
each, discontinued between days 21 and 42, while regrowth doubling time is 6.52 d. 
Observations up to day 42 were well fitted; using the same curve alter day 42 predicts 
relapse (105 cells) much too soon, around day 122 
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TABLE 3-4 OVERVIEW OF ANALYSIS RESULTS 'RAW DATA' 

natient 

initially 
To(d) 

C xl0-8 

RI T y,(d) 
T2(d) 
T,5(d) 

R2 Co 
To(d) 
T y,(d) 
T 2(d) 
T (d) 

R3 Co 
To(d) 
T y,(d) 
T 2(d) 

T,5(d) 

Ri = 
To = 

T a6 = 

MZ 

0 
148.5 

1.6 
3.1-6.5 
857-867 

IA 

0 
145.7 

2.5 
8.2 

377 

3.08xl05 

418 
2.4 
2.01 

113 

RS 

0 
133.2 

1.3-2.6 
0.8-6.5 

jth remission (induction) period 

PM ER 

0 0 
39.5 4.8 

0_5-1.3 0.5-1.4 
1 2.0-5.8 

KG 

0 
0.49 

1.2-2.2 
<8.71 

CDJ 

o 
0.20 

2.8 
6.7 
260 

914 
198 
2.8 
5.8 
247 

257 
365 
2.8 
7.7 
187 

time of starting therapy; Co = number of cells per ml Peripheral Blood at start 
of therapy 
estimated halftime of cell population; T 2 = estimated doubling time of cell 
population 
estimated time of reaching the 105 cells level 

TABLE 3-5 OVERVIEW OF ANALYSIS RESULTS 'LOG-LINEAR REGRESSIONS' 

atient MZ IA RS PM ER KG CDJ 

RI A 1.62 7.35 6.75 6.43 12.78 
B(d-1) 4.6x10-3 -0.48 -0.58 -0.19 -0.23 
r 0.68 -0.10 -0.97 -0.96 -0.95 
T y,(d) 0.705 0.518 1.56 2.96 
T2 (d) 150.3 

for time 
interval(d) 40-920 0-9 0-5 11-210-21 

regression line: In(C) = A + B· 1, time t in days; r: correlation coefficient 
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TABLE 3-6 

atient 

simulation 
Rl treatm. 
duration (d) 

LCK/dose 
T y,(d) 
T 2 (d) 

R1 : 
LCK/dose: 
T %: 
T2 : 

Simulation: 

OVERVIEW OF ANALYSIS RESULTS 'SIMULATIONS' 

MZ IA RS PM 

D 
0-21 

0.57 
0.58 
6.52 

first remission (induction) period 
calculated Log Cell Kill per daily drug dose 
observed value of the population halftime 
set value of the population doubling time 

ER 

C 
0-61 
14-201 
42+ 
0.48 
0.78 
3.25 

KG CDJ 

A B 
0+ 0-211 

43+ 

0.17 0.17 
2.5 2.5 
6.52 6.52 

the population grows exponentially with doubling time T i; a drug dose 
reduces the population instantaneously by a factor of 10 CK; this yields a 
net exponential decrease in cell numbers with halftime T % 

taking the rate of decline (halftime) into consideration, the log cell kill per dose 
needed to "match" the datapoints varies between 0.2 and 0.6 for different 
patients (Table 3-6). 

Another way of looking at the iniluence of therapy is by fitting a growth 
curve (Eq.(3.8» to the datapoints. This allows estimating the variables Ho and 
R, respectively, a measure of the initial impact of the therapy and the rate at 
which this impact decays. A low Ho value means a low initial therapy impact, a 
low R means that the initial impact decays but slowly. Both values low, thus, 
means a small but long lasting effect. Overall effect can be evaluated by looking 
at the area under the curve (AUe), which is the integral of Ho' exp(-R· t). 
Values of Ho, Rand AUe are shown in Fig. 3.14, per patient, for the best 
fitting curve. Large variations OCCUI' both in Ho and in R. A factor of about 85 
between highest and lowest AUe is seen. When looking at subsequent RI 
therapies in a same patient, it is noticed that the Aue always decreases, 
although only a little bit sometimes. By using the AUe, the clinical notion that 
"A same therapy given later is less effective" can thus be quantified. 

3.3 CONCLUDING REMARKS 

In conclusion, from this pilot study it can be deduced for patielll CD} that: 
A) assuming a constant iniluence of low intensity maintenance therapy the 
otherwise "unperturbed" population in this T -ALL patient grows exponentially 
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TABLE 3-7 OVERVIEW OF ANALYSIS RESULTS 'CURVE FITTING' 

patient MZ IA RS PM ER KG CDJ 

initially 
To(d) 0 0 0 0 0 0 0 

C xlO-6 14B,5 145,7 133,2 39,5 4,B 0.49 0,20 

curve fit A ill ill 1: OA ill 03 ill 
RI start(d) 0 ° 0 ° ° 0 ° ° ° Ho 6,53 4,80 105,38 14,52 9 18,0 513,81 6.42 6,97 

R(d") 0,007 0,01 0,03 ° ,007 0,35 0,2 0,1 0,03 
Ho/R~AUC 933 486 4215 - 1286 52 70 67 229 

T y,(d) - 0.48 ° -
T2(d) 7,34 6,52 130,89 6,52 6,2 4,83 4,35 5,27 6,52 
tee >,99 >,99 ,04 >,99 >,99 >,99 ,99 >,99 

~ Q;L 02 
R2 start(d) 418 418 14 43 198 

C 3,08xl05 2,21 xl 04 2,29xl04 914 
Ho 7.43 2,32 24,27 6,42 5,09 
R(d") 0,08 0,02 0.49 0,1 0,03 

Ho/R~AUC 93 135 50 67 184 
T y,(d) - -
T 2(d) 6,52 2,02 6,71 5,27 6,52 
tee >,99 >,99 ,89 >,99 

R3 start(d) 41 41 365 
C 2,12xl03 257 
Ho 18,05 24,27 2,39 
R(d-') 0.35 0,49 0,02 

Ho/R~AUC 52 50 115 
T y,(d) - -
T 2(d) 4,83 6,71 6,52 
tee 

Ri = ith remission !induction) period; To = time of starting therapy; Co = number of cells per 011 
Peripheral Blood at start of therapy; T y, = estimated halftime of cell population; T 2 = estimated 
doubling time of cell population; Hot R: initial therapy level and decay rate; fitted curve: EQ.(3,8); 
total correlation coefficient, tee = {1 - ~ (Cfit - Cobs)2/.~:Cob/}Y, is a measure of goodness of fit 
(tends to 1 for perfect fit) 

with a mean doubling time of 6,5 d, no matter the preceding treatment history; 
B) intensive remission induction therapy can be modeled with an exponentially 
decaying therapy level L(t) that, in a series of equal treatments, depends on the 
sequence number. As it increases the efficiency of the remission induction 
therapy decreases, which is apparent from the facts that I) L(t) shows a less 
steep decay from a lower initial value; 2) the area under the curve decreases; 
and 3) the induced overall log cell kill decreases, This indicates the development 
of therapy resistance, 
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For the other patients much fewer datapoints are available. Some of them have 
not yet been followed long enough. Although it seems that the above conclu­
sions can-to some extent-be generalized to apply to most, if not all patients, 
variation in some parameter values is large between individuals. 

In a study that involved a large number (158) of newly diagnosed ALL 
patients [Rautonen et aI., 1988] it was found that the rate at which blast cells 
disappear from the peripheral blood is a predictive factor for the patient's 
response to therapy. Slow disappearance (> 10 d) indicates a poor prognosis. 
According to this blast cell clearance rate criterion the seven patients would be 
in the promising prognosis category. With so few patients in the present study, 
however, it is not useful to try and find other categories-patients who have 
their values of certain parameters between this and that boundaty-and deter­
mine some parameter profile upon which a sound prognosis for therapy outcome 
can be based. 

Still, it can be said that the present results show that mathematical analysis of 
data obtained by a sensitive mcthod for the detection of low numbers of malig­
nant cells yields valuable information about the growth characteristics of the cell 
population, as well as about its sensitivity to chemotherapy. The mathematical 
analysis suggests further experimental investigations on the emergence of a dntg 
resistant subpopulation. It would be interesting to make in vitro cultures of 
T-ALL cells [Lange, 1989] taken from the population at various instants during 
the treatments and see whether A) the unperturbed growth kinetics (doubling 
time) indeed remain the same, and B) the response to administration of the 
various drugs changes. Another approach would be to look for a possible 
amplification of multi-dntg resistance (MDR) genes increasing with time. This 
would be expressed as an ever increasing amount of MDR gene products, to be 
detected by immunocytochemical assays. For instance, Ma et al. [1987] in this 
way showed a correlation between the amount of P-170 plasma membrane 
glycoproteins and the presence of MDR cells in two cases of acute non-lympho­
blastic leukemia. 
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Chapter 4 
Pharmacokinetics 1 

[Identification of the Dynamic System of ill vivo Distribution and Metabo­
lism of the Cytostatic Drug Daunomycin in the Brown Norway Rat] 

Daunomycin (DAU) is an anthracycline antibiotic that is commonly used for 
chemotherapy of various types of cancer [Arcamone, 1981; Gottlieb et aI., 
1983]. For most anthracyclines the clinically applied doses not only reduce the 
neoplastic burden, they also cause adverse effects on normal tissues. For exam­
ple, cases of cumulative cardiotoxicity [Blum and Carter, 1974; Villani et aI., 
1985] and severe myelosuppression [O'Blyan et aI., 1977] have been frequently 
reported and often these adverse effects are dose-limiting. Therefore, with 
respect to the administration of DAU an optimization problem arises. Those ad­
ministration regimens should be chosen that guarantee a maximum of chemo­
therapeutic effectiveness, but also a minimum risk of unwanted side effects on 
healthy tissues. In other words, sufficiently high DAU concentration must be 
present for sufficiently long time at the site of the tumor, while exposure of 
healthy tissues should be kept as small as possible. What should be considered 
sufficient in this respect is a subject of another study, namely, on the response 
of the various cells and tissues to a certain concentration of the drug (phar­
macodynamics [Testa, 1987]; this may include 'counteraction measures' by the 
disturbed tissue system, i.e., development of drug tolerance [Peper et aI., 
1987]). Only from the combination of pharmacokinetics and pharmacodynamics 
will be learned what therapeutic and/or toxic effects can be expected. 

Thus, before the problem of optimal drug administration can be dealt 
with, one necessalY thing to be obtained is dctailed information on the pharma­
cokinetics of the dnlg. It should be predictable with good accuracy, what the 
concentration-time courses will be in the organs of interest for a given input of 
the drug. Often it is not only the administered (or parent) dnlg that plays a role, 
but frequently the formation of metabolites and their distribution kinetics must 
be considered as well [Carson et aI., 1981]. 

Dl1Ig conccntrations in most organs cannot be measured directly without 
destl1lctive methods. Monitoring plasma levels alone, which would cause little 
trouble in thc clinic, unfortunately does not yield sufficient information [McVie, 
1984; Van Rossum et aI., 1988] without the pharmacokinetic characteristics of 
the drug being known. In other words, the dynamic behavior of the system of 
drug distribution and elimination in response to some drug administration 

Iparts of Chapter 4 have been pUblished before in various conference proceedings (Schultz 
et at., 1985, 1987, 1988a, 1988b] 
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schedule must be explored. To this purpose the application of general systems 
theory and mathematical modeling methods, as developed in the technical 
sciences, may serve as a convenient tool [e.g., Schmidt, 1982]. In particular, 
the system identification' recipe' for matching a theoretical-descriptive-model 
to an actual physical system, distinguishes three phases. Phase I consists of 
drafting a plausible mathematical model of the system, i.e., the description of 
the system's processes by mathematical formulae. All a priori knowledge on and 
experience with the system's properties should be considered. Then, in phase II, 
parameter estimation, the chosen model is optimized by finding specific values 
for the parameters in the formulae. By substituting certain parameter values in 
the formulae a model response is calculated. The model response is compared to 
the actually observed system behavior. The parameter values then are adjusted, 
repeatedly if necessalY, until the calculated model response corresponds best 
with the observations. In the last phase, III, a decision must be made whether 
the optimized model yields sufficient resemblance to the system. If deviations 
between the system's behavior and the optimized response of the current model' 
remain too large, a more appropriate model must be found. Perhaps a minor 
refinement or may be an extensive adjustment will be necessary. This means 
going back to phase I. 

To illustrate this with an example, suppose that it has been observed that 
every quarter of an hour the ,concentration of some compound is half what it 
was the last time; say 20 at time zero, 10 after 15 min and 5 after 30 min. As a 
model for this decrease linear decay may be assumed. This means a description 
of the concentration-time histDlY, C as function of t, by a straight line. In 
general, the class of straight line models is characterized by the formula: C = 
a· t + b, where a and b are the parameters (slope and intercept). Here, the 
optimum values of a = -0.5 and b = 19.2 are found, yielding the smallest (sum 
of squared) deviations between the line and the observations. Still, deviations are 
present and, from experience, it is known that exponential decay is a better 
model for this C-t relationship. This class of models is described by C = Co' 
exp(-b· t), where parameter Co is the initial concentration and parameter b a 
measure of the decay rate. Indeed, by optimizing, Co = 20 and b = 0.046 
make deviations between the model and the observations disappear. Thus, the 
last model is superior to the first. 

Once the pharmacokinetic processes have been identified, the subsequent 
ability to predict the system behavior in response to arbitralY inputs (dl1Jg 
administration regimens) will improve controlled chemotherapy, because of the 
possibility to optimize the dl1Jg input for desired effects [Swan, 1985]. 

The present chapter will be about the system identification of DAU 
pharmacokinetics in the rat. Identification means finding the system's behavior 
from input/output measuremenls (drug administration regimen/dl1Jg concentra­
tions as function of time and location). As indicated above, for reasons of 
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observability it will be necessary to make use of ill vivo experiments with 
laboratolY animals. For ethical and economical reasons the number of animals 
used must be kept as low as possible. Therefore, the quantity of data minimally 
needed to produce reliable results should be established. Several computer 
simulation studies to serve this purpose are reported below. 

The main purpose of present study is to look into the fate of DAU in the 
Brown Norway (EN) rat. Although chemotherapy is usually applied to sick 
people, and in the BN rat a myelocytic leukemia (BNML) can be induced to 
mimic human disease, for the time being only healthy rats are considered. The 
influence of the presence of a tumor load may be incorporated at later (future) 
stages. 

DAU was administered quickly as a single intravenous dose, which can 
be considered a pulse input. In vivo concentration-time datapoints in many 
organs could be obtained by sacrificing the animals after certain time intervals. 
The relation between these in- and output data was analyzed by means of 
mathematical multicompartment models, based on a model previously used to 
describe adriamycin pharmacokinetics [Sonneveld and Mulder, 1981; Sonneveld, 
1980]. New in the present model is that, under the constraint of first order 
kinetics to describe the ill vivo distribution and elimination processes, metabo­
lism is allowed at either a concentration dependent or a constant rate (as DAU 
metabolizes to the compound daunomycinol (DOL». Furthermore, various 
model stl1!clures were assumed, i.e., several anatomically and physiologically 
possible pathways for dl1!g transport via plasma to and from the different organs 
-that are represented by the compartments-were considered. These models 
were tested for their adequacy in explaining the actual observed concentra­
tion-time datapoints, using numerical optimization algorithms to estimate the 
corresponding transfer rate constants. 

This modeling approach further differs from the work by most other 
investigators in that physiological meaningful models are used, i.e., the com­
partments and their interconnections represent actual anatomically well defined 
regions. Furthermore, the models are large (up to II organ or tissue regions, 
each containing two compartments for the compounds DAU and DOL, respec­
tively), allowing much detail in the drug distribution patterns. In most phar­
macokinetic studies non-physiological models with only two [Johansen et aI., 
1984] or three compartments [Eksborg et aI., 1986], representing plasma and 
tissues (with fast and slow dl1!g exchange), are considered because of the ease 
with which the corresponding model equations can be solved analytically 
[Wagner, 1975], as well as their extensively investigated properties [Garrett, 
1980; Godfrey, 1983], They also can yield information that is useful for another 
purpose [Metzler, 1971], e.g., even the comparison of routes bf administration 
[Collins et aI., 1980], but of course they do not provide much vital, detailed 
information. Finally, in contrast to other physiological models, e.g., flowlimited 
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models [Bischoff and Dedrick, 1968; Chan et a!., 1978; Molino et a!., 1986], 
no 11 priori values for physiological variables other than compartment volumes 
need to be supplied. Such variables (e.g., blood flow velocities, membrane 
characteristics) are often difficult to assess experimentally and in general show 
large interindividual fluctuations. Such variability is here considered implicitly 
in the transfer rates estimated as model parameters. These are considered as 
random variables, having a distribution with a mean value and a variance, rather 
than as unknown constants. 

Before elaborating on the large-scale models for DAU-pharmacokinetics, 
first the tools used in mathematical modeling are explained below. As further 
preparatOlY work, different approaches to existing (classical) solution methods 
are elucidated. They were tested for their performance with respect to speed of 
computation and accuracy of results. This enabled the selection of the best 
performing optimization method. It should be kept in mind that without the 
availability of efficient algorithms (i.e., fast, accurate, economical in occupation 
of computer memory space) the identification of large systems-involving the 
estimation of many parameters, the simultaneous solution of many differential 
equations, the manifold calculation of concentration-time histories-becomes a 
tedious affair. Such efficiency requirements also are important, if eventually-as 
desired-similar identification and (especially, dl1lg administration) optimization 
procedures are to be transferred to computer systems for clinical use. 

4.1 MATERIALS AND METHODS 

4.1.1 Experimental Data Acquisition 

To provide the necessaty input/output data, ill vivo experiments were conducted 
as described by Nooter et a!. [1986]. DAU (supplied by Farmitalia, Milano, 
Italy) was dissolved in 0.5 011 saline and administered, under light aether 
anesthesia, i. v. as a rapid bolus injection into a tail vein of 12-week-old female 
Brown Norway rats weighing 165 g (Rijswijk inbred strain). The dose was 7.5 
mg/kg, which is comparable to the clinically accepted dose of 40 mg/m2 in man 
[Freireich et a!., 1966]. The rats had free access to food and water. Urine was 
collected by a non-invasive method. After certain time intervals groups of 4-5 
rats were sacrificed by cervical dislocation under aether anesthesia. Plasma was 
obtained from aortic blood samples, EDTA was added to prevent coagulation. 
Organs of interest were removed and frozen with liquid nitrogen. The material 
was stored at -20°C until further processing. 

Wet organ weights were measured in forty rats. The organ volumes 
could be calculated, assuming a specific density of 1.0. 

In follow-up experiments plasma and bile samples were collected at 
various times after the same way of dl1lg administration. A surgically placed 
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canule enabled the draining of the gall bladder. 
Cumulative amounts of DAU and its major metabolite, DOL, in urine 

and bile and their concentrations in plasma and tissues were determined by 
straight phase high pressure liquid chromatography according to a standard 
procedure [Baurain et aI., 1979]. Other metabolites were found only in negli­
gible quantities. 

4.1.2 Multicompal'tment Models 

4.1.2.1 Model Stl'uctul'es. The body fluids and organs that were shown to 
be involved in the disposition of DAU in the rat can be represented by separate 
compartments in a model. The amount of dl1lg any time present within a 
compartment is considered to be uniformly distributed. Three processes must be 
considered: the distribution of the parent drug DAU, the formation of its 
metabolite DOL and the distribution of DOL. The metabolite was found in the 
same tissues and fluids as the parent dl1lg, which may be due to local formation 
and/or to distribution following formation elsewhere. So, two compartments are 
necessalY for each organ; one for DAU to occupy, and its double for DOL. The 
compartments must be interlinked by anatomically and physiologically justified 
pathways along which the drug (parent and metabolite, respectively) might be 
transported, as well as pathways between corresponding DAU-DOL com­
partments for possible metabolite formation. 

A multicompartment representation of the rat is shown in Fig. 4.1. By 
partitioning in several ways, models of various size can be made. 

4.1.2.2 Small-scale Model. Neglecting metabolism, the rat model should 
comprise at least seven compartments (Fig. 4.2a). Plasma, as a general transfer 
fluid; urine, as excretion compartment; liver and spleen, as tissues with a special 
status: unlike other organs the spleen passes drug on to the liver instead of 
returning it to the plasma, and the liver, next to exchanging drug with the 
plasma, also excretes into the bile; and two separate other_tissues compartments 
containing all other organs of importance, divided into observed and unobserved 
ones. Another way of allocating organs to either other_tissues compartment may 
be based on their well-perfused or peripheral (respectively, fast or slow dl1lg 
exchange with plasma) nature. Neglecting a possible enterohepatic cycle, i.e., 
reuptake of drug after release from the gallbladder via the gut lumen into the 
liver, this model involves 10 transfer rate constants. 

In a model used, not for any practical pharmacokinetics but for purpose 
of evaluating the computational algorithms, only five compartments and seven 
transfer rate constants were considered (Fig. 4.2b). 

Small-scale models that do consider metabolism but are physiologically 
less realistic are a 2x3 compartment model (plasma, excretion, tissues; Fig 4.1b: 
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Fig. 4.1 

Configurations of postulat­
ed models for DAU·DOL 
pharmacokinetics in the rat 

The rat body (schematically 
in Fig. 4.1 a) is lumped into 
11 spaces representing tis­
sue regions and body fluids 
that playa relevant role in 
the distribution, metabolism 
and elimination kinetics of 
daunomycin; 
each space has two com­
partments (P and M), res· 
pectively, for the parent 
drug and its major metabo­
lite, daunomycinol; 
pathways are indicated 
along which DAU and DOL 
transport (solid lines) or 
OAU~OOL metabolism 
(broken lines) may take 
place. 

A: tissues for 2x3 compart­
ment model; 81,82: tis· 
sues _1, tissues _ 2 for 2x5 
compartment model; 
Cl,C2: idem, 2x6 com· 
partment model; 01,D2: 
idem, 2x7 compartment 
model 
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Fig. 4.2 
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Configurations of a seven (a) and a five (b) compartment model 
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A); a 2x5 compartment model (plasma, urine, observed and unobserved tissues, 
bile; Fig. 4.1b: B); and a 2x6 compartment model (as model B, but liver taken 
out of the observed tissues compartment; Fig. 4.1 b: C). 

4.1.2.3 Medium-scale Model. This model is the smallest model to be 
physiologically realistic. The rat body is now lumped into fourteen compart­
ments, i.e., seven to model the DAU distribution and elimination, and again 
seven for DOL formation, distribution and excretion (Fig. 4.3). Data for 
observed organs that have been taken together can be obtained by pooling the 
separate measured drug concentrations, keeping in mind the relative volumes of 
the organs. Again neglecting the enterohepatic cycle, this model has 25 parame­
ters. 

4.1.2.4 Large-scale Model. Now, the most elaborate model (Fig. 4.4) 
comprises eleven double compartments: plasma plus extracellular body water; 
liver, spleen, heart, kidneys, lungs, bone marrow, muscles and other_tissues; 
and urine and bile excretion. Various interlinking pathways can be assumed, and 
several transport/metabolism mechanisms. Six different cases will be considered 
(Table 4-1). First it is assumed that the formation of DOL is a first-order 
process that takes place in every organ at the same rate. After its formation 
DOL is excreted into urine through the plasma without redistribution. It is, 
however, more probable that DOL, transferred from an organ to the plasma, is 
exchanged again with other organs (redistribution) before it is excreted. A third 
possibility is that some organs are better able to form the metabolite than others; 
therefore, unequal transfer rates should be considered. On the other hand, 
metabolism might take place only in the liver-the chemical factory of the body. 
This means that presence of DOL in other organs is necessarily due to redistri­
bution. Finally, metabolite formation might be a (saturable) zero-order, rather 
than a first-order linear process. 

The most probable model must be identified by evaluating the models' 
adequacy in predicting the observed tissue drug concentrations. 

4.1.2.5 Assumptions on Drug Transport. Within each compartment the 
drug is assumed to be instantaneously well-mixed throughout the compartment's 
volume. Thus, within a compartment itself there is no spatial concentration 
gradient. Between compartments such a gradient can exist and drug then is 
transported from one compartment to the other. In view of observed concen­
tration-time histories, looking like exponential decay for most dl1lgs in many 
organs (Fig. 4.5), for the transport processes first order kinetics are assumed, 
yielding first order ordinary linear differential equations. This corresponds with 
a state-space representation of passive diffusion processes. The amount of drug 
transported per unit time from a compartment i to an adjacent compartment j, is 
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Fig. 4.3 
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Configuration of a medium-scale model for DAU-DOL pharmacokinetics in 
the rat 
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Fig. 4.4 Configuration of a large-scale model for DAU-DOL pharmacokinetics in the rat 
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Fig. 4.5 Qualitative system response to a single rapid i. v. drug input 
Three phases in the response can be distinguished: A = fast equilibrium between 
plasma and well-perfused organs and slow tranfer to peripheral organs; B = excretion 
from well-perfused organs and plasma and still slow transfer to peripheral organs; C = 
return from peripheral organs to plasma, constant rate excretion, and a constant ratio 
of concentrations in plasma and well-perfused organs (after [Garrett, 1980)) 
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TABLE 4-1 LARGE-SCALE PHARMACOKINETIC MODELS FOR DAU-DOL (see Fig. 4.4) 

model remarks 
01 compartments: 

plasma, heart, kidneys, lungs, muscles, liver, spleen, bile, bone mar w 

row, other_tissue, urine 
observations: 

no observations in other_tissue and bile 
metabolism: 

first-order orocess with equal rate constants in all organs 
(P44=P43=P42=P41 =P40=P39=P38=P19), but not in plasma: P45 =0; 
no DOL redistribution, only excretion via plasma: P30=P31 =P32= 
= P33 = P34 = P35 =P36 = P37 =0 

02 as 01, but DOL redistribution pathways added (P30 through P37) 

03 as 02, but metabolic rate constants (P19' P38 through P44) may differ 
among organs 

04 as 03, but metabolism in liver only 
(P46 =P44 = P 43 = P42 =P41 = P40 = P39 =P38 =0) 

05 as 03, but also metabolism in plasma (P45 "'0) 

06 as 05, but zero-order metabolism process 

N.B., other_tissue: other tissues that can be reached by the drug but for which no 
observations are available. Tissues that cannot be reached by the drug, for example brain 
tissue and bones, are excluded from the models 

proportional to the amount of drug present in the former compartment. Writing 
kj,i for the time-invariant transfer rate constant (proportionality or diffusion 
constant), and Vi for the volume of compartment i, the rate of change of drug 
concentration x is given by: 

dx· 
X· = _, = - k·· . r· 

1 dl y,I' 1 
alld 

v. 
". = k .. ' 1 • J y,1 V. 

J 

for the principle of mass conservation must hold, 

(4,1) 

If there is an external input of dl1lg, e,g" at rate ui(t), Eq.(4.1) expands to: 

alld 
v· 

Xj = ~,i' V~ . Xi + lip 
J 

(4.2) 

Similar equations can be drafted for other compartments. They can conveniently 
be combined in one equation in vector-matrix notation (see section 4.1.2.7; see 
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AppendixD that surveys a few elementary matrix manipulations): 

,r = A'J + B'!!.. (4.3) 

4.1.2.6 Assumptions on Metabolism. Again assuming first order kinetics, 
knowing that one mol of DA U yields one mol of DOL, equations analogous to 
Eq.(4.1) can be written. Because of a possibly limited enzyme capacity constant 
rate metabolism also must be considered. Then, per unit time a constant amount 
of drug is metabolized, thus transferred within a same tissue region from 
compartment i to its double, j: 

= K..' Vi 
;i:j j,1 V.' 

1 

;i:. = -K.. 
I :;,1 alld (4.4) 

Although not considered in the present study, a combined constant/concentra­
tion-dependent metabolic process might be modeled with the Michaelis-Menten 
equation [Michaelis and Menten, 1913]: 

Kl· ··X· x. = _ J,I I 

I K2j ,i + Xi' 
(4.5) 

which reduces to Eq.(4.4) for large Xi' and to Eq.(4.1) for small Xi' 

4.1.2.7 Model Eguations. A block diagram representing the general case of 
a linear multivariable physical system is shown in Fig. 4.6. Variables that char­
acterize the state of the system are elements of the state vector, x(l). Observed 
variables are elements of the response vector, Set). Input variables are elements 
of the input vector M(t). The temporal change in the state of the system is related 
to the current state through the system matrix, A, which depends on (time-in­
variant) system parameters (elements of the parameter vector, pl. It also 
depends on the input, through the control matrix, Ct(t). This is expressed in the 
state equation: 

(4.6) 

The output equation relates the model response to the state through observation 
matrix H(I)-and to the input, through throughput or distribution matrix C2(t), 
although this latter matrix usually is zero for most physical systems: 

(4.7) 
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Fig. 4.6 Block diagram for a general linear multivariable physical system 
The system is characterized by the time-invariant system matrix A (function of param­
eters n); the input y{t), distributed by matrices C1(t) and C2(t); and state ~(t) which is 
related by observation matrix H{t) to response y(t). Noise from various sources, often 
modeled as a single noise vector y(t), may pollute the observations Ym{tk) 
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Various sources of noise may act on a system, causing a change in the response 
while the (nominal) input was kept constant (Fig. 4.6). Noise may corrupt the 
input (e.g., random fluctuations in rate of drug administration), the system itself 
(e.g., changes in ambient temperature, intermittent food uptake) and the output. 
In the present study, for simplification all noise will be considered to accumulate 
in random (measurement) errors in the output only. 
The state vector in a model existing of 2n compartments (n for DAU and n for 
DOL distribution, respectively) contains the 2n drug concentrations. These are 
zero before time to' In the present case the input to the system can be modeled 
as an initial condition. The dose D is administered such, that instantaneous 
loading of the first compartment (plasma-DAU; volume Vt) can be assumed at 
time to' Let the pathway stlucture be such, that m transfer rate constants (the 
model parameters) can be distinguished. Let there be N observation times, with 
observations available for w out of 2n compartments (N.B., for any of these w 
observed compartments not necessarily all observation times must yield a 
measured value). If process noise is neglected, general model equations for the 
state-space representation of this first order linear time-invariant system reduce 
to: 

~(t) = A(jJ)·;r.(t) with initial condition 1{(tO) = col[DIVt,O, ... ,Q], (4.8) 

where 
x(t) 
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(4.9) 

(4.10) 

is a 2nxl state vector, i.e., its elements are the concentrations in the 
2n defined compartments, 
is a 2nx2n system matrix whose elements depend on m parameters 
(transfer rate constants) that are gathered in the mxl parameter 
vector 11, 
is a wx I (w :0; 2n) model response vector at sample time tk, whose 
elements thus are the concentrations in the w observed compart­
ments in the system, 
is a wx2n observation matrix relating the model response to the state 
vector at time tk , 

is a wx I vector with observations at time tk' 
is a wxl measurement noise vector at time tk, which is assumed to 
originate froni Gaussian random distributions characterized by a 
zero mean value and a certain variance. 



TABLE 4-2 STATE EQUATIONS FOR THE MEDIUM-SCALE MODEL OF FIG_ 4_3 

The state equations are, based on maSs balance: 

",(t) -(p(l) + p(3) + p(5) + p(8) + p(20) + p(19))-x, (t) + P(2)-x2(I)-V(2)IV(1) + 
p(4)-x3(I)-V(3)IV(1) + p(6)-x5(t)-V(5)IV(1), 

"2(t) p(l )-x, (t)-V(1 )IV(2) - (p(2) + p(18))-x2(1), 

"3(1) p(3)-x, (I)-V(1)IV(3) - (p(4)+ p(7)+ p( 17))-x3(t) + p(21 )-x7(t)-V(7)IV(3}, 

"4(1) 
"5(1) 
"a (I) 
"7(1) 

"a(1) 

P(7)-x3(I)V(1 )IV(4}, 
p(5)-x, (t)-V(1)IV(5) - (p(6) + p(25)-x5(1), 
p(8)-x, (t)-V( 1 )IV(6)' 
p(20)-x, (t)-V(1)IV(7) - (p(21) + p(24))-x7(t), 

p(19)-x,(t) - (p(9)+p(11)+p(13)+p(16)+p(22)-x8(t) + 

"9(t) 

p( 1 0)-x9(t)-V(9)IV(8) + p( 12)-x lO(I)V(1 0)IV(8) + p(14)-x'2(I)-V(12)IV(8), 
p(18)-x2(1) + P(9)-x8(t)-V(8)IV(9) - P(10)-x9(t), 

",o(t) 

",,(t) 
"'2(t) 
"13(1) 
"'4(1) = 

p(17)-x3(t) + p(11)-xa(t)-V(8)IV(10) - (p(12)+p(15)-x,o(1) + 
p(23)-x'4(t)-V(14)IV(10), 
p(15)-x lO (I)-V(1 O)IV(ll), 
p(25)-x5(t) + p(13)-xa(t)-V(8)IV(12) - p(14)-x'2(t), 
p( 16)-x8 (t)-V(8)IV( 13}, 
p(24)-x7(t) + p(22)-xa(I)-V(8)IV(14) - p(23)-x'4(t), 

in which the transfer rate constants, kj,il are combined in a vector, Q, and compartment 
volumes in a vector, Y; e.g., p(21)=k3 ,7 (to liver from spleen), V(l) is the volume of 
compartment 1. These equations can be written as: ' 

",(I) = A(l,l)-x,(t) + A(1,2)-x2(t) + .. _ + A(14,1)-x'4(t), 
"2(t) = A(2,1)-x,(t) + A(2,2)-x2(t) + .. _ + A(14,2)-x'4(t), 

"'4(t) = A(14,1)-x,(t) + A(14,2)-x2(t) + .. _ + A(14,14)-x'4(t), 

where the elements of system matrix A depend on the parameters p(1) through p(25) 
and on the compartment volumes V(1) through V(14): 

A(l,l) 
A(1,2) 
A(1,3) 
A(l,4) 

-(p(l) + p(3) + p(5) + p(8) + p(20) + p(19)), 
p(2)-V(2)IV(1 }, 
p(4)-V(3)N(1 ), 
0; etc., 

Of, in matrix-vector notation: 

A(l,1) A(1,2) 
A(2,1) A(2,2) 

A(ll,1) A(11,2) 

A(14,1) 
A(14,2) 

A(14,14 

which is equivalent with: x(1) = A - 1((t) 
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TABLE 4-3 A FEW MATHEMATICAL MANIPULATIONS 

Runge-Kutta integration 
Given state vector li at time to' ~(to) :::: lio; to find the state vector at time t, :::: to + 6.t, 
1{(t1) = K" calculate subsequently: 

f(~) A'~ ~j L>t f (~o) 
~+ J,' ~j f(~ + J,'~I) A' (~ + J,'~I) ~2 L>t f (~o + J,' ~I) 
~ + !z ')~2 f(~ + J,'~2) A' (~ + l;'~2) ~J L>t f (~o + l;' ~2) 
~ + ~J f(~ + ~J) A'(~ + ~J) ~ L>t f (~o + ~J) 
~j ~+ (~I + 2' ~2 + 2' ~J + ~) / 6 

Simpson's [!lIe 
The integral of a function f(x) on interval (a,bl can be approximated-if the value of f(xl 
is known in 2'n + 1 equidistant points Cj on this interval (co:::: a, c2n = b)-by: 

b 

fflx) dx "" 
a 

Cramer's rule 
To solve Xl and x2 from a set of 2 algebraic equations, 

all' Xl + al2'x2 ~ b l all a12 xl b1 
or 

a{2' Xl + a22' X2 b 2 a21 a22 x2 b2 

according to Cramer's rule: 

det (Aj) det (A2) 
Xj x2 

det(A) det(A) 

where 
all ali 

I 
det(A) all'a22 - a12'a2lt 

a21 a22 

b l al2 

I 
det(AI) b l 'a22 - a12'b2 and 

b2 a22 

all b j 

I 
det (A2) ~ ~ all' b 2 - b j 'al2' 

al2 b2 

E,g" a11 ~ 2, a'2 ~ 1, a2' 1, a22 = 2, b, 13 and b2 ~ 11 yield: 
Xl = 15/3 = 5 and x2 = 913 = 3. This can easily be extended to larger sets of alge­
braic equation's in an analoguous way. . 
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As an example, the state equations describing the medium-scale model of Fig. 
4.3 are shown in Table 4-2. 

4.1.2.8 Solving the Model Equations. For small-scale models it is possible 
to solve the model equations analytically, e.g., by using Laplace transformation. 
This method is elucidated in Appendix E for the 2x3 compartment model shown 
in Fig. 4.7. Although in theory possible, this method quickly becomes unwieldy 
when larger models are concerned. Then it is easier to solve the 2n model 
equations numerically than analytically. The state vector as function of time can 
be found in different ways, e.g., through direct numerical integration (RlIllge­
Kutta algorithm) or by the so-called transitioll matrix method. 

Runge-Kutta Integration. For a given set of parameter values, i.e., the m 
transfer rate constants combined in a vector 110' the system matrix A is known. 
Starting from the known value at time to (initial condition) the state vector at 
time t, a time step L\.t later (t = to + L\.t), can be calculated from: 

I I 

J(t) = J(to) + I ,i(7)dT = J(to) + fA ·J(7)dT. 

o ~ 
(4.11 ) 

The Runge-Kutta algorithm to perform the integration is illustrated in Table 4-3. 
To avoid inaccuracy due to accumulation of round-off errors it is necessary to 
take a small time step L\.t (in practice, '/2-2 min). To calculate the state vector at 
large t, the interval [t,t01 should be divided into many small time steps L\.t and 
Eq.(4.11) should be used recursively. Observation times ranging up to 48 h, this 
may turn out to be a time-consuming procedure. 

Transition Matrix Method. It can easily be proven that a general solution for the 
state vector can be written as: 

(4.12) 

provided that for the 2nx2n transition matrix q, the following formulaholds: 

(4.13) 

(l denotes the 2nx2n identity matrix). From Eq.(4.13) the transition matrix can 
be solved, e.g., again by Runge-Kutta integration. Alternatively, the transition 
matrix may be obtained from a numerical evaluation of its analytical solution, 
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Fig. 4.7 Configuration of a 2x3 compartment model for DAU-DOL pharmacokinetics 
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<P(tlo) ~ exp {A- (HO)} ~ exp(A' I'lt). 

To this purpose the exponential function is expanded into the series: 

A2'l'lr A3 'l'lf exp (A . I'll) ~ I + A' I'll + + + .... 
2! 3! 

(c!, c factorial, denotes Ix2x3 .. xc; so, e.g., 3! = Ix2x3 = 6). 

(4.14) 

(4.15) 

As Eq.(4.15) converges for all I'lt, only a limited number of terms needs to be 
evaluated to arrive at a sufficiently accurate approximation. At present the first 
25 terms are computed and time step I'lt = 0.5 min is taken. The state vector 
subsequently follows from Eq.(4.12). 

The advantage of the transition matrix method is that this matrix needs 
only be computed for a short time interval [to,t], as for larger time intervals it 
can be found by simple matrix multiplications [Kwakernaak, 1972]. This means 
a considerable reduction in computation time. For example, it can be easily 
proven that, for integer a and b: 
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if>«a+b)' 1,10) = if>(a' 1,10) . if>(b' 1,10), (4.16) 

Thus, if the state vector is to be known at regular time intervals Ilt only, a 
recursive formula can be used: 

~(I+t./) = if>(t+IlI, I) . ~(t), or xk+1 = if>(t./) . xk' (4.17) 

in which if>(llt) is a constant and needs to be computed only once. 

If effects of constant rate metabolism are to be included, the state Eq.(4.8) must 
be slightly modified. The system matrix A involves only the parameters as­
sociated with the drug (re)distribution and a 2nxl vector?; is added, whose 
non-zero elements involve the metabolism parameters: 

(4.18) 

These state eqs.(4.18) replacing eqs.(4.8) have the following solution: 

I 

~(I) = if>(I,lo)·~(to) + I if>(t,TndT, 

o 

(4.19) 

where the transition matrix if> again can be obtained by numerical integration of 
Eq.(4.13), or through Eq.(4.15), followed by selfmultiplication(s). The integral 
in Eq.(4.19) can be evaluated by application of the well-known Simpson's rule 
(see Table 4-3) to each matrix element separately. 

4.1.3 Parameter Estimation 

If the chosen pharmacokinetic model is the right one, the model response for a 
given drug' input should correspond to a high degree with concentrations 
observed as output. (Of course, as the observed concentrations are noise­
cormpted, a perfect correspondence will be extremely rare.) Given the model 
structure, the model response varies with the choice of the parameter values 
(transfer rates). This choice should therefore be optimized before it can be 
decided whether the model is or is not a good model of the pharmacokinetic 
system. 

Apart from the method used with the 2x3 compartment model (Appen­
dix E), for parameter estimation a few well-known techniques are available 
[e.g., Eijkhoff, 1974; Gill, Murray and Wright, 1981). In principle, the 
procedure is as follows. For any parameter vector no, whose elements can in 
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Fig. 4.8 Maximum Likelihood Optimization 
Parameter values (112) yielding model response Yi(t.1l2) in compartment j (i.e .• curve II) 
are more likely than those (111) yielding response YI·(t.ll1) (i.e .• curve I). because in the 
former case the likelihood of the residuals Ymitk)-Yj tkl. k = 1.2 .... is higher 
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principle be chosen 'arbitrarily' (i.e., in practice, based on available a priori 
information, the most appropriate guess is taken), the time course of the state 
vector can be calculated with Eq.(4.14) and Eq.(4.17) or Eq.(4.19). Then, for 
all N time points tk the model response X(tk) Ipo is compared with the datapoints 
in all observed compartments simultaneously, from which a new set of param­
eter values-closer to the true ones-is deduced. In the present case a stochastic 
maximum likelihood (ML) estimation technique [e.g., Astrom, 1979; Eijkhoff, 
1974] was chosen because of its properties of asymptotic unbiased ness and 
efficiency (i.e., if the number of observations becomes large enough the true 
parameter values will be found eventually, respectively, the variance-covariance 
matrix of the parameters approaches a lower bound given by the inverted 
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Fisher's information matrix (E-1, see below), thus yielding an estimate of the 
accuracy of the estimated parameter values). In this approach the parameters are 
considered random variables with a Gaussian probability density function 
(N{PML;E- 1 I), rather than unknown constants. 

4.1.3.1 ML Technigue. Assuming that the chosen model equations describe 
the system correctly, in principle the ML method finds those parameter values 
and corresponding model response that yield the highest probability of occurren­
ce of tile residuals (i.e., the remaining deviations between model response, ):, 
and observations, ):m; see Fig. 4.8). Therefore, some probability density 
function (pdt) for this occurrence must be assumed. Usually a Gaussian function 
can be expected, with a zero mean value and some variance-covariance matrix. 
Writing y(tk) for the residuals at tk , let this Gaussian pdf, N{!l,Q(tk)}, be given 
by: 

Ep {.!'(t k)} = l! and 

Ep{[}'(lk) -Ep{.!'(lk)}J . [}'(tk) -Ep{.!'(tk)W} = Q(lk)' 
(4.20) 

(Ep denotes the expected value of; Pr denotes the probability of; l! is a wxl 
vector and Q a wxw matrix). The probability of the present residuals, for Do, 
will then be: 

pdj{.!'(tk) 1J1Q} = Pr{.!'(tk) 11'!!} = 

= (211")_'/'''' . I Q(tk) I-V, . exp{ -liz' !'(tk/' Q(lk)-I. !'(Ik)}' 
(4.21) 

If stationarity is assumed, then Eq.(4.21) is valid for every ~. If it is further 
assumed that each observation is. independent on any other one (both in the same 
compartment at different times and in different compartments at the same time, 
i.e., temporal and spatial independence), then Q(tk) = Q = diag(varj), where 
i = I through w, and varj is the variance of the residuals in compartment i. In 
that case, for the residuals the joint pdf, or likelihood function L, is given by: 

L = pdj{!'(tl),!'(t2), ... ,.!'(IN)!J1Q} = 

N 
= (21f)-'/HI'N. !Q!-lhN. exp{-1/2' L!'(lk)T.Q-l'!'(lk)} 

k~l 

for Nobservation times. 

(4.22) 

Substituting the ML values, PML' for llo maximizes L and corresponds with the 
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optimum model response, under the given assumptions. If, in that situation, it 
does not satisfactorily explain the observations, then the model used is obviously 
not adequate and should be replaced. 

To find the ML values, starting from arbitrary initial values 110' some numerical 
search algorithm must be employed that maximizes the function L with respect 
to the parameters. By optimizing this likelihood function, instead of any other 
function of 11, parameter values are obtained that have the highest probability of 
being true (provided that the used model is correct). Minimizing the function 
-In(L): 

-In(L) ~ 1/"N'w'ln(21f) + 'I2·N·ln(IQj) + Ij,·PF(Ji), 

by minimizing the so-called performance index, PF: 

N 

PF ~ L 1'(tkl· Q-I. 1'(tk)' 
k"1 

where.l' denotes measurement noise at sample time tk: 

l' ~ YIIl - J.(Ji) ~ YIIl - H'JJJi), 

yields the same result, but may be more convenient. 

(4.23) 

(4,24) 

(4.25) 

Next to its asymptotic unbiasedness the other advantageous property of the ML 
method is its asymptotic efficiency. In olher words, the pdf of the parameters 
tends to a Gaussian distribution with the estimated values as mean and the 
inverted Fisher information matrix (or Cramer-Rao lower boundaly) as var­
iance-covariance matrix. The Fisher information matrix is defined by: 

(4.26) 

Minimization of -In(L) yields the wanted ML parameter values. This, in turn, 
means that the derivatives, with respect to the parameters of the function PFCIl) 
(Eq.(4.24» must all be set to zero. If Q is unknown-as it usually is-it can be 
estimated by maximization of In(L) with respect to Q. An approximation for this 
is: 

-146-



Q 
1 
N 

N 

L(Ym - H'>i\ 
k~1 

(4.27) 

4.1.3.2 Minimization Routines. Starting from some-in principle-arbitrar­
ily chosen set of initial parameter values, an iterative computer program must 
take steps in the parameter space toward the ML values of the parameters that 
maximize the function L. A schematic flow diagram for the computations is 
given in Table 4-4. Three different numerical and iterative optimization routines 
were considered: 
l) a modified Gauss-Newton (MGN) method, which requires solving of analyti­

cal sensitivity (ordinary first order differential) equations; 
2) ajinite differences (FO) approach to the computation; 
3) a direct dete17nination of tile Hessian matrix of second order derivatives and 

the gradient vector of the log-likelihood function in the parameter space, 
again via finite differences (DOH method). 

MGN Optimization Algorithm. This gradient search method is derived from the 
well-known powerful Newton-Raphson procedure [Allen, 1983]. Figure 4.9 
shows the principle of the NR-procedure for a one-dimensional parameter space. 
According to a Taylor-series expansion the value of a function J(ll) for param­
eter vector III can be found from its value for parameter vector Il(j, if III and Il(j 
differ by a small amount, till = III - Il(j: 

J(Pl) ~ J(po) + --=-. till + - 'l:J.pT. -. till + OcMJ. 
I)J(po) I [ 1)2 J(Po) J 

- - I)po 2! I)p~ 

Substitution of PF for J and neglecting the higher order (O(till3» 
Eq.(4.28) converts to: 

PF<I!J) PF<I!sJ.) ~ I:J.PF ~ I) PF<I!sJ.) + '/2 .l:J.o T. [1)2 PF(~) J. 
till till I) Po I) p~ 

This, in turn, by considering the limit till .... !! and taking I:J.PF/till 
minimum of the function PF, converts to: 

(4.28) 

rest term, 

(4.29) 

o at the 
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TABLE 4-4 COMPUTATIONAL FLOW CHART 

START: 
j 

parameter vector observations 

L system matrix 

L 

-148-

state vector 
through Direct Runge-Kutta Integration 

or Transition Matrix 

L 

·residuals + their autocovariance matrix 
·goodness of fit 

log likelihood function (-LLF value) 

if change in 
detCautocovar.matrix) < 0.1% then 

STOP 

sensivities 
through Transition Matrices 

or Finite Differences computation 

grad(-LLF) + Information 
using sensivities 

Matrix 

or Direct Determination 
through 

of the Hessian 
Finite Differences 

Singular Value Decomposition of the 
Information Matrix 

a) if negative eigenvalue(s) then 
Line Minimization of -LLF in direction 

of largest negative eigenvalue 
b) else 

Reduce Information Matrix by neglect­
ing the smallest eigenvalues 

invert (Reduced) Information 

direction of parameter step 
j 

Line Minimization of -LLF 
in this direction 

I 
Parameter step 

~atriX~ 

if step < 0.1% then STOP 



Fig. 4.9 Function F of parameter p; the minimum is found at F(Pm) by the Newlon­
Raphson algorithm; starting at Po: 

N.B., starting from Po' results in divergence, i.e., a parameter step away from the 
minimum 

[F(P) 

~p 

!dF(p)/dp 

Po' p,' ~p 
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(4.30) 

yielding an expression for the Newtonian step to be taken in parameter space 
toward minimum PF. Both second and first order derivatives occur. 

The ON gradient method was chosen, because it has the advantage that 
it does not require the time-consuming computation of the second order deriva­
tives. Instead, in an approximation of the Hessian matrix (of second order 
derivatives) it only involves the computation of first order derivatives of PFCp) 
with respect to 11. 

Differentiation of Eq.(4.25) yields: 

grade -In(L)) ~ o-ln(L) 
oR 

Differentiating once more yields the Hessian: 

(4.31) 

(4.33) 

neglecting the second order tenn. Therefore, under the assumption of indepen­
dent observations, E can be written as: 

(4.34) 

Thus, iteratively the ON parameter step vector JW can be calculated, until it 
becomes smaller than some preset value, ~, according to (for the ith iteration): 
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(4.35) 

However, at present the iterations will be continued as long as the change in the 
determinant of the variance-covariance matrix of the residuals, I Q I, remains 
larger than 0.1 %. If the iterative procedure has converged, the parameter values 
after the last iteration are considered the true ones (ML estimates), and their 
accuracies are estimated from the final E- I . 

Sensitivity Equations through Transition Matrices. Sensitivity equations show the 
sensitivity of the state vector with respect to the parameters. As the ON routine 
requires evaluation of the derivatives of the model response with respect to the 
parameters (Eq.(4.35», and 

il,r ilH'x ilx 
--- = H'--':::', 

ill!. ill!. 
(4.36) 

a set of sensitivity equations is drafted and solved simultaneously with the state 
equations. For each of the j = I, .. ,Ill parameters, define the sensitivity vector: 

(4.37) 

The sensitivity equations then are found by differentiation of Eq.(4.8): 

il ~ .(1) 
S .(1) = __ J - = A . s .(1) + B).' ~(t), -) ill -) 

(4.38) 

Each element of the matrix Bj can be found by actually differentiating the 
corresponding element of the system matrix A with respect to the parameter Pj' 
The initial condition of the sensitivity equations is ~Po) = Q. It is not difficult to 
prove that the solutions are: 

where transition matrices 'Iij can be found by numerical integration (presently 
performed for t-to=0.5 min by Runge-Kutta method) of: 
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TABLE 4-5 SENSIVITIES BY FINITE DIFFERENCES IFD) 

• subsequently, vary each of m parameters by 1 % => 
m + 1 parameter vectors (inctuding the original one); 

• calculate corresponding state vectors; 
at time point k the state vector for the jlh parameter vector is x(k,j); 

CD write the ith element, xi(k,j) as a first-order polynomial in p; e.g., 

xli,k,1) 
xli,k,2) 

= soli,k) + s, Ii,k)'p, (1) 
= soli,k) + s, Ii,k)·p, (2) 

+ s21i,k)'P211) + .. + sm1i,k)'Pm I1 ) 
+ s21i,k)'P212i + .. + smli ,k)'pmI2) 

• subtract the first m equations from the last one: 

IIxli,k,1) = s,li,k)'lIp,11) + s2Ii,k)'IIP211) + .. + smli,k)'IIPmI1) 
IIxli,k,2) = s,li,k)'lIp,12) + s21i,k)'IIP212i + .. + sm1i,k)·IIPmI2) 

as the 6.x's and l'I.p's are known, from this set of m equations the m unknown sensivities 
s,li,k) = 8x;l8p , , s21i,k)=8x;l8P2' .. , sm1i,k)=8x;l8Pm at time point k can be solved 
algebraically; 

similar sets can be drafted for the other time points, k = 1, .. ,N, as well as for the other 
state vector elements, i = 1 ,,,,2n 

or by evaluation of the analytical solution: 

'ft/!,IO) = Bj' (t - 10)' exp(A' (1-10)), 

For larger time intervals, by matrix multiplications: 

(4.40) 

(4.41) 

(4.42) 

FD Approach to the Solution of the Sensitivity Equations, The use of transition 
matrices demands the solving of an extended number of simultaneous differential 
equations. The finite difference method deals with. ordinary algebraic equations 
and obtains approximate values for the sensitivity vectors in the following way. 
From the initial m-dimensional parameter vector m new and slightly different 
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parameter vectors are derived by giving, in sequence, each parameter value a 
1 % deviation. For each of these m + 1 parameter vectors the model response is 
calculated (Eq.(4.11) or Eq.(4.17». The state vector 1>(p) now is written as a 
first order polynomial in J), e.g., for the ith element of the state vector at the kth 
sample time and the lth parameter set: 

X(i,k,l) = so(i,k) + sl(i,k)'p[(l) + sii,k)'P2(l) + .. + sm(i,k)'pm(l), (4.43) 

in which x and p are known and sl through sm can be regarded as the sensitivi­
ties of the state variable in the ith compartment at time tk: 

. 8xi(lk) 
sj(l,k) = --

8pj 
(4.44) 

Drafting Eq.(4.43) for all m + 1 parameter vectors yields a set of equations from 
which the ith elements of the m sensitivity vectors at time k can be easily 
calculated after some algebraic manipulations rather than after solving differen­
tial equations (Table 4-5). This is repeated for each of the i = 1..2n elements. 
Next, the parameter stcp vector can be computed as in the MGN procedure. For 
the second iteration only one new model response needs to be calculated, i.e., 
using the new found parameters. They substitute for the set with the worst 
model response (largest contribution to -In(L)) in the previous iteration. Then, 
again the sensitivities can be computed, etc. 

Convergence. An advantage of gradient methods like the GN method is that they 
can be fast; a disadvantage is that convergence problems may arise, i.e., that 
successive parameter steps may drift away from the optimum, instead of getting 
closer to it. This may especially occur when initial estimates are poor, i.e., far 
from the tme parameter values. To diminish the risk of divergence in executing 
the calculated parameter step the following modifications have been applied. 
L) After the calculation of a parameter step vector (direction and magnitude), 
instead of taking this step and proceeding with the next iteration a line mini­
mization (parabolic expansion) is performed first. Two small steps of equal size 
are taken in the original step dircction and the function to be minimized, -In(L), 
is evaluatcd. The function value in the starting point also is known. A parabola 
is drawn through the three points. The location of its minimum determines the 
magnitude of the parameter step to be actually executed. From this point in 
parameter space the next iteration is started, etc., until the parameter values no 
longer change more than 0.1 percent. Figure 4.10 illustrates a two-dimensional 
case. If necessary, a built-in stcp limitation procedure reduces again the mag­
nitude of the step, to prevent any of the parameters from becoming negative (the 
transfer rate constants cannot be less than zero). 
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Fig. 4.10 Function F of two parameters; Line Minimization along A-A 
1QQ shows lines of constant F in the PrP2 plane; bottom shows cross-section A-A. The 
conventional step 0-1 (Gauss-Newton gradient) results in divergence; take equal steps 
00' and 0'0" and evaluate the function in 0, 0' and 0"; find the minimum of the 
parabola through these points; take'the corresponding step 01' which results in conver­
gence 
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2.) A singular value decomposition (SVD; [Golub and Reinsch, 1970]) of the 
information matrix E rotates the m parameter axes into m mutually independent 
eigendirections. Divergence is caused by large steps in the least significant 
eigendirections. Negligence of these unimportant eigendirections that hardly 
contribute to the function minimization, thus reducing the dimension of the 
parameter space from m to m' < m, will in general improve convergence. 
Figure 4.11 shows a two-dimensional example. Computationally, the SVD 
involves resolving E as a product of its eigenvalue and eigenvector matrices: 
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Fig. 4.11 Function F of two parameters; Minimization after Singular Value Decom-
position (SVD) 

conventional step AS (Gauss-Newton gradient) results in divergence; SVD aJ rotates 
the parameter axes into eigendirections; b) neglects the step into the least important 
eigendirection (corresponding to the smallest eigenvalue of the information matrix); so, 
c) takes step AC which results in convergence 
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F 

(4.45) 

where a) eigenvalue matrix Y = diag(el,e2, .. ,em) with eigenvalues ej following 
from IE - ej' I I = 0; and b) Ij is an eigenvector, from E.Ij = ej.Ij, forming 
the ith column of the eigenvector matrix T. 

Rearranging Y and T in order of decreasing ej, and subsequently ignor­
ing the m-m' smallest eigenvalues and their corresponding eigenvectors, yields a 
reduced and sorted information matrix: 

(4.46) 

to be used in Eq.(4.35) for the determination of the direction of the parameter 
step. 

Should the information matrix yield negative eigenvalues, which can be 
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TABLE 4-6 DIRECT DETERMINATION OF THE GRADIENT, GRAD IF) AND HESSIAN, 
HIFI OF A FUNCTION Fill) IN 110 

• Calculate with 
parameter vector Qo ,elements Pi:::: POi' Pj::::: POj ::::} function value F 0' 

RA ,elements Pi:::: POi + dj, Pi'::: POj =? FA' 
Qa ,elements Pi:::: po;-di• Pj:::: POj::::} Fa' 

(i:::: 1 or 2 or ... or m; j= 1 "'Im; j;:ij; small deviations dj), 

., Then, calculate 
- gradlFI = 8F/81l, with i,h element: 8F(Ilo118p; = {IF A-FoHFB-Fol}/2d;, 

- H(FI=82FJaIl2, with i,h diagonal element: H;; = 82F/8p;2 = {lFA-Fol+ (F B-Fol}/d j2. 

• Calculate with 
parameter vector Qo ,elements Pi:::: POi' Pj:::: POj ::::} function value Fa_ 

Qc ,elements Pi:::: POi + di, Pi= POj + djl Pk:::: POk =} Fe. 
(i = 1 or 2 or ... or m; j = 1 or 2 or ... or m; k = 1, .. ,m; j r' i; k r' i, k r' jl. 

• Calculate 
- H(F) = 82FJa1l2, with element on row i and column j (jr'il: 

H;i = 82F/8p;8Pi = (2·(Fc-Fo)-d;2·H;;-dtHjj}/(2·d;·dil, while Hj; = Hjj . 

This requires 1 + 2'm + Y2 '(m2 " m) evaluations of the function F 

shown to correspond to a "saddle-point" situation, then the subsequent line 
minimization of -In(L) is performed into the direction of the largest negative 
eigenvalue, after which the next iteration starts, 

DDH Method. Instead of first having to solve a large set of differential equa­
tions to find sensitivities ali/aD, the gradient of the log likelihood function (LLF) 
and its Hessian matrix are calculated for Do in a direct way, Again, several 
parameter vectors are chosen in the neighborhood of 110, Starting from the 
m-dimensional vector 110, first, each parameter separately is augmented, and 
also decreased, by factors 0.01 and 0,02, Then, again starting from Do, param­
eters are varied simultaneously by a factor +0,01, This yields I + 4m + 2m 

different parameter vectors, for which the corresponding values of the LLF are 
calculated (Eq,(4,11) or Eq,(4.17)). Through these values a second degree 
surface can be fitted in the least squares sense, According to Newton, 
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(4.47) 

from which the gradient oLLFlo11o and the Hessian o2LLFIollo2 can be obtained 
as LF, 110 and III (1=1, .. ,1+4m+2m) are known (Table 4-6). Next, a parameter 
step vector can be calculated, etc., as in the MGN method. 

Approximation by a first degree surface, hopefully without great loss of 
information, reduces the number of evaluations of LLF, which otherwise will 
quickly grow very large with increasing number of parameters. Using the fact 
that the Hessian is a symmetrical matrix, i.e., 

(4.48) 

further reduces the number of evaluations to I + 2m + 1/2 , (nl-m). 

4.1.4 Errol' Estimates 

4.1.4.1 Estimation of the Variance-Covariance Matl'ix O. Before every 
new iteration the variance-covariance matrix of the residuals, Q, is updated, 
using the sensitivity vectors and parameter step vector from the preceding 
iteration. Assuming that residuals are mutually independent, the covariances are 
set to zero (cov{(Ymj-Yj),(YmrYj)} = 0; j;-'i). Then 

Q ~ diag[val'j, vaI'2'''' val'",), where for the (k+l)st iteration: (4.49) 

1 )'" W. 

It is possible to put extra weight to the observations in some compartment i, for 
instance weighing by a factor f means that varj must be set to varj' f2. This has 
been done sometimes to emphasize the DAU-plasma observations, whose levels 
are low compared to the tissue concentrations and therefore might be neglected 
by the optimization algorithm. 

4.1.4.2 Estimation of the Val'iance-Coval'iance Matl'ix V p' The inverted 
Fisher's information matrix approximates the variance-covariance matrix, V@' of 
the parameters. Thus, after the final iteration step the diagonal elements ot the 
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matrix E-1 (Eq.(4.34)) yield the standard deviations of the parameter values. 

4.1.4.3 Estimation of the Val'iance-Coval'iance Matl'ix Vx' The estimated 
error in the final model response can be computed from the variance-covariance 
matrix, V" of the state vector: 

(4.50) 

Thus, at any time t the standard deviation of the ith element of the state vector 
results from the ith diagonal element of the matrix V.ct). 

4.1.5 Pel'fol'mance Cl'itel'ia 

To compare the performance of the different optimization routines, and to ena­
ble the comparison of the results for different model structures. the following 
criterion variables were selected: 
1 CPU time needed to go through the iterations; 
2) the value of the log likelihood function. LLF. after each iteration; 
3) the distance between the final and initial estimates of the parameter values; 
4) the goodness of fit of the model response to the observations. expressed in 
the total correlation coefficient. Tee. defined by: 

(4.51) 

where Ym and y denote observed and calculated values. respectively. and the 
summation is performed over all sample times k = 1, ..• N in a compartment. 
The overall Tee is computed by: 

(4.52) 

adding a summation over i = 1 •..• w observed compartments. The Tee is a 
good measure for comparing the goodness of fit of various curves to a same set 
of data points. In a case of perfect fit Tee becomes 1. in general Tee will be 
less than 1. 
5) SSR; the sum of the sums-per compartment-of squared residuals divided 
by their variances. This variable allows comparison of the goodness of fit of 
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various curves to several sets of data points; the lower SSR, the better the fit. 

(4.53) 

6) PF; the performance index (Eq.(4.24» is basically the same as the SSR, and 
should equal it exactly if the variance-covariance matrix of the residuals would 
really be a diagonal matrix. 
7) AIC; the Akaike Information Criterion [Akaike, 1974] compares various 
models by considering the goodness of fit (SSR), the number of observations 
that are used (NR) and the number of parameters (m) to be estimated (model 
complexity). The lower the AIC value, the better the accuracy-corrected for 
the degrees of freedom in fitting-of the data representation by the model. 

Ale = NR 'In(SSR) + 2 '//1. (4.54) 

8) The magnitude of the variable EC, an error criterion showing to what extent 
a final parameter value approaches its true value. EC is given by 

(4.55) 

This error criterion is meaningful only if the true parameter value is known. As 
Eq.(4.55) shows, EC will have the value I if the estimated parameter value 
equals the true value. For both positive and negative deviations EC will in­
crease, in both cases to a same extent, i.e., estimating p either too large or too 
small by a factor of k will have the same effect on the magnitude of EC: 
Iln(l/k) 1 = I-In(k) 1 = Iln(k) I· 

4.1.6 Computation 

With the above considerations a computer program was designed, written in 
ALGOL60 and implemented to I1I1l on an IBM 370/158 main frame computer. 
This program version was used to identify the large-scale models. With a model 
comprising 22 compartments, 132 observations at 16 observation times and 45 
parameters to be estimated the program requires 3600K of memory and some 
150 s computing time per iteration step. The 2-minute transition matrices are 
obtained by integration. By repetitive multiplications by the current state vector 
the model response is calculated for every 2 minutes and can be printed and 
plotted subsequently. 

A FORTRAN77 version of the program, suitable for 1111lning on a mini­
computer system, has also been developed. The system used for testing the 
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TABLE 4-7 SIMULATED OBSERVATIONS USED TO EVALUATE DATA-SENSITIVITY 

drug dose (pg/ml): 
.12375E+04 

compartment volumes (ml): 
1) plasma~ .2850E+2, 
3) liver: .4940E+1, 
5) tissues 2: .3478E+2, 
7} spleen: .3200E+0; 

true parameter values (min- ): 
1: .1429E+O, 2: .7500E-2, 3: .6814E-2, 
5: .1343E+0, 6: .8180Etl, 7: .4054E+O, 
9: .6000E+0, 10: .9040E+1; 

2) tissues 1: 
4) bile: 
6) urine: 

4: .5854E-1, 
81 .1726E+1, 

datapoint, observation time (min) and concentrations {JIg/mil: 

.5248E+2, 

.1000E+1, 

.1000E+1, 

plasma tiss.! liver bile tiss.2 urine spleen 

o .OOOOE+O .4342E+2 .OOOOE+O .OOOOE+O ,OOOOE+O .OOOOE+O .OOOOE+O .OOOOE+O 
1 .1000E+2 .5113E+0 .5682E+1 .8538E+1 .4037E+1 .2482E+2 .1335E+1 .1823E+2 
2 .2000E+2 .4716E+0 .5466E+1 .8507E+1 .7730E+1 .2559E+2 .2754E+1 .1915E+2 
3 .3000E+2 .4161E+0 .5641E+1 .8996E+1 .1187E+2 .2607E+2 .4556E+1 .1983E+2 
4 .6000E+2 .4310E+0 .5509E+1 .8717E+1 .2063E+2 .2563E+2 .7070E+1 .1943E+2 
5 .9000E+2 .4533E+0 .5348E+1 .8367E+1 .2915E+2 .2512E+2 .9439E+1 .1892E+2 
6 .1200E+3 .5119E+0 .5044E+1 .7654E+1 .3686E+2 .2424E+2 .1120E+2 .1798E+2 
7 .1500E+3 .4499E+0 .5223E+1 .8150E+1 .4690E+2 .2457E+2 .1487E+2 .1849E+2 
8 .1800E+3 .4437E+0 .5179E+1 .8087E+1 .5573E+2 .2435E+2 .1761E+2 .1833E+2 
9 .2100E+3 .4860E+0 .4942E+l .7542E+1 .6351E+2 .2364E+2 .1956E+2 .1759E+2 

10 .2400E+3 .3607E+0 .5375E+1 .8673E+1 .7455E+2 .2462E+2 .2416E+2 .1659E+2 
11 .3000E+3 .4461E+0 .4901E+1 .7580E+1 .8967E+2 .2321E+2 .2790E+2 .1739E+2 
12 .3600E+3 .4246E+0 .4856E+l .7560E+l .1066E+3 .2289E+2 .3326E+2 .1720E+2 
13 .4200E+3 .3657E+0 .4964E+l .7920E+l .1240E+3 .2295E+2 .3912E+2 .1748E+2 
14 .4800E+3 .4584E+0 .4562E+l .7001E+1 .1384E+3 .2174E+2 .4283E+2 .1621E+2 
15 .5400E+3 .3755E+0 .4677E+1 .7374E+1 .1552E+3 .2182E+2 .4851E+2 .1651E+2 
16 .6000E+3 .4111E+0 .4414E+1 .6801E+1 .1697E+3 .2097E+2 .5258E+2 .1500E+2 
17 .7200E+3 .4312E+0 .4100E+1 .6179E+l .1989E+3 .1980E+2 .6125E+2 .1464E+2 
18 .8400E+3 .2810E+0 .4476E+l .7277E+1 .2304E+3 .2037E+2 .7231E+2 .1568E+2 
19 .9600E+3 .3279E+0 .4072E+1 .6418E+l .2568E+3 .1901E+2 .7988E+2 .1438E+2 
20 .1080E+4 .2930E+0 .4004E+1 .6393E+1 .2838E+3 .1850E+2 .8843E+2 .1409E+2 
21 .1200E+4 .2793E+0 .3859E+1 .6169E+1 .3094E+3 .1781E+2 .9534E+2 .1358E+2 
22 .1440E+4 .3316E+0 .3273E+1 .4968E+1 .3561E+3 .1572E+2 .1110E+3 .1167E+2 
23 .1680E+4 .3277E+0 .2940E+1 .4380E+1 .4002E+3 .1432E+2 .1235E+3 .1053E+2 
24 .2160E+4 .4126E+0 .1981E+l .2416E+1 .4770E+3 .1091E+2 .1459E+3 .7404E+1 
25 .2880E+4 .1654E+0 .2206E+1 .3512E+l .5787E+3 .1022E+2 .1793E+3 .7771E+1 

E±a denotes x10±a. 
The simulated observations were calculated as the model response for the true parameter 
values (arbitrary choice). on which Gaussian noise was superimposed afterwards. This 
noise has mean value f.l = 0, and standard deviations a = .05, .2, .5, 1., .5, .8, .6 for 
the subsequent compartments. Random deviations were chosen from these distributions 
by use of the standard routine GGNML in the IMSL FORTAN F77 library. The seed for the 
random number generator was 26 

optimization routines is a GOULD 32187 multi-user mInIcomputer (2 Mbyte 
core nIemory), operating under MPX-32 (200k OS). The program was also run 
on a Data General MVIIOOOO multi-user minicomputer, operating under AOS/ 
VS. The FORTRAN77 source codes, in single or double precision, consist of a 
main program and subroutines in libraries. No external software other than a 
few standard functions and a system dependent timing routine is used. 

-160-



TABLE 4-8 INITIAL PARAMETER SETS FOR THE DATA-SENSITIVITY EVALUATION 

parameters 
true initial, set 1 initial, set 2 
min~1 min-1 %true EC min-1 %true EC 

1 .1429E+0 .1842E+0 128.9 1.289 .1242E+0 86.9 1.151 
2 .7500E-2 .7020E-2 93.6 1.068 .5243E-2 69.9 1.430 
3 .6814E-2 .8013E-2 117.6 1.176 .6535E-2 95.9 1.043 
4 .5854E-1 .7950E-1 135.8 1.358 .6433E-1 109.9 1.099 
5 .1343E+0 .1229E+0 91.5 1.093 .1359E+0 101.2 1.012 
6 .8180E+1 .8843E + 1 108.1 1.081 .7010E+1 85.7 1.167 
7 .4054E +0 .3503E+0 86.4 1.157 .4038E +0 99.6 1.004 
8 .1726E+1 .1498E+1 86.8 1.152 .1850E + 1 107.2 1.072 
9 .6000E +0 .4158E+0 69.3 1.559 .6256E +0 104.3 1.043 
10 .9040E + 1 .9962E + 1 110.2 1.102 .9299E + 1 102.9 1.029 

E±a denotes X10±8. 
The parameters were chosen at random from a Gaussian distribution with mean value J1 
:::: 100% times and standard deviation a :::: 15% times true value, using the subroutine 
GGNML from the IMSL standard FORTRAN F77 library. Both sets are realizations from 
the same distribution. As random number generator seeds were chosen 15 for set 1, and 
for set 2: 450. For the meaning of criterion EC, see Eq.(4.55) 

4.1. 7 Set-up of Test and Evaluation Runs 

4.1.7.1 Data-sensitivity of the Identification Procedure. It was studied to 
what extent the results of the identification procedure are sensitive to the number 
and the location (temporal and spatial) of the measured drug concentrations. The 
ten transfer rate constants (m = 10) in a seven-compartment model (small­
scale,2n = 7, Fig. 4.2a) were estimated using the MGN optimization method on 
the DG MV/lOOOO. Simulated drug concentration measurements at N = 25 time 
points during a 48 h period after a pulse drug input into plasma were generated 
by calculating the linear first order model response for a certain set of transfer 
rate constants (true parameter values). To account for measurement errors 
Gaussian noise was added to the model response in these points (Table 4-7). 

Two different sets of initial parameter values were used to assess how 
the choice of the starting point influences the results of the optimization routine. 
These sets were derived by drawing random values from a normal distribution 
that was characterized by a mean value amounting to 100%, and a standard 
deviation of 15 % of the true parameter value. The random Gaussian deviations 
were added to the true parameter values. The thus obtained noise corrupted 
parameter values (Table 4-8) were used as initial estimates in several series of 
optimization experiments (Table 4-9) that were conducted with valying numbers 
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TABLE 4-9 SCHEME OF THE SIMULATION EXPERIMENTS (SEE TABLES 4-7 & 4-8) 

T: test, 25 noiseless observations in each of the 7 compartiments; 
Tl: initial parameters deviate ± 10% from true values; 
T2: initial parameters deviate ± 30% from true values; 

A: 25 observations in each of the 7 compartiments; 
A 1: initial parameter set 1; 
A2: initial parameter set 2. 

B: 12 observations in each of the 7 compartiments 
(points 2,4,6,8,10,12,14,16,18,20,22,24); 

B 1: initial parameter set 1; 
82: initial parameter set 2. 

c: 6 observations in each of the 7 compartiments 
(points 1, 4, 10, 13, 22, 25); 

Cl: initial parameter set 1; 
C2: initial parameter set 2. 

0: 25 observations in each of the 7 compartiments, except tissues_2; 
01: initial parameter set 1; 
D2: initial parameter set 2. 

E: initial parameter set 1; 25 observations in plasma and urine. 

F: initial parameter set 1; 25 observations in plasma, urine and bile. 

G: initial parameter set 1; 25 observations in plasma, urine and bile; 
also 3 observations in spleen (points 1, 12, 25). 

H: initial parameter set 1; 9 observations in plasma, urine and bile 
(points 1,4,7,10,13,16,19,22,25); 
also 3 observations in spleen (points 1, 12, 25). 

I: initial parameter set 1; 25 observations in all compartments; 
deliberately introduced error in model structure: 

11: pathway spleen-liver replaced by pathway spleen-plasma; 
12: pathway plasma-urine replaced by tissues_l-urine. 

of observation times (N) and observed compartments (w). First, the software 
was tested by using undisturbed observations and initial parameters that deviated 
only a little from their true values (experiment T). Next, decreasing numbers of 
observations were allowed in all compartments (experiments A through C), In 
other cases (experiments D through H) observations were allowed in a few 
compartments only. In an ultimate case availability of observations was restrict-
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Fig. 4.12 
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Evaluation of minimization routines; comparison of the initial values of the 
25 parameters (see r-ig. 4.3) in set 1 and set 2 

difference by a foetor of 100 10 5 

initial set 1 

ed to plasma and urine, simulating actual clinical circumstances where patients 
can be sampled in these compartments only. Knowing the true parameters, the 
accuracy with which the program determined the optimal parameter values in 
each case could be compared. This enables establishing of a minimum required 
amount of observations. 

The sensitivity of the estimation procedure with respect to model 
structure errors (deliberately introduced errors in the distribution pathways) was 
also investigated (experiment J). 

4.1.7.2 Performance of the Different Minimization Routines. The 
medium-scale model (2n = 14 compartments, Fig. 4.3) and a small-scale model 
(2n = 5 compartments, Fig. 4.2b) were used to evaluate the performance of the 
different minimization routines. The solutions of the state and sensitivity equa­
tions were computed by either direct Runge-Kutta integration or through tran­
sition matrices, whose analytical solutions for a 2-minutes interval were cal-
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TABLE 4-10 OBSERVED CONCENTRATIONS AND CUMULATIVE AMOUNTS OF DAU AND DOL AFTER I. V. BOLUS 
INJECTION OF 7.5 mg/kg DAU (MEAN,SD; 4-5 RATS PER DATAPOINT); COMPARTMENT VOLUMES (MEAN 
OF40 RATS) 

time plasma urine liver spleen heart kidneys lungs muscles bone marrow 
h j1.g/ml j1.g j1.g/g j1.g/g j1.g/g j1.g/g j1.g/g j1.g/g j1.g/g 

0.167 0.78,0.6 DAU values 
0_333 0.20,0.5 
0_5 0.21,0.5 24.0,0.9 16.8,1.0 18.5,0.7 34.0,0.1 46_5,1-4 3.8, -
0_75 0.24 1 -
1 0.11,0.2 22.0,0.9 17.4,1.0 17.0,0.7 24.0,0.3 46.0,1.4 2.3, - 10.0,2.9 
1-5 11_0,1_0 18.0,1.4 14_0,0.7 23.0,0.2 37_5,2.1 2.7, -
2 0.05,0.03 16.0,1.0 2.6, - 4.0, -
3 8.0,0.8 7_1,0_2 11-0,0.8 16_9,0_9 5.0, -
4 6.5,0_7 15.5,1.0 6.0,0.2 10.0,0.7 18.0,0.9 
6 0_01,0_01 7.7,0.7 14.5,0.7 6.0 1 0.2 7.2,0.3 12.0,0.7 2 _ 0, -
7 18.0,5.3 
8 7.0,0.6 13.0,0.7 4.5,0.2 6.5,0.2 8.0,0.7 1.0, -
9 5.0,0.3 12.5,0.7 4.8,0.2 6.0,0_5 9.0,0.7 0.5, -

10 20.0, -
15 22.0/ -
21 23.0,5.1 
24 1.5,0.3 7.5,0.5 0.8,0.1 2.8,0.3 4.5,2.9 
48 0_00,0_01 0.7,0.1 2.3,0.3 0.0 1 - 0.3,0.1 0.4,0.1 0.0, -



TABLE 4-10 CONTINUED 

time plasma urine liver spleen heart kidneys lungs muscles bone marrow 
h "gjml "g "gjg p.gjg "gjg "gjg "gjg "gjg "gjg 

0.167 0.54,0.2 DOL values 
0.333 0.14,0.2 
0.5 0.11,0.1 3.0,0.4 0.9,0.7 4.0,0.3 4.0,0.7 3.5,0.3 0.3, -
0.75 0.13, -
1 0.07,0.06 2.2,0.3 3.0,0.7 5.0,0.7 10.0,0.6 4.5,0.7 0.5, - 1.0, 0.2 
1.5 2.0,0.1 2.7,0.7 7.5,0.7 9.0,0.1 3.0,0.3 0.3, 
2 0.04,0.05 3.3,0.5 0.8, - 0.4, -
3 3.5,0.3 7.6,0.7 8.0,0.5 2.0,0.1 0.6, -
4 2.3,0.5 2.5,0.3 5.8,0.7 6.0,0.6 4.5,0.3 0.9, 
6 0.01,0.03 3.0,0.2 5.0,0.5 4.0,0.3 4.8,0.6 2.3,0.1 1.0, - 1.0,0.2 
7 9.5,6.1 
8 6.0,0.2 4.0,0.3 4.3,0.3 7.0,0.1 6.0,0.7 1.2, 
9 5.5,0.2 6.0,0.5 3.0,0.3 6.0,0.4 5.0,0.7 0.6, -

10 10.5, -
15 15.0, -
21 18.°/ 8 . 6 
24 3.0,0.6 7.0,0.9 2.2,0.1 4.0,0.2 3.3,0.3 1.7,2.5 
48 0.04,0.01 4.5, O. 4 3.3,0.3 0.4,0.1 1.6,0.1 1.5,0.1 0.0, -

compartment volumes (ml) : 
28.50 4.94 0.32 0.56 1. 04 1. 38 49.50 1. 08 

other tissues: 33.70; nb. plasma volume = plasma (5.70) + extracellular body water (22.80) 

• 



TABLE 4-11 MORE TESTED MODELS FOR DAU-DOL PHARMACOKINETICS 

model n !!:!. ill NR method remarks 

3a1.1 2x3 2x2 9 16 seq. excretion = urine; 
3a1.2 2x3 2x2 9 16 seq. as 381.1, other initial parameter values; 
3bl 2x3 2x2 9 22 sim. as 3a 1 .1. plasma DAU weighted 100x, plas-

ma volume free; 
3a2 2x3 2x2 9 20 seq. excretion :::: urine + bile; 
3b2 2x3 2x2 8 22 sim. as 3a2; 
3b3 2x3 2x2 9 22 sim. as 3a2, plasma DAU weighted 100x, plasma 

volume free; 
5bl 2x5 2x3 15 32 sim. metabolism in plasma and tissues 
5b2 2x5 2x3 14 32 sim. as 5b 1, metabolism in tissues only; 
5b3 2x5 2x3 15 32 sim. as 5bl, modified algorithm; 
6bl 2x6 2x5 19 76 sim. metabolism in plasma, liver, tissues_l: 
7bl 2x7 2x6 24 94 sim. metabolism in plasma, liver, spleen, tis-

sues_l ; 

n :::: number of compartments; w :::: number of observed compartments; m :::: number 
of parameters; NR :::: number of observations: seq. :::: sequential fitting (analytical 
method); sim. ::::: simultaneous solution (numerical method); 

tissues_l :::: well perfused tissues: liver, spleen, heart, kidneys, lungs and skeletal mus­
cles; tissues_2 = poorly perfused tissues: bone marrow and other tissues that can be 
reached by the drug, but for which no observations are available. Tissues that cannot be 
reached by the drug, for example brain tissue and bones, are excluded from the models 

culated' (MGN method). In parallel computation runs, instead of solving the 
sensitivities, the gradient and Hessian matrix of the log likelihood function 
-necessary to establish the direction of the step in parameter space toward the 
minimum-were approximated in a direct way by means of finite differences 
(DDH method). A third approach involves the solving of the sensitivities by 
finite differences instead of transition matrices (FD method). The various per­
fonnance criteria resulting from the different runs were compared. 

The numerical minimization procedures are always started with the same 
two sets (set I and 2) of initial parameter values (Fig. 4.12). Most of the 
corresponding values in these sets differ less than a factor of 5 (68%), some 
differ between a factor of five and a factor of 10 (12%), the remaining ones 
(20%) differ more than a factor of 10 (up to a factor of over 100). 

Observations used are derived from actually observed DAU and DOL 
concentrations. Considering the relative organ volumes, measurements in several 
organs were pooled into observations for the composite tissues_I compartment 
(Table 4-10). 
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The computations were performed on the GOULD minicomputer system. 

4.1.7.3 Identification of the System of DAU-DOL Pharmacokinetics. 
Various structures of the large-scale model (2n = 22, Fig 4.4) were tested for 
the best fit of the observed DAU-DOL concentration-time data (Table 4-10; at 
that time no bile observations were available yet). These six structures are listed 
in Table 4-1. The MGN minimization method was used, finding transition 
matrices for a 2 minutes time interval by numerical integration. For the large­
scale model computations were performed on the IBM main frame, using the 
ALGOL source code. 

In addition, a few smaller-scale models were evaluated as well (Table 4-
11). The same program was used, this time in FORTRAN F77 on the DG MV/ 
10000. The 2x3 compartment model was evaluated both numerically and analyt­
ically (see Appendix E). 

4.2 RESULTS AND DISCUSSION 

4.2.1 Experimental Data 

The observed quantities of DAU and DOL in the organs and body fluids of the 
rat after the i. v. administration of a dose of DAU, as well as the measured 
organ volumes, are listed in Table 4-12. The observed standard deviations are 
rather high, probably due to the biological variation in the test animals. In 
general however, similar patterns are seen in the concentration-time histories, 
both with respect to the order of magnitude of the data and the qualitative 
behavior. 

Plasma. DAU and DOL. A very rapid decrease to low concentration levels is 
seen after almost instantaneous heavy loading of the compartments (which is 
remarkable for DOL especially as it seems to suggest a very fast mctabolism 
process). After two hours the low levels have been reached and a velY slow 
further decrease follows. 

UrinelBile. DAU and DOL. In these compartments the compounds are accumu­
lated. In urine similar amounts of DAU and DOL are excreted eventually, while 
DAU is being accumulated somewhat faster in an early stage. For bile quantita­
tive data became available at a later stage. Large interindivual differences 
resulted in large standard deviations for the observed concentrations. Just like 
with urine, it was seen that almost equal amounts of DAU and DOL were 
excreted into the bile, with a little faster rate of accumulation of DAU during 
the first few hours. 
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TABLE 4-12 OBSERVED CONCENTRATIONS AND CUMULATIVE AMOUNTS OF DAU ANO DOL AFTER I. V. BOLUS 
INJECTION OF 7.5 mg/kg DAU (MEAN.SD; 4-5 RATS PER DATAPOINT); COMPARTMENT VOLUMES (MEAN OF 40 RATS) 

time plasma urine liver spleen tissues 1 bile 
h fJ.g/ ml fJ.g fJ.g/g fJ.g/g fJ.g/g fJ.g 

DAU values 
0_167 1.07,0.6 
0.333 1.18,0.5 , , 
0.5 1.25,0.5 24.0,0.9 16.8,1.0 5.7,0.8 
0.75 , 
1 0.54,0.2 22.0,0.9 17.4,1.0 2.9-,0.8 55.0,49.5 
1.5 11.0,1.0 18.0,1.4 4.1,0.8 , 
2 0.14,0.03 16.0,1.0 56.4,56.1 
2.5 , , 
3 0.09,0.03 8.0,0.8 
3.5 , , , 
4 6.5,0.7 15.5,1.0 90.7,59.8 
5 , , , 
6 0.06,0.01 22.1 1 5.3 7.7,0.7 14.5,0.7 2.4,0.8 97.2,67.7 
7 , , 
8 7.0,0.6 13.0,0.7 1.3,0.8 105.7,69.0 
9 5.0,0.3 12.5,0.7 0.9,0.8 , 

10 109.7,67.8 
12 111.8,67.8 
14 113.4,67.3 
15 , 
16 115.1,66.6 
18 117.0,65.8 
20 119.6,64.4 
21 
22 , 133.2,72.6 
24 35.5,5.1 1.5,0.3 7.5,0.5 134.1,73.0 
28 
32 , 
48 0.00,0.01 0.7,0.1 2.3,0.3 0.02,0.8 



TABLE 4-12 CONTINUED 

time plasma urine liver spleen tissues 1 bile 
h I'gjml I'g I'gjg I'gjg I'gjg I'g 

DOL values 
0.167 1.10,0.2 n.b. plasma volume 
0.333 0.81,0.2 plasma (5.70) + 
0.5 0.71,0.1 3.0,0.4 0.9,0.7 0.49,0.08 extracellular body 
0.75 water (22.80) 
1 0.39,0.06 2.2,0.3 3.0,0.7 0.84,0.08 22.0,29.4 
1.5 2.0,0.1 2.7,0.7 0.62,0.08 tissues _1 data by 
2 0.ll,0.05 3.3,0.5 49.4,45.0 
2.5 pooling heart,lungs, 
3 0.11,0.05 3.5,0.3 kidneys and muscles 
3.5 , of Table 4-10 
4 2.3,0.5 2.5,0.3 1.15,0.08 57.4,39.5 
5 
6 0.09,0.03 25.6,6.1 3.0,0.2 5.0,0.5 1.14,0.08 88.3,50.4 
7 
8 6.0,0.2 4.0,0.3 1.47,0.08 103.3,54.9 
9 5.5,0.2 6.0,0.5 0.85,0.08 

10 113.4,58.2 
12 121.6,61.2 
14 127.6,62.3 
15 
16 133.7,62.1 
18 139.4,63.0 
20 146.4,63.0 
21 
22 146.4,70.0 
24 49.6,8.6 3.0,0.6 7.0,0.9 143.8,59.0 
28 
32 
48 0.04,0.01 , 4.5,0.4 3.3,0.3 0.08,0.08 
compartment volumes (ml) : 

28.50 4.94 0.32 52.48 (tissueS_2: 34.78); 



Organs. DAU. Almost all organs take up DA U very fast; the peak concentra­
tion is reached within one houl'. Then, elimination occurs, rapidly at first and 
slowly later when low concentration levels have been attained. In spleen and 
bone marrow both DAU uptake and elimination appear to take place at a lower 
rate, and the 24 h concentrations in these organs still are relatively high. The 
muscles compartment also is an exception as the DAU concentrations remain 
comparatively low overall. 

Organs, DOL. For the metabolite the maximum attained concentration levels 
are much lower than for the parent dl1lg. As can be expected considering that 
time is needed for metabolite formation and redistribution processes, the DOL 
concentrations are built up at a slower pace (peak concentrations well past one 
hour). The rate of elimination appears to be lower as well, for considerable 
amounts of DOL are still present after 24 h (compared to parent dl1lg). In 
spleen and bone marrow the accumulation of DOL exceeds the elimination and 
concentrations are still rising after 24 h. 

From the experimental observations already two conclusions can be drawn with 
clinical relevance. The plasma concentrations of DA U and DOL do not reflect, 
at least not in a simple way, the compounds' levels in the organs; while plasma 
concentrations are already velY low the levels in other organs may be fast 
decaying or even be rising still. The second conclusion is that large interin­
dividual differences may be encountered at a same sample time. 

4.2.2 Data-Sensitivity 

4.2.2.1 Test of the Optimization Routine. A test was conducted to check 
whether the MGN optimization routine performed well. Two initial parameter 
vectors were chosen to start with, one with near-true values (10% deviation; 
case I), the other one a poorer estimate (±30% deviation; case 2). In this test 
all observations used were noiseless. The routine returned final parameter values 
that yielded very good fits of the model response to the observations, Tee 
being equal to one in all compartments but plasma-for case 2-for which Tee 
= 0.92 was found. The log likelihood function was reduced by a factor of Hf 
and 103 for case I and 2, respectively, showing that the optimization routine 
performs better when the initial parameter vector is nearer to the true one. Yet, 
even with the velY good fits resulting, the final parameter values still showed 
inaccuracy. For case I only 20% of the final parameter were more accurate than 
5%, 70% had an accuracy better than 10%, and all were more accurate than 
12 %. For case 2 most final parameter values showed an accuracy of not more 
than 20-30%. This demonstrates that even IInder optimllm conditions, with a 
near pelject fit achieved, most transfer rate constants cannot be estimated bllt 
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Fig. 4.13 Data-sensitivity experiments; The percentage of parameters for which the 
efror criterion EC (Eq.(4.55)) has a value smaller than indicated; mean initial (0) and 
final (0) parameter vectors compared (all compartments: 100% observations) 
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Fig. 4.14 Data-sensitivity experiments; The percentage of parameters for which the 
error criterion EC (Eq.(4.55)) has a value smaller than indicated; comparison of final 
parameter vectors (all compartments: 0 100%,050% or <> 25% observations) 
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Fig. 4.15 Data·sensitivity experiments; The decrease in log likelihood function with 
the number of iteration steps, starting with parameter sets 1 (0) or 2 (0) (see Table 4· 
8); all compartments observed, a: 100%, b: 25% observations 
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4.2.2.2 Experiments A through C; reduction of the number of data­
points while all compartments are observed. Figures 4.13 through 4.15 show 
for the various experiments how the estimated parameters are distributed with 
respect to corresponding values of the error criterion EC (Eq.(4.SS». Figure 
4.13 compares the mean initial parameter vector to the final one for 100% 
observations. In the latter case all parameter values have an EC-value smaller 
than 1.32 (against 85% in the former case), and a third has an EC"value smaller 
than 1.02 (against 10% in the former case). With the final parameter values the 
fit of the model response to the datapoints is much improved (overall TCC 
going from 0.96052 to 0.99997) and-within a few iteration steps-the log 
likelihood function is reduced by a factor of 103 (Fig. 4.ISa). Also, the remain­
ing variance of the residuals arrives at values that are near the ones expected on 
the bases of the Gaussian distributions of the added noise. This shows that also 
ill the case of noise polluted observations the optimization routine retul'lls 
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TABLE 4-13 LOG LIKELIHOOD FUNCTION, GOODNESS OF FIT AND RESIDUAL VARIAN-
CE FOR THE DATA-SENSITIVITY EXPERIMENTS 

For each of the experiments (Table 4-9) the model response associated with the final 
parameter values was calculated and compared with all observations in all compart-
ments. Thus, not necessarily all observations were always used to estimate these final 
parametersl 
The expected residual variances, based on the Gaussian distributions of the generated 
random noise, are .25E-2, AOE-1, .25E+0, .10E+1, .25E+0, .64E+0 and .36E+0 for, 
respectively, plasma, tissues_1, liver, bile, tissues_2, urine and spleen. 

EXPERIMENT A1 A2 81 82 C1 C2 
LLF 89.29 85.11 85.91 80.30 87.31 82.75 
TCC 
overall .999969 .999971 .999970 .999972 .999970 .999972 
plasma .990703 .990632 .990869 .990219 .989327 .989430 
tissues .998959 .998938 .998951 .998880 .998940 .998931 -
liver .997261 .996562 .997233 .997071 .997047 .997029 
bile .999987 .999987 .999986 .999988 .999987 .999988 
tissues_2 .999634 .999635 .999645 .999670 .999604 .999626 
urine .999921 .999924 .999920 .999923 .999923 .999907 
spleen .998606 .998862 .998952 .998919 .999122 .999120 

Residual Variance 
plasma .3006E-2 .3029E-2 .2952E- 2 .3161E-2 .3448E- 2 .3415E-2 
tissues 1 .4435E-1 .4525E-1 .4470E-1 .4772E-1 .4515E-1 A551E-1 
liver .2834E +0 .3555E +0 .2863E +0 .3030E +0 .3055E+0 .3073E +0 
bile .1382E+ 1 .1309E + 1 .1426E + 1 .1216E+1 .1409E + 1 .1219E+1 
tissues 2 .3416E+0 .3402E +0 .3311E+0 .3082E+0 .3700E+0 .3489E+0 
urine . 7935E +0 . 7608E +0 .8016E+0 .7728E+0 .9036E +0 .9287E+0 
spleen .7235E+0 .5907E+0 .5438E +0 .5611E+0 .4558E +0 .4565E+0 

EXPERIMENT 01 D2 E F G H 
LLF 84.41 79.68 27894.-- 113150.-- 451.55 616.28 
TCC 
overall .999970 .999973 .990363 .960309 .999845 .999972 
plasma .990359 .989974 .990906 .990921 .991029 .989430 
tissues .998890 .998827 .959249 .938765 .907298 .998931 
liver .997072 .996989 .985678 .943733 .968042 .997029 
bile .999987 .999988 .999575 .999990 .999959 .999988 
tissues 2 .999669 .999679 .998359 .989559 .990625 .999626 
urine .999921 .999924 .999932 .999926 .999927 .999907 
spleen .998957 .999042 .000000 .000000 .999064 .999120 

Residual Variance 
plasma .3117E-2 .3240E-2 .2940E- 2 .2936E-2 .2901 E-2 .3232E-2 
tissues_1 .4728E-1 A995E-1 .1701E+1 .2530E + 1 .3767E + 1 .4768E+1 
liver .3029E +0 .3114E+0 .1473E+1 .5665E + 1 .3258E + 1 .5789E+1 
bile .1384E+ 1 . 1259E + 1 .4452E + 2 .1032E+1 .1302E+1 .1204E + 1 
tissues 2 .3094E +0 .2995E +0 .1531E+1 .9696E + 1 .8711E+1 .1152E+2 
urine .7884E+0 .7671E+0 .6851E+0 .7450E+0 .7351E+0 .8814E+0 
spleen .5411E+0 A972E+0 .1066E+4 .4506E +4 .4859E +0 .4861E+0 
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Fig. 4.16 Data-sensitivity experiments; 
Model response witt't estimated ± 1 standard deviation and observations with their accuracies (± 1 standard deviation) in plasma 
and liver. AIJ compartments: 100% observations. Performance criteria in boxes: left value: with respect to observations used for 
parameter estimation; right value: with respect to all observations (true values between brackets) 
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Fig. ~.17 Data-sensitivity experiments; 
Model response with estimated ± 1 standard deviation and observations with their accuracies (± 1 standard deviation) in plasma 
and liver. AI! compartments: 25% observations. Performance criteria in boxes: left value: with respect to observations used for 
parameter estimation; right value: with respect to all observations (true values between brackets) 
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improved values wilh respecl 10 inilial eslimales. Figure 4.14 shows that 
reducing the number of observations to one half and even one fourth does not 
dramatically change the accuracy of the results. Always 100% of the final 
parameters have an BC-value of less than 1.32 and, in fact, with the reduced 
numbers of observations the number of parameters with BC-values less than 
1.10 amounts to 65%, whereas in the case of all observations 45% is found. 
However, the number of very accurately estimated parameters decreases with 
decreasing observations. The number of parameters with BC-value less than 
1.01 drops from 20% to 10% to %5 for the cases of 100%, 50% and 25% 
observations, respectively. A 1000-fold reduction in the log likelihood function 
still is attained when the number of observations decreases to a quart (Fig. 
4.15). 

Comparing the model responses from all experiments A through C to all 
datapoints-so, for Band C, also to datapoints not used for estimating the 
transfer rates-it can be seen (Table 4-13) that similar values are always 
obtained for the log likelihood function and the goodness of fit. The ultimate 
transfer rate constants returned depend to some extent on what initial parameter 
vector the optimization routine is started with, but the accuracy of the results is 
such that differences are not significant. Therefore, iI can be concluded Ihal, as 
long as all compartments are observed, the number of observations per compart­
ment necessOlY to estimate the transfer rate conslants COIl safely be lowered 
from 25 to 6, wit//Oul serious loss of accuracy. Other experimellls, //Ot reported 
here, seem to suggest that especially early data-poillls (0-10 h) can be left out 
withollt great eJJecl. 

Final responses-after starting the optimization from parameter set 
I-in, for example, plasma and liver are shown in Fig. 4.16 (100% observa­
tions) and Fig. 4.17 (25% observations). They are only a little bit poorer in the 
latter case, and so are the estimated response accuracies. 

4.2.2.3 Experiments D through H; datapoints in a few compartments 
only. Leaving out the observations in one single compartment (tissues_2) results 
in the unexplained phenomenon that the accuracy of the final parameter es­
timates improves (case D, Table 4-13; Fig. 4.18). 

Allowing observations in plasma and urine only-all 25 in each-it 
appears that 40% of the parameters cannot be estimated with good accuracy 
(BC-value larger than 1.35). Only 10% has an BC-value better than 1.01 (Fig. 
4.19). Adding all bile observations results in little improvement (30% of the 
parameters with BC-values larger than 1.35, zero with BC-value better than 
1.01). Some improvement is seen if yet another compartment is at least partially 
observed, e.g., adding as few as 3 observations in spleen leaves only 10% of 
the parameters with an BC-value larger than 1.35. Then, in fact the number of 
observations in bile can be reduced again, from 25 to 9, at only small costs with 
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Fig. 4.18 Data-sensitivity experiments; The percentage of parameters for which the 
error criterion EC (Eq.(4.55)) has a value smaller than indicated; comparison of final 
parameter vectors (D) all compartments: 100% observations, versus (0) all compart­
ments: 100%, except tissues_2: 0% 
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respect to accuracy (20% of the parameters then have an EC-value larger than 
1.35). 

Comparing the model responses in Figs. 4.16, 4.20 and 4.22, respec­
tively, all compartments 100% observed, only plasma and urine 100% observed, 
and plasma, urine, bile and spleen partially observed, it is seen that the plasma 
goodness of fit is not much influenced, while the liver response fluctuates 
considerably. Without at least a few organ observations the spleen response is 
very wrongly estimated (Figs. 4.21 and 4.23). 

Thus, these experiments show that it will be necessm)' to observe more 
compmtments than only those tilat in practice call be easily accessed without 
sacrificing the laboratOl), animal. However, the nllmber of samples in sllch 
inaccessible organs needs /lot be vel)' high. 

4.2.2.4 Experiments I and A; the influence of model errors. As can be 
seen from Table 4-14, when three models with slightly different pathway 
structures are matched to the same datapoints the best results are obtained with 
the wrong model (Ia; lowest value of the log likelihood function, highest overall 
TCC). Only if it is a priori known that for instance the magnitude of Ps should 
be between 1.6 and 1.9 and P3 should be larger than 0.006, it can be deduced 
that la and Ib are based on wrong models. If not, such model errors may go 
unnoticed. 

4.2.2.5 Conclusions, 
1) Employing a modified Gauss-Newton optimization routine to mIIlllll1Ze the 
log likelihood function, ML estimates of transfer rates were derived using 
various sets of simulated observations. These observations were obtained by 
sampling the model response to a pulse input, calculated for a chosen "true" 
parameter vector, and by adding random Gaussian noise. It was examined to 
what extent the tme parameter values could be estimated with sufficient ac­
curacy if the number of available observations was reduced. 
2) Using the maximum number of observations and having all compartments 
observed, one fifth of the parameters is estimated with an accuracy of I % or 
better; one twentieth with an accuracy not better than 30%. The final estimates 
are to some extent dependent on the initially chosen parameter values. A 
reduction in the number of observations to one fourth of the maximum number, 
equally distributed over all compartments, makes the accuracy of the former 
"1 %" parameters shift into the 5%-10% range; the largest deviations from true 
parameter values remain approximately 30%. In particular, the omission of 
early observations (0-10 h) does not result in an unacceptable loss of accuracy. 
Thus, a considerable reduction in the number of laboratory animals to be used 
in similar future ill vivo experiments will be possible. 
3) If unobserved compartments are allowed a substantial loss of accuracy may 

-178-



TABLE 4-14 PARAMETER VALUES, LOG(LlKELIHOOD FUNCTION) AND GOODNESS OF 
FIT FOR TRUE AND FALSE MODEL STRUCTURES; SEE FIG. 4.2A 

The simulations below were started with initial parameter values according to set 1 
(Table 4-8) and all observations in all compartments (Table 4-7). With respect to the true 
model structure (experiment A) the following false structures were introduced. In 
experiment 11 pathway spleen-ta-liver was replaced by spleen-ta-plasma. In experiment 
12 pathway plasma-ta-urine was replaced by tissues_1-ta-urine. The parameters involved 
in these changes are written in italics. 

Parameter values (min-1) and SO (min- 1) 
true A 1 

.1429 .1556, 

.0075 .0074, 

.0068 .0069, 

.0585 .0505, 

.1343.1164, 
8.18 8.841, 

.4054 .4283, 
1.726 1.474, 

.600 .500, 
9.040 9.962, 

LLF 88.50 

TCC 
overall 
plasma 
tissues_ 
liver 

.999970 

.990860 

.998942 

.997204 

.999987 

.999653 

.999921 

.998636 

bile 
tissues_2 
urine 
spleen 

.0002 
< .0001 
<.0001 

.0015 

.0034 

.0001 

.0008 

.0007 

.0009 

.0001 

11 
.1549, 
.0074, 
.0069, 
.0626, 
.1413, 
8.798, 
.4279, 
2.105, 
.6885, 
9.938, 

77.96 

.999973 

.990879 

.998903 

.997274 

.999988 

.999661 

.999921 

.999117 

.0005 

.0001 
<.0001 

.0033 

.0073 

.0001 

.0018 

.0015 

.0046 

.0001 

12 
.1362, 
.0073, 
.0004, 
.0507, 
.1177, 
8.768, 
.4234, 
2.833, 
.8977, 
9.260, 

113.40 

.999961 

.990803 

.997807 

.997297 

.999990 

.999688 

.999913 

.996344 

.0005 
<.0001 
<.0001 

.0005 

.0012 
<.0001 

.0007 

.0012 

.0039 

.0003 

result (e.g., two fifths of the parameters showing accuracies poorer than 30%), 
It cannot be avoided that in practice organs must be sampled that are inacces­
sible without sacrificing the laboratory animal. However, the number of sample 
points, thus the total number of animals consumed in an experiment, can be 
reduced without impairing the achievable accuracy of the obtained results, But, 
as confirmed by others [Erickson and Ackerman, \986], it is better to have 
jewel' observatiolls ill mallY compartmellts thall mallY observatiolls ill ollly two or 
three compartmellts. 
4) The sensitivity of the estimation procedure for deliberately introduced errors 
in the model structure (distribution pathways) was also investigated, Small 
model errors appeared to go unnoticed, unless the order of magnitude of the 

-179-



Fig. 4.20 Data-sensitivity experiments; 
Model response with estimated ± 1 standard deviation and observations with their accuracies (± 1 standard deviation) in plasma 
and liver. Observations, plasma and urine: 100%; other: 0%. Performance criteria in boxes; left values: with respect to observa­
tions used for parameter estimation; right values: with respect to all observations (true values between brackets) 
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Fig. 4.21 Data-sensitivity experiments; 
Model response with estimated ± 1 standard deviation and observations with their accuracies (± 1 standard deviation) in spleen. 
Comparison of experiments A 1 and E (see Table 4-9). Performance criteria in boxes; left values: with respect to observations used 
for parameter estimation; right values: = with respect to all observation (true values between brackets) 
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Fig. 4.22 Data-sensitivity experiments; 
Mode! response with estimated ± 1 standard deviation and observations with their accuracies (± 1 standard deviation) in plasma 
and liver. Observations, plasma, urine and bile: 36%; spleen: 12%; other: 0%. Performance criteria in boxes; left values: with 
respect to observations used for parameter estimation; right values: with respect to all observations (true values between brackets) 
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Fig. 4.23 Data-sensitivity experiments; 
Moder response with estimated ± 1 standard deviation and observations with their accuracies {± 1 standard deviation} in spleen. 
Comparison of experiments Aland H (see Table 4-9). Performance criteria in boxes; left values: with respect to observations used 
for parameter estimation; right values: = with respect to all observations (true values between brackets) 
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Fig. 4.24 The negative log likelihood function, LLF decreases with increasing number 
of iterations, after starting with parameter set 1 (o and l:t.) or 2 (0 and v) for, respec­
tively, the MGN and DDH routines 
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corresponding parameter values are a priori known. 
5) Making use of mathematical modeling and computer simulation techniques 
call yield improved designs of in vivo pharmacokinetic experiments, whenever 
minimizing the number of laboratOlY animals required to achieve reliable results 
is concemed. 

4.2.3 Comparison of the Minimization Routines 

4.2.3.1 MGN method. For both parameter set I and 2 the log likelihood 
function decreases monotonously to steady levels; in II iterations from 3822 to 
1126, respectively, in 20 iterations from 66565 to 2462 (Fig. 4.24). An increase 
of the overall goodness of fit is seen (Fig. 4.25). For the first parameter set the 
differences between initial and final parameter values are shown in Fig. 4.26. 
For the majority (64%) the change is less than a factor of 5; for 80% of the 
parameters the change is less than a factor of 10. The finally estimated values 
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Fig. 4.25 The change in overall goodness of fit (TCC, Eq.(4.51)) with increasing 
number of iterations, after starting with parameter set 1 (0 and cd or 2 (0 and v) for, 
respectively, the MGN and DOH routines 
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depend on the initial choice; Figure 4.27 shows over lO-fold disagreement for 
40% of the parameters. The first set appears to be a 'luckier' initial choice, 
resulting in a lower log likelihood function value. Thus, the MGN routine con­
verges both times, but not to the same point in the parameter space. The 
estimated SO's of the parameters (Fig. 4.28) reveal that for some parameters 
(about 60% of the cases) the differences are not significant while for other ones 
they are. For a few parameters, always associated with metabolite production or 
distribution, negative values are found. It is difficult to decide wether this result 
is caused,by inaccuracy of the numerical method in finding the minimum LLF, 
or that any model assumption is wrong. However, the negative parameter values 
do not differ significantly from zero, except for one case: PIS = k9,2' which 
would mean an inversed metabolism (DOL-DAU) in the tissues_l compartment. 

Figure 4.29 shows the consumed cpu-time for both minimization runs. 
The time required for one iteration step amounts to some 14 minutes. Because 
of exceeding an upper limit for batch job execution time, in one case a restart 
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Fig. 4.26 Comparison of initial and final (set l-lparameter values after MGN op­
timization. Bands of factor of 5, and factor of 10 differences are indicated 
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was necessaty in the 14th iteration. 

4.2.3.2 FD method. In the MGN method the calculation of the transition 
matrices is rather time consuming (about 400 s each iteration). An equally long 
time is needed for the computation of the model and sensitivity responses, the 
residuals and their autocovariance matrix, the information matrix, the SVD and 
the determination of the parameter step direction. In particular, the computation 
of the transition matrices for the sensitivities requires much cpu-time. In the FD 
method these sensitivities are computed in a different way, by evaluating the 
change in the model response due to a slight change in each of the m elements 
of the parameter vector. In the first iteration step it requires m (= 25) extra 
calculations of the model response. Taking some 6.5 s each (see DDH method 
below), this adds up to 165 s. Subsequently, the computation of the elements of 
the sensitivity vectors involve the solution of 2n sets of m simultaneous al­
gebraic equations, e.g. by Cramer's rule, which must be repeated for evety 
observation time N. For the present values of m, 2n and N (25, 14 and 26) this 
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Fig. 4.27 Comparison of final parameter values obtained by MGN optimization after 
starting with initial sets 1 or 2. Bands of factor of 5, and factor of 10 
differences are indicated 
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will require an estimated cpu-time of another 615 s, so, the total cpu-time for 
the model and sensitivity responses will amount to some 780 s. Time up to 
determination of parameter step direction will then be about 785 s, which 
compared to the 800 s needed by the MGN method means only a marginal 
improvement. During further iteration stcps, however, always only one extra 
model response calculation (6.5 s instead of 165 s) is needed. Thus, the ad­
vantage of the FD approach increases with the number of iterations (about 30 
min profit per 10 iterations). The corresponding fortran routine for the FD 
method is currently being implemented for testing. 

4.2.3.3 DDH method. Like in the MGN method the negative log likelihood 
function decreases with increasing iteration number (Fig. 4.24). The rate of the 
decrease, however, is much lower; after 6 iterations LLF is still high. In the test 
nms LLF goes from 375 to 312, respectively, from 62000 to 18500 for param­
eter sets 1 and 2. The goodness of fit improves, but also only very slowly (Fig. 
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Fig, 4.28 MGN method: final parameter values and estimated SO after starting with 
parameter sets 1 (0) or 2 (e), Zero and negative values are drawn below the 10.4 line 
ISet 1: P12 ~ -O.57x10-2 ±O.66x10-2, P25 ~ -O.56x10-2 ±O_206x10-1; Set 2: P1~ 
~ -O.lx10-4 ±O.4x10 4, P18 ~ -O.698x10-1 ±O.344x10-1 P24 = -O.5x10-
±O.3x10-3) 101 
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4.25). Needing much cpu-time, the method is velY slow. To estimate the ele­
ments of the Hessian matrix and the gradient vector of the likelihood function, 
350 evaluations of the function LLF, requiring some 6.5 s each, must be carried 
out. So, each iteration lasts about 38 min (Fig. 4.30). For evelY 4 iterations by 
the DDH program the MGN program completes almost 14, 

Although the DDH luns were not finished properly (they ended due to 
exceeding a maximum cpu-time limit) and the final estimates of the parameter 
values therefore were not computed, two of the intermediate values, corres­
ponding with the tissues metabolic rates, persistently remained negative. This 
suggests that the model may not be quite correct as far as metabolism is 
concerned. Perhaps metabolic changes in reality show a nonlinear behavior, 
e.g., due to a limited capacity of the enzymes involved. This would imply 
incorporation of a nonlinear saturation process in the model. In that case the 
state equations (Eq.(4.8» can no longer be conveniently solved by means of 
transition matrices (TM). Instead, some numerical integration method, e.g., 
according to Runge-Kutta (RK), must be used. This will cause an even higher 
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Fig. 4.29 MGN method: consumed cpu·time after starting with parameter sets 1 
(left) or 2 (right); 0 total accumulated time; time needed for computation of tfansition 
matrices 0 I determination of direction 6. and magnitude 0 of parameter step 
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cpu-time consumption, as was demonstrated with a five compartment/seven 
parameter model (see below). Identification of large multicompartment phar­
macokinetic models then becomes a rather tedious affair from a practical point 
of view, unless perhaps a mainframe computer is available to keep response 
times acceptable. 

4.2.3.4 Comparison of model responses. MGN and DDt! methods. 
Figure 4.31 shows, as an example, the model responses in spleen (DAU) and 
plasma (DOL) for the initial parameter values (set 1) and the final estimates 
according to the MGN and the DDH optimization. Both methods result in an 
improved goodness of fit, but the MGN procedure turns out to be the most 
successful. Goodness of fit for the other compartments is shown in Fig. 4.32. 

A five compartment/seven parameter model (Fig. 4.2b) can be handled 
well on a minicomputer. Starting with a same set of initial parameter values 
three different optimization runs were performed (Table 4-15): A) using the TM 
method to compute model response and solve sensitivity equations according to 
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Fig. 4.30 DDH method: consumed cpu-time after starting with parameter sets 1 
(left) or 2 (right); 0 total accumulated time; time needed for computation of state 
vector 0, determination of direction tJ. and magnitude <> of parameter step 

105 
,--------------, --------~ 

2 

10
1 

0----0------0--

10° I I I I I I I 

0 2 4 6 80 2 4 6 8 

iteration iteration 

the MGN routine; B) as A, but computation of the sensitivities according to the 
DDH routines; C) using a RK integration method (with a small time step for 
accuracy reasons) to compute model response and the DDH routines for the sen­
sitivities. The average times (s) required for computation of the transition matri­
ces/model response; parameter step; and a complete iteration amount to A: 5.6, 
29.9,35.5; B: 0.6, 20.7, 21.3; and C: 21, 901, 922, respectively. It shows that 
the RK integration method is velY time consuming. The normal DDH iteration 
here is faster than the MGN method, instead of slower as happens when more 
parameters are involved. However, the method needs more iterations and does 
not arrive at the same minimum as the MGN method. Case A: LLF decreases 
from 2685 to 44, TCC from .656 to .995 in 5 iterations (3 min cpu); case B: 
LLF from 2685 to 282, TCC from .656 to .970 in 18 iterations (6.4 min 
cpu-time); and case C: LLF from 2685 to 345, TCC from .656 to .963 in II 
iterations (2.8 h cpu-time). . 
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TABLE 4-15 PERFORMANCE OF DIFFERENT OPTIMIZATION ALGORITHMS 

Model: 5 compartments; 7 parameters; 26 observation times 

Algorithm A B C 
state vector calculated with TM RK TM 
information matrix calculated with TM DDH DDH 

Mean CPU Time gar iteration (s} 
• TM (2') 5.6 
• model response 21 0.6 
• model response + residuals + 

information matrix + SVD + 
direction of parameter step 14.9 

• line minimization 15.0 
• Hessian (= 35 model responses) 726 17.0 
• SVD + line minimization + 

parameter step 175 3.7 
• iteration 35.5 922 21.3 

Number of Iterations Required 5 11 18 
Total CPU Time of run (s) 177.5 10142 383.4 

-Log(Ukelihood Function) value start 2685 2685 2685 
final 44 345 282 

Total Correlation Coefficient start .656 .656 .656 
final .995 .963 .970 

TM: transition matrix (matrices) 
RK: direct integration by Runge-Kutta method 
DDH: direct estimation of Hessian through finite differences 
SVD: singular value decomposition 

4,2,3,5 Conclusion. Clearly the application of the MGN method deserves 
preference to the OOH method. Both methods converge, but the MGN one 
converges faster and reaches a lower minimum. The FO approach to the 
computations will make the MGN routine faster, but the difference can only be 
noticed if the number of icerations is large. Whichever method is chosen, by 
recommendation several nms should be made, starting with different sets of 
parameter values, to make sure that the method has not converged to a local but 
to the global minimum. 
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Fig. 4.31 

2x7 compartment model 

response, upper row: spleen 
DAU and lower row: plasma 
DOL concentrations as function 
of time 

A: initial parameter set 
B: after MGN optimization 
C: after ODH optimization 

Goodness of fit: indicated are 
Tee in compartment/Tee overall 
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Fig. 4.32 2x7 compartment model; goodness of fit (TCC, Eq.(4.51,52)), in the com­
partments and overall, for 0 initial parameter set 1; • after MGN optimization; t:.. after 
DOH optimization 
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4.2.4 Identification of the Daunomycin Pharmacokinetics 

To study the pharmacokinetics of DAU and DOL in the rat after a single i, v, 
bolus injection of the parent dmg various muiticompartment models (2x3, -5, -
6, -7 and -11) have been tested (Tables 4-1 and 4-11; Fig, 4,1). Increasing the 
complexity of the model stmcture, by considering more and more separate 
organs, allows incorporation and evaluation of enhanced pharmacokinetic detail. 
Identification of the increasing number of transfer rate constants for distribution 
and metabolism remains possible as the number of available observations in­
creases proportionally; the observations/parameters ratio is always 2-4, The 
described numerical MGN optimization method has been used, Beside this 
simultaneous parameter optimization method, for the 2x3 compartment model 
the analytical solution and sequential fitting method have been tried as well, 

The resulting values of the various performance criteria are listed in 
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TABLE 4-16 COMPARISON OF THE LARGE-SCALE MODELS 

model m NR TCC SSR PF AIC 

01 29 132 .926 3.6xl04 1690.7 1442.9 
02 37 132 .947 480.4 263.3 889.0 
03 44 132 .948 374.8 137.2 870.3 
04 37 132 .895 3.3xl06 2.8xl06 2056.6 
05 45 132 .948 207.1 133.9 794.0 
06 45 132 .893 945.0 4.1xl0" 994.4 

m = number of parameters; NR = number of observations; 
for the definitions of the criterion variables TCC, SSR, PF and AIC, see Eq.(4.51) through 
Eq.(4.54), and Eq(4.24) 

TABLE 4-17 ESTIMATED ML TRANSFER RATE CONSTANTS ("'o.hom)' (min-' LAND 
SO, [%1; MODEL 05 (SEE FIG. 4.4; P: PARENT DRUG, M: METABOLITE) 

k k k 
2P,1 P .3010 (0.02) 1 p, 1 OP .0085 ( 3.5) 14M,12M .0045 (13.3) 
3P,1 P .0064 ( 7.8) 11 p, 1 P .6008 (.002) 15M,12M .1 E-5 ( . ) 
4P,lP .0196 ( 3.6) 1 P, 11 P .0302 ( 0.7) 16M,12M .7EA (714.) 
5P,lP .0716 ( 0.4) 13M,2P .0013 (30.8) 17M,12M .0106 ( 3.8) 
6P,6P .0497 ( 0.4) 13M,14M .0184 ( 0.5) 18M,12M .1 E-5 ( . ) 
2P,3P .0033 (12.1) 12M,13M .0060 (10.0) 21M,12M .1 E-5 ( . ) 
1 P,2P .0150 ( 2.0) 19M,13M .0030 (80.0) 22M,12M .0024 (12.5) 
1 PAP .0134 ( 4.5) 12M,15M .0010 (20.0) 14M,3P .0002 (20.0) 
1 P,5P .0179 ( 4.5) 12M,16M .0033 (24.2) 15MAP .0027 (22.2) 
lP,6P .0050 (24.0) 12M,17M .0163 ( 2.4) 16M,5P .0027 (18.5) 
8P,2P .0120 ( 3.3) 12M,18M .4EA (150.) 17M,6P .0017 (35.3) 
7P,1 P .9996 ('002) 12M,21M .2E-5 (150.) 18M,7P .0020 ( 2.5) 
1 P,7P .0049 ( 8.2) 12M,22M .0007 (100.) 21M,10P .0006 (33.3) 
9P,lP .0095 ( 3.2) 20M,12M .0026 (15.4) 22M,11P .0015 (20.0) 
lOP, 1 P .0130 ( 1.5) 13M,12M .0230 ( 1.7) 12M,1 P .1 E-5 ( . ) 
l! larger than 999%; (E-a denotes xlO,a) 

Tables 4-16 and 4-19. They enable the comparison of the different models. 
It appears that the various goodness of fit criteria do not agree upon one 

"best" model. Optimum models, for a given compartmental size, are 3a1.2, 
5b3, 6bl, 7bl and 05. 

4.2.4.1 Comparison of the Small-scale Multicompartment Models. Both 
the analytic sequential and the numerical simultaneous solution can yield sat is-
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factory fits to the datapoints. The former method is rather sensitive to the 
chosen initial parameter values (model 3al.1 and 3a1.2). The second fit (excre­
tion DAU) depending on the results of the first fit (plasma DAU) also is a 
disadvantage. The analytic solution predicts an unrealistically large plasma 
volume. The numerical solution keeps the plasma volume at its physiological 
value, even if it is free to vmy this parameter, but it does not arrive at as good 
a plasma DAU fit without artificially weighting the observations. 

The excretion compartment accounts for plasma concentration dependent 
urine excretion. The (substantial) bile excretion must either be ignored (thus, 
disappears in the tissue compartment) or added to urine excretion. In the latter 
case it is modeled as plasma concentration dependent rather than liver con­
centration dependent, what would be more realistic. Here, both ways of model­
ing are equally good. Urine alone yields the lowest AIC, urine + bile yields 
higher TCC. 

4.2.4.2 Comparison of Intermediate-scale Multicompartment Models. In 
the S x2 compartment model the number of transfer rates to be estimated 
already becomes large. Therefore, it is difficult to find reasonable first estimates 
to start optimization with. The importance of a good optimization algorithm thus 
is obvious (model Sbl and 5b3). Overall fit in the 5 ,6 an 7x2 compartment 
models is comparable. The accmacy of the estimated transfer rates is rather 
poor, especially for metabolism and metabolite distribution. Improvement with 
increase of model size is seen in the predicted accmacy of the resulting con­
centration-time curves. 

4.2.4.3 Comparison of the Large-scale Multicompartment Models. It was 
tried to explain the observed data with models that comprise hypotheses about 
the characteristics of the processes of dl1lg transport and metabolism as listed in 
Table 4-1. Starting from several sets of arbitrarily chosen initial values the 
parameters in each model were optimized in the ML sense, using the modified 
Gauss-Newton algorithm. By evaluating the various optimization criteria the 
most likely model could be identified as model 05 (Table 4-16). 

Based on the total correlation coefficient, TCC, the models 03 (no 
plasma metabolization) and 05 (plasma metabolization) cannot be discriminated. 
There also is hardly a difference with model 02 (metabolism at constant rates). 
The superiority of model 05 is demonstrated by the lowest values of the sum of 
squared residuals (SSR) and the performance index (PF). Also, the Akaike 
Information Criterion (AIC) is lowest, despite the highest number of parameters 
to be estimated. 

Figure 4.33 compares the optimal responses (DAU and DOL time-histo­
ries) of the various models in four typical compartments, i.e., plasma, urine, 
liver and heart. As can be seen, the model responses improve considerably with 
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TABLE 4-18 GOODNESS OF FIT: TCC, SSR AND SDR PER COMPARTMENT FOR 
OPTIMUM MODEL RESPONSE; IMODEL 05) 

TCC SSR SDr 1119'9-') 

com artment DAU DOL DAU DOL DAU DOL 

plasma .782 <.001 6.0 5.3 0.21 0.25 
liver .977 .952 8.9 9.1 2.7 1 .1 
spleen .989 .925 9.2 8.6 2.2 1.6 
heart .985 .834 7.9 11.8 1.9 2.5 
kidneys .997 .932 7.3 7.4 1.5 2.6 
lungs .901 .921 9.0 8.8 11.7 1.6 
other tissue 
urine .999 .981 4.8 4.5 0.3 2.5 
bile 
bone marrow .905 .942 5.0 5.2 2.6 0.3 
muscles .945 .963 8.0 80.4 0.8 0.2 
overall: .948 207.1 

N.B" for the definition of TCC and SSR, see Eq.14.51) throu9h Eq.14.53); 
so, is the standard deviation of the residuals 

TABLE 4-19 RESULTS OF EVALUATING ADDITIONAL ISMALLER-SCALE) MODELS FOR 
DAU-DOL PHARMACOKINETICS 

model n '!'L ill N R !!lll.tbQQ TCC SSR PF AIC 
3a1.1 2x3 2x2 9 16 seq. .757 15.98 62.337 
3a1.2 2x3 2x2 9 16 seq. .982 13.69 59.872 
3b1 2x3 2x2 9 22 sim. .978 19.07 109800 82.864 
3a2 2x3 2x2 9 20 seq. .903 11.10 66.138 
3b2 2x3 2x2 8 22 sim. .999 40.33 19.66 97.334 
3b3 2x3 2x2 9 22 sim. .991 41.02 123600 99.708 
5b1 2x5 2x3 15 32 sim. .998 11.3x108 122.83 697.079 
5b2 2x5 2x3 14 32 sim. .998 14.0x106 694.00 544.664 
5b3 2x5 2x3 15 32 sim. .994 43.43 31.30 150.678 
6b1 2x6 2x5 19 76 sim. .994 65.80 91.70 356.185 
7b1 2x7 2x6 24 94 sim. .995 82.53 127.58 462.836 

tissues_1 = well perfused tissues: liver, spleen, heart, kidneys, lungs and skeletal 
muscles; tissues_2 = poorly perfused tissues: bone marrow and other tissues that can 
be reached by the drug, but for which no observations are available. Tissues that cannot 
be reached by the drug, for example brain tissue and bones, arB excluded from the 
models. 
n = number of compartments; w = number of observed compartments; m = number 
of parameters; NR = number of observations; seq. = sequential fitting (analytical 
method); sim. = simultaneous solution (numerical method). 

for the definition of TCC, SSR, AIC, PF: see Eq.14.51) through Eq.14.54), and Eq.14.24) 
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Fig. 4.33 Parent drug (DAU) and Metabolite (DOL) concentration~time curves for: A: Plasma, B: Urine, C: Liver and D: Heart; 
Comparison of optimum responses for models 01 ( .... 1. 02 (----J, 03 ( I. 04 (-.-.-J, 05 (- - - -J and 06 (- _ -J. 
Observations are shown as well. Best model, 05, often shows overlap with model 03 
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Fig. 4.34 Parent drug (DAU) and Metabo!ite (DOl) concentration-time curves for: A: Plasma, B: Urine, C: Liver and D: Heart; 
Optimum response with estimated standard deviation (shaded area) for the best of the tested models (05); observations are shown 
with their standard deviations 

~ 
~ 

;; 

" 

E 311 

• 

8 

• 

DOL 

A 

l.,.~ 
~f.mm .. ,. 

8 

, 
• > 
~ ., 
E , 
" 

"~ I~+ ,JI(';i" 

"( I .7 

" " 15 " 
tIme (hi 

~ 
~ = 
0 

.~ 

! 
0 e 

DAU DOL 

"' 20 

c c 

30 11 IS 

10 

+ 

" 11\ 
! 

~~ 

10 

~, 
I • I 

" 20 
o o 

JO 15 

" \ 
10 

\~: 
, . 

15 ". " " 
time (hi 



the model stlUcture changing from model 0 I to 05 (better agreement with the 
observed datapoints). In contrast, assuming constant rate metabolic processes 
(model 06) makes the model response deteriorate. 

Figure 4.34 shows again the optimum response of the best model (05) in 
the mentioned compartments. Also, the calculated accuracy of this model 
response is indicated. The corresponding parameter values are listed in Table 4-
17. The time dependent standard deviations of the state vector elements are velY 
small when the parent drug is concerned, but considerably larger for the 
metabolite in most compartments. 

Looking at the optimum parameter values (Table 4-17) it is seen that the 
DAU distribution parameters, expressed in min-I, range from 6xlO-3 (plasma to 
spleen) to 1.0 (slasma to other_tissues) when uptake from plasma is considered, 
and from 3x 10- (spleen to liver) to 3xlO-2 (bone marrow to plasma) for organ 
elimination rates. This clearly shows that there is a considerable variation in the 
uptake and elimination rates among the organs. Not every parameter value is 
estimated with equal accuracy, standard deviations from as low as 2x 10-3 to as 
large as 24 per cent occur. 

In general lower values are found for the DOL distribution parameters, 
respectively, from 1xlO-6 (plasma to bone marrow, -other_tissues, -heart) to 
2xlO-2 (plasma to liver), and from 2x 10-6 (other tissues to plasma) to 2xlO-2 

(spleen to liver). The accuracies, from 0.5 to > 1000 per cent, are much poorer 
than when parent drug is involved. 

The rates of metabolism valY a little bit among organs (0.02 - 0.03) 
with exceptions for spleen (0.002) and bone marrow (0.006). Accuracies are 
between 2.5 and 35 per cent. As it improves the modeling results, allowing the 
possibility of metabolism taking place in plasma is essential. Rapid DAU 
metabolism in blood has been described for human patients [Benjamin et aI., 
1973] and also is suggested by the observed high initial DOL levels in the rat's 
plasma. Strangely, quantitatively it hardly plays a role in the model, the rate 
being 1x10-6 min-I (though with accuracy poorer than 1000%). 

Table 4-18 shows the Tee and SSR of the optimum response of model 
05 in each compartment. In general, the Tee values are higher for the parent 
drug than for the metabolite. Parent drug distribution and elimination are well 
described by the model and apparently they obey first order linear kinetics. 
However, possibly the model can sti II be refined by introducing an enterohepatic 
recirculation, i.e., DAU might be taken up again, be it with some time delay, 
from the bile directly into the liver [Tse et aI., 1972; Tavoloni and Guarino, 
1982; Steiner et aI., 1982; Molino et aI., 1986]. Raised datapoints around the 
eight hour time point in the liver, where the present model response decreases 
monotonously, seem to support this possibility. Visual inspection of the plotted 
results (Fig. 4.35) indicates that DAU datapoints are fitted better than DOL 
datapoints. Especially the DOL plasma response, slowly rising and falling, does 
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Fig. 4.35 Parent drug (DAUI and Metabolite (DOLI concentration-time curves for 
Plasma and Liver; Optimum response with estimated standard deviation (shaded area) 
for the best of the tested 2x7 compartment models (7b1); observations are shown with 
their standard deviations. Peak of DOL in liver is predicted too early, in plasma too low: 
an effect of ignored saturation? Is rise in liver DAU data at about 400 min due to 
enterohepatic recirculation? DAU responses fit better than DOL responses do 
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not correspond to the sha,·p drop from high initial values that the datapoints 
exhibit. To a lesser extent the DOL heart response also is delayed with respect 
to the datapoints. These goodness of fit considerations are also reflected by the 
SSR values. 

4.2.4.4 Conclusions. The small scale models do not yield much phar­
macokinetic information. Clinically the model is not useful either, as it does not 
distinguish between relevant tissues. The large scale models allow realistic 
incorporation of physical phenomena. Therefore, they are useful to investigate 
basic pharmacokinetic concepts in detail: 
1) Parent drug distribution and elimination are well described by the model and 
apparently they obey first order linear kinetics. However, possibly the introduc­
tion of an enterohepatic recirculation may still yield an improvement 
2) The values of the transfer rate constants vary considerably, and so do their 
estimated accuracies 
3) Metabolism appears to occur in all organs, including plasma, however at 
significantly different rates 
4) The metabolite part of the model response does not explain the datapoints 
very well, especially for plasma. Probably the model stl1lcture is not perfect yet, 
and nonlinearities Should replace the assumed linear first order diffusion 
kinetics. However, it may still be possible that, searching in the 45 dimensional 
parameter space by a gradient method, the computational algorithm has not 
converged to the global minimum, but to some local minimum instead, so that 
yet another set of parameter values exists that will yield a better response for the 
same model stl1lcture of model 05. Both possibilities should be further inves­
tigated, although this will require a considerable computational effort (cpu time 
consumption) because of the dimension of the model being rather large. 

The unwieldiness of the large scale models reduces their suitability for use 
in the clinic. At present, the 7 x2 compartment model may be the most useful, 
though minimal one for clinical plllposes. Important is the ability to predict drug 
concentrations in a few tissues that are susceptible for intoxication, and at the 
site of the tumor. Further detailing then is less important. Provided that correct 
pharmacokinetic concepts are obeyed-best investigated through use of the large 
models-an intermediately sized model that is easily implemented on smaller 
computers, may be used in the search for efficient dl1lg administration schemes 
and for patient monitoring purposes. 
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Chapter 5 
Analysis of DNA Histograms] 
[Identification of a Flow Cytometer System for Cell Kinetics] 

5.1 INTRODUCTION TO DNA HISTOGRAM ANALYSIS 

5.1.1 Purpose of Flow Cytometric Data (DNA histogram) Analysis 

Most chemotherapeutic agents that are used for cancer treatment interfere with a 
cell population's proliferative activity. For instance, the cytostatic dl1lg arabino­
side-cytosine (ara-C) causes accumulation of cells in the S-phase of the cell 
cycle, possibly because of a (partial) block of the S-G2 transition [Karon and 
Shirakawa, 1970]. The precise cytokinetic action of a drug can be evaluated 
experimentally by exposing the cell population to the dl1lg for some lengths of 
time, and by studying the perturbations of the cell cycle, as compared to an 
untreated population. This implies monitoring of the time courses of various cell 
kinetic parameters for both the treated and the control popUlations, like for 
instance the relative numbers of cells that are in the G,-, S-, G2- and M-phases 
of the cell cycle. Constructing (sequential) DNA histograms is one possible 
technique that serves this purpose (e.g., [Barlogie, 1976; Gray, 1974]). 

The construction of a DNA histogram involves counting all the cells in 
the population that, at the given time instant, contain some, specified amount of 
DNA. The histogram displays the cell numbers as function of DNA contents. 
Thus, it yields information on the population's composition at the sampling 
time, though no distinction can be made between G2 and M cells. For, each cell 
in the Grphase of the cell cycle contains 2C DNA, cells in the S-phase possess 
an amount of DNA between 2C and 4C, and those cells that are in either the G2 
or the M-phase contain 4C DNA (2C corresponds with the amount of DNA in a 
complete set of chromosomes). So, for instance, the ratio of the counted number 
of 2C DNA cells and the total number of cells that form the population is 
identical with the fraction of G] cells. How this fraction changes with time can 
be seen by comparing several, subsequent DNA histograms. 

These types of studies lead to conclusions whose reliability greatly 
depends on how well the appropriate cell kinetic parameters can be determined. 
A flow cytomcter (FCM) is a convenient instrumcnt for measuring DNA histo­
grams. Unfortunately, it is not possible to read the population's composition 

Iparts of Chapter 5 were published before [Schultz et aI., 1985; Sonneveld et aI., 1988]. 
The cooperation of prof. de H,Baisch of the University of Hamburg and dr. C,B.Bagwell of the 
University of Miami is gratefully acknowledged. 
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Fig. 5.1 Major components of a flow cytometer [Trask, 1985] 
Detectors register the intensity of light, scattered forwards and sideways when a cell 
passes through the laser beam; wavelengths to be picked up can be set by filters. A 
different (or no) cell (type) in a droplet corresponds with a different light scatter pattern. 
A second function of the FCM is sorting; the electrostatically charged stream of droplets 
can be continuously deflected towards certain collection tubes, depending on the 
measured light scatter patterns (FACS, fluorescence activated cell sorting) 

vibrating crista I 
40.000 Hz 

nozzle 

laser beam 

collection tubes 

cell sample 
/ sheath fluid 
/ 

y 

plates 

directly from such a measured histogram. Some data reduction, or histogram­
analysis, is required first. Therefore, an accurate and objective DNA histogram 
analysis method is a tool of importance. 

5.1.2 Flow Cytometl'ic Data Acquisition 

The process of constructing a DNA histogram can be performed quickly by 
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means of a flow cytometer (FCM). This instnllnent can automatically separate, 
classify and count a population's cells, at rates of a few thousands per second, 
on the basis of their DNA contents. Or rather based on the intensity of the 
fluorescent light emission upon laser excitation, which is linearly related to the 
DNA contents. A detailed description of the principles of the FCM can be found 
in e.g. ,[Bagwell, 1979] or [Fulwyler, 1980]. Briefly, the FCM produces a DNA 
histogram in the following way. 

A DNA specific, fluorescent dye (often propidium iodide, PI) is added 
to the solution in which the population is incubated for some time. The dye 
molecules attach to the strands of DNA present in the cells. The more DNA a 
cell contains, the more dye it takes up. The cells are washed and, in suspension, 
run through the FCM (Fig. 5.1). One aftcr the other, in a stream of droplets, 
the cells pass through a beam of laser light whose wavelength has been chosen 
such, that the dye molecules are excited to emit light (fluorescence). The 
intensity of the event is measured by photo sensors that convert their input into 
an electrical signal of corresponding magnitude. This, in turn, determines to 
what class of DNA contents, or channel, the cell is allocated. The channels are 
numbered I through 256 (typically; higher resolutions, e.g., 512 or 1024 
channels are also possible) for increasing DNA contents per cell. A count is 
kept, so eventually the measured histogram, [number of cells] vs [channel num­
ber], is obtained. 

5.1.3 Methods of FCM Data Analysis 

The DNA histogram as produced by tile FCM is not suited for direct extraction 
of the correct percentages of G1, Sand GzM cells. For various reasons the 
FCM may put a cell into a wrong channel. 

A not exactly linear relationship between dye uptake and measured 
fluorescence may be one error source, though within a certain range linearity 
can be expected [Bagwell, 1979]. Another error source may be the fact that cells 
that contain equal amounts of DNA need not necessarily take up equal amounts 
of fluorescent dye. Due to Brownian movement of the DNA strands dye mole­
cules may miss a potential site of attachment. Therefore, dye uptake can be 
considered as a random process with a Gaussian probability density function. 

Furthermore, cellular debris may cause false registration of an event 
(background noise) and sometimes two or three cells stick together, forming 
doublets and triplets that are mistaken for a single event. For example, a doublet 
of two G1 cells is easily registered as one G2 01' M cell. To some extent correc­
tions can be made for these types of errors (see below). 

Next to these error sources inherent to biochemistIy and biophysics, 
instnllllental errors may have their origin in the electronic and optical parts of 
the FCM, e.g., drift in amplifiers, laser light fluctuation, etc. 
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Fig. 5.2 Kernel functions Zr(t
j
), "true" nr. of cells as function of DNA contents, tj 

(between 2C in channel ml and 4C in channel m2), as used in different DNA histogram 
analysis programs. a) Fried's multiGaussian deconvolution technique, b) Dean/Jett's 
polynomial curve fitting technique, c) Bagwell's multi rectangle technique, d) Present 
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So, data reduction is neceSsaly to extract the true DNA histogram from the 
measured one. Several DNA histogram analysis methods have been designed to 
do this. Their principles range from relatively simple graphical methods (e.g., 
[Baisch, 1975]) to more complicated mathematical procedures that require nu-
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merical processing on a digital computer. Examples of the latter are the mul­
tiGaussian deconvolution techuique [Fried, 1976; Fried and Mandel, 1979], the 
polynomial curve-fitting technique [Dean and Jett, 1974] and the multirectan­
gular technique [Bagwell, 1979]. 

Not all techniques exhibit a good performance under all circumstances, 
nor are they always successfully applicable to all the different classes of DNA 
histograms (i.e., derived from synchronously or asynchronously growing 
populations, with very large or small G2M fractions, etc.). The graphical 
methods are quick and simple, but not velY accurate. Furthermore, their results 
depend on the subjective decisions of the ana list. Computerized methods are 
more objective, but also more complicated. The three numerical methods 
mentioned have in common that they choose a so-called kernel function to 
represent the tme DNA histogram whose shape is still unknown. This kernel 
function is broadened to allow for the dispersing effects of erroneous channel 
allocation occurring in the FCM, i.e., Gaussian curves are superimposed, as the 
variety and the nature of the error sources make plausible the assumption of 
Gaussian distributed random errors. Subsequently, using a non-linear least 
squares method, the broadened kernel function is fittcd to the measured DNA 
histogram. 

Fried's IIIl1ifiGOllssioll deconvolution technique chooses as kernel func­
tion several spikes (Fig. 5.2a). The spike heights, Zr[i], correspond with the 
number of cells and the spike location, tj , is related to the mean DNA contents 
per cell. The spikes on the left (mj) and right (m2) flanks represent the G j and 
G2M cells respectively, the spikes in between represent the S-phase cells in the 
population. Thus, for instance, the G j fraction is equal to ZT[mj]/(Eti ZT[t j]). 

Each spike is broadened with a Gaussian curve, e.g., for the ith spike (mean t j , 

standard deviation sd ti ): 

'A -j (I-f i)2 
(21f)- "sd/; ·exp{-lh--

2
-). 

sd/. , 
(5.1) 

The resulting function, Zp(t), giving the population's DNA density distribution: 

(5.2) 

is fitted to the measured DNA histogram, optimizing the free parameter values 
for mj, sdmt , m2' sdm2 , the distance between (i.e., the number and positions of) 
the spikes, and the spike heights Zr[t j]. It is assumed that the standard deviation 
of a Gaussian curve depends on the location of its mean, according to: 
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(5.3) 

as in the FCM cells with higher DNA contents appear to experience dispersion 
over a wider range of channels than cells with lower DNA contents do. 

A true DNA distribution of S cells should be a continuous one, so 
obviously Fried's kernel function is not very realistic. Furthermore, a distinct 
separation between G t and early S, as well as between late Sand G2M cells is 
not possible. Increasing the number of spikes to reduce this disadvantage leads 
to severe numerical problems, as it becomes difficult to determine the increased 
number of free parameters all with sufficient accuracy. 

Dean/Jett's polynomial technique takes as kernel function (Fig. 5.2b) 
two spikes, for the G I , respectively, the G2M cells, while the S-phase distri­
bution in between is simulated with a 2nd degree polynomial: 

(5.4) 

or, in discrete form, the number of cells in channel i, Zy[i] becomes-by 
integration of Eq.(5.4) from t = i-I to t = i: 

(5.5) 

where M = c, L = -(c - b) and K = (c/3 - b/2 + a). 
Both spikes and polynomial are broadened with Gaussian curves, resulting in the 
function 

Zp(t) = Z~lIIt]' G(t;IIII,sdIll1 ) + Z~1II2]' G(f;1II2,sdIll2) 

+ L t P(fi)·G(t;fi,sda)· , 
(5.6) 

The nine parameters ZT[m!l, ZT[m2], ml, m2' sdml , sdm2 , a, b, and care 
optimized to fit this function to the measured histogram. 

Application of the polynomial technique assures continuity of the S­
phase distribution, yet requires few free parameter values to be estimated. But 
using a 2nd degree polynomial may be too stringent a restriction as to turn out a 
satisfactory fit, especially when drug-perturbed populations are concerned. 
Trying to increase the kernel's flexibility by allowing a polynomial of higher 
degree does not improve accuracy, as using more parameters leads to more 
uncertainty, especially at the polynomial's endpoints, that coincide with the 
Gj-early S and late S-G2 areas. 

Bagwell's IIIftlfirecfangle technique combines both methods, in that his 
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kernel function (Fig. 5.2c) approximates the S-phase distribution with a series of 
contiguous rectangles whose heights, as for Fried's spikes, are allowed to vary 
independently. Adjacent spikes for G j and G2M cells are broadened with Gauss­
ian curves and each rectangle is convolved with a Gaussian curve, yielding 

Zp(t) = ZI[lIlj]' G(t;mj,sdIll1) + ZI[1Il2]' G(t;1Il2,sdIll2) 
Hi 

+ I Zy[i]· G(x; 0, sdj) dr, 

Ai 

where Ai = t - Ih· ai' Bi = t + 1/2 , ai, ai = width of the ith rectangle, and 

(5.7) 

sd i = PC· ti + CF expresses the assumed linear increase of dispersion effects 
with augmented DNA contents per cell. 
Zp(t) is fitted to the measured DNA histogram by optimizing the parameter val­
ues 011' m2' PC, CF, ai'S (number and widths of rectangles) and ZT[i]'s (heights 
of spikes and rectangles). 

Thus, Bagwell's approach combines good flexibility for relatively few 
parameters, and S-phase continuity. Another method of mathematical analysis, 
which is proposed below, puts emphasis on the same characteristics. This 
method, called lIIultiharmOllic technique, comes closer to physical reality, as it 
tries to describe the process taking place in the FCM. The approach is based on 
principles originating in the field of general systems theory (e.g., [Eijkhoff, 
1974]): a system identification sequence comprises the search for an appropriate 
set of mathematical formulas, with which the physical reality is described suffi­
ciently well to explain and understand (ancl predict the future behavior of) the 
system under investigation. In other words, here, it is attempted to builcl a 
mathematical model that simulates the physical processes in the FCM that lead 
to the measured histogram. 

At present, modeling is started with assuming a theoretical histogram, 
or, equivalently, kernel function, from which the population's composition can 
be derived at once. A G j fraction is assumed and positioned in an appropriate 
DNA channel, and so is a G2 + M fraction. The remaining cells are assumed to 
be in S-phase. Their true, continuous distribution is approximated with a set of 
harmonic functions, i.e., a sum of sines and cosines terms (Fig. 5.2d). The 
advantage is great flexibility, as in this way a large variety of shapes can be 
formed to simulate the true distribution, while employing only a few free 
parameters. Table 5-1 compares the number of parameters required by the dif­
ferent methods. 

Next, the physical process of dispersion is modeled. It is assumed that 
errors in channel allocation by the FCM, causing cells that belong to channel j 
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TABLE 5-1 PARAMETERS IN THE VARIOUS ONA HISTOGRAM ANALYSIS METHOOS 

METHOO: multiGaussian polynomial multirectangular 
peak location: 
G, m , m , m , 
G2M m 2 m 2 m2 
nr. of parameters 2 2 2 
kernel: 
G, ZT[m , ] ZT[m , ] ZT[m , ] 
G2M ZT[m 2] ZT[m2] ZT[m2] 
S nr. of spikes a nr" of rectangles 

position of spikes b width of rectangles 
spike heights c rectangle heights 

(p=a+b·t'+c·t,2) 

nr. of parameters 3+2N 5 3+2N-1 
dispersion: 
G, sdm1 sd rn1 PC 
G2 M sdm2 sdm2 CF 
S sdt::::;(sdm,/m,l·t sd t ={sdm1 /m,) -t sdt=PC·t+CF 

nr. of Qarameters 2 2 2 

total nr. of parameters: 7+2N 9 6+2N 

histogram of NC cells in M channels 
N =nr. of spikes or nr. of rectangles or nr. of cosine coefficients 
in S-phase: ZT(tl = p or h for polynomial or multiharmonic method, respectively 
t is the measure of fluorescence intensity (DNA contents per cell); t' =t-m1 

multiharmonic 

m, 
(m2 =2·m, ) 

1 

ZT[m , ] 
ZT[m2] 

nr. of harmonics 
cosine coefficients, A[k] 

sine coefficients, B[k] k = 1 .. N 
(h =AIO] + 2'2 A[k]' cos(kwt') + 

B[k]'sin(kwt'): 
A[O] = {NC-ZT[m , ]-ZT[m, J}/M, 

w=2rr/(m , -1)) 
3+2N 

PC 
CF 

sdt=PC·t+CF 

2 

6+2N 



to turn up in channels j, j±l, j±2, etc., occur at random according to a 
Gaussian probability density function. This adds two more parameters to the 
model. 

By substituting the "best" values for the free parameters in the model 
equations, the model output, or predicted histogram, can be calculated. If the 
way of modeling has been correct, this predicted histogram should show an 
optimum degree of accordance with the actually measured histogram. If not, 
obviously the model stl1lcture ought to be improved. Parameter estimation 
techniques deal with the problems of finding the correct parameter values. 

The proposed multiharmonic method is discussed in more detail below. 
Subsequently, examples of its application will be given. 

5.2 THE MULTlHARMONIC TECHNIQUE 

5.2.1 Construction of the Mathematical Model 

Let the population under investigation consist of a total of NC cells. The 
population is assumed to be homogeneous, i.e., it consists of cells of a single 
cell line only. This restriction is necessary, because G( cells-and other cells of 
corresponding maturity- from different cell lines may contain different amounts 
of DNA (different value of C in the 2C DNA quantity); thus, a heterogeneous 
mixture will yield a DNA histogram of (partially) overlapping distributions. 
They are difficult to decompose, although new techniques are being developed 
(See Chapter 7.4.1). By means of an FCM, that can distinguish M channels or 
classes of DNA contents, a measured DNA histogram has been produced: ZM[i] 
cells of a single type have been counted in channel i. No cells are lost in the 
process: );j ZM[i] = NC. Scaling is such that cells that have been put into 
channel 2· i must have twice the nominal DNA contents of cells in channel i. 
(This means that in the linear relationship between fluorescence F and DNA 
contents i, F=a·i+b, the term b must be zero or very small compared to the 
factor a. For, if F( = a.i l + b, F2 = a·i2 + b, F2 = 2.F I, then i2 = 2.i t + 
b/a). The problem is to find the unknown true histogram, Zt> from the measured 
one, ZM' 

5.2.1.1 CI'eating the Theoretical Histogram. According to the proposed 
systems theoretical approach a model must be built that describes, in mathemat­
ical terms, how the measured histogram has been achieved. Therefore, first a 
theoretical histogram is constructed. Suppose there arc Zr[mtl G I cells in the 
population. These cclls are located in the 2C DNA channel mi' Further suppose 
that the amount of G2M cells present comes to Zr[m2]' They must be located in 
the 4C DNA channel m2 = 2 ·ml' Thus, the fractions of G I and G2M cells 
amount to, respectively: 
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and (5.8) 

This leaves NC - Zr[md - ZT[m2] cells in S-phase (fraction Fs = 100 - F t - F2 
%), to be distributed among the channels between mt and m2' The mathematical 
expression that describes the true shape of the S-phase distribution curve, is 
approximated with a set of harmonic functions, in a way as shown below. 

5.2.1.2 Foudel' expansion. Provided that ccrtain conditions (e.g., single 
valuedness and integrateability) are fulfilled, any periodical function Z(O with 
period T can be expanded into a converging series of harmonic functions 
(Fourier expansion, e.g., [Tuma, 1979]): 

'" 
Z(t) = L {A[k]·cos(hv·t) + B[k]·sin(k·w·t)), \V = 21fIT. (5.9) 

k~-oo 

For the amplitudes, or Fouricr coefficients, A[k] and B[k] the following 
expressions are valid: 

I 
A[k] = -

T 

T ! Z(t)· cos(k-Iv·t)dt 

T 

B[k] T ! Z(t)· sin(k·\V·t)dt 

k = 0, ±1, ±2, .. (5.10) 

The function Z(O can be approximated by considering only the first few, say N, 
terms of the series. Then, Z(t) can be written as: 

N 

Z(t) "'" A[O] + 2· L {A[k]·cos(k·\V·t) + B[k]·sin(k·w·t)}. 
k=t 

(5.11) 

Of course, the larger N is chosen, the better the approximation. A fairly small 
N, however, may already result in a good enough approximation, especially if 
Z(O does not exhibit sharp changes, but fluctuates gradually. 
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TABLE 5-2 THE THEORETICAL DNA DISTRIBUTION IN THE MODEL: DNA CONTENTS 
PER CELL = t, NR. OF CELLS = Z (t) 

0" t " m1- 1 

m,-' < t " m, 

m, < t " m 2-' 

m2 -1 < t ....:; m2 

m2 < t ::5 M 

NC: given nr. of cells 
M : given nr. of channels 

ZT(t) = 0 

ZT(tl = ZT[m,) 

ZT(tl = A[O) + 2· ~ ((A[k)· cos(k· w' (t-m,)) + 
(B[k)' sin(k' W· (t-m, Ill; k =, ,N 

ZT[t) = ZT[m2 ) 

ZTlt) = 0 

m2 ==2'm, 

m,: chosen G, channel (2C DNAI 
N: chosen nr. of Fourier pairs 

T = m2-1-m1 == ml-1 
w = 2ffrT 

(sin,cos terms) 

TABLE 5-3 THE DISCRETIZED THEORETICAL DNA DISTRIBUTION: ZTIiJ CELLS IN DNA 
CHANNEL i 

M 
i ZT[i) 1; ZT[i) NC } 

1 through ml-l 0 

ml ZT[m l ) 

ml+l through m2- 1 (NC - ZT[mii - ZT[m2)/(ml - 1) + 

N A[k) k·w 
+2, 1; {--. (2'sin2 (-) ·sin(k·w· (i-ml»+ 

k=l k'w 2 

+sin(k'w) ·cos(k·w· (i-ml»)} + 

N B[k) k '\v 
-2 . 1; {--. (2 ·sin2 (--) 'cos(k'w' (i-ml»+ 

k=l k·w 2 

-sin(k'w) ·sin(k·w, (i-ml}») 

m2 ZT [m2) 

m2+ 1 through M 0 
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S.2.1.3 Application of Fourier Expansion to the S-Phase Distribution. 
The true S-phase distribution is likely to show gradual fluctuations, and there-­
fore is expected to be approximated with sufficient accuracy if the above 
mentioned decomposition into N pairs of harmonic functions is carried out. By 
writing t for DNA contents and Zr(t) for the theoretical DNA distribution, the 
resulting expression is listed in Table 5-2. Table 5-3 shows the same expression 
for the theoretical distribution, but now converted to a discrete form by cal­
culating the number of cells (nr. of cells) in channel i with: 

i 

2Jfi] ~ f 2-1t)dr, 
i- t 

i ~ 1,2, ... ,M. 

The mean DNA contents per cell in channel i comes to: 

{2·(i - 112) + I}·C/III 1. 

(5.12) 

(5.13) 

In this way the modeling of the theoretical histogram, shown in Fig. 5.3, has 
been completed. For given ml and N it is fully determined by the 2· N +2 
parameters: ZT[m1], ZT[m2], A[I], .. , A[N], B[I], .. , B[N]. 

It should be noted that the first Fourier coefficient, A[O] alone is respon­
sible for a uniform distribution of S cells among the S channels: 

T fl/
2 

-

A [0] ~ i· ! 2 7(1)' cos(O'w'r)dr ~ f 2-1r)dr 
1112 - - 11/ 1 

1111 (5.14) 
NC - 2 7[1111] - 2 7[1112] nr. of S cells 

1111 - I nr. of S channels 

The additional Fourier terms may alter Ihe shape of the S-phase distribution, but 
they do not contribute to the area under the curve (nr. of cells): 

T T ! Ca' cos(k-lv'r)dr ~ ! Cb' sin(k-lv'r)dl ~ 0 for any Ca, Cb,k. (5.15) 

Therefore, considering more sine andlor cosine terms does not alter the mag­
nitude of the S fraction. 

5.2.1.4 Modeling the Dispersion Effects. Next, the dispersion occurring in 
the FCM is modeled. It is assumed that the random channel allocation, by which 
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cells, that due to their DNA contents belong to channel j, turn up in channel j as 
well as in the channels in the neighborhood of j, can be modeled with a Gauss­
ian density distribution function, whose parameters are: 

mean value = j - Ih; standard deviation = PC· (j-Ih) + CF. (5.16) 

The latter expression accounts for the linear increase of the dispersion effects 
with increasing channel number, which is an observed FCM characteristic. 
Occasionally, however, the dispersion effects appear to increase in proportion to 
the square root of the channel number, for which phenomenon theoretical sup­
port exists. Equation(5.16) should then be modified accordingly. Often the 
constant factor, CF, is taken to be zero; a non-zero value, however, is not 
uncommon (e.g., [Brunsting et a!., 1979]). The factor PC should not be confus­
ed with the so-called coefficient of variation, CV = sdj / j, relating the standard 
deviation to the channel number, although the two variables are nearly equal if 
CF is zero. 

The dispersion function statcs how the number of cells, Zr[j], theoreti­
cally belonging to channel j, is redistributed among channel j and its neighbor 
channels j ± I, j ±2, etc. Channel j contributes to the number of cells that end up 
in channel jp by "losing" a quantity (Fig. 5.3; 5.4): 

jp 

~jZpUp] = ZIiJl' J (21f)_lh'{PC'(j_1/2 ) 

jp-I 
I (x - (j_1/2»2 

+ CFr . exp{ _I;" ) dr + Ii' 
(PC'(j-lh) + CFi 

(5.17) 

The first term on the right hand side of this equation represents the Gaussian 
dispersion, the second term is a rest term that can be explained as follows. In 
principle the Gaussian function is defined from jp = - '" until jp = + "', so Zr[j] 
should be spreaded over this range. However, at a certain channel number 
jp = jc the corresponding contribution ~j Zp[jc] (without the result added yet) 
falls below a preset small number eps (e.g., eps = 0.00001). Then further 
dispersion is stopped. But the remaining tails of the Gaussian should not be 
ignorcd, if the number of cells in the population is to be kept constant (especial­
ly for larger PC values negligence will lead to cumulative error and considerable 
cell loss). Therefore, the tails are divided into equal parts rj to be added to the 
previous channels', jp = j,j ± I ,j ±2, .. ,j ±jc, contents. The uniformity of this 
second redistribution is a matter of convenience; only a velY minor error is 
introduced this way. 

The total number of cells that eventually will be found in channel jp 
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Fig. 5.3 Model of the theoretical distribution: ZT(t). number of cells as function of DNA 
contents, t, can be represented by the discrete theoretical histogram {j,ZTlill, or ZT[j) 
cells in DNA channel j. The total number of cells in the population is given by 

The relations between channel number, mean DNA contents per cell and fluorescence 
intensity are also shown. Cells with DNA contents 2C' jlm1' in theory corresponding 
with channel j, may be redistributed in surrounding channels, e.g., AjZp{i] of these cells 
will end up in channel i 
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Fig. 5.4 Model of the dispersion: ZTfi) cells pertaining to DNA channel j are redistributed 
in the surrounding channels, according to a Gaussian probability density function. Tails, 
beyond ,channel jc for which LljZpOcl < eps (a preset value). are redistributed once more, 
now uniformly 

_ ZT[j] 

uniform 

",jZP[jp] 

eps 

amounts to the sum of the contributions that it receives from all channels j in the 
theoretical histogram: 

11/2 

ZpUp] = L L'ijZpUl 
j=11I 1 

(5.18) 

Now the full model has been accomplished and a predicted histogram, Zp, has 
been obtained. This predicted histogram is the output of the model that simulates 
the FCM system. The precise model output depends on the values of the param­
eters previously mentioned, which determine the theoretical histogram, and on 
the dispersion parameters PC and CF, which determine how the theoretical 
histogram is spreaded to yield the predicted histogram. So, given values of ml 
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and N, the output of the mathematical model depends on 2·N+4 parameters 
(for I ,,; i ,,; M): 

ZpUl ~ I{ Z7[1II I], Zfi1ll21, PC, CF,A[I], .. , A[N],B[I], .. , B[N]}. (5.19) 

In this way, four different DNA histograms can be distinguished for the same 
population: 
I) the tme histogram Zt. 
2) its error-polluted version, produced by the FCM, the measured histogram 

ZM' 
3) a version, as estimated by the model, the theoretical histogram Zr. 
4) the predicted histogram Zp, the model output to be compared to the measur­

ed histogram. 
Note, that in all four histograms the population size must remain the same, i.e., 
NC cells. 

5.2.2 Parameter Estimation 

5.2.2.1 Intl'Oduction. When values are substituted for the parameters in the 
model equations, a specific model output or predicted histogram {i,Zp[iJ} is 
obtained. The purpose of. a parameter estimation procedure is to find those 
parameter values that lead to an optimum resemblance of the predicted and 
actually measured histograms. 

It should be noted that even if the model equations, with the proper 
parameter values substituted, describe the physical system exactly, differences 
between measurement and prediction are sooner the rule than the exception. 

For example, Ohm's law models the relationship of electrical current I 
and voltage V in a rcsistor R (units of ampere, volt and ohm, respectively) with 
a straight line: 

v = I· R. (5.20) 

Experiment sholVs that observed datapoints {I,V} often will not lie exactly on 
this line, due to the limited accuracy of the measurements caused by imperfec­
tion of the instmmentation (and the observers). Yet, for all practical purposes 
this electrical system is represented very lVell by the straight line relationship: 
datapoints will never lie at large distance from the line and, with increasing 
number of observations, they will-at random-lie above the line as often as 
below it. In fact, the straight line is supposed to reflect the physical reality 
perfectly, and the observed deviations are called random measurement errors. 

Obviously, if the discrepancies between observed points and optimum 
model output had appeared to be systematic, and/or (too) large, the postulated 
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Fig. 5.5 Diagram of the histogram analysis procedure 
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straight line relationship would not have held. In that case the model should 
have been revised for incorrectness or incompleteness. Finding the correct 
model (equations) to describe the physical reality is called the process of system 
identification. 

A similar procedure is followed in the present case of modeling the 
FCM (Fig. 5.5). The It priori postulated model is assumed to be conect, Le., 
the model equations describe the physical system exactly, once the optimum 
parameter values have been substituted in them. Then, the calculated model 
output is identical with the true system output, which differs from the actually 
observed system output only because (random) measurement errors have occur­
red. Decisions about acceptation, adaptation or rejection of the model must be 
made, It posteriori, depending on how satisfactorily the model output fits the 
observed data. 

To solve the problem of finding the correct parameter values, in the 
present case a maximum likelihood (ML) technique is applied [Eijkhoff, 1974; 
Astriim, 1979], which regards the parameters as random variables rather than as 
unknown constants. Experience with this method was already obtained in solv­
ing a similar problem of estimating pharmacokinetic parameters [Sonneveld and 
Mulder, 1981]. With the ML technique not only a fair estimate of the optimum 
parameter values can be obtained (it can be proven that the ML estimates equal 
the true parameter values if. the number of observations rises to infinity, which 
property is called asymptotic unbiasedness), but also an estimate of the errors to 
be expected in the resulting parameter values can be calculated. The technique is 
discussed in more detail below. 

5.2.2.2 Maximum Likelihood Optimization. For a certain set of parameter 
values, combined in the parameter vector Pk' the model predicts Zp[i] cells to 
be found in channel i. The number of cells actually measured in this channel 
amounts to ZM[i] (Fig. 5.6). 

Zp[i] is composed of contributions from the channels ml, .. ,1112 in the 
theoretical histogram, according to Eq.(5.18). 

The pure Gaussian dispersion term in Eq.(5.17) is the product of the 
theoretical number of cells in a channel j, ZrUl, and the (Gaussian) probability, 
Pri,j: 

PriJ= lIP (21r)-'h'[PCV-Ih)+CFTI.exP!-lh' [x-v-
I
h)]2 jdX (5.21) 

jp_1 [PC'V-'/,) + CF]2 

-valid for each of these cells-that a cell from this channel j is put into channel 
L As such, the term expresses a mean value for L'lj Zp[i], the contribution of 
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Fig. 5.6 Maximum likelihood parameter estimation. Measured system output 2M, model 
output ZPi and probability density function fi{DZ) of the measurement error DZ for two Ij 
= 1,2) different sets of parameter values. For channel i. the probability of the measure~ 
ment error DZ[i) being approx. equal to the residual DZilil = ZMlil - ZPilil is: Pr{Qzlil = 
DZiliJ) = fi{DZliJ).dDZlil = shaded area. The greater this probability, the better the 
model accounts for the observation; in this example, if ZP1 were true it would make 
measuring ZM[iJ more probable than ZP2 being true. Therefore, to find the optimum 
parameter values, maximize 2: f{DZlil) ,dDZ[i], for all i simultaneously 

DZ 

ZM[i] 

Z~ [i] 
DZ 1 [iJ 

DZ2[i] 
ZP2 [iJ 

! ! , ! , ! 

CHANNEL 

channel j to the predicted number of cells in channel i. In reality, if the experi­
ment would be repeated with the same cell population and the same model and 
the same model parameters (ZT[il, PC and CF), Llj Zp[iJ will assume different 
values, according to a binomial distribution. In fact, the probability that Zr[i] 
cells in channel j contribute K cells to channel i (0 :0; K :0; ZrU]) is given by: 

Z7fJ1! K Z,ti]-K 
K! . (ZrtJ] - K)! . PriJ ' (1 - Pri) . (5.22) 

(K! is pronounced K factorial and is shorthand for 1,2·3· ... ·K). Thus, the 
expected value of Llj Zp[iJ is ZTUl· Pri.j and its standard deviation is: 

sdAZ ['J = {ZrtJ]·Pr. ··(I-Pr· »)'/'. (5.23) 
j pI IJ lJ 

From this equation and Eq.(5.17) it can be seen that Llj Zp[iJ increases gropor­
tionally with ZTUl and sdAj ZP[il increases proportionally with ZT[i] /'. The 
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relative deviation sdLljZP[il/L'lj Zp[i), therefore, decreases with increasing ZTOl. 
If ZrOl is large, the experimental law of large numbers applies, i.e., the actual 
L'lj Zp[i) will tend to its expected value of ZrOl· Pri,j and the relative deviation 
will tend to zero. This is why-next to the vanishing relative influence of the 
rest term in Eq.(S.17)-it is important that the cell population run through the 
FCM is as large as (practically) possible. 

From Eq.(S.IS) and Eq.(S.23) it is derived that the standard deviation of 
the predicted number of cells in channel i will be: 

mz 

{ L ZrlJl' Pri j . (1-Pri j») "I, . 
j=ml 

(5.24) 

If the model, thus (mean) Zp[i), were correct, then the residual process error or 
the difference Dz[i) = ZM[i) - Zp[i), would be characterized by the standard 
deviation in Eq.(S.24) if no further measurement errors have occurred. 

Let the residual process error, Dz[i) be a realization of the random 
variable Dzill (measurement error). As has been argued above, the distribution 
of this random variable will basically be a composition of binomial distributions. 
For large numbers of cells a binomial distribution can be approximated well by 
a normal distribution. The sum of several normal distr,ibutions is, itself, normal­
ly distributed. Therefore, let the random variable be a normally distributed with 
mean value and variance according to: 

and (5.25) 

The probability density function of this random variable then is given by: 

(5.26) 

This expression holds for all i = I ,2, ... ,M. 
Assume independence of Dz[i) and DzOl (i '" j). Further, assume Q[i) 

and QOl both equal to Q. The fonner assumption will be more reasonable than 
the latter that is taken as a simplification. The joint probability density function 
pdf{.!hill,Dzill, .... ), or the likelihood function L, becomes: 

M M 
L= II pdf{Dz[iJ} = (21T)-"/,-M. Q-Ih-M. exp{ _1/2 'Q-l'L D z[i)2). (5.27) 

i~1 -- i~l 

This function L reflects the likelihood of measuring the sequence ZM[ij, 

-224-



(i=1,2, ... ,M), where the sequence Zp[iJ should have been measured. The 
purpose of optimisation, in the ML sense, is to find those parameter values, and 
corresponding model output, that result in the highest likelihood of the occur­
rence of the actual observations. In other words, the ML estimates of the param­
eter values lead to the model output that is the best representation of the tme 
system output, one can achieve with this model. 

To find the combination of optimum parameter values, the likelihood 
function L must be maximized with respect to the parameters. Instead of 
maximizing L, for convenience -In(L) can be minimized for the same results, as 
the latter function exhibits a monotone decrease with increasing L. 

M 

-In(L) = 'h'M-{ln(27f)+ln(Q)} + '12'2: {Dz[iJ·Q-l·Dz[iJ}. 
;=, 

(5.28) 

The sum in the last right -hand term is called the performance index. It tends to 
M, for Q can be approximated by: 

M 
Q "" ~ T Dz[iJ2 = SSQ. 

M ;=, M 
(5.29) 

(SSQ is the sum of the squared errors). Therefore, in turn, minimization of 
-In(L) is equivalent to minimizing Q, for instance by finding the simultaneous 
zero of the derivatives of Q with respect to the parameters. Hence, set the 
following gradient (gdt) to zero: 

gdt = iJQ = O. 
iJp 

(5.30) 

By using a gradient method the solution of this equation can be numerically 
searched for. Starting with an initial estimate, parameter vcctor Po, iteratively 
for k = 0~1,2,,,. a parameter step vector can be calculated according to: 

(5.31) 

until the step Ll.Pk no longer exceeds a small, preset magnitude o. The last 
calculated parameter vector Plln"" then is taken as solution, i.e., as optimum 
estimate of the tme combination of parameter values. 

The well-known Newton-Raphson algorithm, for instance, uses for 8 
the Hessian matrix of second order derivatives: 
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(5.32) 

Thus: 

(5.33) 

However, calculation of the second order derivatives usually is velY time 
consuming. Therefore, it may be advantageous to employ the Gauss-Newton 
(GN) algorithm that employs the so-called Fisher Information matrix, E: 

(5.34) 

which involves first order derivatives only. It can be shown that E tends to -H 
when the number of observations increases. 

Explicit expressions for the gdt and the Information matrix can be deriv-
ed by actually differentiating Q with respect to the parameters. This results in: 

8Q 2 M 2 M 8Z U] 
- = --' L SU]'Dz [ll = --' L _P- . Dz[i] , 
8p M i~l M i~l 8p 

(5.35) 

respectively, with second order terms neglected: 

(5.36) 

after which the parameter step vector can be calculated with: 

(5.37) 

Another characteristic of the Information matrix is that its inverse can serve as a 
lower bound on the variance-covariance matrix, V p of the estimated parameter 
values, 
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V > E- I 
p - . 

(S.38) 

It can be proven that E- I and V p tend to be identical when the number of 
observations increases to infinity. This is called the property of asymptotic 
efficiency of the ML estimation procedure. In practice, E-I is supposed to 
represent VI) adequately, even for a limited number of observations. Thus, the 
standard deviation of the ML estimate of parameter j is given by: 

(S.39) 

and the correlation coefficient for parameters j and I comes to: 

(S.40) 

The variance-covariance matrix of the predicted histogram {i,Zp[iJ} can be 
calculated next, from: 

= [aZP[i]. -I. [aZp[i]] T) Vz --- E -- , 
p ap ap 

(S.41) 

and the standard deviation of the predicted Zp[i] becomes: 

i V 'h[. '] s{,zpli] = zp 1,1 . (S .42) 

A goodness of fit criterion provides the possibility to get an impression of how 
well the calculated model output fits the observed data. When several curves 
must be compared with respect to the same set of observations, the total 
correlation coefficient is a good measure for this purpose. It is defined by: 

Tee = I -

M 

L (ZM[i] _Zp[i])2 
i" I 

M 

L (ZM[i])2 
i" I 

(S .43) 
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TABLE 5-4 COMPUTATIONAL FLOW CHART 

Estimated Estimated Theoretical Measured 
Parameter Distribution: Z'd i ] (Table 5-2) Distribution: 
vector: Z~di] 

+ Gaussian Spreading 
ZT[ml Population: 
ZT [m2 yields: NC cells 
PC 
CF Predicted Distribution: Zp[ i] 
A[ 1] 

p~ Sensitivity Vectors: 
A[N] s[i]~aZp[i]lap 
B[ 1] 

I 
BrN] Residuals: Oz[i] ~ Z~di] - Zp[i] 

1 variance and Standard Deviation 
Parameter of the Residuals, 
Vector Goodness of Fit of Zp[i] to ZM[ i] : 
Update: 

Dz
2 [i] JR, R ~ (I: ) I M, sdres ~ 

Pnew=Po!d+.6.P TCC ~ J ( 1 - (I: DZ
2 [i]1/(1: 2 . ) ZM [1]) 

NO sdres 
" I 

mInImum & Tee maximum? YES 

I 
Information Matrix: Final p ~ last p 

E ~ I: sri] 'Kl.sT[i] True ZT[ i] ~ last ZT[i] 

System output =last Zp [ i] 

GradPF ~ I: S[i]'Kl'Dz[i 

Heasurement 

Errors ~ last Oz[i] 

Parameter Step Vector: 

LIp ~ E- l ·GradPF standard Deviations: 

I SOp from E- l 

SOZPIi] from sT[i] 'E-l'S[i] 

SDZT[i) from SOp and aZT[i]/ap 

SDres from R 
True Fractions: 

Gl : ZT[mil INC 

S: (NC-zT [ml ]-ZT[m2])/NC 

G2M: ZT[m2]/NC 
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For a perfect fit TCC takes on the value of I, smaller values meaning poorer fit 
to no fit at all. In practice it was found that for the present case TCC must be 
greater than 0.985 to indicate a reasonable, graphically confirmed, goodness of 
fit. 

Another measure of goodness of fit is, of course, the standard deviation 
of the residual process errors, sdrpe = (SSQ/M)'h (see Eq.(5.29)). 

5.2.2.3 Computation. The sequence of calculations necessary to perform 
the ML parameter estimation procedure as described above is given schemati­
cally on the computational flow chart (Table 5-4). Taking this scheme as a 
guide, a computer program was designed for making DNA histogram analysis 
runs, using the multiharmonic technique (program HISTANFOU). The program 
has been written in FORTRAN y, to be used on a DATA GENERAL ECLIP­
SE minicomputer system, operating under AOS. The program occupies 16K 
bytes of core memOlY and needs about 0.5 s CPU time to execute 10 iterations 
in BATCH mode. (This does not include input file preparation). 

Beside the initial estimated parameter values (~.[md, ZT[m21, PC, CF, 
A's and B's) the program asks for an identification name, the total number of 
channels, the GI peak location ml' the number (N :0; 7) of Fourier coefficient 
pairs to be considered, and a maximum number of iteration steps allowed. These 
variables may be given either interactively from the keyboard/screen combina­
tion, or they are read from an input file if the program is to be run in batch 
mode. Program output is written to screen and/or to an output file for each 
subsequent iteration (new estimate of the parameter values, TCC, sdrpel. If desi­
rcd, plots of the various histograms can be made using a Versatec plotter. 

When working interactively, the actual time consumed will often not be 
less than half an hour, owing to the relatively slow processes of writing to 
screen and file and reading keyed-in data. It should be noted that for each 
histogram it may be necessary to run the program a few times with different mt 
and/or N values to see whether the results improve. A presently available 
routine that optimizes the Gt peak channel position ml as a free parameter is too 
time consuming to be of practical use (as ml occurs velY frequently in the 
model equations; letting its value float means that many function evaluations 
must be performed, stretching required computation time beyond 15 minutes per 
iteration) . 

Practical Points 
I) INPUT. The input to the program is the raw histogram produced by the 
FCM. It is read from file as an array of 256 (typical resolution) real numbers, 
representing the numbers of events registered in the subsequent channels. The 
total number of cells involved is found by adding the 256 numbers. 
2) INITIAL PARAMETER VALUES. The iterative optimization procedure 
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requires a set of initial parameter values to start from. Although in principle any 
such set will do, in practice the best results are achieved when choosing param­
eter values that are as close as possible to the true values. 

The position of the peak values in the raw histogram are looked for to 
estimate mI' A consideration is that the second peak should be at about twice 
the channel number of the first one, m2 = 2· m!. Occasionally, it may be dif­
ficult to find distinct peaks. Several trial runs then must identify the best fitting 
theoretical histogram. 

An initial estimate of the number of G! cells may be obtained by adding 
the cells in the channels to the left of m!, and multiplying the result by two. 
Likewise, the number of G2M cells may be estimated by adding and doubling all 
cells to the right of the channel m2' Another way of estimating ZT[m!l and 
~[m2l is by taking 2.5 times the contents of the respective peak channels, the 
ordinate at the center of a standard normal distribution being approximately 0.4 
(Fig. 5.7). 

The dispersion parameters, PC and CF, may be estimated as follows. In 
the standard normal distribution the ordinate at a distance of twice the standard 
deviation from the mean equals 13.5 % of the ordinate at the mean. So, by find­
ing the channel to the left of m!, whose contents equals (approximately) 0.135 
times the number of cells observed in channel ml' the 2· sdml value is obtained. 
In a similar way, looking at the right-hand side of m2' the 2· sdm2 value is 
found (Fig. 5.7). Knowing mt, m2' sdm! and sd m2 , by substituting them for j 
and sd in Eq.(5.16), two algebraic equations result from which the two unknown 
values, PC and CF can easily be solved. 

The coefficients of the Fourier terms may initially be set to zero. The 
number of Fourier terms, N, should be chosen between I and 5. 
3) OPTIONAL PREPARATORY PROCEDURES. The raw histogram may be 
subjected to one or more of the following manipulations before the actual ML 
optimization. 

RESET. The number of cells in any channel may be changed interac­
tively. This option may be used, for instance, to remove debris from the his­
togram. Events registered in channels outside the 3· sdmt range on the left, and 
the 3· sdm2 range to the right, most probably do not belong to the histogram and 
can be ignored by resetting the contents of the channels concerned to zero. 

BACKGROUND CLEAN-UP. Raw histograms are polluted by back­
ground noise, i.e., some fluorescence is observed that is not associated with 
DNA in a regular cell. Such background fluorescence is of low intensity. The 
chance of it being observed is, therefore, much bigger in lower than in higher 
channel ranges. For the decrease with channel number, generally, a power func­
tion is assumed: y = a· xb (y = fluorescence, x = channel). This enables a cor­
rection of the raw histogram as follows. 

The power function changes into a straight line if a log-log conversion is 
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Fig. 5.7 A rough estimate of sdm1 and sdm2 can be found from the raw histogram. By 
considering the observed peak (G 1 or G2M) channel contents as the result of a Gaussian 
redistribution, it follows from the standardized normal distribution curve that the channel 
contents is about 0.4 of the contents without redistribution. Also, the amplitude at a 
distance of 2 standard deviations from the mean (m 1 or m2, respectively) will be about 
0.135x the observed peak channel contents 

[0.135x 
0.4] 

[1 .0] 

[0.4] 

[1.0J 

[0.135x 
0.4J 

applied: log(y) = log(a.xb) = log(a) + b·log(x), or Y = A + b·X. Therefo­
re, by fitting a straight line (linear least squares method) to the datapoints that 
form the base line in the log-log transformed histogram, the contribution of the 
background to the Ouorescence signal is identified. This straight line is subtract­
ed from the log-log histogram and an inverse transformation is performed, after 
which a "clean" histogram remains. 

SMOOTHING. High frequency fluctuations in the contents of neighbor 
channels may be considered as artifacts, i.e., a phenomenon due to the instlU­
mentation that has nothing to do with the studied cell population. It is possible 
to get rid of such high frequency disturbances by applying a filter (smoothing). 
A standard routine from the IMSL-package was used. It performs a binomial 
smoothing with endpoint correction, resulting in a less "ragged" histogram. 

LOG-LIN SCALE CONVERSION. The FCM can be switched between 
linear and logarithmic amplification. The multiharmonic analysis method is suit­
ed only for a linear scale of cellular DNA contents (fluorescence). So, if a histo­
gram was measured in log-amplification mode, a log-lin scale conversion must 
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Fig. 5.8 Influence of shifting a histogram (increase in amplification) in case of a) a linear 
and b) a logarithmic scale of fluorescence intensity (channel number). Log amplification 
does not alter the shape of the histogram, lin amplification does 
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be applied first. 
The Rijswijk FCM is adjusted such that the fluorescence increases log­

arithmically from A in channel I to 10· A in channel 200 (in general: fluores­
cence k· A is found in log channel 199 ·Iog(k) + 1, i.e., a doubling of intensity (k 
= 2) in 61 channels). This scaling is converted, first, such that the fluorescence 
intensity increases linearly from B = A/20 in channel I to 200· B = 10· A in 
channel 200. Having the same fluorescence intensity in log channel i and lin 
channel j, the relation between i and j is given by 

j = { 199'1O(i-l)1I99 - 190 } 19. (5.44) 

Now, on the lin scale fluorescence A is found in channel 20 and IO·A = 200·B 
is found in channel 200. Next, a new conversion scales A to be found in lin 
channel 1 and 10· A still in lin channel 200. The new lin channel, j', relates to 
the old lin channel, j, as follows: 

/ = { 199 oj - 3800 } I 180. (5.45) 

Thus, fluorescence intensity A is found in lin channcl j = 20, j' = I; and 10· A 
is found in lin channel j = j' = 200. 

RIGHT/LEFT SHIFT. The histogram can be shifted several channels to 
the right or to the left. This option is particularly useful for log-amplified 
histograms, because then a horizontal shift does not result in a change of shape 
of the histogram (Fig 5.8). Thus, the peaks of sequential histograms may be 
shifted to the same channel number simplify direct visual inspection. 

5.3 APPLICATION OF THE MULTIIIARMONIC ANALYSIS TECH-
NIQUE 

5.3.1 Test of the Multiharmollic Analysis Method 

5.3.1.1 Test Histograms. To evaluate the performance of the present DNA 
histogram analysis method the computer program has been run with different 
measured histograms, for which results of other applied methods of analysis 
were known. 

The first histogram, FRAMA, pertains to a population of HELA S3 
cells in exponential growth. The second histogram represents a fictitious 
population of the same type of cells. For this synthesized histogram, BGWLL2, 
the exact percentages of G1, Sand G2M cells, thus, the tme histogram, are 
known. The tme histogram was spreaded (Gaussian with constant CV), and 
statistical noise was added. A population of mouse lymphoma L5178Y cells has 
yielded a third measured histogram, SMH. The measured histograms are shown 
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in Figs. 5.9a, 5.10a and 5.1Ia, respectively. 
A series of simulated histograms (I through Y) analyzed with different 

methods was made available by Dr. H .Baisch of the University of Hamburg. 
Published analysis results enable direct comparison with results from the present 
method. The five simulated histograms differ mainly in CV value (CV, or coef­
ficient of variation, is defined as the standard deviation for dispersion over mean 
channel number; in the present case it is constant in each histogram, consecu­
tively: 2.5, 4.6, 6.0, 9.7 and 14.6%). The population size was always about 
13,000 cells and the fractions of cells in the G,-, S- and G2M-phases of the cell 
cycle were approximately 45, 35 and 15%, respectively. The simulated histo­
grams were constructed using the following assumptions: 
I) the population was growing asynchronously, without cell loss, resulting in an 
exponentially decreasing maturity distribution; 
2) the DNA content per cell increased from constant 2C for G j cells to constant 
4C for G2M cells. The rate of DNA synthesis was low in early and late S-phase 
and high in mid S-phase; 
3) due to measurement and staining variability, Gaussian dispersion with 
constant CV throughout a histogram was assumed; 
4) statistical noise, generated with a Monte Carlo method, was added to the 
histograms constructed for the three above assumptions. 
For further details, see [Baisch et aI., 1982). The histograms are shown as 
"observed histogram ZM" in Figs. 5.12 through 5.16. 

To explore the ability of the multihannonic method to analyze unusual 
DNA histograms, i.e., from cell populations that are not exponentially growing, 
the method was applied to simulated histograms-again provided by dr. Baisch­
containing disproportional amounts of phase fractions (Histograms BA35, BA27 
and BA21; Table 5-5). 

5.3.1.2 Results for FRAMA. BGWLL2 and SMH Histograms. By look­
ing at the measured histograms initial values for the various model parameters 
were roughly estimated. The Fourier coefficients were initially sct to zero. No 
preprocessing of raw data was performed. 

In all three cases the multihannonic analysis program converged to yield 
optimum parameter values, with which a considerably improved model response 
could be obtained. The results of the analyses are listed in Table 5-6 and shown 
in Figs. 5.9, 5.10 and 5.11. 

For example, take the FRAMA histogram. The goodness of fit of the 
predicted histogram (model output) to the measurements increased from 0.98904 
to 0.99967 in 7 iteration steps, while the standard deviation of the residuals, 
i.e., the differences between measurements and prediction, went down from 
264.2 to 38.2. 

According to the model matching principle in system identification 
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Fig. 5.9 FRAMA histogram, HE LA 53 cells; a) measured histogram (system output) and 
predicted histogram (optimum model output); b) deviations between measured and 
predicted histograms (measurement errors); c) corresponding theoretical histogram, 
assumed to be identical to the true histogram; d) true histogram according to multiGauss­

ian analysis 
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Fig. 5.11 SMH histogram, 
L5178Y cells; a) measured 
histogram (system output) and 
predicted histogram (optimum 
model output); b) deviations 
between measured and predic­
ted histograms (measurement 
errors); c) corresponding theo­
retical histogram, assumed to 
be identical to the true histo­
gram 



TABLE 5-5 SIMULATED HISTOGRAMS WITH DISPROPORTIONAL PHASE FRACTIONS 

fraction: dispersion: 
name G1 S G 2M SOm1 SOm2 
BA35 high 79.1 % low 22.0% low 19.9% 3.00 6.00 
BA27 low 13.5% high 76.3% medium 30.2% 3.04 6.08 
BA21 low 7.4% low 1.7% high 49.9% 2.40 4.80 

procedures, no satisfactory results being obtained-even if the optimum param­
eter values have been determined-indicates that the model should be adapted. 
The truth of this principle can be seen from the fact that an earlier version of 
the program could not achieve such good results. In that previous version the 
dispersion effects in the FCM were modeled with a Gaussian function of which 
the standard deviation was assumed to increase at a constant rate with increasing 
channel number, sd = PC'G-'h), instead of sd = PC'G-'/2) + CF, as in the 
present version. The earlier model could not achieve a better goodness of fit 
than 0.99633 nor bring the standard deviation of the residuals below 123.8. 

In all three cases the present program version produced estimates of the 
population's composition, %G I, %S and %G2M, with an accuracy of ±0.5% or 
better. The accuracy of the parameters that determine the dispersion ranges from 
0.1 % to 2.5%. The accuracy of the estimated Fourier coefficients, that deter­
mine the shape of the theoretical S-phase distribution, shows large fluctuations, 
suggesting that there is great uncertainty about the actual shape, which, to be 
diminished, requires information beyond the scope of a single measured his­
togram. This is also illustrated, for the BGWLL2 histogram, in Fig. 5.10e: the 
accuracy of the final predicted histogram is much better than that of the cor­
responding theoretical histogram, less than 8 cells against about 25 cells per S­
phase channel. 

Table 5-7 shows model matching results. Shifting m( one channel right 
or left from true position dramatically decreases the maximum goodness of fit 
and increases the minimum attainable SDrpe ' Increasing the number of Fourier 
coefficients yields improvement at first. Then, for N > 4 improvement becomes 
marginal, while uncertainty in the parameter estimates increases (not shown). 
Best results are obtained with llli =40 and N =4. For this case, Fig. 5.10f shows 
that the GN algorithm first converged fast, then slowly toward a flat optimum. 

Table 5-8 reveals for the SMH histogram that pre-smoothing the raw 
data results in better fits (compare runs I and 2). It also shows that the choice 
of a proper start point is not a serious problem here. For different initial param­
eter estimates the GN algorithm has converged to nearly the same optimum 
(runs 2 and 3); the final estimated phase fractions do not differ significantly. 
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TABLE 5-6 RESULTS OF THE MULTIHARMONIC ANALYSIS TECHNIQUE; HISTOGRAMS FRAMA, BGWLL2 AND SMH 

Histogram: FRAMA [Fried & Mandel, 1979) BGWLL2 [Bagwell, 1979J 5MB [Sheck et al., 1980J 
Population: 97658 HELA 53 cells in 30024 HELA 53 cells in 99924 mouse lymphoma 
nr. of channels, M= 150 exponential growth 120 exponential growth 150 LS178Y cells 
Gr fraction in channel, ffiI= 45 40 59 
G2M fraction in channel, m2= 90 80 118 

Parameter values: initial final ± sd initial final ± sd initial final ± sd 
(iteration 7) (iteration 18) (iteration 9) 

nr. of G 1 cells, ZT[mll = 34000. a 37452.8 272.6 15000.0 15230.8- 59.8 34177.0 32709.6 362.1 
nr. of G2M cells ZT(~]= 13000.0 9467.9 288.3 5000.0 6275.4 85.0 12776.0 11069.2 459.5 
Gaussian pc= 0.0600 0.0541 0.0004 0.0600 0.0529 0.0002 0.0450 0.0600 0.0005 
spreading CF= 0.0000 2.8053 0.0033 0.0000 -0.1006 0.0024 0.0000 -0.0842 0.0046 

Fourier A[lJ= 0.0 284.45 7.90 0.0 15.04 2.56 0_0 6.3 9.52 
coefficients A[2J= 0.0 184.83 10.52 0.0 9.64 3.70 0_0 -58.80 11.68 

A[3J= 0.0 106.96 14.82 0.0 5.53 6.13 0.0 -78.50 15.59 
A[4J= 0.0 94.23 25.43 0.0 2.25 9.57 0.0 -144.72 21.80 
A[5J= 0.0 105.80 50.04 0.0 0.0 
B[lJ= 0.0 -4.27 4.84 0.0 14.26 1. 67 0.0 -2.47 7.12 
B[2J= 0.0 -35.02 7.15 0.0 45.17 2.58 0.0 -17.30 9.37 
B[3J= 0.0 -55.20 11.68 0.0 4.58 5.00 0.0 -60.39 13.14 
B[4J= 0.0 19.18 21.90 0.0 -15.78 9.07 0.0 -51. 22 20.56 
B[5J= 0.0 -57.21 52.18 0.0 0.0 

yield: 
Goodness of fit 

Zp to ZM' TCC= 0.98404 0.99967 0.98790 0.99980 0.99424 0.99830 

SD\'I!..~iduaIli : 264.2 38.2 92.1 12.0 125.9 68.4 
Fourier 
coefficient, A[OJ= 1151. 32 1153.12 9.02 257.02 218.40 913.29 968.02 

Composition of population: 
fraction Gl (%), F1= 34.8 38.4 0.3 50.0 50.8 0.2 34.2 32.7 0.4 
fraction S (%), Fs= 61.9 51.9 0.4 33.3 28.3 0.3 53.0 56.2 0.6 
fraction G2M (%), F2= 13.3 9.7 0.3 16.7 20.9 0.3 12.8 11.1 0.5 

Dispersion: 
SD in channel mt 2.70 3.08 2.40 2.01 2_66 2.51 
SD in channel m2 5.40 3.29 4.80 4.13 5.31 4.25 



TABLE 5-7 BGWLL2 HISTOGRAM; MODEL MATCHING: THE INFLUENCE OF CHOSEN 
VALUES OF m, IG, CHANNEL POSITION) AND N IEXTENT OF THE FOU-
RIER EXPANSION) 

run 2 3 4 5 6 
with chosen: 
m, 39 40 41 40 40 40 
N 3 3 3 2 4 6 
analysis results: 
iteration nr. 12 14 16 5 18 8 
TCC initial 0.946 0.988 0.954 0.988 0.988 0.988 
Tee maximum 0.996 0.999 0.983 0.999 0.999 0.999 
init. SDrpe 191.6 92.1 178.1 92.1 92.1 92.1 
min. SDrpe 50.5 12.0 108.3 13.3 12.0 12.0 

estimated phase fractions f%) and so; 
G, 22.1 50.9 80.3 50.6 50.8 50.2 

0.6 0.2 2.2 0.2 0.2 0.3 
S 60.7 27.7 -1.9 28.8 28.3 32.6 

1.5 0.3 3.0 0.3 0.3 0.5 
G2M 17.2 21.4 21.6 20.6 20.9 17.2 

1.4 0.2 2.1 0.2 0.4 0.4 
(true percentages: G, ~50.0, S~30.0, G2M~20.0) 

Performance of Multihal'll1onic Technigue in Comparison to Other Analysis 
Methods. When comparing the present multi harmonic technique with other 
mathematical methods of analysis, (Tables 5-9, 5-10, 5-11), the following 
conclusions can be drawn. 

The results of the analyses of the BGWLL2 histogram show that the 
present method arrives at the best fit (lowest SSQ) and its estimated fraction 
sizes come close to their tme values. The results oblained with the Illultirectan­
gular technique are about equally good, with perhaps a slight overestimation of 
the G2M fraction and a slight underestimation of the S fraction, but with the 
advantage of fast cOlllputation (3 iteration steps). Comparison of Figs. 5.llc and 
5.lld shows that the surplus of G2M in the case of the multirectangular analysis 
appears mainly as late S cells in the multiharmonic analysis. The multiGaussian 
technique yields results that clearly overestimate both the G t and the G2M 
fractions at the expense of the S fraction, which could be expected, as, due to 
the spikes kernel function representation, early and late S cells tend to be seen 
as belonging to the G I and G2M peaks, respectively. Finally, the polynomial 
technique leads to the worst fit (highest SSQ), probably due to the assumed 
restriction in the shape of the S-phase distribution. The S-phase fraction is 
overestimated, and the method predicts too few G2M cells. 

If always the different methods are assumed to retain their individual 
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TABLE 5-8 SMH HISTOGRAM. INFLUENCE ON THE ANAL YSIS RESULTS OF THE 
CHOSEN INITIAL PARAMETER VALUES ANO OF SMOOTHING OF RAW OATAa 

run 
data raw 

with chosen initial parameter values: 
ZT{m, 1 34177 
ZT{m21 12776 
PC .045 
CF .000 
A{11 .000 
A{21 .000 
A{31 .000 
AI41 .000 
Bll I .000 
BI21 .000 
BI31 .000 
BI41 .000 
analysis results: 
iteration nr. 9 
TCC initial .9943 
Tee maximum .9983 
initial SOrpo 125.9 
minimum SO rpo 68.4 

2 
smoothed 

32710 
11069 

.028 

.902 
6.3 

-58.8 
-78.5 

-144.7 
-2.5 

-17.3 
-60.4 
-51.2 

3 
.9989 
.9992 

55.5 
47.0 

estimated phase fractions (%) and so: 
G, 32.7 .4 32.9 .3 
S 56.2 .6 56.1 .4 
G2M 11. 1 .5 11.0 .3 
final dispersion parameters (and SO): 
PC .028 .001 .030 .001 
CF .902 .005 .912 .003 

3 
smoothed 

50000 
20000 

.036 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

13 
.7885 
.9992 
714.7 

47.7 

33.1 .3 
55.5 .6 
11.4 .4 

.026 .001 
1.114 .003 

a binomial smoothing over 3 elements with side correction; m, =40, N ~3 

TABLE 5-9 FRAMA HISTOGRAM: COMPARISON OF TWO ANALYSIS TECHNIQUES 

a 

b 
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Histogram: FRAMA, 97658 HElA 83 cells 

%G, %8 

44.0 35.0 

38.3 52.0 

m, 
45.2 

45.0 

m2 SD[m,i 

B8.5 3.1 

90.0 3.1 

SOlm,1 

3.0 

3.3 

a: Fried's mul(iGaussian technique [Fried and Mandel, 1979/, 
M = 150 channels, 7 S-phase compartments assumed. 

b: Present multiharmonic technique, 
M= 150 channels, N=5 sin,cos terms for S-phase description 



TABLE 5-10 BGWLL2 HISTOGRAM: COMPARISON OF METHODS OF ANALYSIS 

a 

b 

c 

d 

Histogram: BGWLL2, 30024 simulated HElA 83 cells 

%G 1 %S %G 2M 01, "" SD!m,! SO!m,! SSQ 

53.5 24.0 22.5 40.1 79.9 2.01 3.96 25323 

50.2 33.8 16.0 40.0 80.6 2.01 3.66 45589 

49.5 27.6 22.9 40.0 79.8 1.99 4.11 18474 

50.8 28.3 20.9 40.0 80.0 2.01 4.13 17278 

50.030.0 20.0 40.0 80.0 2.00 4.00 

a: Fried's multiGaussian technique /Bagwell, 1979, p 235J, 
M = 120 channels, 6 S-phase compartments (spikes) assumed. 

b: Dean/Jeff's polynomial technique /Bagwell, 1979, p 235), 
M = 120 channels, 2nd order polynomial for S-phase description. 

c: Bagwell's mu/tirectangular technique /Bagwell, 1979, p 235J, 
M = 120 channels, 6 S-phase compartments (rectangles) assumed. 

d: Present mutaharmonic technique, 
M= 120 channels, N=4 sin,cos terms fOf S-phase description. 

t: True values; synthesized histogram simulates Ne = 30024 HELA 53 
cells; constant Cv, non-constant rate of DNA-synthesis, 
+s(atistical noise [Bagwell, 1979, p 235J. 

Hit 

13 

5 

3 

18 

SSG = sum of squared deviations between calculated and measured histograms. 
Hit == number of iterations required 

properties of over/under estimating as noticed above for the BGWLL2 histo­
gram, then, for the SMH histogram the conclusion is valid, that the present 
multiharmonic technique again has arrived at velY probable population fraction 
sizes, also, if compared to the outcome of the autoradiobiography experiment. 
And the same thing can be said as far as the FRAMA histogram is concerned, 
though here the discrepancy in G2M size found with the multi Gaussian tech­
nique (probably too large) and the multiharmonic technique (less than half the 
former value) seems rather (too?) large. 

The multiGaussian analysis of the FRAMA histogram, using seven S 
spikes in the kernel function, has required the estimation of 20 model param­
eters. Only 15 parameters were needed for a continuous kernel function in the 
multiharmonic analysis, using five pairs of Fourier coefficients. The polynomial 
technique would have required as few as nine parameters, but it is doubtful 
whether a good fit would have been achieved with a second degree curve. 

5.3.1.3 Results fol' the Simulated Histograms I through V. The results 
are shown in Figs. 5.12 through 5.16. Some numerical results are given in 
Tables 5-12. 
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TABLE 5-11 SMH HISTOGRAM: COMPARISON OF METHODS OF ANALYSIS 

a 

b 

c 

d 

e 

Histogram: SMH, 99924 mouse lymphoma L5178Y cells. 

%G 1 %8 %G2M m, m2 SDlm,) SDlm 2! 

32.09 51.04 16.83 

27.45 63.05 9.50 

26.15 59.56 13.62 

32.73 56.19 11.08 59 118 

60.4 

a: Fried's multiGaussian technique [Sheck et al., 1980, pi 09J, 
M= 150 channels, 6 to 10 S-phase compartments assumed, 
spacing linear or non-linear, m:/m, specified or free. 

b: Dean/Jeff's polynomial technique [Sheck et al., 1980, pl09J, 
M= 150 channels, 2nd order polynomial for S-phase description. 
m;/m, free. 

c: Bagwell's multirectangular technique [Sheck et al., 19BO, pl09J, 
M = 150 channels, 6 to 9 S-phase compartments assumed, 
spacing non-linear, m:/m 1 specified or free. 

d: Present multiharmonic technique [Sheck et al., 19BO, pl09J, 
M = 150 channels, N = 4 sin, cos terms for S-phase description, 
m;/m, specified. 

e: obtained by autoradiography [Sheck et al., 19BO, pl09J. 

a,b,c: percentages are mean values resulting from several runs 

No precleaning of the measured histograms was performed, Rough estimates for 
various parameter values required as initial input for the computer program 
could be obtained by visual inspection of each observed histogram, The Fourier 
coefficients were initially set to zero, 

The choice of the necessary number of Fourier coefficients, N, and of 
the best 0) peak position, m), was determined in several mns by inspection of 
the residuals. This is illustrated for histogram II in Table 5-15. 

This table shows that a wrong choice of 0t peak channel clearly corres­
ponds with a decreased goodness of fit and a large variation in the deviations 
between predicted and observed histograms, Therefore, it is not difficult to 
choose the correct value of Ill), 

Once the proper III I has been set, increasing the number of Fourier 
terllls for S-phase description appears to improve the goodness of fit, However, 
beyond a certain value of N-and in practice, at N = 5 to 7, this value is rather 
low-further increase in goodness of fit becomes insignificant. Thus, only a few 
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Fourier terms suffice for the description of the population's S-phase fraction. 
An improper choice of ml immediately becomes obvious. A shift of 

only one channel to either side of the correct channel, 40, causes a dramatic 
increase in the minimum standard deviation of the residuals, 0'" and decreases 
the maximum attainable goodness of fit, TCCmax ' of the predicted histogram to 
the observations. Keeping ml = 40 and doing analysis mns with increasing N, 
thus increasing the number of terms in the approximation of the S-phase distri­
bution, shows that at first TCCmax increases considerably, indicating the im­
provement of the model. Then, at a certain moment (in this case N = 6), a 
further increase in N apparently no longer adds significantly to the goodness of 
fit. Sdrpe may still slightly decrease, but the uncertainty in the estimated 
parameter values increases at a faster rate (not shown). 

Apparently, a near constant predicted histogram Zp can be the result of 
different theoretical histograms ZT' The uncertainty lies mainly in the shape of 
the S-phase distribution. Estimated phase fraction sizes are fairly constant 
(compare runs 6 and 7 in Table 5-15). But the (relative) accuracy of the Fourier 
coefficients that determine the theoretical S-phase distribution shows large 
fluctuations, as can be seen in Table 5-14(II). In absolute value, the SD of con­
secutive Fourier coefficients, both A and B, also increases. Therefore, from a 
given moment on, taking more terms into consideration is rather useless, as it 
does not contribute to greater accuracy. On the contrary, parameters start to 
develop high correlations, i. e., their values can no longer be varied indepen­
dently. Furthermore, negative cell numbers are sometimes calculated for several 
channels in the corresponding theoretical histogram ~. 

For histogram II, run 6 yields the best results. Table 5-14(II) shows that 
starting from the initial estimates the multiharmonic teChnique converges to yield 
the optimum parameter values in 8 iteration steps, improving the fit from 
0.99344 to 0.99946. The corresponding predicted histogram Zp fits the measur­
ed data well (Fig. 5.13); deviations are small and positive or negative at 
random. However, these deviations are somewhat too large to confirm the 
complete correctness of the present model. For example, in the S channels, the 
calculated standard deviation sdp amounts to about 4.5 cells, which means that 
the residuals ought to lie, for 99%, within the ±3·4.5 = ±13.5 cells boun­
daries. Clearly, some deviations exceed 15 cells or more. As could be expected, 
the uncertainty in the estimated theoretical histogram is greater: ~ can be 
varied to some extent without much influence on the resulting Zp. In S-phase, 
the standard deviation sdT amounts to about 23 cells. In other words, there is 
uncertainty about the actual shape of the S-phase distribution, which, to be 
diminished, requires information beyond the scope of a single observed his­
togram. 

In spite of this observation, the model can be said to be adequate as far 
as the determination of the fraction sizes is concerned. For the simulated histo-
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Fig. 5.12 through 5.16: Simulated 
histograms I through ':L (Baisch I; a) 
measured histogram (system output) 
and predicted histogram (optimum 
model output); b) deviations between 
measured and predicted histograms 
(measurement errors); cl corresponding 
theoretical histogram, assumed to be 
identical to the true histogram 
for Fig. 5.13: d) standard deviation in 
the predicted histogram; e) standard 
deviation in the theoretical histogram 
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TABLE 5·14 RESULTS OF THE MULTIHARMONICAL ANALYSIS TECHNIQUE; HISTOGRAMS I THROUGH Y. (Baisch) 

Histogram: I (Baisch 25) 
Population: 13000 simulated cells 
nr. of channels, M= 128 
G, fraction in channel, fiI= 40 
GZM fraction in channel, ffi2= 80 

Parameter values: 

nr. of G, cells, ZT[m)J= 
nr. of G2M cells ZT[m2J= 
Gaussian pc= 

spreading CF= 
Fourier A[l]= 
coefficients A[2J= 

yield: 

A[3J= 
A[4J= 
A[5J= 
B[lJ= 
B[2J= 
B[3J= 
B[4J= 
B[5J= 

Goodness of fit 

initial 

6500.0 
2600.0 

0.0175 
0.0000 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

final ± sd 
(iteration 7) 

6388.4 17.4 
2614.1 26.2 

0.0258 O. 0005 
-0.0275 0.0220 
14.49 0.89 

5.29 0.97 
0.16 1.13 

-0.46 1.34 

2.82 0.75 
1.56 0.85 
1. 72 1.02 
2.46 1.26 

Zp to ZM' Tee= 0.95183 0.99981 
SDn!sidu.ah: 99.3 6.4 
Fourier 
coefficient, A[C]= 100.00 

Composition of population: 
fraction Gl (%), F I= 50.0 
fraction S (%), Fs= 30.0 
fraction G2M (%), F 2= 20.0 

Dispersion: 
SD in channel ml 
SD in channel m2 

0.70 
1.40 

102.50 

49.1 
30.8 
20.1 

1.01 
2.04 

0.81 

0.1 
0.2 
0.2 

II (Baisch 32) 
13000 simulated cells 
128 
40 
80 

initial final ± sd 
(iteration 8) 

6500.0 6362.2 41.6 
2300.0 2016.4 59.4 

o. 0525 0.0449 0.0024 
0.0000 0.0361 0.0961 
0.0 20.82 1.80 
0.0 7.41 2.46 
0.0 0.28 3.60 
0.0 -4.96 6.01 
0.0 10.72 9.58 
0.0 4.05 1.13 
0.0 4.99 1.58 
0.0 2.57 2.79 
0.0 15.63 5.67 
0.0 21.58 9.31 

0.99344 0.99946 
29.4 8.4 

107.69 

50.0 
32.3 
17.7 

2.10 
4.20 

118.50 

48.9 
35.6 
15.5 

1.84 
3.63 

0.3 
0.6 
0.5 

III (Baisch 18) 
13015 simulated cells 
12B 
40 
80 

initial 

7200.0 
2900.0 

0.0525 
0.0000 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

final ± sd 
(iteration 9) 

6652.7 53.5 
2713.4 

0.0592 
0.0110 

23.56 
13.74 
16.47 

1.46 
1.30 
0.09 

74.8 
0.0005 
0.0060 
2.40 
3.81 
5.67 

2.40 
3.81 
5.76 

0.98983 0.99902 
33.9 10.5 

74.74 

55.3 
22.4 
22.3 

2.10 
4.20 

93.56 

51.1 
28.0 
20.9 

2.38 
4.75 

0.4 
0.7 
0.6 



TABLE 5-14 CONTINUED 

Histogram: IV (Baisch 13) 
population: 12999 simulated cells 
nr. of channels, M= 128 
G1 fraction in channel, rol= 40 
G2M fraction in channel, ffi2= 80 

Parameter values: 

nr. of G1 cells, ZT[ffi j J= 
nr. of GzM cells ZT[ID::d= 
Gaussian pc= 

spreading CF= 
Fourier A( 1] = 
coefficients A[2]= 

yield: 

A[3J~ 

A[4J~ 

A[5J~ 

B[lJ~ 

B[2J~ 

B[3J~ 
B[4J~ 

B[5J~ 

Goodness of fit 
Zp to ZM' Tee= 

SDresiduals= 
Fourier 
coefficient, A[C)= 

Composition of population: 
fraction G j (%) I F j = 
fraction S (~) I Fs= 
fraction GZM (%), FZ= 

Dispersion: 
SD in channel ro, 
SD in channel ffi2 

initial final ± sd 
(iteration 13) 

6500.0 6642.3 47.0 
2200.0 2259.3 63.5 

0.0700 0.1011 0.0009 
0.0000 -0.1956 0.0162 
0.0 21.55 2.43 
0.0 
0.0 
0.0 
0.0 
0.0 -0.03 1.76 
0.0 
0.0 
0.0 
0.0 

0.97306 0.99904 
45.1 8.5 

110.23 105.06 2.03 

50.0 51.1 0.3 
33.1 31-5 0.6 
16.9 17.4 0.5 

2.80 3.85 
5.60 7.89 

y (Baisch 03) 
12998 simulated cells 
128 
40 
80 

initial final ± sd 
(iteration 15) 

8200.0 6814.7 78.3 
2300.0 2482.2 104.8 

0.1200· 0.1426 0.0021 
0.0000 0.0902 0.0444 
0.0 22.33 4.90 
0.0 
0.0 
0.0 
0.0 
0.0 0.32 4.07 
0.0 
0.0 
0.0 
0.0 

0.96667 0.99812 
43.5 10.4 

64.05 94.90 

63.1 52.4 0.6 
19.2 28.5 1.0 
17.7 19.1 0.8 

4.80 5.79 
9.60 11-49 



TABLE 5·15 SIMULATED HISTOGRAM II; MODEL MATCHING: INFLUENCE OF THE 
CHOICE OF G, CHANNEL POSITION, m" AND NUMBER OF TERMS'IN THE 
S·PHASE DISTRIBUTION'S FOURIER EXPANSION, N 

Histogram: II, Baisch 32, 13000 cells 
run 1 2 3 4 5 6 7' 
with chosen: 
m, 39 40 41 40 40 40 40 
N 3 3 3 1 4 5 6 
analysis results: 
nr. of 
iterations 12 7 6 3 8 8 9 
TCCmax ,99449 ,99944 ,97904 ,99917 ,99944 ,99946 ,99946 
SDmin 
(residualsl 26,98 8.60 52,42 10,47 8,58 8,42 8,37 

estimated phase fractions (%) and so: 
G, 20,8 49,1 74,1 50.7 50,0 48.9 48,7 

,7 ,3 2,2 ,3 ,3 ,3,4 
S 78,5 37.2 10,9 34,7 36,7 35,6 35,6 

1.8 .5 3.0 .5 ,5 ,6 
G2M 0.7 13,7 15,0 14.6 14,3 15,5 15,7 

1.6 ,4 2,0 ,4 ,4 ,5 ,5 
ttrue percentages: G 1 ~ 45, 7, S ~ 42, 6, G2M~ 11. 7) 

a)negative cell numbers occur in several channels of the corresponding theoretical histo-
gram 

grams I through y, the magnitudes of the various phase fractions are exactly 
known, This makes it possible to test to what extent the method is able to pro­
duce accurate estimates of the composition of the population, As can be seen in 
Table 5-16, the multiharmonic technique yields very acceptable phase fraction 
sizes, A slight overestimation of the G1 and G2M fractions occurred; for histo­
gram II, there is a 3,5% difference between true and estimated values, Too few 
S cells were predicted (7 % discrepancy), Due to the limited accuracy of the S­
phase distribution approximation, calculated S-phase subfraction sizes will 
obviously be less reliable, 

Similar results were obtained with the multiharmonic analyses of the 
other simulated histograms (Fig,s 5,12 and 5,14 through 5,16), It was observed 
that the larger the CV, the fewer Fourier terms are necessary to approximate the 
true S distribution shape (N = 5 for CV = 5%, N = 1 for CV = 15%), 

Performance of Multiharmonic Technique in Comparison to Othet' Analysis 
Methods, The series of simulated histograms has been previously analyzed with 
various mathematical methods, The results for the lllultiGaussian and polynomial 
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TABLE 5-16 SIMULATED HISTOGRAMS I THROUGH ',!: COMPARISON OF RESULTS OF 
THREE ANALYSIS TECHNIQUES 

histogram method %G, %S %G 2M CVm1 (%) CVm2(%) 

a 51 28 21 2.8 2.8 
b 49 32 19 
c 50 30 20 2.5 2.8 

45.4 37.1 17.4 2.5 2.5 

II a 53 31 16 4.7 4.7 
b 53 30 17 
c 49 36 15 4.6 4.5 
t 45.7 42.6 11.7 4.6 4.6 

III a 54 22 24 6.0 6.0 
b 55 21 24 
c 51 28 21 5.9 5.9 
t 49.6 30.5 19.9 6.0 6.0 

IV a 56 25 19 9.7 9.7 
b 54 25 21 
c 51 32 17 9.6 9.9 

47.7 36.5 15.8 9.7 9.7 

',! a 57 24 19 12.0 12.0 
b not done 
c 52 29 19 14.5 14.4 
t 50.5 31.3 18.2 14.6 14.6 

a: Fried's multiGaussian technique [Baisch et at"~ 1982J 
b: Dean and Jett's polynomial technique [Baisch ef al., 1982J 
c: Present multiharmonic technique 
I: True values (8aisch el al., 1982J 

techniques, which are the most common methods of analysis, are repeated in 
Table 5-16 and Fig. 5.17 so as to compare them with those of the present Illulti­
harmonic technique. Figure 5.17 reveals at once that, for each histogram, all 
three methods overestimate the amollnt of Gt cells (the minimum and maximum 
score of the relative deviation, defined as 

%eslilllaled - %Irue rei alive de vi 01 ion = 100· -'.:.='--"~"-----'== 
%Irue 

(5.46) 

amounts to 3% and 17% respectively). This is also the case with the number of 
G2M cells (4-45%), at the expense of the S fraction (7-32%). At average the 
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Fig. 5.17 Histograms I through Y..: comparison of different methods of analysis. 
Relative deviation between estimated and true population composition (%G 1, %5, 
%G 2M) and between estimated and true coefficient of variation, as function of the true 
value of the latter parameter for spread. Mean values of relative deviation over the entire 
true CV range are indicated (thin solid lines). Rel-dev. = 100 .. (estimated value - true 
value) I true value (%). a) multiGaussian, bl polynomial, cl multiharmonic technique 
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multiharmonic technique shows the best results, with the smallest deviations 
between actual and estimated population compositions. The average relative 
deviations over the entire CV range amount to +6.0 ± 3.1 %, -12.5 ± 5.0% 
and + 11.9 ± 10.0% for the G j -, S- and G2M-phases, respectively. The poly­
nomial technique failed in analyzing the histogram with the highest CV. With 
respect to the estimation of CV, the multi Gaussian and multiharmonic techniques 
do not differ much, except at very high and low CV values where the former 
technique becomes unreliable. The average relative deviation amounts to -0.7 ± 
10.8% as compared to -0.3 ± 1.0% for the multiharmonic technique. It should 
be noted that the multiharmonic technique does not consider CV to be necessa­
rily constant throughout a histogram. As mentioned above, by modeling the 
Gaussian dispersion of the theoretical histogram with sdj = PC· (j-'h) + CF 
instead of sdj = CV· j, beller fits could often be achieved (although PC and CF 
appear to be highly correlated: correlation coefficient, > 0.9). To enable 
comparison, in Table 5-20, CVml and CVm2 values have always been calculat­
ed as: CVj = sd.fj. Thus, it can be concluded that the fact that the simulated 
histograms should have a constant true CV value was not always recognized by 
the multiharmonic technique, but diversions remain very small. The CV estimate 
by the polynomial technique was not evaluated. 

5.3.1.4 Results fol' the Simulated Histograms BA35. BA2' and BA2I. 
With respect to the histograms analyzed above, corresponding to asynchronous 
exponential growth, these histograms contain disproportionally sized phase 
fractions. Still, in general the multiharmonic technique succeeded rather well in 
fitting the observed histograms and finding the proper fraction sizes. Results 
(shown in Table 5-17 and in Fig.s 5.18 through 5.20) are somewhat poorer for 
the case in which both the tme Gl' and the G2M fractions are ve,y small. 

5.3.2 Sequential Histograms 

By analyzing sequential histograms, i.e., a series of consecutive histograms 
measured to monitor the development of a cell popUlation as function of time, 
changes in cell kinetics can be detected and quantified in terms of time histories 
of the cell cycle phase fractions. For instance, in this way the influence of 
adding growth factors or exposure to drugs can be studied quantitatively. 

5.3.2.1 Influence of Growth FacIoI' Presence on the Cell Kinetics of B-
lymphocytes. The following experimcnt was conducted by Lansdorp et al. 
[1986]. Bl329 cells cultured with or without growth factor (I % v/v HGF) were 
harvested after fixed time intervals by centrifugation. The cell pellet (approxim­
ately 106 cells) was resuspended in'l ml ice-cold phosphate buffered saline 
(PBS) and this suspension was added dropwise to 2 ml ethanol of -20°C under 
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Fig. 5.18 Histogram 8a35; a) measured histogram (system output) and predicted 
histogram (optimum model output); b) deviations between measured and predicted 
histograms (measurement errors); c) corresponding theoretical histogram, assumed to be 
identical to the true histogram 

~ 

o 
L 
c 

60 

40 
"! 

20 OJ 
u 
~ 0 
0 

L -20 
c 

-40 

-60 

12000 

10000 

8000 

6000 

4000 

2000 

o 

o 

ER.R.O.R.S .•.. DZ=ZM::-ZP 

j.' ...... ;... 

THEOR. HISTOG. ZT 

40 80 

CHNL 

120 

B 1600 

1200 

800 

400 

o 

OBS.&PREDICT.. ZM&ZP 

A 

o 40 80 

CHNL 

; .... 

120 

-255-



Fig. 5.19 Histogram 8a27; a) measured histogram (system output) and predicted 
histogram (optimum model output); b) deviations between measured and predicted 
histograms (measurement errors); c) conesponding theoretical histogram, assumed to be 
identical to the true histogram 
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Fig. 5.20 Histogram 8a21; a) measured histogram (system output) and predicted 
histogram (optimum model output); b) deviations between measured and predicted 
histograms (measurement errors); c) corresponding theoretical histogram, assumed to be 
identical to the true histogram 
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TABLE 5-17 RESULTS OF THE MULTIHARMONIC ANALYSIS TECHNIQUE; HISTOGRAMS WITH DISPROPORTIONAL PHASE 
FRACTIONS 

Histogram: BA35; G1 high, Slow, BA27; G1 low, S high, BA21; Gr low, S medium, 
population: 13000 cells G~ low 13070 cells GZM low 13000 cells ~M high 
nr. of channels, M= 128 128 128 
G1 fraction in channel, fi l= 40 40 40 
GZM fraction in channel, rn2= 80 80 80 

Parameter values: initial final ± sd initial final ± sd initial final ± sd 
(iteration B) (iteration 6) (iteration 6) 

nr. of G1 cells, ZT(mil 0;;; 8500.0 10226.3 29.7 2200.0 3884.7 53.9 3200.0 2823.0 41.8 
nr. of GZM cells ZT[mZ]= 2600.0 857.5 37.9 800.0 65.0 91.3 6600.0 6399.7 58.4 
Gaussian pc= 0.0525 0.0761 0.0050 0.0525 0.1148 0.0072 0.0350 0.0600 0_0013 

spreading CF= 0.0000 -0.0204 0.1972 0.0000 -1. 6283 0.2928 0.0000 -0.0842 0.0730 
Fourier Ail]= 0.0 19.24 1.43 0.0 62.22 3.33 0.0 25.42 1.90 
coefficients A[2]= 0.0 20.46 2.33 0.0 33.21 5.33 0.0 18.94 3.09 

A[3]= 0.0 0.0 0.0 17.45 4.47 
A[4]= 0.0 0.0 0.0 
A[5]= 0.0 0.0 0.0 
BI1]= 0.0 0.65 0.92 0.0 5.64 2.22 0.0 0.97 1.30 
B[2]= 0.0 -1.55 2.12 0.0 -20.51 5.33 0.0 -0.68 2.13 
B[3]= 0.0 0.0 0.0 -14.94 4.56 
B[4]= 0.0 0.0 0.0 
B[5]= 0.0 0.0 0.0 

yield: 
Goodness of fit 

Zp to ZM' Tee= 0.96856 0.99983 0.93670 0.99845 0.89925 0.99906 
SDn::sidlUlls: 72.6 5.4 65.2 10.4 85.8 8.5 
Fourier 

coeffiCient, A[O]= 87.18 49.13 1.24 258.20 233.85 82.05 96.85 
Composition of population: 
fraction Gr (%), F l = 65.4 78.7 0.2 15.8 29.7 0.4 24.6 21.7 0.3 
fraction s (%), FS"" 26.2 14.7 0.4 77.1 69.8 0.8 24.6 29.1 0.6 
fraction G2M (%), F2= 8.4 6.6 0.3 6.1 0.5 0.7 50.8 49.2 0.5 

Dispersion: 
SD in channel ror 2.10 3.02 2.10 3.26 1.40 2.31 
SD in channel m2 4.20 6.07 4.20 7.55 2.80 4.72 



TABLE 5-18 EFFECT OF GROWTH FACTOR ON THE CELL CYCLE OF A B-CELL HYBRI-
DOMA 

B-Iymphocytes cultured 
WITHOUT or WITH 

Growth Factor 
time (hi 2 4 8 12 24 2 4 8 12 24 

composition: 
%G 1 28.8 28.9 45.9 49.3 71.7 30.2 40.3 50.2 35.8 28.5 

sd%Gl 0.7 0.4 0.7 0.5 0.6 0.5 0.6 1.1 0.5 0.4 
%8 57.5 53.3 37.8 33.8 9.8 48.5 45.5 40.0 54.9 64.4 

sd%S 1.2 0.8 1.1 0.8 1 .1 0.8 0.9 1.4 0.8 0.5 
early 20.5 20.2 12.8 11.4 3.3 13.3 13.8 8.4 16.3 20.3 
medium 19.4 16.1 12.3 11.8 3.3 18.2 17.8 20.2 22.4 22.2 
late 17.6 17.0 12.7 10.6 3.2 17.0 13.9 11.4 16.2 21.9 

%G 2M 13.7 17.8 16.3 16.9 18.5 21.3 14.2 9.8 9.3 7.1 
sd%G2M 0.9 0.6 0.8 0.6 0.9 0.6 0.6 0.9 0.5 0.4 

dispersion; in channel j, sdj=PC'j+CF: 
PC 0.06 0.07 0.06 0.06 0.12 0.05 -0.01 -0.02 0.01 0.01 

sdpc 0.01 <0.01 <0.01 <0.01 0.02 0.01 <0.01 0.01 0.01 <0.01 
CF 0.68 -1.04 1.24 0.18 -3.88 1.68 7.36 12.01 7.38 3.95 

sdcF 0.52 0.29 0.01 0.36 0.90 0.01 0.37 0.85 0.60 0.26 
other variables: 
G1 peak, ml = 78 74 75 77 76 75 88 82 82 72 
S-phase description, 

N= 3 4 3 3 0 2 2 2 3 4 
nr. iterations 

13 16 13 26 6 3 5 34 29 5 
Goodness of Fit, 

TCC = .9929 .9975 .9956 .9977 .9947 .9950 .9915 .9868 .9954 .9976 
SDresiduals 12.3 8.1 9.0 14.1 19.6 8.3 22.7 19.1 11.2 10.6 

continuous stirring. Cells were kept in fixative for several hours before treat­
ment with RNAse (SIGMA) for 15 minutes at room temperature (1 mg/ml in 
PBS). The cells then were washed and incubated with Propidium-Iodide at a 
concentration of 10 jlg/ml PBS for at least 15 minutes before cytofluorometric 
analysis on a FACS-II from Becton-Dickinson. DNA histograms were prepared 
and analyzed with the computer program using the multiharmonic technique 
(Table 5-18). For comparison, a few histograms were also analyzed using the 
polynomial technique. 

Except for the 2h histogram without HGF, for which both techniques 
yield similar results, the polynomial techniques estimates larger S fractions than 
the multihanl10nic technique, at the expense of the G, and G2M fractions (Table 
5-19). 

The influence of the growth factor can clearly be seen. Especially 
beyond 8h the population incubated with growth factor shows a much larger 
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TABLE 5-19 COMPARISON OF MULTIHARMONIC (MHI AND POLYNOMIAL (PI ANALY-
SES 

B-Iymphocytes cultured 
WITHOUT or WITH 

Growth Factor 
time (hi 2 4 8 12 24 2 4 8 12 24 

composition: 
MH: %G 1 28.8 28.9 45.9 49.3 71.7 30.2 40.3 50.2 35.8 28.5 

%8 57.5 53.3 37.8 33.8 9.8 48.5 45.5 40.0 54.9 64.4 
%G2M 13.7 17.8 16.3 16.9 18.5 21.3 14.2 9.8 9.3 7.1 

composition: 
P: %G, 29.4 40.6 23.9 26.4 

%8 56.4 47.5 63.4 67.1 
%G2M 14.2 12.0 12.7 6.5 

MH: dispersion; in channel if sdj=PC'j+ CF: 
PC 0.06 0.07 0.06 0.06 0.12 0.05 -0.Q1 -0.02 0.01 0.01 
CF 0.68 -1.04 1.24 0.18 -3.88 1.68 7.36 12.01 7.38 3.95 

P: dispersion; in channel jf sdj = cv· j: 
CV 0.08 - 0.08 0.06 0.10 

fraction of cells in S-phase. Without growth factor, the cells tend to accumulate 
in G,-phase (resting; Fig. 5.21). 

5.3.2.2 Influence of Imposing a Temporary Block in Eal'iy S-Phase on 
the Kinetics of' a Simulated Exponentially Growing Cell Population. Cells in 
exponential growth were subjected to a block in early S-phase. After 9 hours the 
block was released. Just before and at several time points during and after the 
block, the cell population's composition was observed by flow cytometric 
measurement of DNA histograms. Table 5-20, Fig.s 5.22 through 5.25 and 5.26 
show the results after multiharmonic analyses. This sheds light on the cell 
kinetics. Just before the block there were 46% G, cells, 37% S cells and 17% 
G2M cells. During the block cells accumulated in G,-phase, leaving few Sand 
very few G2M cells. Immediately after release of the block, proliferation 
continues: G, cells convert to S cells; the G, fraction decreases, tile S fraction 
increases fast and the G2M fraction follows more slowly. Six hours after block 
release the G, fraction has passed its minimum and has started to increase again. 
The G2M fraction is still incrcasing, now at a more rapid rate. The S fraction, 
therefore, is growing smaller again. Nine hours after block release the original 
stationmy phase has not yet been restored. This will take more time, during 
which, probably, 'he population's composition will show some damped oscil­
lation. 
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Fig. 5.21 Influence of growth factor (HGF) on the celi kinetics of hybridoma B· 
lymphocytes. Cells cultured in the presence of HGF have larger S·phase fractions (prolif· 
eration), while without HGF the G1-phase is larger (resting cells) 
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TABLE 5-20 RESULTS OF THE MULTIHARMONIC ANALYSIS TECHNIQUE; GRAY HISTOGRAMS 

Histogram: 
Population: 
nr. of channels, M= 
G1 fraction in channel, 
G2M fraction in channel, 

Gray 01; 0 h, start 
1505817 cells; 
128 

fi l= 35 
ffi2= 70 

block in 
early s 

Parameter values: initial final ± sd 
(iteration 6) 

nr. of G t cells, ZT[rnlJo:o800000 729197 9987 

Gray 03; 6 h after 
2138720 cells 
128 
35 
70 

block 

initial final ± sd 
(iteration 6) 

750000 1687257 39292 
nr. of Gii cells ZT(m2] =280000 284811 13770 425000 142863 42404 
Gaussian PC= 0.0400 0.0606 0.0067 

spreading CF= 0.0000 -0.0220 0.2395 
Fourier A[l]= 0.0 -2315.16 512.81 
coefficients A(2J= 0.0 -4796.78 709.22 

A[3]= 0.0 
A[4]= 0.0 
A[5J= 0.0 
B[lJ= 0.0 -175.99 371.62 
8[2]= 0.0 -1101.53 642.36 
B[3J= 0.0 
B[4J= 0_0 
B[5J= 0.0 

yield: 
Goodness of fit 

Zp to ZM' 

SDr.:siduaIs: 
Fourier 

Tee= 0.89891 0.99618 
12083.9 2406.9 

coefficient, A(O]= 15465.20 17406.13 500.30 
Composition of population~ 
fraction G1 (t), F1= 
fractionS (%), FS= 
fraction G2M (%), F2= 

Dispersion: 
SD in channel ml 
SD in channel m2 

49.8 
32.8 
17.4 

1.40 
2.80 

45.4 0.6 
36.9 1.1 
17.7 0.9 

2.10 
4.22 

0.0600 0.0119 0.0301 
0.0000 2.1280 1.0475 
0.0 0.0 
0.0 
0.0 
0_0 
0.0 
0.0 0.0 
0.0 
0.0 
0.0 
0_0 

0.84508 0.97832 
28437.0 11016.4 

28344.70 9076.46 

35.1 78.9 
45.0 14.4 
19.9 6.7 

2.10 2.54 
4.20 2.96 

1.8 
2.9 
2.3 

Gray 06; 
2442358; 
128 

15 h (6 h after 
block release) 

35 
70 

initial final ± sd 
(iteration 6) 

226000 232222 547 
185000 131824 740 

0.0400 0.0407 0.0005 
0.0000 0.6554 0.0205 
0.0 -11658.80 25.56 
0.0 -5956.94 34.53 
0.0 -3780.46 58.07 
0.0 -4467.90 116.52 
0.0 
0_0 
0_0 
0.0 
0.0 
0.0 

7656.52 
1040.73 
-274.71 
-558.75 

16.55 
26.13 
55.22 

106.18 

0.95666 0.99999 
1018.7 110.3 

59745.82 61038.56 

9.2 9.6 
83.2 85.0 
7.6 5.4 

1.40 
2.80 

2.08 
3.50 

0.02 
0.04 
0.03 



TABLE 5-20 CONTINUED 

Histogram: 
Population: 

Gray 07; 18 h 
2612820 cells 
128 

(9 h after 
block release) 

nr. of channels, M~ 
G1 fraction in channel, 
G2M fraction in channel, 

m!',;; 35 
ffi2= 70 

Parameter values: initial final ! sd 
(iteration 6) 

nr. of G, cells, ZT(rnll=460000 376615 11513 
nr. of G2M cells ZT[m2J=800000 793260 15019 
Gaussian pc= 0.0400 0.0548 0.0031 

spreading CF= 0.0000 -0.1142 0.1512 
Fourier A[lJ= 0.0 -1628.50 586.60 
coefficients A[2J= 0.0 -5078.59 792.27 

A[3]= 0.0 
A[4]= 0.0 
A[S]= 0.0 
B[l]"" 0.0 -14616.65 424.31 
B[2]"" 0.0 -7959.60 712.26 
8[3]= 0_0 
8[4]= 0.0 
B[5]= 0.0 

yield: 
Goodness of fit 

Zp to ZM' 
SDresidu;J1s : 
Fourier 

TCC"" 0.92460 0.99726 
14534.20 2819.6 

coefficient, A[C]"'" 10000.00 42439.53 556.59 
Composition of population: 
fraction G1 (t), F 1= 
fraction S (%), FS= 
fraction GZM ('to), F2= 

Dispersion: 
SD in channel m1 
SO in channel m2 

17.6 
51.8 
30.6 

1.40 
2.80 

14.4 
55.2 
30.4 

2.03 
3.95 

0.4 
0.7 
0.6 

Fig.s 5.22 through 5.25 
(on following pages) 

Sequential histograms (Gray) 

a) measured histogram (system output) and predicted 
histogram (optimum model output) 

b) deviations between measured and predicted histo­
grams (measurement errors) 

c) corresponding theoretical histogram, assumed to be 
identical to the true histogram 

respectively, 
at start of block in early s-phase (0 h), 

6 h after start of block, 
15 h after start of block = 6 h after block release, 
and 9 h after block release 



08S. & PREDICTED. ZM & ZP 085. & PREDICTEO. ZM & ZP 

01 03 
3DOOOO A A 

~ 200000 0; 
0 -0 

" 100000 
c 

a ----...--.---"'-'----~ , 
60000 ERRORS. OZ,-ZM ZP 

8 
ERRORS. DZ",ZM-ZP 

8 
40000 

0 

0; 20000 
0 

'0 a f1 ;., ---1 
IJT:-~ '-'-'-

" -20000 
c 

-4000D 

-60000 

~. 
;~ ~ 

...... u .. ·"t 

2400000 
THEOR. HISTOG .. ZT 

~."C] 
THEOR. HIS<OG .• ZT 

;--9 
~ 1800000 
0; 
0 - 1200000 
0 

" c 600000 

a 

.~ • 

a 20 40 60 8D 100 a 20 40 60 80 laD 

CHNL CHNL 



06 
300000 

2 
200000 0; 

0 

'0 
c 100000 
c 

0 

60000 

40000 
.!! 

20000 0; 
0 

'0 0 

c -20000 
c 

-40000 

-60000 

2400000 

2 1800000 
~ 
0 

'0 1200000 

c 
c 600000 

0 

08S. & PREDICTEO. ZM & ZP 

•. 1 .•...•...••.•. 
.~ ; :.: 
'. ~.- .. -.: .. -.. - . ,--. . . . . 

. .. 

A 

, ' ..... 1 , , , • , , , , 

E.RROR$ .. DZ.""Z.M.,- ZP .. 
8 

L .... ..\ .. , 
C',,...,... ..,..,.. THEOR. HI .... , ..... ~ .. 1:...' 

.·fCl 

.. 

L 

08S. & PREDICTED. ZM & ZP 
07 

A 

~ -.~- .~--- -~ ~ : 

,-~c--.---c---,--o---r-~-.-.-_L~ 
~ 
..... . . - .. . 

. ···ii:······.··, ..... 
EgRQR~ •.. DZ"'ZM.,-Zp. 

8 

.. .. 

/, ~ '- ~ ~ : : . ~------r :"-": 
... , ... , .. , ..... 

: .;,. : ...... i ..... '._ ... ; .. ,m !,!, J ! 

C::Tnr. 7T THEOR. H._." .. _. 

... 

f
l ........ · ."'9 

[
' ........., 

"'J . .. 

,:. ~.. . ... 

o 20 40 60 80 100 0 20 40 60 80 100 

CHNL CHNL 



Fig. 5.26 Influence of a 9 h block in early S-phase on the kinetics of a cell population 
that originally grows in an exponential way 

Gray Histograms: 
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5.3.3 Histograms from BN Rat Tissues, With and Without infiltrated 
BNML Cells 

Flow cytometric measurements were performed with cell suspensions derived 
from BN rat liver, spleen and (femoral) bone marrow on day 10 after the i. v. 
inoculation of 107 BNML cells. DNA histograms were made for all cells from a 
particular tissue (total nucleated cells, TNC) and for the malignant cells among 
them. These cells could be separated in the cell sorter device-a part of the 
FCM (FACS, fluorescence activated cell sorter)-because their surfaces had 
been marked with a fluorescent dye (FITC), attached to a monoclonal antibody 
(RMI24), which binds to a receptor that is present in large numbers on the 
BNML cell surface. 
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From the bone marrow, samples were also taken at days 2 and 17 after 
107 BNML cells. Before analysis these cell suspensions were prepared in two 
different ways, i.e., with or without adding a substance called nycodenz. This 
medium enables separation of non-proliferating cells. Finally, various subpopu­
lations were sorted from the normal bone marrow cells. 

Results are shown in Tables S-21 through S-24. Fig. S.27 is an illustra­
tion of analysis results for the bone marrow on day 10. Looking at the day 10 
tissues overall, the bone marrow and spleen show a similar behavior: about 80% 
of the cells are in Gt-, IS-20% in S-phase. In the liver only SO% of the cells 
are in Gr , and almost no cells are in S-phase. This last result, however, may be 
an artifact because much fewer were analyzed and the fitting results were rather 
poor. 

Looking at the malignant cells, again the liver distinguishes itself from 
the other two organs although in a less pronounced way. The liver has fewer 
malignant cells in G1-, but-in contrast to the total cell population-many more 
cells in S-phase. 

When looking at the BNML growth curves observed in these organs 
(Fig. 2.IS), on day 10 after inoculation of 107 BNML cells the malignant 
population in the liver and in the spleen are still in the phase of exponential 
growth, whereas in the bone marrow conversion to Gompertzian growth has 
already taken place then. Therefore, one would expect fewer S-phase cells in the 
bone marrow as compared to liver and spleen (more proliferation in these last 
organs). This is not reflected by the DNA-histogram analysis. An explanation 
might be that conversion to Gompertzian growth sooner is a result of increased 
cell loss than a result of less proliferation. 

Without nycodenz the bone marrow results tend to be a little higher in 
G t- and G2M-phase and lower in S. This could be expected, as the nycodenz 
treatment will have removed non-proliferating cells. Differences, however, are 
not large. 

On day 2 insufficient BNML cells could be separated from the total 
population, the fraction RM 124 positive cells still being too small. 

Looking at the total population, with increase in time the S-phase 
fraction seems to increase and the G 1 fraction seems to decrease. This suggests 
that at later stages there is more proliferation. 

Apparently, the increased proliferation is not due to the BNML cells. 
The fraction of BNML cells in S-phase remains the same or decreases with time 
in the 10-17 d interval. Experiments with 3H-thymidine showed decreased S 
fraction as well [Martens and Hagenbeek, 1977). From these data it follows that 
decreased proliferation also must make some contribution to the observed Gom­
pertzian growth of BNML in bone marrow at this time interval (next to increas­
ed cell loss). 

It should be noted here that, as at present it is difficult to obtain repro-
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TABLE 5-21 CYCLE PHASE FRACTIONS OF TOTAL NUCLEATED CELLS (TNC) AND 
MALIGNANT CELLS (RM124+) IN VARIOUS TISSUES, AT DAY 10 AFTER 
INOCULATION OF 107 BNML CELLS 

organ TNC RM124 + 
bone marrow %G, 77.3 ± 0.3 77.0 ± 0.8 

'loS (± sd) 18.0 ±0.5 22.0 ± 1.0 
%G 2M 4.7 ± 0.4 1.0 ± 0.5 

m.ot cells analyzed 44880 7812 
goodness of fit 0.9992 0.9939 

liver %G 1 49.0 ± 2.0 70.5 ±0.8 
'loS (± sd) 1.4 ±3.6 29.1 ± 1.3 

%G2 M 49.6 ± 3.0 0.4 ± 1.0 
nr .of cells analyzed 24640 5530 

goodness of fit 0.9778 0.9948 

spleen %G, 81.1 ±0.4 83.4 ± 1.1 
%S (± sdl 14.8 ±0.8 14.6 ± 1.8 

%G 2M 4.1 ±0.7 2.0 ± 1.4 
m,ot cells analyzed 43680 5412 

goodness of fit 0.9982 0.9854 

TABLE 5-22 CYCLE PHASE FRACTIONS OF TOTAL NUCLEATED CELLS (TNC) AND 
MALIGNANT CELLS (RM124 +) IN BONE MARROW AS FUNCTION OF TIME 
AND PRESENCE OF NYCODENZ 

time (d) after 107 BNML cells i. v. 
2 10 17 

TNC %G 1 74.9 ± 0.6 62.5 ± 0.8 
'loS (± sd) 14.6 ± 1.2 33.1 ± 1.6 
%G 2M 10.5 ± 1.0 4.4 ± 1.4 

nyco+ 
RM124 + %G 1 54.2 ± 0.6 62.4 ± 0.8 

'loS (± sd) 40.0 ± 1.2 27.0 ± 1.4 
%G 2 M 5.8 + 1.0 10.6 + 1.1 

TNC %G, 81.8 ± 0.7 66.9 ± 0.5 
'loS (± sd) 13.9 ± 1.3 29.2 ± 0.8 
%G 2M 4.3 ± 1.1 3.9 ± 0.6 

nyco 
RM124 + %G 1 60.2 ± 0.7 62.9 ± 0.6 

'loS (± sd) 32.4 ± 1.1 30.1 ± 1.1 
%G 2M 7.4 ± 0.9 7.0 ± 1.0 
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TABLE 5-23 CYCLE PHASE COMPOSITION OF VARIOUS SUBPOPULATIONS OF NOR­
MAL BONE MARROW CELLS IN THE BN RAT 

cell type: 
%G 1 
%S (± sd) 
%G 2M 
CV peak 

nr.of cells anal. 
goodness of fit 

total BM 
78.5 ± 0.5 
16.9 ± 0.9 

4.5 ± 0.7 
0.039 
7161 

0.9965 

lymphocytes 
98.0 ± 0.6 

2.3 ± 1.0 
-0.3 ± 0.7 

0.030 
3600 

0.9966 

granulocytes 
82.6 ± 0.5 
16.0 ± 0.8 

1 A ± 0.7 
0.036 
6365 

0.9967 

blasts 
52,0 ± 0.5 
44,9 ± 0.8 

3.1 ± 0.6 
0.045 
10692 

0.9965 

Lymphocytes and granulocytes populations have few S cells. Proliferation in bone 
marrow is largely due to blast cells (large S-phase fraction) 

TABLE 5-24 INFLUENCE OF SAMPLE SIZE ON ANALYSIS RESULTS 

case nr. of %G 1 ± sd %S ± sd %G 2M ± sd peak channel TCC 
cells QOs., CV 

1a 9354 68.0 ± 1,2 27.4 ± 2.0 4.6 ± 1.6 45 0,07 
1b 4560 67.7 ± 0.4 27.7 ± 0.7 4.6 ± 0,6 88 0,03 

2a 2160 66.8 ± 1.3 24.7 ± 2.2 8,5 ± 1.8 102 0,07 
2b 1341 70.5 ± 1.0 24.8 ± 1.5 4,7 ± 1.2 103 0.07 
2c 803 79,6 ± 1.0 18,3 ± 1.8 2,1 ± 1.4 103 0.07 
2d 446 68,5 ± 1.6 27.7 ± 2,6 3.8 ± 2,0 102 0.07 

3a 10692 52,0 ± 0,5 44,9 ± 0,8 3.1 ± 0.6 0,04 .9965 
3b 3800 46,1 ± 0.6 50,6 ± 1.0 3.3 ± 0,8 0,03 .9937 

The above cases with a same number are always taken from the same sample (prepared 
cell suspension); a-d denote different analysis runs. 
1 : RM124 + cells (BNML) sorted from a sample of 107 bone marrow cells 
2: RM124 + cells (BNML) sorted from a sample of 106 bone marrow cells 
3: blast cells from normal rat bone marrow 

ducible results, firm conclusions cannot be drawn. Comparing the day 10 data in 
Tables 5-21 and 5-22 reveals that both for BNML and TNC in bone marrow 
large interexperimental fluctuations in phase fractions occur. Of course, this 
may be largely due to inevitable biological variation. But also the production of 
DNA histograms needs further development and standardization. For example, 
while the goodness of fit (total correlation coefficient, TCC) remains fairly 
constant, reducing the number of cells analyzed clearly influences the analysis 
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Fig. 5.27 Leukemic cells 
(RM 124 +) in rat bone marrow 
at day 10 after inoculation of 
107 BNML cells; a) raw histo­
gram (system output); b) 
measured histogram (after 
background correction) and 
predicted histogram (optimum 
model output); cJ correspond~ 
ing theoretical histogram, 
assumed to be identical to the 
true histogram 



results (Table 5-24). Especially when the cell numbers get very low (less than a 
few thousands), fluctuations of 10% in phase fractions may be seen. As the 
model, as used in the analysis, assumes Gaussian redistribution of cells-an as­
sumption that holds beller when the numbers of cells are large-the number of 
cells to be analyzed should be chosen as large as possible. 

5.4 CONCLUDING REMARKS 

A method has been presented that models the production of a single DNA histo­
gram by FCM. By proper adjustmcnt of the parameter values in the model equa­
tions, which is taken care of in an iterative numerical procedure, a given 
observed histogram can be analyzed, i.e, the cycle phase composition of the cell 
population under investigation can be determined. The method is to a large 
extent automatic. and offers objective analysis of raw data. It includes the 
possibility of estimating the accuracies of the resulting parameter values and 
model response. Flexibility is a major feature. A kernel function describes the 
actual S-phase cell distribution with a set of harmonic functions. This set is 
characterized by a few parameters only that, however, by choice of proper 
values, allow a great variety of shapes. Therefore, it can be expected that this 
analysis method will be applicable to many different classes of DNA histograms. 
The constraints imposed by employment of a polynomial in the kernel function 
are thus relaxed, while the risk of introducing too many free parameters and 
encountering numerical problems (divergence, as may happen in the multiGauss­
ian method if many S-phase spikes are required in the kernel function), IS 

avoided. 
The S-phase in the multiharmonic method has a distribution that is 

continuous through the DNA channels. Although uncertainty in the estimated 
Fourier coefficients is considerable, this allows a better representation of the 
physical reality than an approximation with a kerncl function that consists of a 
number of spikes with empty spaces in between (for example, compare the theo­
retical histogram obtained by the multiharmonic method to the mulliGaussian 
solution fOl' FRAMA in Fig. 5.9c/d). 

This also leaves the possibility to estimate not only the total fraction of 
S-phase cells but, in principle, also to give sub fraction sizes explicitly. This may 
yield information on the rate of DNA synthesis, especially if sequential DNA 
histograms can be simultaneously analyzed. Adding a third dimension to the 
model, i.e., a mathematical expression that states how the contents of each 
specific channel will change with time (in other words, modeling the prolifera­
tion kinetics), is a logical next step. Predicted histograms at subsequent times 
can be calculated. By matching this model response to the actually observed 
series of histograms, information on cell proliferation characteristics Illay be 
obtained (e.g., [Yanagisawa et aI., 1985]). This approach probably may yield 
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more accurate results for each separate DNA histogram than can be achieved by 
analyzing them one at a time [Lampariello et aI., 1989]. Also, it may prove a 
good alternative for the double labeling experiments that are recently being 
developed (e.g., [Lacombe et aI., 1988]) to assess cell kinetic information 
(treating cells with bromodeoxyuridine (BrdUrd) next to Propidium Iodide for 
DNA staining, and using a fluorescent monoclonal antibody against BrdUrd, the 
G t, Sand G2M fractions can be distinguished on two-dimensional FCM plots of 
the fluorescence intensities). 

Testing the multiharmonic method has thus far yielded pronllSmg results, 
suggesting the adequateness of this modeling approach, although only conven­
tional, rather "clean" histograms have been analyzed. Its better pelformance 
with respect to the multiGaussian and polYllomial techniques has been shown 
above for several histograms. Of course, histograms originating from various 
types of cell populations perturbed with cycle-specific agents should be analyzed 
with the multiharmonic method to prove its practical, general usefulness. A 
problem may arise when a channel of a theoretical histogram contains only velY 
few cells. The subsequent redistribution among the neighbor channels then will 
be according to binomial statistics, whose tendency to the Gaussian function 
disappears with decreasing cell numbers. The assumption of normally redistri­
buted quantities (Eq.(5.17)) thus may lose its validity. The consequences for the 
error model (variance of the residuals) should be looked into. 

With respect to the present calculation of the variance of the residuals 
use of Eq.(5.29) may lead to some underestimation, since in general a histogram 
will not fully occupy the total range of M channels. To disregard the influence 
of irrelevant empty channels it might be better to truncate the range in Eq. 
(5.29), respectively, below mt - 3· SDmt and above m2 + 3 ·SDm2. 

The present analysis method relies upon a properly adjusted fluorescence 
amplification, i.e., m] must be sufficiently large so as to retain all "in front of 
the Gt peak" cells of the observed histogram in the channels I through mi' But 
it also must be small enough not to spill redistributed cells in the tail of the 
histogram beyond the channel M boundary. 

More operational experience in the application of the method must be 
accumulated, for instance, to enable a reasonable ii priori choice of the mini­
mum number of Fourier coefficients (N) that need to be considered for the best 
results. An improved routine that automatically searches for the best choice of 
Gt channel position mt should be designed to reduce user interaction further. A 
presently available routine that optimizes mt as a free parameter is too time 
consuming to be of practical use (as ml occurs velY frequently in many terms of 
the model equations, letting its value float means that many function evaluations 
must be performed, stretching required computation time to IS minutes per 
iteration. At present it is more economic to run the program several times with 
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different fixed ml values, and to choose the best model output by visual com­
parison). Finally, when and how to correct for the presence of cellular debris, 
background noise and occurrenCe of clumping also are problems that have only 
partially been solved. 
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Chapter 6 
Bone Marrow Transplantation and Risk of Leukemia Relapse 

In this chapter it is shown that the application of simple statistical models to 
(pre)clinical data like relapse rates may be helpful for developing guidelines or 
rationales for treatment protocols. At least the models may help in establishing 
new directions for further investigations so as to make bone marrow transplanta­
tion a better treatment modality for leukemia. 

6.1 Introduction to Bone Marrow Transplantation 

6.1.1 TRANSPLANTATION 

For several diseases, involving an organ that no longer functions properly, 
transplantation may be the solution; e.g., certain conditions being satisfied, a 
defective kidney can be taken out of a patient in order to be replaced by a nor­
mally working donor kidney, restoring the patient's health without too serious 
complications. For leukemia, a disease of the hemopoietic system, a solution 
was sought in an analogous way. In principle, a patient's hemopoietic system 
can be renewed by means of bone marrow transplantation (BMT). 

6.1.2 BONE MARROW, BLOOD CELLS AND HEMOPOIESIS 

Bone marrow is present inside every bone of the body, in particular in the pel­
vis, the vertebrae, the ribs and the long bones of arms and legs. It is the main 
source of fresh blood cells, which are continuously being produced to replace 
old and WOl'll ones (rate of production = rate of loss = 10"-1012 cells per 
day). 

The various types of functional blood cells, such as erythrocytes, leukocytes 
and platelets are all descendants of a single cell type, i.e., the pluripotent 
hemopoietic stem cell (HSC). The HSC incessantly produces offspring that 
either is again an HSC or a committed cell (CC) that stands at the origin of a 
specific blood cell line. I.e., in a process of proliferation and stepwise differen­
tiation-each new differentiation step reduces the proliferative capacity-CCs 
mature into the (non-proliferating) end cells of their (myelocytic, lymphocytic, 
erythrocytic, thrombocytic) line. Toward the end of the maturation the blood 
cells leave the bone marrow to start circulating and doing their specific functions 
throughout the body. 
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6.1.3 BONE MARROW TRANSPLANTATION PROCEDURE 

A malfunctioning hemopoietic system, such as happens in leukemia, must be de­
stroyed first before it can be replaced. This is usually done by total body irradi­
ation andlor high-dose chemotherapy. The so-called conditioning therapy (CT) 
not only stops the patient's hemopoiesis by killing all HSCs, it also creates 
space for the incoming graft. Furthermore, the patient's immunological defense 
system is destroyed, which means that there will be little risk that the graft is 
rejected in an immunological reaction to the donor marrow that is foreign to the 
patient's body. It also means that during this period the immunodeficient patient 
is very vulnerable to all sorts of infections, so must be nursed in a protective 
environment. 

Donor bone marrow celis administered intravenously have been shown to 
home to and occupy the vacated sites in the patient's bones. Relatively few bone 
marrow cells-in fact, even less HSCs among these-appear to be needed to re­
store the complete process of hemopoiesis eventually [Visser et aI., 1984]. 

6.1.4 TYPES OF BONE MARROW TRANSPLANTATION 

Four forms of BMT are distinguished, depending on the relation between donor 
and recipient. 

With autologolls BMT the patient is rescued with his own bone marrow. In 
leukemia the bone marrow is harvested before the marrow ablative CT is ap­
plied, but after the patient has attained a state of complete remission (CR). The 
thus obtained graft is believed to contain a negligible amount of leukemic cells, 
if any, but sufficient normal HSCs. The patient is hoped to be cured from leuke­
mia by the CT. 

If donor and recipient are genetically identical the graft is called syngeneic 
or isologolls. This is the case with identical twins (or when animals of the same 
inbred strain are concerned). 

BMT between a genetically different donor and host of the same species is 
called al/ogeneic. If BMT is applied interspecies, then it is called xenogeneic. 

6.1.5 PROBLEMS IN BONE MARROW TRANSPLANTATION FOR 
LEmmMIA; ALLOGENEIC: GRAFT-VERSUS-HOST DISEASE, 
AUTOLOGOUS: REINOCULATION OF LEmmMIC CELLS 

Obviously, with syngeneic or allogeneic BMT a healthy donor is selected. 
Therefore the graft certainly contains no leukemic celis, whereas it may contain 
malignant cells in case of autologous BMT. However, often a suitable (gen­
etically matched) healthy donor is not readily available. Then, autologous BMT 
remains as one of the treatment modalities. 
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After allogeneic BMT there is a risk of facing another complication, name­
ly, graft-versus-host disease (GvHD). This means that the graft cells evoke an 
immunological reaction against the foreign cells of the recipient host, which can 
be classified as mild or severe, but may end fatally. GvHD is known in two 
forms, acute and chronic, occurring early and late, respectively, after transplan­
tation. 

Certain measures to prevent GvHD can be taken, however. For instance, 
before BMT the graft may be manipulated so as to remove the T -lymphocytes 
that, as was experimentally established in a mouse model, are the cells respon­
sible for causing the immune reaction [Van Bekkum and Liiwenberg, 1985]. Al­
ternatively, the patient may receive additional immunosuppressive treatment, 
e.g., cyclosporin A (CyA) and/or methotrexate (MTX), as a measure of GvHD­
prophy laxis. 

It has been observed that leukemia patients who develop GvHD after (allo­
geneic) BMT have better chances to remain in remission than those who do not. 
The induced immune reaction by the graft apparently attacks residual leukemic 
cells left over in the patient as well. Therefore, more and more clinicians tend to 
tolerate the occurrence of GvHD, even if it takes a toll in the form of GvHD 
related morbidity. Still, curing a patient's leukemia, but losing him because of 
GvHD, is an embarrassment to the potential successfulnesss of the therapy. 

6.1.6 MATHEMATICAL MODELING 

Through mathematical modeling it can be explored to what extent the graft­
versus-leukemia reaction (GvLR), being part of the GvHD, contributes to the 
probability of curing leukemia after allogeneic BMT. It will be shown below 
that, although leukemia relapse rates decrease dramatically, a GvLR probably 
causes an equivalent of about I log cell kill (LCK) only. If this is true, then 
other treatment strategies-that induce approximately I LCK leukemic cell eradi­
cation while preventing the development of GvHD (e.g., through T-cell de­
pletion of the graft)-should be preferred. 

In autologous BMT for the treatment of leukemia the cause of relapse may be 
either the regrowth of leukemic cells that have survived the CT -in which case 
the treatment of minimal residual disease (MRD) should be improved-or the 
outgrowth of leukemic cells injected with the autograft. Then, the graft should 
be pretreated in some way or other. Of course, both sources may contribute (the 
possibility that a new leukemia develops in a patient is ignored). 

Once again through mathematical modeling an estimate can be obtained on 
the likelihood of a leukemia relapse originating from MRD or from the graft. It 
will be shown that the contribution of the latter can be assumed to be much 
smaller than that of the former. 
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6.2 On the Quantitative Role of Graft-versus-host Disease in 
Decreasing the Leukemia Relapse Rate after Allogeneic Bone 
Marrow Transplantation l 

Clinical data accumulated during the past decade show that patients undergoing 
allogeneic bone marrow transplantation (BMT) for leukemia have lower leuke­
mia relapse rates if they develop graft-versus-host disease (GvHD) [Dicke et aI., 
1985; Bacigalupo et aI., 1985; Masaoka, 1988; Weiden et aI., 1979 and 1981; 
Butturini et aI., 1987; Goldman et aI., 1988]. Vice versa: measures to reduce 
the occurrence of GvHD such as T-cell depletion of the grafted allogeneic mar­
row increase the frequency of leukemia relapses after allogeneic BMT [Butturini 
et aI., 1987; Goldman et aI., 1988; Appedey et aI., 1986]. This is highly 
significant in case of chronic myelocytic leukemia (CML) with an increase in 
relapse rate from 10% to 30-40% [Butturini et aI., 1987; Goldman et aI., 1988]. 
It is borderline significant in acute lymphocytic leukemia (ALL; from 35 % to 
55 % [Butturini et aI., 1987]). Additional evidence for a graft-versus-leukemia 
reaction (GvLR) is derived from the observations in paticnts with acute myelo­
cytic leukemia (AML) that the leukemia relapse rate after allogeneic BMT in 
first remission is lower than after autologous or isologous BMT, i.e., 20-30% 
versus 50-60%, respectively [Butturini et aI., 1987; Horowitz, 1988; Lowenberg 
et aI., 1987; Gale and Champlin, 1984]. 

Experimental data suggest that the graft-versus-host reaction and the GvLR 
can be separated, although the evidence is not convincing [Butturini et aI., 1987; 
Meredith and O'Kunewick, 1983; Denham et ai. 1983]. While GvHD has a ben­
eficial effect in terms of leukemia cure probability it also causes serious morbid­
ity and mortality [Dicke et aI., 1985; Goldman et aI., 1988; Santos et aI., 
1988], thereby reducing the net success rate of allogeneic BMT. In this context 
it appears to be useful I) to quantify what extra decrease in survival of clono­
genic leukemic cells can be attained with GvHD and 2) to investigate whether 
the same amount of cell kill also might be achieved by olher means that can be 
combined with GvHD prevention and thus are not causing extra GvHD-related 
deaths. 

The first question is looked into by comparing theoretical and clinically 
observed leukemia cure probabilities in the presence or absence of GvHD. The 
extra "Iog cell kill" (LCK) value corresponding wilh the observed decreased 
leukemic cell survival will be derived in a mathematical analysis. Subsequently, 

[Chapter 6,2 has been presented at the 1hird IlIfernatiollal Symposium on Millimal 
Residual Disease in ACl{Il~ Leukemia. 28-30 March. /990, Rotterdam, 1he Nether/allds as: 
Schultz FW, Vriesendorp HM and Hagenbeek A. Allogeneic bone marrow transplantation, graft­
vs-host disease and leukemia relapse 
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with respect to the second qucstion, the feasibility of achieving an equally 
increased probability of cure with further pre- or post-BMT treatment will be 
reviewed. 

6.2.1 METHODS 

6.2.1.1 Treatment Models 

First, the leukemia patient is brought into remIsSIon by remISSIOn induction 
(chemo/radio)therapy (RIT). RIT being successful, next, a much more severe 
conditioning therapy (CT) is applied so as to kill as many residual leukemic 
cells as possible. CT fatally damages the patient's normal hemopoietic system, 
so (allogeneic) BMT is applied to restore it. 

To decrease the chances of leukemia relapse three different procedures may 
be followed: I) No measures are taken to prevent GvRO; the associated GvLR 
is expected to work as an extra agent against residual leukemic cells; 2) CT is 
intensified and GvRO prophylaxis is given as well; 3) Standard CT is given, as 
well as GvRO prophylaxis and extra post-transplant antileukemia therapy. 

6.2.1.2 Theoretical Probability ot' Leul<elllia Cure 

For each treatment model the derivation of the theoretical probability of cure 
(TPC) is based on the old dogma that only one clonogenic leukemic cell sur­
viving treatment is necessary to cause a relapse of the malignancy. Thus, the 
TPC is equal to the probability of all clonogenie leukemic cells being eradicated. 
This probability can be calculated from statistical distributions of leukemic cell 
numbers surviving treatment, assuming that each cell has the same chance, p, to 
survive and, consequently, chance I-p to be killed by the treatment. Let the 
tumor burden of a leukemia patient in remission be M clonogenic leukemic cells 
and let X denote the number of surviving clonogenic leukemic cells after condi­
tioning treatment (CT). 

Thus, if X :2: I there will be no cure; the TPC equals the probability of X 
being zero: 

Pr{cllre} = Pr{X=O}. (6.1) 

If M is large (> 100) and p is small « 0.1), then the conditions for the appli­
cation of a Poisson distribution are satisfied, i.e., the probability that K cells 
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survive (0 :s; K :s; M) is giveu by: 

K 
Pr{X=K} = (P'M) 'e-p'M 

K! ' 
(6.2) 

where K! (K factorial) by definition means I· 2·3· ... K (O! = I). The expected 
value of X is I'x = p. M with a standard deviation ax = V (p. M). 

Thus, by substituting zero for K, the TPC can be written as: 

Pr{cure} = Pr{X=O} = e-p·M. (6.3) 

If M is small andlor p > 0.1 then instead of the Poisson distribution the bino­
mial probability distribution function applies to obtain the probability of K sur­
viving cells: 

Pr{X=K} = pK.(1 _p)M-K. M! 
K! '(M - K)! 

(6.4) 

The expected value of X now is Ilx = p. M with standard deviation 
ax = V((I-p).p.M). The TPC then becomes: 

Pr{cllre} = Pr{X=O} = (I _p)M. (6.5) 

To derive the TPC for the treatment models considered above the two probabili­
ty distributions must be combined. Before conditioning the tumor load will be 
high (M large). The cytoreductive potential of the CT also is large, i.e., each 
cell has only a small chance (PeT) to survive this treatment so relatively few 
leukemia cells will remain. Letting X' denote the number of such residual leuke­
mic cells, the expected distribution of X' therefore can be calculated from 
Eq.(6.2) (Poisson). If, subsequently, an additional (small) cytoreductive effect is 
exerted on the small number of residual cells-either by a GvLR or by a post­
transplant therapy-each of the residual cells has a (comparatively large) chance 
(Ps) to survive once more. Thus, the resulting probability of cure is composed 
of 1) the chance, PriX' =K}, that K out of M cells survive CT (Poisson); and 2) 
the conditional chance, Pr{X=O!X'=K}, that zero out of K cells survive the 
second effect (binomial), given the chance that (the small number of) K cells 
have survived the CT. In formula: 
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Pr{el/re} ~ LKpr{X'~K}'Pr{X~O I X'~K} ~ 

"" (PCT' M)K K 
L-K K! 'exp{-PCT'M}'(I-ps) ' K ~ 0,1,2, ... 

(6.6) 

For practical reasons it is assumed that the conditional probability of cure will 
be zero when the residual population is larger than a certain number of cells, L: 

Pr{X~O I X'>L} ~ O. (6.7) 

Thus, the summation in Eq.(6.6) need not extend beyond K = L. If L is set low 
this assumption tends to be rather pessimistic. 

6.2.1.3 Choice of Parameter Values 

A survey of clinical data suggests that when a patient is diagnosed for leukemia 
the tumor load will often be some 1012 cells. A first course of successful remis­
sion-induction therapy (RIT) will generally reduce the leukemic cell burden by 
at least two logs, making it disappear below the clinical detection level (e.g., 
80% of AML patients younger than 50 y obtains complete remission [Smith et 
a!., 1986]). Thus, fewer than 1010 leukemic cells remain. 

Patient data on the malignant cell population size as function of time and 
treatment are virtually non-existent. Estimates can be obtained in a systematic 
way from in vivo laboratory experiments only. In this respect the availability of 
a good rat model-the BNML model-proved very valuable. In this model vari­
ous treatment protocols have been evaluated, including RIT, CT and (allogeneic) 
BMT as well as post-transplant chemotherapy, using total body irradiation and/ 
or chemotherapy with cytostatic agents of various classes. A comprehensive 
overview of experiments and results was recently presentcd by Martens et a!. 
[1990a,b]. 

From the BNML experiments, mimicking clinical treatment protocols, it is 
deduced that two courses of RIT probably will reduce the leukemic cell load by 
about two times two logs, leaving on average 108 out of 1012 cells. Intensive 
CT will cause some 8 LCK [Hagenbeek and Martens, 1981, 1983, 1987b], so 
only a few residual leukemic cells may survive. 

Based on these findings it was decided that the base point values of interest 
would be M = 108 and SF = (SF I =) 10-8. SF is the surviving fraction, 
equivalent to each cell's chance to survive. 

However, as probably not all patients will carry the same tumor burden 
after successful RIT [Rohatiner et a!., 1988], the influence of distributed M on 
the probability of cure must be evaluated. A few approximating simulations 
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TABLE 6-1 THEORETICAL PROBABILITY OF CURE ACCORDING TO POISSON 
DISTRIBUTION, AS FUNCTION OF LEUKEMIC CELL LOAD AND "LOG 
CELL KILL" EFFECT 

leukemia burden before conditioning, M =: 

surviving 

6 10'2 10'0 109 108 106 104 

fraction, 

SF = 
10-1 0 0 0 0 0 0 0 

10-2 0 0 0 0 0 0 4xl0- 44 

10-3 0 0 0 0 0 0 5xl0-6 

10-4 0 0 0 0 0 4xl0-44 0.37 

10-5 0 0 0 0 4xlO-44 5xlO-5 0.90 

10-6 0 0 0 4xl0-44 5xl0-5 0.37 0.99 

10-7 0 0 4xl0-44 5xlO-5 0.37 0.90 

[d 0 4xlO-44 5xl0-6 

c:J 0.90 0.99 

10-9 0 5xl0-5 0.37 0.90 0.99 

10-10 4xl0-44 0.37 0.90 0.99 

10-11 5xlO-5 0.90 0.99 

were performed. By assigning fractions, fi' of patients to tumor burdens, M = 

lO'-the largest fraction at M= lO8, the other fractions symmetrically decreasing 
around it-the total increase in probability of cure can be calculated for various 
assumed values of increase in LCK. For each fraction-the sum of fractions fi 
must obviously be one-the increase in probability of cure due to increase in 
LCK (or decrease in SF) can be found using Eq.(6.3). Their sum should, of 
course, match the observed value. This procedure then yields an estimate of the 
actual increase in LCK. 

6.2.2 RESULTS 

Several initial tumor loads, M, and surviving fractions, p, as listed in Table 6-1, 
were chosen such that the TPC could be computed according to the Poisson dis­
tribution, Eq.(6,3), It decreases with either increasing original leukemic cell 
load or increasing surviving fraction. Although not tabulated here, the binomial 
distribution too (Eq.(6.S)) yields a decrease in TPC with increasing M and/or 
SF. 

The largest difference between leukemia relapse rates for non-GvHD and 
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Fig. 6.1 Theoretical Probability of Cure for Several Therapy Procedures 
A,B) probability that K cells survive conditioning if therapy is started at M ::: 108 cells 
(probability of cure, K = 0, is 40% and 90% for SF = 10.8 and 10.9, respectively); C) 
probability that the K residual cells are all killed, by GvLR or post·transplantation 
therapy (PTT) causing 1 LCK; D) probability of cure ( = 90%) then is obtained by 
multiplying A and C for each K and adding the results 
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(both acute and chronic) GvHD developing patients was found from clinical data 
concerning acute lymphoblastic or non-lymphoblastic leukemia. The probability 
of being in remission at day 150 after transplantation was reported to be about 
40% and 90%, respectively [Dicke et aI., 1985]. 

In Table 6-1 it is shown that a rise in percent cure from about 40% to 90% 
-or a decrease in leukemia relapse rate from 60% to 10%-corresponds with a 
difference of I LCK for several combinations of M and two subsequent p 
values. In particular this is the case when assuming-as suggested-that the leu­
kemic cell population just after an average quality remission-induction therapy 
has a size of M = 108 cells and that the LCK induced by the conditioning 
regimen has the value eight or nine, respectively. 

Figure 6.1 shows again that the probability of cure (K = 0) will shift from 
40% to 90% when the CT intensity is increased by I LCK (Fig. 6.IA: 
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TABLE 6-2 INCREASE IN THEORETICAL PROBABILITY OF CURE AS FUNCTION OF 
LEUKEMIC CELL LOAD DISTRIBUTION, IF SF DECREASES BY EITHER 1 
OR 2 LOGS 

Before conditioning ,therapy an (assumed) fraction fj of the patients carries a leukemic 
cell load 01 M ~ 10' cells. Increase in cure probability (IlPr{eure}) lor each i lrom Table 
6-1. Total increase in cure probability should be compared to the observed 50% due to 
the presence 01 GvHD 

lor 1 LCK (SF: 1O-B~1O-9) lor 2 LCK (SF: lO-B~lO-lO) 

10 9 ll. 7 6 10 9 ll. 7 6 

M 1010 109 lOB 107 106 1010 109 1Q8 107 106 

llPr{eure} 0 37 53 9 37 90 62 10 10 

A 
Ii 0.0 0.0 LQ 0.0 0.0 0.0 0.0 LQ 0.0 0.0 
li'"Pr{eure} 0.0 0.0 53.0 0.0 0.0 0.0 0.0 62.0 0.0 0.0 

sum ~ 53.0 (all righ t) sum ~ 62.0 (too high) 

B 

Ii 0.01 0.04 0.90.0.04 0.01 0.01 0.04 0.90 0.04 0.01 
li'"Pr{eure} 0.01 1.48 47.7 0.36 0.01 0.37 3.6 55.8 0.4 0.01 

sum ~ 49.55 (all right) sum ~ 60.18 (too high) 

C 
Ii 0.Q1 0.09 0.80 0.09 0.01 0.Q1 0.09 0.80 0.09 0.Q1 
li'"Pr{eure} 0.01 3.33 42.4 0.81 0.0 0.37 8.1 49.6 0.9 0.01 

sum~46.55 (all right) sum ~ 58.98 (too high) 

D 
Ii 0.03 0.12 0.70 0.12 0.03 0.03 0.12 0.70 0.120.03 
li'"Pr{eure} 0.03 4.34 37.1 1.08 0.0 1.11 10.8 43.4 1.2 0.03 

sum ~ 42.55 (too low) sum ~ 56.54 (too high) 

E 
Ii 0.05 0.24 0.51 0.24 0.05 0.05 0.24 0.51 0.24 0.05 
li'"Pr{eure} 0.05 8.68 25.5 2.16 0.0 1.65 21.6 31.6 2.4 0.05 

sum ~ 36.42 (too low) sum ~ 57.32 (too high) 
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M = 108; SF = 10-8 or 10-9 , respectively). FlII'thermore, it shows that in this 
case the same improvement of cure probability can be obtained by maintaining 
the 8 LCK conditioning treatment and adding the extra 1 LCK afterwards (Fig. 
6.1A-C). 

Table 6-2 shows roughly that broadening the distribution of the leukemic 
cell population size after RIT has little influence on the expected cell kill effect 
as established above. The observed improvement of the probability of cure of 
50% still is explained best by a cell kill effect of not much more than I LCK. 
Note that the same figures in the table are valid for other ranges of M, as longas 
the corresponding values of p (Table 6-1) are taken account of as well. 

At present GvHD is held responsible for the improved cure rate; the conclu­
sion then must be that GvHD causes about 1 LCK. If, instead of through GvHD 
the same 1 LCK is induced through additional post-transplantation therapy, the 
same improvement can be expected. 

6.2.3 DISCUSSION 

The relapse rate of leukemia after allogeneic BMT is strongly correlated with 
either the occurrence of GvHD or T-cell depletion of the graft. E.g., Goldman 
et al. [1988] have reported for chronic myelocytic leukemia that the probability 
of relapse within 4 yr after BMT in the absence of GvHD is a factor of 2 higher 
than in its presence. In the same study the chance of relapse in the case of T-cell 
depleted grafts appeared to be a factor of 2-3 higher than for non T-cell depleted 
cases, independent on GvHD development. The same tendency although not 
quite that significant is seen in both acute myelocytic and acute lymphocytic 
leukemia [Horowitz, 1988]. 

In the present theoretical study simple statistical models have been applied in 
an effort to analyze and explain the clinical observations on differences in leuke­
mia relapse rates. Lillie can be said about the actual processes of cell kill as 
function of time in both categories. At the most a more elaborate simulation 
study as suggested by Birkhead [1985], using disease free survival time obser­
vations as input for a mathematical model of remission duration, might shed 
some light on the most likely depth of a remission, the cure probability and the 
rate of leukemia regrowth. However, it is clear from the present simple calcu­
lations, which are based on the average patient and on preclinical data on 
therapy efficacy, that GvHD contributes no more than the equivalence of about 
1 LCK to the eradication of the malignant cells. Yet, this extra 1 LCK on top of 
the 8 LCK by conditioning treatment does explain the relatively large increase in 
probability of cure, i.e., from 40 to 90 percent. 

Letting GvHD develop thus may result in more leukemia cures. The disad­
vantage, unfortunately, is that GvHD itself evokes morbidity and mortality. 
Consequently, one cause of death might in this situation be replaced by another. 

-285-



Several bone marrow transplantation centers have advocated to cancel T-cell 
depletion, in particular in chronic myelocytic leukemia, to make use of the 
GvLR to prevent high leukemia relapse rates. This causes a strong feeling that 
another treatment strategy should be developed, maintaining the significant 
benefits brought about by introducing T-cell depleted allogeneic marrow grafting 
in terms of preventing GvHD related morbidity and mortality. A strategy must 
be found that yields the same improvement in leukemia cure probability, yet will 
not tolerate GvHD development and therefore will show a better overall thera­
peutic ratio. As is shown above, such additional treatment would need to induce 
no more then a little over one extra log leukemic cell kill to raise the probability 
of cure to over twice its original value. Apart from turning to strategies that are 
still poorly explored, like monoclonal antibody therapy [Ferrara et aI., 1989] or 
employment of lymphokine activated killer cells [Prentice and Brenner, 1989], 
this might be achieved in different ways by application of pre- or post-transplant 
additional chemotherapy. 

As shown in Fig. 6.1A the TPC can be raised by intensifying the antileuke­
mia conditioning treatment. Achievement of an additional I LCK in conditioning 
tllCrapy will allow later suppression of GvHD and makes up for losing the bene­
fit of the GvLR. This is presently being explored in the Dr Daniel den Hoed 
Cancer Center in Rotterdam by increasing the dose of total body irradiation 
from 2 x 5.0 Gy to 2 x 6.0 Gy together with high-dose chemotherapy before 
T-cell depleted allogeneic BMT. The addition of 2 x 1.0 Gy to the conditioning 
regimen is thought to induce an extra 1-2 log leukemic cell kill, while the risk 
of non-leukemic deaths remains at an acceptable level. 

Another approach would be to apply additional low-dose antileukemia treat­
ment shortly after bone marrow transplantation, for instance with alkylating 
agents in combination with GvHD suppressing drugs. Of course there is the 
danger of interfering with the recovering hemopoietic system. However, in a rat 
model for human acute myelocytic leukemia (BNML) it has been shown that the 
method is feasible, without jeopardizing the graft, employing low dose cyclo­
phosphamide [Hagenbeek and Martens, 1981], or biological response modifiers 
[Hagenbeek and Martens, 1983 and 1987b]. In this way a significant increase in 
cure rates could be achieved. A similar conclusion could be drawn from a clini­
cal study [Horowitz et aI., 1989] concerning the effect of methotrexate (MTX) 
as a method of GvHD prophylaxis. 

In summ31y, three options have been discussed for better leukemia control after 
allogeneic BMT: I) tolerate the development of GvHD; a profit is gained in the 
form of an equivalent of a I LCK, presumably by a GvLR acting on residual 
cells after BMT; 2) suppress the development of GvHD, e.g., by T-cell de­
pletion, and intensify the CT such as to achieve an extra I LCK; 3) suppress the 
development of GvHD and give supplementary low dose (I LCK) antileukemia 
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treatment as soon as possible after BMT. 
All three options will predictively result in the same raised level of leukemia 

cure probability. Option I has the disadvantage that serious GvHD-related life­
threatening complications must be faced. Furthermore, it implies that GvHD 
should be enconraged in those patients who do not develop the disease sponta­
neously. Option 2 implies a further intensification of an already heavy therapy 
that, however, may be feasible within narrow limits. Option 3 opens another 
pathway to eradicate the one or two logs of residual leukemic cells and deserves 
to be tested in clinical protocols for patients with a high risk of leukemic 
recurrence. 
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6.3 Contributions to Leukemia Relapse of ResidlIaI Leukemic 
Cells in the Patient and in the Graft after Autologous Bone 
Marrow Transplantation l 

High-dose chemolradiotherapy followed by autologous bone marrow transplanta­
tion (ABMT) has become a regular and accepted form of treatment of leukemia 
[Bast and Ritz, 1984; Burnett et a!., 1984; Herve et a!., 1983; Kaizer et a!., 
1983). Leukemia often is diagnosed when the patient is already in an advanced 
stage of the disease. The bone marrow then has been fully infiltrated and the 
patient carries on average a burden of some IO t2 leukemic cells in this organ. 
Usually chemotherapy will induce a clinical complete remission [Smith et a!., 
1986), i.e., less than 5 per cent leukemic cells survive in the bone marrow (the 
clinical detection level). If the patient is selected for ABMT then some 1.5xlOl0 

bone marrow cells will be harvested at this time point (on average, 2xlO8 

cells/kg and a body weight of 75 kg), because A) the leukemic ccll frequency is 
low, and B) the exposure of the normal hemopoietic stem cells to cytostatic 
agents has still been relatively mild. The bone marrow cells are frozen accord­
ing to standard procedures and properly stored in liquid nitrogen for future use. 
In general, the hemopoietic stem cells thus will retain their blood cell forming 
capacity. Subsequently, to destroy all remaining leukemic cells a high intensity 
chemolradiotherapy regimen (conditioning treatment) is applied. To restore 
normal hemopoiesis the bone marrow graft is thawed and rein fused immediately 
afterwards. 

Clinical results show that 50-60 percent of the ABMT patients, transplanted 
in fll'St complete remission of acute myelocytic leukemia (AML) , will relapse 
[Lowenberg et a!., 1987; Burnett et a!., 1987; Gorin et a!., 1987). This occurs 
at a median time of 240 days after transplantation. At that moment the leukemic 
cell population again has reached a size of about 5x 1010 (> 5 % blast cells in 
the marrow). 

Beside a remote possibility of a new leukemia having emerged, two different 
sources may be responsible for a relapse, A) minimal residual disease (MRD) , 
i.e., any leukemic cell(s) in the patient having survived the intensive condition­
ing treatment; and B) any leukemic cells that have survived the remission-in­
duction treatment, were taken out and, inevitably, were reinfused again with the 
graft. 

An indication that the contribution of "source B", the graft, is much smaller 
than that of "source A", MRD, is found in the fact that patients who receive the 

IChapter 6.3 was published with minor modifications as: Schultz FW, Martens ACM and 
Hagenbeek A (1989) The contribution of residual leukemic cells in the graft to leukemia relapse 
after autologous bone marrow transplantation: mathematical considerations. Leukemia 3:530-534 
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same treatment, but a "clean" graft originating from an identical twin brother or 
sister (isologous bone marrow transplantation, IBMT), show a relapse rate simi­
lar to that after ABMT (about 60 percent; [Gale and Champlin, 1984]). Below, 
another argument in favor of the relatively minor contribution of the graft to the 
relapse of leukemia is presented. It is based on a hypothetical model for the de­
velopment of leukemia from eng rafted malignant cells. Its validity will be eluci­
dated by the use of data derived from laboratOlY experiments with the Brown 
NOlway (BN) rat acute myelocytic leukemia (BNML) that represents one of the 
best models for human AML. 

6.3.1 METHODS 

6.3.1.1 Experimental Animals (See Chapter 1.9.1) 

The experiments were performed in the barrier derived inbred Brown Norway 
rat strain BNBi/Rij from the Rijswijk colony. Male rats were used of ages 
between 13 and 16 weeks (220 g mean body weight). 

6.3.1.2 The Brown Norway Rat Acute Myelocytic Leukemia (BNML) 
(See Chapter 1.9.2) 

The BNML was chemically indnced in a female BN rat and appeared to be 
transplantable within the BN rat strain, yielding reproducible growth patterns. 
The major characteristics of the disease, i.e., a slow growth rate and severe sup­
pression of normal hemopoiesis, show striking similarities with human AML, 
making it a suitable model to perform therapy studies with [Martens et al., 
1990a,b; Hagenbeek and Martens, 1991). 

The principle target organs to be occupied by transplanted BNML cells are 
the bone marrow and the liver, and to a lesser extent the spleen. This has been 
established by an experiment [Hagenbeek and Martens, 1979) in which cl1l'o­
mium labeled BNML cells were inoculated. Thus the homing and lodging could 
be monitored quantitatively by measuring the amounts of the radioactive isotope 
in the various organs. Quantities in lungs, blood and other organs are smaller by 
at least a factor of ten. It made no difference whether or not the test animals had 
been subjected to marrow ablative chemotherapy [Hagenbeek and Martens, 
1985) before. 

6.3.1.3 BNML Gl'Owth ill I'il'o after Cellular Tmnsfer (See Chapter 2.2 
and [Schultz et al., 1987]) 

The development of the leukemic cell population after i. v. inoculation of 107 

BNML cells has been investigated in the major target organs (bone marrow, 
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liver, spleen) of the recipient rats. The number of BNML cells present at vari­
ous time points could be experimentally determined in several ways, ranging 
from counting cells microscopically on a morphological basis or by flow cyto­
metry after labeling leukemic cells with monoclonal antibodies and fluorescent 
dyes to more complex bio-assay methods, such as survival experiments and the 
spleen colony assay for clonogenic leukemic cells. 

Mathematical analysis of the datapoints consisted of computerized nonlinear 
least squares curve fitting. Classes of hypothetical growth curves describing the 
size of the leukemic cell population as function of time, e.g., an exponential 
size-time relation or a Gompertz function, were postulated. For each organ the 
best fitting growth curve was determined, i.e., the class of the growth curve and 
the parameter values that characterize the specific growth curve in this class. 

6.3.1.4 [II vim Growth of a Drug-Treated BNML Cell Line (See Chapter 
2.4.2) 

As part of a larger experiment whose purpose was the ill vivo development of a 
dmg resistant BNML cell subpopulation, the following test was conducted to in­
vestigate whether the growth kinetic properties of dl1lg-treated BNML cells dif­
fered from the parent line's. Rats were inoculated with 107 untreated BNML 
cells. Subsequently, every 13 or 14 days they were treated with a single i.p. 
dose (100 mg/kg) of cyclophosphamide (CFA). After having been thus ill vivo 
exposed seven times to the drug the BNML cells were harvested and, in quan­
tities of 107, were transplanted into fresh recipient rats. With most rats the same 
CFA-treatment procedure was then repeated. Some (n = 6) were not further 
treated but time until death from leukemia was observed. For comparison, 
assuming that finding a difference in survival times means that there must be a 
difference in the respective growth patterns, survival times of rats inoculated 
with 107 BNML cells of the parent line were observed as well. The significance 
of differences in mean survival time (MST) was tested with Student's T-test at a 
95 % confidence level. 

6.3.1.5 Determination of the EDso value for BNML (See Chapter 2.1.1.2) 

When rodents are inoculated with a certain number of leukemic cells, then the 
chance that leukemia will develop is dependent on this dose. This observation is 
based on data from laboratory experiments [Hagenbeek and Martens, 1985 and 
1987a; Hewitt, 1958] in which percent mortality was associated with the mean 
cell dose injected in animals. Below a certain dose no leukemia will arise, above 
another critical dose all animals will develop the disease. In between, the 
chances of leukemia development increase with increasing cell dose. The EDso 
value is defined as the number of malignant cells that is required to induce leu-
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TABLE 6-3 THE PROBABILITY OF LEUKEMIA DEVELOPMENT BASED ON INOCULA­
TION EXPERIMENTS AGREES WELL WITH THE THEORETICAL PROB­
ABILITY BASED ON THE ED50 CONCEPT (compare columns 4 and 6) 

nr of BNML observed nr of leukemias / nr of ED50 theoretical probability of 
cells nr of recipient rats units leukemia development 

injected % after injected % 
ratio % probit anal. 

1 0/6 0 0 0.04 3 
5 1/6 17 10 0.2 13 

25 1/6 17 50 1.0 50 
50 5/6 83 76 2.0 75 

100 6/6 100 92 4.0 94 
1000 6/6 100 100 40.0 100 

The theoretical probability of leukemia development, i.e., the chance that at least one 
unit of ED50 cells yields a cell to grow out, is given by (1-0.5x) ·100%, where X 
denotes the number of ED50 units injected (ED50 for BNML: 24.7 cells). 

kemia in fifty percent of the individuals of an inoculated group. 
Six groups of BNML rats (n = 6 rats per group) were inoculated i. v. with 

different (low) numbers of BNML cells (1-1000). The occurrence of leukemia in 
each group was registered, with death from leukemia as the endpoint in an ob­
servation period of 500 days totally. A probit analysis was performed to deter­
mine the EDso value from the thus obtained datapoints of percentage-leukemic-­
animals as a function of cell dose. 

6.3.2 RESULTS 

The left part of Table 6-3 shows the observations of the experiment conducted 
to determine the EDso value for the BNML. The result of the probit analysis is 
shown in Fig. 2.1. The derived EDso value, the dose corresponding with 50 
percent of the rats developing leukemia, appears to be 24.7 cells [Hagenbeek 
and Martens, 1985 and 1987a]. 

The results of the experiments conducted to analyze the growth of the 
BNML cell popUlations in the rat's organs after transplantation of the leukemia 
(107 BNML cells i.v.) are illustrated in Fig. 2.15. Figure 2.l5A shows the bone 
marrow datapoints, as well as the growth curve found by nonlinear least squares 
fitting. This curve consists of an exponential part (constant popUlation doubling 
time of 0.8 day) that is contiguously followed by a Gompertz curve (from the 
conversion point at 2x 108 cells the doubling time increases exponentially with 
rate 0.4 per day) making the population size level off toward a steady state 
plateau phase. For liver and spleen similar curves were found, with slightly dif­
ferent parameter values. The size-time course of the total population is reflect-
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ed by the sum of the three individual curves (Fig. 2.15B). The animals die on 
day 22 (median value) with a leukemia burden of some 2xl0 1O BNML cells. 

The median survival time of rats inoculated with a dose of 107 cells of the 
parent BNML cell line was 22 d (range 19-24). The mean survival time and 
standard deviation were 22.0± 1.9 d. When the inoculum consisted of CFA­
treatted BNML cells (7x100 mg/kg) the corresponding values were 26 d (range 
20-26) and 23.6±3.3 d. The T-test revealed that the null-hypothesis of no sig­
nificant difference in MST could not be rejected at the 95 % confidence level. 

6.3.3 DISCUSSION 

6.3.3.1 The EDso Model Concept 

The EDso model concept, postulated here, states that a quantity of inoculated 
cells can be regarded as a number of EDso units. Upon inoculation each unit 
will either disappear completely-i.e., no proliferative activity results-or 
produce only one cell to grow out. Both possibilities have equal probability. If 
at least one cell remains to grow out (when all units but one disappear), then 
leukemia will develop. 

Evidence for the validity of the EDso concept will be given below-using 
the BNML rat model-by A) comparison of expcrimentally established data on 
BNML induction and expected leukemia incidence derived theoretically on the 
basis of the EDso concept; and B) analysis of experimental growth data on the 
development of the leukemic population after the inoculation of 107 BNML cells 
i. v. 

A) Based on the EDso model concept the theoretical chance can be calculated 
that leukemia will develop. This chance is a function of the number of injected 
cells and of the EDso value. 

Let the number of injected cells be N and the EDso value be M. Then, the 
inoculum consists of X = N/M EDso units. One EDso unit will yield either 0 or 
I cell to grow out; the chancc that 0 cells remain is 0.5 (50 percent). If two 
EDso units are considered, then four situations are possible: both yield I cell 
each, both yield 0 cells each, or either one yields I cell while the other yields O. 
As the EDso units are independent, the chancc that both will yield 0 cells equals 
0.5xO.5 = 0.25 (the only case corresponding with no leukemia; if either or both 
would yield I cell to remain, then leukemia does develop). In general, con­
sidering X independent EDso units, the chance for zero cells to remain (no 
leukemia) becomes 0.5x . Complementary, the chance that leukemia will develop 
can be written as (I-O.Sx). 

Calculating this chance for various values of X and comparing the results 
with the outcome of the actual experiment (also used for the EDsO detennina-
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tion) reveals that good agreement exists (Table 6-3; compare columns 4 and 6). 

B) By backwards extrapolation of the overall BNML growth curve to day zero 
(Fig. 2.ISB) it follows that of the 107 leukemic cells inoculated on day zero 
only a small fraction (I.SxlOs) appears to grow out. In this region of low cell 
numbers the available detection methods fail in mapping the development of the 
population, but indeed, the extrapolation agrees well with the number of cells 
theoretically available for growing out according to the EDsO concept, indicating 
its validity. The EDso value for BNML equals 24.7 cells, thus, the 107 inoculat­
ed BNML cells can be considered as 107 /24.7 = 4xlOs EDso units. As this is a 
large number and as each unit has a fifty percent chance to disappear complete­
ly, on average half the number of EDsO units will be able to produce I prolifer­
ating cell (compare tossing a coin many times and counting the number of 
heads). Thus, the expected initial eroliferating population size will be 2xloS, a 
value quite similar to the I.SxlO" cells on day zero extrapolated from Fig. 
2.15B. 

The EDso concept implies that when leukemic cells are (re)inoculated with a 
bone marrow graft, a relatively large number of these cells just seem to disap­
pear, i.e., they are not proliferatively active. Only a few-at the most one out of 
every EDso cells-may grow out to produce a relapse of leukemia, besides any 
leukemic cells that might have been left in the patient (MRD). The chances of 
leukemia development due to the contribution of the graft increase with increa­
sing cell dose orland decreasing EDso value. 

Although at present not verified by the most proper experiment, i.e., the 
direct determination of the EDso value for CFA-treated BNML cells, indirect 
evidence has revealed that there is no reason to suspect that drug treatment will 
influence the EDso value. Equal doses of leukemic cells of either the parent 
BNML cell line or the CFA-treated cell line both resulted in the same MST of 
the recipients. Therefore, probably the leukemia growth pattern also will be the 
same, after starting with the same initial leukemic cell load. 

6.3.3.2 Application to ABMT 

Having demonstrated-or at least having made plausible-the validity of the 
EDso concept both for parent and drug-treated cells, its application in ABMT 
will be given next. The probability of the development of leukemia due to rein­
fusing leukemic cells with the graft could be calculated exactly, if the number of 
transplanted malignant cells and their EDso value were known. Unfortunately, 
for human patients treated with ABMT this is not so. However, in a simulation 
study certain likely values can be assumed. In Table 6-4 certain combinations of 
assumed EDso value and assumed number of clonogenic leukemia cells in the 
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TABLE 6-4 THEORETICAL CHANCE 1%1 OF LEUKEMIA DEVELOPMENT AS FUNC­
TION OF ASSUMED ED50 VALUE AND THE NUMBER OF LEUKEMIC 
CELLS IN THE HUMAN AUTOLOGOUS BONE MARROW GRAFT 

1 10 
number of leukemic cells in graft 
15 100 

ED50 value 
10 50.0 64.6 99.9 

100 
1000 
5000 

10000 

6.7 
0.7 
0.1 
<.1 

9.9 
1.0 
0.2 
0.1 

see note beneath Table 6-3 

50.0 
6.7 
1.4 
0.7 

150 I 500 1000 

100.0 100.0 100.0 
64.6 96.9 99.9 
9.9 29.3 50.0 
2.1 6.7 12.9 
1.0 3.4 6.7 

1500 5000 1000 o 

100.0 100.0 100.0 
100.0 100.0 100.0 
64.6 96.9 99.9 
18.8 50.0 75.0 
9.9 29.3 50.0 

graft will yield 100 percent, other combinations will yield less than one percent 
probability of leukemia development (at least one cell grows out) from engrafted 
cells. 

6.3.3.3 The Probability of the Graft's Contribution to Leukemia Relapse 

The number of leukemic cells present in the human graft can be estimated in the 
following way. If the total leukemic population in the bone marrow of a human 
patient at diagnosis has a size of 1012 cells and if the effect of the remission-in­
duction therapy is estimated to correspond with some 4 log cell kill (LCK; i.e., 
the population size is divided by a factor of 104), then, at the moment of taking 
out the marrow graft, the frequency of occurrence will be I leukemic cell in 104 
normal bone marrow cells (108 in 10 12). Assuming the mixture to be homo­
geneous and considering a 75 kg patient with an autologous marrow graft 
containing 2x I 08 marrow cells per kg body weight, the corresponding graft of 
size 1.5x IOIO will thus contain 1.5x 1 06 leukemic cells. 

This is a conservative estimale, assuming that one course of remission-in­
duction therapy will just result in a remission (2 LCK, meaning that one percent 
of the leukemic cells is left). The second course of remission-induction therapy, 
having the same influence, reduces the population by again a factor of 100. If in 
reality remission-induction therapy would be more effective, then the bone 
marrow graft would contain even less than 1.5x 106 leukemic cells. 

Cryopreservation of the graft, i.e., freezeing and storage in liquid nitrogen 
and subsequent thawing before reuse, will kill some 99% of the ill vivo clono­
genic leukemic cells [Hagenbeek and Martens, 1989]. Furthermore, of the 
remainder only about 0.1-1 % will still be clonogenic as judged from ill vitro 
culture experiments on clonogenicity of human AML cells [Lowenberg et aI., 
1984; Swart et aI., 1982]. Therefore, an estimated number of only 15-150 
viable clonogenic leukemic cells will be reinfused with the marrow graft. Should 
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remission-induction therapy prove more effective than causing 4 LCK, even 
fewer malignant cells are transplanted. 

If EDso for human AML cells is 1000 and there are between 15 and ISO 
leukemic cells in the graft, then (Table 6-4) there is a chance of 1-10% that they 
will cause leukemia. If EDso= 10000, which might be the case if an extrapola­
tion from rat to man were allowed (for BNML: EDso=25; ratlman body weight 
ratio = 0.2/75; therefore, EDso for AML: 25x7510.2= 10000), then this chance 
is reduced to only 0.1-1 % (Table 6-4), i.e., in 99 or more out of 100 cases the 
graft would not at all contribute to the relapse of leukemia. But even if EDso 
would be equal to 100 and there would be ISO clonogenic malignant cells in the 
graft, then there is still a 35 % chance that no leukemia would evolve. The same 
is true if EDso were 1000 and the number of clonogenic viable cells in the graft 
amounts to 1500, thus would be a factor of at least 10 higher than expected. 

The residual leukemia (108 cells) in the body of a patient in remission may 
just be reduced to either one or zero cells by the intensive conditioning radio­
chemotherapy (8 LCK [Hagenbeek and Martens, 1983 and 1987bJ). The latter 
case would mean the achievement of a cure, the former one would lead to a 
relapse. Clinical observations with isologous bone marrow transplantation [Gale 
and Champlin, 1984] reveal a relapse frequency of about 60%. After a median 
time interval of 240 days the leukemic population then has reached the size of 
5xlO IO cells again, i.e., 5% or more of all marrow cells are recognized as 
leukemic blasts. Assuming that they originate from a single cell and that growth 
is exponential, the population doubling time is calculated to be 6.75 days. This 
agrees well with another study [Schultz et aI., 1989], concerning relapsing 
childhood acute lymphocytic leukemia, in which a population doubling time of 
6.52 days was found. 

It may be reasonable to expect a similar distribution of leukemic cell 
burdens in AML patients considered for isologous and autologous bone marrow 
transplantation, both before and after remission-induction treatment (but before 
transplantation). Then, to be able to explain the almost equal relapse patterns, it 
must be assumed that the inOuence of the only major difference between the 
groups, i.e., the reinfusion of leukemic cells with the graft, is almost negligible. 
That this inOuence can be considered as negligible indeed, can be explained with 
the EDso concept, the validity of which has been shown in the BNML rat 
model. Application to the human situation would mean that the EDso for human 
leukemia should be larger than at least 1000 cells. With a maximum amount of 
ISO clonogenic malignant cells in the graft, the chance that these cells contribute 
to the regrowth of the disease is less than 10 percent. 

In a recent clinical investigation [Brenner et aI., 1993] two children with 
AML developed a relapse after ABMT. Of the blast cells detected in the mar­
row and peripheral blood a low percentage (2-3 %) was shown to originate from 
the autologous marrow graft. These cells carried the neomycin-resistance gene 
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(as detected by their survival in ill vitro culture, in the presence of otherwise 
toxic neomycin concentrations) that had been introduced as a marker into the 
normal and malignant bone marrow progenitors before rein fusion of the graft. 
The thus derived percentage is a lower limit, because the efficiency of gene 
marking is only modest. Therefore, more than 3 % of the leukemic cells may 
originate from the graft. On the other hand, as the transferred gene is present in 
equal concentration in all progeny of a marked cell for evelY generation, it is 
not possible to determine whether a neomycin gene carrying cell is a descendent 
of the originally marked cell, or this cell itself. In other words, the proliferative 
state of this cell, ergo its potential contribution to a relapse, is not certain at this 
moment. 
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Chapter 7 
General Discussion, New Developments and Concluding 
Remarks 

7.1 MATHEMATICAL MODELING FOR LEUKEMIA TREATMENT 

The previous chapters dealt with several aspects of mathematical modeling for 
treatment of leukemia. When possible the "gray box" system identification 
approach (Appendix F) was followed, integrating known facts, (accepted) 
theories and experimental observations. A few differences with previous work 
by other investigators are summarized in Table 7-1. 

Development of the leukemic cell population, unperturbed or challenged 
with a cytostatic drug; drug distribution; developmcnt of drug resistance; 
probability of relapse after bone marrow transplantation: only a few parts of the 
vast problem area at a time can be, and have been, isolated to be studied in 
some detail. For clinical application, eventually, a synthesis of the separate com­
ponents is required. An idealized scheme of on-line chemotherapy control is 
shown in Fig. 7.1. For optimal delivelY of the proper cytostatic drug(s) it is 
required to a) monitor an easily observable but relevant variable that is in­
dicative for the patient's state with respect to the leukemia burden; and b) to use 
the mathematical model(s), to calculate a prognosis of the disease development. 
The models must be fed with further important external data, e.g., what type 
and stage of leukemia and what toxicity constraints. 

A similar set-up has been realized for automatic insulin administration in 
diabetic patients. An artificial pancreas contains an insulin pump whose con­
tinuous output is controlled based on plasma glucose concentration measure­
ments and a pharmacokinetic model of glucose metabolism, including production 
and uptake in the liver, renal excretion, glucose utilization dependent (muscles, 
adipose tissue) or independent (central nervous system, red blood cells) on 
insulin level, with insulin and glucagen as hormonal controlers [Carson et ai., 
1983]. 

A flowchart for arriving at optimal leukemia chemotherapy, from experi­
mental data to clinical application, is shown in Fig. 7.2. It illustrates the 
connections among the various research fields with their mathematical models. 
A few developments can be elaborated upon. 

Many new developments concern improved techniques for biomedical 
experimentation. Progress in theoretical population dynamics, system dynamics 
and signal processing have not so much resulted in new principles and revolu­
tionalY models that are readily applicable to cancer chemotherapy. An excep­
tion, perhaps, may be the concept of fuzzy logic, first formulated by' Zadeh 
[1965]. The concept has been further developed [Takagi and Sugeno, 1985; Ped-
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Table 7-1 MAIN DIFFERENCES WITH RESPECT TO PREVIOUS WORK BY 
OTHER INVESTIGATORS 

The present work is more than an integration and extension of the models and 
working hypotheses of Skipper, Goldie/Coldman, Norton/Simon and Birkhead and 
the optimization principles by, for instance, Acharaya. It involves: 
a) more elaborate in vivo data acquisition methods that enable the tuning of 
experiments to the needs of mathematical modeling; in turn, modeling is based 
on the hypotheses that arise from the examination of the experimental data 
b) system identification techniques (combining efficiently theoretical con­
siderations and actual experimental observations) applied to the problem of 
exposing the relationships between the growth of a malignant cell population, 
drug distribution, cell kill by chemotherapy, and the development of drug resistant 
sub-lines 
c) use of sophisticated computer software to estimate the parameters of these 
processes and to optimize controllable factors (therapy regimen) in order to 
maximize chemotherapy effectiveness. Administration of different doses of one 
or two drugs in any sequence at non-constant intervals should eventually be 
allowed 
d) consideration of both phases of leukemia growth, i.e., the early phase when 
growth is exponential, and the subsequent steady state plateau phase where 
Gompertzian growth applies 
e) the integral handling of information gained on one complete and coherent 
system 

lySZ, 1985, 1989] and, in recent years, was applied to modeling and control of 
complex and highly nonlinear systems like socioeconomic and industrial 
processes [Wang and Zou, 1988; Fu and Cai, 1988]. In sUlnmalY, this method­
ology offers a possibility to 'calculate', or 'reason', with variables qualified by 
vague descriptive terms-like 'sometimes, often' or 'good, reasonable, bad'­
rather than quantified by exact numerical values [Sugeno, 1985; Van Nauta 
Lemke, 1991]. It is being developed as a tool to support decision making when 
circumstances are not all well-defined or data is incomplete, and yet a reason­
able choice among several alternatives is required. Models based all fllzzy logic 
might, evelllllally, be IIseflil to estimate alld compare the probable s{/ccess rates 
of various chemotherapy strategies. They allow processing and combining vague 
(clinical) observations like 'the patient shows decreased metabolism' and 'most 
people of his age respond well to that drug within two days'. 

Closely related is the use of knowledge based systems in modeling, simula­
tion and identification [Bekey, 1988]. A verbal description to ascertain effects of 
medication, toxic substances and physical stresses should be used for modeling 
systems (e.g., environmental, sociological or biological processes) of which the 
complexity and many unmeasurable state variables defy crisp and detailed 
mathematical models. 
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Fig. 7.1 Idealized scheme of on-line chemotherapy control (parts from [Swan, 1987J) 
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Fig. 7.2 Flowchart for Leukemia Chemotherapy Optimization 
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7.2 DETECTION AND REGROWTH OF MINIMAL RESIDUAL 
DISEASE 

In the current stage of mathematical modeling of leukemia treatment the greatest 
emphasis must still be put on system identification, i.e., hypotheses on the 
mechanisms of leukemic cell population growth and drug action are being tested 
and verified through modeling (see Appendix F). It was shown for one initial 
condition, how contiguous exponential and Gompertz growth CUl'ves describe the 
development of BNML cell populations in rat organs (Chapter 2.2). Also, that 
the effect of a single i. v. dlUg dose can best be described as an instantaneous 
reduction in the number of malignant cells. Later, the validity of the thus 
acquired knowledge must be confirmed for other circumstances. Then, it is to 
be used in models for optimization of administration regimens for man. For 
collecting data that can serve as input for the system identification models, the 
availability of sensitive and accurate methods of detection and quantification of 
(residual) tll///Or cells is a necessity. 

7.2.1 Development of Experimental Detection Methods 

7.2.1.1 In the BNML Rat Leukemia Model. Up to now the number of 
BNML cells present in a given tissue at some time point-both before and after 
application of therapy-has been determined by one of five different methods 
(Fig. 2.4). In order of ascending sensitivity (i.e., the last method is to be used 
preferably when very few BNML cells are present relative to the number of 
normal cells): a) organ weights. Compared to normal values, excess weight is 
attributed to leukemic cells. One leukemic cell in I to 10 normal cells can be 
detected; b) mo/phology (direct counting) detects at best I in 20; c) /IIonoc!onal 
antibody (RM-124) labeling and flow cytometry detects down to I in 10,000. 
The antibody discriminates leukemic cells from normal marrow cells by a higher 
antigen density on the former, which is visualized by a fluorescent dye con­
jugated to the antibody; d) ill vivo c!ollogenic leukemic stem cell assay detects 1 
in 105 to 106. The number of colonies counted on the surface of spleens of 
recipient rats, after inoculation of BNML cell contaminated tissue of the donor 
rat, determines the number of BNML cells in that tissue; and e) survival time 
bioassay detects I in 108. The median sUl'vival time of recipient rats being 
inoculated with the BNML cell contaminated tissue of the donor rat, determines 
the number of BNML cells in the inoculum. 

The advantage of method c is that it does not require recipient animals, in 
contrast to methods d and e. Profit of the reduction in time and costs, however, 
can be harvested only after considerable improvement of the method's sen­
sitivity. 
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A new detection method under development concerns genetic markers. In 
principle it is meant to recover leukemic cells, and their progeny, after transfer 
of leukemia. After introducing marker genes into leukemic cells by using 
retroviral infection as gene transfer technique, these cells and their descendants 
betray their presence by releasing the specific products the marker genes code 
for. Various assays are developed to retrieve these products rYan et aI., 1992; 
Hendrikx et aI., 1993]. 

Integration of the bacterial (E. coli) lacZ gene into the BNML cell causes 
production of the enzyme /3-galactosidase. Its activity can be measured through 
colorimetric blue discoloration (down to 1 malignant "blue" cell in 106 or 107 

normal "white" marrow cells), or fluorometric or flow cytometric fluorescence. 
Introduction of the neoR gene makes the BNML cell resistant to neomycin 

and its analogues, a property that is expressed in the survival of colonies when a 
cell population is exposed to this drug. The lower detection limit here is 1 
leukemic colony forming cell per 106 normal cells plated. 

A problem to be conquered is the assessment of the efficiency of the 
retroviral infection (how to make sure that all relevant cells are genetically 
marked), as well as gene transfer in the in vivo situation. 

7.2.1.2 In Human Leukemias. Early detection of (residual) leukemic cell 
proliferation is important in relation to the patient's cure probability. In human 
leukemia several detection methods are used (Fig. 7.3) that operate at three dif­
ferent levels, i.e., a) cellular (cell surface, cytoplasm and/or nucleus markers), 
b) chromosomal, and c) DNA/RNA level. 

a) Double Immunological Mmker Analysis (cellular level). There are no single 
antigens that are specific for leukemic cells. The detection method is based on 
unique combinations of two immunological markers that are present in/on 
malignant cells and absent in/on normal marrow cells. The method was suc­
cessfully used to detect and quantify malignant cells in childhood T -ALL (See 
Chapter 3), with a sensitivity of about 10-5. Unique combinations of immuno­
logical markers, characteristic for several types of leukemia (T-ALL, B-ALL, 
AML) are being identified and catalogued, e.g., [Adriaansen, 1992; Van 
Dongen et aI., 1992, 1993]. 

b) Cytogenetics (chromosome aberrations). Leukemia can often be associated 
with characteristic chromosome aberrations. When such genetic abnormalities 
are found, e.g. through conventional katyotyping [Rowley, 1973; Yunis, 1983; 
Croce, 1987], this not only indicates the presence of malignant disease, but also 
helps its classification [Sandberg and Turc-Carel, 1987]. Prognostic value can be 
derived from retrospective studies correlating chromosomal aberrations and 
disease development [e.g., Secker-Walker, 1990]. Well-known is the so-called 
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Fig. 7.3 Levels of Detection of Leukemic Cells in Human Leukemia {Hagenbeek, 1992] 

morphology 

Southern blot 

conventional 
cytogenetics 

double 
Immunological 
marker analysis 

Philadelphia chromosome [Rowley, 1973], a translocation of chromosomes 9 
and 22, which is present in the majority of chronic myelocytic leukemia cases. 
Other structural aberrations include deletions. Furthermore, numerical aber­
rations have been described in a variety of human leukemias. 

Preliminary studies on the applicability of flow kmyotypillg for the detection 
and quantification of chromosome aberrations have been performed, both in 
BNML and human CML [Arkesteijn et ai., 1987, 1988, 1990], The minimum 
detection level has not yet been established, but is estimated to be as good as 
that of conventional kalyotyping, i.e., in the order of 10-2. Flow cytometry 
enables fast processing of large numbers of chromosomes in suspension. The 
A(denosine)-T(hymidine) and C(ytidine)-G(uanosine) base pairs are stained with 
two different fluorescent dyes (e.g., Hoechst 33258 and chromomycin A3). 
Flow cytometIy results in a bivariate plot of fluorescence intensities. Abnor-
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mali ties can be detected as the chromosomes present, each with a specific ratio 
of A-T and C-G contents, appear at characteristic locations in the plot. 

A disadvantage of karyotyping is that cells must be in mitosis to show the 
separate chromosomes. To enlarge the usually small fraction of metaphases, 
premature chromosome condensation (PCC) techniques have been attempted 
[Johnson and Rao, 1970; HiUelman, 1986]. To avoid this disadvantage, and be 
able to use interphase cells as well, a new approach uses fluorescent in situ 
hybridization (FISH) with chromosome specific DNA probes [Pinkel et aI., 
1986; Cremer et aI., 1988; Van Dekken et aI., 1989]. Such a probe is a certain 
small sequence of bases that can bind to a complementalY DNA sequence, 
pinpointing a corresponding unique location on the 'marker' chromosome, if 
present. As the probe is labeled with a fluorescent conjugate, the malignant cell 
thus is recogniseably marked. The detection limit is expected to be at least 10-3. 
A useful probe-probe development is a research area in itself-implies know­
ledge about the sequence of bases at the spot to be searched for. 

c) DNA/RNA amplification. The last remark holds when using the polymerase 
chain reaction (PCR) technique to find molecular lesions characteristic for 
leukemia or lymphoma [Potter et a!., 1993]. Lesions occur at breakpoints of 
chromosomal translocations, as rearranged genes coding for antigen receptors on 
B- and T-Iymphocytes, or as point mutations in cell regulation genes. The PCR 
technique is based on splicing the double stranded DNA by heating and, after 
cooling down, letting each single strand synthesize its complementaIY part in 
one direction, starting from one end of the aberrant DNA sequence. This end is 
marked-beforehand, at yet another temperature-with a so-called primer, a 
short piece of the known DNA sequence. Repeating this three-phased cycle 
some 30 times, 230 pieces of aberrant DNA are produced. Of course, this 
multiplication only works if the searched aberrant DNA sequence actually is 
present. Then, one abnormal cell in about 105_106 normal cells can be detected. 

7.2.2 Regrowth of the Residual Leui<emic Cell Population 

It should be stressed that the detection of residual cells at one time point in itself 
is not sufficient to make predictions about the development of disease or the 
imminence of relapse. Not only their presence must be recognized, but ilifor­
mation must be obtained as well abolltthe proliferative state of the cells and the 
cell population dynamics. To this purpose it might, for instance, be measured to 
what extent BrdUrd, a compound incorporated into the DNA of actively 
proliferating cells only (See Chapter 7.4.1), is taken up. For genetically marked 
leukemic cells a functional assay may be used [Hendrikx et a!., 1993]. Other­
wise, the cell population must be monitored at several time points to determine 
its dynamic behavior. The multihannonic DNA histogram analysis method 
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presented in Chapter 5 is a useful tool for determining cell kinetics. 
BNML growth curves in the principle target organs have been constructed 

for leukemia induction with 107 malignant cells and regrowth after a dose of 
cyclophosphamide has been studied (Chapter 2.2). Drug effect could be modeled 
as instantaneous log cell kill. with identical growth and regrowth curve parame­
ters. However, a discrepancy was noticed in Chapter 2.4.3.1, concerning the 
relation between median survival time and inoculated BNML cells on the one 
hand, and log cell kill and increase in lifespan on the other hand. To shed more 
light on this problem and verify present extrapolations, among which the EDso 
hypothesis (see Chapter 6.2.4.1), BNML growth after at least one other ilwc­
ulum size should be experimentally observed (datapoints of time versus number 
of BNML cells in the various organs). 

A recent modeling development for human leukemia seeks to determine the 
mean and spread parameters of the amount of minimal residual disease after 
treatment, as well as regrowth doubling time, from examination of remission 
durations [Gregory et a!., 1991]. From a recent AML trial it was inferred that 
patients with long first remission durations had less residual disease and a 
slower rate of regrowth. Also, their second remission durations are longer. 
Making correlations explicit may help in finding therapy strategies for the 
second remission induction. Of importance is that the model seems to conftrm 
the necessity to eradicate all leukemic cells in order to cure. 

7.3 PHARMACOKINETICS AND PHARMACODYNAMIC DRUG EF­
FECTS 

Further development of the pharmacokinetic models is desirable, to increase 
knowledge on the mechanisms of drug distribution and metabolic processes. At 
present only a single dose of a single drug in the normal BN rat has been 
studied. Chapter 4 shows the applicability of muIticompartment modeling and 
maximum likelihood parameter estimation for system identification in phar­
macokinetics. The ilif/uence of dose variation and of repeated doses-illlermit­
tent and continuous (ilifusion)-should be investigated with respect to (nonlinem) 
effects like drug accl/mulation, saturation and attainment of steady state levels. 
Thus, eventually, the bioavailability of a drug at certain relevant sites and 
during certain time intervals, as function of administration regimen, can be 
accurately predicted. 

Phal7nacokinetics in the leukemic rat is the next step. For example, the 
influence of the stage of the disease (leukemic cell burden) still is ill-known 
although the prognostic importance of tumor load has long been recognized 
[Langermann et a!., 1982]. The malignant cell mass will change the distribution 
pattern and possibly influences the rate of metabolism. 

New measurement techniques for drug uptake in organs and tumors are 
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appearing, e.g., the use of radiolabeled drugs allows registration of cumulated 
activity in organs as function of time [Strand et aI., 1993]. On the cellular level 
flow cytometty can be applied for cytostatic agents with fluorescent properties. 
The in vitro drug uptake can be measured in neoplastic cells in patient-derived 
cell cultures. In this way changes-due to exposure to cyclosporin A-in ac­
cumulation of daunomycin in various resistant tumor cells have been measured 
[Nooter et aI., 1989, 1990] in a study of the potential of in vivo treatment with 
calcium channel blockers or other cell membrane transport modifying com­
pounds to reverse existing drug resistance. 

Finally, combined administration of mUltiple drugs should be studied for 
additive, synergistic or antagonistic effects. 

7.3.1 Analysis of Existing Phal'macokinetic Data (BN 01' BNML and 
Adl'iarnycin 01' Daunomycin) 

Data is available on the pharmacokinctics of the anthracyclines adriamycin 
(ADR) and daunomycin (DAU) in the normal BN rat and the BNML rat (drug 
concentration in various tissucs and body fluids, detected by HPLC or fluores­
cence methods at time points during 48 h after i. v. administration of a single 
dose). These data can be, and partially have been, used as input in the mul­
ticompartmcnt models for further analysis. 

ADR in the BN rat has been analyzed in a ten-compartment model, yielding 
good fits in the tissues, but a too high plasma response. The latter can be 
improved, at the expense of the tissue fits, by enlarging the plasma volume (to 
include extracellular fluid) or by changing the kidney-to-urine pathway to 
kidney-to-plasma transport. Putting extra weight to the plasma data is a mathe­
matical manipulation that also forces the concentration-time histolY to a better 
plasma fit, but in contrast to the other two mentioned modifications this does not 
add any physiological meaning. 

Application of the ten-compartment model to BNML data yielded poorer 
fits. The tumor load apparently influenccs the mechanism of the pharmacokine­
tics [Nooter et aI., 1984]. Plasma concentration is higher, while lower ADR 
concentrations are observed in liver, splecn and bone marrow, which are thc 
organs in which the malignant cell population grows in greatest abundance. 

DAU (and its principal metabolite daunomycinol, DOL) data in the BN rat 
yielded good fits in models with few compartments, which are clinically 
irrelevant, but poorer fits in the larger models that should offer more detail 
information. Analyzing three subsequent periods, i.e., 0-24 /1, 24-48 hand 48-
72 h, each starting with an equal i. v. bolus dose, showed a non-lincar response, 
i.e., the concentration-time histories were different during each period, 
especially between periods one and two. 

These (preliminaly) analyses prove conceptual shortcomings of the present 
models, which are based on passive diffusion processes. More sophisticated 
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lIIodels should be developed, the effort beillg justified by the fact that allthra­
eye/ines are likely to be cOlllilluously [(sed ill the e/illic for quite sOllie tillle to 
come. This requires more investigations on, e.g., the enterohepatic cycle 
(reabsorption with a time-delay); inactivation of the drugs (mass balance okay?); 
recirculation (drug being released from cells that are killed); cell type dependent 
passive influx/active efflux (cellular dl1lg pump) and saturation phenomena. 

Protein binding or covalent binding to DNA might explain to some extent 
the observations of the three-doses administration. If the dl1lg binds when the 
first dose is given it will go undetected (due to the measurement method), 
resulting in too low observed values. The model interprets this "lost mass" as 
excretion to tissue. Because of the occupied binding sites the second dose yields 
higher free drug concentrations picked up by the detection method. Concentra­
tions after the third dose are not very different from the previous ones, sugges­
ting prolonged saturation of binding sites. Two-dimensional electrophoresis 
might check this hypothesis. 

Other modes of dl1lg administration also should be investigated. Data 
collected on a three hour i. v. infusion of DAU in BN rats should be processed 
in a compartmental analysis, to establish any differences of the transfer rate 
constants with respect to the i.v. injection mode. Differences in observed 
concentration-time points seem to suggest an advantage of the infusion as less 
cardiotoxicity can be expected for the same degree of myelosuppression [Nooter 
et aI., 1986]. Observations on DAU pharmacokinetics in human patients (bolus 
dose and infusion) are available as well [DeGregorio et aI., 1984; Kokenberg, 
1991]. 

7.3.2 Drug Sensitivity Testing ill vitro 
Olle iliforlllatioll categol), lIeceSSal), for modelillg leukemia chemotherapy is the 
alllilumor activily of certaill fixed doses of various cytostatic agellis. The 
sensitivity of a patient's neoplastic cells to difrerent drugs can now be measured 
with the ill vitro MTT (3-(4,5-dimethylthiazol-2y 1-2, 5-diphenyltetrazolium­
bromide» assay [Pieters et aI., 1993]. Essentially, this assay explores the 
survival of cultured malignant cells that are exposed to graded concentrations of 
a drug. Several drugs can be tested simultaneously, using an array of cultures 
growing on one tray. 

During the past few years the MTT assay has been used to examine the 
variation in sensitivity of childhood acute lymphoblastic leukemia cells to 
vincristine, cytosine arabinoside, daunorubicin, methotrexate, maphosphamide, 
thioguanine, prednisolone and other cytostatic drugs [Kasper et aI., 1991; 
Pieters et aI., 1991, 1992a, 1992b, 1993]. The ill vitro tests bear relevance to 
the ill vivo situation, as the degree of cellular drug resistance to thioguanine, 
daunol1lbicin or prednisolone appears to correlate with the duration of complete 
remission. Such a relationship was not found for vincristine. Malignant cells of 
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relapsed children appear to be more resistant to several dl1lgs than during first 
remission induction. Again vincristine is an exception, indicating that increased 
resistance is acquired rather than being caused by selective kill of more sensitive 
(intrinsic property) subclones. Some correlation was found between in vitl'o dl1lg 
resistance and the age class of the patient « 18 mo, in between, > 10 y) or 
immunophenotype. In general, normal peripheral blood cells are more resistant 
than leukemic cells. The source of the leukemic cell sample makes no dif­
ference, i.e., malignant cells from the peripheral blood or the bone marrow of 
the same patient are equally drug resistant/sensitive. 

Sensitivity testing in vitl'o may be a step towal'd pel'sonalizing chemotherapy, 
pl'oviding ilifol'mation abolll cell kill pel' unit of dose fol' diffel'ent drugs and 
individual patiellls. 

7.3.3 D"ug Resistance 
Refinement of the simple model for resistance development (Chapter 2.4.3) 
requires more data. BNML subcell lines resistant to various drugs are now 
available for in vitro and in vivo experiments. Leukemia induction with a 
constant inoculum size, but different compositions of sensitive and resistant 
BNML cells should reveal any differences in growth kinetics. Treatment with a 
constant drug dose at the same day should prove that the treatment results 
closely correlate with the expected potential log cell kill of that drug dose, 
corrected for the composition of the BNML cell mixture. If not so, indications 
for additional drug resistance development would be obtained. 

In other experiments flow cytometry with BrdUrd (See Chapter 7.4.1) could 
be used to measure the rate of resistance development. This rate can be deduced 
by treating samples of cells at various times with a Icthal dose of a cytostatic 
agent, followed by exposure to BrdUrd. Each time the fraction of cells that have 
incorporated BrdUrd (i.e., the surviving, ergo drug resistant, fraction) is 
compared with the result of the previous time point. 

To study drug I'esistance phenomena a generalized mathematical mode/, 
proposed by Michelson and Slate [1989J, could be usefiil. This model allows 
many pathways leading to the emergence of drug resistance, like decreased drug 
uptake, increased efflux, increascd metabolism, change in drug target properties, 
and combinations of these mechanisms. It is a hybrid model, consisting of a 
stochastic part that describes cell population growth, and a deterministic part 
that describes the micropharmacological distribution of the drug (Fig. 7.4). The 
population growth model is ve,y similar to the one shown in Fig. 2.26. The 
microphannacology of the cell is modeled with a drug target compartment in a 
nontarget compartment, surrounded by environment. In the environment the 
drug concentration may va,y, as dcnoted by the function Jo(l). Different values 
may be assigned to the parameters for drug sensitive and resistant cells. Tran­
sition rates k j and k2 represent drug uptake and the dl1lg efflux pump, respec-
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Fig. 7.4 Model for Emergence of Drug Resistance (Michelson and Slate, 1989J 
left: stochastic compartment representation of heterogeneous tumor, with sensitive and 
resistant sub populations. Transition probabilities include drug-induced cytotoxicity (ds. 
drL mitosis (b) and phenotype mutation (as' arlo Right: Target and Nontarget com­
partments to describe micropharmacology of the cell. Transition rates include drug 
uptake tkll. efflux tk21, transport into target compartment (k31 and inactivation tk4J. Jott] 
denotes extracellular drug concentration 
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tively. The latter plays an important role in multidrug resistance. A clearance/in­
activation rate, k4 is associated with drug metabolism by repair and clearance 
enzymes, like glutathione reacting with alkylating agents. Overexpression of 
target enzyme can be modeled by assigning different values to the transition 
probabilities for cytotoxicity, ds and dp when drug concentration levels are 
similar for sensitive and resistant cells. The model was applied to study resis­
tance reversal scenarios, e.g, by simulating doxorubicin plus calcium entry 
blocker treatment of multidrug resistant cells [Slate and Michelson, 1990]. The 
model could be used in a similar way, in combination with accumulated ex­
perimental data, to study emergence of cyclophosphamide resistance in the 
BNML. Incorporation of cell cycle phase specific drug action would make the 
model suitable for simulating e.g. ARA-C resistance. Other extensions could 
include growth rate heterogeneity of leukemic cells [Chan and Kuczek, 1991], 
spectral sensitivity (heterogeneity with respect to the degree of drug resistance 
[Carl, 1989] and treatment with two different drugs [Abundo et aI., 1989]. 

7.4 CELL (CYCLE) KINETICS AND CELL POPULATION 
DYNAMICS 

Work on cell cycle models continues because accurate data on the fractions of 
cells of a certain biological age (maturity) at a given chronological time is 
needed for various applications among which cancel' radiotherapy and chemo­
therapy (e.g., [Zaider and Minerbo, 1993; Jones et aI., 1993]). 

More than a decade ago it was recognized that the time sequence of drug 
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administration is an important factor influencing the cytostatic effect of cell 
cycle (phase) specific dmgs (e.g., [Burke et a!., 1982]). Understanding the cell 
kinetics of the malignant cell population. allows explaining this phenomenon. 
Recruitment, i.e., triggering resting or quieseent cells into proliferation, 
enlarges the number of malignant cells that are sensitive for cycle specific 
d11lgs. Subsequent synchronization of the proliferating cells-all cells brought 
into the same state of maturity-allows maximal cell kill when a cell cycle phase 
specific dmg is given at the right moment (e.g., [Colly et a!., 1984a,b]). 
Detection of cell kinetic changes is possible through flow cytomet,y and the 
multiharmonic DNA histogram analysis method (Chapter 5). 

Progress in molecular biology allows taking a closer look at phenomena at 
the cellular level (e.g., processes of drug transport across the cell membrane or 
cellular production of and response to growth factors) and even at the level of 
the cell nucleus (DNA, RNA; damage of the genetic code). Thus, new infor­
mation is obtained on the regulation of the production of normal and malignant 
cells, and on the direct impact of cytostatic agents on those cells themselves. 

When studying what drives their malignant counterparts, knowledge about 
the regulation of normal hemopoietic cell populations is more than welcome. 
This research area also offers many subjects to be still explored, and, for better 
understanding, use is made of mathematical models [e.g., Wichmann et a!., 
1988; Fokas et a!., 1991; Grabosch and Heijmans, 1991]. Growth factors, also 
known as interleukins or colony stimulating factors, play an important role in 
the production and maturation of hemopoietic subpopulations as well as leu­
kemic cells. Their mechanisms of control are being investigated, a.o. through 
mathematical modeling [e.g., Schmitz et a!., 1993]. 

7.4.1 Flow Cytometry 
Flow cytomel1), remains an important tool for observing proliferation and 
maturation of (sub)populations of cells, thus generating data that, after proper 
analysis, can be used in the development and validation stages of mathematical 
modeling. For example, Fokas et a!. [1991] presented a theoretical model for 
granulocytopoiesis and chronic myelogenous leukemia (CML). This model 
shows how CML cells can ultimately outnumber the normal cells, and how this 
process can be very slow, on the assumption-to be verified-that a greater 
fraction of CML cells is produced by division rather than by maturation. 

In the present thesis a method for the analysis of DNA distributions is 
described (Chapter 5). Today, similar programs come standard with new 
commercial flow cytometers. Better programs are still being developed, e.g., 
[Del Bino et a!., 1985; Baldetorp et a!., 1989]. Some of them employ the 
maximum likelihood principle [Lampariello and Del Bino, 1988]. They can deal 
with the simultaneous presence of cell populations with different ploidy levels 
(abnormal DNA contents, i.e., aneuploidy, hypoploidy, near-diploidy or 

-315-



tetraploidy), presence of debris (cellular fragments, and they use internal 
standards (chicken andlor trout red blood cells) of fluorescence intensity, 

Modern flow cytometers can process cells very fast. They are often e­
quipped with multiple lasers, enabling better distinction and sorting of cell 
subpopulations-and, of a subpopulation, the various cycle phase fractions­
based on multiple fluorescent labels that are specific for certain membrane 
characteristics andlor nuclear DNA contents. For example, to determine the 
fractions of cells in the various phases of the cell cycle and the ratio of resting 
and proliferating cells, a method of ill vivo labeling with bromodeoxyuridine 
(BrdUrd) has been developed [Dean et aI., 1984] and applied (e.g., [Raza et aI., 
1985, 1987]). BrdUrd is only taken up by cells actively synthesizing DNA. 
(Therefore, the mcthod may be less suitable for analyzing samples of human 
solid tumors that generally have small growth fractions). The uptake is detected 
by means of a monoclonal antibody, specific against BrdUrd, to which a 
fluorescent dye is coupled. Counter staining with e.g. propidium iodide (PI) 
reveals the amount of total DNA. From the (series ot) two-dimensional flow 
cytometric fluorescence plots the desired variablcs can be derived (e.g., [Yana­
gisawa et aI., 1985; Lacombe et aI., 1988; Bertuzzi et aI., 1993]) even where 
badly perturbed DNA histograms are concerned [Ormerod et aI., 1987]. Cell 
cycle times and phase durations can be determined as well. Total cycle time and 
the period of sensitivity to a phase specific drug are required as input for the Z­
method of improving therapy scheduling (see Chapter 7.4.2). 

7.4.2 Impl'oving the Therapeutic Index of' Cell Cycle Specific Cytostatic 
Agents; the Z-Method 

Administration of cytostatic drugs in cancer chemotherapy is limited by toxicity 
to normal tissues. Certain administration regimens exhibit a better therapeutic 
index than do others, i.e., they yield more tumor cell kill for less adverse 
effects on nO['Jlml tissues. Which are the better regimens and why? 

To answer this question where cell cycle specific drugs are concerned, a 
systematic investigation has been performed by Agur et al. [1986, 1988]. 

Their Z-method has been put forward, based on a recent theOlY on popula­
tion dynamics in harshly valying environments [Agur, 1985], as a new policy 
for minimizing the cytotoxicity to host tissues of antineoplastic cell cycle 
specific drugs. When the drug is administered as a number of short pulses at a 
certain frequency, with drug-free pcriods in between, using stochastic mathema­
tical modcls (incorporating knowledge on log cell kill per dose and on neoplastic 
and normal cell proliferation, among which cycle time and duration of dl1lg sus­
ceptible phase) the time till extinction of each of the two populations can be 
calculated, T(T) and T(N) for tumor' and normal cells, respectively. With 
computer simulations the treatment efficacy, Z(b,w) as function of dl1lg pulse 
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Fig. 7.5 Worst Case Examples of Simulation Results with Z·Method IAgur, 1988) 
Treatment efficacy, Z as function of drug pulse duration and drug free interval. Z should 
tend to 1 for fast extinction of the malignant cells and slow extinction of normal cells. A) 
Erythroblasts (cycle time T c::::: 7.0 ± 0.5 hi drug sensitive interval T s = 3.0 h) and 
Leukemic Cells ITc=6.0±0.5 h, Ts =2.5 h), B) Erythroblasts ITc=7.0±0.5 h, Ts=3.0 
h) and Leukemic Cells IT c = 7.0 ± 2.0 h, T s = 3.0 h) in WT & Balb C mice 
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duration, 0 and drug free interval, w can be evaluated. 

2(0, w) = I - T(T) / T(N). (7.1) 

The longer it takes to eradicate the normal cells (T(N) up) and the faster the 
malignant cells vanish (T(T) down), the more Z tends to one, corresponding 
with a bctter therapeutic index. The time till extinction can be evaluated by 
calculating the population size after evelY time interval Tc (mean cell cycle 
time), assuming that during that time A (2,,; A,,; I) daughter cells per cell are 
produced, unless drug is present during the sensitive period, Ts of the cell cycle, 
in which case the cell is killed. 

Subsequently, optimization of the trcatment schedule (length of (j and w) is 
possible, e.g., by determining the minimum elimination time of the tumor for 
either maximum elimination time of the normal cell population or a maximum 
number of normal cells left after treatment. 

The Z-method does not depend on an exact knowledge about the intrinsic 
population growth nor on the exact values of most parameters in the system. 
Crucial assumptions are: 1) a periodical change between drug sensitive and 
insensitive phase of the limiting normal cell population; 2) the mean cycle time 
of the cell population can be estimated; 3) normal and malignant cell populations 
differ in mean cycle time, or the normal cell population has a smaller variance 
in cell cycle time. Figure 1.5 illustrates two worst case examples. Favorable 
combinations of (o,w) yielding high values of Z can be distinguished from 
unfortunate ones (low Z), even when cyclc times and ARA-C sensitive phase 
durations are nearly equal for both cell populations (erythroblasts in WT & Balb 
C mice: Tc=7.0±O.5 h, Ts=3.0 h and leukemic cells: Tc=6.0±O.5 h, Ts=2.5 
hoI' Tc=7.0±2.0 h, Ts=3.0 h). Short dl1lg pulses (0=1-2 h) after a period that 
is a multiple of the normal cells' mean cycle time yield best results. 

It would be velY interesting to check the Z-method's theoretical results with 
respect to populations of normal hemopoietic stem cells and leukemic cells when 
treating BNML with the cell cycle specific drug ARA-C, as an addition to the 
studies of Colly et al. [1986]. This would involve: I) Validation of the as­
sumptions for ARA-C, BNML and normal hemopoiesis, which includes gather­
ing log cell kill data and growth kinctics data, mainly from literature and 
previous research projects; 2) Specification of the optimization problem and the 
dynamic processes involved for implementation on a computer system; 3) 
Running computer simulations for ll. evaluation of treatment efficacy as function 
of drug pulse duration and drug pulse frequency; 12. evaluation of consequences 
of working with inaccurate estimates of system parameter values; 4) Vcrification 
of selected optimal strategies in experimcntal animals and, after that, possibly in 
human patients. This would provide a sCientifically based theoretical background 
for the design of administration schemes with improved therapeutic index for 
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cell cycle specific cytostatic drugs in general. 

7.4.3 Visualization of TUllioI' Growth 

Computer hardware developments during the past decade have resulted in 
powerful yet affordable personal computers equipped with color monitors and 
suitable for real-time 2D and 3D computer graphics. It seems a logical step to 
employ this tool in modeling cell population dynamics, to visualize simulated 
tumor growth. Diichting et al. [1989, 1990] have developed software to show 
how the composition of tumor cross sections changes with time, with or without 
chemo-/radiotherapy. Although designed for solid tumors, with some modifica­
tion the program may be made relevant also for leukemic cells, e.g., growing in 
a matrix of bone marrow cells. A random maturity is assigned to a cell and a 
random draw from the cell cycle phase duration distribution determines the 
transition to the next phase. This transition can be seen, as cells in different 
phases of the cell cycle are represented by different symbols. The effects of 
using various production I1Iles can be evaluated, e.g., normal cells may only 
divide a limited number of times and only if there is space available (because a 
neighbor cell has died), while a cancer cell may divide without further restric­
tion than that it must be sufficiently close to a capillalY blood vessel (for 
nutrition). With similar l1lles for occurrence of natural cell death and effects of 
therapy, the development of the tumor can be studied-one sees what happens­
and compared to experimental data. Thus, the production rules used can be 
analyzed with respect to validity, and knowledgc is gained about the underlying 
processes. Also, the effects of altel'llative therapies, different treatment intervals 
or dose rates, etc., can be compared. At present the model itself is still too 
simple, e.g., the cell volume has a constant value; there is no possibility for 
metastasis or any immunological reactions. But, in the long run, the objective is 
to arrive at optimal treatment strategies and schedules by computer simulation 
prior to clinical therapy. 

Not withstanding the considerable increase in cure rate achieved during the past 
decades, leukemia treatment today is still velY much a matter of working with 
empirical methods and I1Iles of thumb. Little is known with great certainty about 
cell population dynamics, pharmacokinetics and drug action in the leukemic 
patient, let alone the combined ill vivo effects of multiple drugs on malignant 
and normal cell populations. Such knowledge is necessary for appropriate 
disease control and design of an optimal treatment strategy. Building mathema­
tical models contributes to the generation of this knowledge, as the examples 
given in this thesis may illustrate. These examples address a number of topics in 
leukemia treatment, from rather scattered parts of the research area. The 
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challenge is both in (stepwise) extending and refining existing models to a high 
level of sophistication (realism), and in interconnecting them. It is hoped, that 
this thesis encourages people with a (bio)medical education and those with a 
systems control background to cooperate in accumulating, processing and 
interpreting data. Such a multidisciplinary approach offers good prospects of 
reducing a chaos of observed data, systematically through evaluation of work­
ing-hypotheses, to firmly formulated laws of nature. Then, these laws can be 
used to optimize leukemia treatment in a truly rational way. 
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Summary 

In science it is common to use models to gain better insight into the mechanisms 
of action of complex systems and processes. Not only do they help understand­
ing, they also enable prediction of the (future) behavior of systems, in response 
to internal and/or external changes. Such changes may (control) or may not 
(environmental influences) be imposed on purpose. In mathematical modeling a 
system is described in terms of mathematical formulae. This symplifies analysis 
by doing calculations as well as computer simulations. 

System identification techniques can be used for model construction. Based 
on It priori knowledge and accepted theory, model equations are drafted that 
should describe the system. Such equations often are a set of algebraic or differ­
ential equations. Numerical values of parameters in these equations are estimat­
ed by an iterative algorithm, which makes adaptions until the solution of the 
model equations (= modcl rcsponse) agrees as much as possible with observa­
tions obtained from input/output measurements. If good agreement cannot be 
attained, it is a sign that the model does not adequately describe the system. 
Ergo, the description should be improved. 

In the present thesis it is shown how in a multidisciplinary approach mathe­
matical modeling can be applicd to support leukemia treatment, with emphasis 
on chemotherapy. Several subproblems can be distinguished. To solve them is 
finding the best compromise among contradictory requirements. In other words, 
they form optimization problems. 

With (induction) chemotherapy most leukemia patients enter complete remis­
sion. The number of leukemic cells drops below the clinical level of detection. 
In this state of "minimal residual disease" remaining cells may continue prolifer­
ation that results, eventually, in a relapse. How do cells regrow? How long and 
how intensively should maintenance chemotherapy be given to prevent relapse, 
without putting unnecessary strain-in vicw of the many adverse effects of the 
usual cytostatic dl1lgs-on the patient? 

These questions are immediately followed by othcr ones, like what dose­
effect relations apply to cytostatic drugs? What are their pharmacokinetic prop­
erties? I.e., how is a dl1lg distributed in and eliminated from the body. How 
(dose, route of administration) and how often should a drug be given to assure a 
sufficiently high concentration during a sufficiently long period to kill leukemic 
cells, but to stay within the dl1lg tolerance levels of normal tissues? 

To answer such questions data have been accumulated from laboratory ex­
periments with the Brown Norway rat. A preclinical leukemia (BNML), trans­
plantable in this specics, was shown to be a relevant model for human acute 
myelocytic leukemia. 

After an introduction in Chap/a 1, where a few illustrative examples of model-
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ing are given already, ill vivo unperturbed growth of leukemia and regrowth 
after chemotherapy are discusscd in Chapters 2 and 3. 

In Chapter 2 the BNML is investigated. In Chapter 2.1 a few basic experi­
ments are discussed that are important for the remainder of the thesis, as well as 
detection methods for leukemia. 

In Chapter 2.2 it is shown that unperturbed growth in the main target 
organs, after leukemia induction with 107 BNML cells i. v" is chal'acterized by 
an exponential phase (constant population doubling time) that is contiguously 
followed by a phase of Gompertzian growth (exponentially increasing doubling 
time). To the different organs (liver, spleen, bone marrow) slightly different 
growth curve parameter values apply. The growth curve of the total BNML cell 
population is obtained by summation of the curves of the mentioned organs at 
each time point. 

Chemotherapy was given as a single i.p. dose of cyclophosphamide (l00 
mg/kg). The effect on the BNML cell population was described with several 
models. A pulse effect, i.e., an instantaneous reduction in population size, fol­
lowed by regrowth similar to unperturbed growth, appearcd to agree better with 
observed datapoints than models that describe a more gradual course of drug 
effect in the time. 

Growth of the BNML cell population and the innuence of two different 
courses of AMSA-a one-time and a fractioned administration of an equal dose 
of this drug-is evaluated in Chapter 2.3. From observed BNML cell survival 
data it appeared that the effect of an identical dose of AM SA varies with time. 
By means of computer simulations with a growth model it was verificd whether 
BNML cells may be more sensitive during a certain phase of their cell cycle 
than dming the other phases. Instantaneous cell kill by the drug was assumed, as 
well as regrowth identical with unperturbed growth. Although time-dependency 
of the drug dose effect resulted, the experimentally observed pattern could not 
be reproduced. A phase of extra dnlg sensitivity therefore could not be identi­
fied with the model, although some evidence exists in the literature that it must 
be the late S-phase. 

The appendix shows that a growth curve can be described with two sets of 
parameters, i.e., the cell cycle time in combination with either a growth fraction 
and a cell loss factor, or the probabilities of cell death and cell doubling after 
one cycle time. 

Development of drug resistance is a great problem in leukemia chemother­
apy. Chapter 2.4 is started with a discussion on drug resistance. The develop­
ment of a BNML subcell line resistant against cyclophosphamide is reported. A 
simple model of growth of sensitive and resistant cell populations-assuming 
identical growth kinetics and mutation from sensitive to resistant-is used to­
gether with observed increase in lifespan of leukemic rats, treated at different 
times with different doses of cyclophosphamide. Another variable is the ratio of 
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resistant and sensitive BNML cells in the 107 cells used for leukemia inductiou. 
Curves are derived that show the relation between potential drug effect (if all 
BNML cells were sensitive) and net drug effect (decreased due to resistance de­
velopment) as function of mutation rate, treatment time and amount of initially 
present resistant cells. Early treatment results in longer survival. This agrees 
with clinical experience. Without development of drug resistance, based on the 
log cell kill principle (a same dose always kills a same fraction of cells) and on 
the Gompertzian growth model, the opposite would be expected. 

The model for leukemia developmeut is applied to available clinical data in 
Chapfer 3. The .kiuetics of childhood T-cell ALL (acute lymphoblastic leukemia) 
are analyzed in peripheral blood. Leukemic cells were detected during remis­
sion-induction and maintenance therapy by a sensitive double immunofluores­
cence method. Remarks on uncertainty are given in the appendix. One patient 
was extensively analyzed. She was monitored for 500 d, during which she re­
lapsed twice after two remissions. The third remission induction course failed. 
The doubling time of the exponentially growing leukemie cells (under mainten­
ance therapy) remained approximately constant (6.5 d). During remission induc­
tion the leukemic cells disappeared with a halftime of 2.8 d. Chemotherapy thus 
did not seem to change cell kinctics. An increasing resistance against the chemo­
therapy courses could be numerically expressed as a decrease in therapy effi­
cacy. 

In Chapfer 4 another important aspect of chemotherapy is investigated, i.e., dis­
tribution and elimination of the administered cytostatic dnIg. With multicom­
partment models of variable stnIcture the pharmacokinetic proccsses of dauno­
mycin (and its metabolite daunomycinol) in the rat are identified. Transfer rates 
of diffusion (the model parameters) are estimated according to the so-called 
maximum likelihood principle, based on concentration-time datapoints observed 
in various organs after a rapid i. v. daunomycin inoculation. 

The system identification technique used is extensively discussed (with eluci­
dations on elementary matrix manipulations and Laplace transformation in ap­
pendices). Three algorithms for minimizing the 10g(likelihood)-function are test­
ed. They are a modified Gauss-Newton (gradient) method, a finite differences 
approach and a direct determination of the second order derivatives of the log 
(Iikelihood)-function with respect to the parameters. The first method appears to 
converge fast and well in comparison to the other ones. The maximum accuracy 
of the final parameter values is in the range of 5-10%. 

First order kinetics (passive diffusion) appears to describe distribution and 
elimination of the parent drug reasonably well. Metabolism occurs in all tissues, 
including plasma, at different rates. For the metabolite the calculated concentra­
tion-time curves do not agree as well with the observations as for the parent 
drug, especially in the plasma. This indicates that model refinement is necessa-
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1Y, which may include nonlinearities. 
Should system identification be possible with a minimum number of obser­

vations, it means that fewer laboratOlY animals need to be sacrificed. The influ­
ence of presence/absence of observations in compartments, as well as the num­
ber of observations in a compartment and time intervals between them, was 
evaluated with simulated observations. Reducing the number of observations to 
25 % makes the maximum accuracy of the estimated parameters decrease from 
I % to 5-10%. Especially early observations might be left out, as long as all 
compartments are observed. If this is not the case, the maximum accuracy de­
creases rapidly to 30% or worse. It is better to have fewer observations in all 
compartments, than many in only few. 

Limited accuracy of estimated parameters causes deliberately introduced 
small model structure errors to go unnoticed. 

Analysis of DNA histograms obtained from a flow cytometer is the subject of 
Chapter 5. System identification is applied, in a way similar to Chapter 4, to a 
laboratOlY instrument that reveals the kinetics (proliferation) of cell populations. 
At a given time point the composition of a population with respect to the frac­
tions of cells in G,-, S- and G2 +M-phases of the cell cycle, can be determined 
from a flow cytometric histogram, which shows the number of cells as function 
of measured fluorescence (= DNA content) per cell. The wanted information 
cannot be read directly, but can be derived through modeling the histogram 
production process. Characteristic for the model that is proposed here, is that 
the S-phase in the histogram is composed of a number of harmonic functions 
(sines and cosines). This yields great flexibility in the allowed shape of the 
resultant for only few parameters to be estimated. 

The method of analysis was tested on a series of simulated standard histo­
grams obtained from literature. It performed well in comparison to other pub­
lished analysis methods. This was also the case when analyzing populations with 
unconventional histograms, e.g., with relatively many cells in G2 + M-phase. 
From these results it may be expected that the method is suitable for analyzing 
histograms of cell populations treated with cell cycle phase specific drugs. 

As an application two series of DNA histograms were analyzed that reflect 
the development of a B-Iymphocyte cell population, with or without addition of 
a growth factor. Without growth factor many cells remain in G,-phase (no pro­
liferation); with growth factor more DNA synthesizing cells (S-phase) are de­
tected, indicating proliferation. Histograms of normal and malignant cells in 
bone marrow, liver and spleen of the BN rat at several time points after inocula­
tion with 107 BNML cells, were analyzed as well. With increase in time, a 
slight decrease in S-phase BNML cells was noticed. Gompertzian growth is 
caused by both decreased cell proliferation and increased cell loss. 
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Bone marrow transplantation (Chapter 6) offers perspectives with respect to 
increased cure rate in leukemia. It allows intensified chemotherapy, with greater 
chance to eradicate the leukemia, because limited drug tolerance in bone marrow 
(producer of normal blood cells) no longer forms an obstruction. After chemo­
herapy, destroyed bone marrow is replaced with donor bone marrow. Chapter 
6.1 is a short introduction to bone marrow transplantation. 

In Chapter 6.2 allogeneic bone marrow transplantation is discussed. The pa­
tient receives marrow from a healthy donor. A problem is the foreign tissue 
causing an immunological reaction against the patient (Graft versus Host Dis­
ease; GvHD). Three options are open for additional kill of residual leukemic 
cells in the patient. A) No special measures are taken-like removal of T-cells 
from the graft-to prevent GvHD. The profit is in the Graft versus Leukemia 
Reaction (GvLR) that is manifest alongside the GvHD. Complications due to 
GvHD must be accepted. If measures are taken to prevent GvHD, the GvLR is 
lost. Then, B) conditioning therapy (before transplantation) may be intensified; 
or C) after transplantation additional low dose chemotherapy may be prescribed 
in an attempt to prevent leukemia relapse. 

From analysis of survival curves it can be derived that the GvLR should 
correspond with about I log leukemic cell kill (i.e., a factor of 10' = 10 reduc­
tion in the population of leukemic cells). It is shown that this explains the 
observed increase in cure probability from 40% to 90%. It is argued that 1 log 
cell kill also can be achieved with either one of the other two options. The ad­
vantage is that GvHD prophylaxis can be simultaneously applied. The cure rate 
thus increases just as much, but without having to face GvHD related complica­
tions. 

The subject of Chapter 6.3 is autologous bone marrow transplantation. Bone 
marrow is taken from the patient in remission, before intensive conditioning 
therapy aimed against minimal residual disease, cryopreserved and returned 
afterwards. An analysis is presentcd to answer the question to what extent 
relapse is to be attributed, on the one hand, to regrowth of leukemic cells left in 
the patient, and on the other hand, to the leukemic cells that probably were 
reinfused with the graft. Based on information obtained from the BNML it is 
argued that, as only a small fraction of i. v. inoculated leukemic cells actually 
starts proliferation (1-2%), and because clyopreservation of the graft strongly 
reduces the number of viable clonogenic cells (down to 0.1-1 %), the contrib­
ution of the graft must be low (less than 10%). Therefore, more attention should 
be given to eradicating minimal residual disease in the patient, than to purging 
the graft from leukemic cells before transplantation. 

In Chapter 7 an overview is given on how the mathematical models, described 
in the previous chapters, as components fit into the overall modeling approach 
aimed at optimization of treatment of leukemia. Before real attention can be 
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given to the optimization part-eventually meant to adapt therapy to the needs of 
the individual patient-considerable effort must be put into the identification of 
the mechanisms of action of several complex biological systems. Among these 
are ill vivo dose-effect relationships for various cytostatic drugs and variolls 
administration regimens, development of drug resistance, and pharmacokinetics 
in various stages of leukemia. 

Several new developments are mentioned, among which mathematical 
models based on fuzzy logic, a simulation model for the improvement of the 
therapeutic index by optimally choosing the dose frequency (Z-method), and 
simulation models to visualize tumor growth. Better experimental methods for 
detection of leukemia, and the use of flow cytometry for cell kinetics of malig­
nant cell populations treated with cytostatic drugs, are also discussed. 
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Samenvattillg 

Op velerIei terrein wordt in de wetenschap gebl1lik gemaakt van modellen om 
een beter inzicht te verkrijgen in de werkingsmechanismen van complexe syste­
men en processen. Hiermee wordt niet aileen het begrip gediend, men komt ook 
tot het voorspellen van (toekomstig) gedrag van systemen in respons op in- en/of 
externe veranderingen. Deze worden al (besturing) dan niet (omgevingsinvloe­
den) opzettelijk aangebracht. Omschrijft men een systeem met wiskundige for­
mules, zodat er gemakkelijker aan gerekend kan worden en het systeem op de 
computer kan worden gesimuleerd, dan spreekt men van mathematisch modelle­
reno 

Voor het construeren van een model kan worden gebl1lik gemaakt van sys­
teemidentificatietechnieken. Hierbij worden op basis van il priori kennis en 
aanvaarde theorie modelvergelijkingen opgesteld, die het systeem zouden moeten 
beschrijven. Meestal komt het nee I' op een stelsel algebra'ische, of ook weI dif­
ferentiaalvergelijkingen. De numerieke waarde van parameters in deze vergelij­
kingen wordt geschat door ze zo in te stellen (dit gebeurt met een itererend 
algoritme), dat de als oplossing van de modelvergelijkingen berekende model­
respons zo goed mogelijk in overeenstemming wordt gebracht met uit input/out­
put-metingen verkregen observaties. Kan geen goede overeenstemming worden 
bereikt, dan is dit een teken dat de modelvergelijkingen als systeembeschrijving 
niet voldoen, en aangepast moe ten worden. 

In dit proefschrifl wordt getoond hoe, in een multidisciplinaire aanpak, 
mathematisch modelleren kan worden toegepast tel' ondersteuning van de behan­
deling van leukemie, met chemotherapie in het bijzonder. Een aantal deelproble­
men kan worden onderscheiden, waarvoor de oplossing steeds betekent het zoe­
ken van het beste compromis tussen tegenstrijdige eisen. Met andere woorden, 
het oplossen van een optimaliseringsprobleem. 

Door middel van inductie-chemotherapie kan een leukemiepatient meestal in 
remissie worden gebracht. Het aantal leukemiecellen is dan zodanig laag gewor­
den, dat ze klinisch niet meer kunnen worden gedetecteerd. Vanuit deze toestand 
van "minimal residual disease" kunnen ze zich echter weI weer vermenigvuldi­
gen, wat vroeg of laat uitmondt in een recidief. Hoe verloopt de tel1lggroei? 
Hoe lang en hoe intensief moet onderhoudstherapie worden gegeven om terug­
groei te voorkomen, zonder de patient-gezien de ernstige bijwerkingen van de 
gebruikelijke cytostatica-nodeloos te bel as ten? 

Dit roept weer de vraag op naar dosis-effect relaties van cytostatica. En 
naar de farmacokinetiek van cytostatica. Hoe verspreidt een farmacon zich door 
het lichaam? Hoe (dosis en toedieningswijze) en in welke frequentie moet het 
worden toegediend om voldoende lang een voldoend hoge concentratie te be­
werkstelligen om de leukemiecellen te doden, maar beneden het tolerantieniveau 
van normale weefselcellen te blijven? 
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Om dergelijke vragen te beantwoorden zijn gegevens verzameld uit proeven 
met de Brown Norway rat. Een experimentele leukemie (BNML) is transplan­
teerbaar in deze rattesoort, en vonnt een relevant model voor humane acute 
myelo'ide leukemie. 

Na inleidende beschouwingen in Hoofds/llk 1, waarbij vooruitlopend op vol­
gende hoofdstukken al enkele voorbeelden van modelleerresultaten worden gege­
ven, wordt in Hoofdstuk 2 en 3 de ongestoorde groei van leukemie en de temg­
groei na chemotherapie ill vivo behandcld. 

In Hoofdslllk 2 gaat het om de BNML. In Hoofds/llk 2.1 worden enkele ba­
sisexperimenten vermeld, die voor de rest van het proefschrift van belang zijn. 
Onder andere wordt ingegaan op het detecteren van leukemische cellen. 

In Hoofds/llk 2.2 wordt getoond, dat ongestoorde groei, na leukemie­
inductie met 107 BNML cellen i.I'., in de voornaamste doelorganen gekenmerkt 
wordt door een exponentiele fase (constante populatieverdubbelingstijd) die 
aansluitend overgaat in een fase van Gompertzgroei (exponentieel toenemende 
verdubbelingstijd). Voor de verschillende organen (lever, milt, beenmerg) 
geld en v~~r de groeicurve iets andere parametelwaarden. De curve voor de 
groei van de totale BNML celpopulatie wordt verkregen door de curven va or de 
genoemde organen op elk tijdstip te sommeren. 

Chemotherapie werd gegeven als een enkele i.p. dosis cyclofosfamide (100 
mg/kg). De uitwerking van de dosis op de celpopulatie werd beschreven met een 
aantal verschillende modellen. Een puIseffect, dat wil zeggen, een instantane 
reductie van de populatiegrootte, gevolgd door teruggroei analoog aan onge­
stoorde groei, bleek beter te conformeren aan de observaties dan de modellen 
die een meer geleidelijk effect beschrijven. 

Groei van de BNML celpopulatie en invloed van twee verschillende AM SA­
kuren, een enkelvoudige en een gefraktioneerde toediening van een gelijke dosis 
van dit cytostaticum, wordt geevalueerd in Hoofds/llk 2.3. Uil gemeten overle­
ving van BNML cell en bleek variatie met de tijd in het effect van eenzelfde do­
sis AMSA op te treden. Met behulp van computersimulaties met een model voor 
leukemiegroei werd nagegaan of de BNML cellen in een bepaalde fase van hun 
celcyclus gevoeliger zouden zijn dan in andere fasen. Aangenomen werd, dat 
chemotherapie instantaan een fraetie cell en doodt, waarna de rest doorgroeit op 
gelijke wijze als voor therapie. Hoewel een tijdsafllankelijkheid van het dosisef­
fect resulteerde, kon het experimenteel bepaalde patroon niet worden gerepro­
duceerd. De extra gevoelige fase, blijkens de literatuur vermoed aan het eind 
van de S-fase, kon dus niet worden ge¥dentificeerd. In de appendix wordt aange­
toond, dat een groeicurve kan worden beschreven met twee parameterstelsels, 
namelijk de celcyclustijd tezamen met 6f een groeifractie en een celverliesfactor, 
of een kans op sterfte en een kans op celverdubbeling na een cyclustijd. 

Een groot probleem bij chemotherapie is dat leukemiecellen op den duur 
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resistent worden ten aanzien van de cytostatica. Het begin van Hoofdslllk 2.4 
bestaat uit een discussie over het ontstaan van resistentie en het ontwikkelen van 
een BNML subcellijn die resistent is tegen cyclofosfamide. Een simpel model 
voor groei van de gevoelige en resistente celpopulaties, waarbij gelijke groeiki­
netiek wordt verondersteld en mutatie van gevoelig naar resistent kan optreden, 
wordt gebruikt in samenhang met observaties aan levensduurverlenging van leu­
kemische ratten, die op verschillende tijdstippen behandeld zijn met, groeps­
gewijs, verschillende doses cyclofosfamide. Een andere variabele hierbij is nog 
de verhouding gevoelig/resistent in de 107 BNML cellen, waarmee leukemie 
werd gelnduceerd. Curven worden afgeleid, die het verband aanduiden tussen 
potentieel dosiseffect (aIle BNML cell en gevoelig) en netto dosiseffect (ver­
minderd ten gevolge van resistentievorming), als functie van mutatiesnelheid, 
behandelingstijdstip en hoeveelheid initieel aanwezige resistente cellen. Vroege 
behandeling leidt tot langere overleving, wat overeenkomt met de klinische 
ervaring. Indien men geen resistcntievorming aanneemt, dan moet, op grond van 
het 'log cell kill'-principe (eenzelfde cytostaticumdosis leidt altijd tot eenzelfde 
fractie gedode cellen) en het Gompertze groeimodel, juist het tegengestelde 
worden verwacht. 

Het is te bezien, of het ontwikkelde model voor leukemiegroei toepasbaar is 
op beschikbare klinische data. In Hoofdslllk 3 wordt de kinetiek geanalyseerd 
van T -ALL (acute lymfatische leukemie) cellen in het perifere bloed van een 
aantal kinderen. Leukemische cellen werden gedetecteerd, gedurende remissiein­
ductie en onderhoudstherapie, met behulp van een gevoelige dubbele immuno­
fluorescentietechniek. Op de onzekerheid in de observaties wordt in de appendix 
ingegaan. Een patientje werd uitgebreid geanalyseerd. Ze werd gevolgd over een 
periode van 500 d, waarbij ze tweemaal een recidief ontwikkelde na evenzovele 
remissie-inducties. De derde inductiekuur mislukte. De verdubbelingstijd van de 
exponentieel groeiende populatie leukemiecellen (tijdens de onderhoudsthe­
rapiefasen) bleek steeds ongeveer gelijk te zijn, 6.5 d. Gedurende remissie­
inductie !lam de maligne celpopulatie af met een halveringstijd van 2.8 d. 
Celkinetische veranderingen door chemotherapie bleken dus niet op te treden. 
De toenemende resistentie tegen de chemotherapiekuren kon getalsmatig tot 
uitdl1lkking worden gebracht in cen daling van de therapie-effectiviteit. 

In Hoofdslllk 4 wordt een ander belangrijk aspect van chemotherapie behandeld, 
namelijk de distributie en het metabolisme van een toegediend cytostaticum. Met 
behulp van multicompartimentenmodellen met variabele structuur worden· de 
farmacokinetische processen voor daunomycine (en metaboliet daunomycinol) in 
de rat geldentificeerd. Hierbij worden diffusiesnelheden (de modelparameters) 
volgens het zogenoemde maximum likelihood principe geschat op basis van 
meetpunten in het concentratie-tijdsverloop in verschillende organen, volgend 
op een snelle i. v. injectie met daunomycine. 
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De gebruikte systeemidentificatietechniek wordt uitgebreid besproken (met in 
appendices een toelichling op elemenlaire matrixmanipulaties en Laplacetransfor­
matie), evenals een aanlal algorilmen om de log(likelihood)-funetie te minima li­
sereno Dit zijn een gemodifieeerde Gauss-Newlon (gradient) melhode, een aan­
pak via eindige differenties en een direkte bepaling van de tweede orde afgelei­
den van de log(likelihood)-funclie naar de paramelers. De eerste melhode bleek 
hel best en snelsl Ie convergeren. De uiteindelijke nauwkeurigheid van de ge­
schatte parameterwaarden ligt maximaal in de orde van 5-10%. 

Eerste orde kinetiek (passieve diffusieprocessen) blijkt de dislribulie en 
eliminalie van daunomycine redelijk goed te beschrijven. Metabolisme naar dau­
nomycinol blijkt in aile organen, inclusief plasma, op te lreden, maar in ver­
sehillend lempo. Echler, de berekende concentratie-tijdsverlopen komen voor 
de metaboliet slechter overeen met de meelgegevens dan voor daunomycine zelf, 
vooral in plasma. Dit duidt erop, dat nog modelverfijningen nodig zijn, waarbij 
wellicht niet-lineariteilen een 1'01 moelen spelen. 

Ais sysleemidenlificalie mogelijk is mel een minimum aanlal observalies, 
belekenl dit een besparing in hel benodigde aanlal proefdieren. De invloed van 
de aan-/afwezigheid van observalies in comparlimenlen, alsmede het aanlal 
meelpunlen in een comparliment en de verspreiding in de lijd, we I'd daarom gee­
valueerd, mel gesimuleerde observalies. TeI1lgbrengen van hel aanlal observalies 
tot 25 % doel de maximale nauwkeurigheid in de paramelerschallingen leI1lglo­
pen van 1 % naar 5-10%. Mel'name vroege observalies konden worden gemist, 
zolang aile compartimenlen geobserveerd blijven. Indien dil laatsle niet meer het 
geval is, loopt de nauwkeurigheid snel leI1lg naar 30% en meer. Hel is daarom 
beter Ie besehikkcn over mindel' observalies in aile compartimenten, dan over 
vele in slechts enkele. 

Door de beperkte nauwkeurigheid van de parameterschattingen dreigen op­
zellelijk in de modelslI1lcluur aangebrachte kleine fouten niet te worden op­
gemerkt. 

Analyse van DNA histogrammen, verkregen met een f1oweytometer, is het on­
derwerp van Hoofdslllk 5. Hier wordt systeemidentificalie, analoog aan hel in 
Hoofdstuk 4 beliandelde, loegepast op een laboraloriuminslnlInenl waarmee 
inzichl kan worden verkregen in de kineliek (proliferatie) van celpopulaties. Op 
zeker lijdslip kan namelijk de populaliesamenslelling, met belrekking tot de frae­
tie cellen in de G1-, S- of G2 +M-fase van de celcyclus, worden bepaald uit een 
door de f1owcylomeler geproduceerd hislogram, waarin celaantal is uilgezet als 
functie van gemeten f1uorescenlie (=DNA inhoud) per cel. Vit zo'n hislogram 
is de gewenste informalie niel rechlstreeks af te lezen, maar wei af Ie leiden via 
een model voor de lolslandkoming van dat hislogram. Hel kenmerkende van hel 
hier gebI1likte model is, dal de S-fase in' het histogram wordl samengesleld uil 
een aanlal harmonische funclies (sinussen en eosinussen), waarmee grote f1exi-

-334-



biliteit in de vornl van de resultante wordt verkregen, terwijl toch slechts een 
beperkt aantal parameters hoefl te worden geschat. 

De analysemethode we I'd getest met een serie gesimuleerde standaardhisto­
grammen uit de Iiteratuur, en bleek in vergelijking met andere gepubliceerde 
DNA histogramanalysemethoden goed te voldoen. Ook bij het analyseren van 
histogranunen van uitzonderiijke celpopulaties, zoals bijvoorbeeld met relatief 
zeer veel cellen in G2 + M-fase. Vil deze resultaten mag worden afgeleid dat de 
methode onder andere geschikt zou zijn voor analyse van histogranunen van cel­
populaties die met celcyclusfasespecifieke cytostatica behandeld zijn. 

Ais toepassingsvoorbeeld werden twee reeksen DNA histogrammen geanaly­
seerd, die de ontwikkeling van een populatie B-cel Iymfocyten in de tijd reflec­
teren, wanneer wei of niet een groeifactor wordt toegevoegd. Zonder groeifactor 
blijven vee I cell en in de G(-fase (geen proliferatie); met groeifactor worden veel 
meer DNA synthetiserende cellen (S-fase) waargenomen. Histogrammen van 
nonnale en maligne cellen in het becnmerg, de level' en de milt van de BN rat, 
op verschillende tijdstippen na inoculatie met 107 BNML cellen, werden even­
eens geanalyseerd. Een lichte daling van het aantal BNML cell en in S-fase werd 
in het tijdsverloop waargenomen. Gompertzgroei hangt samen met verminderde 
celproliferatie, naast verhoogd celverlies. 

Beenmergtransplantatie (Hoofdsllik 6) biedt perspectieven ten aanzien van ver­
hoogde genezingskans bij leukemie. Een behandeling met hogere doses wordt 
mogelijk, met grotere kans de populatie leukemiecellen te vernietigen, omdat 
geen rekening meer gehouden hoef! te worden met beperkte tolerantie van het 
beenmerg (de producent van onmisbare gezonde bloedcellen). Het beenmerg 
mag nu meevernietigd worden, omdat het via transplantatie na de behandeling 
wordt vervangen. In Hoofdslllk 6.1 wordt een beknopte inleiding tot been­
mergtransplantatie gegeven. 

In Hoofdsluk 6.2 komt allogene beenmergtransplantatie aan de orde. De pa­
tient krijgt dan beenmerg van een gezonde donor. Een probleem hierbij is, dat 
het lichaamsvreemde transplantaat afweerverschijnselen oproept gericht tegen de 
ontvanger (graft versus host disease, GvHD). Men kan kiezen uit drie opties 
voor een extra aanval op residuele leukemiecellen in de patient. A) Er worden 
geen speciale maatregelen getroffen-zoals verwijdering van T-cellen uit het 
transplantaat-om GvHD te voorkomen. Men profiteert van de dan eveneens op­
tredende GvL-reactie (graft versus leukemia). De met GvHD samenhangende 
complicaties moet men dan accepteren. Indien wei wordt getracht GvHD te 
voorkomen, waarbij de GvL-reactie verioren gaat,dan kan men B) de conditio­
neringschemotherapie (voorafgaand aan beenmergtransplantatie) verzwaren, of 
C) na transplantatie extra chemotherapie met lage doses cytostatica toedienen in 
een poging een leukemierecidief te voorkomen. 

Vit analyse van overlevingscurven kan worden afgeleid dat de GvL-reactie 
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ongeveer overeen moet komen met I log kill van leukemische cellen (dat wit 
zeggen, een reductie van de leukemiecelpopulatie met een factor 101 = 10). Ret 
wordt aangetoond, dat hiermee de geobserveerde stijging van de genezingskans 
van 40% naar 90% kan worden verklaard. Bepleit wordt, dat I log cell kill ook 
met een van beide andere opties bereikt kan worden. Dit heeft het voordeel, dat 
tevens volledige GvRD profylaxe toegepast kan worden, zodat de genezingskans 
net zo sterk verhoogd wordt, maar nu zonder bijkomende complicaties van 
GvRD. 

Hoofdsllik 6.3 is toegespitst op aUlologe beenmerglransplantatie. Rierbij 
wordt beenmerg afgenomen bij de patient zelf, wanneer hij· in remissie is, en 
gecryopreserveerd. Dan voigt de intensieve conditioneringslherapie, gericht 
tegen de residuele leukemie, waarna het beenmerg wordt gerelnfundeerd. Een 
analyse wordt gepresenteerd, gericht op het beantwoorden van de vraag, in 
welke male aan een recidief wordl bijgedragen door enerzijds de loch nog in de 
patient overgebleven leukemiecellen en door anderzijds de waarschijnlijk in het 
lransplantaat aanwezige leukemiecellen. Op basis van informatie verkregen uit 
de BNML wordt beargumenteerd dat, gezien hel feil dat na i. v. inoculatie met 
leukemiecellen slechts een klein aantal werkelijk uitgroeit (1-2 %), alsmede de 
waarneming dat cryopreservalie van het transplantaat het aantal levensvalbare 
leukemiecellen sterk reduceerl (tot 0.1-1 %), de bijdrage uit het transplantaat 
minder dan 10% zal zijn. Dientengevolge zou grotere aandacht moeten worden 
besteed aan het bestrijden van residuele ziekte in de patient, dan aan het verwij­
deren van leukemiecellen uit hellransplantaat voorafgaand aan teruggave. 

HoofdsllIk' 7 wordt begonnen met een overzicht van hoe de in voorgaande 
hoofdstukken beschreven mathematisehe modellen als componenten passen in 
een groter geheel, ressorterend onder een modelleringsaanpak die is gerieht op 
het oplimaliseren van de behandeling van leukemie. Voordat eeht aandacht 
gegeven kan worden aan oplimaliseren, uiteindelijk om therapie aan te passen 
aan de behoeften van de individuele patient, is nog aanzienlijke inspanning 
vereist voor de identificalie van de werkingsmechanismen van een aanlal 
complexe biologische syslemen, waaronder ill vivo dosis-effeet relaties voor 
verschillende cytostatica bij verschillende loedieningswijzen, resislenlievorming 
en farmacokinetiek bij verschillende stadia van leukemie. 

Een aantal nieuwe ontwikkelingen worden genoemd, onder andere mathema­
tische modellen gebaseerd op fuzzy logic, simulaliemodellen ter verbetering van 
de therapeutische index door de behandelingsfrequenlie optimaal te kiezen (z­
methode), en simulaliemodellen voor visualisering van tumorgroei, alsmede 
verfijnde method en voor detectie van lage aanlallen leukemiecellen, en hel 
gebruik van flowcytometrie voor celkinetiek bij maligne, met chemotherapie 
behandelde celpopulalies. 
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APPENDIX A 

Experimental Determination of the f-Factor, Relating the Number of Spleen 
Colonies Counted to the Number of Leukemic Cells Injected 

Let a cell suspension consist of C cells, among which is an unknown amount, L, 
of leukemic cells with the capability to form colonies in the spleen (LCFU-S). A 
fraction, k· C cells, is injected into a recipient rat. Upon examination of the 
spleen nineteen days later, let the number of spleen colonies counted be p. 
These colonies are due to p LCFU-S out of the k· L inoculated ones (present in 
the k· C cells inoculated) having reached the spleen. The dilution factor f is the 
ratio p/(k. L). 

The remaining fraction (I-k)· C, containing (l-k)· L LCFU-S, are injected 
into another recipient rat. After a certain time its spleen is taken out and a cell 
suspension is made. This suspension must contain f· (I-k)· L LCFU-S, i.e., the 
f-factor-assumed to be a constant-times the number of LCFU-S inoculated. 

The suspension is injected into a secondary recipient. The spleen of this re­
cipient then should contain f· f· (I-k)· L LCFU-S, or spleen colonies, nineteen 
days later. Let the number of colonies counted be q. Now, two equations are 
available, f·f·(l-k)·L = q and f·k·L = p, from which the two unknown vari­
ables, fand L, can be found, e.g., f = k.q/«l-k).p). 
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APPENDIX B 

Two Parameter Sets to Describe Cell Population Growth j 

B.1 A Simple Model for Population Growth 

A cell population grows through proliferation, i.e., each newborn cell goes 
through a process of maturation till it divides and produces two daughter cells 
(Fig. 1.6). During maturation four phases can be distinguished, which together 
make up the cell's cycle. In the Gj-phase the cell synthesizes a multitude of 
products vital to its existence and functioning. In the S-phase duplication of the 
cell's DNA (containing the genetic information to be passed on) occurs. The Gr 
phase is similar to Gj . During the fourth phase, M, processes leading to the 
'actual cell division take place. 

In general, cells-even when they are of the same type-will not complete 
the cycle in a fixed time; especially the variation in G j duration may be large. 
The cycle time is distributed continuously between a minimum and a maximum 
that may be so large that, apparently, the cell is in a resting (non-proliferating) 
state. 

In a simple model this distribution of cell cycle times is approximated with a 
system of classes. A cell of class i (i = I ,2, .. ) needs i times an average cycle 
time (Tc) before it divides. 

In a proliferating cell population there will in general any time be more 
young cells. (in earlier phases of the cycle) than old ones (far advanced in the 
cycle). Therefore, in the model the average cycle time Tc is divided into a num­
ber of age (or maturity) classes and the cells of the population are distributed in 
the age classes at random according to an exponential distribution. In this way 
the probability of pulling a cell in the first age class is twice that of pulling it in 
the last one (Fig. 1.7A). 

Having distributed the cells of a population of initial size C(O)=Co in the 
age classes, the growth of the population is simulated as follows. After each 
time step the cells in an age class are transferred to the next one. If they were in 
the last age class two selections are made. First, a cell is considered for being 
lost from the population (e.g., natural cell death), which event has been assigned 
the probability P2' If the cell is lost it "disappears"; if not, it will either split 

Ireproduced from Schultz FW, Hagenbeek A (1991) Simulation studies on the regrowth of 
acute myeloid leukemia after autologous bone marrow transplantation. In: Arino 0, Axelrod D, 
Kimmel M (eds). Proceedings of the Second International Conference on Mathematical 
Population Dynamics, Rutgers University, New Bnmswick. NJ, 17-20 May 1989. Marcel 
Dekker Inc, New York, pp 689-709 
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into two cells (probability PI) or it remains unchanged. In both cases the result­
ing cell(s) go(es) to the first age class (Fig. 1.7B). 

When the (initial) population is small, its growth can be monitored by fol­
lowing each individual cell, whose fate (death, division) can be determined by 
using a random number generator. When the population grows large such a 
procedure is too time consuming. Fortunately, for large numbers frequencies 
will tend to their probabilities. So, from say 5000 cells, the population size after 
time step n can be derived from the size after time step n-l (Fig. 1.7C). As 
P2'Cn_1 cells die, PI"(l-P2)'Cn-1 cells double, and (I-PI)' (l-P2)'Cn-1 cells 
remain unchanged, the increase in C is given by Cn - Cn_1 = PI" (1-P2),Cn_1 -
P2' Cn_l, hence: 

(B. 1) 

The probabilities PI and P2 may of course be functions of lime or population 
size. 

B.2 Relations between PI' Pz and Te' GF and <I> 

To describe tumor growth kinetics several parameters and their interrelationships 
have been introduced before [Steel, 1977; see references, section 2.5]. For a 
clear understanding a few of the derivations are repeated below. Ve,y generally, 
population growth during a time step LIt can be described with: 

C(t+Llt) ~ C(I) + LIt· dC(t), C(O) ~ Co. 
dl 

(B.2) 

If the fractions of cells being born and dying during time step LIt are propor­
tional to the population size C(t) (birth rate B, death rate 0), the growth rate 
becomes: 

dC(t) 
dl 

(B-D)' C(t) K· C(t), (B.3) 

from which follows, should Band 0 remain constant, that the population would 
double its size in time: 

(BA) 

The minimum value of the doubling-time is the (average) cell cycle time, 
meaning that all cells would proliferate without cell loss and divide after Te' In 
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other words, the growth fraction, OF, then equals 1; the average number of 
daughter cells per cell per time length Te, A, equals 2; and the cell loss factor, 
P, equals zero. The maximum or potential production rate then is: 

(B.S) 

If on average A daughter cells per cell per time length Tc are produced 
(I sAs2) because many cells need more than time Tc to complete their cycle, 
then the growth fraction (the fraction of the population that produces 2 daughter 
cells per cell per time length Te) is OF=A-l (OsOFS I). The production rate 
then is: 

_ In(A) 
Kprod - --, 

Tc 

and the cell loss factor: 

P = 1 - K, (0 S P :0; I). 
Kprod 

(B.6) 

(B.7) 

The defined OF thus reflects the difference between K"ot and Kprod (potential 
and actual production), while P is a measure of the difference between K (the 
resultant of production and loss) and Kprod ' 

When, at maximum, the doubling-time tends to infinity (T d'""oo) a stationaty 
phase of constant population size is found, which is-mathematically-undeter­
mined. OF may be zero while no cell loss occurs (all cells resting); OF may be 
one (maximum) while maximum cell loss occurs (in time span Te all cells 
produce two daughter cells of which one is lost); or OF and P may have 
intermediate values within their ranges, which, however, are strictly related. 

If K can be considered a constant during the nth time span Tc, then Eq.(B.2) 
for population growth can be solved as: 

(B.8) 

Comparison with Eq.(B.l) yields the relation between the probabilities Pt, P2 on 
the one hand and the cell cycle variables on the other hand: 
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(B.9) 

In steady state, Td-->oo, Eq.(B.9) reduces to: 

P2 (B. 10) 

The cell cycle parameters can be expressed in terms of PI' P2 and Te' From 
Eq. (B. 9) it is derived that 

Td ~ Tc'ln(2) / In(l + PI - P2 - PI'P2)' (B.ll) 

With Eq.(BA) it follows that 

K ~ In(l + PI - P2 - PI' P2) / Tc' 

which in combination with Eq.(B.6) yields 

Kprod ~ In(l + PI) / Tc 

and 

A ~ 1 + PI' so, GF ~ PI' 

(B.12) 

(B.13) 

(B.14) 

for K equals ~rod if no cell loss occurs (P2 = 0). 
The cell loss factor then can be written (Eq.(B.7), Eq.(B.12) and Eq.(B.13» 

as 

(B.15) 

The other way around, PI and P2 can be expressed in OF and <1': 

PI ~ GF and P2 ~ 1 - (I + GF)-'P. (B.16) 

So, either PI and P2 or OF and <I' determine, together with Tc' the dynamic 
behavior of the cell population. 
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APPENDIX C 

Detection of T-ALL Cells using Immunofluorescence (IF) Technique; 
Theoretical Considerations about the Uncertainty in the Obsel'Vations 

Malignant T-ALL cells that possibly are present in a sample of patient material, 
e.g., peripheral blood (PB) or bone marrow (BM), can be marked by certain 
fluorescent dyes. This enables detection by fluorescence microscopy as well 
as-after some corrections-quantification of the numbers of malignant cells. 
Each dye is bound to a monoclonal antibody (McAb; this explains the term im­
munofluorescence technique). One McAb is able to bind T-Iymphocytes specific­
ally. Another one attaches to a receptor that is characteristic for the malignant 
lymphocyte. Thus, double stained cells are marked as malignant T-ALL cells 
(further denoted as L-cells; in contrast to normal cells, N-cells). 

In several ALL patients-children of various ages and both sexes-the quan­
tity of L-cells in PB and/or BM was determined using the mentioned IF-techni­
que. This happened at various time points during remission-induction (RI) 
chemotherapy and during the follow-up phase (when the patient in remission 
was treated with a maintenance therapy (MT) regimen). The samples were 
always taken just before the start of a course or the administration of a drug 
dose. The datapoints yielded interesting information about the course with time 
of the magnitude of the L-cell population. 

Poissoll Statistics 

With the following Poisson formula it is possible to compute the probability, Pr, 
that there are a certain number of L-cells (X, say X = K) in a sample of U cells 
(where U is large), given the condition that the chance that a cell is leukemic, p, 
is very small. 

K M Pr{X=K} = exp(-M)'-, 
K! 

(C. I) 

where M = p. U and K! (K factorial) = Ix2x3x .. xK (O! = I, ! = 1 by definition). 
From the Poisson distribution a mean value, p., and a standard deviation, (1, 

are derived: 

(C.2) 

For certain values of U, P and K the corresponding Poisson probabilities can be 
found in Table C-l. 
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TABLE C-l POISSON PROBABILITY, PR{X~K} 1%), OF FINDING K L-CELLS IN A 
SAMPLE OF U CELLS FOR VARIOUS L-CELL FREQUENCIES, FT 

U leells) 3000 30,000 
Imm31 1 10 
Ft 1: 1 0 3 1: 1 04 1: 1 0 5 1:103 1 :104 1 :105 

p 10-3 10'4 10-5 10,3 10-4 10,5 

K Pr{X ~ K} 
a <1 5 74 5 74 7 
1 <1 15 22 15 22 3 
2 <1 22 3 22 3 1 
3 <1 22 <1 22 <1 1 
4 <1 17 <1 17 <1 1 

fllm m-3) 3 0,3 0.0 0.3 0.03 0.003 
a 2 0.5 0.0 0.5 0.17 0.05 
flls~:nple-l) 30 3 0.3 3 0.3 0.03 
a " 6 2 0.5 2 0.5 0.17 

(P, a: mean value of X, respectively, standard deviation) 

It is assumed that a PB sample contains 3000 cells per mm3, Sample sizes of I 
or 10 mm3 are considered, which thus contain U = 3000 or U = 30,000 cells. 
Various tme frequencies of L-cells, FI' are considered; they are directly related 
to the probability, p, that a cell in the sample is an L-cell. The corresponding 
mean values of the L-cells in the samples, and their standard deviation, can then 
be calculated from Eq.(C.2). 

For instance, take a I mm3 (3000 cells) sample, If I in 10,000 cells is an L­
cell, then p = 10-5 and the chance that 0 L-cells will be found in the sample is 
74 %, The chance that I L-cell or 2 L-cells are found are 22 % and 3 %, respect­
ively, The chance that more than 2 L-cells are found is only 1%. 

If many such samples are regarded, then a mean value of 0,3 ±0,5 L-cells 
per sample will be observed, 

Note that it is assumed that all L-cells that are present in the sample-if 
any-will be actually detected, Thus, the limitation in detecting leukemia in a 
patient when L-cell frequencies are velY low is only a matter of insufficiently 
large sample sizes. 

It is a different story should an L-cell that is present in the sample go 
unnoticed, e.g" due to instrumcntal inaccuracies, fluctuations in inununof]uor­
escence intensities, etc, In that case it still holds in the above example that there 
is a 22 % chance of having I L-cell in the sample. The chance of actually 
observing that L-cell may be, e.g" 7 % only, if in reality-apparently-on 
average two in three stained cells go unnoticed, 
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TABLE C-2 POISSON PROBABILITY, PR{X~K} (%), OF FINOING K L-CELLS IN 
SAMPLES THAT CONTAIN ON AVERAGE M L-CELLS 

p~ 10 0_1 0.01 

K~ Prix ~ K} 
0 <0.01 37 90 99 
1 0.05 37 9 0.99 
2 0.2 18 0.5 <0.01 
5 3.6 <0.01 <0.01 
8 11.3 
9 12.5 

10 12.5 
11 11.4 
12 9.5 
15 3.5 
20 0.2 

Inversely, suppose that the true frequency of L-cells amounts to: 
1 in 10 mm3 (0.1Imm3); I in I mm3 (1Imm3); I in 0.1 mm3 (lO/nun3); 

in other words, p = 
1130,000; 113000; lI300; 

then on average the number of L-cells observed in samples of U cells: 
U= 3,000: /1= 0.1; 1; 10; 

30,000: 1; 10; 100. 
The probability of observing K L-cells in such samples is given in Table C-2. 

Example: Take a sample of U = 3000 cells (1 mm3); if the number of L-cells 
on average present in such a sample is fJ. = 0.1Inu113 (= 0.1Isample), then K = 
o L-cells will be observed in 9 out of 10 cases. Letting the sample size increase 
to U = 30,000 cells (so, 10 mm3 and fJ. = I L-cell/sample) then K = 0 is 
observed still in 4 out of 10 cases. 

The other way round, if K = 0 is the result of measuring U = 3000 cells, 
then it is velY well possible that in the patient there are on average fJ. = 0.1 L­
cell per mm3 (this will be so in 9 out of 10 cases). It is even possible that there 
are on average I' = I L-cell present per mm3 (4 against 6). It would be very 
unlikely that fJ. = 10 L-cells per mm3 are present (probability less than 0.01 %). 

N.B., it is assumed that only the sample size is limiting for the detection 
probability. 
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APPENDIX D 
A Few Elementary Matrix Manipulations 

Definitions. 
An NxM lIIatrix, A, consists of elements, ajj' arranged in N rows and M 
colulllns as follows: 

A 

In the transposed matrix of A, AT, 
Therefore, AT is an MxN matrix: 

So, the element aij (a so-called scal­
ar, i.e., a real or complex number) 
is to be found in the position where 
the ilh row crosses the lh column. 

the columns and rows are interchanged. 

There are various types of matrices. 
If the numbers of rows and columns 
are equal, N = M, the matrix is 
called square. If a square matrix has 
ajj = ajj, then AT = A and A is 
called sYlllmetrical. A diagonal 

matrix is square and has all elements aij = 0, except its elements, ajj, on the 
diagonal from top left to bottom right. It also is written as diag(alJ,a22'" ,aN/v)' 
If, in this case, all diagonal elements are equal to one, ajj = I, the matrix is 
called an N-dimensional identity matrix, A = I Of A = IN' If A consists of 1 
column only (Nx I matrix) it is called a N-dimensional vector, e.g., 

Operations. 

also written as col(xj,x2 , .. ,x,j. Its 
transpose, the row vector 
;? = [Xl x2 ... xNl is a lxN matrix. 

Two matrices A and B of the same dimension can be added or subtracted by 
performing such an operation element by element. 

They can be lIIultiplied if A is an NxM and B is an MxP matrix. The result, 
C = A·B is an NxP matrix, e.g., 
Thus, the element Cjj is obtained by multiplying in sequence the ilh row elements 
of A and the lh column elements of B, and adding the results. 
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[

Ollob ll +012 ob21 +ai3 ob31 

02j"bll +022 ob21 +02fb31 

°llob 12 +0 12 ob22 +0l3
0b

32] 0 

°21°bI2+022ob22+02fb32 

Multiplication of matrix A by a scalar, p, means that every element aij is 
multiplied by po 

Determinant 0 

If a matrix A is square, its determinont IAI or det(AJ can be definedo For a 2x2 
matrix: 

For a 3x3 matrix: 

°11 °12 013 

IAI 
°22 °23 °21 °23 °21 °22 

°21 °22 °23 = °11
0 

- °12 0 + al3° 
°32 °33 °31 a33 °31 °32 

°31 °32 °33 

Higher order determinants can be found by repeating the basic routine of 
decomposition into lower order determinantso 

Determinants playa role in solving sets of simultaneous algebraic equations 
(see Cramer's rule; Table 4-3) and in matrix inversiono The inverted matrix, 
Ao l , of the square matrix A is that matrix, which after the multiplication A-l.A 
will yield an identity matrix: A-loA = AoA- 1 = I. 
For instance, an unknown matrix B may be solved from A 0 B = C by multiply­
ing both sides by A-I: A-IoAoB = A-IoC => loB = A-IoC => B = A-loCo 

Inversion ° 
To calculate the inverse of A, define the minor of element aij as the determinant 
I Eij I, where Eij is the matrix A with its ith row and jth column deletedo Define 
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the cofaclor, Cij' of ail' as its minor multiplied by, depending on the values of i 
and j, the factor of + or -1: Cij = (-I)'+J'1 Eij I. Put all co factors into a matrix, 
C, the transpose of which is called the ad)llgale of A, or ad) A. Then, Xl = 
adjA/IAI =CT/IAI. 

Differentiation. 
Let s be a scalar, M be a PxQ matrix, YaK-dimensional vector and W a L­
dimensional vector. Following the same convention as Schweppe [1973], the 
derivative of the matrix with respect to the scalar, 8A(s)18s, is obtained by 
taking all PxQ derivatives 8a~(s)18s. Consequently, the derivative of the vector 
with respect to the scalar, 8Y(s)18s, is the vector with K elements 8vi(s)18s. 

The derivative of the scalar with respect to the vector, 8s0018Y, is the lxK 
gradient vector (row vector by definition!): [8s18v" ... ,8s18vK]' 

The derivative of the scalar with respect to the matrix, 8s(A)18A, is the QxP 
gradient matrix: 

8YQY)/8W, is the KxL matrix: 

Finally, the derivative of the vector 
Y with respect to the vector W, 

r

aV1/8W! ... 8V118WL] 

8vK I81V1 8vK I8IVL The second derivative, for instance 
of the scalar s with respect to the 

vector Y becomes, as 82s18y2 = 8{8s/aY}/8Y, the KxK matrix: 

2 2 8 sl8vK 

Reference: 
-Schweppe Fe (1973) Uncertain dynamic systems. Prentic Hall Inc., Englewood Cliffs, NJ 
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APPENDIX E 
Laplace Transformation and Analytical Solution of the Model Equations 

Laplace Transformation. 
By definition the Laplace transform (LT) of the function F(l), £(F(t)}, is given 
by: 

Backward transformation yields: £-l{F(s») = F(t). 

Application of the LT to the function F(l) = K·e-M ·t, for instance, yields: 

00 

F(s) = £(K'e-M") = r K'e-M"dt = K·_I_·e-(s+M)·'l oo = ~. b (s+M) 0 s+M 

The other way around, the inverse LT of F(s) = KI(s+M) is F(t) = K·eM ·t. 
For many functions F(l) the tabulated LTs, vice versa, can be found in the 
literature (e.g., [Godfrey, 1983]). 

A useful 'property of LT is that it converts a differential equation into an 
algebraic equation, which often is easier to solve. E.g., using partial integration: 

TllltS, the equation: 

dF(t) = -K'F(t) 
dt ' 

F(O) = M 

can be solved through LT: 
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£{dF(t)l = £{-K'F(t)} => -M + s'F(s) = -K'F(s) => (s+K)'F(s) 
dl 

F(s) = _ => F(t) = C 1{F(s)} = M·e-Kt . 
s+K 

Analytical Solution of State Equations of a 2x3 Compartment Model. 
The state equations for the model as shown in Fig. 4.7, in terms of amounts of 
drug as function of time, Q(t), are: 

(21(1) -(PI +P3 +P8) P2 0 0 0 0 Ql(t) 

(2il) PI -(P2+P7) 0 0 0 0 Q2(t) 

(23(t) P3 0 0 0 0 0 Q3(1) 

(24(1) P8 0 0 -(P4 +P6) P5 0 Q4(t) 

(25(1) 0 P7 0 P4 -P5 0 Q5(t) 

(26(1) 
0 0 0 P6 0 0 Q6(t) 

by applying the rules of mass conservation, and of matrix-vector notation as 
explaincd in Appendix O. The initial condition is the vector 
Q(O) = col(O,O,O,O,O,O), where 0 is the total i. v. drug dose. 

These six state equations contain six unknown variablcs, assuming that the 
transfer rate constants, PI through Ps, have been given a value. They can be 
split into two sets of three equations each, i.e., a set for the parent drug (QI 
through Q3) and a set for the metabolite. The former does not depend on the 
latter, because metabolism is a one-way process. The former set, therefore, can 
be solved separately first. After substituting the solution in the second set, the 
three remaining unknown variables can be solved too. 

A convenient way of solving both sets is by Laplace transformation. After 
some rearrangement the following equations are derived: 
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As said, from these sets Qj(s) through Q3(s) are solved first. Then, Q4(s) 
through Q6(s) are solved, Next, inverse LT yields QI(t) through Q6(t) , 
This results in: 

where a = Ih' {(PI +P3 +Ps +P2 +P7) + 
[(PI +P3 +Ps + P2 + P7)2-4-(P2P7 +P3P2 +P3P7 +PSP2 +PSP7)] 'I,} 

and b = Ih'{(pj+P3+P8+P2+P7)-
[(PI +P3 +Ps +P2 +P7)2-4-(P2P7 +P3P2 +P3P7 +P8P2 +P8P7)] 'h) 

Subsequently, 

Q4(t) = PI'e-a'! + P2'e-b'! + P3'e-C'! + P4'e-d'!, 

where the Ps follow from: 

1 

b+e+d a+e+d a+b+d a+b+e 

be+bd+ed ae+ad+ed ab+ad+bd ab+ae+be 

while 
Kj 

c 
d 
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= D'P8' K2 = D'P8'(P2+P7+PS) and K3 = D'Ps'{P8'(P2+P7)+P2'P7}, 
= Ih' {(P4 +P6 +Ps) + [(P4 +P6 +pl-4'P6'P~] 'I,), 
= Ih'{(P4+P6+PS) - [(P4+P6+PS) -4'P6'PS] V,}, 



In a similar way, 

but here the Ps follow from the same set of formulae, except that the vector 
col(O,KI,K2,K3) must be replaced by the vector col(O,O,KI,K2), in which now 

Finally, 

Parameter estimation. 
Thus, the time courses of the amounts of DAU and DOL in the 6 compartments 
can be calculated for certain parameter values, n. If compartment volumes, y, 
are known, the concentrations can be calculated as well. The most appropriate 
values for the parameters must be estimated from observed data. Observed 
compartments are: plasma DAU and DOL and excretion DAU and DOL. A 
sequential, 3-step, method can be used. 

1) Using a nonlinear least squares routine (commonly used routines can be 
found in e.g., [Bevington, 1969; Press et a!., 1985], fit a bi-exponential curve 
to the plasma DAU data: 

CI(t) = A'e-cd + B·e-fi ·t • 

This will yield the best values for A, B, c< and fl, while for the compartment's 
volume, VI = DfCI(O) = Df(A+B) is found. Also, a=c<, b=Jl and (P2+P7) = 
(A'Jl+B'c<)f(A+B) are found. 

2) With the values from step I, fit the curve 

Q (t) = D'p' [P_2_+_P_7 _ a-(P2+P7) 'e-a'! + b-(P2+P7) .e+t] 
3 3 a' b a' (a-b) -b;-·-c(a--'b)' 

to the excretion DAU data; this will yield the best value for the only unknown 
parameter, P3' 

3) Now, assuming that V4 = VI' fit a tetra-exponential curve 
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to the plasma DOL data. This yield values for PI through P 4' and for c and d. 
Substituting these values in the above equations for Ps, a, b, c, d and Ks, the 
latter (KI through K3) can be solved. In tUl'll, these variables will yield the 
parameters PS' P4' P6 and Ps· 

Next, PI = a + b - {(P3+PS) + (P2+P7») and P2 = - lab - (P2+P7)' 
(PI +P3 +PS))!PI and P7 = (P2 +P7) - P2 can be calculated. 

With best values of all transfer rates now known, the remaining time course, 
Q2(t), Qs(t) and Q6(t) can be calculated as well. As excretion DOL observations 
are available, the calculated Q6(t) can be checked for goodness of fit. 

It is important to note that this way of estimating the 9 parameters (8 
transfer rate constants and I volume) requires at least 5 observations in the 
plasma DAU compartment, 2 observations in the excretion DAU compartment, 
and 7 observations in the plasma DOL compartment. 

References: 
-Bevington PhR (1969) Data reduction and error analysis. McGraw Hill, New York 
-Godfrey K (1983) Compartmental models and their application. Academic Press, London 
-Press WH, Flannery DP, Teukoisky SA and Vetterling WT (1985) Numerical recipes: the art of 

scientific computing. Cambridge University Press, New Rochelle, NY 
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APPENDIX F 

System Identification Approach and Beyond 

The main concepts of system identification are briefly summarized below. 
Distinguish I) the dynamical system or process to be studied, and II) a math­
ematical model that-to some extent-describes this system. 

I physical/biological system: 

environment ---------------, 
I observer 
:- external influences - experiments-c-.J 

real life time-dependent 
process ------- behavior ----' 

U (system response) 
internal influences 

" mathematical model: 

r forcing functions,*"--- observer ~ 

mathematical ~ 
equations model output 

U ~f(time) 
internal state 

dynamical system: the system shows a time-dependent behavior, due to external 
perturbations or to internal transitions 
system identification: to find the best (correct) model for the description of the 
system (behavior), based on input/output measurements 
parameter estimation: to find the best values of characteristic constants or 
variables in the current model equations 
the procedure: based on a priori knowledge and/or reasonable assumptions a 
hypothetical mechanism of action of the real life process is stated and "trans­
lated" into mathematical equations; in- and external influences are transformed 
into mathematical forcing functions. The model output is calculated, by nmning 
a computer simulation program that solves the model equations, with prelimi­
nary estimates for the model parameters substituted. This model output is 
compared to the system behavior that has been experimentally observed under 
comparable circumstances (the observer has the freedom to set these circumstan-
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ces in his experiments). If necessalY, the parameter values are changed (auto­
matically by an optimization program) to yield a better fit (e.g., in the least 
squares sense) of calculated model output to measured system response. If the 
"best" fit, thus obtained, is not satisfactOlY, then another model (based on an 
alternative hypothesis) must be stated and tested. This is repeated until a good 
match has been achieved. 

If two hypotheses explain the experimental observations equally well, then 
new experiments must be designed and conducted to find the more probable of 
the two. In this respect, by exposing areas of insufficient knowledge, modeling 
shows the direction into which experimental research must go. 

If the system has been properly identified, and it is described by the correct 
model, then by performing computer simulations with the latter the dependence 
of the model response on the forcing functions can be easily evaluated. This 
means that, at this stage, except for confirmation purposes no actual experiments 
(with sacrifice of laboratory animals) need to be conducted, but that the (future) 
behavior of the real system under analogous circumstances can be predicted in 
advance. In this way, by carrying out ,simulations it is possible to learn how to 
set the forcing functions so as to obtain the desired model response. In other 
words, for the present case, how to adapt the chemotherapy schedule so as to 
arrive at the desired clinical response, 
advantages of the SYSTEM IDENTIFICATION approach: once a model has 
been built simulation results will quickly become available; it will mean fewer 
costs with respect to laboratory work and animal lives if interaction between 
laboratolY work and theoretical developments is maintained, both before (model 
is tested for explaining a given observed system response) and after (system has 
been identified, model is used to predict future system behavior) the proper 
model has been fully developed; there is flexibility in model design and test 
set-ups. 
disadvantages: due to scarce data and system complexity biological/physical 
knowledge is often insufficient, or existing knowledge is scattered and cannot be 
managed to serve as a strong basis for making a priori reasonable assumptions 
and stating sound hypotheses; numerical problems, yielding inaccurate estimates, 
may be encountered during the solving of the model equations and the running 
of the optimization programs when large and ill-defined models are used. 
However, it has to be mentioned here that a purely experimental approach 
without modeling will suffer from the same disadvantages. 
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l! 
A 

A 

A50 
ABMT 
ADR 
AIC 
ALDH 
ALL 
AML 
AMSA 
AOS 
ARA-C 
AUC 
a 
ar 
as 
ara-C 

B 

BB 
B· 
BM 
BMT 

B 

BN 
BN/Bi/Rij 
BNML 
BrdUrd 
b 

C 

Abbreviations and Symbols 

null vector 

adenosine; age distribution; amount of drug; constant, or Gaussian 
white noise; cytostatic agent; fluorescence intensity; Fourier coeffi­
cient; Gompertz' retardation constant; intercept of regression line; 
mean number of daughter cells per cell per cycle time; rate con­
stant; start position rectangle; system matrix 
amount of drug, required for 50% effect 
autologous bone marrow transplantation 
adriamycin 
Akaike's information criterion (Eq.4.54) 
aldehyde dehydrogenase 
acute lymphoblastic leukemia 
acute myelocytic leukemia 
acridinyl anisidide 
advanced operating system 
arabinoside cytosine 
area under the curve 
constant; integer; slope; width of rectangle 
rate of mutation from drug resistant to drug sensitive' phenotype 
rate of mutation from drug sensitive to drug resistant phenotype 
arabinoside cytosine 

birth rate; cytostatic agent; end position rectangle; fluorescence 
intensity; Fourier coefficient; input matrix; mean number of daught­
er cells per cell per cycle time; slope of regression line 
biology based 
system matrix differentiated with respect to jth parameter 
bone marrow 
bone marrow transplantation 
Brown Norway 
Brown Norway rat, raised in the Rijswijk colony 
Brown Norway rat acute myelocytic leukemia 
bromodeoxyuridine 
birth rate; blood; constant; integer; intercept 

concentration; cytosine; number of cells; unit of DNA contents 
initial concentration; initial number of cells 
control matrix 
distribution matrix 
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Cmax 
C'} 
C 
C-
CBS 
CC 
CDI5 
CD5 
CF 
CFA 
CFA/R 
CFA/S 
CFU-C 
CFU(-S) 
CLL 
CML 
CMT 
CPU 
CR 
CSC 
CT 
CV 
Cy 
CyA 
c 
calc 
cmpt 
cor 

o 
Dz 

o 

12z 
DAU 
DOH 
DMBA 
DOL 
DOX 
DSF 
d 
de 
ds 
dev 
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maximum cell population size 
number of cells after n time steps 
number of cells just after treatment 
number of cells just before treatment 
Centraal Bureau voor de Statistiek 
committed cell 
CD 15 membrane antigen 
CDS membrane antigen 
intercept of line 
cyclophosphamide 
cyclophosphamide resistant cell line 
cyclophosphamide sensitive cell line 
granulocytic progenitor cell 
colony forming unit(-spleen); pluripotentional progenitor cell 
chronic lymphoblastic leukemia 
chronic myelocytic leukemia 
continuous maintenance therapy 
central processing unit 
complete remission 
committed stem cell 
conditioning therapy 
coefficient of variation 
cyclophosphamide 
cyclosporin A 
constant 
calculated 
compartment 
correlation coefficient 

dose; death rate; growth inhibition 
residual process error (= observation - prediction) 
random variable measurement error 
daunomycin 
direct determination of Hessian matrix 
dimethyl-benzanthracene 
daunomycinol 
doxorubicin 
disulfiram 
death rate 
death rate for drug resistant cells 
death rate for dnlg sensitive cells 
observed value - calculated value 



E 
EC 

EDSO 

EG 
EGT 
E.coli 
Ep 
Eq 
~ 

ej 
eff 
eps 

F 
F 
F(ll) 
FI 
F2 
Fs 
FI 
FACS 
FCM 
FD 
FISH 
FITC 
f 

fj 
G 

G 
G 1,G2 
GF 
GFr 
GN 
GOF 
GRAD(F) 
GSH 
GST 
Gr 
GvHD 
GvL(R) 
g 

effect; Fisher information matrix 
error criterion (Eq.4. 55) 
number of inoculated leukemic cells yielding disease in 50% of the 
recipients 
contiguous exponential and Gompertz curves 
contiguous exponential and Gompertz curves with time delay 
Escherichia coli bacteria 
expected value 
equation 
break-off criterion for parameter step 
eigenvalue 
effective 
velY small number 

constant; fluorescence 
function of parameters 
fraction of GI cells 
fraction of G2 + M cells 
fraction of S cells 
true frequency of leukemic cells 
fluorescence activated cell sorter 
flow cytometer (-metIy) 
finite differences 
flnorescent in situ hybridization 
fluorescein isothiocyanate 
dilution factor; female; fraction of dntg sensitive cells; weighting 
factor 
fraction of patients with leukemic cell load of 10j 

Gaussian curve; Gomperlz curve; guanosine 
phases of the cell cycle when cells contain 2C,4C DNA 
growth fraction 
constant growth fraction 
Gauss-Newton algorithm 
goodness of fit 
gradient of function F 
glutathione 
glutathione dependent enzyme 
gradual drug effect 
graft versus host disease 
graft versus leukemia (reaction) 
numerical constant 
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gdt 
gr 
grad(F) 

H 
H 
Ho 
HGF 
HPLC 
HSC 
h 

I 
IBMT 
IMSL 
IF 
IFA 
ILS 
Ig 
In 

i.p. 
Lv. 

J(y) 
Jo 
j 
j' 
jp 

K 

K· ),1 

Kpot 
K prod 
Kl .. 

),1 
K2 .. J,I 
k 
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I 

J 

K 

gradient 
granulocytes 
gradient of function F 

constant; Hessian matrix; observation matrix 
initial therapy level 
(biochemical) growth factor 
high pressure liquid chromatography 
hemopoietic stem cell 
multiharmonic function; proportionality constant 

electric current; identity matrix; input 
isologous bone marrow transplantation 
International Mathematical & Statistical Libraries Inc, software firm 
immunofluorescence 
ifosfamide 
increase in lifespan 
immunoglobulin 
instantaneous drug effect 
channel number; integer 
intraperitoneal 
intravenous 

function of parameters 
environmental drug concentration 
channel number; integer 
channel number 
channel number 

actual number of leukemic cells in sample; actual number of leuke­
mic cells surviving (conditioning) therapy; difference between cell 
birth and loss rate; kilobyte; (proportionality) constant; scaling 
constant 
metabolic rate constant, from compartment i to compartment j 
potential production rate 
cell production rate 
Michaelis-Menten constant 
Michaelis-Menten constant 
constant; difference between cell birth and loss rate; integer; num­
erical constant 
constant; rate of drug uptake 
constant; rate of drug efflux 



L 
L 

LCFU-S 
LCK 
LF 
LLF 
lac-Z 
lin 
ly+bl 

M 

MCA 
MDR 
MFA 
MGN 
MH 
ML 
MLE 
MNC 
MRD 
MST 
MT 

M 

MTT 
MTX 
McAb 
MdST 
MeCCNU 
MoAb 
m 
m' 
ml 
m2 
m-AMSA 

conslant; drug transfer rate 
rate of drug inactivation/clearance 
growth fraction in exponential phase 
transfer rate constant, to compartment i, from compartment j 
transfer rate constant, from compartment i to compartment j 

constant; likelihood function; (number of) leukemic cells; therapy 
level 
leukemic colony forming unit spleen 
log cell kill 
likelihood function 
log of likelihood function 
Escherichia coli {3-galactosidase gene 
linear 
lymphocytes + blast cells 

constant; EDso value; leukemic cell burden of patient in remission; 
metabolite; mitosis (phase of the cell cycle; number of cells); num­
ber of datapoints; total number of channels 
monoclonal antibody 
multidrug resistance 
mafosfamide 
modi fied Gauss-Newton 
multiharmonic 
maximum likelihood 
maximum likelihood estimation 
mononuclear cell 
minimal residual disease 
mean survival time 
maintenance therapy 
3-4 ,5-d imethy Ithiazol-2y l-2,5-d ipheny Itetrazoliumbromide (assay) 
methotrexate 
monoclonal antibody 
median survival time 
methy I-cyclohexyl-ch lorethyl nitrosourea 
monoclonal antibody 
male; mutation rate; number of model parameters 
reduced number of parameter values 
G1 channel 
G2 + M channel 
amsacrine 
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N 

Neale 
Ng 
Nmax 
Nobs 
NC 
NR 
NT 
n 
neoR 

nr 
0 

0 
O(.w3) 
obs 

P 
P 
Pr 
PB 
PBS 
PC 
PCC 
PCR 
PD 
PF 
PI 
PK 
PSC 
PTT 
Pr 
p 

PI 
P2 
PeT 
Ps 
Pi' P'i 
Pm 
II 
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Gaussian probability density function; normal cell; number of cells; 
number of inoculated cells; number of observation times; number 
of spikes, rectangles or harmonic functions 
calculated number of cells 
number of cells at transition from exponential to Gompertz growth 
maximum population size 
observed number of cells 
total number of cells 
number of observations used in parameter estimation 
non-target compartment 
number of cells, compartments, rats 
neomycin resistance gene 
number 

output 
rest term of order of magnitude of 3d power of the parameter step 
observation, observed 

parent drug; polynomial 
probability function 
peripheral blood 
phosphate buffered saline 
personal computer; slope 
premature chromosome condensation 
polymerase chain reaction 
pharmacodynamic 
performance index (Eq.4.24) 
propidium iodide 
pharmacokinetic 
pluripotent stem cell 
post-transplantation therapy 
probability of 
birth probability; chance that cell in sample is leukemic; chance that 
cell survives treatment; number of parameters; number of spleen 
colonies; polynomial function; potential log cell kill 
probability of cell division 
probability of cell death 
chance that cell survives conditioning therapy 
chance that cell survives additional therapy 
ith parameter 
parameter value for minimum function value 
parameter vector 



no 
IlML 
pdf 
p.o. 

Q 
Q 
q 
q24h 

R 
R 

R<\-
R 
R-

R j 

RI(T) 
RK 
RM124 
RNG 
r 
rj 
rpe 

S 
S 

So 
S+ 
S-

S 
seA 
SD 
SE 
SF 
SSQ 
SSR 
SSR j 

SVD 
s 
s.c. 
sd 
seq 

initial parameter vector 
vector containing maximum likelihood parameter values 
probability density function 
per os (orally) 

variance(covariance matrix) of the measurement error(s) 
net log cell kill; number of spleen colonies 
24 h time interval 

decay rate; number of drug resistant cells; resistance; variance of 
residuals 
initial number of drug resistant cells 
number of drug resistant cells just after treatment 
number of drug resistant cells just before treatment 
ith remission (induction) period; number of cells resistant against 
drug i 
remission induction (therapy) 
Runge-Kutta 
monoclonal antibody for BNML cell detection 
random number generator 
correlation coefficient 
uniformly redistributed cells from tail of Gaussian curve 
residual process errors 

number of drug sensitive cells; phase of the cell cycle when cells 
synthesize DNA; stem cell 
initial number of drug sensitive cells 
number of drug sensitive cells just after treatment 
number of drug sensitive cells just before treatment 
sensivity vector 
spleen colony assay 
standard deviation 
standard error 
surviving fraction 
sum of squared errors 
sum of squared residuals (Eq.4.53) 
sum of squared residuals in compartment i 
singular value decompositiou 
value of standard deviation 
subcutaneous 
standard deviation 
sequential curve fitting method 
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sim simultaneous solution method 

T 

T' 
T(N) 
T(T) 

T'h 
T2 
Tc 
Td 
Te5 
Th 
Ts 
Tt 

T 

Ij 
T-ALL 
TBI 
TCC 
TCCt 
TM 
TNC 
TPC 
TRITC 
TdT 
t 

to 
te 
It· 
tg 

tk 

\ t 
r 

u 
11 
u 
!1 

v 
y 
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u 

v 

eigenvector matrix; halftime or doubling time; period; target 
compartment; thymidine; time; treatment time 
reduced eigenvector matrix 
time till extinction for normal cells 
time till extinction for tumor cells 
halftime 
doubling time 
cell cycle time 
doubling time 
time of reaching a level of lOS leukemic cells 
halftime 
drug sensitive period of the cell cycle 
treatment time 
eigenvector 
T cell acute lymphoblastic leukemia 
total body irradiation 
total correlation coefficient (Eg.4.51, Eg.5A3) 
total correlation coefficient, all compartments (EgA.52) 
transition matrix (matrices) 
total nucleated cells 
theoretical probability of cure 
tetramethylrhodamine-isothiocyanate 
terminal deoxynucleotidyltransferase 
DNA contents per cell; tissue; (survival) time 
starting time 
doubling time in exponential growth phase 
constant 
time of transition from exponential to Gompertz growth 
observation time k 
treatment time 
time point just after treatment 
time point just before treatment 

magnitude of log cell kill; number of cells in sample 
input vector 
drug input rate 
input vector 

magnitude of log cell killl; voltage 
volume vector, noise vector 



Vi 
Vp 
Vx 
VZP 
.I' 
var 
varj 

W 
W 
WBC 
w 

X 
X 

X' 
x 

xi 
X 

Y 
Y 

Y' 

y/l,V) 

Ym/lk) 
l' 
l'm 

Z 
z 

Greek 
L1Pr{cure} 

An 
LIt 

volume of compartment i 
variance-covariance matrix of estimated parameter values 
variance-covariance matrix of the state vector­
variance-covariance matrix of predicted histogram 
measurement noise vector 
variance 
variance of residuals in compartment i 

weight factor 
white blood cell count 
frequency; number of observed compartments 

number of EDso units; number of leukemic cells in sample; number 
of leukemic cells surviving (conditioning + additional) therapy; 
percentage of CD 15 positive cells per number of mononucieated 
cells 
number of leukemic cells surviving conditioning therapy 
absolute value of the logarithm of the ratio of true and estimated 
parameter values 
drug concentration in compartment i 
state vector 

eigenvalue matrix; percentage of myeloid cells per total number of 
leukocytes 
reduced eigenvalue matrix 
model response in compartment j for parameter values in V at time 
t 
observation in compartment j at time tk 
system response vector 
observation vector 

percentage of T-ALL cells per number of mononucieated cells; 
periodical function; treatment efficacy 
observed histogram 
predicted histogram 
theoretical histogram 
true histogram 
vector containing parameters of metabolism 

increase in cure probability 
parameter step vector 
time interval; time step 
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LijZpUP] 

Ii 
e 
I' 
a 
I'x 
ax 
T 

1> 
'lrj 
w 
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predicted number of cells in channel jp that have arrived from 
channelj 
cut-off criterion; drug pulse duration; unit pulse 
matrix for parameter step calculation 
mean value 
standard deviation 
mean value of X 
standard deviation of X 
time delay 
cell loss factor; transition matrix 
transition matrix 
drug free interval 



Naschrift 

Het is terecht de gewoonte een proefschrift af te sluiten met een woord van 
dank. Immel's, al prijkt slechts de naam van een enkele auteur op het omslag, 
aan het tot stand komen van het 'boekje' hebben velen-in mindere of meerdere 
mate belangeloos-een bijdrage gel eveI'd . Al was het maar met het schepp en van 
een geschikte werksfeer, met een blijk van belangstelling of het geven van een 
aanmoediging. Want naast direkte hulp en medewerking is, herhaaldelijk 
gegeven, ook dat soort steun belangrijk, zo niet noodzakelijk. 

Het ligt niet in mijn bedoeling iemand ten achter te stellen. Maar het is 
ondoenlijk een ieder, die er enig recht op zou mogen laten gelden, hier ook 
persoonlijk te vermelden. In de loop del' jaren zijn bij het RBIIITRI gewoon 
(te)velen verschenen en verdwenen. 

Laat ik in elk geval beginnen met het bedanken van mijn promotoren. Zij 
hebben het zaag-, ti1l1mer- en schaafwerk begeleid. Bij Ton Hagenbeek zelfs in 
de laalsle tijd ettelijke malen lhuis, onder hel genot van koffie en koekjes, wat 
ruimschools vergoedde dat het 'wei een uur gaans de polder in' was. Ton, 
bedankt dal je me hebt betrokken bij het leukemie-onderzoek. En voor de 
manier waar6p. Inspirerend, onderhoudend, met geduld onderwijzend. En, 
ondanks de werkdruk, altijd opgewekt. Ook bedankt dat ik via jou kontakten 
mochl leggen met voor dit werk belangrijke wetenschappers, in het buitenland 
(op congressen van Californie tol China) en het binnenland (DdHK, EUR). 
Soms leidde dit tot vruchtbare en heel plezierige samenwerkingsverbanden, zoals 
bijvoorbeeld met Jacques van Dongen en medewerkers. Bob Mulder ken ik al 
heel lang als icmand die enlhollsiasme weel op te wekken door op het interes­
sante in problemen Ie wijzcn en-na even scherp denken-vaak ook de richling 
aan Ie duiden, waarin je de oplossing zou moeten zoeken. Bob, bedankt dat je 
me wegwijs maakle op hel gebied van sysleemidentificatietechnieken. En 
bedankt voor je voorspraak om me deze bij TNO Ie laten toepassen op proble­
men in de farmacokinetiek, alsmede voor je behulpzaamheid daarbij (ook met 
hel beschikbaar stellen van TUD faciliteiten). 

De overige !edcn van dc promotiecol11missie wil ik bedanken VOOl' het 
kritisch doorlezen van hel manuscript. Het polijslwerk aan hel proefschrift kon 
geschieden aan de hand van hun waardevolle opmerkingen en sllggesties. Ik ben 
Dick van Bekkum, direcleur van hel voormalige RBI, dankbaar voor het ver­
lrouwcn, dat vliegluigbouwers-met niet meer dan 'middelbare school' -kennis 
aan biologie en chemie-een de moeite waard zijnde bijdrage aan het gezond­
heidsonderzoek kunnen leveren. En voor het geven van de kans om dit daadwer­
kelijk te gaan bewijzen. Van Johan Broerse leerde ik, dal ook bij tegenslag een 
guile lach niet veri oren hoeft te gaan. Had iedereen een tiende van zijn werklust, 
veranlwoordelijkheidsgevoel, maalschappelijk (poliliek) inzichl en organisatie­
talent, dan had 'science' een goede kans 'to prevail'. 

-365-



Vervolgens moet ik een aantal sleulelfiguren noemen, dat voor de voorbereiding 
van dit proefschrift onontbeerlijk was. Natuurlijk Ton's Leukemie Team (TLT), 
ondenneer Ger Arkesteijn, Kees de Groot, Ted Kloosterman. En v66rop Anton 
Martens. Mel deze BNML-specialist kon allijd met voldoening van gedachten 
worden gewisseld over allerlei wetenschappelijk, en anderzins interessante 
zaken. Niet alleen het ontwerp, de uitvoering en evaluatie van experimenten 
voor celpopulatiedynamica, waaronder flow cytomelry, waren hier in goede 
handen. Ook de organisatie van buiten-werktijd-acliviteiten voor beenmergka­
merleden en buren-van Jan Visser's Lab-was hem wei toevertrouwd. Brain­
stormen met Kees Nooter, als opvolger van Pieter Sonneveld, over zaken 
betreffende farmacokineliek, eytoslalica en al dan niet leukemische ratten, 
leverde vaak vruchtbare ideecn op. Een grool deel van de beschreven bio­
medische experimenten wenl met kundigheid uitgevoerd door een aantal 
analisten, van wie ik Hans Vollebregt, Aljan de Vries en vooral Carla Ophorst­
Van Marrewijk wil noemen. 

Voor hel loegankelijk maken en houden van de rekenfaciliteilen gaat mijn 
dank naar de Computerafdeling (Wytze Ooslenbmg en medewerkers). Ook 
mogen, wal dit aspekt betreft, meneer Verkerk en Henk Lindenburg (TUD, 
Vliegluigbouw) niet worden vergeten. Een aanlal illuslralies werd vervaardigd 
door de Afdeling Fotografie (Jan de Kler, Eric van der Reijden en Henk van 
Weslbroek). Medewerkers van de bibliotheek (Paul van Rossum, Bert van der 
Wurff, Hans van Hoeven) hielpen bij hel opzaeken van literatuur. De familie 
Delfgauw wordt bedankt voor het bcschikbaar stellen van de kopieermachine. 

Dan wil ik mijn grote waardering uiten voor het geboden huiselijk verkeer 
bij de Afdeling' Barendsen. In het bijzonder voor Ab van Rotterdam. Niet alleen 
als mijn chocolabrouwende modelbouwmaat, die me de vreugd liet smaken van 
het delen van gezamenlijke inleresses als het ontwerpen van rekenalgorithmen, 
pogen inzicht in het gedrag van systemen te vergroten, toepassen van stalistiek. 
Maar ook voor het warme onthaal op wetenswaardigheden over filosofie, klas­
sieke muziek, politiek, (klein)kindercn, Nederlandse letterkunde, enz. En voor 
het fungeren als universeel smeenniddel bij de zakelijke en minder zakelijke 
kontakten tussen klanten en collega's. 

Vee I dank ben ik verschuldigd aan Hans Zoetelief, voor alle mimte die ik 
kreeg om het proefschrift af te schrijven, na de overgang naar een nieuw TNO­
onderdeel. Een aantal taken zau zijn blijven liggen, als niet collega's, in het 
bijzander Jan Jansen, zander morren werkzaamheden hadden overgenomen. Ook 
hiervoor dank. 

Tot slot moet worden bedacht, dat de (on)regelmaat van een '1101-925-job' 
een extra belasting vonnl voor het huishouden lhuis. Bedankt ma, dat ik altijd 
mijn gang heb kunnen gaan, zonder dat 'de verzorging' in het gedrang kwall1. 
Ik hoop in de komende tijd een aanlal verwaarloosde vriendschapsbanden weer 
aan te mogen halen. 
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Curriculum Vitae 

Frank Willem Schultz werd op 25 juni 1951 geboren te Djakarla. 

Na het behalen van het diploma h.b.s.-B in 1968 aan het Stevin Lyceum te Den 
Haag werd in dalzelfde jaar begonnen met de studie Luchtvaart- en Ruim­
tevaarttechniek aan de, toen nog, Technische Hogeschool Delft. Deze studie 
werd in 1975 afgesloten met het ingenieursexamen bij de vakgroep Stabiliteit en 
Besluring (prof.dr.ir. O.H.Geriach), projectgroep Vliegproeven. 

Na hel vervullen van de mililaire dienstplicht (1976-1977) werd een tijdelijk 
dienstverband aangegaan met het Radiobiologisch Instituut TNO le Rijswijk, om 
werkzaamheden le verrichten op het gebied van mathematisch modelleren van 
farmacokinetiek van cyloslatica ondcr leiding van drs. P.Sonneveld en ir. 
I.A.Mulder. 
Dit dienstverband werd in 1980 omgezel in een voor onbepaalde tijd. Het 
onderwerp farmacokinetiek, nu onder dr. K.Nooler, werd uitgebreid met 
mathematisch modelleren van celkineliek. Gaandeweg kwam de nadnlk te liggen 
op het analyseren van gegevens die, onder supervisie van dt. A.Hagenbeek, 
werdcn verkregen uit experimenlen met het preklinische BNML model voor 
humane acute myelolde leukemie, zoals in dit proefschrift beschreven. 

Reorganisalies binnen TNO leidden in 1990 tot overplaalsing naar de afdeling 
Stralingsfysica van dr. J.Zoetelief, welke als onderdeel van een op te rich ten 
Cenlrum voor Slralingsbescherming en Dosimetrie met ingang van 1994 werd 
ondergebracht binnen hel TNO Instituut voor Milieu- en Energielechnologie, 
Apeldoorn. Met behulp van computersimulatie van stralingslransport wordl hier, 
onder meer, onderzoek verricht naar de slralingsbelasting van en dosisverdeling 
in de patient bij riintgendiagnosliek en radiotherapie. 
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