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Preface

Preclinical and clinical data on different aspects of leukemia and its treatment
have been accumulated at the former Radiobiological Institute TNO during the
past decades. The variety of data should be organized, sorted and combined
properly, to be used for optimization of therapy. Mathematical modeling is a
good method to reveal the important variables and their relations,

With this thesis archives are created thal summarize (resulis of) scientific
research efforts with respect lo mathematical modeling and computer simulation
of leukemia growth and chemotherapy, during the period 1981-1990, showing
ways and giving recommendations for furiher investigations.
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Project IKR 84-6: Computer simulation of leukemia growth with emphasis on
minimal residual disease
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nant tumors employing dual beam flow cytometry

Project IKR 87-12: Influence of tumor load on the pharmacokinetics and ef-
ficacy of anticancer drug treatment in rodent models for
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solid tumors, leukemias and non-Hodgkin’s lymphomas
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Chapter 1
General Introduction and Scope of the Thesis

1.1 LEUKEMIA

Leukemia is a malignant disease of the hemopoietic tissues, This form of cancer
causes a continuous large overproduction of malfunctioning immature blood
cells, at the expense of the production of normal blood cells, Other blood cell
cancers are the lymphomas and multiple myeloma, related to uncontrolied
growth of, respectively, cells that make up the lymphatic system and of plasma
cells in the bone marrow,

1.1.1  Normal Hemopoiesis

Functional biood cells have a limited lifetime. They are destroyed when worn
out. They also may get lost in disastrous events (e.g., a bleeding wound).
Therefore, a continuous process of replacement is required, of which the
regulation mechanisms now are getting better understood.

Normal blood cell production mainly takes place in the red bone marrow.
According to the current concept, hemopoiesis starts with the pluripotent stem
cell (PSC). This cell type is maintained by proliferation, i.e., cell division
(mitosis) generates new PSCs. Some daughter cells are no longer PSCs but
appear to have changed (differentiation). They have become committed stem
cells (CSCs), i.e., the precursor cells of one line of specialized blood cells. Five
such lines can be distinguished, each eventually yielding different functional end
cells; erythrocytes (red blood cells), lymphocytes, granulocytes, monocytes
(white blood cells), and thrombocytes. At each division CSCs and their daughter
cells evolve to a more mature stage until, finally, the end cells result. They then
have lost the ability of cell division, Migration out of the bone marrow takes
place (e.g., to the lymph nodes for lymphocyte maturation).

Blood cells of different lines and in different stages of maturation can be
recognized by morphology or other cytological and immunophenotypical char-
acteristics, The same holds for the malignant counterparts of the normal hemo-
poietic cell types, although usually specific properties distinguishing the cell
populations (normal—malignant) are missing,.

1.1.2  Frequency of Occurrence of Leukemia
In the year 1988 death from leukemia amounted to 2.8% of the mortality caused

by any form of cancer, and to 0.8% of all deaths in The Netherlands (in num-
bers, per 100,000 inhabitants there were 7 deaths for leukemia, 239 for all
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cancers and 839 for all causes, respectively [CBS, 1991]). Compared to other
forms of cancer—e.g., cancer of the respiratory tract kifled 59 out of every
100,000 inhabitants—leukenia must be regarded as a less frequent, but by far
not insignificant cause of death. Death due to traffic accidents, for example,
struck 9 out of 100,000 inhabitants. Therefore, all effort put into finding ways
to cure this disease is easily justified.

1.1.3 ‘Types of Leukenmntia

Van Dongen et al. {1988] have presented (hypothetical) schemes of the differen-
tiation of hemopoietic cells, The schemes can be used to classify their malignant
counterparts according to the stage of maturation where they turned malignant,
i.e,, started proliferation in an uncontrolled way without further maturation, thus
overrunning and suppressing the functioning of the normal hemopoietic system,
Two main types of leukemia can be distinguished: lymphocytic and myelocytic
leukemia. Lymphocytic leukemia concerns the lymphoid paths of differentiation
and comprises: acute undifferentiated leukemia, acute lymphoblastic leukemia
(null, common, pre-B-cell, B-cell, immature T-cell, common thymocytic T-cell
and mature T-cell), chronic lymphocytic leukemia (B-cell, T-cell), prolympho-
cytic leukemia (B- and T-cell) and hairy cell leukemia. Myelocyric leukemia con-
cerns the myeloid paths, comprising: acute undifferentiated leukemia, acute
myeloid leukemia (several subclasses according to the FAB classification
[Bennett et al., 1985}, among which progranulocytic, myelomonocytic, mono-
cytic, erythroleukemia and megakaryocytic), chronic myeloid leukemia.

Many leukemias may occur in two forms, i.e., acute and chronic disease. In
acute leukemia the immature hemopoietic cells are involved. Cells of the more
mature differentiation stages are associated with the chronic form, which is
characterized by an oscillating severity of illness. Acute leukemia often occurs
early in life, chronic myeloid leukemia during mid-life, and chronic lymphocytic
leukemia is mostly a geriatric disease.

For therapy, various cytosatic agents (most often as combinations) are
applied. Especially for younger patients, high-dose chemo-/radiotherapy follow-
ed by bone marrow transplantation is a recent life-saving treatment,

In this thesis only acute myeloeytic leukemia (AML) and childhood acute T-
cell lymphoblastic leukemia (T-ALL) will be considered,

1.2 CYTOSTATIC DRUGS
Certain chemical compounds are able to kill cells directly or to interfere with
cellular maturation processes and inhibit or prevent mitosis. These compounds

are called cytostatic agents. Not only tumor cells are affected, but normal tissue
cells as well. Loss of hair, damage to the intestinal tract, neurotoxicity and/or
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suppression of hemopoiesis often result as side effect of the treatment. Therefo-
re, in general, certain dose limits should not be e¢xceeded to avoid unacceptable
damage to normal tissues. Also, a therapy course may be interrupted to provide
the opportunity for normal tissue cells to repair (sublethal) damage. Obviously,
tumor cells then "profit’ as well from this rest period, but usuaily normal tissues
recover faster than tumor tissue.

Cytostatic drugs that are commonly used for treatment of leukemia can be

classified as follows [Perry, 1992}:

A)
1)

2)

B)

&

D)

E)

Agents that damage the DNA template

Alkylating Agents form clectrophilic carbonium ions that alkylate (covalent

bonds) nucleophilic groups (e.g., in guanine of DNA), causing cross linking

and abnormal base pairing, thus interfering with the DNA replication

function. Also, reactions with sulfhydryl, phosphate or amine groups result

in multiple lesions in both dividing and non-dividing cells. Subclasses are

a) Nitrogen mustards, e.g., cyclophosphamide (cytoxan), chlorambucil
{leukeran), melphatan and mechlorethamine

b) Nifrosoureas, e.g., carmustine (BCNU) and semustine (methyl/CCNU)

¢) Others, e.g., triethylenethiophosphoramide (Thio-TEPA), busulfan
(myeleran), hexamethylmelamine, dacarbazine and mitomycin C

Agents that cause double-strand cleavage via topoisomerase I1

ay Anfibiotics, e.g., doxorubicin (adriamycin), daunorubicin (daunomycin),
mitoxantrone, idarubicin, epirubicin and amsacrine

b) Podophylotoxins, ¢.g., etoposide and teniposide

Antimetabolites are compounds which inhibit protein or DNA synthesis, or

the formation of various enzymes necessary for a cell’s normal metabolic

processes. Subclasses are

a) Dihydrofolate reductase, e.g., methotrexate (amethopterin)

b} DNA polymerase, e.g., cytosine arabinoside {cytarabin)

¢) Phosphoribosylpyrophosphate aminotransferase, e.g., 6-mercaptopurine
(purinethol) and 6-thioguanine

d) Ribonucleotide reductase, e.g., hydroxyurea (hydrea)

e) Adenosine deaminase, e.g., deoxycoformycin (pentostatin)

Spindel Poisons, These are the Vinca alkaloids, e.g., vinblastine (velban),

vincristine (oncovin) and vindesin

Hormonal and Antihormonal Agents

Various classes of hormones and antihormones have shown the ability to

cause regression of malignant cell populations. A welf-known example of

the class of Adrenocorticosteroids, useful against leukemia, is prednisone

Biological Response Modifiers, e.g., the interferons. Retinoic acid deriva-

tives, now clinically used against acute promyelocytic leukemia, may be

classified in this category. They induce the leukemic cells to relinguish their

malignant phenotype and enter a program of normal cellular differentiation
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and death {Warrell et al,, 1993; Cline 1994}
F) Miscellaneous Compounds, e.g., l-asparaginase,
Effects of only a few drugs will be discussed in this thesis.

1.3 PHARMACODYNAMICS AND PHARMACOKINETICS

Pharmacodynamics is the study of the time course and the intensity of biological
responses arising from exposure to or treatment with particular chemicals [e.g.,
Conolly and Andersen, 1991]. Biological responses manifest both as beneficial,
therapeutic effects (drugs) and as noxious, deleterious effects (toxic chemicals).
To be able to describe quantitatively the relationship between the exposure of an
organism and the time course of the response, a pharmacodynamic (PD) model
must be used, Such a model may—in order of increasing sophistication— A) be
of correlational nature {e.g., a correlation of percentages surviving bone
marrow cells observed at different time points as biological effect and the blood
concentration of a certain cytotoxic drug at the observation times); B) consist of
empirical equations, whose parameter values are obfained by fitting to observed
data (in an empirical model a mathematical structure is selected to be consistent
with the observed data, but it need not necessarily be a precise description of the
underlying physical processes); and C) be biology-based (BB), i.e., if know-
ledge exists about the biology of the test species it shoukd be possible to de-
scribe, in a physically correct way, 1) the concentration—time course of an
administered chemical at a site of interest; 2) how the chemical interacts with
exposed tissues; and 3) how these tissues respond to this interaction.

Item 1) can be seen as a separate subject of study, which is known as the
field of pharmacokinetics (PK). In other words, a PK model is part of a BB-PD
model. While the BB_PD model describes (the time-dependent) refation between
blood concentration of a chemical and a biological effect, the PK model gives
the relation between the chemical’s concentrations in blood and in the tissue of
interest. Schematically,

PK = exposure =% blood concentration = tissue concentration

PD = exposure = blood concentration = tissue concentration =

= interaction, chemical—tissue = tissue response = biological effect

A pharmacokinetic model often is multicompartmental, each compartment cotre-
sponding with a tissue region or body fluid, and consists of polyexponential
equations that describe passive diffusion processes. For example,

dA(D)

—ar = ki pAp(D) — ky pALD), .0

where T denotes time; A, and Ay, amount of drug in a tissue (t) and in the
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Fig. 1.1 General curves that describe a relation between a drug effect in a tissue and the
amount of drug in that tissue (Eq. 1.2)

1.0

0.8 4

0.6 1

0.4 +

Effect, E (arbitrary units)

0.9 - R :",.'

0.0

0 50 100 150 200 250

Amount of drug, A, (arbitrary units)

blood (b), respectively; k; \, and Kp t» transfer rale constant, to { from b and in
the opposite direction, respectively.

A biological effect is most often described with an empirical function, which
shows (log)linear behavior at low concentrations and saturation behavior at high
concentrations, e.g.,

8
E(T) = 44D , (1.2)
. A(DE + A50,8

where A50, denotes the amount of drug required for 50% effect in t; and E,
effect, which may be the death of the malignant cells, Exponent g is a numerical
constant. Its value determines the shape of the curve (Fig. 1.1). In this thesis
‘pharmaco’ modeling is limited to pharmacokinetics,

1.4 MODELING AND SIMULATION

A general definition of a system is an efficiently arranged set of related objects
and their components, To deal with its complexily, the world around us is sim-
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plified by partitioning it into systems, subsystems, subsubsysiems, etc. Thus
broken down, the (independent) parts can be understood separately, often with
the help of models that are further simplifications and idealizations of reality.
Mathematical models are representations of reality, describing it in terms of
mathematical formulae. Static and dynamic models can be distinguished [e.g.,
Rice, 1983]. Static models are a collection of equations, formulae, definitions,
tables, relationships and data that describe a situation or phenomenon, presum-
ably with sufficient completeness. Dynamic models are a collection of the same
objects that describe how a situation changes from one state to the next one. An
advantage is that in this form the mode! becomes explicit and can (relatively
easily) be implemented on a (digital) computer to produce answers from the
formulae that are a function of data, parameters and variables,

Next, simulations can be performed, i.e., subsequent states of the model as
function of time can be calculated. Predictions of the real-life behavior of the
system thus are acquired. Instead of a system, a process may be considered as
well. A process is defined here as a sequence of actions within or between sys-
tems.

Simulation {including modeling) serves two main purposes, process descrip-
tion (including identification) and process control. Both correspond with a more
or less systematic way of generating knowledge in contrast to the empirical
methods of trial and error.

Process description yields insight into the process in an efficient way by
extracting refations from a large quantity of diverse information. In particular,
simulation is useful when no sensors are available to observe essential variables
directly, as often happens with biomedical systems or processes. Through
modeling, assorted experimental observations can be correlated and interpreted
better than with the empirical approach, by explaining phenomena from the
viewpoint of the underlying mechanisms that are incorporated in the model.
Simulation techniques comprise the following components [e.g., Avula, 1987]:
modeling, i.e., arranging the knowledge about the process in a model; perfor-
ming calculations with the model, e.g., a systematic series of input/output
calculations enabling the reconstruction of (the time history of) the state of the
studied systeny; comparing the model predictions—simultaneously adjusting
model parameters, i.e., characteristic constants in the model equations, to their
optimal values—with actual observations to assess the probability of the as-
sumptions used when building the model. If various models can be conceived
of, this approach enables discrimination between them and selection of the most
appropriate one. There is a systematic validation of theories based on interac-
tions between results of simulation and measured results, leading to the (re)-
drafting of work hypotheses. The model is revised and refined until the simula-
tion results no longer conflict with any observed natural phenomenon, unless
discrepancies can be explained and their reasons understood. A qualitative and
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quantitative description of the process results. Through quantification of the
model parameters the (relative) sensitivity of the process for certain input stimuli
is obtained.

Based on the possibility to predict the behavior of the now identified
process, even beyond the observed range, process control deals with finding
those input stimuli that will result in some desired process output as function of
time, Thus, simulation is used to learn how to employ and control a process in
the most favorable way.

Compuler simulation techniques can very well be applied in the field of
biomedicine as a tool to direct experimental research and synthesize results of
various experiments into general concepts. Knowledge and understanding of the
behavior of biomedical systems often is difficult to obtain through measurements
only. The implications of work hypotheses—expressed in the model equations
that also account for established facts-—can be tested through simulations with
the computer model. Comparing the results to experimental observations yields
the probability of the various assumptions,

The other way around, simulation results may lead to the formulation of
new hypotheses about the mechanisms behind a process. Furthermore, based on
simulation results it is possible to determine what additional experiments must
be conducted to verify the chosen model. Model validation, i.e., checking
whether the model predictions do not conflict with any actual observations, is
always required to establish the model’s appropuateness and usefulness for the
intended applications.

1.5 MATHEMATICAL MODELING AND CANCER CHEMOTHER-
APY

Cancer is a disease characterized by disturbances in the normal development of
somatic cells causing an uncontrolied sequence of cell divisions, The malignant
cells invade and destroy healthy tissues. Three basic methods are used to cope
with the various forms of cancer, i.e., removal (surgery), application of ionizing
radiation (radiotherapy) and treatment with cytostatic drugs that suppress tumor
growth (chemotherapy), The action of the drugs may be based on different prin-
ciples (see the Section on Cytostatic Drugs). During the past thirty years chemo-
therapy has become increasingly successful. On the one hand because of the
introduction of new, more effective cytostatic agents, on the other hand because
of the improved administration schemes based on accumulated (empirical) know-
ledge from clinical experience and (pre)clinical research {(experiments with la-
boratory animals). For example, for leukemia the percentage cure, in terms of
five year disease free survival, has increased from 15 to 40-50, depending on
the type of leukemia: acute, chronic, lymphocytic, myelocytic; and other fac-
tors, like the age of the patient and the treatment strategy employed. Still, many
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problems remain to be solved, among which the treatment of minimal residual
disease (MRD) and handling the development of drug resistance,

Relations and interactions between elements of scientific theories can be under-
stood as system models {Brock and Schaeider, 1984]. In a model the actual
conditions are deliberately reduced to a limited number of important aspects. If
the general elements (variables) are of a quantitative nature, i.e., if numerical
values can be assigned to them, then mutual links and relationships can also be
expressed quantitatively in the form of mathematical functions or equations.
Thus, the system becomes a mathematical model.

Biological systems are inherently complex. In general, they are more com-
plex than most technical systems [Garfinkel, 1984] and less observable, Fur-
thermore, often only little theoretical knowledge is available concerning the even
elementary processes in living organisms, though much experimental informa-
tion is available and still rapidly being accumulated. Scattered detail information
should be combined in comprehensive models. Thus, a considerable data reduc-
tion can be achieved, scientific knowledge is consolidated, and a general picture
is presented in a formalized, distinct and clear way. The state of the art of
computer modeling shows a shift from saving computations (trying to reduce the
need for expensive compulation time) (o considerations of how to represent
biology belter, and pulling together knowledge embodying both heuristics and
incomplete or even contradictory information. Another important function of
modeling is the interaction with experiments, not only for interpretation of
observed results, but to help design experiments, as well as to see to it that the
experiments actually do determine what is nceded to be measured.

For cancer chemotherapy [Brock and Schneider, 1984] the experiments with
living tumor-bearing animals are the basis for both a) the evaluation of scientific
theories (modeling: models are used for checking theories and they provide
insight and new information, leading to new model concepts); and b) the
inference to clinical conditions (e.g., induction therapy to remove the bulk of
the malignant cells, maintenance therapy to consolidate the disease-free state,
toxic side effects),

Continuing development and integration of rational biomathematical models
based on principles already identified, and testing them for compatibility with
much already available experimental and clinical data will lead to models that
will help in planning more effective treatment regimens for cancers that are now
classified as moderately or very refractory to chemotherapy [Skipper, 1986].
For fruitful progression it is important that both the biological concepts and the
arithmetic to be used for modeling are equally good.

Variables to be incorporated in the models comprise tumor and treatment
variables. To the former category belong a) the initial composition of the tumor
with respect to sensilive, single and multiple drug resistant subpopulations; b)
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the muration rates from sensitive to single drug resistant cells, and subsequently
from single to multiple drug resistant cells; and c) the population doubling time
(which is assumed to be constant for all sublines, as well as time invariant, i.e.,
there is exponential growth). Treatment variables are d) the log cell kill factor
per dose of each drug; and e) the treatment combination, i.e., the number of
doses of each drug and the time interval between them. Skipper [1986] per-
formed computer simulations with these variables and a model for two-drug
combinations.

But also the tumor environment should be considered. Saiga et al. [1985]
have derived a coefficient of cell variation to describe the heterogeneity of a
malignant population, considering mutational transformations at different rates
(cell sublines adapt better or worse to the tumor environment). Michelson and
State [1987] modeled the influences of a drug therapy on the tumor environment
as a reduced capability of supporting a tumor burden of cerlain size. Rosen
[1986] introduced an element of competition between sensitive and resistant
cells, beside time-dependent drug influence functions,

Acheraya and Sundareshan [1984] point out that systems theory principles
can and should be used in the development of optimal drug administration strat-
egies, Finding the minimum drug dosage that can be administered for kiliing the
number of tumor cells present, while maintaining the proliferation of normal
cells at a safe level, constitutes an optimization problem, This approach differs
from the trial and error simulation runs as performed by Skipper [1986].

While Acheraya and Sundareshan [1987] do not consider resistance phenom-
ena in their model, Birkhead et al. [1984, 1986] do. They allow repeated doses
of a single cylostatic agent, as well as the presence and accumulation of drug
resistance. The latter comprises two elements: that already present at diagnosis
and that acquired in response to and during treatment (e.g., spontancous mufa-
tion or host defense reactions). The log cell kill hypothesis is assumed, as well
as exponential growth and constant treatment intervals, though possibilities for
model extensions are indicated. This model results in expressions for quantities
such as the fractional tumor reduction due to each drug dose, the minimum
tumor size achieved by a treatment, the changing composition of a tumor, etc. It
is useful with respect to evaluating the influences of several & priori assumed
variables and exploring the consequences of the hypotheses on which the clin-
ician builds his treatment strategies. The likely resuits of his choices can be
studied more fundamentally, replacing decisions on purely empirical basis,

Elements from the theories advocated by Skipper [1986] are incorporated in
the models by Coldman and Goldie [1985, 1986a,b] and Goldie et al. [1979,
1982, 1983, 1985, 1986], who illustrated in their papers the use of mathematical
modeling in relation to the development of chemotherapy strategies. They
assumed a spontaneous somatic mutation rate from drug sensitivity to drug resis-
tance and refated it to the drug response of tumors as well as to the expectation
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of cure, Allowing the emergence of cells that are resistant to multiple drugs,
which in fact result in incurability, they could give a rationale for the application
of alternating non-cross resistant chemotherapy as the most effective, risk
nlinimizing strategy.

The somatic mutation model predicts a specific quantitative relationship
between tumor size and probability of cure. The latter is related to both tumor
size and mutation rate to resistance. The most effective way to utilize two
equivalent (i.e., same killing capacity and same rate of mutation) drugs—not
concurrently, e.g., because of toxicity—is in an alternating fashion.

In a later model Goldie and Goldman [1985] found an explanation for the
fact that advanced stage tumors (slow growers) are less curable than smaller
tumors (fast growers). Allowing more cell loss to account for slow growth, it is
obvious that more replication cycles are necessary to reach a certain tumor size.
By consequence, a slowly growing tumor will contain more resistant cells,
because of the higher probability that mutations have occurred, than a fast
growing tumor of equal size,

To evaluate the link between the clinical situation and mathematical model-
ing Dembo [1984], for example, looked into the implications of the somatic
mutation model by Goldie et al, with respect to the management of ovarian
cancer. As this model explains clinical observations (e.g., better response to
first than to later course chemotherapy) better than the constant log cell kill
model, the former’s recommendations of early timing of chemotherapy and
applying alternating non-cross resistant combination chemotherapy should be
considered seriously,

Hokanson et al. [1986] presented a computer based model that simulates the
characteristic features of the clinical time course of human myeloma (Kahler’s
disease, a neoplastic disorder of plasma cells). In this model therapy resistance
is caused by kinetic differences between myeloma cells. Faster cycling cells are
more sensitive. If the duration of the cycle time is a property with a high degree
of heredity, the model is compatible with clinical results for various therapy
schemes (pulsed intermitient or low dose continuous administration).

The purpose of mathematical modeling [Goldie and Coldman, 1986] is to
provide deeper insight into natural phenomena and through this insight to make
accurate predictions about the behavior of such phenomena. Verification of these
predictions will produce further understanding of the processes being studied,
which in turn may lead to modification and enhanced sophistication of the basic
model, which was derived from a set of hypotheses. The experiment for model
validation has to be a fair test of these hypotheses. This requires careful atten-
tion to the assumptions of the model when the experiment is planned. It is better
to utilize models in which the assumptions and relationships are explicit and
well-defined rather than ones that are ill-defined and purely phenomenological.
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Mathematical models incorporating descriptions of tumor growth kinetics, in-
cluding drug resistance development, and the effecis of cytostatic chemotherapy
on established tumors and their microenvironment can be used to investigate the
potential of hypothetical chemotherapy strategies and to idenrify general prin-
ciples for successful rreatinent.

1.6 PROBLEM DEFINITION

In acute leukemia (Fig. 1.2) at diagnosis the average patient (75 kg) already
carries a leukemic cell load of approximatety 10!2 cells (1 kg). With chemother-
apy it is possible to induce a complete remission (CR) in the majority of cases,
i.e., the leukemia disappears below the clinical detection fevel. The problem is,
that with conventional cytological tools one can detect 1 abnormal cell in 20.
One in 1Q0 is the lowest (clinical) detection level, This means that the patient in
remission, feeling well and %pparently cured, may stifl invisibly carry a leuke-
mic cell burden of up to 1019 cells. This situation is called the state of minimal
residual disease (MRD). Effort is put in shrinking the region of invisibility. But
even under ideal circumstances, with advanced techniques like the polymerase
chain reaction (PCR; see Chapter 7) the level of detection is at best 1 in 10° to
108 cells [Hagenbeek, 1992]. In spite of maintenance therapy courses, of which
the efficacy inevitably is much a matter of guesswork due to the unmeasurable
response during MRD, the residual leukemic cells often grow out, sooner or
later causing a relapse of the disease when their numbers have once again
reached detectable levels,

A second problem is the possible presence of drug resistant subpopulations
of leukemic cells. As stated before they may be naturally present or may
develop through natural mutation, They may develop as well under influence of
the exposure to the drug (acquired resistance), From clinical experience it is
known that identical chemotherapy courses, given sequentially, tend to become
less effective. Therapy outcome can be improved by switching to other cyto-
static drugs.

The clinician’s problem therefore is, whether, which and how long mainte-
nance chemotherapy must be given during the phase of complete remission. It
would be a great help if the growth of the malignant cell population during
MRD and the development of drug resistance could be monitored or predicted.

The success of cancer chemotherapy depends on a large number of variables
whose values must be within cerlain ranges. They must operale in concert, but
few variables can be controlled directly. When administration schemes are
designed, decisions must be made about monolherapy or combination therapy
and, for each drug, aboul the choice of 1: the individual dosage level; 2. the
interval between doses; 3: the nuwmber of administrations; 4: the duration of the
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Fig. 1.2 Definition of Minimal Residual Disease in Acute Leukemia
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treatment (=2 X3); 5. the rotal dose (=3X1); and 6: the dose intensity (=5/4).
The route of administration also plays a role, e.g., oral administration or intra-
venous injections (intermittent) or infusion (continuous). Because, these varia-
bles determine the processes of drug distribution in and elimination from the
body, as well as the metabolic processes, that, in turn, determine how long and
with what concentration the cytostatic agent can interact with the tumor, The
problem is that knowledge about the influence of each (separate) variable is very
poor, Yet, the ability to steer the concentration—time courses is very important,
On the one hand the tumor must be exposed as intensely as possible to achieve
the maximum therapeutic effectivity. It is desired that all tumor cells disappear
quickly. On the other hand, just as do most drugs, cytostatic agents show
adverse effects. Nausea and vomiting, loss of hair commonly occur, but also
damage to the bone marrow, intestines and cardiac muscles, Therefore, the
organs concerned should be exposed as little as possible,

Through mathematical modeling and computer simulation the three discussed
problems can be tackled.
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Fig. 1.3 Survey of the Research Area in Cancer Chemotherapy

MULTIDISCIPLINARY INTERESTS

Medicine: therapy strategy for cures

Biology: knowledge of the biological mechanisms and principles
Pharmacology/Chemistry: drug effects/drug development
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from KNOWLEDGE to
FUNDAMENTAL »  APPLIED
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1.7 MATHEMATICAL MODELING AND SIMULATION TO OP-
TIMIZE TREATMENT

As discussed above, cancer chemolherapy necessitates seeking compromises,
weighing profits and penalties to derive the optimal therapeutic ratio. Therefore,
chemotherapy is a very suitable subject for the application of optimization tech-
nigues in order to improve—in advance, by evaluating several possible treatment
strategies—the probability of good treatment resuits. The modeling approach
should be applicable throughout the whole trajectory from basics to clinical
application (Fig. 1.3).

Given a certain patient, suffering from a certain type of cancer, and given
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Fig. 1.4 Approaches to MODEL CONSTRUCTION for Process or System Simulation
[Schweppe, 19731

White Box approach:
physical

from bioiogical } knowledge = construct a theoretical model
chemical

Disadvantage: fack of proper knowiledge may hamper precise modeling

Black Box approach:

no & priori (phys./biol./chem.) knowledge; use l(nput)/Qutput) signals to construct a
model that describes a system’s response {0} to some input {I)

Disadvantage: this yields no new phys./biol./chem. knowladge

Gray Box approach.
- problem definition
use available {partial} knowledge
from preliminary measurements {test range}
and analyses (qualitative behavior}
for model selection and designing of additional experiments
- conduct experiments (data acquisition)
- check and adjust the model for consistency with theoretical hypotheses and actual
data (identification & validation)
- perform simulations to develop control strategies

the present spectrum of available cytostatic drugs, ideally it should be possible
to determine 1) the drug or combination of drugs, 2) the total dose, 3) the dose
rate, i.e., the time schedule for continuous or intermittent administrations, and
4) the route of administration that would yield the best results,

The objective is to cure the patient by killing all malignant cells as quickly
as possible, with a minimum of complications and discomfort, as caused for in-
stance by inevitable adverse effects of the presently used cytostatic agents.

Of course it will be difficult, if possible, to generalize treatment strategies
because of interpatient variability, not only concerning tumor load and tumor
location (even for a same type of cancer) but the response of both tumor and
healthy tissues to the cytostatic drugs as well. However, best treatment strategies
for certain classes of patients and tumors may be identified.

To that purpose, a patient and the cancer growing inside him can be regard-
ed as a system, which is to be perturbed by the chemotherapy. The state of the
system may be given by the number of tumor cells and the number of normai
tissue cells at risk,

A requirement is the existence of (mathematical) models, or the feasibility to
develop them, A mathematical model alfows concise but compact description of
the qualitative and quantitative system behavior in terms of the dynamic respon-
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Fig 1.5 Scheme of FACTORS to be Considered for MODELING CHEMOTHERAPY of
LEUKEMIA

Cell (Sub)Population Size as Function of Time

is determined by

- ENVIRONMENTAI FACTORS
(e.q., site: growth differences in bone marrow, spleen or liver)

INITIAL CONDITIONS
{population size at diagnosis, type of leukemia)

- GROWTH MODEL
{cell proliferation, migration, mutation to resistance, relation with chronological time
andfor cell population size)

- CHEMOTHERAPY MODEL
{administration regimen, pharmacokinetics (processes of distribution, metabolism,
elimination on tissue level; natural processes vs artificial enhancement {"magic
bullets"}}, drug effect (fog cell kill), pharmacodynamics (processes on  cellular/
molecular level), recruitment (accelerated cell proliferation triggered by treatment),
relation with chronological time and/or cell population size}

- BOUNDARY CONDITIONS
{e.g., max growth rate, toxicity related restrictions, patient characteristics (e.qg.,
age, weight, organ function))

se to a certain input in the form of a drug administration schedule, Moreover,
next to providing convenient means of analytical evaluation mathematical model-
ing atso allows time-saving numerical manipulations on the computer. Such
models must be based upon the insight into the population dynpamics of tumor
cells, This means that it must be known how a tumor grows, first without inter-
ference, next when a certain drug administration regimen is applied. Such know-
ledge often is not, or only fragmentarily present, or must be deduced first from
several unrelated sources. Therefore, the most appropriate way of setting up a
model is the gray box approach (Fig, 1.4 {Schweppe, 1973; Bohlin, 1994}).
Both theoretical and experimental considerations are used to select the proper
model and thus identify the studied system. Numerical values of model param-
eters can be obtained by, for instance, maximum likelihood estimation.
Maximum Likelihood Estimation (MLE) requires the formulation of a func-
tion that expresses the likelihood of the measured data in terms of a set of
unobserved parameters that represent the source distribution. This likelihood
function is defined by the joint probability density function (pdf) of the measur-
ed data in terms of the unobserved parameters to be estimated in the task.
Maximizing this likelihood function with respect to the unobserved parameters
yields estimates with which the measured data are most consistent [Brailean et
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Fig 1.6 Schematic View of the Cell Cycle

Just after birth the cell is functionally active in the G; phase. After a certain time
preparations for cell division are started; in the 8 phase the cell synthesizes DNA (duplica-
tion of genetic material) to double the original amount, The cell then pauses some time in
G, phase. Next, actual cell division takes place in M phase {mitosis). Two daughter cells
are produced, each starting in G;. The cycle time, T, required to complete the cell cycle is
a variable distributed between a certain minimum value and infinity (the exact shape of the
distribution depends on the type of celll; after a certain time interval, cells that started at
the same time point thus may be at different positions in the cycle. Some {resting} cells
stay in G; for a very long time. An equivalent model can be buiit by allowing each cell a
constant time interval T, to complete the cycle and then assuming that it vields on
average A {1=<A=<2) daughter cells. The quantity A-1 characterizes the cell production in
relation to the potential cell production, and is called the growth fraction, GF. Together
with T, and the cell loss factor, ® {a measure of the difference between cell production
and actual population doubling time}, GF determines the growth of the cell population.

CELL CYCLE FREQ, CYCLE TIME DISTRIBUTION

division
cycle time
phases
G,
s (]
G,
M
al., 19923,

Figure 1.5 gives a subdivision of factors that should be considered for
modeling. On the one side is the tumor growth model with initial and boundary
conditions, on the other side there is the chemotherapy model with pharmaco-
kinetic processes (distribution/elimination) and dose—effect relationships (log
cell kill per unit dose).

Of course, as with many biomedical systems, there remains the problem of
observability, or better, lack of observability. Therefore, look separately at
subsystems first: unperturbed fumor growth, drug distribution and clearance,
response of tumor and normal tissue cells to exposure to drug concentrations,
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Fig. 1.7 Stochastic Model for Population Growth
AY Given a certain initial population size, the celis are distributed over a number of age

compartments, corresponding with the cell cycle which is assumed to last a constant
vaiue of T,. The allocation takes place with the aid of a randem number generator (RNG),
assuming that an unperturbed cell population has an exponential age distribution {twice as

many new born cells as mitotic cells [Matthews, 19881).

AGE DISTRIBUTION

T
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B} The development of the population is simulated by moving cells from one compartment
to the next one during small time increments. When moving a cell from the last compart-
ment back into the first one, first it is determined (again with the RNG) whether the cell
will disappear {chance p,, e.g., natural cell death). If not, it is checked whether the cell

will divide (chance p,) into two celis.
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Fig. 1.7 (Continued)

C) For large cell populations the relation C =C_-{14p-py-py'p,yl can be derived for
growth during consecutive cycle times, In this way growth curve are generated {popula-
tion size as function of time}. The chances p, and p, may vary as function of the popula-
tion size. For the leukemias considered in Fig. 1.8, T,=14 h (BNML) and T ,~3.2 d
{median value for AML, range 0.7-12.2, determined by in vive BrdUrd and 3H-Thymidine
double labeling {Raza et al., 1987]}.
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With a few tllustrations an impression is given of how simulation for cancer
chemotherapy may be applied. Note that not all model assumptions used in the
simulations have been verified (yet).

Figure 1.6 shows how cells move through a cell cycle before reproduction, A
model for cell proliferation is shown in Fig, 1.7, Figure 1.8 demonstrates that
such a model can yield realistic growth curves, assuming that during tumor
development celis keep a constant chance of dying while their chance of produc-
ing offspring decreases linearly with the population size (the latter property is
also seen in normal tissues: an organ grows only to a certain size).

Figure 1.9 divides a cell population into fractions that are sensitive or
resistant to two cytostatic drugs. Simulation results for two different treatment
strategies based on this model are given in Fig. 1.10. The validity of the log cell
kill hypothesis [Skipper, 1986] is assumed when modeling the effect of a drug
dose, 1.e., a same dose always kills a constant fraction of the (sensitive) cell
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Fig. 1.8 Growth of Leukemic Cell Populations

Panel A shows the growth of leukemic {BNML) cells in the bone marrow of the BN rat,
after i.v. inoculation of 107 BNML cells on day zero. The measured points are derived from
various laboratory experiments. The fitted growth curve {least squares method) consists of
an exponential component {constant population doubling time, 0.8 d} and a contiguous
Gompertz curve {from day B.6 on, at a population size of 1.8x10% cells, the doubling time
T4 increases exponentially, with retardation constant 0.4 dahy.
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population. The magnitude of such a fraction is experimentally determined for
each cytostatic drug, e.g., as shown in Fig, 1.1l for the drugs cyclophospha-
mide (CFA) and acridiny! anisidide (AMSA). By doing simulations with the cell
cycle model it is possible to check whether the drug might be cell cycle phase
specific, i.e., whether the drug affects cells only when they are in a certainphase
of the cell cycle (Chapter 2.3), Likewise, the instantaneous nature of the cell
killing effect of a drug can be tested by using instantaneous and gradual drug
influence models and checking simulation results against experimental observa-
tions (Chapter 2,2).

1.8 AIM OF THE THESIS

The purpose of this thesis is to show advantages of the application of techniques
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Fig. 1.8 {Continued}
Panel B shows similar curves, obtained for human acute myelocytic leukemia (AML,

observed median value of T, =3 d} with the simulation moda! of Fig. 1.7 by keeping the
death probability {p,) constant while decreasing the probability of cell division (pq) linearly

with popuiat:on size,
Relapse {5x10'° calls) on day 240 after treatment {clinically observed median value after

autologous bone marrow transplantation (ABMT}} may originate from different quantities
of residual cells as long as the true course of T, remains unknown,
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developed in general systems theory to solve biomedical problems and generate
knowledge. Biological systems are compiex and often understood to a very
limited extent only. In general, the predictability of system responses is cor-
respondingly poor. Through modeling, it will be possible to explain at least part
of the observed system responses. Thus, fluctuations in a response may not fully
disappear—e.g., due to variation in individual patients—but they will be
reduced.

Two different worlds have to be united. That of the clinicians, who have to
live with large unexplained variations in observed (system) responses, face appa-
rently contradicting results of a multitude of different (experimental) treatments
that each throw light on only a limited aspect of the studied phenomena, there-
fore are obliged to base pragmatic solutions ("rules of thumb") for their individ-
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Fig. 1.9 Schematic View on Relations between Subpopulations

There are four subpopulations: cells in compartment S are sensitive for both cytostatic
agents A and B; cells in Ry are resistant for drug A; cells in Ry are resistant for drug B;
and cells in Rpyg are resistant for both drugs. Double resistant celis develop from single
drug resistant cells by mutation; single drug resistant cells in turn develop from sensitive
cells. Per unit time and per cell in every subpopulation b cells are born and d cells
disappear. A fraction m of the difference mutates into another subpopulation, the
remainder stays in the same subpopulation. In principle the value of m may differ for the
different subpopulations, but in this case the somatic mutation rate m=10"% leukemiais
kept constant. This also applies to the b and d values in the subpopulation: no difference
between subpopulations, though {b-d} may be dependent on total population size.

The equations for population size as function of time {C denotes the total number of cells}
can be written as: :

Cit+At) = Cl{t} + At - dC{t)/dt, where
dClt)/dt = dS/dt + dRp/dt +dRg/dt + dRpp/dt and

dS/dt (i-=2m} 0 0 © s
dRp/dt o) - m {1-m) 0 0 . Ra
dRg/dt m 0 (1-m} O Re |
dRpgldt 0 m m A Ras
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Fig. 1.10  Example of Chemotherapy Simulations in the BNML

At the start of the simulation the leukemic celf population consists of 1.65x10% sensitive
cells that would double in 19 h if unperturbed exponential growth is allowed. Drug
resistance develops at a spontanegous mutation rate of 1 cell in 10° divisions. Brug
administration reduces the sensitive population with a dose dependent number of decades
{q log celi kil means a reduction with a factor of 10°9 according to an experimentatly
determined dose-—effect relationship {see Fig. 1.11), Different treatment strategies are
compared.

Monotherapy. Two high doses of AMSA {20 mg/kg causing 4.7 LCK each) at 12 and 84 h
are given, and nine fow doses (5 mg/kg causing 1.2 LCK each) divided over two series,
e.g. to prevent toxicity problems, at 24, 36, 48, 60, 72 and 96, 108, 120 and 132 h. The
total dose amounts to 85 mg/kg, administered in 132 h, so dose intensity is 85/132 =0.64
mga/{kg.h). At first the ceil population decreases but after 330 h it appears to reach the
initial size again. The simulation model predicts that AMSA treatment could have been
stopped after 72 h. Further treatment has been in vain as all sensitive cells had already
been eradicated at that moment and the remaining resistant cells are not affected by
AMSA. Worse, normal tissues have been unnecessarily put at risk.

Combination therapy. Next to low doses of AMSA {5 mg/kg causing 1.2 LCK) at 12, 24,
36, 48 and 108, 120, 132, 144 h a few doses of CFA are given (60 ma/kg causing 2.7
LCK) at 60, 72, 84 and 96 h. The totat dose, expressed in AMSA equivalents—the same
LCK is attained with a CFA dose which is 5.2x as large as the required AMSA dose—as
8xb5 +4x60/5.2=86 my/kg is given in 144 h, so dose intensity is 86/144=0.60
mg/(kg.h}. Despite the almost equat exposure of the patient with respect to the monother-
apy the model now predicts cure {< 1 cell left). The total population is destroyed in 120 h.
The last two AMSA administrations at 132 h and 144 h have apparently been superfiuous.,
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Fig. 1.11 Dose Effect Relationships for BNML and Two Cytostatic Drugs

Observations for AMSA {acridinyl anisidide) and CFA {cyclophosphamide) and BNML cells.
Regression lines show linear relationships between dose and log cell kill (correlation
coefficient, r=0.93 and r=0.87, respectively).
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ual patients on some hazy notions about the true mechanisms behind the proces-
ses. And that of the theoretic physicists, striving for exact formalisms to
describe and understand the processes, but who sometimes are more fixed on the
elegance of their mathematics than on gathering experimental "evidence", per-
haps by lack of laboratory facilities and skilled technicians’ assistance, and who,
conversing in "cryptic" formulae, can happily live with 1.75 children and allow
0.24 viable cells. Obviously, there must be fruitfulness in sharing views. Other
interested parties may be those educated in biology, biochemistry or pharma-
cology.

As an illustrative example the problem of optimization of chemotherapy of
leukemia is chosen. In this rather vast field a limited number of subproblems are
addressed, They mainly concern a myelocytic leukemia growing in a laboratory
rat (BNML). The subproblems considered include the identification of a system
of pharmacokinetics of a cytostatic agent, and leukemia growth under various
boundary conditions,
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1.9 EXPERIMENTAL DATA
1.9.1 Labdratory Animals

The in vivo data discussed in this thesis were obtained, in general, from ex-
periments conducted with inbred Brown Norway rats, BN/Bi/Rij, raised in the
Rijswijk colony. Animals used were 10-12 weeks old at the start of the ex-
periments. The total body weights of male animals were about 165 g, of female
animals about 150 g. Occasionally, older rats were used, with ages between 13
and 16 weeks and average weight of males: 220 g. In view of the expected life
span of 36 months for rats, these animals can be considered young adults, The
rats always had free access to water and pelleted rat food.

1.9.2 Brown Norway Rat Leukemia Model (BNML)

In the early seventies a leukemia was discovered at the Radiobiological Institute
TNO in a female BN rat that had been repeatedly injected with carcinogenic di-
methyl-benzanthracene (DMBA). The disease appeared to be an acute promyelo-
cytic leukemia and was called Brown Norway rat Myelocytic Leukemia
(BNML). The BNML cell line can be maintained by transplantation, i.e., leuke-
mic cells that in a late stage of the disease have been isolated {rom the spleen or
the bone marrow of a leukemic animal are able to replicate in a normal BN rat,
This ability persists if the isolated BNML cells have been kept stored in frozen
condition for quite some time. Transfer of small numbers of donor BNML cells
by means of intravenous (i.v.), subcutaneous (s,¢.) or intraperitoneal (i.p.)
injection of single cell suspensions causes leukemia in recipient rats. As few as
25 BNML cells i.v. yield a 50% risk of leukemia development (see Chapter
6.2).

Because of various similar properties, the BNML is considered a very good

model for human acute (pro)myelocytic leukemia (AML) [Hagenbeek and Van

Bekkum, 1977; Van Bekkum and Hagenbeek, 1977), The most important among

such properties are:

-1) Striking similarities with respect to cytology, cytochemistry and histology

-2) Absence of feukemia-specific antigens

-3) No viral activity has been demonstrated to serve as an etiological agent

-4) Relatively slow growth, due to a low growth fraction (40-50%) and a high
cell loss rate (80-90%) at later stages of the disease; the median survival
time of BN rats after iv. inoculation of 107 BNML cells amounts to 22
days, the leukemic cell load then being about 4x10'© BNML cells (see
Chapter 2.1)

-5) Signs of diffuse intravascular coagulation when the leukemia progresses
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-6) A dramatic decrease in numbers of normal hemopoietic stem cells results in
a severe suppression of normal hemopoiesis
-7y Similar response of BNML and human AML to chemotherapeutic agents

Another property that makes the BNML such a convenient model is the presence
of leukemic clonogenic cells, As BNML can be quantified in an in vivo colony-
formation assay (Chapter 2.1), a variety of experiments can be conducted to
generate data on the behavior of the leukemic cell popuiation. In contrast,
clinical data can never be that extensive.

The BNML rat leukemia model has been, and still is, used in over a dozen
European and American research centers for various preclinical investigations
on the diagnosis and treatment of human AML. A comprehensive survey of
BNML studies performed at the former Radiobiological Institute TNO can be
found in Hagenbeek and Martens [1991] and Martens et al. [1990a,b].

1.9.3 Generation of Data

For cell kinetics experiments the BN rats were inoculated intravenously (i.v.)
with leukemic cells, usually 107, so as to induce disease. The development of
the leukemia as function of moculttm size and growth perturb'ltion {none,
cytostatic drug administration or total body irradiation) was momtmed in several
ways (see Chapter 2.1).

For pharmacokinetics experiments leukemic BN rats were injected (7.v.)
with a single dose of an anticancer drug. Its concentrations were measured in
various organs af various time points after the treatment (see Chapter 4).

The BNMI. has been studied extensively with respect to problems met in the
area of bone marrow transplantation (BMT) [Martens et al., 1990a]. Among
these studies are the conditioning regimens (marrow ablative chemo-radiother-
apy) before BMT, the removal of malignant cells from an autograft, and treat-
ment-related complications such as interstitial pnenmonia and graft-versus-host
disease [e.g., Hagenbeek and Martens, 1983, 1987; Hagenbeek et al., 1989,
Kloosterman et al., 1993; Van Bekkum, 1993]. Mathematical analyses and
deductions about BMT made in this thesis (Chapter 6) are based on the basic
experiments conducted with the BNML and on clinical observations (survival
data of patients that are treated in different ways) derived from the literature.

1.1 OUTLINE OF THE THESIS
In the following chapters the modeling approach is applied to address the
problems raised in Chapter 1. Mathematical models are built and—employing

parameter estimation and system identification techniques—tested on the basis of
available biological data, and results of computer simulations are analyzed to
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better understand various processes that are relevant for chemotherapy of leuke-
mia.

First, more must be learnt about how the leukemic cell population develops
in vivo, especially in the situation of MRD. In Chapters 2 and 3 the cell popula-
tion dynamics of leukemia growth will be dealt with, In Chapter 2 the BN rat
leukemia (BNML) will be discussed. To show how the necessary input data for
the developing the models were obtained, in Chapter 2.1 an overview is given
of the basic experiments, Their results are important for the remainder of the
thesis. In Chapter 2.2 growth of the BNML cell population is examined, as well
as the influence of chemotherapy, applied as a single dose of the cytostatic agent
cyclophosphamide. In Chapter 2.3 a simulation study is described to further
investigate the influence of chemotherapy. Here, the cytostatic drug AMSA is
given as a series of daily doses. A first approach to modeling the development
of drug resistance is the subject of Chapter 2.4. The model for BNML growth
should be validated to see whether the knowledge gained can be applied to
human leukemia. Clinical data on human AML—probably the most appropriate
for testing the model—was not available, However, data on the growth, and
regrowth during and after therapy, of childhood T-cell acute lymphocytic leuke-
mia was willingly supplied by the Department of Imnmnology of the Erasmus
University Rotterdam. In Chaprer 3 these data are analyzed for malignant cell
growth in peripheral blood.

Control of in vivo drug distribution is another important factor for optimal
chemotherapy. Before control is possible, more must be learnt about the mech-
anisms behind the distribution processes. This requires studies in laboratory
animals. In Chapter 4 system identification techniques are applied to the phar-
macokinetics of the drug daunomycin and its metabolite daunomycinot in the
Brown Norway rat.

The system identification technique developed in the previous chapter is
generally applicable. In Chapter 5 it is used in a new method to analyze flow
cytometric DNA histograms. With this tool the cell kinetics of (malignant) cell
populations can be studied. This may yield new information on the progression
of the leukemic cell populations, in addition to the results of Chapter 2.

Bone marrow transplantation is a recent development in the treatment of
leukemia. In Chaprer 6 the application of mathematical analysis to a few of its
problems is discussed. After an introduction to the subject (Chapter 6.1) pos-
sibilities for improving the probability of disease free survival after aflogeneic
bone marrow transplantation are examined (Chapter 6.2). The contributions of
minimal residual disease and leukemic cells reinfused with an autologous bone
marrow graft to the risk of leukemia relapse are compared (Chapter 6.3).

Finally, Chapter 7 comprises a general discussion and comments on a few
developments. It is concluded that in the vast area of optimization of treatment
of leukemia there are many problems that can, and should, be analyzed using
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mathematical models. The problems focussed upon in this thesis form a small,
but important, subset to start with,
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Chapter 2
Cell Population Dynamics of Leukemia Growth in the Brown

Norway Rat

In this chapter the dynamics of in vivo leukemia growth will be examined, The
unperturbed development of leukemic cell populations, as well as the influence
of radio-/chemotherapy in terms of log cetl kill and development of drug resis-
tance, were studied first in the BNMIL. laboratory model, Later, the application
of preclinical findings to actual clinical data is discussed, i.e,, the treatment of
several cases of childhood T-cell acute ymphocytic leukemia (Chapter 3).

2.1 Basic Experiments and in vivo Growth

2,1.1 BASIC EXPERIMENTS

Various experiments have been conducted to generate basic data on in vive
growth of BNML in the BN rat [Hagenbeek and Martens, 1981, 1982, 1985,
1987a).

2.1.1.1 Homing and Lodging of BNML Cells in the Recipient Rat

Labeling with radioactive chromium (yielding measurable quantities of Sler in
more than 90% of the BNML ceils) revealed that the bulk of the BNML celis,
injected i.v,, goes to and scttles in the liver, the spleen and the bone marrow.
Within a few hours 55%, 10% and 2.5%, respectively, of the inoculum is found
in these organs, Very low percentages arrive in other organs. Apparently, only
in the liver, the spleen and the bone marrow BNML cells may find favorable
spots where they can start the process of reproduction (proliferation).

2.11.2 BNML Cell Numbers Transferred and Leukemia Induction

When a number of malignant cells is inoculated i.v. only a fraction will home to
and lodge in favorable places in the recipient such that offspring can be produc-
ed that leads to overt disease. A certain size of the inoculum is required to let
the disease develop in 50% of the recipients. This inoculum size is called the
EDy, value [Hewitt, 1958].

The EDgq value for BNML was determined by inoculating rats i.v. with low
numbers of BNML celis (1 to 1000). In each group of 6 rats, who were given a
same dose of BNML ceils, the percentage of leukemia-free survivors was
recorded. A probit analysis of the datapoints yielded the EDg, = 24.7 BNML
cells i.v. being required to induce leukemia in 50% of the cases {(see Fig, 2.1).
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2.1.1.3 BNML Cell Numbers Transferred and Median Survival Time of
the Recipient Rat

Various amounts of BNML cells—dose (C) in the range from 103 to 107—were
inoculated i.v, into recipient rats (6 rats per datapoint). Death by leukemia was
awaited and the survival time since inoculation was noted. The median survival
time (MdST) was calculated for each dose of BNML cells. By linear regression
of the MdST—log(C) datapoints the following relationship was established (Fig,
2.2

C = 10~025XMdST + 125 2.0

The MAST after 107 BNML cells i.v. amounts to 22 days. Equation (2.1) im-
plies that each tenfold reduction in cell dose (1 log) corresponds with 4 days ex-
tra survival. The other way around, from an observed increase in life span the
corresponding decrease in cell numbers (dose) can be calculated from Eq.(2.1).

2.1.2 DETECTION AND QUANTIFICATION METHODS

Several methods are available to detect and quantify leukemic cells in a (tissue
or body fluid)} sample. The methods mentioned below—in order of increasing
sensitivity, i.e,, ability to detect cells that are present in decreasing frequen-
cies—are applicable only to preciinical studies. There, experimental animals can
be sacrificed and/or many (large) samples can be obtained. Exceptions may be
the methods of direct counting and of flow cytometry, which may be used with
human (blood) samples and/or (tissue) biopsies. In those cases, however, malig-
nant cells wiil only be detected if their frequency in the sample is relatively
high. Because clinical samples generally are small, due to processing time lim-
itations and/or ethics in patient handling. The clinical detection level—below
which the presence of malignant cells goes unnoticed—amounts to more than
1010 malignant cells, i.e., 1% of the typical leukemic cell load of 102 leukemic
cells (1 kg) at diagnosis. With new detection methods (sce Chapters 3 and 7)
nlaJignlalltscelis may be detected when they are present in frequencies of one in
10% or 10°,

2.1.2.1 Organ Weights

When, after i.v. inoculation, BNML cells home to and lodge in the liver and
spleen of the rat the weights of these organs slowly increase with time as several
BNML cells will form growing colonies, Therefore, the excess weight (= total
weight - normal organ weight in a healthy animal) may be attributed to the
leukemic cell load. The weight of 107 BNML cells being [ g, the excess organ
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Fig. 2.1 Determination of the EDg(, value for BNML. Shown are observed datapoints and
the dose—response relationship with 95% confidence limits after probit analysis
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weight can be converted to a number of cells.

The organ weight parameter obviously yields very rough estimates of the
leukemic cell burden., The increase in weight must be considerable before a
significant deviation from normal values (spleen: 0.5 g, liver: 10 g) can be
detected, Thus, basically, the method is useful in late stages of the disease,
when the fraction of leukemic cells is larger than 0.1,

In Fig. 2.3 the development of spleen, liver and total body weight after
inoculation of 107 BNML cells is illustrated.

2.1.2.,2 Counting based on Morphology (Quantitative Cytology)

Based on cytological staining procedures and morphological characteristics it is
possible to detect and count leukemic celfs under the microscope if they are
present in frequencies of 0.01 or farger. The leukemic ceil load is estimated
from the sample counts by correcting for the total numbers of cells per organ as
determined by cell counting or organ weights.

2.1.23 Flow Cytometry

The monoclonal antibody (MCA), Rm-124, specifically binds to an antigen that
is present in high density on the surface of BNML cells. This MCA itself can be
conjugated with fluorescein isothiocyanate (FITC). Thus, when running a cell
suspension through a flow cytometer, BNML cells—if they are present in
frequencies larger than 0.0001—can be distinguished from other cells because of
the high intensity fluorescent signal evoked from the FITC+Rm-124 label by
laser light excitation. (See [Martens et al., 1984; Martens and Hagenbeek, 1985]
for details on this method; see Chapter 5 for the principle of flow cytometry).

2.1.24 Clonogenic Leukemic Stem Cell Assay

This method is also known as the "leukemic colony forming unit-spleen” assay
(LCFU-8; see Table 2-1). It is based on the fact that & certain fraction of the
BNML cells that are inoculated /.v. into a normal recipient rat will cause the
development of cell colonies on the surface of the spleen, i.e., white spots that
can be easily seen and counted on day 19-20,

It is assumed that cach colony is founded by one inoculated BNML cell, It
was experimentally determined [Van Bekkum, 1977] by an assay based on the
one for normal hemopoietic stem ceils [Lahiri et al., 1970]—as briefly described
in Appendix A—that, on average (with an accuracy of approximately 10%), one
out of every 500 BNML cells present in the inoculum yields a spleen colony,

Thus, it an inoculum from a donor rat contains Ieukemic cells, the actual
number can be deduced from the counted number of colonies on the surface of
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Fig. 2.3 Development of spleen, liver and total body weights after /.v. transfer of 107
BNML cells on day 0 (solid lines). On day 13 a single dose of cyclophosphamide {100
ma/kg) is given iv. (dashed knes), Bars represent 1 SE (sometimes hidden within
symbol); n=23 rats per datapoint
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Table 2-1 injection of known numbers of leukemic (L) cells (a,b) results in a number

of colonies to be counted on the spleen {f xa,fxb). An experimental method to deter-
mine the dilution factor f is described in Appendix A, The other way round, when an
unknown quantity of L-cells is injected and ¢ colonies are counted, it can be deduced
that this unknown quantity must have been c/f L-cells

LCFU-S ASSAY

linear relation between the number of leukemic cells injected /i v.
and the number of colonies on the spleen surface

nr. of L-cells nr. of spleen colonies
onday 0 on day 20
a fxa
b fxb
c/f c
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Fig. 2.4 Limits of detection of leukemic cells in the BNML [from Hagenbeek, 1292}

weight
morphology 4

o
raMen

promyslocyte

MoAb

the spleen of the recipient rat, multiplied by 500. Subsequently, by assuming a
homogeneous distribution of feukemic and normal cells in the organ from which
the inoculated sample was taken, the leukemic cell load in that organ can be
estimated, The detection limit of this method is at the level of one leukemic cell
in 10° - 10° normal cells.

2.1.2.5 Survival Time Bio-Assay

This assay is based on the established refationship (Section 2.1.1.3) between the
number of i.v. inoculated BNML cells and the median survival time. Several
rats are inoculated with cells from a sample, e.g., a bone marrow sample from a
leukemic rat that has been treated a certain time before with a cytostatic drug.
After registering the rats’ survival times the MdST is determined. The unknown
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Fig. 2.5 Growth of leukemia in the liver after /.v. inoculation of 107 BNML cells on day
0, as observed with various detection methods during unperturbed growth (A} and during
regrowth after cyclophosphamide treatment {single /.p. dose, 100 mg/kg} on day 13 (B).
{0-0: microscopy counts; ww flow cytometry; ©-0: survival time bio-assay. Bars
represent 1 SD; n=3)
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quantity of BNML cells in the donor rat’s sample, C, then can be estimated
using Eq.(2.1). Strictly speaking, thc method is valid for the quantification of
leukemic cell numbers between 10° and 107, corresponding with MdSTs
between 38 and 22 days. Outside this range the direct C—MdST relationship
may no longer hold with good accuracy. If used for detection pmposes only,
however, the method is suitable for leukemic cell frequencies from 108 to 1.

Figure 2.4 summarizes the detection limits of the methods mentioned above.
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Fig. 2.6 Growth of leukemia in the spleen after iv. inoculation of 107 BNML cells on
day O, as observed with various detection methods during unperturbed growth (A) and
during regrowth after cyclophosphamide treatment (single 7.p. dose, 100 mg/kg) on day
13 {B). {©-0: organ weight; o-0! microscopy counts; wv: flow cytometry; 0-0; survival
time bhic-assay. Bars represent 1 SD; n=23)
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2.1.3 IN VIVO LEUKEMIA GROWTH

At various time points during 25 days after i.v. inoculation of 107 BNML cells
groups of § BN rats were sacrificed and the leukemic cell loads in four main
target organs—liver, spleen, bone marrow and blood--were determined. All of
the detection and quantification methods discussed were used,

Actually, the leukemic cell numbers in liver and spleen samples were
measured; the total leukemic cell loads in these organs were then calculated on
the assumption of a homogeneous distribution of BNML and normal cells, The
leukemic cell load in bone marrow is based on measurements in femoral bone
marrow; it is assumed that femoral bone marrow accounts for 2.5% of the total
amount of bone marrow [Colly et al., 1984a]. In peripheral blood the number of
leukemic cells was determined per ml,
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Fig. 2.7 Growth of leukemia in the bone marrow after i.v. incculation of 107 BNML cells
on day 0, as observed with various detection methods during unperturbed growth (A}
and during regrowth after cyclophosphamide treatment (single f.p. dose, 100 mg/kg) on
day 13 {B). {0-0: microscopy counts; vv flow cytometry, a-s: LCFU-S assay; 0-0:
survival time bio-assay. Bars represent 1 SD; n=23})
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By repeating the experiments several times, with quite large time intervals in
between, it was checked that the resulting growth patterns are reproducible,

Results are shown in panels A of Fig. 2.5 (liver), Fig, 2.6 (spleen), Fig. 2.7
{(bone marrow) and Fig. 2.8 (peripheral blood). In panels B of the same figures
results are presented from similar experiments, which examine leukemia re-
growth after treatment rather than wnperturbed leukemia growth. The animals
were now followed for 42 days. Treatment consisted of a single i.p. dose of 100
mg/kg cyclophosphamide (CFA) on day 13,

For any random measurement time point, the spread in the observations is
considerable, both for individual data from a same detection method and for data
from different detection methods. General patterns in the time courses, however,
can be recognized, They are similar for all organs, Concave time-courses of the
data on the semi-log plots indicate decelerating growth rates.

The experimental data were used for modeling unperturbed and chemother-
apy perturbed leukemia growth. Best fit parameter values of growth curves, cor-
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Fig. 2.8 Growth of leukemia in the peripheral blood after /v, inoculation of 107 BNML
cells on day O, as observed with various detection methods) during unperturbed growth
{A) and during regrowth after cyclophosphamide treatment (single /.p. dose, 100 mg/kg)
on day 13 (B). {vw flow cytometry; a-a: LCFU-S assay; 0-D: survival time bic-assay.
Bars represent 1 SD; n=3}
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responding with several different models, were determined and compared to
identify the best description of the development of the leukemic cell populatlon
(see Chapter 2.2).



2.2 BNML Growth Perturbation by Cyclophosphamide!

At present, treatment of human acute leukemia often starts successfully with the
induction of a comlplete remission by chemotherapy, Initial treatment reduces a
typical load of {02 leukemic cells (1 kg) by at least a factor 100. As it is
impossible to detect a tumor of 10 g or less by standard clinical cytologic
methods, all that can be said is that the actual number of surviving cells may be
anything between zero and 1010, Because no information is available on the
residual tumor load, also called minimal residual disease (MRD), maintenance
of the state of complete remission is still a major problem. To try and eradicate
MRD cither maintenance chemotherapy or high-dose chemotherapy (e.g., with
cyclophosphamide, CFA) combined with total body irradiation (TBI) and bone
marrow transplantation (BMT) is applied. Failure of these methods, i.c., not aif
clonogenic leukemic cells are eliminated, means a relapse of the disease eventu-
ally.

Therefore, it is very important to gain knowledge about the kinetics of
growth of the leukemic cell population, especially in the “invisible” area of
MRD. If changes in the tumor load, due to both natural (re)growth and under
influence of chemotherapy, can be accurately quantified, then relapse can be
predicted earlier and more effective treatment strategies can be designed.

A way to track down the time course of the size of the leukemic population
is by performing computer simulation studies, using mathematical models for
growth under both unperturbed and under therapy conditions. Various hypo-
thetical growth curves can be tested for adequate description of data obtained
from in vivo experiments. The best fitting curves may be used for extrapolation
into the experimentally invisible area. As long as they do not contradict any
other known physical facts, they may be considered as the most likely descrip-
tion of the growth properties of MRD.

In the past many investigators have employed mathematical models for
tumor growth, It is generally assumed that a natural human tumor develops from
a single transformed cell. Starting at time t = 0 with a single cell the growth of
a population may be modeled with a linear birth process. The population size,
C, will increase exponentially with time if a constant probability of cell birth, p,
is assumed [Iversen and Arley, 19501, i.e.,

TA manuscript has been published as:
F.W.Schultz, A.C.M.Madens and A.Hagenbeck (1987) Computer simulation of the progression
of an acute myelocytic leukemia in the Brown Norway rat, Comput Math Applic 14:751-761,
and in: M. Witten (ed) Mathematical Models in Medicine, Advances in Mathematics in Comput-
ers and Medicine 2 (1988) Pergamon Press, New York.
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W) = exp(p). @.2)

This will still be the case if, more realistically, a death process is modeled as
well, again with a constant probability [Neyman and Scott, 1967]. The growth
rate will be

dCHidt = GF- (), (2.3)

where the growth fraction GF is a constant depending on the characteristics of
the specific tumor investigated (i.e., cell cycle time, fraction of resting celis,
death rate).

In practice, experiments starting with a single cell generally will yield some
distribution of population sizes at time t. At some time after initiation the tumor
may even become extinct, Thus, to some extent tumor growth is a stochastic
process, requiring stochastic models. Tumor initiation itself also may be model-
ed as a stochastic transformation process [Whittemore and Keller, 1978].

Also, at some time during their development most tumors appear to deviate
from growing exponentially, The growth fraction obviously depends on popula-
tion size. To account for this phenomenon many researchers have investigated
various growth laws to explain their data, e.g., the logistic equation [Steel,
1977] or the Gompertz equation [Simpson-Herren and Lloyd, 1970]. The ap-
propriateness of these functions is based on empirical curve fitting rather than
on any underlying physical or biological arguments, Especially when a large
range of tumor sizes is involved the Gompertzian law has been demonstrated to
be the most applicable [Steel, 1977; Simpson-Herren and Lloyd, 1970; Laird,
1964; Hanson and Tier, 1982, Sullivan and Salmon, 1972). The growih fraction
then decreases with increasing tumor size according to

GF = AIn(C,,,/C(t), 2.3)

where C.. is the maximum population size for t>c0, and A is either a constant
or, if an aspect of randomness in growth must be introduced, A may be replaced
by a Gaussian white noise process [Smith and Tuckwell, 1974], Effects of
heredity, i.e., absolute randomness being restricted by the fact that daughter
cells behave more like their mother than do their nieces, may be considered
[Prajneshu, 1979]. For similar results with respect to the qualitative aspects
tumor growth with a size dependent growth fraction also may be modeled by a
non-Gompertlz equation [Wette et al,, 1974], Again different models consider
tumor size dependent birth and death rates [Dubin, 1976; Swan, 1977].

In the present study the growth characteristics of an acute myelocylic
leukemia in various organs of the Brown Norway rat, and in the bone marrow
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also the influence of chemotherapy, will be evaluated along the above indicated
lines of curve fitting and simulations. The cell numbers dealt with are relatively
large. The experimental data are assumed to reveal the development of the mean
population size. Therefore, no stochastic effects will be considered, but only a
population size dependent growth fraction,

2.2.1 MATERIALS AND METHODS
2.2.1.1 The Rat Leukemia Model (See also Chapters 1.9 and 2.1.1)

The Brown Norway acute myelocytic leukemia (BNML) was induced with
9,10-dimethyl-1,2-benzanthracene in a female Brown Norway (BN) rat. Within
the BN/BIi/Rij rat strain BNML is transplantable by cellular transfer. As few as
25 i.v. inoculated BNML cells cause the development of leukemia in 50 % of
the test animals [Hagenbeek and Martens, 1985]. The principal farget organs are
the liver, the spleen and the bone marrow. The leukemic cell load at the time of
death amounts to 2x10'0, The fact that BNML behaves very much like human
acute myelocytic leukemia (AML) explains the relevance of the disease for use
in experimental tumor treatment studies. Some major properties are: a} a slow
growth rate; b) the presence of clonogenic leukemic cells; ¢) a severe suppres-
sion of hemopoiesis owing to an absolute decrease in normal hemopoietic stem
cells (CFU-8); d) a response to chemotherapy similar to that of AML.

2.2,1.2 The Cytostatic Agent Cyclophosphamide (CFA)

CFA was discovered in 1958 and since has been the most commonly used alkyl-
ating agent in studies of clinical and experimental cancer chemotherapy and
immunosuppression [Friedman et al., 1979]. Applied in doses of 50-250 mg/kg
the compound is metabolized by hepatic microsomal enzymes and thus activated
into its cytotoxic form.

2.2.1.3 Experiments

Data concerning the growth pattern of BNML in the BN rat’s bone marrow
could be derived from the following experiments that had been conducted with
14 weeks old male BN/Bi/Rij rats,

a) a dose—response experiment (See Chapter 2.1.1.3 and Fig. 2.2).

b) clonogenic leukemic stem cell assays (LCFU-S) (See Chapter 2.1.2.4), At
various times after /v, inoculation with 107 BNML cells groups of five rats
were sacrificed and the leukemic cell load in the bone marrow was determined
in-the following way. Femoral bone marrow was inoculated i, v, into recipient
rats that were sacrificed 19 days later. It was experimentally determined—by an
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assay based on the one for normal hemopoietic stem cells [Lahiri et al., 1970]—
that, on average (with an accuracy of approximately 10%), one out of every 500
BNML cells present in an inoculum produces a spleen colony (seen as a white
spot on the spleen surface). Thus, by counting the spleen colonies, the total
mumber of BNML cells originally present in the donor rat’s marrow can be cal-
culated. It is assumed that a femur contains 2.5 % of the total bone marrow,
and that the BNML cells in the bone marrow are homogeneously distributed.

To check the reproducibility of the results this experiment was repeated
several times. Four times with and twice without the inclusion of chemotherapy
consisting of a single i.p. bolus dose of 100 mg/kg CFA at day 13. For both
cases median survival times were determined as well.

¢) dose-survival time bio-assay (See Chapter 2.1.2.5). This experiment
resembles the one described under b. The recipient rat is not sacrificed for
spleen examination, but its time of death owing to leukemia is awaited. Using
the dose—response relationship {(Eq.(2.1) from experiment a), the number of
BNML cells originally present in the donor rat’s bone marrow can be calcufated
from the median survival time (MdST) of the recipient rats.

d) flow cyfometry (See Chapter 2.1.2.3). Flow cytomelry measurements
have the advantage that no recipient rals are required for the quantification of
the number of (residual) leukemic cells in a bone marrow sample. The donor
rat’s bone marrow is incubated in suspension with a monoclonal antibody
(MCA), RMI124, that binds to BNML cells [Martens and Hagenbeck, 1985].
This MCA is conjugated with fluorescein isothiocyanate (FITC), a dye that
emits fluorescence when excited by laser light. When the cell suspension is run
through a flow cytometer, in this way the fluorescing cells are recognized as the
malignant ones. This allows their quantification with respect to the total number
of bone marrow cells.

(Un)perturbed growth of leukemic cells in the liver and the spleen after 10
BNML cells inoculated i.v. was monitored using the same detection methods as
for bone marrow. Perturbation consisted of a single rapid CFA dose (100 mg/kg
i.p.)onday I3,

2.2.14 Data Analysis; Basic Growth Curves

Unperturbed Growth, A general equation that expresses the growth of a cell
popuiation can be written as;

dClde = GF(C)- C(, (2.5)

in which dC/dt denotes the growth rate, C(t) the population size and GF(C) the
growth fraction. GF(C) can be regarded as the fraction of the population that
doubles its size during time interval (t,t+dt), and includes many contributory
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Fig. 2.9 Basic Growth Curves; A) exponential growth, at various doubling times, t, (d);
B} Gompertz growth, for several values of the retardation constant, A td""}; and C) expo-
nential growth with time delay, T {d)
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factors like natural celt loss and tumor environment, If the growth fraction as
function of the population size is known, then Eq.(2.5) can be solved, yielding
an analytical expression for the development of the population size with time t.

Plotting the LCFU-S datapoints on semi-log paper reveals that unperturbed
growth is characterized by an exponential phase (constant population doubling
time) followed by a plateau phase (constant population size). This growth might
be empirically best described by ecither a contiguous exponential and Gompertz
curve, or by a Gompertz curve alone [Hanson and Tier, 1982].

In exponential phase GF(C) is a constant, k,, and so is the population
doubling time, given by t, = In2/k,. The growth rate is directly proportional to
the population size and increases exponentially (Fig, 2.9a), Equation(2.5)
becomes a Gompertz curve if GF(C) decreases exponentially, i.e,,
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dGF(O)ldt = -A-GF(C). (2.6)

The larger the retardation constant A, the faster the curve reaches a plateau
level (Fig. 2.9b). The growth rate first increases to a maximum value, then
decreases to zero. A state of accelerating growth also can be simulated by
making use of a time delay 7.

GF(C) = k, {1 ~ exp(-t/T)}. 2.7

If 7 = 0, then GF reduces to k,; if 7 > 0 and t becomes large, then the growth
carve will tend to the original exponential curve, but shifted a distance 7
forwards in time (Fig. 2.9¢).

Perturbed Growth. The influence of chemotherapy can be modeled by sub-
tracting a growth inhibition term, D(C,t), from Eq.(2.5). This term can be
regarded as the cell quantity removed from the population during time increment
dt. It depends on the therapy regimen and the tumor sensitivity, and includes
environmental changes and augmented cell loss caused by the drug. If D is large
enough the growth rate becomes negative and the tumor regresses. It was found
for laboratory cell lines growing exponentially that a certain drug level kills a
fixed percentage of the population. In clinical practice, where Gompertzian
tumor growth is rather common, medium size tumors often are the most sen-
sitive for chemotherapy. A hypothetical expression for D that agrees with these
findings was derived by Norton and Simon [1977]. In a multipticative way D is
proportional to the level of therapy, L(t), which comprises drug dose, route of
administration, bioavailability and other pharmacokinetic factors; to the popula-
tion size; and to the {unperturbed) growth fraction. Thus:

dCHldt = GRC)- C(O - KL GF(O)- C(). (2.8)

In exponential phase GF is a constant, so, for given level L(t), growth inhibition
in Eq.(2.8) becomes proportional to C(t). In Gompertzian growth the relative
effect of some given L is maximal for intermediate C, for GF-C then is largest.
Therefore, Eq.(2.8) is potentially in accordance with clinical experience.

Several assumptions can be made concerning the shape of the function L(t).
Rapid administration combined with a short plasma half-time (20’ [Donelli et
al., 1984]) of CFA allows an instantaneous drug effect model, in which L(t) is
pulse-shaped. On the other hand CFA must first be metabolized by liver micro-
somes to become an active (alkylating) compound. Secondly, prolonged pres-
ence of CFA in the bone marrow has been demonstrated (e.g., 14 % of the
given dose still after 12 h [Houghton et al., 1976]). Furthermore, cells show an
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Fig. 2.10 Hypothetical functions to describe therapy level (Eq.{2.9)); 1} pulse
{instantaneous); 2} block function; 3} exponential decay; 4) 2 and 3 combined; 5)
parabolic increase and decrease (modes 2-5: gradual drug influence models}
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enhanced rate of death for some three days after a 3 h exposure to CFA [Pohl J,
personal communication, 1986]. So, longer lasting drug influence models also
should be considered. For instance, the therapy level might remain constant for
some time. In view of the nature of drug distribution processes in general
(diffusion and possibly saturation effects) an exponentially decreasing L(t) is
another obvious choice, Also, a combination might be adequate. Finally, the
course of the drug level also might be well described with a parabolic increase
and decrease. The model equations are, for subsequent modes;
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L KL(f) = H-6(,)  for t=t,,
2KLMN =H for=t<tg
3 KL = Heexp{ -k (t-tp} for t=1¢, (2.9

4 KL(f) = ky H-exp{ k|- (t-1)}/[ks + H exp{ -k (t-t}}] for t=1,,
S KLU)y = H {(~)* - (1)} for ty=e<2etp - 1,

where t is time of drug administration, 6(t) is the unit pulse and H, ty, k;, ky
and ky are positive constants (model parameters). Outside the given time
intervals K-L(t) equals zero. The functions are shown in Fig. 2.10. Integration
of K-L{t) over time results in an "area under the curve” (AUC) that reflects the
intensity and/or duration of the drug influence.

2.2.1.5 Data Analysis; Model Evaluation

Curve Fitting, For unperturbed growth the model equations (Eq.(2.5)) were
solved analytically, using the basic exponential and contiguous Gompertz curves.
The time course of the population size then is given by:

G = Cyrexp{in2-(t-1,)1t,} for 0=r=g,,
i) = Cg°exp{1122-[l - exp{—A-(!—rg)}]/(A )} Jor 1>t

(2.10)

The model parameters are the doubling time in exponential phase, t,; the tran-
sition point: time t; and popuiation size C_; and the retardation constant A, If
only Gompertzian growth is concerned, t%len t, = 0. To find the optimum
parameter values (considered as elements of the vector p) the curves (Eq.(2.10))
were fitted to the M observed datapoints C,, (6 using a nonlinear least squares
method. The computer algorithms for either a gradient or a grid search, starting
from some initial estimate, were derived from [Bevington, 1969]. In minimizing
the error function:

2 .
E = Z Wi'{cobs - Ccalc(ﬂ)}i: i=1,..M 2.11)

three weighting options were available: W = | (normal situation, equal
weights); W = 1/C,(t) (statistical weight, favoring smaller observed values
over larger ones); W = I/sd,, (t) (instrumental weight, putting emphasis on the
more accurate data by looking at the observed standard deviations). For the
separate optimization runs each option was evaluated and the one yielding the
best fit was maintained.
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To simulate chemotherapy the optimum parameter values for unperturbed
growth were substituted in Eq.(2.8). Additional parameter values related to each
particular mode of drug action, Eq.(2.9), were estimated by fitting curve:

C{+AD = 6y + At (dCH/dY) (2.12)

to observed datapoints (where At = 0.1 and dC/dt is given by Eq.(2.8)), using
the same least squares routines.

Goodness of Fit, The growth curve that results in the best fit of the observed
data is the best model—if it does not contradict any known physical facts. As a
criterion for the fit the residual sum of squares, SSR can be used:

SSR = % {(Iev?/var,-}, i=1,..,M 2.13)
where

2
de\r’i = {C{)[)S - CCGIC(E)}i’ (2.14)
var; = {dev; - (Y dev)/MIY* I (M-1). (2.15)

Low SSR values mean better fits, Also, especially to compare the fit of several
curves to a same set of observations, the total correlation coefficient, TCC is a
useful measure. As it is defined as:

2 2 4
TCC = {1 - Y dev;/¥, cabs,l.}/, (2.16)

the closer TCC tends to 1, the better the fit.

In general, the simplest model that explains observed data adequately is to
be preferred to any other adequate but more complex model. The Akaike Infor-
mation Criterion, AIC, balances the goodness of fit and the model complexity
by considering the number of observations, M; the SSR; and the number of
model parameters, p, as follows [Akaike, 1974]:

AIC = M-In(SSR) + 2+p. 2.17
Thus, the model with the lowest AIC value is to be preferred.

Computation. All programs were written in FORTRAN 5 and used on a DATA
GENERAL Eclipse MV/10000 minicomputer.
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Fig. 2.11 Bone marrow: Fitted growth curves and datapoints {with standard devia-

tions) from a single series of LCFU-S experiments; instantaneous CFA influence model

unperturbed growth

A: Exponential + Gompertz, TCC=0.98895, SSR=4.00, t,=8.20+1.88 d,
C,=1.24x10%41.25x10%, 1,=0.83+0.31 d, A=0.19%0.23 {1/d);

B: Gompertz, TCC =.98480, SSR=4.70, t,=0.0 d, Cg=3.07x103:t3.03x103,
t,=0.30+0.03d, A=0.16+£0.02 {1/d);

CFEA treated
C: TCC<0.00001, SSR=5.30, 5.5 LCK, regrowth as A;
D: TCC<0.00001, SSR=5.30, 7.4 LCK (correction for MdST), regrowth as A;
E: Exponential +Gompertz, TCC=0.98367, SSR=4.06, 7.36 LCK, t_=24.85+1,27 d,
C, =1.46x10% £1.37x107, t,=0.67+0.32d, A=0.34+0.21 (1/3}:
E: TCC=0.98367, 8SR=4.,05, as E, 4.5 d time delay to correct for 5.5 LCK
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Test Data., To test the least squares optimization routines’ performance with
respect to the reliability of the resulting parameter values two sets of test data
were created. Twelve points, equidistant in the range 3-25 d, and seven non-
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equidistant points, were calculated from Eq.(2.10}, using t, = 0.75d, t, = 8.5
d, Cg = 0.2x10” and A = 0.45 d"!, Reconstruction of the original curve from
these sets was attempted, starting with initial parameter estimates both 10 %
above and below true values. Good fits were obtained (TCC > 0.9999). Some
starting point dependency was observed. Parameter uncertainty (the estimated
standard deviations can be rather large) decreases slightly with increasing
number of observations. The optimum estimates for t, and t, as returned by the
routines tend to their true values, larger relative deviations occur in Cg (10 %)
and, to lesser extent, in A {5 %).

2.2.2 RESULTS AND DISCUSSION

The observations in the bone marrow pertaining to a single set of LCFU-S
experiments were taken first to find the best descriptive model for unperturbed
growth, Next, using this model, the various functions describing drug influence
were evaluated. The resulting best fitting models for growth and regrowth were
subsequently examined with respect to the datapoints from all LCFU-S experi-
ments taken together. The results are presented below.

2.2.2.1 Single LCIFU-S Dataset

Unperturbed Growth of BNML in Bone Marrow. The datapoints were fitted
with an exponential and contiguous Gompertz curve (EG), and a Gompertz
curve alone (G). The results are shown in Fig, 2.11, curves A and B, respec-
tively. The EG curve yields the best fit in terms of TCC and SSR. The popula-
tion starts with 1.3x10° cells (1.3 % of inoculum) and at time of death (day 22)
has grown to 7.3x10° (18.3 % of overall BNML burden at death). The G curve
starts with very few cells (0.03 % of dose), and, though this model also fits the
data, 2 main (biological) argument that can be raised against its validity is that
the initial population doubling time amounts to 7.2 h, whereas the cell cycle
time is almost twice as large (14 h according to previous autoradiography
experiments). Being too fast in early phase, this model is not further considered.

Perturbed Growth; Instantaneous Drug Infiuence Model. First two simula-
tions were performed, based on the assumption that after instantaneous size
reduction the population will regrow in a way identical with the unperturbed
pattern,

CFA treatment at day 13 prolongs the rats’ life by 22 days (MdST = 44 d
instead of 22 d). According to the experimentally established dose response
(Eq.(2.1)—i.e., every 4 d increase in lifespan means a factor of 10 reduction in
cell number—this should correspond to a leukemic cell load reduction of 5.5
decades (= 22/4), or 5.5 log cell kill (LCK}. In other words, at day 13 the cell
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population drops from 1.7x10° to 8.5x10%, Subsequent regrowth identical with
growth {curve C, Fig. 2.11) resulis in an expected MdST = 38.8 d.

To match expected and observed MdST a second simuiation shifts the
growth curve (D) to the right. This, however, necessitates 7.4 LCK, which is
rather large, Furthermore, neither simulation fits the observed datapoints.

Abandoning the "regrowth equals growth" hypothesis an EG curve fitted to
the data (E, Fig. 2.11) proves much better although 7.4 LCK is found here too.
By allowing a time delay, 7 = 4.5 d in early exponential phase this value can be
reset to 5.5 (curve F), without improving the goodness of fit. In this model
regrowth after chemotherapy is faster than unperturbed growth, the plateau
phase is reached sooner and death occurs for fewer BNML cells.

Perturbed Growth; Gradual Drug Influence Models. The hypothetical func-
tions that describe gradual drug influence (Fig, 2.10, modes 2 through 5) were

tested by fitting them to the observed datapoints, using the unperturbed EG
curve as basis. For each mode the best fits are shown in Fig. 2,12, in sequence
curves G, H, I, J. Mode 2, constant therapy level for some time, is the least
satisfactory. The other modes do not differ very much in goodness of fit. The
TCC, SSR and AIC criteria appear to be not guite unanimous.

For intermediate cefl numbers all curves lie rather to the right of the
observations. Also, the predicted MdST lies beyond the observed value, unless
death occurs at a somewhat lower malignant cell load after treatment than after
unperturbed growth, By modifying the growth equation (Eq.(2.8)) improvement
(left shift) can be achieved: gradual drug influence is modeled with therapy
level, K+L(t), according to mode 4, but the GF factor is omitted in the second
right-hand term and it is made a function of C times a positive constant F,
F > 1, in the first term on the right:

dCHidt = GF(F-C) C(t) -~ KL - Cl). (2.18)

Thus, by the former modification, a given therapy level L(t} causes cell loss
proportional to the population size C(t) (constant percentage kill). The biological
meaning of the latter modification is not yet clear: after therapy the GF at a
certain population size equals the GF of an F times larger unperturbed popula-
tion, In other words, therapy makes the transition to Gompertzian growth occur
sooner, and the plateau phase level lower. Curve K in Fig. 2.12 shows the best
fit of the last model to the datapoints,

2222 All LCFU-S Datasets Combined

The procedure as described above was repeated with all datapoints acquired
from several similar experiments, whose purpose was the confirmation of the
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Fig. 2.12 Bone marrow: Fitted growth curves and datapoints {with standard devia-
tions) from a single series of LCFU-S experiments; gradual CFA influence models
unperturbed growth

A: see Fig, 2.11;
CFA treated

s

T

TCC=0.95844, SSR=6.53, K:L{t)=5.74, 13<t<16.7, AUC=21.2;
TCC=0.99335, SSR=6.34, K+L(T}=8.58exp{-0.4: (t-13)}, AUC=21.4;
TCC=0.99333, 8SR=6.57,

KelLity=8.81+15 exp{-1.2 (- 13}}/[{1 + 15 -expf{-1.2 - (t-1 3);], AUC=19.9;
TCC=0,99327, SSR=6.12, K. L[t} =8+ {{13-14.2)?-{1-14.2)%}, AUC=16.1;
TCC=0.99733, SSR=4.90, Eq.{2.13), F=10.02, max 5.8 LCK at day 16.5,
KeL{t}=5.12:88.01-exp{-1.6+{t-13)}/[1.5+86.01 +exp{-1.6+{t-13}}], AUC=13.0

50 Tt T

107 o

number of BNML cells in bone marrow

i 1 1 T I ¥ L] 1 I 1

0 5 10 15 20 25 30 35 40 W5

f f time after leukemia transfer {day)

107 CFA
BNML 100 mg. kg~
v, tp.

slope of the growth curve in exponential phase and of the level of the plateau
phase. The different datasets (Fig. 2.13) show some shift along the time axis,
probably owing to variance in the inoculation circumstances. As development of
leukemic cells in the spleen and bone marrow is likely to correlate independent
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Fig. 2.13 Bone marrow: Fittad growth curves and datapoints (with their standard

deviations) from all series of LCFU-S experiments

unperturbed growth

L: Exponential+ Gompertz, TCC=0.88075, SSR=22.1, tg=8.601:3.35 d,
C,=1.82x108+3.76x10%, ,=0.78:0.40 d, A=0.44+0.30 (1/d);

CFA treated, instantaneous model

M: Exponential+Gompertz, TCC =0.85023 (overall: 0.88030), SSR=7.82 (overall:
29.8), 6.03 LCK, t;=27.40:5.90 d, an2.70x107d:5.90x107, t,=0.97£0.53 d,
A=0,23+0.54 (1/d);

N: TCC=0.85023 {0.88030), SSR=7.82 (29.8), as M, time delay T=1.7 d to corract
for 5.5 LCK;

CFA treated, gradual model

0: TCC=0.84915 {0.88028), SSR=7.99 ({21.4), Eq.{2.14), F=4.39,
K+Lit}=4.78+86.02 oxp{-1.6+ (t-13)}/{1.5 +86.02 exp{-1.6+ (t-13}}], AUC=12.2
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on inoculum size, using spleen weight as reference in future experiments, rather
than absolute time, may result in better reproducibility,
In exponential phase the EG curve that fits the joined unperturbed data best
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(Fig. 2.13, curve L) does not differ much in slope, nor in predicted day zero
population size, from the best single dataset fit. A difference exists in the
plateau phases, which now attains a lower level with 1.3x10? BNML cells in the
martow at death (3 % of total burden).

Chemotherapy again is modeled as an instantancous or a gradual event. In
the former case, by fitting a EG curve to the perturbed datapoints, 6.0 LCK
results at day 13. Introducing a time delay, » = 1.72 days in the initial expo-
nential phase allows the size reduction to stop at a 5.5 LCK value, again without
effect on the goodness of fit (Fig. 2.13, curves M and N).

The necessity for the time delay is not immediately apparent from the shown
data. The 5.5 value is based on the observed delay in MdST after therapy and
thus concerns what happens on average in the total animal. 1t might be possible
that the drug effect is larger in the bone marrow, and accordingly smaller in,
say, the liver (an organ that by nature better copes with toxic compounds). On
the other hand preliminary data from running experiments with both chemo- and
radiotherapy combined suggest that the LCK cannot be this large, otherwise
many more 'cures’ should have been seen,

In contrast to the single dataset case, regrowth after therapy here appears to
be slower (t, = 0.97 d) than unperturbed growth (t, = 0.78 d). Though the
standard deviations of the observations are rather large, the difference in
doubling time therefore not very significant, this phenomenon would agree with
the reported greater CFA sensitivity of rapidly proliferating cells [Dewys,
1972]. It would imply that the BNML cells are heterogeneous with respect to
cell cycle time, faster cycling cells preferably being killed. This hypothesis may
be tested by reinoculating rats with BNML cells that have survived CFA
treatment, and see whether the growth kinetics differ from the growth pattern of
non-treated cells, If not, another hypothesis is that cellular growth propertics
themselves remain constant, but greater cell loss occurs in the treated rat
because some natural defense mechanism (immunology?) has had time to
develop. CFA influence on the tumor environment also may play some role.

To medel gradual drug influence, mode 4 therapy level was chosen in
combination with the modified growth equation (Eq.(2.18)). The resulting curve
(Fig. 2.13, O) fits the data only slightly poorer than the instantancous model
(curve N). The difference in goodness of fit is even smaller for the whole
curves (fit to both perturbed and unperturbed data),

Table 2-2 summarizes again all curves that, in their category, fitted the
LCFU-S in bone marrow data best, It shows the values of the goodness of fit
criteria.

2.2.23  The Dose-Survival Bio-assay and Flow Cytometry Data
The dose-survival bio-assay experiments were conducted to yield more informa-
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TABLE 2-2 GOODNESS OF FIT CRITERIA OF CURVES FTTED TO LCFU-S
DATAPOINTS (BONE MARRCW)

See Figs. 2.11 through 2.13;

EG: exponential + Gompertz; EGT: exponential + Gompertz + time delay;

In: instantaneous drug effect; Gr: gradual drug effect; mode numbers: see
Eq.(2.9) {mode 4a: £q.(2.18)};

TCG: total correlation coefficient (Eq.(2.16}); SSR: sum of squared residuals
{Eq.(2.13)}; AIC: Akaike’s Information Criterion (Eq.(2.17}))

curve type drug mode nr of nr of TCC SSR AlC
parameters datapoints

A EG - 4 6 0.98886 4.00 16.32
B G - 4 6 0.98480 4.70 17.28
C EG In, 1 5 5 <0.00001 5.30 18.34
D EG In, 1 b 5 <0.00001 5.30 18.34
E EG In, 1 4 5 0.98367 4.06 15.00
F EGT In, 1 5 B 0.98367 4.05 16.99
G EG Gr, 2 6 5 0.95844 6.563 21.38
H EG Gr, 3 6 5 0.99335 6.34 21.23
| EG Gr, 4 8 5 0.99333 6.57 25.41
J EG Gr, b 6 b 0.99327 6.12 21.0%
K EG Gr, 4a 9 5 0.99733 490 25,9h
L EG - 4 25 0.88075 22,10 85.39
M EG in, 1 4 7 0.856023 7.82 22,40
N EGT in, 1 5 7 0.85023 7.82 24.40
¢ EG Gr, 4a 9 7 0.84915 7.29 32.56
L+M EG In, 1 8 32 0.88030 29.80 124,62
L+N EGT In, 1 S 32 0.88030 29.80 126.62
L+0 EG Gr, 4a 2 32 0.88028 21.40 116.03

tion on the residual malignant cell load just after therapy. As the method is able
to detect BNML cells at lower frequencies compared with the LCFU-S assay a
convincing justification for introducing a time delay might be found. However,
the results, also plotted in Fig. 2.13, show a very steep descent of the growth
curve, suggesting an instantaneous rather than gradual chemotherapy effect. The
reduction in population size is high (7 LCK) and, in contrast with the LCFU-S
data, subsequent regrowth is very fast, Too fast in fact to be explained by
proliferation of the surviving BNML cells alone; the population doubling time of
12 h is less than the cell cycle time (14 h). Besides, it disagrees with the
expected CFA effects of enhanced death and greater kill of cells with short cycle
times. An explanation might be a BNML cell repopulation by migration from
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Fig. 2.14 The inverse of Fig.2.1: Inoculated BNML cell population size related to
median survival time {(MdST); A} linear regression of the datapoints (o} vields Eq.{2.1).
For seme high MdST value a larger BNML load is found if: B) the true refationship
deviates from the extrapolated regression line A); or C) another {linear) relationship is
valid in the post-treatment situation
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other organs like liver and spleen. Therefore, the BNML growth kinetics in
those organs must be examined first,

The discrepancy, however, between the LCFU-S and bio-assay data remains
to be explained. The results of the flow cytometry measurements seem to
confirm the LCFU-S data (Fig. 2.13). Of course, they are available only in the
region of relatively large population sizes. Still, two of the three independent
experimental methods yielding comparable results, this throws doubt on the
survival time bioc-assay data.

Perhaps the straight line relationship between MdAST and the log of the
inoculated cell dose has been extrapolated too far. That might make that the cell
doses calculated for large MdSTs are underestimated (Fig. 2.14). Another
explanation for the bio-assay data being so unexpectedly far below the LCFU-S
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TABLE 2-3 UNPERTURBED GROWTH CURVE PARAMETER VALUES {EQ. 2.10)

t, (d) t, {d) C,x 108 A (o)
liver 0.8467 13.308 14.84 (.3369
spleen 0.8120 11.800 4.91 0.7294
bone marrow  0,7854 8.605 1.82 0.4394

Fig. 2.16 A) BNML growth curve for bone marrow, as in Fig. 2.13. More datapoints
{a-a microscopy counts, D-O flow cytometry, 0-0 LCFU-S assay, @-e survival time bio-
assay) and exponential increase of population doubling time are shown; B) Fitted curves
for unperturbed growth of BNML cells in liver {short dash), spleen {long dash) and bone
marrow {dash-dot) after inoculation of 107 BNML cells 7.v. on day zero. Total population
growth (solid line} is estimated by adding the organ values at each time point. On day
zero the population starts with 1.5 x 10° proliferating cells. This is about half the number
of injected EDgq units (of 25 cells each; see Chapter 6.3)
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results is, that the mentioned dose—response relationship may not hold true for
the CFA-treated animals. Using this refationship when the actual (CFA-treated)
BNML cell population grows at a slower rate, also yields an underestimation of
the cell population size (Fig. 2.14). This last explanation is supported by the fact
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that it implies that for low MdSTs the calculated cell population sizes should be
overestimations, as compared to the measured LCFU-S data. This indeed

appears to be the case.
2.2.2.4 Unperturbed BNML Growth in Liver and Spleen

Parameters of the unperturbed growth curves (Eq. 2.10) for liver and spleen
were determined by fitting the respective observed datapoints. Results are listed
in Table 2-3. The fitted curves are shown in Fig, 2.15. The variation in doub-
ling time during exponential phase is not large; in bone marrow the population
grows faster than in the liver. Transition to Gompertz phase occurs first in bone
marrow, perhaps due to the more rigid spatial confinement in this organ, then in
the spleen and last in the liver. In the spleen the plateau phase is reached
relatively soon after the transition, the retardation constant A being much farger
in this organ as compared to the other organs. The increase in population size
continues longest in the liver,

Neglecting growth in other organs, the total population growth is determined
by adding the numbers of BNML cells in liver, spleen and bone marrow for
each time point. The total BNML cell population tends to grow to a plateau
level of 1.98x 1012 cells, the contributions of liver, spleen and bone marrow
being 1.68x 100, 1,58 x10% and 1.36x10° cells, respectively. The initial size
of the population that starts growing on day zero appears to amount to agbout
only 1.4% of the inoculum.

2.2.2.5 In Conclusion it can be said that unperturbed growth of the BNML
population in the BN rat bone marrow, initiated by i.v. inoculation of BNML
cells, jis characterized by an exponential phase followed by a Gompertzian
phase. This is also true for unperturbed growth in liver and spleen. Different
parameter values apply for the different organs, Only a very small fraction of
the inoculated cells grows out,

In the bone marrow, the effect of a single high dose of CFA is an instan-
taneous reduction in population size of some 6 decades (logs), after which a
similar regrowth pattern follows. The regrowth rate after treatment may be
slightly lower. The necessity of introducing a time delay during initial residual
disease, or just the opposite, i.e., modeling cell import from elsewhere, has not
yet clearly been demonstrated. Explanations for the discrepancy between the
LCFU-S and bio-assay data must still be verified as well.
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2.3 Cell Cycle Specificity of AMSA? (A Simulation Study)'

Within the framework of a larger study [Hagenbeek and Martens, [986] a series
of in vivo experiments involved testing the leukemic cell kill capability of the
cytostatic drug AMSA (acridiny! anisidide). The drug, which intercalates into
DNA [Jehn and Heinemann, 1991} and is nowadays clinically applied for rein-
duction of remission in acute nonlymphoblastic leukemia [Freund et al., 1991;
Miller et al., 1991], was given cither as a one-time dose or in a fractional way.
The survival of the leukemic cells was measured some time later. The apparent
non-constancy of the cell kill pattern in the case of fractionation gave reason to
suspect that cell cycle phase specificity possibly plays a role. In other words, the
drug may preferentially kill cells when they ate at a certain stage on their
mataration pathway. The present simulation study investigates this hypothesis,

2.3.1 "METHODS
2.3.1.1 The Rat Leukemia Model (BNML) (See Chapter 1.9.2)

Some time ago a myelocytic leukemia (BNML) was developed that is trans-
plantable in the Brown Norway (BN) rat by cellular transfer, Its characteristics
and those of human acute myeloid leukemia (AML) are similar to the extent that
the former disease can be considered a very relevant laboratory model for the
latter. It is, for example, very useful for evaluating chemotherapy regimens.

2,3.1.2 Experimental Animals (See Chapter 1.9.1)

The experiments were conducted with male BN rats (Rijswijk inbred strain).
Age varied between 13 and 16 weeks (240 g mean body weight).

Leukemia was induced by i.v. inoculation of 107 viable BNML cells on day
zero. It was either allowed to develop without interference, yielding the death of
the animals on day 22 (median), or drug therapy was given, starting on day 13.

23.1.3 LCFU-S Assay (See Chapter 2.1.2.4)

The leukemic clonogenic cell assay is based on the fact that injecting graded
numbers of leukemic cells into normal BN rats resulls in macroscopically visible

IChap!er 2.3 has also been published as;
Schultz FW, Martens ACM and Hagenbeek A (1991) Simulation studies on the cell cycle phase
specificity of the cytostatic drug AMSA. In: Vichnevetsky R, Miller JTH (eds) IMACS’91,
Proceedings of the 13th IMACS World Congress on Scientific Computation, 1991; Vol.3,
Modelling and Simulation of Biomedical Systems, pp 1456-1457

-60-



cell colonies on the spleen surface some 19-20 days later. This relationship can
be exploited reversedly. As each colony is assumed to be initiated by a single
clonogenic leukemic cell, counting the number of colonies is a measure of the
(unknown) number of clonogenic leukemic cells contained in and injected with,
for instance, a bone marrow sample.

2.3.14 Unperturbed Leukemia Growth

The unperturbed growth of the BNML cell population in femoral marrow has
been analyzed before (Chapter 2.2 and [Schultz et al., 1987]). Assuming that the
femoral marrow is representative for total bone marrow, the development of
BNML after transfer of 107 viable cells can be characterized by an exponential
phase (constant population doubling time, Ty = 0.78 d) until the number of
1.82x108 cells has been reached on day 8.6, followed by a Gompertz phase
during which the doubling time increases (1eta1datlon constant, A = 0.44 d'
and the population grows to a plateau level of 1,36x10° cells,

Knowing the growth curve parameters, the number of cells in the population
at any t{ime can be calculated.

2.3.1.5 AMSA Administration

AMSA (acridiny! anisidide; Bristol Myers Co., New York) was administered
i.v. as cither a single 20 mg/kg dose on day 13 or as single doses of 5 mg/kg on
four consecutive days (13, 14, 15 and 16). See Fig. 2.16.

2.3.1.6 Log Cell Kill (LCK)

Based on his observations Skipper [[986a] formulated the now generally
accepted "log cell kilt principle”. It says that a certain drug dose always kills a
same fraction rather than a same number of cells. Thus, a dose causing U LCK
reduces a population of C cells to C-10Y cells. This is assumed to happen
instantaneously in the case of a rapid i.v. injection.

2.3.1.7 Surviving Fraction

This variable is the ratio of the number of BNML cells found in an animal at a
certain time after a treatment and the number of BNML cells found simul-
taneously in a similar animal that was not subjected to that treatment,

At present such cell numbers, and the surviving fraction, in the rat’s
femoral marrow were always assessed one day after each drug dose [Hagenbeek
and Martens, 1986]. By considering (exponential) regrowth during the day after
the drug dose while knowing how the leukemic cell population would have de-
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Fig. 2.16 Scheme of the AMSA Administration Regimens
(with definitions of surviving fraction and log cell kilf)

EXPERIMENTAL SET-UP

induction:
107 BNML AMSA
cells /v, 1%x20 mg/kg, or

4 x5 mgfkg {(q24h)

Treatment

Control
0 13 14 15 18 day

n = 4 rats per group
at 24 h after each drug dose, for bone marrow:
LCFU-S assay = number of leukemic cells (L}
CFU-S assay = number of stem cells (S}
Surviving Fraction: SF = Ltreatmentﬂ“control' Streatment’rscontrol
Log Cell Kill: LCK = -T%0g(SF)

veloped without treatment, the cell number ratio on the treatment day itself
could be calculated and, subsequently, the L.CK factor caused by the drug dose.

2.3.1.8 Leukemia Regrowth

It is assumed that BNML regrowth after drug therapy is not significantly
different from the unperturbed growth paitern,

2.3.1.9 Mathematical Model for Simulating Leukemia (Re)Growth and
Leukentic Cell Kill

Proliferating cells move through four phases that make up the cell cycle (Fig.
1.6). A newborn cell starts in phase G;. When it duplicates its DNA it is in
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phase S, after which it arrives in phase G,. To complete the cycle, cell division
takes place in phase M. Ideally, the cycle lasts a certain time, T, and each cell
produces two daughters. This would yield exponential growth with (minimum)
doubling time Ty = T,.

The distribution of cell ages, between 0 and T, also would be exponential
[Matthews, 1988], with twice as many new G, cells as late M cells. In practice,
cell cycle times are distributed. This can be expressed as B (1 < B < 2)
daughter cells per cell being born in T, or in the growth fraction, GF = B - 1
[Steel, 1977]. Furthermore, cells may die, assumably anywhere during the
cycle. The relative difference between the rate of cell production and the
population’s growth rate is expressed in the cell loss factor, ® [Steel, 1977,
Schultz and Hagenbeek, 1991].

In the mathematical model (Fig. 1.7) the cell cycle is divided into 50 age
compartments of 0.02xT, duration each, The G;-phase comprises the first 3
compartments and compartments 4-38, 39-48 and 49-50 represent the S-, Gy-
and M-phases, respectively. The number of compartments selected for each
phase corresponds with the BNML phase durations, as established before
[Martens et al., 1990]: 0.8, 10, 2.7 and 0.5 h for Gy, S, G, and M, respec-
tively. The total cycle time amounts to T, = 14 h,

First, the cells of the unperturbed day 13 population are put into the age
compartments, This is done according to the theoretical distribution [Matthews,
1988] although growth on day 13 is no longer truly exponential, Then, a drug
sensitive region is chosen, e.g., all S-phase compartments or only compartments
corresponding to early, late or mid S, or to G; and G,, or to G, and M, etc.
Drug action is represented by deleting a fraction of the cells in each compart-
ment (U LCK, where U is chosen from the range 0-3), and on top of this, by
deleting a second fraction of the cells in the selected drug sensitive compart-
ments only (V LCK, where V is chosen between 0 and §).

Next, the remaining cells are moved from one compartment to the next with
each time increment of 0.02xT.. Before moving the cells from the last com-
partment to the first one, a fraction p, is deleted and of the remainder a fraction
py is duplicated. It has been shown before [Schultz and Hagenbeek, 1991; also
see Appendix B] that GF and ¢ can be expressed in terms of p; and p, and vice
versa. So, either GF and © or p; and p, determine, together with T the
dynamic behavior of the cell population. It was shown as well, that this model
can be used to describe exponential and Gompertz growth by keeping p, con-
stant while varying p; linearly with the total population size. In exponential
phase, however, p, is nearly constant. For the considered phase of exponential
BNML regrowth the value of GF is estimated to be 80%. Then, given that T, =
14 h and Ty = 0.78 d, it follows that @ = 12.4%. This, in turn, yields p; =
0.8 and p, = 0.07.

After letting the cells progress in this way for a simulated 24 h, the next
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TABLE 2-4 CALCULATION OF THE LOG CELL KILL {LCK) FACTOR

time  nr.of BNML  surviving  nr. of cells surviving LeK®
{d) cells; no fraction, onday T+1, ondayT

treatment day T+ 12 {obs.)3 {(:alc.)4

dose: 1x 10 mag/kg iv.
13 1.0x10° 1.9x10% 4,73
14 1.1x10° 4.1x10°  4.6x10%

dose: 4x 5 mag/kg iv.
13 1.0x10° 1.6x10%  2.80
14 1.1x10% 5.5x10°  6.2x108 1.2x108  0.70
15 1.2x10° 2.5 109  3.0x108 1.6x10°  1.26
16 1.3x10% 3.2x10%  4.0x10° 1.4x10° 2.48
17 1,3x10% 2.7x10%  3.5x10°

1. from fitted growth curve: unperturbed growth in bone marrow after 107
BNML cells /.v. on day O [Schuitz et al., 1987]

2. observed (LCFU-S assays [Hagenbeek and Martens, 1986}; T = treatment
time

3, from 1. and 2,

4. caleulated from 3., assuming one day of exponential regrowth with doubling
time Ty = 0.78 d

5. -loginr. of cells after/nr. of cells before treatment}; variation of about 0.2 in
LCK results from variation (SD} in observed surviving fraction (see 2.}

drug dose is given, again causing U and V LCK. The procedure is repeated
until the last drug dose has been given,

Since track is being kept of the numbers of cells in cach compartment, the
total population size is known at every moment, The overall size reduction due
to each drug dose, or LCK ¢p.uive» Can be calculated and compared to the LCK
pattern derived from experiment. If identical patterns are found, the correspond-
ing U and V values and any specific drug sensitive regions of the cell cycle will
have been identified.

2.3.1.10 Software

Computer code for the simulation mns with the above mentioned model was
written in TurboPascatl 3.2 and implemented on a PC (IBM-XT compatible).

2.3.2 RESULTS
Caleulated LCK values for the dose of 20 mg/kg and for cach dose of 5 mg/kg

are derived in Table 2-4. Figure 2.17 shows the corresponding (re)growth
curves. Simulation runs with the model were not successful in reproducing the
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Fig. 2.17 Leukemia Development in Bone Marrow and AMSA Treatment

dotted curve: unperturbed growth [Schultz et al., 1987]

dashed curve: 1x20 mg/kg AMSA, day 13 (4.73 LCK}

sofid curve: 4x5 mg/kg AMSA, days 13 (2.60 LCK), 14 {0.70}, 15 (1.26) and 16 (2.46)
AMSA curves are based on LCFU-$ survivel datapoints (open circles, 8D indicated
(Hagenbeek and Martens, 1988]); regrowth identical with unperturbed growth; instan-
tansous drug action .
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observed LCK pattern. As example, for selected values of U and V, Fig, 2.18
illustrates a few results for the case of various fractions of S cells (early, late,
all) being extra vulnerable to AMSA. None of the patterns agrees with the ob-
served LCK sequence. Figure 2.19 shows the age distributions of the cells on
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Fig. 2.18 Simulations of BNML Cell Kill {4x5 mg/kg AMSA)

dotted curve: unperturbed growth {Schultz et al., 1987]

short-dashed: U=0.5 LCK + for all S cells V=2.5 L.CK {age cmpts 4-38) vields
1.08, 1,62, 2.75, 2.40 LCK 4

long-dashed: U=0.b LCK + for early S cells V=4.0 LCK {age cmpts 4-22) yields
0.76, 0.80, 1,23, 3.72 LCK 4

sofid curve: U=1.0 LCK + for late S cells V=2.0 LCK (age cmpts 22-38) yields
1.16, 1.21, 1.59, 2.21 LCKy

from experiment: 2.60, 0.70, 1.26, 2.46 LCK ¢

o

S
- ]

YL
aawesanan
ant

108 10°
" sal

Bone Marrow

in
107

104

number of BNML cells

o 5 10 15 20 25
days after 107 BNML cells i.v.

consecutive days, just before and after treatment, for the case of late S cells
being sensitive. The effect of the drug dose on cells of the various ages as well

as the effect of a day’s regrowth can be seen. Figure 2.20 compares the ob-
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Fig. 2.19 Age distributions of the BMNML cell population on consecutive days just
before {-) and just after {(+) the dose of 5 mg/kg AMSA. Each dose causes U=1 LCK in
all compartments and an extra V=2 LCK in compartments 22-38 {late S)
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Fig. 2'20. Comparison of LCK effect of 4 doses of AMSA (5 mg/kg) for several
combinations of U and V and either late S-cells or Gy and G, cells being sensitive to the
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served LCK pattern to those obtained by several simulations using various U
and V values, for the case that either late S cells or G; and G, cells are drug
sensitive, Again, no agreement is seen.

2.3.3 DISCUSSION

Effective LCK values for each dose of AMSA were calculated from observed
surviving fractions, assuming that a) a previously found relationship between
time and the size of an unperturbed BNMIL cell population in bone marrow
holds true, b) the drug causes an instantaneous reduction in BNML cell popula-
tion size, and c) the regrowth pattern after a drug dose is similar to that of
unperturbed growth. In Fig., 2,17 it can be seen that under those circumstances
three daily doses of § mg/kg are about as effective in killing BNML cells as the
single 20 mg/kg dose. Thus, fractionation yields a 25% dose reduction for equal
cell kill,

Striking, the LCK caused by the small drug dose is not constant., This seems
to contradict Skipper's hypothesis, The first 5 mg/kg has much effect: the LCK
is about half the LCK due (o the 4x larger 20 mg/kg dose. The 2nd, 3d and 4th
5 mg/kg correspond to LCKs that are about 27%, 48% and 95% of the first
LCK value, respectively. If the LCK would have continuously decreased the
development of AMSA resistance might have been an explanation. The present
decrease—increase pattern sooner suggests some cell cycle phase specific action
of the drug. Especially when considering that the dosage interval (24 h) is
almost as long as the population doubling time (T = 19 h) and twice as long as
the cell cycle time (T, = 14 h; Fig. 2.21). Therefore, the first dose (with large
LCK) may have had a synchronizing effect, i.e., cells at sensitive stages of the
cycle are killed by preference and cells in other positions are killed much less.
Two cycle times later the majority of the surviving cells will have returned to
their original insensitive positions. When now the second drug dose is given, it
will obviously exert much less effect. Because the drug schedule and the cycle
time are not perfectly in concert, and some cells cycle faster than others, desyn-
chronization will occur and the original killing potential of the drug dose again
becomes manifest later.

Furthermore, some experimental evidence has become available recently,
that an AMSA derivative, amsacrine (m-AMSA), specifically kills promyelocy-
tic leukemia cells in S-phase [Hotz et al., 1992; Gorezyca et al., 1993] and
causes arrest in Gy-phase [Del Bino et al., 1991; Rius et al., 1991].

Indeed it was demonstrated with the model, designed to test this hypothesis,
that, in principle, non-constancy of the LCK by subsequent equal drug doses can
be attributed to cell cycle phase specificity, However, results from systematical-
ly performed computer simulations show, in general, an increasing LCK pattern,
The actually observed LCK pattern for AMSA could not be reproduced,
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Fig. 2.21 Comparison of sequence of treatment times, T, (24 h interval) to cell cycle
time, T, (14 h} and cell population doubling time, T4 {18 hin exponential growth phase)
of BNML
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Consequently, no cell cycle phases were identified as more sensitive to AMSA
than others.

A weakness of the model is that no exact data is available on the regrowth
doubling time, the initial age distribution, and the P,py values. Evaluation of
how the varying of these parameters influences the simulation results should be
a next step.



2.4 Drug Resistance

This chapter will deal with various aspects of drug resistance. An overview of
relevant literature about investigations on (multiple) drug resistance in cancer
chemotherapy is given first. Then, the development of drug resistant sublines
from the BNML cell population is discussed. These subpopulations, either in
pure form or to a variable extent diluted with the sensitive parent BNML cell
line, can be used for in vivo experiments on cell kinetics of leukemia growth
and response to chemotherapy. Finally, resistance to the cytostatic drug cyclo-
phosphamide (CFA) is mathematically modeled and the implications of the
model are investigated,

2.4.1 SUMMARY OF RELEVANT LITERATURE
2.4.1.1 Evidence for Development of Drug Resistance

It is generally recognized that there is a degradation of the cell kill potential of a
certain dose of a cytostatic drug when treatment is given at later stages in the
development of a cancer. From experience with experimental cancer chemo-
therapy between 1955 and 1975 it appears that the neoplastic cell burden is
inversely related to curability by any drug or combination of drugs [Skipper,
1986a], The total tumor burden that still is curable, varies widely though,
depending on the type of neoplasm and the chosen treatment regimen, For
example, the apparently less effective result of identical treatment on larger
sized human tumors was seen in choriocarcinoma [Goldstein, 1975), multiple
myeloma [Sullivan and Salmon, 1972] and chronic lymphocytic leukemia {Rai et
al., 1975]. The cause, as hypothesized already by DeVita [1983], may be found
in the direct relationship between the neoplastic cell burden and the probability
of the presence of permanently drug resistant cells.

For most anticancer drugs a given dose always kills a constant fraction
rather than a constant number of cells (log celi kill concept; [Skipper et al.,
1964; Wilcox, 1966]). This concept has been accepted by many, Hryniuk and
Bush [1984] showed that there is a direct relationship between the observed
temporary response rate of advanced breast cancer and the average relative dose
of the individual drugs in combinations. Norton and Simon [1986], however,
pointed out that, while the log cell kill concept implies that larger tumors should
regress fastest, as a clinical observation intermediately sized tumors respond best
to chemotherapy. This might be explained by the presence of genetically stable
biochemical drug resistance in larger tumors. But another explanation is based
on kinetic grounds, assuming that the cell kill might be affected by the growth
fraction (Norton/Simon hypothesis, i.e., only proliferating cells, forming only a
small part of a large tumor growing in Gompertzian fashion, are killed).
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Other possible causes of heterogeneity in antitunior drug response can have their
bases in the variation in the composition of equally sized tumors, in terms of
subpopulations with vavious cellular characteristics (i.e., tumor heterogeneity;
[Dexter and Leith, [986]); in host factors like immune response and pharmaco-
kinetics [Nooter et al., 1985, 1986]; and in the fact that some cytostalic agents
exhibit very steep dose—response curves, which may cause large response fluc-
tuations for relatively small changes in dose.

To a large extent, however, chemotherapeutic failure can be attributed to
resistance phenomena, aiso in leukemias [e.g., Beck, 1983; Holmes et al.,
1989]. The selection and overgrowth of resistant cells is a major factor limiting
the clinical utility of cytostatic drugs in curative cancer chemotherapy. There-
fore, the mechanisms of drug action and of resistance must be studied [Nelson,
1985; Griswold, 1986] to design new clinical treatment strategies that discourage
the outgrowth of resistant cells. Chemotherapy regimens must be designed to
kill both sensitive and resistant cells faster than they can regrow in the intervals
between treatment, until all neoplastic stem cells have been eradicated [Skipper,
1986aj. In fact, the limitations of the effectiveness of the presently known
cytostatic anticancer agents, at concentrations that can be safely employed,
dictate the need for improved diagnostic tools, careful disease staging and the
most appropriate treatment scheduling [Griswold, 1986] aimed at killing all
tumor cells but also at the prevention of diversification, i.e., tumor cells
growing increasingly aggressive and highly resistant [Nicolson and Lotan, [986]
that especially occurs with acute leukemias and small cell lung cancers [Curt et
al., 1984]. It is recommended to study experimental systems that have obvious
relevance to clinical treatment planning and drug usage [Curt et al., 1984].

2.4.1.2 Classification of Different Types of Drug Resistance

DeVita [1983] distinguishes two types of resistance, both tumor mass dependent,
They are temporary and permanent resistance. Temporary resistance is related
to environmental influences, like the physical position of the cells that makes
them less accessible to chemotherapy. Cells may grow in an anatomical sanctu-
ary (e.g., the testes [Jackson et al., 1983]) or behind some pharmacological
barrier (e.g., blood-brain barvier shielding the central nervous system from
certain i.v. administered cytostatic drugs). It also may be related to the position
of the cells in their cell cycle (kinetic resistance, e.g., resting cells are less
sensitive than proliferating cells as hypothesized by Norton and Simon [1986]).
Permanent resistance may be caused by some genetically stable mutation, which,
in contrast to temporary resistance, is irreversible.

A second distinction may be in vitro or in vivo resistance with, perhaps,
different underlying mechanisms,

Another distinction [Selby, 1984; Kaye and Merry, 1985; Skipper, 1986b]
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can be given as infrinsic or natural resistance versus acquired resistance. The
former develops before any therapy has been given, e.g., by spontancous
mutation, Acquired drug resistance develops after the cell population has been
challenged with the drug.

Multidrug resistance (MDR) is a term used for cells that exhibit resistance
to a range of structurally unrelated cytostatic agents [Gerlach et al., 1986, Stark,
1986].

2.4.1.3 Mutation to Drug Resistance

Luria and Delbriick [1943] observed that bacteria have an inherent capacity to
mutate toward resistance to agents they have never seen. There is a natural
mutation frequency, and the size of the resistant population in different subcul-
tures depends on the time point at which the mutation, i.e., a permanent genetic
change, took place. Skipper [1983] considered the applicability of the mutation
theory with respect to cancer chemotherapy. MacKillop [1986] drew attention to
the fact that in relatively advanced malignancies sometimes primary failure of
chemotherapy is observed, suggesting that at the initiation of treatment specific-
ally and permanently drug resistant tumor cells must be present. In other words,
drug resistant variant cells emerge and increase in number during the evolution
of tumors, before treatmeni. Stephens et al. [1984] indeed identified a sub-
population of methyl-cyclohexyl-chlorethyl nitrosourea (MeCCNU) resistant
cells in previously untreated Lewis lung tumors. Later [Stephens et al., 1986] it
was shown that selective pressure of in vivo MeCCNU treatment could lead to
an increasing growth advantage of resistant tumor cells. Shoemaker et al. [1983]
also found that resistant cells in human cell lines (among which small cell lung
cancer) may be present before the treatment,

Fig. 2.22 Scheme of emergence of muitidrug resistant cells {Skipper, 1986a])
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Drug resistant cell lines also can be made by challenging a drug sensitive parent
cell line with small amounts of the drug., Schmid et al. [[976] found that
repetitive passage of leukemia cells in animals treated with a 6-drug com-
bination, delivered either simultancously or in sequence, selected sublines that
were specifically resistant against one, then two, three, four, five or six drugs in
the combination, Skipper [1986a] suggests that in general the sensitive parent
line mutates first to single drug resistant sublines that in turn mutate to double
drug resistance and afterwards may mutate to multidrug resistance (Fig. 2.22).

The rate of mutation to resistance can be experimentally determined by
exposing cell samples to a lethal dose of a drug at certain time intervals and
subsequently measuring the uptake of bromodeoxyuridine (BrdUrd), Only
resistant cells (survivors) will take up the BrdUrd, which can be quantified by
flow cytometry after labeling with a specific fluorescent marker [DeFazio and
Tattersall, 1985]. Flow cytometry is also useful for measuring other cell kinetic
properties that are relevant to experimental chemotherapy, with emphasis on the
mechanistms that lead to cell death in tumors [Tannock, 1986]. Changed cell
kinetic properties might explain the apparent discrepancy noticed by Van Putten
[1986] that transplanted cell lines in the mouse relain their drug sensitivity in
spite of somatic mutation. The problem is solved if unchallenged sensitive cells
grow faster than mutants, so that in an otherwise unperturbed situation the latter
will soon be outnumbered. Zajicek [1986] remarks that acquired resistance must
be cell type specific, because normal tissues, e.g., gastrointestinal mucosa or
bone marrow, remain drug sensitive despite repeated chemotherapeutic freat-
ment,

Another way of measuring the rate of resistance development is by examin-
ing growth delay and clonogenic cell survival, as described by McMillan et al,
[1985] for MT murine mammary carcinoma treated with melphalan, cisplatinum
and cyclophosphamide.

2.4.14 Mechanisms of Drug Resistance

Carter [1984], comparing drug resistant cells to their drug sensitive counter-
parts, recognizes next to the already mentioned mechanisms of kinetic and
pharmacological nature also a biochemical factor in the emergence of resistance.
An inventory of possible mechanisms of drug resistance is given by Curt et al.
[1984] and for acute leukemias in particular by Hall et al. [1989], e.g., defec-
tive drug transport (which may include reduced membrane permeability [Ling
and Thompson, 1974] as well as changed drug uptake characteristics (active
efflux) through the cell membrane [Colvin, 1984]), defective metabolism,
enhanced DNA repair [Colvin, 1984}, gene amplification, or altered target
proteins. Mechanisms associated with different drugs are mentioned; e.g.,
increased deactivation of damaging cyclophosphamide metabolites by glutathione
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S-transferase enzymes in a cyclophosphamide resistant Yoshida sarcoma cell line
was reported {McGown and Fox, {986], though in the BNML the detoxification
enzyme aldehyde dehydrogenase seems more important [De Groot et al., 1992),
The role of these enzymes in cyclophosphamide resistance is reviewed by
Morrow and Cowan [1990] and Waxman [1990].

Beck [1984] summarizes that MDR is related to a changed pharmacology
(less drug accumulation, faster release, weaker binding) due to inherited
membrane alterations (diminished permeability) based on chromosomal changes
(gene amplification and increased transcription of the P170 glycoprotein [Kart-
ner et al., 1983]). The presence of an MDR phenotype with an activated drug
efflux pump has been demonstrated in many mammalian temor cell lines, among
which human ovarian tumors, carcinomas and sarcomas [Ling et al., 1983; Fojo
et al., 1985; Gerlach et al., 1986; Pastan and Gottesman, 1987], as well as
acute myeloblastic leukemia [Ma et al., 1987; Holmes et al., 1989]. Biomolecu-
lar studies [Roninson et al., 1984; Stark, 1986; Roninson, 1987; Goldstein et
al., 1989; Hayes and Wolf, 1990; for leukemias, e.g., Tsuruo et al., 1987) have
identified the responsible gene (MDRI) associated with the membrane protein
that regulates transport of toxic compounds across the membrane (energy depen-
dent efflux pump). The degree of resistance correlates with the increased
expression, due to MDRI gene amplification, of the P170 glycoprotein. There-
fore, quantification of this membrane protein during some time may be another
way of finding the rate of resistance development.

Reversal of the drug resistance may be achieved by using calcium channel
blockers, e.g., verapamil or cyclosporin A, or other membrane transport
modifiers that restore the intracellular drug accumulation by counteracting the
efflux pump [Curt et al., 1984]. This is true, e.g., for acute myelocytic leuke-
mia [Nooter et al., 1989, 1990a].

2.4.2 DEVELOPMENT OF DRUG RESISTANT BNML CELL LINES

The original BNML cell line is sensitive to the cytostatic agents cyclophos-
phamide (CFA; [Hagenbeek and Martens, 1982]), cytosine arabinoside (ARA-C;
[Colly et al.,1984b]) and anthracyclines like doxorubicin (DOX; [Sonneveld et
al.,, 1981]) and daunomycin (DAU; [Nooter et al., 1990b]). To study the
phenomenon of drug resistance in vivo it was attempted to develop BNML
sublines that are no longer sensitive to these drugs. The in vivo development of
three BNMI. sublines, resistant to treatment with CFA, ARA-C and DAU, was
successful [Hagenbeek et al., 1987b; Martens et al., 1991}. A fourth resistant
variant, against the orally very potent drug Acetyldinaline, was developed
recently [El-Beltagi et al., 1993]. The procedures used are very similar. As an
example, the CFA case is briefly described below,
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TABLE 2-6 RESPONSE OF THE PARENT BNML LINE AND THE CYCLOPHOSPHAMIDE
RESISTANT LINE TO TREATMENT WITH CYCLOPHOSPHAMIDE, IFOSPHAMIDE AND
MAPHOSPHAMIDE [Martens et al.,, 1991}

The rasponse of the parent BNML cell line to treatment with three closely related drugs,
cyclo-, ifo- and maphosphamide (ASTA Werke AG, Bielefeld, Germany) is compared with
the response of the resistant line. The drug analogs were studied to provide additional
information on possible cross resistance. The dose of each drug was chosen such that a
significant antitumor effect could be expected. The resistant line appeared not to be
sensitive to either cyclophosphamide {CFA} or ifosphamide (IFA) at the doses tested.
Interastingly, maphosphamide {MFA) treatment resulted in slightly more than 1 fog cell
kill. A difference in drug activation—MFA is an already activated form of CFA, whereas
the {atter itself must be metabolized first—might be a factor responsible for the observed
difference in response.

TREATMENT MdST ILS SURVIVING FRACTION
{days) {days) OF LEUKEMIC CELLS
BNML PARENT LINE
EXP 1; CONTROLS 22,5 - -
CFA 45 22.5 2.3x10°
IFA 39 16.5 7.5x10°8
EXP 2: CONTROLS 22 - -
MFA 35 13 5.6x10™
CEA RESISTANT LINE
EXP 1: CONTROLS 19.5 - -
CFA 20 0.5 7.5x10""
IFA 19.5 0 1
EXP 2: CONTROLS 20 -
MFA 25 5 7.5x10°2

MdST: median survival time aiter 7.v. transfer of 107 BNML cells
CFA: 100 mg/ka /.p.
} at day 13 after teukemia transfer
{n =5 rats/group)

IFA: 200 mg/kg i.p.
MFA: 154 mg/kg iv.
ILS: increase in life span
The surviving fraction is deduced from the known relationship that 1 decade of tumor
load reduction corresponds to 4 days ILS {Eq.{2.1}}

24.2.1 A'Cyclophosphamide Resistant Subline

Leukemic BN rats (leukemia induction with 107 BNML cells injected i.v. at day
zero) were treated repeatedly af intervals of two weeks with CFA doses of 100
mg/kg i.p. Under these conditions each dose induces a 5 log cell kill (I.CK) in
the drug sensitive leukemic cell population, as can be derived from known cell
kinetic properties and observed survival times of the animals with respect to
untreated controls, During the two week periods after treatment the surviving
BNML cell population regrows until the next challenge with a CFA injection.
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Fourteen days after the last of a total of seven injections with CFA the
lenkemia was transferred (107 BNML cells) to a fresh group of rats. The new
recipients received twice the periodical CFA treatment, At this stage the first
signs of drug resistance became apparent. The leukemia was transplanted once
more and again was treated with two doses of CFA at days 8 and 22 after the
transfer. This procedure was continued until the subline of leukemic cells had
been exposed 17 times to CFA drug doses of 100 kg/mg each.

From time to time the sensitivity of the subline for CFA was tested by
scoring increased lifespan (ILS) of animals treated with 100 mg/kg CFA with
respect to untreated controls. With an increasing mumber of exposures to the
drug the resistance increased—as indicated by shortening ILS—until total resis-
tance was attained (Table 2-5).

Many CFA resistant BNML cells were frozen and stored in liquid nitrogen,
forming a stock supply for further experimentation.

2.4.2.2 Mechanism of Cyclophosphamide Resistance

CFA requires bioactivation to become cytotoxic. Therefore, an in vivo approach
was chosen, employing the CFA resistant and the sensitive parent BNML cell
lines, to investigate the molecular mechanism(s) of CFA resistance [De Groot et
al., 1994].

It appeared that the CFA-detoxifying enzyme, aldehyde dehydrogenase
(ALDH) plays an important role. The level of ALDH activity in the drug
resistant cells was about six times as high as in cells of the parent line. When
ALDH was counteracted by pretreatment of rats, carrying resistant BNML cells,
with the ALDH-inhibitor disulfiram (DSF), the in vive cylotoxicity of CFA was
fully restored. Log cell kill in vitro of CFA resistant BNML cells by maphos-
phamide (MFA, an activated CFA derivative) increased by 2-3 when these cells
Irad been pretreated with DSF. This partial restoration of cytotoxic effect could
be deduced from the differences in median survival times of groups of rats,
injected with resistant BNML cells incubated with either MFA alone or MFA +
DSF. ‘
Another CFA-detoxification pathway involves glutathione (GSH) and
glutathione dependent enzymes (GSTs). This pathway is probably much less
important with respect to the CFA resistance phenomenon. Differences in GST
contents of resistant and sensitive BNML cells are only moderate to small.
Furthermore, GSH depletion by buthionine sulfoximine did not increase the
sensitivity of CFA resistant cells,
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2.4.3 MODELING CYCLOPHOSPHAMIDE RESISTANCE: SIMULA-
TION STUDIES!

At the concentrations that may safely be employed, the presently known
anticancer agents show a limited curative effectiveness [Griswold, 1986]. It is a
well-known observation that identical treatment schedules, when applied in
sequence, have less and less effect on the growth of the population of malignant
cells. Assuming, as supported by an analysis of growth data in a case of
lymphocytic leukemia [Schuliz et al., 1989], that the infrinsic cell kinetic
parameters themselves have not been altered by the treatment, a likely explana-
tion may be that drug resistance has developed, causing the surviving fraction to
grow larger in every successive treatment course. Figure 2.23 shows a nonlinear
decrease with time in cell kill in the brown Norway rat acute myelocytic
leukemia (BNML) by successive doses (100 mg/kg i.p.) of the drug cyclophos-
phamide (CFA).

It also is a clinical observation that a large tumor mass at diagnosis will
respond relatively poorer than a small one to an identical treatment regimen.
This may be so because of a large tumor containing relatively more resistant
cells [DeVita, 1983]. This would imply that drug resistant mutant cells are
developing "naturally" (in contrast to "acquiring" resistance afterwards because
of the contact with the cytostatic agent [Selby, 1984]).

Thus, the failure of eradicaling tumors with chemotherapy may, at least
partly, be attributed to the development of (multi)drug resistance. To be able to
formulate optimal therapy regimens it is necessary first to gain insight into the
dynamics of cell population growth and the process of resisiance development,
under unperturbed as well as under chemotherapy conditions, Such insight may
be gained in an efficient way through mathematical modeling and computer
simmlation {Garfinkel, 1983]. Based on available knowledge a model is pos-
tulated. Its implications are examined and, ideally, tested against observations
from real-fife experiments. The model and its underlying hypothetical mecha-
nisms thus are validated; they are either accepted to (sufficiently) describe the
real processes or it turns out that they should be rejected, which implies a redef-
inition of the model.

Below, a simple model is examined for its relevance with respect to the
growth of the BNML leukemia that is treated with different single doses of CFA
at several stages of the disease.

L.arge paris of Chapter 2.4.3 have been published as:
Schultz FW, Martens ACM, de Vries AJ and Hagenbeek A (1989) Modeling cyclophosphamide
resistance in the brown norway rat acute myelocytic leukemia: a first approach. In: Eisenfeld J,
Levine DS (eds) Biomedical Modelling and Simutlation, JC Baltzer AG Scientific Publishing
Co., pp. 47-49
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Fig. 2.23 Curves showing the BNML cell population in the bone marrow as function
of time after i.v. transfer of 107 (CFA-sensitive) leukemic cells. Assuming "regrowth =
growth”, by backwards extrapolation of the unperturbed growth curve (Fig. 1.8} and
matching observed MdST to cell number at death {=1.36x 109, effect of consecutive
CFA doses {arrows: 100 mg/kg 7.p.) can be calculated. Also environmental influences,
i.e., effect of retransplantation into a fresh recipient rat (bars)} can be seen. Apparently,
LCK is not constant, but variation is not a monotonous decrease either, as expected in
case of developing drug resistance
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2.4.3.1 LABORATORY EXPERIMENTS

The Rat Leukemia Model, BNMI (Sce Chapter 1.9.2). BNML was chemically
induced in a female Brown Norway (BN) rat and appeared to be cellular
transferable within this strain, yielding a reproducible growth pattern. As few as
25 BNML cells inoculated i.v. will cause leukemia in 50% of the BN rats (EDs
= 25). The principal target organs for the development of the malignant cell
population are the bone marrow, the liver and the spleen. The characteristics of
the disease show striking similarities with human acute myelocytic leukemia
(AML). Therefore, experimental BNML studies bear great importance to
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clinical treatment of AML.

Unperturbed BWNML Growth (Chapter 2.2 and [Schultz et al., 1987]). The
development of the leukemic cell population after i.v. inoculation of 107 BNML
cells has been investigated in the major target organs (bone marrow, liver,
spleen). The number of BNML cells present at various time points could be
experimentally determined in several ways, ranging from counting cells—mor-
phologically or after labeling with tumor cell specific fluorescent dyes—to more
complex bio-assay methods. Figure 1.8 shows the datapoints for bone marrow,
as well as the growth curve found by nonlinear least squares fitting. The curve
consists of an exponential part (constant population doubling time, Ty) that at a
certain population size (2x108) changes into a Gompertz curve. Ty then in-
creases exponentially and the population growth decelerates to a constant steady
state plateau level, For liver and spleen similar growth curves were found, The
size—time course of the total population is reflected by the sum of the three
separate curves (Fig. 2.15). The animals die on day 22 (median value) with a
tumor burden of some 2x10'® BNML cells.

Of the 107 inoculated cells on day zero only some 1.5x10% appear to grow
out. This corresponds well with the fact that the EDsy amounts to 25 cells, i.e.,
a unit of 25 cells has a 50/50 chance to be "destroyed" (zero cells grow out: no
tumor) or to yield 1 cell growing out {(a tumor may develop from a single
malignant cell!). When 107 cells are considered as 4x10° EDgsq units, each with
50% chance to contribute 1 cell or O cells to grow out, then the expected initial
population size becomes 2x10°, Likewise, should 10% cells be inoculated, a
factor of 10 reduction, then an expected number of 2x10* would remain to grow
out,

CFA and an in vivo CFA Resistant BNML Cell Line. A few remarks about
the drug CFA are given in Chapter 2.2.1.2. The development of an in vivo CFA
resistant BNML cell line is discussed in Chapter 2.4.2.1.

The Log Cell Kill (LCK) Hypothesis. In experimental cancer chemotherapy for

most cytostatic agents an invariable dose (intensity) response is observed, from
which the first order L.CK hypothesis can be deduced [Skipper, 1986a]. It states
that a same dose of a certain drug always kills a same fraction of a cell popula-
tion rather than a same number of cells, Thus, a drug dose causing q LCK
reduces a cell population of C cells to C-10Y cells. This LCK hypothesis has
been widely accepted and will be applied in this study to describe CFA action,

Relation between Increase in Lifespan (ILS) and LCK. By transferring
various numbers of BNML cells (parent line) /.v. to BN rats and observing the
subsequent median times of death (MdST) a dose—response relationship has

-80-



Fig. 2.24 Assuming the growth pattern after 107 BNML cells i.v. as standard (thick
line; MdST =22 d), a certain ILS can be achieved by a) another inoculation size or b) a
single drug dose whose effect should decrease with increasing treatment time. E.g., 2
LCK on day 5 or 8, or 1.5 LCK on day 13 (thin line) yields ILS=6 d (n.b., 2 LCK on day
13 vields ILS =7 d (broken line}}.
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been established (Eq.(2.1); Fig. 2.2), from which it can be deduced that every 4
d ILS corresponds with a reduction by a factor of 10 (1 log) in the number of
cells. This result can be generalized to:

g = 025 X ILS, @.19)

relating the ILS (d) to q LCK (i.e., a reduction of 109 in cell number).

Actually, a correction to Eq.(2.19) is needed, because of the Gompertzian
nature of the BNML cell population’s growth curve, It is assumed that the
BNMIL. growth pattern will always be identical (same constant T in exponential
phase, followed by Gompertzian growth beyond a certain population size), both
in the unperturbed situation and when treatment is given, Treatment just causes
an instantaneous reduction in the cell number, Then, given one size—time
datapoint the population size development can be (re)constructed by horizontal
shift of the basic growth curve in Fig. 2.24, for which the total BNML popula-
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tion growth curve of Fig. 2.15 is taken.

Starting with inoculating 107 BNML cells an MdST of 22 d is 0bse1ved To
postpone the MdST to day 28 (JLS = 6 d; shift the basic growth curve 6 days
to the right}, a 2 LCK drug dose should be given on day 5, or 1.95 LCK on day
8 or only 1.44 LCK on day 13. A drug dose of 2 LCK on day 13 would yield 7
d ILS, For 12 d ILS a drug dose of 4, 3,9 or 3.5 LCK would be required on
days 5, 8 or 13, respectively. Thus, for achieving a same ILS, late treatment
requires less LCK (a smaller dose of the drug) than early treatment, because of
the Gompertzian nature of population growth in later stages. The other way
around, giving a certain drug dose (i.e., a certain LCK) late rather than early
would yield a larger ILS, This effect is more pronounced when treatment is
given later and/or the LCK induced is smaller,

An unsolved discrepancy is the fact that 6 d ILS after 2 LCK on day 5 does
not quite agree with the 8 d ILS expected, when 10° (of which 1.5x 10° should
grow out) BNML cells are inoculated on day zero.

Dose—effect Measurements with CFA. BN rats were inoculated i.v. with 107
BNML. cells of the parent cell line and treated on different days (5, 8, 9, 11,
13) with single 7,p. doses of CFA of various magnitudes (10, 60, 80, 100, {20,
140, 160 mg/kg). The times of death due to leukemia were measured and the
MdSTs were calculated and converted to LCK values as described above
(Eq.(2.19)). The results are shown in Fig. 2.25. No correction for the deviation
due to Gompertzian growth was made, as the assumption on identical growth
patterns is uncertain. So for smaller doses at later time points the shown net log
cell kill, q, might be calculated somewhat too high.

Nowrousian and Schmidt [1984] experimentally found a linear relationship
between CFA dose and the logarithm of the surviving fraction (SF) of pluri-
potential (CFU-S) and granulocytic (CFU-C) progenitor cells in mouse bone
marrow. Thus,

log(SF) = - - dose. (2.20)

where h is a positive constant. Let the dose correspond to q LCK, then
SF=C*/C =107, 2.20)

where C* and C are the numbers of cells just after and before the drug
administration, respectively. Substituting Eq.(2.21) into Eq.(2.20) yields

q = h - dose. (2.22)

Knowing that the dose—LCK relation is linear, regression lines (going through
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Fig. 2.2 Observed dose—effect relations for CFA: net LCK, q (instantaneous total
paopulation size reduction factor) for different CFA doses given at different treatment
times. Linear regression through the origin yields lines whose slopes decrease with
increasing treatment time: a certain dose given later, has less effect
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the origin, zero dose has zero effect) can be drawn. The slope of the regression
lines appears to decrease with increasing treatment time; contrary to what would
be expected from the growth dynamics, a certain dose, given later, shows less
effect (lower q). 1s this due to relatively more CFA resistant cells occurring in a
well-developed tumor, or are the assumptions on the growth dynamics non-
valid?

Experiments with Mixed Populations of BNML Cells from the Parent Line

and the CFA Resistant Line, Mixtures of different ratios of cells of the parent
BNML cell line and the in vivo developed CFA resistant cell line were inoculat-
ed i.v. into BN rats in quantitics of 107 cells. Death duc to leukemia was
awaited without further treatment (control) or with an i.p. injection of 100
mg/kg CFA on day 13. MdSTs and ILSs were calculated (Table 2-6). As could
be expected, starting with more initial CFA resistant cells results in earlier death
and less effect of the same drug dose.
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TABLE 2-6 MdST AND ILS AS FUNCTION OF INITIAL S/C RATIO

percent Sy S5/Cq MdST ILS
100 1.00 22 - control
44 22 CFA
a9 0.99 nd nd control
39.5 nd CFA
=]9; 0.9 nd nd centrol
34 nd CFA
0 0 29 - control
29 0 CFA

107 cells fv. on day zero; CFA: 100 mg/kg cyclophosphamide /p. on day 13; MdST:
median survival time: ILS: increase in lifespan: S: drug sensitive cells; C: total nr of cells

Fig. 2.26 Scheme of the proliferation model (birth/death rates: b/d) tor drug sensitive
(S) and drug resistant {R) cells, and mutation (rate m) from S to R.

2.43.2 MODELING AND SIMULATION

The Model for Resistance Development and the Growth_of CFA-Sensitive
and -Resistant Subpopulations, The relations between the two proliferating
subpopulations are schematically shown in Fig. 2.26. Looking at the sensitive
cells (CFA/S), per unit of time and per cell, b cells are born and d cells
disappear (e.g., natural death). Of the difference, a constant fraction m (spon-
taneous mutation rate) changes info resistant cells (CFA/R); the rest returns to
the CFA/S compartment, The CFA/R population also has birth and loss rates,
assumably equal to b and d. The growth rates of the subpopulations can be
written as (a dot above a symbol denotes the time-derivative):
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m 1

L-m 0 N
| =@-ad { ] ' { ] cells/ unit time. 2.23)
R R

Starting from initial population sizes, Sy and R, the development of the
population with time, t, is obtained from integration of Eq.(2.23) under the
assumption that b and d are constant (b -d = k > 0):

S [So 0 } . [exp{k'(l—m}‘f}] (2.24)

R

~SO SO + RO exp{k' f}

The total population, C =S + R, (2.25)

If m—0 then the subpopulations grow independently in identical ways. If
m->1 then all cells produced become resistant: S = Sy remains constant and R
= Cyrexp{k-t} - Sy grows,

The assumption of b and d being constant is valid in exponential growth
when the population doubling time, Ty, is constant (k=1In2/T,). Real popula-
tions will grow (nearly) exponentially during some time span and then T starts
to increase more and more uatil the population size reaches a steady state
plateau level (see Fig. 1.8, where actual growth data are fit with contiguous
exponential and Gompertz curves), Computer simulations (not further discussed
here) revealed that this type of growth can be the result of a constant d, while b
decreases linearly with population size. The linear decrease, however, is such,
that the value of b can be considered a constant for a long period.

Development of the R/S Ratio, Let the initial population consist of a mixture
of CFA/S and CFA/R cells, i.e.,

The R/S ratio at time t follows from Eq.(2.26) and Eq.(2.24), if f # O then:
RIS = explk-m-t}/f - 1, (2.27)

with time-derivative
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(RIS) = (kom/fy » explk-m- 1}, (2.28)

which both are = 0 always. So, if m > 0 then the R/S ratio increases with
time, However, substitution of some probable values, ie., k = 0.65/d (T =
idy; f=09%m= 10 (100 times the estimated somatic mutation rate of |
cell in a million [Goldie and Coldman, 1985]), reveals that R/S increases from
0.11 to only 0.12 in over 100 d. Thus, practically spoken the R/S ratio remains
fairly constant. "
Because C = R + §, Eq.(2.27) can be rewritten as:

S/C = frexp{-k-m-1}. (2.29)

Net Log Cell Kill by a Single Drug Daose. Starting with Cj cells at time zero,
of which f-Cy are sensitive, at time ¢ just before treatment the population has
grown to C cells. The numbers of S and R cells then amount to:

S = C frexp{-k-mt7}; R =C -8, (2.30)

Treatment consists of a single drug dose causing p log cell kill {(p LCK) to
sensitive cells, i.e., the drug sensitive population is instantaneously reduced by a
factor of 10P, This value p can be considered as a potential LCK, i.e., it is the
maximum attainable value. As resistant cells may be present, which will not be
affected, in general the net LCK, g, will be smaller. So, just after treatment at
time t* the population will be reduced to:

§*=8-107;, R"=R =C -R7 (2.31)
C* =8+ R =C [l + 107 - 1) frexp{-k-m1}]. (2.32)
By definition, C* = C™ 1077, (2.33)

From Eq.(2.32) and Eq.(2.33) the net LCK becomes:

q = -log[1 +(107 -1 f-exp{-k-m-1}]. 2.34)
Again it follows that ¢ < p if m > 0. Furthermore, for constant p the value of
q will decrease with time; in other words, due to the phenomenon of resistance

development a same drug dose given at a later time point will kill a smaller
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Fig. 2.27A/8 Relation between net LCK, q, and potential LCK, p, for differant
treatment times t (days 1, 5, 8 or 13), mutation rates m (10’4, 1076 or 108 and f-factor
{1.0, 0.9 or 0.5: initially, all cells are sensitive (A} or there are 10% or 50% resistant
cells (B), respectively). g reflects the total population reduction, C*=C"+10"9 and p re-
flacts the reduction in sensitive cells, $* =5 -10" {** denotes population size just
after/before drug administration)
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fraction of the total population than when given earlier.

The relation between q and p, according to the model, is shown in Fig.s
2.27A and 2.27B for various treatment times, mutation rates and f-fractions,
chosen from probably realistic ranges, If f = I, starting with all cells being
drug sensitive, p and q remain approximately equal over a large range (larger
when m is smaller, or, when m is constant, larger when treatment is given
earlier). Then, a rather abrupt conversion occurs and q tends to stay constant
with increasing p. This suggests not only that treatinent should be given as early
as possible, but also that increasing the drug dose above a certain level would
be rather useless. The net LCK is no longer increased by increasing the poten-
tial LCK,

If the f-factor decreases, i.e., if the initial population already partly consists
of resistant cells (10% or 50% shown in Fig. 2.27B), the conversion level
decreases considerably while no treatment time dependency is seen anymore,
Then there is even less point in giving high dose treatment.

2.4.3.3 VALIDATION

How well does the model describe the tumor growth including formation of
drug resistant cells?

Comparing Fig.s 2.25 and 2.27 the linear q,CFA-dose relationship is not
quite reflected by the model derived q,p relationship, unless perhaps the
mutation rate is very low (< 10%) and the population does not initially contain
drug resistant cells (S§/C=1; if resistant cells are present initially, according to
the model high values of g cannot be achieved at all), Still, the observed
decrease of g with treatment time cannot be explained quantitatively by the
model, as is shown in Table 2-7. Perhaps m is not a constant but increases
progressively with population size?

Evaluation of the experiments with mixed cell types (R/S= 0/100, 1/99,
10/90, 0/100) being inoculated shows that a considerable net LCK can be
achieved, if it is assumed a) that growth curves before and after treatment with
CFA have identical shapes, b) that these shapes are not influenced by the
“population’s R/S composition, and ¢} that death from leukemia occurs at a
constant BNML cell burden (1.8x10° cells in the bone marrow). Backwards
extrapolation of the growth curves (Fig. 2.7) from the time of death until just
after treatment time (day 13), and comparing the calculated cell number with the
number of cells just before treatment (unperturbed growth curve) yields the
sought net LCK values (Table 2-8),

Except for the case of 1% resistant cells the predicted near-constancy of the
R/S ratio is confirmed. Splitting the population size just before treatment in an S
and R component based on the initial R/S ratio, and reducing only the S cells by
a factor of 1078 while leaving the R cells unaffected, nearly yields the required
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TABLE 2-7 OBSERVED AND MODEL DERIED DECREASE IN NET LCK, q. AS FUNC-
TION OF TREATMENT TIME AND MUTATION RATE, FOR CFA =100 ma/kg

AND 54/Cq=1

treatment  observed q model derived g

time (d) m=10% 10° 19710
1 - 8.0 2.0 10.0
5 8.99 7.3 8.3 9.3
8 5,99 7.1 8.1 9.1
11 5.0 7.0 8.0 9.0
13 4.49 6.9 7.9 8.9

TABLE 2-8 CALCULATION OF NET LCK, g, AS FUNCTION OF INITIAL R/S MIXTURE

initial R/S ratio 0/100
death {1.8x10? cells) on day 44

nr of cells after treatment’ .6x104
nr of celis before treatment” 1.0x10°
LCK (q) 4.8

1/99
39.5

8.4x10°
1.0x10°

3.4

10/90
34
1.1x108

1.0x109

0.9

100/0
29
1.0x10°
1.0x10°
0.0

day 0: 107 BNML 7v.; *: day 13, 100 mgrkg CFA i.p.; "regrowth =growth"”

TABLE 2-9 BNML CELL POPULATION SIZE AFTER CFA-TREATMENT FOR VARIOUS
R/S MIXTURES; CALCULATION AND OBSERVATICON

nr of cells before treatment

total? 1.0x10° 1.0x10° 1.0x10° 1.0x10°
assume: R/S" 0/100 1/99 10/90 100/0
= resistant, R’ 0 1.0x107 1.0x108 1.0x109
= sensitive, 8 1,0x10° 9.9x108 9.0x108 0
nr of cells after treatment
sensitive®, s+ 1.6x10% 1.6x10% 1.4x10% 0
resistant®, R+ 0 1.0x107 1.0x108 1.0x10°
total 1.6x10% 1.0x107 1.0x108 1.0x10°
total, observed? 1.6x10% 8.4x10° 1.1x108 1.0x10°

Sunperturbed growth, day 13 after 107 BNML cells /.v.
100 mg/kg CFA causes 4.8 LCK to sensitive cells (see Table 2-8), so, St = §-1048
°CFA leaves resistant cells unaffected, thus, R¥ = R’
dfrom MdST and "regrowth =growth", see Tabhle 2-8
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number of cells after treatment again (Table 2-9),

By exploring a few properties of a simple model! for cell proliferation and
formation of drug resistant cells it appeared that results of laboratory experi-
ments could be simulated nicely to some extent, although by this first approach
a few observed phenomena could not yet be explained to satisfaction. Therefore,
the model must be refined and more detailed investigations, in particular on the
validity of its assumptions, will be necessary.

For example, four days ILS for a factor of 10 smaller inoculum of BNML
cells implies a population doubling time of 1.2 d for the concept of the inoculum
being equivalent to a number of EDg, units to hold. Fitting the growth data,
however, results in some 0.8 d. Are these values, thus the mentioned concept,
really incompatible, or is the difference not significant and merely due to
biological variation?

To help finding answers to questions like this, the sensitivity of the model
behavior to changes in the values of variables should be looked into. This way it
should be possible to discriminate between absolute model errors {corresponding
to established biological impossibilities) and less severe inaccuracies originating
from uncertainties in the biological data,
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Chapter 3
Cell Population Dynamics of Childhood T-Cell Acute Lympho-

blastic Leukemia'

The average adult leukemia patient will carry at time of diagnosis a leukemic
cell load of some 1012 cells {approx. 1 kg). With modern (remission induction)
chemotherapy most patients (children 95%, adults 80%, [Smith et al., 1986])
will soon enter an apparent discase free state (complete remission), i.e., the
symptoms disappear and in standard tests no leukemic cells can be found any-
more, However, that the number of malignant cells has disappeared below the
clinical level of detection does not mean that all clonogenic leukemic cells have
been eradicated. This is revealed by the fact that in many patients (children
30-40%, aduits 70-80%) the disease will return eventuaily (relapse), due to re-
growth of surviving cells. The clinical detection level is now about 1 percent,
i.e,, the occurrence of less than I malignant cell in 100 normal cells will go
unnoticed {Hagenbeck and Martens, (985]. In other words, an apparently
healthy person having ! kg of marrow may carry an undetectable malignant cell
burden (minimal residual disease) of some 0.0! kg, corresponding with 1010
leukemic cells. The clinician’s problem is how to anticipate an imminent relapse
and how to tune his (maintenance) chemotherapy schedule to prevent or delay it,
bearing in mind that patients should be spared the unnecessary toxicity that is
inherent to intensive chemotherapy. So, in fact this makes up an optimization
problem.

Therefore, it is most important to gather information on the time-history of
the malignant population during and after treatment. Before treatment optimiza-
tion can be dealt with, it must be known how the malignant population develops,
how it reacts—in terms of surviving cell numbers—to the drugs administered,
and how it will regrow after the chemotherapy. '

In the present study datapoints were gathered by means of immunological
marker analysis [Van Dongen et al,, 1986] revealing at certain time instants
during therapy the size of the population of malignant cells in the peripheral
blood (PB) and the bone marrow (BM) of several children with T-cell acute
lymphoblastic leukemia (T-ALL). The raw PB data are examined and compared.
Through simulation and curve fitting it is tested whether certain models for
population growth and drug action are applicable. A particular case is studied in
detail, The time-history of this population is regarded as the output of a dynamic

ITo a large extent the contents of this chapter were published in:
Schultz FW, Van Dongen 1], Hihlen K and Hagenbeek A: Time-history of the malignant
poputation in the peripheral blood of a ¢hild with T-cell acute lymphoblastic leukemia: a pilot
study, Comput Math Applic (1989) 18:929-936
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system that responds to an input signal consisting of the clinically applied
chemotherapy schedule. The relation between in- and output, as well as the
unperturbed output behavior, must be identified, In the first instance, (partially)
making use of already accumulated knowledge, it is tried to describe the evo-
lution of the population in mathematical terms, in such way that the observed
datapoints can be explained,

3.1 METHODS AND MATERIALS

3.1.1 Detection and Quantification of T-ALL Cells by Immunological
Marker Analysis

The malignant cells in nearly all cases of T-ALL express the nuclear enzyme
terminal deoxynucleotidy! transferase (TdT) and T-cell markers such as the CD5
antigen on the membrane. Normally, cells with the CD51/TdT* phenotype are
found in the thymus only [Van Dongen et al., 1985]. The presence of these cells
on locations outside the thymus is therefore indicative of the presence of
T-ALL. By use of the CDS*/TdT* double immunofluorescence (IF) staining
technique, it is possible to detect one CDSH/ TdT* cell among 10,000 or even
100,000 normal cells, as has been established in a series of previous dilution
experiments [Van Dongen et al., 1986].

During remission induction (RI) and follow-up of several T-ALL patients
many peripheral blood and bone marrow samples were taken and analyzed for
the presence of residual T-ALL cells by use of the CDS/TdT double IF staining.
For this purpose the mononuclear cells (MNC) were isolated from the obtained
PB and BM samples by ficoll density centrifugation (Ficoll-Paque; density 1.077
g/em?). The MNC were incubated with the anti-CD5 monoclonal antibody
(McAb) Leu-1 (Becton Dickinson, Sunnyvale, CA) and subsequently with a
tetramethylrhodamine-isothiocyanate (TRITC) conjugated goat anti-mouse
immunogliobulin (Ig) antiserum, Afterwards, at least two cytocentrifuge prepara-
tions per sample were made, each containing at least 25,000 cells. These
preparations were fixed in methanol and subjected to an indirect staining for
TdT by use of a goat anti-TdT antiserum (Supertechs, Bethesda, MD) and a
fluorescein-isothiocyanate (FITC) conjugated goat anti-rabbit Ig antiserum as a
second step reagent. The cytocentrifuge preparations were evaluated on Zeiss
fluorescence microscopes, equipped with phase-contrast facilities and filter com-
binations for the selective visualization of FITC and TRITC. The CD5*/TdT*
cells (i.e., T-ALL cells) present were quantified as percentages double positive
cells per MNC, always by first determining the fraction of TdT* cells per
MNC, followed by counting those TdTY cells that were also positive for the
second marker. For this purpose at least 1000 TdT* cells were evaluated each
time,
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TABLE 3-1 T-ALL PATIENT INFORMATION
patient sex birth date patient sex birth date
1 MZ f 190777 5 ER m 010281
2 1A f 131279 6 KG f 140876
3 RS m 190772 7 CbJ f 170375
4 PM m 010980
TABLE 3-2 QUALITATIVE DESCRIPTION OF COURSE OF DISEASE BASED ON
‘RAW DATA'
patient T-ALL cells/mm? time until time until {F neg. IF pos.
of PB at start remission relapse  period at {wk)
of therapy {wks} {wks) (wks)
Mz 1.48x10°% 3 126 9-98 111
1A 1.46x108 3 59 13-34 58
3.08x10% 1 14 remains positive
RS 1.33x108 3 *1 6-20 27%
P 3.95x107 1 *2 3-30" -
ER 4.8 x108 1 *3 7-12* -
KG 4,9 x10° 1 4 1013+t -
coJ 2.0 x10° 1 24 remains positive
9.14x10? 1 23 4-12 16
2.57x102 1 14 remains positive
*i still in remission after 143 wks {i=1), 30 wks {(i=2), 12 wks {i=3), 13
wks {i=4)
+: latest observation; still IF negative (i.e., nothing detected by immuno-
fluorescence)
X: alternatingly positive and negative with approx. 21 wk period

remission:
relapse;

< 10°% malignant celtls/mm?3 PB (< 102 for CDJ}
at 10% malignant cells/mm® PB (102 for CDJ)

For the mathematical analysis of the data the percentages of T-ALL cells per
MNC were recaleulated to the absolute number of T-ALL cells per mm® of PB
or BM. It is a small complication that within the MNC population after ficoll
density centrifugation still up to 15-20% myeloid cells are present. Those
myeloid cells can easily be detected, since they strongly express the CDIS
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antigen, which can be marked by use of the McAb VIM-DS5. Therefore, the per-
centage of T-ALL cells per MNC (= Z) was first corrected for the presence of
CDIS™ cells per MNC (= X) to obtain the percentage of T-ALL cells per
‘true” MNC (i.e., MNC not polluted with myeloid cells). The percentage of
myeloid cells per total leukocytes (= Y) was obtained from differential counts
of the PB or BM, This percentage was used to convert the percentage of T-ALL
cells per "true" MNC to the percentage of T-ALL cells per total leukocyte
poputlation (= Z-(100 - Xt (100 - Y)). Subsequently, the total number of
T-ALL cells per mm?® was calculated by use of the BM cell count or the white
blood cell count (WBC) per mm? (= Q).
These calculations can be summarized in the following formula:

nr, of T-ALL = Z-1072-(100 - x)~!-(100 - 1 C, 3.1

where nr. of T-ALL denotes the total number of T-ALL cells per mm® PB or
BM.

3.1.2 Patients

A total of seven patients has been followed with respect to the time-course of
their disease, starting at diagnosis of T-ALL (Tables 3-1 and 3-2), The initial
leukemic cell load varied from 1,5x10% to 2x10° T-ALL cells per mm? in
peripheral blood. In all patients remission was induced within | to 3 weeks
{patients with high leukemic cell loads took longer), Four patients (RS, PM,
ER, KG) remained in first remission without detectable residual disease. Follow-
up times, however, are still rather short for them (12-30 weeks), except for
patient RS (143 weeks) in whose PB by use of IF techniques low levels of T-
ALL cells were found regularly after week 27.

Two patients, MZ and IA, relapsed after 126 and 59 weeks, respectively.
This could be foretold a few weeks in advance, in view of the increase of the
malignant cell load as seen with the IF method, A second RI therapy in patient
IA apparently was successful within 1 week and lasted until week [4. The
remission was not as deep as the first one, as is shown not only by the shorter
duration of the remission, but also by the continuous presence of T-ALL cells
during this period (according to the IF method). The last patient, CDJ, relapsed
twice, As the data for this patient are the most extensive, she will be discussed
in detail below,

3.1.3 Case Report for Patient CDJ

After T-ALL had been diagnosed the & year old girl CDJ was monitored during
a period of about 500 days. During this follow-up period the patient had two
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relapses of the disease. High intensity chemotherapy to obtain remission induc-
tion was applied three times, starting on days O (diagnosis), 198 (first relapse)
and 365 (second relapse). Such RI therapy was given during 3 weeks, always
employing a same multi-drug combination according to a standard RI protocol.
The first two RI therapies were successful and were therefore followed by a
constant low intensity continuous maintenance therapy (CMT) schedule consist-
ing of 6-mercaptopurine/methotrexate and, during the first remission, of two
additional cycles of prednisone treatment, starting on days 121 and 177. The
second relapse did not respond sufficiently to chemotherapy and the patient died.

J.1.4 Mathematical Analysis

Only time courses of T-ALL cell population sizes in PB have been analyzed

because in this compartment the observations were the most abundant,
Four phases of analysis can be distinguished:

1- Inspection of raw data, i.e., the patterns of the observed numbers of T-ALL
cells per mm?® in PB plotted semi-logarithmicaltly against time,

2- Log-linear regression of cell numbers, C, on time, t, to find halftimes and
doubling times (T, and T,, respectively) at various stages of therapy and
follow-up, between times t and ty when growth or decline of the malignant
cell population is presumably exponential:

cw - C<ro>-exp{55§3-(f—ro>}, 3.2)

where T = -Ty, or T = T,

3- Sinmlation studies; to estimate the cell kill effect of daily drug doses, under
the assumption that a same drug dose kills a same fraction of cells {log cell
kill hypothesis [Skipper et al., 1964]; see below, section 3.1.4,4} and
exponential regrowth with doubling times as determined under 2.

4- Curve fitting; malignant cell population growth and the influence of therapy
can be modeled by some mathematical function that, after successful fitting
to the datapoints, yields an empirical description of the development of this
cell population,

3.1.4.1 Inspection of Raw Data, By simply plotting the observations on
semi-log paper a first impression is obtained about how the malignant cell
population evolves with time. It allows any correspondence—or noncorre-
spondence—with known events, e.g., start and end of a therapy course, to be
noticed at a glance.

The estimated accuracy of the cell population size as observed with im-
munofluorescence in general is better than 10 percent. However, when the
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uncorrected percentage of T-ALL cells per MNC (Z in Eq.(3.1)) is less than
0.1, the uncertainty may rise up to 200%. For some datapoints the degree of
contamination of the MNC population with myeloid cells (percentage X in
Eq.(3.1)) could not be determined. An average value for X was substituted then.
Therefore, the datapoints concerned are slightly less certain. Further remarks on
the accuracy of the observations can be found in Appendix C.

3.1.4.2 Log-linear Regression. From the inspection of raw data (section
3.1.4.1) it appears that the T-ALL cell populations in the periods just after start
of RI therapy and just before and after relapse evolve almost according to
exponential growth, Application of log-linear regression to the datapoints
concerned therefore seems appropriate to estimate the corresponding halftimes
and doubling times,

3.1.4.3 Simulations. For various patients (PM, ER, KG) the influence of
the periodically administered drug doses was evaluated by modeling a constant
fraction of T-ALL cells being killed by each separate dose. Dealing with equal
doses and constant time intervals (mostly daily administrations) the cell popula-
tion decreases exponentially and a halftime can be calcolated. The killing effect
of each drug dose, expressed as a number of logs (log cell kill, LCK; see
section 3.1.4.4), can be estimated by matching the simulation results to the
actually observed population size—time datapoints.

3.1.4.4 Curve fitting. A very general growth equation describing the time
course of a cell population of size C(t) at time t is given by:

CU+An = CH + Ar-igfﬁ. (3.3)

In the present case the time increment At was chosen 0.01 d in a series of
computer simulations. The growth rate dC/dt was derived from the experimental
data, bearing in mind some already available knowledge about tumor growth
[Steel, 1977], both under unperturbed circumstances and under influence of
chemotherapy, which will be briefly elucidated below.

Unperturbed growth, The unperturbed development of a population of leukemia
cells is often characterized by exponential growth, i.e., the population doubling
time, T,, is constant and on a log-linear plot a straight line is seen. In particular
this is commonly true in the early stage of the disease. At a later stage the
doubling time may decrease more and more with time, and the population evol-
ves to a steady state plateau phase (constant size), For instance, in the Brown
Norway rat acute myelocytic leukemia—whose characteristics correspond closely
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to the human acute myeloid leukemia [Van Bekkum and Hagenbeek, 1977]—
such behavior is observed, After an exponential growth phase T, starts decreas-
ing exponentially, which can be described with a Gompertz function [Schultz et
al., 1986].
In general the increase of the population size per unit time can be related to
the current population size as follows:
% - GF C(0), )

where GF = [n2/T, is constant in the exponential growth phase, and for Gom-
pertzian growth GF = A-In(C,,,/C), thus depends on the current and the
maximum population size (plateau phase), as well as on a retardation constant,
A [time™l].

This growth fraction GF can be regarded as that part of the population that
doubles its size during time interval dt. It is related to biological variables like
the generation time of the cell line (time from birth of a cell until cell division),
the ratio of resting and actively proliferating cells, the loss of cells from the
population, and environmental factors.

Influence of chemotherapy. Based on experiments measuring the increased
lifespan of tumor bearing laboratory animals due to chemotherapy the "log cell
kill" hypothesis [Skipper et al., 1964] says that a given dose of a given cyto-
static agent always kills a constant f{raction of cells, rather than a constant
absolute number. After this instantaneous reduction in cell number the drug
effect has disappeared and the surviving population regrows in a way similar to
the unpertarbed growth, This hypothesis has been widely accepted for describ-
ing chemotherapeutic impact on the size of a cell population (e.g., [Birkhead
and Gregory, 1984]). Thus, a drug dose is said to have an effect of B log cell
kil if the population sizes just before (time t) and just after (time t*) the
administration are related by:

Cu*y = ¢y 1075, 3.5)

If a series of equally spaced constant drug doses are administered to a popula-
tion in exponential growth, and assuming that the doubling time during regrowth
will be identical with that of the original unperturbed population, then, on a
log-linear plot, the population’s time-history will be a regular saw-tooth shaped
curve, Because each sequential dose will kill a constant fraction of cells this
curve will progress along a straight line, whose slope (either up- or downward)
depends on the log cell kill factor per dose and on the value of T,.
The time-history of the average population size—i.e., C(t) =
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Fig. 3.1 Qualitative influence of remission induction and maintenance chemotherapy
{high and low intensity, respectively) on the size of a cell population under a) solid line:
the "log cell kill" hypothesis or b) broken line: development of therapy raesistance. The
thin solid lines show a "smoothed" time-history {connecting datapoints just before each
new drug administration)

REMISSION INDUCTION

THERAPY MAINTENANCE THERAPY

ST A S A A

number of cells

time
I/z{VC(t')+C(t+)}——can then be described with the equation:
f“(% = GF-{1 - K-L()} - CO), (3.6)

where—as in [Norton and Simon, 1977]—K is a scaling constant and L(f) a
function that describes the therapy level, in this case having a constant value as
well, Substitution of Eq.(3.6) into Eq.(3.3) will yield a "smoothed" time-history
of the population’s size (not showing every single saw-tooth) that can be used
even when—like in the present case—the drug doses are not evenly spaced, nor
constant with respect to the log cell kill factor. If K-L(t) is less than one the
population will increase (exponentially) in size despite the therapy, if it is
greater than one the malignant population will become (exponentially) smatler,
The latter situation will correspond with RI therapy, the former situation may
exist during less severe CMT that eventually results in a relapse as soon as the
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Fig. 3.2 Patient CDJ: Experimental datapoints showing population size at various times;
open symbols are less certain points (see text, section 3.2.1); start and duration of
remission induction therapy is shown (thick arrows); thin arrows indicate additional

treatment. BM: bone marrow; PB: peripheral blood
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population size exceeds a minimum value (clinical detection level) again (see
Fig. 3.1). Of course, deviations from the exponential curves may occur if, for
any reason (e.g., spontaneous mutation [Goldie and Coldman, 1979], cell kinetic
changes [Norton and Simon, 1986], or—in this case with one PB compartment
not very likely—pharmacological changes [Jackson et al., 1983]) drug insen-
sitive (sub)populations start to develop. The constant log cell kill hypothesis is

valid for drug sensitive cells only; gradually arising drug resistant cells will
lower the achieved log cell kill factor more and more.

Application to data of patient CDJ. In the present case no tendency toward
Gompertzian growth was observed. Inspection of the datapoints suggested
exponential regrowth under CMT, identically for all three cycles, and, at least

initially, an exponential decrease in population size during RI therapy. This
decrease seems to continue later at a lower rate (Fig. 3.2).
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For the reconstruction of the (smoothed) time-history of the population by
computer simulation the influence of chemotherapy was split into two parts:

- 1) as at a first glance there were no signs in the observed datapoints that
would suggest the formation of therapy resistant subpopulations, a constant
influence corresponding with CMT is assumed for the total treatment interval.
K.L(t) in Eq.(3.6) is smaller than one, and GF-{l - K:L{t)} is a positive
constant, GF,.

- 2) the initial high intensity chemotherapy corresponding with RI therapy
—from which the already accounted for influence due to modeling CMT as in 1)
is subtracted—is modeled to have an ever decaying influence according to:

K'L(y = Hy exp(-R1), 3.7

where R is a measure of the rate of decay from the initial therapy level H,,. For,
at first sight, phenomena like therapy resistance formation may play a role here.
Thus, the resulting growth equation can be written as:

Ct+AD = C(H) + GF,-{I - Hy-exp(-R-D}" At. (3.8)

The value of GF, was estimated from a log-linear regression analysis of the
experimental PB datapoints for CMT. The values of H, and R were estimated
for the three treatment cycles by fitting the simulated curve of Eq.(3.8) to the
observed datapoints, using a sfandard routine for least squares fitting to a
non-linear function with parabolic expansion of chi-square [Bevington, 1969].

3.2 RESULTS AND DISCUSSION
3.2.1 PB Data of Patient CDJ

Figure 3.2 shows the datapoints observed after immunological marker analysis.
It should be noted that for several datapoints the degree of contamination of the
MNC population with myeloid cells (percentage X in Eq.(3.1)) could not be
determined. An average value for X was substituted then, yielding datapoints
that are slightly less certain. The fate of the ALL cells in the bone marrow seem
to be reflected in the blood. The patterns of PB and BM data look alike, except
perhaps at the end of the time interval (day 400). Being the most abundant, the
PB data were used for further mathematical analysis,

Log-linear regression analysis in the regrowth phases, when influence of RI
therapy has virtually vanished and only CMT influence remains, revealed that
the population doubling time remained approximately constant, T, = 6.7, 5.8
and 7.7 d, respectively, for the three consecutive cycles. (N.B., in the first
cycle the datapoints between the additional prednisone treatments were taken).
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Fig. 3.3 Results of regression analyses performed on the peripheral blood (PB} data-
points of patient CDJ: halftime (ty;,), doubling times (t,} and correlation coefficients (r)
are shown. As in Fig. 3.2, open symbols are less certain observations
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These differences are not significant and after pooling of the data the mean
doubling time amounted to 6.5 d (correlation coefficient r = 0.991), which
corresponds wilh a constant GF, = In2/T, = 0.106 d"! (Fig. 3.3).

This indicates that the growth kinetic properties of the regrowing population
will not have changed during the courses of treatment, and that the population
remains in exponential growth phase even under CMT, without any evidence
that therapy resistant cells are being formed here.

In the same way an estimate of the halftime was obtamed in the declining
phase of the growth curve (Fig. 3.3),

With the thus derived estimate for GF, the remaining parameters describing
the therapy level, H, and R in Eq.(3.8), were found for each treatment cycle by
Jitting Ec} {3.8) to tae corresponding datapoints, starting from 2x10° T-ALL
cells/mm” blood on day zero. The resulting values are listed in Table 3-3. The
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Fig. 3.4 Patient CDJ: Computer simulation of the time-history of the population after the
start of each treatment (thick arrows: remission induction therapy or thin arrows:
additional prednisone treatment), i.e., feast squares fit of £q.{3.8} to the datapoints {open
symbols are less certain observations, see text {section 3.2.1}); parameters in Table 3-3
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resulting fitted curves representing the time-history of the T-ALL population in

PB are shown in Fig. 3.4,

As can be seen in Fig. 3.4 the fitted curves predict a minimum of about 0,1
T-ALL cell per mm? of peripheral blood in the range of day 230-280. The data-
points observed in this time interval—indicated in Fig. 3.4, although not been
used for curve fitting purposes—have been arbitrarily set to 0,01, but in this
range the actually observed numbers amount to zero. These observations do not
contradict the model output. A typical sample size for the immunological marker
analysis in this region is 10 m! blood, containing 3000 cells per mm®. Accord-
ing to the model the frequency of the leukemic cells then is 0.1/3000 =
3.3x10°, This value is within the margin of the stated sensitivity of this detec-
tion method, i.e., 1 leukemic cell in 10* to 10 normal cells will be detectable
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TABLE 3-3 PATIENT CDJ: RESULTS OF CURVE FITTING TO PB DATA

GF,=0.106 d'! T,=6.524d
start of
therapy H, + sd R + sd AUC LCK ({dC/dt}/C
d d! d dT
* 0 6.972 0.264 0.0304 0.0013 229.34 6 ---- -0.63
121 1.603 0.005 0.1137 0.0003 13.22 - 0.09 -0.05
177 2.856 0.004 0.2256 0.0004 12.66 - 0.29 -0.19
*198 5.086 0.008 0.0277 <0.0001 183.61 4 010 -0.43
*365 2.386 <0.001 0.0207 <0.0001 1156.27 1 010 -0.15
B A
* =remission induction therapy
GF, Ty growth fraction and doubling time in maintenance therapy phase
H,. R: initial therapy level and decay rate
AUC: area under therapy level curve LCK: log celt kil

{dC/dt}/C: relative growth rate, just (Blefore or {Alfter start of therapy

[Van Dongen et al,, 1985]. Furthermore, a simple calculation using Poisson
statistics reveals that, if the chance that a cell is leukemic equals 3.3x107, the
probabilities of finding zero and of finding one such cell in a sample of 30 ,000
(10 ml blood) will be equally large, namely 37%.

That the effectivity of the RI part of the therapy is reduced in every new
treatment cycle can be deduced from (Table 3-3):
A) the initial therapy level H, decreases with the cycle number; the rate of
decay R does not change very much. The halftime of this decay amounts to
some 23 d, which is nearly as fong as the duration of a RI therapy protocol.
N.B., for the prednisone treatments just the reverse is observed, i.e,, H,
increases to double the value and so does R, However, this may be an artifact
due to too few datapoints in these regions. For instance, for the first prednisone
treatment an almost equally good fit could be obtained by assuming H, = 335.6
and R = 20.86, i.e., a very steep decay from a very high initial level. So, to
evaluate the most appropriate parameter values more datapoints are necessary;
B) the area under the L{t) curve, which may serve as a measure of the therapy
efficiency and can be calculated by integration of Eq.(3.7) from time zero until
infinity (yielding H/R), goes down with the cycle number. N.B., for the
prednisone cases the area under the curve goes down a little as well;
C) by looking at the ratio of the population size at the start of each RI and the
minimum population size achieved in that cycle, decreasing overall log cell kill
vatues can be derived; :
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D) the relative growth rate just after the start of treatment shows ever decreas-
ing values, showing that the decline of the population size is less and less steep.
Just before treatment the relative growth rate always shows an approximately
constant value, indicating that the state of the growing population is the same
each time. Prednisone treatments again show a deviant behavior,

3.2.2 PB Data of Other Patients

Figures 3.5 through 3.12 show the datapoints--in general the datapoints were
acquired just before therapy was applied—simulations and fitted growth curves
concerning the development of the T-ALL cell populations in peripheral blood.
An overview of the characteristics of these time histories is given in Table 3-4
(raw’ data), Table 3-5 (regression lines), Table 3-6 (simulations) and Table 3-7
(curve fitting).

Three patlenls started with equally high leukemic cell loads at diagnosis
(=1.4x10 8/mm’ }. The other patlenls had a lower (up to 3 logs) mmal lenkemic
cell load (Fig. 3.13). First remission (tumor load < 10° cells/mm? ) was suc-
cessfully induced in all patients, within 1 to 3 weeks. During at least some time
the leukemic cell load dzopped below detectable levels, which is here about 3
leukemic cells per mm? blood. (N.B., assuming 5 | per 1phelai blood per patient,
the theoretical minimal malignant ce!l frequency that can lead to relapse is
1/5000 = 2x10%), Three patients relapsed (MZ, IA, CDI), two of which were
given a second RI therapy (IA, CDJ). Their malignant cell loads then were [.5-
2.5 logs below the levels at first diagnosis. Both relapsed again and for one
patient {(CDJ) third RI therapy was started, leukemic cell load now being 3 logs
below that at first diagnosis,

For patient ER three distinct phases during first RI treatment can be
distinguished, with starting malignant cell loads at two and three logs, respect-
ively, below that of diagnosis. Patient KG shows two distinct phase during first
RI, the second phase starting with a leukemic celi toad of 1.5 logs below that of
diagnosis.

The rates at which the patients went into remission are not very different;
the population halftime is about 2 days (varies "interpatient” between 0.5 and 3
days). In this respect, per patient, there is hardly any difference between first or
second RI period, nor—where applicable—per phase of the first RI period.
More, but certainly no spectacular, variation is seen in the doubling time of the
regrowing cell populations (Fig. 3.13). Thus, the time histories of the T-ALL
cell populations in PB are characlerized by stages of exponential decline and ex-
ponential regrowth.

In a few patients (PM, ER, KG) the influence of the daily drug doses could
be simulated by letting them cause a constant LCK/dose. By choosing a con-
stant, "average”, population doubling time of 6,52 d (3.25 d in one case), and
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Fig. 3.5 T-ALL cell population in PB of patient MZ. Datapoints are shown with estimated
aceuracies; values below 0.01 mi™! have been drawn on the 0.01 level. Halftimes (Th
{d}} and/or doubling times {Td [d}) between certain datapoints are indicated. The best-
fitted curve has an unrealistic minimum of 2.06x107% T-ALL cells/mm?® on day 275
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Fig. 3.7 T-ALL cell population in PB of patient RS. Large fluctuations in population size
are being ‘smoothed’ by the fitted curve. See also legend of Fig. 3.5
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Fig. 3.9 T-ALL cell population in PB of patient PM, focussed on the first 100 days. Fitted
curve A predicts eradication of the malignancy (but is physically impossible as it implies
ever increasing therapy influence}, curve B predicts a too early return to the 10° calls
lavel at day 100. Curve C represents an exponential decrease. All curves yield equal
goodness of fit values {tcc). The simulation {D}, assuming that each daily drug dose
causes 0.57 LCK and regrowth doubling time is 6.52 d, follows the datapoints rather
wall. See also legend of Fig. 3.5
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Fig. 3.10 T-ALL cell population in PB of patient ER during the first 100 days. The
period is divided in two parts: before and after day 40. Points before day 40 were fitted
{Fit 03} and the same curve was used after day 40 (Sim 03}, Splitting the first peried
once more, at day 14, both parts were fitted {Fit 01 and Fit 02, respectively} and either
curve was used to simulated the period after day 40 {Sim 01, respectively, Sim 02). All
curves predict about 10% T-ALL cefls per mi on day 100
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Fig. 3.11 T-ALL cell population in PB of patient ER during the first 100 days. A
simulation with daily drug doses on days 0-6, 14-20 and 42+ causing 0.47 LCK each.
Regrowth doubling time is set to 3.25 d {instead of 6.52 d)
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Fig. 3.12  T-ALL cefl population in PB of patient KG during the first 100 days.
Observations may be explained with a simulation with daily drug doses causing 0.18 LCK
each, discontinued between days 21 and 42, while regrowth doubling time is 6.52 d.
Observations up to day 42 were well fitted; using the same curve after day 42 predicts
relapse (10° cells) much too soon, around day 122
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TABLE 3-4 OVERVIEW OF ANALYSIS RESULTS ‘RAW DATA’

patient MZ 1A RS Piv ER KG CbJ

initialty

Told) 0 0 0 0] 4] 0 4]

Cax10® | 1485  145.7 133.2 39.5 4.8 0.49 0.20

R1 Ty](d) 1.6 2.5 1.3-2.6 0.5-1.3 0.5-1.4 1.2-2.2 2.8
Told) 3.1-6.5 8.2 0.8-6.5 ? 2.0-5.8 <8,77 6.7
Tosld) 857-867 377 - - “ - 260

R2 Cq 3.08x10° 914
Told) 418 198
T, (d) 2.4 2.8
T,id) 2,07 5.8
T,5id) 113 247

R3 C, 257
Totd) 365
Ty, (d) 2.8
To{d) 7.7
Tes(d) 187

Ri = ith remission (induction) peried

Tp = time of starting therapy; Cy = number of cells per ml Peripheral Blood at start

of therapy
Ty = estimated halftime of cell population; T, = estimated doubling time of call
population ’
T,s =  estimated time of reaching the 10° cells level

TABLE 3-5 OVERVIEW OF ANALYSIS RESULTS ‘LOG-LINEAR REGRESSIONS’

patient Mz 1A RS PM ER KG CbJ
RT A 1.62 7.35 6.7b 6,43 12.78
B(d") 4.6x10°%  -0.48 -0.58 0.19 -0.23
I 0.68 -0.10 -0.97 -0.96 -0.95
Ty d) - 0.70% 0.518 1.56 2.96
T,ld) 150.3 - - . -
for time
interval{d) 40-920 0-9 0-5 11-21 0-21

regression fine: In{C) = A + B-+t, time t in days; r: correlation coefficient
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TABLE 3-6 OVERVIEW OF ANALYSIS RESULTS 'SIMULATIONS’

patient MZ 1A RS PM ER KG _CbJ

simutation D C A B

R1T treatm. o-21 0-8/ 0+ 0-21/

duration (d) 14-20/ 43+

42 +

LCK/dose 0.57 0.48 0.17 0.17
Ty {d} 0.58 0.78 2.5 2.5
Told} 6.52 3.25 6.52 6.52

R1: first remission {induction} period

LCK/dose: caleulated Log Cell Kill per daily drug dose

Ty,: observed value of the population halftime

T, set value of the population doubling time

Simulation:  the population grows exponentially with doubling time T,; a drug dose
reduces the population instantaneousfy by a factor of 10MCX; this yields a
net exponential decrease in cell numbers with halftime T,,

taking the rate of decline (halftime) into consideration, the log cell kill per dose
needed to "match” the datapoints varies between 0.2 and 0.6 for different
patients (Table 3-6). '

Another way of looking at the influence of therapy is by fitting a growth
curve (Eq.(3.8)) to the datapoints. This allows estimating the variables H, and
R, respectively, a measure of the initial impact of the therapy and the rate at
which this impact decays. A low H, value means a low initial therapy impact, a
low R means that the initial impact decays but slowly. Both values low, thus,
means a small but long lasting effect. Overall effect can be evaluated by looking
at the area under the curve (AUC), which is the integral of H,-exp(-R-f).
Values of H,, R and AUC are shown in Fig. 3.14, per patient, for the best
fitting curve. Large variations occur both in H, and in R. A factor of about 85
between highest and lowest AUC is seen, When looking at subsequent RI
therapies in a same patient, it is noticed that the AUC always decreascs,
although only a little bit sometimes. By using the AUC, the clinical notion that
"A same therapy given later is less effective” can thus be quantified.

33 CONCLUDING REMARKS
In conclusion, from this pilot study it can be deduced for patiens CDJ that:

A) assuming a constant influence of low intensity maintenance therapy the
otherwise "unperturbed” population in this T-ALL patient grows exponentially
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TABLE 3-7 OVERVIEW OF ANALYSIS RESULTS 'CURVE FITTING'
patient MZ 1A RS PM ER KG CcbhJ

initially
Told) 0 0 0 0 0 0 0
Cpx1078 148.5 [145.7 133.2 (39.5 4.8 0,49 0.20

curve fit A [oX] 01 c 0A 01 03 o1

R1 startd) |0 ) 0 0 0 0 0 0 0
H, 662 |4.80 105.38 [14.52 9 18.0 513.81 |6.42 6.97
Rid') 0.007 |0.01 0.03 0 007 |035 0.2 0.1 0.03

H/R=AUC [933 |486 4215 |- 1286 |52 70 67 229
Tyl - - 0.48 0 . - - -
T,(d) 7.34 |6.52 130.89 |6.62 6.2 [4.83 435 |5.27 6.52
tec .99 |>.99 .04 >909 >99 [>.99 .99 >.99

02 03 02

A2 start{d) 418 418 14 43 198
C 3.08x10° 2.21x104 2.29x10% {914
H, 7.43 2.32 24,27 6.42 5.09
Rid") 0.08 0.02 0.49 0.1 0.03

H,/R=AUC 83 136 50 67 184
Ty, (d) - - - - -
Tyld) 6.52 2.02 8.71 5.27 6.52
{ole] >.99 > .99 .89 >,99

A3 startld) 41 41 365
c 2.12x10°% 257
H, 18.05 24,27 2.39
Rid'") 0.35 0.49 0.02

H /R=AUC 52 50 115
Ty, (d) - - -
Told) 4.83 671 6.52
tcec

Al = i™ remission linduction) period; To = time of starting therapy; Cy = number of cells per mi
Peripheral Blood at start of therapy; Ty, = estimated halftime of cell population; T, = estimated
doubling time of cell population; H,, R: initial therapy level and decay rate; fitted curve: Eq.(3.8};
total correfation coefficient, tcc = {1 - £ (Cp, - CopatEC4,.°} 7 is a measure of goodness of fit
{tends to 1 for perfect fit}

obs

with a mean doubling time of 6.5 d, no matter the preceding treatment history;
B) intensive remission induction therapy can be modeled with an exponentially
decaying therapy level L(t) that, in a series of equal treatments, depends on the
sequence number. As it increases the efficiency of the remission induction
therapy decreases, which is apparent from the facts that 1) L(t) shows a less
steep decay from a lower initial value; 2) the area under the curve decreases;
and 3) the induced overall fog cell kill decreases. This indicates the development
of therapy resistance.
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For the other patients much fewer datapoints are available. Some of them have
not yet been followed long enough. Although it seems that the above conclu-
sions can—to some extent—be generalized to apply to most, if not all patients,
variation in some parameter values is large between individuals.

In a study that involved a large number (158) of newly diagnosed ALL
patients [Rautonen et al,, 1988] it was found that the rate at which blast cells
disappear from the peripheral blood is a predictive factor for the patient’s
response to therapy. Slow disappearance (> [0 d) indicates a poor prognosis.
According to this blast cell clearance rate criterion the seven patients would be
in the promising prognosis category. With so few palients in the present study,
however, it is not useful to try and find other categories—patients who have
their values of certain parameters between this and that boundary—and deter-
mine some parameter profile upon which a sound prognosis for therapy outcome
can be based.

Still, it can be said that the present results show that mathematical analysis of
data obtained by a sensitive method for the detection of low numbers of malig-
nant cells yields valuable information about the growth characteristics of the cell
population, as well as about its sensitivity to chemotherapy., The mathematical
analysis suggests further experimental investigations on the emergence of a drug
resistant subpopulation. It would be interesting to make in vitro cultures of
T-ALL cells [Lange, 1989] taken from the population at various instants during
the treatments and see whether A) the unperturbed growth kinetics (doubling
time) indeed remain the same, and B) the response (o administration of the
various drugs changes. Another approach would be to look for a possible
amplification of nmulti-drug resistance (MDR) genes increasing with time. This
would be expressed as an ever increasing amount of MDR gene products, to be
detected by immunocytochemical assays. For instance, Ma et al. [1987] in this
way showed a correlation between the amount of P-170 plasma membrane
glycoproteins and the presence of MDR cells in two cases of acute non-lympho-
blastic leukemia.
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Chapter 4

Pharmacokinetics!
[Identification of the Dynamic System of in vive Distribution and Metabo-
lism of the Cytostatic Drug Daunomycin in the Brown Norway Rat]

Daunomycin (DAU) is an anthracycline antibiotic that is commonly used for
chemotherapy of various types of cancer [Arcamone, [981; Gottlieb et al.,
1983]. For most anthracyclines the clinically applied doses not only reduce the
neoplastic burden, they also cause adverse effects on normal tissues. For exam-
ple, cases of cumulative cardiotoxicity [Blum and Carter, 1974; Villani et al.,
19851 and severe myelosuppression [O'Bryan et al., 1977] have been frequently
reported and often these adverse effects are dose-limiting. Therefore, with
respect to the administration of DAU an optimization problem arises. Those ad-
ministration regimens should be chosen that guarantee a maximum of chemo-
therapeutic effectiveness, but also a minimum risk of unwanted side effects on
~ healthy tissues. In other words, sufficiently high DAU concentration must be
present for sufficiently long time at the site of the tumor, while exposure of
healthy tissues should be kept as small as possible. What should be considered
sufficient in this respect is a subject of another study, namely, on the response
of the various cells and tissues to a certain concentration of the drug (phar-
macodynamics [Testa, 1987]; this may include 'counteraction measures’ by the
disturbed tissue system, i.e., development of drug tolerance [Peper et al.,
19871). Only from the combination of pharmacokinetics and pharmacodynamics
will be learned what therapeutic and/or toxic effects can be expected.

Thus, before the problem of optimal drug administration can be dealt
with, one necessary thing to be obtained is detailed information on the pharma-
cokinetics of the drug, It should be predictable with good accuracy, what the
concentration—time courses will be in the organs of interest for a given input of
the drug. Often it is not only the administered (or parent) drug that plays a role,
but frequently the formation of metabolites and their distribution kinetics must
be considered as welt [Carson et al,, 1981].

Drug concentrations in most organs cannot be measured directly without
destructive methods. Monitoring plasma levels alone, which would cause little
trouble in the clinic, unfortunately does not yield sufficient information {McVie,
1984; Van Rossum et al., 1988] without the pharmacokinetic characteristics of
the drug being known. In other words, the dynamic behavior of the system of
drug distribution and elimination in response to some drug administration

YParts of Chapter 4 have been published before in various conference proceedings [Schultz
et al., 1985, 1987, 1988a, 1988b)
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schedule must be explored. To this purpose the application of general systems

theory and mathematical modeling methods, as developed in the technical

sciences, may serve as a convenient tool [e.g., Schmidt, 1982]. In particuiar,

the system identification 'recipe’ for matching a theoretical —descriptive—model

to an actual physical system, distinguishes three phases. Phase I consists of
drafting a plausible mathematical model of the system, i.e., the description of
the system’s processes by mathematical formulae. All & priori knowledge on and

experience with the system’s properties should be considered. Then, in phase I,

parameter estimation, the chosen mode! is optimized by finding specific values

for the parameters in the formulae. By substituting certain parameter values in

the formulae a model response is calculated, The model response is compared to

the actually observed system behavior. The parameter values then are adjusted,

repeatedly if necessary, until the calculated model response corresponds best

with the observations, In the last phase, I1I, a decision must be made whether

the optimized model yields sufficient resemblance to the system. If deviations

between the system’s behavior and the optimized response of the current model
remain too large, a more appropriate model must be found. Perhaps a minor

refinement or may be an extensive adjustment will be necessary. This means

going back to phase I,

To illustrate this with an example, suppose that it has been observed that
every quarter of an hour the concentration of some compound is half what it
was the last time; say 20 at time zero, 10 after 15 min and 5 afier 30 min. As a
model for this decrease linear decay may be assumed. This means a description
of the concentration—time history, C as function of t, by a straight line. In
general, the class of straight line models is characterized by the formula: C =
a-t + b, where a and b are the parameters (slope and intercept). Here, the
optimum values of a = -0.5 and b = 19.2 are found, yielding the smallest (sum
of squared) deviations between the line and the observations. Still, deviations are
present and, from experience, if is known that exponential decay is a better
model for this C—t relationship. This class of models is described by C = C:
exp(-b-t), where parameter Cy is the initial concentration and parameter b a
measure of the decay rate. Indeed, by optimizing, Cy = 20 and b = 0.046
make deviations between the model and the observations disappear. Thus, the
last model is superior Lo the first,

Once the pharmacokinetic processes have been identified, the subsequent
ability to predict the system behavior in response to arbitrary inputs (drug
administration regimens) will improve controlled chemotherapy, because of the
possibility to optimize the drug input for desired effects [Swan, [985].

The present chapter will be about the system identification of DAU
pharmacokinetics in the rat. Identification means finding the system’s behavior
from input/output measurements {(drug administration regimen/drug concentra-
tions as function of time and location). As indicated above, for reasons of

-124-




observability it will be necessary to make use of in wivo experiments with
laboratory animals. For ethical and economical reasons the number of animals
used must be kept as low as possible. Therefore, the quantity of data minimally
needed to produce reliable results should be established. Several computer
simulation studies to serve this purpose are reported below,

The main purpose of present study is to look into the fate of DAU in the
Brown Norway (BN} rat. Although chemotherapy is usually applied to sick
people, and in the BN rat a myelocytic leukemia (BNML) can be induced to
mimic human disease, for the time being only healthy rats are considered. The
influence of the presence of a tumor load may be incorporated at later (future)
stages.

DAU was administered quickly as a single intravenous dose, which can
be considered a pulse input. In vivo concentration—time datapoints in many
organs could be obtained by sacrificing the animals after certain time intervals.
The relation belween these in- and output data was analyzed by means of
mathematical multicompartment models, based on a model previously used to
describe adriamycin pharmacokinetics {Sonneveld and Mulder, 1981; Sonneveld,
1980}, New in the present model is that, under the constraint of first order
kinetics to describe the in vivo distribution and elimination processes, metabo-
lism is allowed at either a concentration dependent or a constant rate (as DAU
metabolizes to the compound daunomycinol (DOL)). Furthermore, various
model structures were assumed, i.e., several anatomically and physiologically
possible pathways for drug transport via plasma to and from the different organs
—that are represented by the compartments—were considered, These models
were tested for their adequacy in explaining the actual observed concentra-
tion—time datapoints, using numerical optimization 1lg011thm‘; to estimate the
corresponding transfer rate constants,

This modelmg approach further differs from the woak by most other
investigators in that physiological meaningful models are used, i.e., the com-
partments and their interconnections represent actual anatomically well .defined
regions. Furthermore, the models are large (up to i1 organ or tissue regions,
each containing two compartments for the compounds DAU and DOL, respec-
tively), allowing much detail in the drug distribution patterns. In most phar-
macokinetic studies non-physiological models with only two [Johansen et al.,
1984] or three compartments [Eksborg et al., 1986], representing plasma and
tissues (with fast and slow drug exchange), are considered because of the ease
with which the corresponding model equations can be solved analytically
[Wagner, 1975}, as well as their extensively investigated properties [Garrett,
1980; Godfrey, 1983]. They also can yield information that is useful for another
purpose [Metzler, 1971], e.g., even the comparison of routes of administration
{Collins et al., 1980}, but of course they do not provide much vital, detailed
information, Finally, in contrast to other physiological models, e.g., flowlimited
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models [Bischoff and Dedrick, 1968; Chan et al., 1978; Molino et al., 1986],
no & priori values for physiological variables other than compartment volumes
need to be supplied. Such variables (e.g., blood flow velocities, membrane
characteristics) are often difficult to assess experimentally and in general show
large interindividual fluctuations. Such variability is here considered implicitly
in the transfer rates estimated as model parameters, These are considered as
random variables, having a distribution with a mean value and a variance, rather
than as unknown constants,

Before elaborating on the large-scale models for DAU-pharmacokinetics,
first the tools used in mathematical modeling are explained below. As further
preparatory work, different approaches to existing (classical) solution methods
are elucidated. They were tested for their performance with respect to speed of
computation and accuracy of results. This enabled the selection of the best
performing optimization method. It should be kept in mind that without the
availability of efficient algorithms (i.e., fast, accurate, economical in occupation
of computer memory space) the identification of large systems—involving the
estimation of many parameters, the simuitaneous solution of many differential
equations, the manifold calculation of concentration—time histories—becomes a
tedious affair. Such efficiency requirements also are important, if eventually—as
desired—similar identification and (especially, drug administration) optimization
procedures are to be transferred to computer systems for clinical use.

4.1  MATERIALS AND METHODS
4.1,1 Experimental Data Acquisition

To provide the necessary input/output data, in vivo experiments were conducted
as described by Nooter et al. [1986]. DAU (supplied by Farmitalia, Milano,
Italy) was dissolved in 0.5 ml saline and administered, under light aether
anesthesia, i.v. as a rapid bolus injection into a tail vein of 12-week-old female
Brown Norway rats weighing 165 g (Rijswijk inbred strain). The dose was 7.5
mg/kg, which is comparable to the clinically accepted dose of 40 mg/m2 in man
[Freireich et al,, 1966]. The rats had free access to food and water. Urine was
collected by a non-invasive method. After certain time intervals groups of 4-5
rats were sacrificed by cervical dislocation under aether anesthesia. Plasma was
obtained from aortic blood samples, EDTA was added to prevent coagulation,
Organs of interest were removed and frozen with liquid nitrogen. The material
was stored at -20 °C until further processing,

Wet organ weights were measured in forty rats. The organ volumes
could be calculated, assuming a specific density of 1.0.

In follow-up experiments piasma and bile samples were collected at
various times after the same way of drug administration. A surgically placed
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canule enabled the draining of the gall bladder,

Cumulative amounts of DAU and its major metabolite, DOL, in urine
and bile and their concentrations in plasma and tissues were determined by
straight phase high pressure liquid chromatography according to a standard
procedure [Baurain et al., [979]. Other metabolites were found only in negli-
gible quantities.

4,1,2  Multicompartment Models

4.1.2.1 Model Structures. The body fluids and organs that were shown to
be involved in the disposition of DAU in the rat can be represented by separate
compartments in a model. The amount of drug any time present within a
compartment is considered to be uniformly distributed. Three processes must be
considered: the distribution of the parent drug DAU, the formation of its
metabolite DOL and the distribution of DOL. The metabolite was found in the
same tissues and fluids as the parent drug, which may be due to local formation
and/or to distribution following formation elsewhere. So, two compartments are
necessary for each organ; one for DAU to occupy, and its double for DOL. The
compartments must be interlinked by anatomically and physiologically justified
pathways along which the drug (parent and metabolite, respectively) might be
transported, as well as pathways between corresponding DAU-DOL com-
partments for possible metabolite formation.

A multicompartment representation of the rat is shown in Fig. 4.1, By
partitioning in several ways, models of various size can be made.

4.1.2.2 Smali-scale Model. Neglecting metabolism, the rat model should
comprise at least seven compartments (Fig. 4.2a). Plasma, as a general transfer
fluid; urine, as excretion compartment; tiver and spleen, as tissues with a special
status: unlike other organs the spleen passes drug on to the liver instead of
returning it to the plasma, and the liver, next to exchanging drug with the
plasma, also excretes into the bile; and two separate other_tissues compartments
containing all other organs of importance, divided into observed and unobserved
ones. Another way of allocating organs to either other_tissues compartment may
be based on their well-perfused or peripheral (respectively, fast or slow drug
exchange with plasma) nature. Neglecting a possible enterohepatic cycle, i.e.,
reuptake of drug after release from the gallbladder via the gut lumen into the
liver, this model involves 10 transfer rate constants.

In a model used, not for any practical pharmacokinetics but for purpose
of evaluating the computational algorithms, only five compartments and seven
transfer rate constants were considered (Fig. 4.2b),

Small-scale models that do consider metabolism but are physiologically
less realistic are a 2x3 compartment model {plasma, excretion, tissues; Fig 4.1b:
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Fig. 4.1

Configurations of postulat-
ed models for DAU-DOL
pharmacokinetics in the rat

The rat body (schematically
in Fig. 4.1a) is lumped into
11 spaces representing tis-
sue regions and body fluids
that play a relevant role in
the distribution, metabolism
and elimination kinetics of
daunomycin;

each space has two com-
partments (P and M), res-
pectively, for the parent
drug and its major metabo-
lite, daunomycinol;
pathways are indicated
along which DAU and DOL
transport {solid lines} or
DAU-DOL metabolism
{broken lines} may take
place.

A: tissues for 2x3 compart-
ment model; B1,B2: tis-
sues_1, tissues 2 for 2x5
compartment model;
C1,C2: idem, 2x6 com-
partment model; D1,D2:
idem, 2x7 compartment
model
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Fig. 4.2 Configurations of a seven (a} and a five (b) compartment model
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A); a 2x5 compartment model (plasma, urine, observed and unobserved tissues,
bile; Fig. 4.1b: B); and a 2x6 compartment model (as model B, but liver taken
out of the observed tissues compartment; Fig. 4.1b: C).

4.1.2.3 Medium-scale Model. This model is the smallest model to be
physiologically realistic. The rat body is now lumped into fourteen compart-
ments, i.e,, seven to model the DAU distribution and elimination, and again
seven for DOL formation, distribution and excretion (Fig. 4.3). Data for
observed organs that have been taken together can be obtained by pooling the
separate measured drug concentrations, keeping in mind the relative volumes of
the organs. Again neglecting the enterohepatic cycle, this model has 25 parame-
ters.

4,1.2.4 Large-scale Model. Now, the most elaborate model (Fig. 4.4)
comprises eleven double compartments: plasma plus extracellular body water;
liver, spleen, heart, kidneys, lungs, bone marrow, muscles and other tissues;
and urine and bile excretion. Various interlinking pathways can be assumed, and
several transport/metabolism mechanisms, Six different cases will be considered
(Table 4-1). First it is assumed that the formation of DOL is a first-order
process that takes place in every organ at the same rate. After its formation
DOL is excreted into urine through the plasma without redistribution, It is,
however, more probable that DOL, transferred from an organ to the plasma, is
exchanged again with other organs (redistribution) before it is excreted. A third
possibility is that some organs are better able to form the metabolite than others;
therefore, unequal transfer rates should be considered. On the other hand,
metabolism might take place only in the liver—the chemical factory of the body.
This means that presence of DOL in other organs is necessarily due to redistri-
bution. Finally, metabolite formation might be a (saturable) zero-order, rather
than a first-order linear process.

The most probable model must be identified by evaluating the models’
adequacy in predicting the observed tissue drug concentrations.

4,1.2.5 Assumptions on Drug Transport. Within each compartment the
drug is assumed to be instantaneouslty well-mixed throughout the compartment’s

volume. Thus, within a compartment itself there is no spatial concentration
gradient. Between compartments such a gradient can exist and drug then is
transported from one compartment to the other, In view of observed concen-
tration—time histories, looking like exponential decay for most drugs in many
organs (Fig. 4.5), for the transport processes first order kinetics are assumed,
yielding first order ordinary linear differential equations. This corresponds with
a state—space representation of passive diffusion processes. The amount of drug
transported per unit time from a compartment i to an adjacent compartment j, is
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Fig. 4.3 Configuration of a medium-scale model for DAU-DOL pharmacokinetics in

the rat
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Fig. 4.4 Configuration of a large-scale model for DAU-DOL pharmacokinetics in the rat
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Fig. 4.5 Qualitative system response to a single rapid /.v. drug input

Three phases in the response can be distinguished: A= fast equilibrium between
plasma and well-perfused organs and slow tranfer to peripheral organs: B= excretion
from well-perfused organs and plasma and still slow transfer to peripheral organs; C=
return from peripheral organs to plasma, constant rate excretion, and a constant ratio

of concentrations in pfasma and well-perfused organs (after [Garrett, 1980}
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TABLE 4-1 LARGE-SCALE PHARMACOKINETIC MODELS FOR DAU-DOL (see Fig. 4.4)

modei remarks
01 compartments:
plasma, heart, kidneys, lungs, muscles, liver, spleen, bile, bone mar-
row, other_tissue, urine
observations:
no observations in other tissue and bile
metabolfism:
first-order _process with equal rate constants in all organs
(Pag=Pya =Py =Py =Pyg=Pgge=Pag =Pg4), but not in plasma: Py5=0;
no DOL redistribution, only excretion via plasma: Pyy=Pa =Py, =
=P33 =P34 =Py =Py =P3;=0

02 as 01, but DOL redistribution pathways added {P4q through P45}

03 as 02, but metabolic rate constants (P,y, P45 through P44 may differ
among organs

04 as 03, but metabolism in liver only
(Pag =Pa4=P4a=Pyy =Py =Pyg=P3g =P34 =0)

05 as 03, but also metabolism in plasma {P;5 #0)

06 as 05, but zero-order metabolism process

N.B., other_tissue: other tissues that can be reached by the drug but for which no
observations are available. Tissues that cannot be reached by the drug, for example brain
tissue and bones, are axcluded from the models

proportional to the amount of drug present in the former compartment. Writing
ki; for the time-invariant transfer rate constant (proportionality or diffusion
constant), and V; for the volume of compartment i, the rate of change of drug
concentration x is given by:

(4.1)

and  X; = k;; ©Xp

[y
-
=

for the principle of mass conservation must hold.
If there is an external input of drug, e.g., at rate u(t), Eq.(4.1) expands to:

V.
x!'. = ij,f ' xi + H-I a”-d x‘]‘ = kj,i " ——V—I " xr- + l(j. (4'2)
‘ J

Similar equations can be drafted for other compartments, They can conveniently
be combined in one equation in vector-matrix notation (sce section 4.1.2.7; see
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Appendix D that surveys a few elementlary matrix manipulations):

X=A4x +Bu. 4.3)

4.1.2.6 Assumptions on_Metabolisim. Again assuming first order kinetics,
knowing that one mol of DAU yields one mol of DOL, equations analogous to
Eq.(4.1) can be written. Because of a possibly limited enzyme capacity constant
rate metabolism also must be considered. Then, per unit time a constant amount
of drug is metabolized, thus transferred within a same tissue region from
compartment i to its double, j:

V.
.X’ = —.K]"i and .,11 = ‘K;',l._{'}f . (44)
J

Although not considered in the present study, a combined constant/concentra-
tion—dependent metabolic process might be modeled with the Michaelis-Menten
equation [Michaelis and Menten, 1913]:
Ki ;x,
X = - i_‘f, ‘ 4.5)
K2, + x

which reduces to Eq.(4.4) for large x;, and to Eq.(4.1) for small.xi.

4.1.2.7 Model Equations. A block diagram representing the general case of
a linear multivariable physical system is shown in Fig. 4.6. Variables that char-
acterize the state of the system are elements of the state vector, x(t). Observed
variables are elements of the response vector, y(t). Input variables are elements
of the input vector u(t). The temporal change in the state of the system is related
to the current state through the system matrix, A, which depends on (time-in-
variant) system parameters (clements of the parameter vector, p). It also
depends on the input, through the control matrix, C,(t). This is expressed in the
state equation:

20 = AP)-x) + GO u®. (4.6)

The output equation relates the model response to the state through observation
matrix H(t)—and to the input, through throughput or distribution matrix C,(t),
although this latter matrix usually is zero for most physical systems:

O = Hox(0 [+ GO un ] 4.7
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Fig. 4.6 Block diagram for a general linear multivariable physical system

The system is characterized by the time-invariant system matrix A {function of param-
eters p); the input uf{t), distributed by matrices C,{t} and C,{t}; and state x{t) which is
related by observation matrix H(t) to response y(t}. Noise from various sourtes, often
modeled as a single noise vector v{t), may pollute the observations y,,{t,}
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Various sources of noise may act on a system, causing a change in the response
while the (nominal) input was kept constant (Fig, 4.6). Noise may corrupt the
input {e.g., random fluctuations in rate of drug administration), the system itself
(e.g., changes in ambient temperature, intermittent food uptake) and the output,
In the present study, for simplification all noise will be considered to accumulate
in random (measurement) errors in the output only.

The state vector in a model existing of 2n compartments (n for DAU and n for
DOL distribution, respectively) contains the 2n drug concentrations. These are
zero before time ty. In the present case the input to the system can be modeled
as an initial condition. The dose D is administered such, that instantaneous
loading of the first compartment (plasma-DAU; volume Vj) can be assumed at
time ty, Let the pathway structure be such, that m transfer rate constants (the
model parameters) can be distinguished. Let there be N observation times, with
observations available for w out of 2n compartments (N.B., for any of these w
observed compartments not necessarily all observation times must yield a
measured value). If process noise is neglected, general model equations for the
state—space representation of this first order linear time-invariant system reduce
to:

X = A(p)-x()  with initial condition X(tg) = col[D/V},0,...,0], (4.8)

Y = Ht) - x(1y), ' 4.9
Yulte) = ¥ + v, (4.10)
where

x()  is a 2nx! state vector, i.e., its elements are the concentrations in the
2n defined compartments,

A(p) is a 2nx2n system matrix whose elements depend on m parameters
(transfer rate constants) that are gathered in the mxl! parameter
vector p,

y{t) is a wxl (w < 2n) model response vector at sample time t;, whose
elements thus are the concentrations in the w observed compart-
ments in the system,

H(t,) is a wx2n observation matrix relating the model response to the state

& vector at time ty,

Yulty) is a wxl vector with observations at time ty,

v(t) is a wx! measurement noise vector at time t, which is assumed to

originate from Gaussian random distributions characterized by a

zero mean value and a certain variance,
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TABLE 4-2 STATE EQUATIONS FOR THE MEDIUM-SCALE MODEL OF FIG, 4.3

The state equations are, based on mass balance:

%y {t)

X4(t)
%4(t)
%5t}
Xglt)
%5(1)

%g(t)

Xg(t)

).(10(':]
Xq1(8)
%1 (0
%440
X14(0)

in which

%, ()
5(t)

X1 4(8)

I ni

[t

i1

ol

1

A(p(1) +pi3) + p(5) + p(8) + p(20} + pl19N) X4 {8) + pl2hxofthVI2IV(T) +
P41 X5 thVIBIVIT) + p(B)xglt)VIBIAV(1},

P13 (8- VITIAVI2) - (p(2) + pl18)) x,fth,

{3, (- VITWVI3) - (pla} +p(7) +p(1 7 x35(0) +  pl21)x, 0t VITIAVIB),
{71 x4t} VIIVI4),

PIBI (tVITIVI(B) - (p(6) + P25 x5(t),

p{8)x, (- V(1}V(6),

P20k X (-VOIUV(T) - (p(21) 4+ p(24))-x5(1,

pl19)-x4{t) - {(p{S}+p(T 1)+ pl13)}+ p(16) +p(22))-x4{th + '
pl10)-xg(t) VISIVIBY + pl12):x;olthVII0IVIB) +  pl14):xq,(th- V(T 2)/V(8),
pl18)x,(t) + pl9)xg{t)V{BIVIO) - p{10)-x4{t),

p{17) x5t} + p(11)xg{t) VIBIV(T0) - (pl12) +pl15)xylth +
P(23)-x4 4t V(14)V(10),

pl18)-xq ot V10I/VI11),

P25)xg(t) + pl13)-xg(t)-VIBIV(12) - p(14):x,(t),

pi16)xg{t)-V(8)/V(13),

pl24}x5{th + pl22)xg(t)-VI(BIV{14) - p(23)-xq4(t),

the transfer rate constants, ki , are combined in a vector, p, and compartment
volumes in a vector, V; e.g., p(21]—k3 7 {to liver from sp]een) V(1) is the volume of
compartment 1. These equations can be written as:

It

where the
and on the compartment volumes V{1} through V{14):

Al1,1)
Al1,2)
A{1,3)
Al1,4)

o nn

AL Tt + AL2Ex(0 + o + AT 1)x 40,
AL Xt} + AL2,2) %10 + .+ AL14,2hx 40t

A4, 1)x, (0 + ANA20x000 + .+ A(14,14)xy 400,

slements of systemn matrix A depend on the parameters p{1} through p{25}

-{p{1} +p{3}+ p(B) + p(8) + p(20) + p{19})},
p(2)-V{2)/v(1),

pl4}Vi{3)/v(1),

0; etc.,

or, in matrix-vector notation:

%4 {t)
%5(t)

)‘(14(“

A1T) A(1,2) . AL14,1) x4 (t)
A(2,1) A(2,2) . A14,2) X,
AT AT,2) .. A(14,14 Xq410)

which is equivalent with: X{t} = A - x{t}
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TABLE 4-3 A FEW MATHEMATICAL MANIPULATIONS

Runge-Kutta integration
Given state vector x at time ty, x{tg) = xq to find the state vector at time t; = t5 + At,

x(ty) = x4, calculate subsequently:

£ (Xg) = A'Xy ky = At -+ £(xy)
Xt A5k f(Xy + %k) = A (X + 5k ky = At - (X, + % k)
g+ % ky £{ZXy B k) = A (¥t 5Ky ky = At ¢ £(%, + %'ky)
Xy + X3 £(x; + k3) = A'(Xg + k) ky; = At - £(Xy + ki)
X = X+ (k) + 2°K + 2:k; + ky) /6
Simpson's rule

The integral of a function f{x} on interval [a,b] can be approximated—if the value of f(x)
is known in 2:n-+ 1 equidistant points ¢; on this interval {cy=a, ¢,, =b)—by:

b n-1

Jf(x)dx ~ % {lay + 4‘21f(‘72f-1) + Z'Xllf(%.-) + Ab) }
i i=

a
Cramer’s rule
To solve x4 and x, from a set of 2 algebraic equations,
ay "% toap X = b ali at2 x1 b1l
* or . = ;
alz'xl + azz'X2 = bz a2l az2 X2 b2

according to Cramer’s rula:

det (Aq) det (3,)
xl = —’ XZ = ——————-—’
det (a) det (A)
where
ap gy
det(a) = B S TR - I R T
app ax
‘ by ajp
det(Al) = = bl'a~22 - alz'bz and
by anx
ay by
det(Az) = = all‘bz - bl'ai?.-
ap b

E.Q., a4q = 2, dyg = 1,821 = 1,622 = 2, b1 = 13 and b2 =11 y[eld:
Xy = 15/3 = § and x, = 9/3 = 3. This can easily he extended to larger sets of alge-
braic equation’s in an analoguous way. '
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As an example, the state equations describing the medinm-scale model of Fig.
4.3 are shown in Table 4-2.

4.1.2.8 Solving the Model Equations. For smali-scale models it is possible
to solve the mode! equations analytically, e.g., by using Laplace transformation,
This method is elucidated in Appendix E for the 2x3 compartment model shown
in Fig. 4.7. Although in theory possible, this method quickly becomes unwieldy
when larger models are concerned. Then it is easier to solve the 2n model
equations numerically than analytically. The state vector as function of time can
be found in different ways, e.g., through direct numerical integration (Runge-
Kurtta algorithm) or by the so-called transition matrix method.

Runge-Kutta Intepration. For a given set of parameter values, i.e,, the m
transfer rate constants combined in a vector p;, the system matrix A is known.
Starting from the known value at time (g (initial condition) the state vector at
time t, a time step At later {t = {3 + At), can be calculated from:

f !
() = xlg) + Jx(ndT = x(tg) + '[ A x(DdT. .11
o} 0

The Runge-Kutta algorithm to perform the integration is illustrated in Table 4-3.
To avoid inaccuracy due to accumulation of round-off errors it is necessary to
take a small time step At (in practice, %2-2 min). To calculate the state vector at
large t, the interval [t,ty] should be divided into many small time steps At and
Eq.(4.11) should be used recursively, Observation times ranging up to 48 h, this
may furn out to be a time-consuming procedure.

Transitiopn Matrix Method. It can easily be proven that a general solution for the
state vector can be written as:

x(0) = (119 - xltg), (4.12)

provided that for the 2nx2n transition matrix & the following formula holds:

b(1,10) = Alpy)* B(1,tp);  initial condition ®(1y,f) = T (4.13)

(I denotes the 2nx2n identity matrix). From Eq.(4.13) the transifion matrix can
be solved, e.g., again by Runge-Kutta integration. Alternatively, the transition
matrix may be obtained from a numerical evaluation of its analytical solution,
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Fig. 4.7 Configuration of a 2x3 compartment model for DAU-DOL pharmacokinetics

s
rapid bolus injection
1.5 ngfky = 12305 1y
......................... _....’
1 plasna ¢ B — 8 plasaa
28.50 nl 2856 nl
oz, 1 KBS, M
yf  tisste fissu 4
FLIVAR 11 O o 62,44 nl
bt
P b . B3 .. 1k
o exeretion excretion |¢
1,60 u} 1.6 nl
DA Distritution Hetabalisn 20U {Re)distribution
bRy~ DOk
B(t,1g) = exp{d-(1-tp)} = expd-Ap. (4.14)

To this purpose the exponential function is expanded into the series:

2 3, .
exp(d -Af =1+ A At + 4 2:31‘2 A 3|A’3 + o, “.15)
(¢!, ¢ factorial, denotes 1x2x3..xc; 50, e.g., 3! = Ix2x3 = 6).
As Eq.(4.15) converges for all At, only a limited number of terms needs to be
evaluated to arrive at a sufficiently accurate approximation. At present the first
25 terms are computed and time step At = 0.5 min is taken. The state vector
subsequently follows from Eq.(4.12).

The advantage of the transition matrix method is that this matrix needs
only be computed for a short time interval [ty,t], as for larger time intervals it
can be found by simple matrix multiplications [Kwakernaak, 1972]. This means
a considerable reduction in computation time. For example, it can be easily
proven that, for integer a and b:
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B((a+b) -1, 1y) = Bla 1, 1y) « B(b-1,1y). . (4.16)

Thus, if the state vector is to be known at regular time intervals At only, a
recursive formula can be used:

X+AD = BUHALD - XD, or Xguy = BN - Ky @.17)

in which ®(At) is a constant and needs to be computed only once.

If effects of constant rate metabolism are to be included, the state Eq.(4.8) must
be slightly modified. The system matrix A involves only the parameters as-
sociated with the drug (re)distribution and a 2nx! vector z is added, whose
non-zero elements involve the metabolism parameters:

X0 = AQpg) ¥ + Upy). @.18)

These state eqs.(4.18) replacing eqs.(4.8) have the following solution:

f
X0 = D@, 10) (1) + J (1, 1+ zdT, 4.19)

0

where the transition matrix ® again can be obtained by numerical integration of
Eq.(4.13), or through Eq.(4.15), followed by selfmultiplication(s)., The integral
in Eq.(4.19) can be evaluated by application of the well-known Simpson’s rule
(see Table 4-3) to each matrix element separately,

4.1.3 Parameter Estimation

If the chosen pharmacokinetic model is the right one, the model response for a
given drug input should correspond to a high degree with concentrations
observed as output. (Of course, as the observed concentrations are noise-
corrupted, a perfect correspondence will be extremely rare.) Given the model
structure, the model response varics with the choice of the parameter values
(transfer rates). This choice should therefore be optimized before it can be
decided whether the model is or is not a good model of the pharmacokinetic
sysfem,

Apart from the method used with the 2x3 compartment model (Appen-
dix E), for parameter estimation a few well-known techniques are available
le.g., Eijkhoff, 1974; Gill, Murray and Wright, 1981]. In principle, the
procedure is as follows. For any parameter vector pgy, whose elements can in
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Fig. 4.8 Maximum Likelihood Optimization

Parameter values (p,} yielding model response y(t.gz) in compartment j (i.e., curve H)
are more likely than those (p,)} yielding response yi(t.g4) (i.e., curve 1}, because in the
former case the fikelihood of the residuals yp,(t,)- y,{tk) k=1, 2 . is higher

O obs., ym}.(tk)
p.d.f. of residual,

mean = 0, sd = s
=
1
E
g
Q
(=3
£ curve [l
9 yi{tipy)
£
c
.2
"'é curve |
2 y;(tipy)
0y
(85
=
o
[&]

time

principle be chosen ’arbitrarily’ (i.e., in practice, based on available @ priori
information, the most appropriate guess is taken), the time course of the state
vector can be calculated with Eq.(4.14) and Eq.(4.17) or Eq.(4.19). Then, for
all N time points ¢, the model response y(4;)} 0 is compared with the datapomts
in all observed compartments sunultaneously, from which a new set of param-
eter values—closer to the true ones—is deduced. In the present case a stochast:c
maximum likelihood (ML) estimation technique [e.g., Astrém, 1979; Eijkhoff,
1974] was chosen because of its properties of asymptotic unbiasedness and
efficiency (i.e., if the number of observations becomes large enough the true
parameter values will be found eventually, respectively, the variance-covariance
matrix of the parameters approaches a lower bound given by the inverted
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Fisher’s information matrix (E'!, see below), thus yielding an estimate of the
accuracy of the estimated parameter values). In this approach the parameters are
considered random variables with a Gaussian probability density function
(N{QML;E'I}), rather than unknown constants.

4.1.3.1 MI. Technigue. Assuming that the chosen model equations describe
the system correctly, in principle the ML method finds those parameter values
and corresponding model response that yield the highest probability of occurren-
ce of the residuals (i.e., the remaining deviations between model response, y,
and observations, y_; seec Fig. 4.8). Therefore, some probability density
function (pdf) for this occurrence must be assumed. Usually a Gaussian function
can be expected, with a zero mean value and some variance-covariance matrix.
Writing v(t,) for the residuals at t, let this Gaussian pdf, N{0,Q(t)}, be given
by:

Ep{p@p} = 0 and

7 (4.20)
Ep{lv(ty) -Ep{v(t}} - () -Ep{p()}1'} = Q). ‘

(Ep denotes the expected value of, Pr denotes the probability of; 0 is a wxi
vector and Q a wxw matrix). The probability of the present residuals, for pg,

will then be:
pdf{x(tk)lgg} :l Priviptpy,} = @21
= 2. lQ(rk)l'b cexp{-Yo-ut)" QU v}

If stationarity is assumed, then Eq.(4.21) is valid for every t. If it is further
assumed that each observation is independent on any other one (both in the same
compartment at different times and in different compartments at the same time,
i.e., temporal and spatial independence), then Q) = Q = diag(var;), where
i=1 through w, and var; is the variance of the residuals in compartment i. In
that case, for the residuals the joint pdf, or likelihood function L, is given by:

L = pdf{et), ¥i),..., Wi} =
N
= Q@) AN 0| TN exp{-4- ST 07wy = (4.22)
k=1

N .
= [ Privep| p(,} for N observation times,
k=1 = '

Substituting the ML values, pyy;, for pg maximizes L and corresponds with the
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optimum model response, under the given assumptions, If, in that situation, it
does not satisfactorily explain the observations, {hen the model used is obvicusly
not adequate and should be replaced,

To find the ML values, stariing from arbitrary initial values p,, some numerical
search algorithm must be employed that maximizes the function L with respect
to the parameters. By optimizing this likelthood function, instead of any other
function of p, parameter values are obtained that have the highest probability of
being true (provided that the used modei is correct). Minimizing the function
-In(L):

-In(L) = % N-w-In(2r) + Y% N-In(|Q]) + Y3 PF(p), (4.23)
by minimizing the so-called performance index, PF:
N
PF = Y vup)T- 07 vy, (4,24)
k=1

where v denotes measurement noise at sample time 4y :
P XD =y, - H X, (4.25)

yields the same result, but may be more convenient.

Next to its asymptotic unbiasedness the other advantageous property of the ML
method is its asymplotic efficiency. In other words, the pdf of the parameters
tends to a Gaussian distribution with the estimated values as mean and the
inverted Fisher information matrix (or Cramer-Rao lower boundary) as var-
iance-covariance matrix. The Fisher information matrix is defined by:

_ @yl i)Y T {aln) (4.26)
E = -E = Bp) [ 8% :
Vo | ) )

Minimization of -In(L) yields the wanted ML parameter values. This, in turn,
means that the derivatives, with respect to the parameters of the function PF(p)
(Eq.(4.24)) must all be set to zero, If Q is unknown-—as it usuaily is—it can be
estimated by maximization of In(L) with respect to Q. An approximation for this
is!
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N

1 T

Q= Y. Ow ~ HX)y » Gy - H D), (4.27)
k=1

4.1.3.2 Minimization Routines. Starting from some--in principle—arbitrar-

ily chosen set of initial parameter values, an iterative computer program must

take steps in the parameter space toward the ML values of the parameters that

maximize the function L. A schematic flow diagram for the computations is

given in Table 4-4. Three different numerical and iterative optimization routines

were considered:

1) a modified Gauss-Newton (MGN) method, which requires solving of analyti-
cal sensitivity (ordinary first order differential) equations;

2) a finite differences (FD) approach to the computation;

3) a direct determination of the Hessian matrix of second order derivatives and
the gradient vector of the log-likelihood function in the parameter space,
again via finite differences (DDH method).

MGN Optimization Algorithm. This gradient search method is derived from the
well-known powerful Newton-Raphson procedure [Allen, 1983}, Figure 4.9
shows the principle of the NR-procedure for a one-dimensional parameter space.
According to a Taylor-series expansion the value of a function J{p) for param-
eter vector p; can be found from its value for parameter vector py, if p; and py
differ by a small amount, Ap = p; - py:

aJ(py) 82 J(pg)
Jp) = Jpg) + — > Ap v A apT 201 4p + Otapd,  (428)
= T py 2! ap

Substitution of PF for J and neglecting the higher order (O(Ap?’)) rest term,
Eq.(4.28) converts to:

PRp) PFQY  ppr _ 3PPy - ap" 8% PF(py)
Ap Ap dpy Bpg

(4.29)

This, in turn, by considering the limit Ap — 0 and taking APF/Ap = 0 at the
minimum of the function PF, converts to:
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TABLE 4-4 COMPUTATIONAL FLOW CHART

START:

— parameter vector

observations

L~ system matrix

state vector

through Direct Runge-Kutta Integration
or Transition Matrix

‘regiduals + their autocovariance matrixe

sgoodness of fit
+— log likelihood function (-LLF value)

————— if change in
det (autocovar.matrix) < 0.1% then
STOP

L sensivities
through Transition Matrices
or Finite Differences computation

l— grad(-LLF) + Information Matrix

using sensivities

or Direct Determination of the Hesgian
through Finite bDifferences

Singular Value Decomposition of the
Information Matrix
a) 1f negative eigenvalue(s) then
Line Minimization of =LLF in direction
of largest negative eigenvalue
b) else
Reduce Information Matrix by neglect-
ing the smallest eigenvalues

invert (Reduced) Information Matrix——

b — direction of parameter step -
1
Line Minimization of -LLF
in this direction
}
Parameter Step
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Fig. 4.9 Function F of parameter p; the minimum is found at Fip,} by the Newifon-

Raphson algorithm; starting at pg:
-1 -1
d*Fpy | dF(py) dFp) | dFp)

P =Py | ——— P2 =Py
1= Po 0 dp 2 =P e dp

N.B., starting from pg’ results in divergence, i.e., a parameter step away from the

minimum

|F(p)
— P
pm
[dF(p)/dp
?0' P [Po —P
'v.,‘,i. ‘ P4y P2
pz-“: ._’.': .
/ 7~
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Ap

, 3* PF(py) ol 9 PF(py)
- o

2
apy

(4.30)

yielding an expression for the Newtonian step to be taken in parameter space
toward minimum PF. Both second and first order derivatives occur.

The GN gradient method was chosen, because it has the advantage that
it does not require the time-consuming computation of the second order deriva-
tives. Instead, in an approximation of the Hessian matrix (of second order
derivatives) it only involves the computation of first order derivatives of PF(p)

with respect to p.
Differentiation of Eq.(4.25) ytelds

ap ap

_ N o(ay]”
grad(-In@y) = 270 . $ {[—Xy 07,
k=

Differentiating once more yields the Hessian:

ap®

-
[ -t |92

- X)}zk-

—ln(L) E{ T.Q-I- E:Y_ } +§:{
ap |

T

2y T

4.31)

- v,
(4.32)

(4.33)

neglecting the second order term. Therefore, under the assumption of indepen-

dent observations, E can be written as:
61(1 ) N ALY
=1

6‘2}

(4.34)

Thus, iteratively the GN parameter step vector Ap can be calculated, until it
becomes smaller than some preset value, e, according to (for the ith iteration):
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Ap, =D, B = E~1 {grad(-In@)}7 = (4.35)
T -1 T
N N
= dy -l day . | -t )
H P2 AR E A L 2L B R

However, at present the iterations will be continued as long as the change in the
determinant of the variance-covariance matrix of the residuals, [Q}, remains
larger than 0.1%. If the iterative procedure has converged, the parameter values
after the last iteration are considered the true ones (ML estimates), and their
accuracies are estimated from the final B,

Sensitivity Equations through Transition Matrices. Sensitivity equations show the
sensitivity of the state vector with respect to the parameters, As the GN routing
requires evaluation of the derivatives of the model response with respect to the
parameters (Bq.(4.35)), and

dy [ ox 0% .36)
ap ap ap
a set of sensitivity equations is drafted and solved simultaneously with the state
equations. For each of the j=1,..,m parameters, define the sensitivity vector:

dx
0 = R (4.37)

]
The sensitivity equations then are found by differentiation of Eq.(4.8):

500
80 = L < Ans O+ B, where B - 04 (4.38)

" B

Each clement of the matrix Bj can be found by actually differentiating the
corresponding element of the system matrix A with respect to the parameter p;.
The initial condition of the sensitivify equations is §j(t0) = (). It is not difficult {o
prove that the solutions are;

80 = Bl 810 + Y, x0g), (4.39)

where transition matrices ¥; can be found by numerical integration (presently
performed for t-t;=0.5 min g)y Runge-Kutta method} of:
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TABLE 4-5 SENSIVITIES BY FINITE DIFFERENCES (FD)

e subsequently, vary each of m parameters by 1% =

m+ 1 parameter vectors (including the original onel;
@ calculate corresponding state vectors;

at time point k the state vector for the j‘h parameter vector is xtk,j;
e write the i element, x;(k,j} as a first-order polynomial in p; e.g.,

x(ik, 1) = solik) + 8,61} + splikbpoll)  + o+ 501K P (1)
x(i.k,2) = soli.k) + 810K p 20 + splikbpa(2) + .+ s fik)p(2)

xlikm+1) = solik) + 8,0,Kpym+1) + s,k palm+ 1) + .. + 5K pim+1)

Il

e subtract the first m equations from the last ons:

JLKAP, (1) + 840,k Apy1) + .. + .0k Ap, (1)
JLKIAD1(2) + SykAp(2) + .. + 5, .K;Ap,(2)

w ow»

Axli,k, 1)
Axtik,2)
Axfikm) = slik)Apy(m) + s,lik)Apydm) + .o + s {Lk;-Ap(m)

as the Ax's and Ap's are known, from this set of m equations the m unknown sensivities
sqli,kh =8x;/0p,, s,likl=0x/9p,, .. . s, li,k)=38x/8p, at time point k can be solved

algebraically;

similar sets can be drafted for the other time points, k=1,..,MN, as well as for the other
state vector elements, i=1,...2n

Vit 1g) = A-Yt,00) + Bid,tg),  Yiltgtp) =0, (4.40)

or by evaluation of the analytical solution;

‘I'j(t,to) = Bj-(r - fg)exp(d - (1-1p)). @.41)

For larger time intervals, by matrix multiplications:

FD Appreach to the Solution of the Sensitivity Equations, The use of transition

matrices demands the solving of an extended number of simultaneous differential
equations. The finite difference method deals with, ordinary algebraic equations
and obtains approximate values for the sensitivity vectors in the following way.
From the initial m-dimensional parameter vector m new and slightly different
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parameter vectors are derived by giving, in sequence, each parameter value a
1% deviation. For each of these m+1 parameter vectors the model response is
calculated (Eq.(4.11) or Eq.(4.17)). The state vector x(p) now is written as a
first order polynomial in p, e.g., for the i element of the state vector at the k'
sample time and the jth parameter set:

XGk0y = sqG 0 + 51K pilhy + s k) pphy + oo+ 5,00,k) p D), (4.43)

in which x and p are known and s; through s, can be regarded as the sensitivi-

ties of the state variable in the i compartment at time t,:

Bxl-(fk) (4.44)

s{i,k) =
J pj

Drafting Eq.(4.43) for all m+1 parameter vectors yields a set of equations from
which the ith elements of the m sensitivity vectors at time k can be easily
calculated after some algebraic manipulations rather than after solving differen-
tial equations (Table 4-5). This is repeated for each of the i = 1,,2n elements.
Next, the parameter step vector can be computed as in the MGN procedure, For
the second iteration only one new model response needs to be calculated, i.e.,
using the new found parameters. They substitute for the set with the worst
model response (largest coniribution to -In(L)) in the previous iteration. Then,
again the sensitivities can be computed, etc.

Convergence. An advantage of gradient methods like the GN method is that they
can be fast; a disadvantage is that convergence problems may arise, i.e., that
successive parameter steps may drift away from the optimum, instead of getting
closer to it. This may especially occur when initial estimates are poor, i.e., far
from the true parameter values. ‘To diminish the risk of divergence in executing
the calculated parameter step the following modifications have been applied.

1.) After the calculation of a parameter step vector (direction and magnitude),
instead of taking this step and proceeding with the next iteration a line mini-
mization (parabolic expansion) is performed first. Two small steps of equal size
are taken in the original step direction and the function to be minimized, -In(L),
is evaluated. The function value in the starting point also is known. A parabola
is drawn through the three points. The location of its minimum determines the
magnitude of the paramecter step to be actually executed. From this point in
parameter space the next iteration is started, ete., until the parameter values no
longer change more than 0.1 percent. Figure 4.10 illustrates a two-dimensional
case. If necessary, a built-in step limitation procedure reduces again the mag-
nitude of the step, to prevent any of the parameters from becoming negative (the
transfer rate constants cannot be less than zero),
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Fig. 4.10 Function F of two paramaeters; Line Minimization along A-A

top shows lines of constant F in the p;-p,y plane; bottom shows cross-saction A-A. The
conventional step O-1 {Gauss-Newton gradient) results in divergence; take equal steps
00* and Q'0" and evaluate the function in O, O and O"; find the minimum of the
parabola through these points; take the corresponding step CI' which results in conver-
gence

minimum
L F lines of

et A constant

focal minimum
of F along A—A
y !

2.) A singular value decomposition (SVD; [Golub and Reinsch, 1970]) of the
information matrix E rotates the m parameter axes into m mutually independent
eigendirections. Divergence is caused by large steps in the least significant
eigendirections. Negligence of these unimportant eigendirections that hardly
contribute to the function minimization, thus reducing the dimension of the
parameter space from m to m’ < m, will in general improve convergence.
Figure 4,11 shows a two-dimensional example. Computationally, the SVD
involves resolving E as a product of its eigenvalue and eigenvector matrices:
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Fig. 4.11 Function F of two parameters; Minimization after Singular Value Decorn-
position {SVD}

conventional step AB (Gauss-Newton gradient} results in divergence; SVD a) rotates

the parameter axes into eigendirsctions; b} neglects the step into the least important

eigendirection (corresponding to the smallest eigenvalue of the information matrix); so,

¢) takes step AC which results in convergence

minimum

' [ of
constant

.-,
-

E=TYT!" =777 (4.45)

where a) eigenvalue matrix Y = diag(e|,e,,..,e,,) with eigenvalues ¢; following

from |E - ¢;-1] = 0; and b) T is an eigenvector, from E.T; = ¢, T, forming
the i column of the eigenvector matrix T. '

Rearranging Y and T in order of decreasing e;, and subsequently ignor-

ing the m-m’ smallest eigenvalues and their corresponding eigenvectors, yields a

reduced and sorted information matrix;

E=~T1-Y. 17 (4.46)

to be used in Eq.(4.35) for the determination of the direction of the parameter
step.
Should the information matrix yield negative eigenvalues, which can be
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TABLE 4-6 DIRECY DETERMINATION OF THE GRADIENT, GRAD(F} AND HESSIAN,
H{F} OF A FUNCTION F{p) IN p,

e Calculate with

parameter vector  pg ,elements p;=py;, P;=Bo; = function value  Fo,
Dy Blements pi=pg;+dj, pj=pg = Far
g .elements p;=pg;—d;, P;=Pg; = Fer

i=tor2or..orm;j=1,.m; j#i; small deviations d}).

@ Then, calculate
- grad(F) = 3F/3p, with i element: 9F(py)/ap, = {(F,-Fo)-{F-Fol}/2d,,

- H(F) =32F/ap?, with i'" diagonal element: H; = 8%F/ap;? = {(Fp-Fg) +(Fg-Fo)}/d2.

@ Calculate with
parameter vector  pg .elements p;=pg;. P, =Ppg = function value  Fg,
P elements p=pg+d;, D=pg+du P=Pox Feo
{f=ior2or..orm;j=t1or2or..orm; k=1,.m;jzi; ki, kK&,

e Calculate
- H{F) =3%F/ap?, with element on row i and column j (j=i):
Hy = aF/apap; = {2-(FC-FO}-d52-H“-djz-Hjj}/{IZ-di-dj), while Hy = H;.

This requires 1 + 2'm + ¥%-(m? - m) evaluations of the function F

shown to correspond to a "saddle-point" situation, then the subsequent line
minimization of -In(L) is performed into the direction of the largest negative
eigenvalue, after which the next iteration starts,

DDH Method. Instead of first having to solve a large set of differential equa-
tions to find sensitivities dx/dp, the gradient of the log likelihood function (LLF)
and its Hessian matrix are calculated for py in a direct way. Again, several
parameter vectors are chosen in the neighborhood of py. Starting from the
m-dimensional vector p,, first, each parameter separately is augmented, and
also decreased, by factors 0.01 and 0.02, Then, again starting from py, param-
eters are varied simultancously by a factor +0.01. This yields 1 + 4m + 2™
different parameter vectors, for which the corresponding values of the LLF are
calculated (Eq.(4.11) or Eq.(4.17)). Through these values a second degree
surface can be fitted in the least squares sense. According to Newton,
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OLLF 3 LLF
PPy + V2 (py P{))T

LLF(&)=LLF(@) +
agg 6@

Py -py) (4.47)

from which the gradient aLLF/dp, and the Hessian BZLLFIGQOZ can be obtained
as LF, py and py (I=1,.,,1 +4m+2") are known (Table 4-6). Next, a parameter
step vector can be calculated, etc., as in the MGN methed.

Approximation by a first degree surface, hopefully without great loss of
information, reduces the number of evaluations of LLF, which otherwise will
quickly grow very large with increasing number of parameters. Using the fact
that the Hessian is a symmetrical matrix, i.e.,

$LLF _ 0°LLF .48)
0pq 0py  Bpy Bp,

further reduces the number of evaluations to 1 + 2m + '+ (m%-m).
4.1.4 Error Estimates

4.1.4.1 Estimation of the Variance-Covariance Matrix Q. Before every
new iteration the variance-covariance matrix of the residuals, Q, is updated,
using the sensitivity vectors and parameter step vector from the preceding
iteration. Assuming that residuals are mutually independent, the covariances are
set to zero (Cov{(yn,¥i),.(Ymy¥p} = 0; j5#1). Then

Q = diag[vary,vary,..,var,}, where for the (k+1)" iteration; (4.49)
N m
1 ay; 2
Var.fh\%f = 'ﬁ ' Z {(yml. - yj)k - E —a—l 'APJ }!", [ = 1,.., W,
T j=1 1975 3

It is possible to put extra weight to the observations in some compartment i, for
instance weighing by a factor f means that var; must be set to var; .2, This has
been done sometimes to emphasize the DAU- plasrm obselvatlons whose levels
are low compared to the tissue concentrations and therefore might be neglected
by the optimization algorithm.

4,1.4.2 LEstimation of the Variance-Covariance Matrix V The 1nve;led
Fisher's information matrix approximates the variance- covanance matrix, V
the parameters. Thus, after the final iteration step the diagonal elements og the
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matrix E1 (Eq.(4.34)) yield the standard deviations of the parameter values,

4.1.4.3 Estimation of the Variance-Covariance Matrix V. The estimated
error in the final model response can be computed from the variance-covariance
matrix, V,,, of the state vector:

T
ax() . (4.50)

op

ax(¢
V() = RO 1.
X ap

Thus, at any tune t the standard deviation of the i element of the state vector
Lesuits from the ith diagonal element of the matrix V (0.

4.1.5 Performance Criteria

To compare the performance of the different optimization routines, and to ena-
ble the comparison of the results for different model structures, the following
criterion variables were selected:

1 CPU time needed to go through the iterations;

2y the value of the log likelithood function, LLF, after each iteration;

3) the distance between the final and initial estimates of the parameter values;
4) the goodness of fit of the model response to the observations, expressed in
the total correlation coefficient, TCC, defined by:

v
Yo D) - yaT @.51)
Zk D (¢ k)]z

where y,, and y denote observed and calculated values, respectively, and the
summation is performed over all sample times k = 1,..,N in a compartment,
The overall TCC is computed by:

14
Ef Zk D’m,-(fk) - yi("k)]z {4.52)
E;‘ E,(- {ym i(! k)}z

adding a summation over i = 1,..,w observed compartments. The TCC is a
good measure for comparing the goodness of fit of various curves to a same set
of data points. In a case of perfect fit TCC becomes 1, in general TCC will be
less than |1, '

5) SSR; the sum of the sums—per compartment—of squared residuals divided
by their variances. This variable allows comparison of the goodness of fit of

Tce = 1 -

7CC, = J1 -
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various curves to several sets of data points; the lower SSR, the better the fit.

Zk Yt - vt ,v;)]2
SSR = Y. SSR;  SSR; = i . 4.53)
ZI ! ! var{[ym(’k) - y(fk)]i}

6) PF, the performance index (Eq.(4.24)) is basically the same as the SSR, and
should equal it exactly if the variance-covariance matrix of the residuals would
really be a diagonal matrix.

7y AIC; the Akaike Information Criterion [Akaike, 1974] compares various
models by considering the goodness of fit (SSR), the number of observations
that are used (NR) and the number of parameters (m) to be estimated (model
complexity). The lower the AIC value, the better the accuracy—corrected for
the degrees of freedom in fitting—of the data representation by the model,

AIC = NR-In{SSR) + 2-m. (4.54)

8) The magnitude of the variable EC, an error criterion showing to what extent
a final parameter value approaches its true value. EC is given by

EC = exp(x), where x = [InQ,,./Posiimated) | - (4.55)

This error criterion is meaningful only if the true parameter value is known. As
Eq.(4.55) shows, EC will have the value | if the estimated parameter value
equals the true value. For both positive and negative deviations EC will in-
crease, in both cases to a same extent, i,e., estimating p either too large or too
small by a factor of k will have the same effect on the magnitude of EC:
| In(1/K)] = |-In()| = |Ingk)|.

4.1.6 Computation

With the above considerations a computer program was designed, written in
ALGOL6E0 and implemented to run on an IBM 370/158 main frame computer.
This program version was used to identify the large-scale models. With a model
comprising 22 compartments, 132 observations at 16 observation times and 45
parameters to be estimated the program requires 3600K of memory and some
150 s computing time per iteration step. The 2-minute transition matrices are
obtained by integration, By repetitive multiplications by the current state vector
the model response is calculated for every 2 minutes and can be printed and
plotted subsequently.

A FORTRANT7 version of the program, suilable for running on a mini-
computer system, has also been developed. The system used for testing the
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TABLE 4-7 SIMULATED OBSERVATIONS USED TO EVALUATE DATA-SENSITIVITY

drug dose {(pg/mik: compartment volumes {mi}:

.12375E+04 1) plasma: L 2850E+2, 2) tiesues_1: ,5248E+2,
3) 1iver: A940E+1, 4) bile: .1000E+1,
5) tissues 21 .3478E+2, 6) urine: . 1000E+1,
7} spleen: .3200E+0;
true parameter valuaes {min™'):
i1 ,1429E+0, 21 .7500E-2, 33 ,6814E-2, 4: .5854E-1,
5: .1343E+0, 61 .8180E+1, 73 .4054E+0, 81 .1726E+1,
9: .6000E+Q, 10:.9040E+1;
datapoint, observation time {min) and concentrations {zg/mi):
plasma tisg.l liver bile tiss.2 urine spleen
0 .Q000E+0 ,4342E+2 ,0000E+0 .0CO0E+0 ,0000E+0 .CO000E+0 .Q000D0E+0 .00CDE+0
1 .1000E+2 .5113E+0 .56B2E+1l .8538E+1 .4037E+1 ,2482E+2 ,1335E+1 .1823E+2
2 ,2000E+2 ,4716E+0 .5466E+1 ,8507E+1 .7730E+1 .2559E+2 .2754E+1 ,1918E+2
3 .3000E+2 ,4161E+0Q ,5641FE+1 ,8996E+1 ,1187E+2 .2607E+2 .4556E+1 .1983E+2
4 .6000E+2 ,4310E+0 ,5509E+1 .8717E+1 ,2063E+2 .2563E+2 .7070E+l .1943E+2
5 .9000E+2 ,4533E+0 ,5348E+1 ,8367E+1 .2915E+2 .2512E+2 .9439E+1 .1892E+2
6 .1200E+3 .5119E+0 ,5044E+1 ,7654E+1 .3686E+2 .2424E+2 ,1120E+2 .1798E+2
7 ,1500E+3 ,4499E+0 .5223E+1 .8150E+1 .4690E+2 ,2457E+2 ,1487E+2 .1849E+2
8 .1B00E+3 .4437E+0 ,5179E+1 .8087E+1 ,5573E+2 ,2435E+2 ,1761E+2 .1833E+2
9 ,2100E+3 .4860E+0 ,4942E+1 .7542E+1 ,6351E+2 .2364E+2 .1956E+2 ,1759E+2
10 ,2400E+3 .3607E+0 .537SE+1 .8673E+1 .7455E+2 .2462E+2 .2416E+2 ,1659E+2
11 .3000E+3 .4461E+0 .4901E+1 .7580E+1 .8967E+2 .2321E+2 ,2790E+2 .1739E+2
12 ,3600E+3 .4246E+0 ,4856E+1 .7560E+1 .1066E+3 .2289E+2 ,3326E+2 ,1720E+2
13 .4200E+3 .3657E+0 ,4964E+1 .7920E+1 ,1240E+3 ,2295E+2 ,3912E+2 .1748E+2
14 .4800E+3 ,4584E+0 ,4562E+1 .7001E+1 ,1384E+3 .2174E+2 .4283E+2 .1621E+2
15 .5400E+3 .3755E+0 .46778+1 .7374E+1 .1552E+3 ,2182E+2 ,4851E+2 .1651E+2
16 .6000E+3 ,4111E+0 .4414E+1 ,6B01E+1 ,1697E+3 .2097E+2 ,5258E+2 .1500E+2
17 .7200E+3 .4312E+0 .4100E+1 .6179E+1 .1989E+3 ,1980FE+2 .6125E+2 .1464E+2
18 ,8400E+3 .2810E+0 .4476E+1 ,7277E+1 .2304E+3 .2037E+2 .7231E+2 ,1568E+2
19 ,9600E+3 .3279E+0 ,4072E+1 .6418E+1 ,2568E+3 .1901E+2 ,7988E+2 .1438E+2
20 .1080E+4 .2930E+0 ,4004E+1 .6393E+l .2838E+3 .18G0E+2 .8843E+2 .1409E+2
21 .1200E+4 .2793E+0 ,3859E+1 .6169E+1 ,3094E+3 .178lE+2 .9534E+2 ,1358E+2
22 ,1440E+4 .3316E+0 .3273E+1 .4968E+1 .3561E+3 .1572E+2 ,1110E+3 .1167E+2
23 ,1680E+4 .3277E+0 .2940E+1 ,4380E+1 .40028+3 ,1432E+2 ,1235E+3 .1053E+2
24 ,2160E+4 ,4126FE+0 ,1981E+1 ,2416E+1 ,4770E+3 .1091E+2 .1459E+3 ,7404E+1
25 .2880E+4 ,1654E+0 .2206E+1 ,3512E+1 .5787E+3 ,1022E+2 ,1793E+3 .7771E+1

E+a denotes x10*9,

The simulated observations were calculated as the model response for the true parameter
values (arbitrary choice), on which Gaussian noise was superimposed afterwards. This
noise has mean value ¢ = Q, and standard deviations ¢ = .05, .2, .5, 1., .5, .8, .6 for
the subsequent compartments. Random deviations were chosen from these distributions
by use of the standard routine GGNML in the IMSL FORTAN F77 library. The seed for tha
random number generator was 26

optimization routines is a GOULD 32187 multi-user minicomputer (2 Mbyte
core memory), operating under MPX-32 (200k OS). The program was also run
on a Data General MV/10000 multi-user minicomputer, operating under AOS/
VS. The FORTRAN77 source codes, in single or double precision, consist of a
main program and subroutines in libraries. No external software other than a
few standard functions and a system dependent timing routine is used.
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TABLE 4-8 INITIAL PARAMETER SETS FOR THE DATA-SENSITIVITY EVALUATION

parameters

true initial, set 1 initial, set 2

min! min! %true  EC min™! %true EC
1 .1429E+0 .1842E+0 128.9 1.289 1242E4+0 86.9 1.151
2 .7b00E—2 ,7020E—2 93.6 1.068 .5243E-2 69.9 1.430
3 .6814E—2 .8013E—2 117.8 1.176 .6B35E—2 95.9 1.043
4 | B8B4E—1 ,7950E—1 135.8 1.368 .6433E—1 109.9 1.029
5 ,1343E+0 .1229E+40 91.b 1.093 L.i36B9E+0 101.2 1.012
6 .8180E+1 .8843E+1 108.1% 1.081 ,7010E+1 86.7 1.167
7 .4054E+0 .3B03E+0 86.4 1.157 .4038E+0 99.6 1.004
8 ,1726E+1 .1498BE+1 86.8 1.152 .18560E+1 107.2 1.072
9 .6000E+0 .4158E+0 69.3 1.559 ,62B6E+0 104.3 1.043
10 .9040E+1 .9962E+1 110.2 1.102 .9298E+1 102.9 1.029

E:ta denotes x10%9,

The parameters were chosen at random from a Gaussian distribution with mean value ¢
= 100% times and standard deviation ¢ = 15% times true value, using the subroutine
GGNML from the IMSL standard FORTRAN F77 library. Both sets are realizations from
the same distribution. As random number generator seeds were chosen 15 for set 1, and
for set 2: 450. For the meaning of criterion EC, see Eq.{4.55}

4.1.7 Set-up of Test and Evaluation Runs

41,7.1 Data-sensitivity of the Identification Procedure. It was studied to
what extent the results of the identification procedure are sensitive to the number
and the location (temporal and spatial) of the measured drug concentrations. The
ten transfer rate constants (m = 10) in a seven-compartment model (small-
scale,2n = 7, Fig. 4.2a) were estimated using the MGN optimization method on
the DG MV/10000. Simulated drug concentration measurements at N = 25 time
points during a 48 h period after a pulse drug input into plasma were generated
by calculating the linear first order model response for a certain set of transfer
rate constants (true parameter values), To account for measurement errors
Gaussian noise was added to the model response in these points (Table 4-7).
Two different sets of initial parameter values were used to assess how
the choice of the starting point influences the results of the optimization routine.
These sets were derived by drawing random values from a normal distribution
that was characterized by a mean value amounting to 100%, and a standard
deviation of 15% of the true parameter value, The random Gaussian deviations
were added to the true parameter values, The thus obtained noise corrupted
parameter values (Table 4-8) were used as initial estimates in several series of
optimization experiments (Table 4-9) that were conducted with varying numbers
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TABLE 4-9 SCHEME OF THE SIMULATION EXPERIMENTS {SEE TABLES 4-7 & 4-8}

T: test, 2b noiseless observations in each of the 7 compartiments;
T1: initial parameters deviate + 10% from true values;
T2: initial parameters deviate +30% from true valuas;

A: 25 gbservations in each of the 7 compartiments;
A1:initial parameter set 1;
AZ2: initial parameter set 2.

B: 12 observations in each of the 7 compartiments
{points 2, 4,6, 8, 10,12, 14, 16, 18, 20, 22, 24);

B1: initial parameter set 1;

B2: initial parameter set 2.

C: 6 observations in each of the 7 compartiments
{points 1, 4, 10, 13, 22, 2b);

C1; initial parameter set 1;

C2: initial parameter set 2.

D: 25 observations in each of the 7 compartiments, except tissues 2;
D1: initial parameter set 1;
D2: initial parameter set 2,

E: initial parameter set 1; 25 cbservations in plasma and urine.
F: initial parameter set 1; 25 observations in plasma, urine and bile.

G: initial parameter set 1; 25 observations in plasma, urine and bile;
also 3 observations in spteen {points 1, 12, 25},

H: initial parameter set 1; 9 observations in plasma, urine and bile
{points 1,4, 7, 10, 13, 18, 19, 22, 25);
atso 3 observations in spleen {points 1, 12, 25).

I initial parameter set 1; 25 observations in all compartments;
deliberately introduced error in modal structure:

'1: pathway splean-liver replaced by pathway spleen-plasma;

12: pathway plasma-urine replaced by tissues_1-urine.

of observation times (N) and observed compartments (w). First, the software
was tested by using undisturbed observations and initial parameters that deviated
only a little from their true values (experiment T). Next, decreasing numbers of
observations were allowéd in all compartments (experiments A through C), In
other cases (experiments D through H) observations were allowed in a few
compartments only. In an ultimate case availability of observations was restrict-
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Fig, 4.12 Evaluation of minimization routines; comparison of the initial values of the
25 parameters (see Fig. 4.3) in set 1 and set 2
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initial set 1

ed to plasma and urine, simulating actual clinical circumstances where patients
can be sampled in these compartments only. Knowing the true parameters, the
accuracy with which the program determined the optimal parameter values in
each case could be compared. This enables establishing of a minimum required
amount of observations.
The sensitivity of the estimation procedure with respect to model

structure errors (deliberately introduced errors in the distribution pathways) was
also investigated (experiment I},

4.1.7.2 Performance of the Different Minimization Routines. The
medium-scale model (2n = 14 compartments, Fig. 4.3) and a small-scale model
(2n = 5 compartments, Fig. 4.2b) were used to evaluate the performance of the
different minimization routines. The solutions of the state and sensitivity equa-
tions were computed by either direct Runge-Kutta integration or through tran-
sition matrices, whose analytical solutions for a 2-minutes interval were cal-
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TABLE 4-10 OBSERVED CONCENTRATIONS AND CUMULATIVE AMOUNTS OF DAU AND DOL AFTER /L V. BOLUS
INJECTION OF 7.5 mg/kg DAU (MEAN,SD; 4-5 RATS PER DATAPQINT); COMPARTMENT VOLUMES (MEAN

QF 40 RATS)
time plasma urine liver spleen heaxrt kidneys lungs muscles bone marrow
h pg/mi ug Hg/g rg/g wg/g wy/yg rg/fg kg/fg ra/g
0.167 0.78,0.6 DAU values
0.333 0.20,0.5
0.5 0.21,0.5 24.0,0.9 16.8,1.0 18.5,0.7 34.0,0.1 46.5,1.4 2.8, -
0.75 0.24, =~
1 0.11,0.2 22.0,0.9 17.4,1.0 17.0,0.7 24.0,0.3 46.0,1.4 2.3, - 10.0,2.9
1.5 11.0,1-0 18.0,1-4 14.0,0.7 23.0,0.2 37.5,2.1 2.7, -
2 0.05,0.023 16.0,1.0 2.6, - 4.0, -
3 8.0,0.8 7.1,0.2 11.0,0.8 16.9,0.¢9 5.0, -
4 6.5,0.7 15.5,1.0 6.0,0.2 10.0,0.7 18.0,0.9
6 0.01,0.01 7.7,0.7 14.5,0.7 6.0,0.2 7.2,0.3 12.0,0.7 2.0, -
7 18.0,5.3
8 7.0,0.6 13.0,0.7 4.5,0.2 6.5,0.2 §.0,0.7 1.0, -
9 5.0,0.3 12.5,0.7 4.8,0.2 6.0,0.5 9.0,0.7 0.5, -
10 20.0, -
15 22.0, -
21 23.0,5.1
24 1.5,0.3 7.5,0.5 0.8,0.1 2.8,0.3 4.5,2.9
4g 0.00,0.01 0.7,0.1 2.3,0.2 0.0, - 0.3,0.1 0.4,0.1 0.0, =




TABLE 4-10 CONTINUED

time plasma urine liver spleen heart kidneys lungs muscles beone marrow
h pg/ml ] Ha/g ug/g ug/g “g/g Kg/g pg/g Lg/g
0.167 0.54,0.2 DOL. values

0.333 0.14,0.2

0.5 0.11,0.1 3.0,0.4 0.9,0.7 4.0,0.3 4.0,0.7 3.5,0.3 0.3, -

0.75 0.13, -

1 0.07,0.06 2.2,0.3 3.0,0.7 5.0,0.7 10.0,0.6 4.5,0.7 0.5, — 1.0,0.2
1.5 2.0,0.1 2.7,0.7 7.5,0.7 9.0,0.1 3.0,0.3 0.3, -

2 0.04,0.05 3.3,0.5 0.8, - 0.4, -
3 3.5,0.3 7.6,0.7 8.0,0.5 2.0,0.1 0.6, -
4 2.3,0.5 2.5,0.3 5.8,0.7 £€.0,0.6 4.5,0.3 0.9, -

3] 0.01,0.03 3.0,0.2 5.0,0.5 4.0,0.3 4.8,0.6 2.3,0.1 1.0, - 1.0,0.2
7 9.5,6.1

3 6.0,0.2 4.0,0.3 4.3,0.3 7.0,0.1 6.0,0.7 1.2, -

9 5.5,0.2 6.0,0.5 3.0,0.3 6.0,0.4 5.0,0.7 0.6, -

10 10.5, -

15 15.0, -

21 18.0,8.6

24 3.0,0.6 7.0,0.9 2.2,0.1 4.0,0.2 3.3,0.3 1.7,2.5
48 0.04,0.01 4.5,0.4 3.3,0.3 0.4,0.1 1.6,0.1 1.5,0.1 0.0, -

compartment velunes (ml):

28.50 4.94 0.32 0.56 1.04 1.38 49.50 1.08
other tissues: 33.70; nb. plasma volume = plasma (5.70) + extracellular body water (22.80)



TABLE 4-11 MORE TESTED MODELS FOR DAU-DOL PHARMACOKINETICS

model n w m NR method remarks

3at.1 2x3 2x2 9 16 seq. excretion = urine;
3al.2  2x3 2x2 g 16 seq. as 3a1.1, other initial parameter values;
3b1 2x3 2x2 9 22 sim. as 3al.t, plasma DAU weighted 100x, plas-

ma volume free;

3a2 2x3 2x2 9 20 seq. excretion = urine + bile;

3b2 2x3 2x2 8 22 sim. as 3aZ;

3b3 2x3 2x2 g 22 sim. as 3a2, plasma DAU weighted 100x, plasma
volume free;

5b1 2x5 2x3 156 32 sim. motabolism in plasma and tissues

5h2 2x5 2x3 14 32 sim, as bb1, metabolism in tissues only;

5b3 2x5 2x3 15 32 sim. as Bb1, modified algorithm;

6b1 2x8 2x5 18 76 sim. metabolism in plasma, liver, tissues 1;

7bt 2x7 2%6 24 94 sim, metabolism in plasma, liver, spleen, tis-
sues_1;

n = number of compartments; w = number of observed compartments; m = number

of parameters; NR = number of observations; seq. = sequentiai fitting {analytical

method); sim. = simultaneous solution (numerical method};

tissues_1 = well perfused tissues: liver, spleen, heart, kidneys, lungs and skeletal mus-
cles; tissues 2 = poorly perfused tissues: bone marrow and other tissues that can be
reached by the drug, but for which no observations are available. Tissues that cannot be
reached by the drug, for example brain tissue and bones, are excluded from the modsls

culated® (MGN method). In parallel computation runs, instead of solving the
sensitivities, the gradient and Hessian matrix of the log likelihood function
—necessary to establish the direction of the step in parameter space toward the
minimum—were approximated in a direct way by means of finite differences
(DDH method). A third approach involves the solving of the sensitivities by
finite differences instead of transition matrices (FD method). The various per-
formance criteria resulting from the different runs were compared.

The numerical minimization procedures are always started with the same
two sets (set | and 2) of initial parameter values (Fig. 4.12). Most of the
corresponding values in these sets differ less than a factor of 5 (68%), some
differ between a factor of five and a factor of 10 (12%), the remaining ones
(20%) differ more than a factor of 10 (up to a factor of over 100),

Observations used are derived from actually observed DAU and DOL
concentrations. Considering the relative organ volumes, measurements in several
organs were pooled into observations for the composite tissues 1 compartment
(Table 4-10).
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The computations were performed on the GOULD minicomputer system,

4.1.7.3 Identification of the System of DAU-DOL Pharmacokinetics.
Various structures of the large-scale model (2n = 22, Fig 4.4) were tested for
the best fit of the observed DAU-DOL concentration—time data (Table 4-10; at
that time no bile observations were available yet}. These six structures are listed
in Table 4-1, The MGN minimization method was used, finding transition
matrices for a 2 minutes time interval by numerical integration. For the large-
scale model computations were performed on the IBM main frame, using the
ALGOL source code.

In addition, a few smaller-scale models were evaluated as well (Table 4-
11). The same program was used, this time in FORTRAN F77 on the DG MV/
10000, The 2x3 compartment mode! was evaluated both numericafly and analyt-
ically (see Appendix E).

4.2 RESULTS AND DISCUSSION
4.2.1 Experimental Dafa

The observed quantities of DAU and DOL in the organs and body fluids of the
rat after the {.v. administration of a dose of DAU, as well as the measured
organ volumes, are listed in Table 4-12, The observed standard deviations are
rather high, probably due to the biological variation in the test animals. In
general however, similar patterns are seen in the concentration—time histories,
both with respect to the order of magnitude of the data and the qualitative
behavior,

Plasma, DAU and DOL. A very rapid decrease to low concentration levels is
seen after almost instantaneous heavy loading of the compartments (which is
remarkable for DOL especially as it seems to suggest a very fast metabolism
process). After two hours the low levels have been reached and a very slow
further decrease follows.

Urine/Bile, DAY and DOL, In these compartments the compounds are accumu-
lated. In urine similar amounts of DAU and DOL are excreted eventually, while
DAU is being accumulated somewhat faster in an early stage. For bile quantita-
tive data became available at a later stage. Large interindivual differences
resulted in large standard deviations for the observed concentrations. Just like
with urine, it was seen that almost equal amounts of DAU and DOL were
excreted into the bile, with a little faster rate of accumulation of DAU during
the first few hours.
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TABLE 4-12 OBSERVED CONCENTRATIONS AND CUMULATIVE AMOUNTS OF DAU AND DOL AFTER L V. BOLUS
INJECTION OF 7.5 mg/kg DAU (MEAN,SD; 4-5 RATS PER DATAPQINT); COMPARTMENT VOLUMES {MEAN OF 40 RATS)

time plasma urine liver spleen tissues 1 bile
h pg/ml Kg ug/g Lg/g ug/g Ky
DAU values
0.167 1.07,0.6 -, - -, = -, - -, - -, -
0.333 1.18,0.3 - - - - -, - -, ™ - s -
0.5 1.25,0.5 -, = 24.0,0.9 16.8,1.0 5.7,0.8 -, 0~
0.75 - r T I I - T I - o =
1 0.54,0.2 -, - 22.0,0.9 17.4,1-0 2.9,0.8 55.0,49.5
1.5 - ;s - -, = 11.0,1.0 18.0,1.4 4.1,0.8 -, -
2 0.14,0.03 -, - -, - 16.0,1.0 -, - 56.4,56.1
2.5 - ¢ - s = = s T "oy T - s = - "
3 0.09,0.03 -, - 8.0,0.8 -, ™ -, - -, =
3.5 I A = 7 = = B A
4 - P -, - 6.5,0.7 15.5,1.0 -, - 90.7,59.8
5 - s = = s - - = - I Y A
6 0.06,0.01 22.1,5.3 F.7,0.7 14.5,0.7 2-4,0.8 . 97.2,67.7
7 - [ Y B = = = s = - s - "

8 - ;s - = 7.0,0.86 13.0,0.7 1.3,0.8 105.7,69.0
9 e , - -, - 5.0,0.3 12.5,0.7 0.9,0.8 -, -
10 - , - -, - -, - -, - -, - 109.7,67_.8
12 - PR -, - -, - -, - -, - 111.8,67.8
14 - ;s - -, - -, - -, 0~ -, - 113.4,67.3

15 - r - - . T I A R - 5 - =
16 - P -, - -, - -, = e 115.1,66.6
138 - e - o = - = - o = Y 117.0,65.8
20 -, - -, - -, = -, - -, - 119.6,64.4
21 - r - = T Y - = = o = o T
22 - . - -, = -, - -, - -, = 133.2,72.6
24 - r - 35.5,5.1 1.5,0.3 7.5,0.5 -, - 134.1,73.0
28 - .- - - -, - == - -, -
32 - r = - r = I = = - s = T =
48 0.00,0.01 -, = 0.7,0.1 2.3,0.3 0.02,0.8 -, -



TABLE 4-12

time

h
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0.81,0.2
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CONTINUED

urine
jile1
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compartment volumes (ml}:

28.50

liver spleen
kg/g =1
DOL_values

-, - -, -

[ ;

6.0,0.2 4.0,0.3
5.5,0.2 6.0,0.5
R I
-, - -, -
-, - - -
I = 7
-, - -, -
-, = - -
-, - -, -
- = -, -
-, - -, -
3.0,0.6 7.0,0.9
Y R = 7
-, - -, -
4£.5,0.4 3.3,0.3
4.94 0.32

tissues 1
ng/g

L

-, -
0.49,0.08

= .
0.84,0.08
0.62,0.08

0.08,0.08

52.48

bile
i1

-, -
57.4,39.5

2
88.3,50.4

r

103.3,54.8
R
113.4,58.2
121.6,61.2
127.6,62.3
- -
133.7,62.1
139.4,63.0
146.4,63.0
-2
146.4,70.0
143.8,59.0

n.b. plasma veolume =
plasma (5.70) +
extracellular body
water (22.80)

tissues 1 data by
pooling heart, lungs,

kidneys and muscles
of Table 4-10

(tissues 2: 34.78);



Organs, DAU, Almost all organs take up DAU very fast; the peak concentra-
tion is reached within one hour, Then, elimination occurs, rapidly at first and
slowly later when low concentration levels have been attained. In spleen and
bone marrow both DAU uptake and elimination appear to take place at a lower
rate, and the 24 h concentrations in these organs still are relatively high. The
muscles compartment also is an exception as the DAU concentrations remain
comparatively low overall.

Organs, DOL. For the metabolite the maximum attained concentration levels
are much lower than for the parent drug. As can be expected considering that
time is needed for metabolite formation and redistribution processes, the DOL
concentrations are built up at a slower pace (peak concentrations well past one
hour). The rate of elimination appears to be lower as well, for considerable
amounts of DOL are still present after 24 h (compared to parent drug). In
spleen and bone marrow the accumulation of DOL exceeds the elimination and
concentrations are still rising afler 24 h,

From the experimental observations already two conclusions can be drawn with
clinical relevance. The plasma concentrations of DAU and DOL do not reflect,
at least not in a simple way, the compounds’ levels in the organs; while plasma
concentrations are already very low the levels in other organs may be fast
decaying or even be rising still. The second conclusion is that large interin-
dividual differences may be encountered at a same sample time.

4.2,2 Data-Sensitivity

4.2.2.1 Test of the Optimization Routine, A test was conducted to check
whether the MGN optimization routine performed well, Two initial parameter
vectors were chosen to start with, one with near-true values (10% deviation;
case 1), the other one a poorer estimate (+30% deviation: case 2). In this test
all observations used were noiseless, The routine returned final parameter values
that yielded very good fits of the model response to the observations, TCC
being equal to one in all compartments but plasma—for case 2—for which TCC
= 0.92 was found. The log likelihood function was reduced by a factor of 10
and 10° for case | and 2, respectively, showing that the optimization routine
performs better when the initial parameter vector is nearer to the true one. Yet,
even with the very good fits resulting, the final parameter values still showed
inaccuracy. For case | only 20% of the final parameter were more accurate than
5%, 70% had an accuracy better than 10%, and all were more accurate than
12%. For case 2 most final parameter values showed an accuracy of not more
than 20-30%. This demonstrates that even wunder optimum conditions, with a
near perfect fit achieved, most transfer rate constants cannot be estitnated but
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Fig. 4.13 Data-sensitivity experiments; The percentage of parameters for which the
error criterion EC (Eq.(4.55)) has a value smaller than indicated; mean initial {0} and
final () parameter vectors compared (all compartments: 100% observations})
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Fig. 4.14 Data-sensitivity experiments; The percantage of parameters for which the
error criterion EC {Eq.{4.55)) has a value smaller than indicated; comparison of final
parameter vectors (all compartments: © 100%, 0 50% or ¢ 25% observations)
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Fig. 4.15 Data-sensitivity experiments; The decrease in log likelihood function with
the number of iteration steps, starting with parameter sets 1 {0} or 2 {0} {see Table 4-
8); all compartments observed, a;: 100%, b: 26% observations
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with at least 5-10% inaccuracy.

4.2.2.2 Experiments A through C; reduction of the number of data-
points while all compartments are observed. Figures 4.13 through 4,15 show
for the various experiments how the estimated parameters are distributed with
respect to corresponding values of the error criterion EC (Eq.(4.55)). Figure
4.13 compares the mean initial parameter vector to the final one for 100%
observations. In the latter case all parameter values have an EC-value smaller
than 1.32 (against 85% in the former case), and a third has an EC-value smaller
than 1.02 (against 10% in the former case). With the final parameter values the
fit of the model response to the datapoints is much improved (overall TCC
going from 0.96052 to 0.99997) and--within a few iteration steps—the log
likelthood function is reduced by a factor of 10° (Fig. 4.15a), Also, the remain-
ing variance of the residuals arrives at values that are near the ones expected on
the bases of the Gaussian distributions of the added noise. This shows that also
in the case of noise polluted observations the optimization roufine returns
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TABLE 4-13 LOG LIKELIHOOD FUNCTICN, GOODNESS OF FIT AND RESIDUAL VARIAN-

CE FOR THE DATA-SENSITIVITY EXPERIMENTS

For each of the experiments (Table 4-9) the model response associated with the final
parameter values was calculated and compared with aff observations in all compart-
ments., Thus, not necessarily all observations were always used to estimate these final

parameters|

The expected residual variances, based on the Gaussian distributions of the generated
random noise, are .25E-2, .40E-1, .26E+0, .10E+ 1, .25E+0, .64E+ 0 and .36E+0 for,
raspactively, plasma, tissues 1, liver, bile, tissues_2, urine and spleen.

EXPERIMENT Al

LLF 89.29
TCC

overall .999969

plasma 990703

tissues_1 .998859

liver 997261

bile .999987

tissues_2 999634

urine 999921

spleen 998606

Residual Variance
plasma .3006E—2

tissues 1 .443bE—1
liver L2834E+0
bile L1382E+1
tissues 2 .3416E+0
urine .7936E+0
spteen L723BE4+0
EXPERIMENT D1
LLF 84.41
TCC

overall .999970
plasma 990359
tissues 1 .998890
liver .897072
bile .895987
tissues 2 998669
urine 999921
spleen 998957

Residual Variance
plasma B117E—2
tissues_1 .4728E—1

liver 3023E+0
bite .1384E+1
tissues 2 .3094E+0
uring .7884E4+0

spleen B411E+ 0

A2
86.11

8999871
980832
.998938
.996562
099987
9926356
290824
998862

.3029E—-2
A52BE—1
.35BBE+0
3096+ 1
.3402E+0
.7608E+0
H07E+O

B2
79.68

899973
8989974
.988827
996989
.999988
299679
999924
099042

.3240E—2
.4995E—1
SBH14E+Q
.1259E+1
2995E+0
J671E+0
A972E+0

B1
£5.91

098970
990869
298961
997233
999986
.999645
.999920
.598952

.2952E-2
A470E—1
.2863E+0
J426E+ 1
3311E+0
.80186E+0
.5438BE+0

E
27894.--

990363
990206
959249
985678
999575
.098359
.999932
.000000

.2940E—-2
J701E+1
A473E+1
A452E 42
AB31E+1
.6851E+0
.1066E+4

B2 C1
80.30 87.31
989872 .9908970
.990219 .989327
.898880  .998940
997071 997047
.999988  .999987
988670 999604
999923  .999923
998919 999122
.3161E—2 .3448E-—2
4772E—1 4515E—1
.3030E+0 .3055E+0
12166+1 . 1409E+1
3082E+0 .3700E+0C
.7728E+0 .9036E+0
.5611E+0 .4558E+0
F , G
113160.-- 451.85
060308  .209845
990921 991029
.9387656 907298
943733 .968042
999990  ,999959
989559 .9906256
999926 999927
000000 993064
.2936E—2 .2801E—2
.2B30E+1 .3767E+1
.bB6SE+1 .32BBE+1
JO032E+1T L 1302E+1
9B96E+1 B711E+1
.7450E+0 .7351E+0
Ab506E+4 .4859E+0

c2
82,75

999972
.989430
.988931
.997029
.999988
999626
989907
989120

J3415E-2
4551E—1
JS073E+0
1219641
3489E+ 0
L9287E+0
.4865E+0

H
616.28

.999972
.989430
998931
.997029
.999088
.999626
999807
999120

.3232E—-2
4768E+1
BTBIE+HT
1204E 41
1B2E+2
8814E+ 0
.4861E+0
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Fig. 4.16  Data-sensitivity experiments;

Model response with estimated =1 standard deviation and observations with their accuracies (%17 standard deviation} in plasma
and liver. All compartments: 100% observations. Perforrmance criteria in boxes: left value: with respect to observations used for
parameter estimation; right value: with respect to all observations (true values between brackets)
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Fig. 4.17 Data-sensitivity experiments; ) ) ) ) o _

M?)dé] response with estimated *1 standard deviation and observations with their accurame§ {+1 standard devnatugn) in plz;\jsrfﬂar
and liver. Ali compartments: 25% observations. Performance criteria in boxes: left value: with respect to observations used fo
parameter estimation; right value: with respect 1o all observations (true values between brackets)
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improved values with respect to initial estimates. Figure 4.14 shows that
reducing the number of observations to one half and even one fourth does not
dramatically change the accuracy of the results. Always 100% of the final
parameters have an EC-value of less than 1,32 and, in fact, with the reduced
numbers of observations the number of parameters with EC-values less than
£.10 amounts to 65%, whereas in the case of all observations 45% is found.
However, the number of very accurately estimated parameters decreases with
decreasing observations. The number of parameters with EC-value less than
1.01 drops from 20% to 10% to %5 for the cases of 100%, 50% and 25%
observations, respectively. A 1000-fold reduction in the log likelihood function
still is attained when the number of observations decreases to a quart (Fig.
4.15).

Comparing the model responses from all experiments A through C to all
datapoints—so, for B and C, also to datapoints not used for estimating the
transfer rates—it can be seen (Table 4-13) that similar values are always
obtained for the log likelihood function and the goodness of fit. The ultimate
transfer rate constants returned depend to some extent on what initial parameter
vector the optimization routine is started with, but the accuracy of the results is
such that differences are not significant. Therefore, it can be concluded that, as
long as all compartments are observed, the number of observations per compart-
ment necessary to estimate the transfer rate constants can safely be lowered
Jrom 25 to 6, without serious loss of accuracy. Other experiments, not reported
here, seemn to suggest that especially early data-points (0-10 h) can be left out
without great effect.

Final responses—after starting the optimization from parameter set
I—in, for example, plasma and liver are shown in Fig. 4.16 (100% observa-
tions) and Fig. 4.17 (25% observations), They are only a little bit poorer in the
latter case, and so are the estimated response accuracies.

4,2.2.3 Experiments D_through H; datapoints in a few compartments
only. Leaving out the observations in one single compartment (tissues_2) results
in the unexplained phenomenon that the accuracy of the final parameter es-
timates improves {case D, Table 4-13; Fig. 4.18).

Allowing observations in plasma and urine only—all 25 in each—it
appears that 40% of the parameters cannot be estimated with good accuracy
(EC-value larger than 1.35). Only 10% has an EC-value better than 1.01 (Fig.
4.19). Adding all bile observations results in little improvement (30% of the
parameters with EC-values larger than 1.35, zero with EC-value better than
1.01). Some improvement is seen if yet another compartment is at least partially
observed, e.g., adding as few as 3 observations in spleen leaves only 10% of
the parameters with an EC-value larger than 1,35, Then, in fact the number of
observations in bile can be reduced again, from 25 to 9, at only small costs with
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Fig. 4.18 Data-sensitivity experiments; The percentage of parameters for which the
error criterion EC (Eq.{4.55)) has a value smaller than indicated; comparison of final
paramster vectors (0) all compartments: 100% observations, versus (©) all compart-
ments: 100%, except tissues 2: 0%
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Fig. 4.19 Data-sensitivity experiments; The percentage of parameters for which the
error criterion EC (Eq.{4.55)) has a value smaller than indicated; comparison of final
parameter vectors {0} all compartments: 100% observations, versus, respectively, {0}
plasma and urine: 100%, other: 0% {a) plasma, urine and bile: 100%, other: 0% (v)
plasma, urine and bile: 100%, spleen: 12%, other: 0% (<) plasma, urine and bile:
36%, spleen: 12%, other: 0%
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respect to accuracy (20% of the parameters then have an EC-value larger than
1.35).

Comparing the model responses in Figs. 4.16, 4.20 and 4.22, respec-
tively, all compartments 100% observed, only plasma and urine 100% observed,
and plasma, urine, bile and spleen partially observed, it is seen that the plasma
goodness of fit is not much influenced, while the liver response fluctuates
considerably. Without at least a few organ observations the spleen response is
very wrongly estimated (Figs. 4.21 and 4.23).

Thus, these experiments show that it will be necessary to observe more
compartments than only those that in practice can be easily accessed without
sacrificing the laboratory animal. However, the number of samples in such
inaccessible organs needs not be very high.

4.2.2.4 Experiments I and A; the influence of model errors. As can be
seen from Table 4-14, when three models with slightly different pathway
structures are matched to the same datapoints the best results are obtained with
the wrong model (Ia; lowest value of the log likelihood function, highest overall
TCC). Only if it is & priori known that for instance the magnitude of pg should
be between 1.6 and 1.9 and p, should be larger than 0.006, it can be deduced
that Ia and Ib are based on wrong models. If not, such model errors may go
unnoticed.

4.2.2.5 Conclusions,

1) Employing a modified Gauss-Newton optimization routine to minimize the
log likelihood function, ML estimates of transfer rates were derived using
various sets of simulated observations. These observations were obtained by
sampling the model response to a pulse input, calcuiated for a chosen "true"
parameter vector, and by adding random Gaussian noise. It was examined to
what extent the true parameter values could be estimated with sufficient ac-
curacy if the number of available observations was reduced.

2) Using the maximum number of observations and having all compartments
observed, one fifth of the parameters is estimated with an accuracy of 1% or
better; one twentieth with an accuracy not better than 30%. The final estimates
are to some exteni dependent on the initially chosen parameter values. A
reduction in the number of observations to one fourth of the maximum number,
equally distributed over all compartments, makes the accuracy of the former
"1%" paramelers shift into the S%-10% range; the largest deviations from true
parameter values remain approximately 30%. In particular, the omission of
early observations (0-10 h)} does not result in an unacceptable loss of accuracy.
Thus, a considerable reduction in the number of laboratory animals to be used
in similar future in vivo experiments will be possible.

3) If unobserved compartments are allowed a substantial toss of accumcy may
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TABLE 4-14 PARAMETER VALUES, LOGILIKELIHOOD FUNCTION) AND GOODNESS OF
FIT FOR TRUE AND FALSE MODEL STRUCTURES; SEE FIG. 4.2A

The simulations below were started with initial parameter values according to set 1
(Table 4-8) and all ohservations in all compartments (Table 4-7). With respect to the true
model structure (experiment A) tha following false structures were introduced. In
experiment |1 pathway spleen-to-liver was replaced by spleen-to-plasma. In experimant
12 pathway plasma-to-urine was replaced by tissues_1-to-urine, The parameters involved
in these changes are written in italics.

Parameter valuas (min™!) and SD (min™")

true Al It 2
Py L1429 .1668, .0002 .1549, .00056 1362,  .00056
[+ .0075 0074, <.0001 0074, .0001 0073, <.0001
Pa 0068 0069, <.0001 0068, <.0001 0004, <.0001
Dy .0685 0505, .0015 .0626, .0033 0507, .000S
fo .1343 1164,  .0034 L1413, .0073 1177, 0012
Pe 8.18 8.841, .0001 8.798, .0001 8.768, <.0001
Py .4054 4283, .0008 4279, .0018 4234, .0007
Pg 1.726 1.474, .0007 2,105, 0015 2.833, .0012
Py .600 600, .0009 .6885, .0046 8977, .0039
Pig 9.040 9.962, .0001% 9.938, .0001 9.260, .0003
LLF 88.50 77.96 113.40
TCC
overall .989970 989973 .999961
plasma 990860 .990879 980803
tissues_1 .998942 .998903 8997807
liver 897204 997274 .997297
bile .999987 .9999838 .999990
tissues_2 .9998653 999661 .999688
urine 8999921 999921 .999913
spleen .998636 999117 996344

result (e.g., two fifths of the parameters showing accuracies poorer than 30%),
It cannot be avoided that in practice organs must be sampled that are inacces-
sible without sacrificing the laboratory animal. However, the number of sample
points, thus the total number of animals consumed in an experiment, can be
reduced without impairing the achievable accuracy of the obtained results, But,
as confirmed by others [Erickson and Ackerman, 1986}, it is better to have
Jewer observations in many compariments than many observations in only two or
three compartents,

4) The sensitivity of the estimation procedure for deliberately introduced errors
in the model structure (distribution pathways) was also investigated. Small
model errors appeared to go unnoticed, unless the order of magnitude of the
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Fig. 4.20

Data-sensitivity experiments;

Model response with estimated +1 standard deviation and observations with their accuracies {1 standard deviaticn) in plasma
and liver. Observations, plasma and urine: 100%; other: 0%. Performance criteria in boxes; left values: with respect 10 observa-
tions used for parameter estimation; right values: with respect to all observations (true values between brackets)
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Fig. 4.21

Data-sensitivity experiments;

Model response with estimated %1 standard deviation and cbservations with their accuracies (1 standard deviation) in spleen.
Comparison of experiments A1 and E {see Table 4-8). Performance criteria in boxes: left values: with respect to observations used
for parameter estimation; right values: = with respect to all observation (true values between brackets)

20 — LR ERTPPRS
1%”' Al LLF . 83.29 88.28
3 - TCC, .999869 (999969
1 & PR TCC  .go86506 .998506
_ + var 7235 7235 (.36)
E s Lot
o
i B
.5 .| .- R R T RPN
B
= 10 ~ :
[1h) H
&) M
jy M
o N :
Q .
- :
° :
B O :
2] :
o J, ........ ESORE SO SRS S
i m T L
] 1000 2000 3000
time, min

spleen concentration, pg/mi

200 -

150 - }

100

w
o

R L R ST Y S S A

LLF 17.21 27894.0
TCC! -899831 ,980363
TCC _— .000000
var —— 1066.0 (00.36

[Ty

LSRN B

LS Nl e e e

2000

T

1000 3000

time, min



Fig. 4.22 Data-sensitivity experiments;
Model response with estimated =%
and liver. Observations, plasma, urine and bite: 38

respect to observations used for parameter estimation; right values:

1 standard deviation an

9%: spleen: 12%; other: 0%. Performance cr

d observations with their accuracies (+1 standard deviation) in plasma

iteria in boxes; left values: with

with respect to all observations (true values between brackets)
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Fig. 4.23 Cata-sensitivity experiments;

Model response with estimated =71 standard deviation and observations with their accuracies {+1 standard deviation} in spleen.
Comparison of experiments A1 and H (see Table 4-8). Performance criteria in boxes; left values: with respect to observations used
for parameter estimation; right values: = with respect to all observations (true values between brackets)
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Fig. 4.24 The negative log likelihood function, LLF decreases with increasing number
of iterations, after starting with parameter set 1 {0 and a} or 2 {0 and v) for, respec-
tively, tha MGN and DDH routines
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