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List of abbreviations
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AP
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transactivation function
androgen insensitivity syndrome
anterior prostate

androgen receptor
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DNA binding domain
dexamethasone
Se-dihydrotestosterone
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dorsal prostate
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epidermal growth factor
estrogen receptor

estrogen response element
glucocorticoid receptor
glucocorticoid response element
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heat shock protein
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keratinocyte growth factor
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Iymph node carcinoma of the prostate {cell line)
fateral prostate

long terminal repeat
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mouse mammaty tumor virus
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nuclear localization signal
nuclear magnetic resonance



PCR
PG
PPAR
PR
PRE
PSA
Ri881
R35020
RAR
RLU
RNA pol IT
RU486
RT
RXR
SLG
SMG
T
TAF
TAT
‘TBP
TF
TFHIA
TR
TIC
TIF
TK
T8S
UTR
VDR
VP
X-Gal

Abreviations

polymerase chain reaction

parotid salivary gland

peroxisome proliferafor activated receptor
progesterone receptor

progesterone response element

Prostate specific antigen
17¢-methyl-178-hydroxyestra-4,9,11-trien-3-one
170,21-dimethyl-19-nor-pregna-4,9-diene-3,20-dione
retinoic acid receptor

refative light units

ribonucleic acid polymerase II

RU 38486 {mifepristone)

room femperature

retinoic X receptor

sublingual salivary gland

submandibular salivary gland

testosterone

TBP associated factor

tyrosine amino transferase

TATA binding protein

transcription factor

transcription factor III A (Xenopus laevis)
thyroid hormone receptor

transcription initiation complex
transcription intermediary factor
thymidine kinase

transcripfion start site

untranslated region

vitamin D3 receptor

ventral prostate
5-bromo-4-chloro-3-indoyl SD-galactesidase






Chapter I

INTRODUCTION



Chapter 1

L.1. THE STEROID HORMONE RECEPTOR FAMILY

Steroid hormones are widely distributed, cholesterol-derived, small hydrophobic molecuies.
They mediate a variety of biological functions, including tissue development, differentiation
and homeostasis. Mammalian steroid hormones (androgens,  glucocorticoids,
mineralocorticoids, estrogens and progestins) exert their fuaction by binding to the
corresponding intracellular steroid hormone receptor. This binding triggers a complex set of
molecular events, including pretein-protein and protein-DNA interactions.
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Figure L1, A basic model for activation of gene expression by steroid hormones. H: steroid
formone, HR: steroid hormone receptor, HRE. hormone response element, TIC: transcription
initiation complex.

As early as 29 years ago, Jensen et al. {1968} proposed a model for the action of steroid
hormones, that is basically stili valid today. According to this model (see Figure 1.1},
circuiating steroids enter target cells by diffusion through the cell membrane. In the cell they
interact with their cognate receptors. Upon ligand binding the receptor is activated and
converied into a tight nuclear binding state. In the nucleus it regulates transcription by
binding to the hormone response element (HRE) in the regulatory region of target genes,
thereby activating RNA polymerase IT in the transcription imitiation complex (TIC).
According to more recent studies the original model has been refined and in some cases
modified, as will be outlined below.



The steroid hormone receptor Family

Cellular concentrations of steroid hormone receptors are very low, and therefore they are
not easy to study. The molecular cloning of cDNAs encoding the steroid hormone receptors
was an essential contribution to the current knowledge on transcriptional reguiation by steroid
hormones.

I.1.1, NUCLEAR RECEPTORS

The steroid receptors are members of the family of nuclear receptors, that comprises over
60 different proteins in vertebrates and insects. Elucidation of the primary structure of the
nuciear receptors provides understanding of their modular structure and functional domains.
All receptors are characterized by a central DNA binding domain (DBD), that targets the
receptor to specific DNA sequences (HREs). The DBD is composed of two highly conserved
zinc coordinating domains. The N-terminal moduiating domain is highly variable in size and
in amino acid composition by comparing the various receptors, and contains fransactivation
functions. The C-terminal part of the receptor encompasses the ligand-binding domain
(LBD), that is partially conserved between the various family members.

Phylogenetic studies indicate a common ancestor of nuclear receptors (Amero et al, 1992,
Laudet et al. 1992, Detera-Wadleigh & Flemming 1994, Mangelsdorf et al. 1995), In this
view, the individual receptors originate from a single precursor gene by processes of gene
duplication, rearrangement, mutation, exon shuffling and transposition (O'Matley 1989, Dorit
et al. 1990, Amero et al. 1992, Keese & Gibbs 1992, Laudet et al. 1992). Based upon
phylogenetic analysis, the nuclear receptor family can be divided into three major subfamilies
(Gronemeyer & Laudet, 1995). Subfamily I contains as best defined members the receptors
for thyroid hormone (TR and §), vitamin D (VDR), retinoic acid (RAR«, 8 and ), the
retinoic X receptors (RXRa and 3}, the peroxisome proliferator activated receptors {PPAR«,
8 and ), and the Drosophifa ecdysone receptor (EcR). Subfamily II contains the majority
of the so calied orphan receptors. For orphan receptors, the ligands have not been identified
as yet, or they are active without specific ligand binding. Subfamily HI encompasses the
steroid hormone receptors except for EcR.

Starting with the human glucocorticoid receptor (GR) (Hellenberg et al. 1985, Miesfeld
et al. 1986) and estrogen receptor (ER) (Green et al. 1986, Greene et al. 1986) the cDNAs
of all human steroid hormone receptors were cloned [progesterone receptor {PR) (Mishari
et al. 1987); mineralocorticoid receptor (MR} (Arriza et al. 1987} and the androgen receptor
(AR) (Chang eal. 1988, Lubahn et al. 1988a, Trapman et al. 1988)]. Surprisingly, ten years
after the cloning of the ER (now renamed ERw), the isolation of a second ER cDNA, ERpB
was reported (Kuipsr et al. 1996, Mosselman et al. 1996). The schematical organization and
the structural homology between the various domains of the different steroid receptors are
depicted in Figure 1.2. With the exception of ER, the DBDs of the steroid receptors show
more than 75 percent homology, whereas the homology between the LBDs is approximately
50 percent. At the C-terminal end the ERs are slightly longer,
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Chapter 1

N - TERMINAL DOMAIN DBD LBD
. N |
1 548 612 662 910
GR <15 77 50
1 419 483 530 77
MR <15 77 51
1 601 665 738 984
PR <156 80 55
1 565 629 685 833
ER-CA <15 57 20
1 183 247 313 553 597
ER-8 <16 59 19
1 103 168 259 457 484

Figure 12, Structural homology of steroid hormone receptors, The structural homology in the N-
terminal domain, DNA-binding domain (DBD; black box) and ligand binding domain (LBD; hatched
box} of the human androgen receptor., plucocorticoid receptor, mineralocorticoid receptor,
progesterone receptor, estrogen receptor of and estrogen receptor B. Numbers in the open bars
represeiit the percentage of homology,

I.1.2, STRUCTURAL ANALYSIS OF STEROID RECEPTORS

The separate domains of steroid hormone receptors contain one or more functional units
involved in their specific function (see Figure I.3 for a schematical representation). As
pointed out above, they include domains for DNA binding and figand binding. Additionaliy,
they include regions essential for transcription regulation, dimerization and for effective
transport to the nucleus.

12



The steroid hormone receptor family
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Figure 1.3, Schematic illustration of the structural/functional organization of steroid hormone
receptors. The N-terminal domain is shown as an epen box, the DBD and LBD as black and hatched
boxes, respectively. Domain functions are depicted under the schematic receptor representation. NLS:
nuclear localization signal, AF: transactivation function.

The N-terminal domain

The N-terminal domain of most steroid receptors is very long (601, 565, 419 and 548
amino acid residues for MR, PR, GR and AR respectively). In contrast, both ERa and ERg
contain much shorter N-terminal domains (183 and 103 amino acids, respectively). The N-
terminal domains of all steroid hormone receptors including the ERs, contain at least one
region with a hormone dependent transactivation function (AF-1), which is essential for the
maximal transcriptional response of hormone-inducible promoters. AF-1 is constittively
active in truncated receptors, that lack the LBD. Furthermore, AF-1 activity is cell and
promoter dependent (Bocquel et al. 1989, Tasset et al. 1990, Muller et al. 1991, Dieken &
Miesfeld 1992, McEwan et al. 1993, 1994, Tzuckerman et al. 1994, reviewed in Evans
1988, Green & Chambon 1988, Carson-Jurica et al. 1990, Gronemeyer & Laudet 1995).
Deletion mapping of the N-terminal domain established that the AF-1 regions of the different
steroid receptors are structurally distinct, and are located at different positions (see Figure
1.4) (Hollenberg et al. 1987, Hollenberg & Evans 1988, Tora et al. 1989, Simental et ai.
1991, Meyer et al, 1992, Pakdel et al. 1993, Metzger et al. 1995a, Dahlman-Wright et al.
1994 and 1995, Jenster et al. 1995, Chamberlain et al. 1996). The AF-1 region in the N-
terminal domain of the GR was mapped te an acidic 185 amino acid segment close to the N-
terminus of the receptor (Hoilenberg et al. 1987). Internal deletions in this region revealed
the presence of a 41 amino acid core region, crucial for activity (Dahlman-Wright et al. 1994
and 1995). The AF-1 region of the PR is located in a proline-rich 91 amino acid sequence,
adjacent to the DBD (Meyer et al. 1992). Two PR isoforms are known, designated PR-A and
PR-B, respectively (see Figure 1.4},

13
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N - TERMINAL DOMAIN DBD
E -
485 548
. E -
1 77 187 227V 262 419

E -

1 165 456 548 565

E -

1 51 93 102 142 149 183

Figure 1.4. Location of N-terminal transactivation units in the individual steroid hormone
receptors. The N-ferminal domain is shown as an open box, the DBD as black box. The AF-1
regions are depicted by hatched boxes; core regions are represented by grey boxes.

In PR-B, besides the AF-! region, an additional activation function (AF-3) has been
defined (Sartorius et al. 1994). This AF-3 region is located in the most N-terminal 164 amino
acids specific for PR-B, and enhances the activity of AF-1. The AF-1 function of ER-¢x was
assigned to a 99 amine acid hydrophebic, proline-rich region, which differs from the proline-
rich AF-1 region in the PR (Metzger ef al. 1995). Two AF-1 subfragments were found to
synergize independently with the AF-2 function in the receptor LBD (see below). Almost the
entire N-terminat domain was necessary for maximal AR activity (Simental et al. 1991,
Jenster et al. 1995). A 260 amino acid core region starting at position 101 contains
approximately 50 percent of the maximal activity (Jenster et al. 1995). This core region
contains a relatively high number of acidic amino acids. Chamberlain et al. (1996) recently
identified two smalt subfragments within the core region involved in the transactivation
function of AF-1.

The DNA binding domain

The DBD mediates the sequence specific interaction of the receptor with DNA (Schwabe
et al. 1990, Preedman 1992), and contains sequences involved in dimerization of receptor
molecules (Umesono & Evans 1989, Luisi et al. 1991). The DBD contains nine conserved
cysteine residues (see for a review Laudet et al. 1992). Originally, the DBDs of steroid
hormone receptors were proposed to form two zinc finger motifs, identical to those observed
in the Xenopus laevis transcription factor IIIA (TFIIIA) (Mitler et al. 1985, Evans &
Hollenberg 1988).

14
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Figure L5, Functional motifs in the androgen receptor DNA binding domain. The sequence shows
the nwo Cysteine-Zinc coordinations and the N- and Crerminal a-helices {boxed in dashed lines). The
P-box and D-box, involved in DNA recognition and dimerization, respectively, are shown as open
boxes. The amine acids in the P-box essential in ARE/GRE/PRE versus ERE recognition are in open
characters.

However, mutational and NMR/crystallographic analysis of GR and ER DBD demonstrated
that the steroid hormone receptor DBD is folded differently, into so-called zinc-domain-helix-
extended regions. The two zinc domains contain the zinc-ions, that are each coordinated by
four cysteine residues (Figure 1.5). The fwo a-helices that follow the zinc domains (indicated
by a dashed box in Figure 1,5) are packed perpendicularly to each other, and hydrophobic
side-chains form an extensive hydrophobic core between the two helices (Freedman et al
1988, Hard et al. 1990, Schwabe et al. 1990, 1993a and 1993b, Luisi et al. 1991, Freedman
1992),

X-HELIX C

O-HELIX N

Figure 1.6, Model of a steroid hormone receptor DBD dimer, bound fo DNA, Black dots are zine
ions, the N- and C-terminal o-helices are represented by cylinders.,
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Figure 1.6 shows a schematical presentation of two steroid receptor DBDs bound to DNA.
They bind to adjacent major grooves from one side of the DNA double hefix. The molecules
make extensive contacts o the phosphate backbone at one side, orienting the DBDs such that
the recognition helices enter the major groove. This allows surface side-chains to make
sequence-specific contacts to the DNA (Luisi et al. 1991, Schwabe et al. 1990, Suzuki &
Yagi 1994).

Steroid hormone receptor homodimers predominantly recognize imperfect palindromic
sequences, with a 3 bp spacer between the 6 bp half-sites. The consensus high affinity
binding site for steroid receptor homodimers except for ERs is GGT/AACAnnTGTTCT
(GRE/PRE/ARE) (Nordeen et al. 1990, Roche et al. 1992, Liecberman et al. 1993, Lombés
et al. 1993); the consensus sequence for ER binding is AGGTCAnnTGACCT (ERE)
(Martinez et al. 1987, Beato et al. 1989). Recent studies on synthetic promoters have
indicated that steroid receptors might also interact with direct repeats with different spacings
between half-sites (Kato et al. 1995a; Aumais et al. 1996). However, the transactivation
efficiency mediated by these direct repeats was considerably less than the activity directed
by classical palindromic sequences. In natural promoters, functional activity of a region
confaining several HRE half-sites has been postuiated (Kato et al. 1992, Ho et al. 1993). In
these promoters, additional regulatory elements contribute to maximal hormone stimulated
activity.

The determinants for HRE specificity have been studied in detail for GR and ER.
Mutational analyses and domain swapping of GR and ER have resulted in the identification
of the P-box, at the base of the N-ferminal zinc coordinating domain, involved in the
recognition of the HRE sequence (Green et al. 1988). Three amino acids essential for
receptor interaction with its cognate response element were identified (open characters in
Figure 1.5) (Umesono et al. 1989). Exchange of these three amino acids of the ER P-box
(EGxxA) to the corresponding amino acid residues in the GR (GSxxV), changed the
specificity, and resulted in high transcriptional activity of a GRE directed reporier gene
{Mader et al. 1989). Mutations of three P-box amino acid residues in the GR DBD (GSxxV)
to these in the ER (EGxxA), resulted in a mutated protein that bound with high affinity to
the ERE, but retained some affinity to a GRE (Zilliacus et al. 1991). The second zinc
containing domain encompasses a sequence, named D-box (indicated in Figure 1.5), that
facilitates cooperative DNA binding of two receptors by protein-protein interactions, and
thereby determines half-site spacing (see also Figure 1.6) (Umesono et al. 1991, Luisi et al.
1991, Dahlman-Wright et al. 1991).

In contrast to steroid receptors, most other nuclear receptors form predominantly
heterodimers, and recognize direct repeats with various spacings between the two half-sites
(Green 1993, Mangelsdorf & Evans 1995). RXR is a key factor in this respect, because it
is the heterodimerization partner of RAR, TR, VDR, PPAR and some orphan receptors
(Gronemeyer & Laudet 1995, Mangelsdorf & Evans 1995). The direct repeat half-sites
clesely resemble the consensus half site for ER binding (TGACCT), and are in general
separated by a I bp spacer in case of RXR-PPAR dimers, 3 bp for RXR-VDR, 4 bp for
RXR-TR, and 1, 2 or 5 bp in case of RXR-RAR heterodimers. Crystallographic and
extensive mutational analyses revealed the formation of distinct, asymmetric DBD interfaces
in the individual heterodimers, discriminating between direct repeats with different half-site

16



The steroid hormone receptor family

spacing (Zechel et al. 1994, Rastinejad et al. 1995). So, steric hindrance between receptor
pairs is invoived in spacer recognition, it also determines the polarity of the receptor pair on
the response element.

In steroid receptors the DBD is tinked to the L.LBD by the so-calted hinge region, which
contains the bipartite nuclear localization signal (NLS) necessary for translocation to the
nucleus.

The ligand binding domain

The C-terminal region of steroid receptors of approximately 250 amino acids contains the
ligand binding function (Kumar et al. 1986, Giguére et al. 1986, Rusconi & Yamamoto 1987,
Gronemeyer et al. 1987, Jenster et al. 1991). The integrity of the complete domain is
important for steroid binding, because all deletions and the majority of point mutations in this
region abolish ligand binding. LBD sequences also play a role in receptor dimerization
(Fawell et al. 1990, Nemoto et al. 1994). Furthermore, most steroid receptors (ER, PR and
GR) have been shown to contain transactivating activity in this region (Hollenberg & Evans
1988, Bocquet ot al. 1989, Gronemeyer 1991, Danielian et ai. 1992, Tzuckerman et al.
1994). This transactivating function (Al-2) depends on hormene binding for activity. The
AF-2 domains of the various receptors contain at their C-terminus an autonomous,
constitutively active, but weak activation function, the AF-2 core region (see Figure 1.3)
{Danielian et al. 1992, Meyer ¢t al. 1992, Tzuckerman et al. 1994). The integrity of the core
domain is crucial for AF-2 function, To date, no apparent AF-2 activity has been identified
in the AR LBD, despite the high degree of homology between AR and the other steroid
hormone receptors in the AF-2 core region (Pierrat et al. 1994),

In contrast to other nuctear receptors, unliganded steroid receptor LBDs are associated
with a large multiprotein complex composed of heat shock proteins (hspS0, hsp70 and
hsp56), that maintains the receptor in a transcriptionally inactive form (Smith & Toft 1993,
Pratt 1993, Bohen et at. 1995). Heat shock proteins are thought to be involved in proper
folding of the LBD (Pratt 1993, Bohen et al. 1995, Fang et al. 1996). It has also been
suggested that hsp-receptor association is implicated in intraceflular trafficking and nuclear
import (Smith & Toft 1993, Prat 1993, Pratt et al. 1993).

The subcellular localization of the individual steroid hormone receptors is still a matter of
dispute. Experimental evidence supporis a model of constant bi-directional shuttling of the
receptor/chaperone complex between the nucleus and the cytoplasm (Guiochon-Mantel et al.
1991, Chandran & DeFranco 1992, Dauvouis et al. 1993, Madan & DeFranco 1993).
Probably, the unliganded ER and PR are predominantly nuclear (Yilkomi et al. 1992), and
the unliganded GR and MR cytoplasmic {(Guicchon-Mantel et al. 1991, Madan & DeFranco
1993), Immunohistochemical studies of major androgen target tissues demonstrated that the
AR was predominantly present in the nucleus in either the absence or presence of hormone
(Husman et al. 1990, Sar et al, 1990, van der Kwast et al. 1991), In transiently transfected
cell lines, unliganded AR has been detected both in the nucleus and in the cytoplasm,
depending on the cell line tested (Jenster et al, 1993, Zhou et al. 1993).

Hormone binding results in the dissociation of receptor associated chaperone proteins
(Smith & Toft 1993), and initiates conformational changes necessary for dimerization, DNA
binding and interaction with transcriptional mediators (Carson-Jurica et al 1990, Gronemeyer
1992, Truss & Beato 1993, Beekman et al. 1993).
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Figure 1.7, Predicted model of the androgen receptor ligand binding domain, The model is adapted
Srom Renaud et al. 1995, and represents an antiparallel a-helical sandwich, containing 12 c-helices
(HI to H1Z2) and 2 short S-strands (SI and 82). The a-helices H1 to Hil are organized in a three
layer structure, in which Hd, H5, H6, H8 and H9 are sandwiched between Hi to H3 and H7, HI0
and HI1. In the unliganded state, H12 protrudes from the LBD, whereas H12 folds towards the LBD
in the liganded state (shown by the dashed box) (Renand et al, 1995, Wuriz et al. 1996). In the
model, the postulated positions of «-helices 1 and 3 to 12, and @-strands 1 and 2 of the AR LBD are
indicated; helix 2 might be absent in AR,

Recently, the three dimensional structures of RXRe (Bourguet et al. 1995), RARy (Renaud
et al. 1995) and TR (Wagner et al. 1995) LBDs have been elucidated, They were shown
to fold in an anti-parallel o-helical sandwich, containing 11 to 12 o-helices and 2 short -
strands. The overall homology of the various LBDs might be sufficient to predict the folding
of the steroid receptor LBDs (see Figure 1.7 for AR; Wuriz et al. 1996). Homology modeling
of the unliganded RXRea and GR LBDs according to the structure of the ligand bound RARy
LBD predicted a common ligand-binding pocket, involving mainly hydrophobic residues.
Mutant studies support this common three dimensional structure. Alignment of all nuclear
receptors to this model has resulted in the proposal of a common, so-called "mouse trap-like’
mechanism of ligand binding {Wurtz et al. 1996). By folding back to the LBD core, a-helix
12, containing the AF-2 core sequence, comes in close contact with the ligand and o-helix
4, and seals the ligand binding pocket like a lid (see Figure 1.7). The conformational change
induced by hormone binding creates an interaction surface which presumably allows binding
of transcriptional co-activators, or interaction {direct or indirect) with the N-terminal domain,
exposure of the nuciear localization signal, and allows receptor dimerization (Picard &
Yamamoto 1987, Picard et al, 1988, Yiikomi et al. 1992, Wong et al, 1993, Langley et al,
1995, Kraus et al. 1993, Beato et al. 1995,1996b, Wurtz et al. 1996, Doesburg et al. 1997).

18



The steroid hormone receptor family

Previously, so-called heptad repeat residues were proposed to trigger dimerization of
ligand bound LBD (Lees et al. 1990, Forman & Samuels 1990). However, the crystal
structure of the ligand bound RARy LBD dimer showed that these heptad repeat residues
contribute to the overall stability of the LBD fold and their mutation can only indirectly
affect the dimer interface (Bourguet et al. 1993), In RXRe, the dimerization interface is
supposed to be formed by helix 10 (Bourguet et al. 1995, Wuriz et al. 1996).

Antagonists inhibit the biological effects of steroid hormones by competing for binding to
the receptor (Wakeling 1992). They are frequently applied in the treatment of hormone
dependent disorders, including hormone dependent malignancies. Most studied in this respect
are the anti-estrogen Tamoxifen, the anti-progestin RU486, and the anti-androgen cyproterone
acetate. In general, steroidal antagonists are thought to induce a different conformational
change upon binding to the LBD. Several studies have indeed shown that this indeed the case
{Moudgil et al. 1989, Weigel et al. 1992, Allan et al. 1992a and 1992b, Beekman et al.
1993, Kallio et al. 1994, Kuil & Mulder 1994, Kuil et al. 1995). The conformationaf state
induced by antagonists results in a receptor without, or with reduced transcriptional activity.
Different antagonists may affect different aspeets of receptor function, such as hsp
dissociation, dimerization, binding to DNA, and interaction with general or specific
transcription factors and co-activators, and with the N-terminal domatn of the receptor
{(Meyer et al. 1990, Baulicu et al. 1990, Gronemeyer et al. 1992, Agarwat 1994, Metzger
et al. 1995b, Langley et al. 1995, Kraus ¢t al. 1995, Doesburg et al. 1997},

Steroid receptor specificity

Despite the shared consensus DNA-binding site, AR, GR, MR and PR mediate diverse
cellular responses. Several, mutually not exclusive mechanisms to achieve specificity have
been proposed (Katzenellenbogen et al, 1996, Beato et al. 1996b). One of the molecular
mechanisms, that can account for specificity includes sequence differences in natural HRE
sequences, which can deviate considerably from the consensus, high affinity binding sequence
{Claessens et al. 1996). Other mechanisms can include differences in the DNA context of the
HRE (Bear & Yamamoto 1994, Scheller et al. 1996), differential affinities to general or
sequence specific transcription factors (Adler et al. 1992 and 1593, Ho et al. 1993, Pearse
& Yamamoto 1993), different capacities {0 modulate chromatin structures (Archer et al.
1994a,b and 1995, Mymrik et al. 1995, Truss et al. 1995, Beato et al. 1996a), and ligand
availability (Funder et al. 1993, Russell & Wilson 1994, Kralli et al. 1995).

1.1.3, INTERACTION WITH GENERAI. AND SEQUENCE SPECIFIC
TRANSCRIPTION FACTORS, AND CO-ACTIVATORS

Hormonal activation and nuclear import are prerequisites for DNA bound steroid receptors
before performing their transcription regulation function. By binding fo the HRE in promoter
or enhancer regions of target gencs, steroid hormone receptors initiate the assembly, or
increase the stability of the transcription initiation complex, resulting in modulation of target
gene expression. The transcription initiation complex is composed of RNA polymerase 11 and
basat or general transcription factors (GTFs). GTFs interact with the core promoter elements,
and are sufficient to direct RNA polymerase specificity and low levels of transcription.
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Figure 1.8. Schematic representation of inferactions between steroid ltornione receptors and otler
nuclear profeins invelved in transcriptional activation, These interactions can be either direct (A)
or indirect via bridging factors (B) or chromatin remodeling factors (C). HR: Steroid hormone
receptor, TF: transcription factor, HRE: hormone response element, TFE: TF binding element, TIC:
transcription initiation complex, TSS: transcription start site,
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Figure I.8A schematically represents the simplified building of the activated transcription
initiation complex. In this model, direct interactions are proposed between a steroid receptor
homodimer and the transcription initiation complex. Additionally, direct interactions are
proposed between the steroid receptor dimer and a second specific transcription factor bound
to its cognate DNA element, resulting in synergistic cooperativity. However, accumuiating
evidence indicates that interactions cannot only be direct, but also indirect, via transcription
intermediary factors (TIFs) or co-activators. These co-activators can function as bridging
factors between the various components of the transcription machinery (see Figure 1.8B as
an example). Furthermore, specific transcription factors and co-activators can play a role in
chromatin remodeling, thereby enhancing the activity of the transcription initiation complex
(Figure 1.8C). The study of protein-protein interactions in the formation of specific, stable
transcription initiation complexes is a rapidly developing research field, and currently
investigated in many different laboratories,

Interaction with general transcription factors

RNA polymerase II is the central player in transcription initiation. It interacts with several
GTFs, in particular through the C-terminal repeat domain (CTD) of its largest subunit. Two
different mechanisms for the assembly of the transcription initiation complex have been
proposed. For many years it was believed, that the initiation complex is assembled in an
ordered step-wise fashion (reviewed by Buratowski 1994, Zawel & Reinberg 1995,
Orphanides et al, 1996). Starting with recognition of the TATA-box by TFIID, followed by
recogaition of this complex by TFIIB, recruitment of the TFHF/RNA polymerase II complex,
and finally binding of TFIIE and TFIIH. TFIIA can bind to the initiation complex at any
stage after TFIID binding, and stabilizes the complex. More recently, the concept of a
preformed complex, containing RNA polymerase 1I and many GTFs has been postulated
{Koleske & Young 1994 and 1995, Halle & Meisterernst 1996, Orphanides et al. 1996). Such
a holoenzyme could be directly recruited to the promoter by sequence specific transcription
factors.

All GTFs are composed of two or more subunits, and cDNAs encoding most subunits have
been molecularly cloned (reviewed by Burley & Roeder 1996, Orphanides et al. 1996). The
TFIID complex is composed of the TATA-boex binding component TBP and a variety of
other subunits, named TBP-associated factors (TAFs), The THID complex seems to be the
central part in the communication between RNA polymerase T and the sequence specific
transcription factors, such as steroid receptors, either direct or via co-activators (see Figure
1.8).

Steroid receptors are found to interact with several GTFs. Transactivation by ER is
enhanced by overexpression of TBP, and direct in vitro interaction between the two proteins
has been demonstrated (Sadovsky et al. 1995). Also, a direct interaction between steroid
hormone receptors and several TAFs has been detected. Transactivation by ER requires
TAF30 (Jacq et al. 1994), and Drosophila TAF,; 110 interacts with the DBD of the PR
{Schwerk et al. 1995). Furlhierimore, interactions of ER and PR and TEIIB have been
reported (Ing et al. 1992), The in vive significance of these in virro observed interactions,
and effects on transcriptional activation remain to be established.

21



Chapter I

Interaction with sequence-specific transeription factors

Sterotd hormone receptors not only interact, directly or indirectly, with GTFs but also with
sequence-specific transcription factors. On artificial promolers, containing properly spaced
hinding sites, many sequence-specific transcription factors cooperate synergistically with
steroid hormone receptors (Schiile et al. 1988, Strihle et al. 1988). In several natural stereid
responsive genes, synergism between two or more HREs has also been described. One of the
first examples of synergistic activity of HREs was found in the promoter of the chicken
vitellogenin H gene. Synergistical activity of both ER and GR, and ER and PR has been
demonstrated (Ankebauer et al. 1988, Cato et al. 1988a). Also, cooperativity between two
EREs has been described (Burch et al. 1988). Although the mechanism of this synergistical
activation is not clear, it has been suggested that it is based upon cooperative binding of
receptors to multipie HRE sequences (Ankebauer et al. 1988, Tsai et al. 1989).

The best studied natural promoters showing synergistical effects of steroid hormone
receptors and other sequence specific transcription factors are the MMTV-LTR {mouse
mammary tumor virus long terminal repeat) promoter, the TAT (tyrosine aminotransferase)
promoter and the ovalbumin promoter. The MMTYV promoter contains two separated regions
interacting with GR, PR and AR (Scheidereit et al, 1983, von der Ahe et al. 1985, Cato et
al. 1988b), a distal region, with high homology to the HRE consensus sequence, and a
proximal region that consists of a cluster of three perfect HRE half-sites. The individual half-
sites do not show receptor binding. The notion that different receptor binding sequences act
synergisticaily, is based upon the observation that mutation of any of the HRE motifs
strongly reduced hormone inducibility (Cato et al. 1988b). The MMTV promoter contains
also NF-1 and Oct binding sites, and both are required for optimal induction by steroid
hormone receptors. However, in in vifro transcription assays, on naked DNA templates, the
steroid receptors do not synergize, but rather compete with NF-1 for binding to the promoter
(Kalff et al. 1990, Briiggemeier et al. 1990, 1991). Functional studies indicated that the
observed synergism between steroid receptors and NF-1 might be mediated by the
organization of the DNA in chromatin (Briiggemeier et al 1991, Beato et al. 1996a).
Hormone induction is believed to cause a displacement or distuption of the nucleosome
positioned over the hormone responsive region, which enables free access of NF-1 to its
binding site, resulting in optimal transcriptional activity (reviewed by Beato & Sidnchez-
Pacheco 1996).

Evidence about the role of the chromatin structure in the liver-specific and glucocorticoid
regulated activity of the rat TAT gene has also been collected. In the TAT enhancer region,
2.5 Kb upstream of the transcription start-site, three candidate GRE sequences have been
identified (Jantzen et al. 1987, Grange et al, 1989). Functional synergism between the GR
and the liver enriched transcription factors HNF-3 (previously named HNF-5) and HNF-4
has been described (Rigaud et al. 1991, Nitsch et al. 1993, Roux et al. 1995). Results
obtained by in vivo footprinting suggest that the GR may function, at least in part, by
allowing access of HNF-3 to its DNA binding site through an alteration of the chromatin
structure. In addition to the synergistic action of proteins binding to the -2.5 Kb enhancer
region itself, this enhancer region also acts synergistically with a region 5.4 Kb upstream of
the transcription start site. The latter region is aimost inactive in itself, but it cooperatively
enhances the ghicocorticoid induced activity of the -2.5 Kb enhancer region (Grange et al.
1989).
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Synergistical cooperativity between steroid hormone receptors and another sequence
specific transcription factor was also observed in the ovalbumin gene. Synthesis of ovalbumin
mRNA in chicken oviducts is controlled by estrogens and progestins, primarily at the level
of transcription {O'Malley et al. 1979). Both a functional ER and PR binding site are found
in the proxima! promoter region, and in a far upstream enhancer several synergistically
acting ERE half-sites have been identificd (Compton et al. 1986, Tora et al. 1988, Kato et
al. 1992). Besides the steroid hormone receptors, a chicken ovalbumin upstream promoter
{COUP) element was found to be essential for efficient transcription of the gene (Sagami et
al. 1986). The transcription factor binding to this element, COUP-TF is a well known orphan
receptor {Wang et al. 1989).

Besides for the extensively studied promoters discussed above, synergistical effects of
sequence specific transcription factors and steroid hormone receptors were also suggested for
several other natural occurring promoters. A subset of these will be discussed in section
L2.4.

Interaction with co-activators

Transcriptional interference or squelching between steroid hormone receptors has suggested
the existence of commeon co-activators or TIFs (Meyer et al. 1989, Bastian & Nordeen 1991).
By protein-protein interaction-screening assays [the yeast two hybrid system (Chien et al.
1991), or others] several proteins interacting with steroid hormone receptors have been
identified (see Table 1.1 for an overview of candidate co-activators). At the moment the
description co-activator is loosely defined by the various authors (Horwitz et al. 1996, and
references therein). In this section steroid hormone receptor co-activators are defined as
proteins that interact with DNA bound steroid hormone receptors, and positively influence
receptor mediated transcriptional activity either by bridging between the steroid receptor and
the basal transcription machinery, by chromatin remodeling, or by both. For most candidate
co-activators, an interacting partner of the basal transcription machinery is yet unknown. The
in vivo relevance of many of the co-activators discovered in mammalian and yeast protein-
protein interaction systems needs (o be further determined. Most candidate co-activators are
identified by their ability to interact with the ligand bound receptor LBD. Some of the best
studied examples wili be briefly discussed below.

SUG1/TRIP1, a component of the RNA polymerase If holoenzyme, was shown to interact
with the AF-2 domain of the ER LBD (vomBaur et al. 1996). Furthermore, SUG1 was
demonstrated to interact with TBP (Swaffield et al. 1995) and TAF,30 (vomBaur et al.
1596). It was postulated that steroid hormone receptors can use SUG1/TRIPI1 to recruit the
complete basal transcription machinery in one single step (Beato et al. 1996b). Recent data
indicate that SUGI is a subunit of the 268 proteosome complex. It therefore may affect
transcriptional activation by steroid receptors indirectly, by controlling the turnover rates of
other regulatory factors (Rubin et al. 1996).

TIF2/GRIPL functionally interacts with the LBD of ER, GR, PR and AR in a ligand-
dependent manner {Voegel et al, 1996, Hong et al. 1996). TIF2/GRIP1 is thought to bridge
the AF-2 core region and one of the GTFs. TIF2/GRIPI is expressed in many tissues, and
enhances transcriptional activity of AF-2 of the various receptors in mammalian cells and in
yeast,

SRC-1 was isolated as a protein interacting with ligand bound PR LBD (Ofate et al.
1995}. SRC-1 is ubiquitously expressed and enhances transcription activation by PR, GR and
ER. Recently, SRC-1 and ERAPI60/pl60 (Halachmi et al. 1994) were shown fo be
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structurally closely related (Kamei et al. 1996). MclInerney et al. (1996) suggested that SRC-
1 might act as an adaptor protein that facilitates the productive association of N-terminal
domain and the LBD of the ER.

ARA,, was isolated as a protein binding to AR LBD (Yeh & Chang 1996). The protein
exclusively interacts with the agonist hound and not with the antagonist bound AR. In
cotransfection experiments in ARA70 negative DU145 prostate cells, ARA,; enhanced AR-
dependent transcription 10-fold, but had only a minimal effect on ER, GR and PR,

TABLE 1.1. Candidate transcriptional intermediary factors or co-activators for steroid hormone

receptors

STERCID RECEPTOR

CO-ACTIVATOR TARGET REFERENCES
partnar domain
SUGL/TRIPL ER AF-2 TBE/TAF,3 | Swaffield et al. 1995
0 vomBauer et al, 1996
ARA 70 AR LBD ? Yeh et al. 1996
GRIP1/TIF2 ER/GR/ AF-2 ? Voegel et al. 1996
PR/AR /LBD Hong et al. 1996
SRC-1/pl&o/ ER/GR/ LBD CBP/p300 | Ofiate et al. 1995
ERAP 160 PR Halachmi et al. 1994
Kamei et al. 1996
RIP 140 ER/GR AF-2 ? Cavaillés et al. 1994,1995
RAP 46 ER/GR/ LBD ? Zeiner et al. 1995
PR
GRIP 170 GR DBD ? Eggert et al. 1995
hRPF 1 GR/PR L.BD TAF,18 ? Huibregtse et al. 1995
Imhof et al, 1996
PML PR AF-1/2 ? Guiochen-Mantel et al.
1995
TIF1 (TIFia) ER/GR AF-2 chromatin | Le Douarin et al.
1995,1996
vomBauer et al. 1996
BRG1/hBRM ER/GR ? chromatin | Muchardt et al. 1993
Chiba et al. 1994
HMG-1 PR/ER ? Ofiate et al. 1994
chromatin { Verrier et al. 1995
?
CBP/p300 GR LBD nucleosom | Kamei et al. 1996
al Yao et al. 1996
care
histones
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Candidate co-activators described so far were shown or presumed to interact with the basal
transcription machinery. Co-activators can also interact with components of the chromatin,
resulting in nucleosome remodeling, TIFI interacts with the AF-2 domain of ligand bound
ER and GR in vitro and in yeast (Le Douarin et al., 1995, vomBauer ¢t al. 1996). Recently,
it was shown that TIF1 aiso interacts with two mouse heterochromatin proteins, mHP1o and
mMOD1, likely involved in chromatin structure and function (LeDouarin et al. 1996). A
yeast two hybrid screen to identify proteins interacting with HPlew, identified a protein
closely reltated to TIF!. This newly identified protein was named TIFig (TIF is now TIF1a).
So far it is not known whether TIFif interacts with steroid hormone receptors.

Hbrm and BRG1, two human homologs of the yeast proteins SWI2/SNF2, are believed to
play a role in the remodeling of nucleocsomes by the displacement of histone H2A/H2B
dimers, This functior might involve the proposed helicase activity of hbrm/BRG1 (Winston
et al. 1992, Cote et al. 1994, Beato & Sanchez-Pacheco 1996). It has been shown that hbrm
and BRG1 can cooperate with the ER and GR (Muchardt et al. 1993, Chiba et al. 1994).

CBP and the related p300 protein were shown to interact with the LBD of the GR, and
with SRC-1/ERAP160/p160 co-activators (Ogryzko et al. 1996). CBP and p300 were found
to be histone acetyltransferases of all four core histones in nucleosomes. Acetylation of
histone tails presumably destabilizes the nucleosome and thereby facilitates access by
regulatory proteins. A direct link between histone acetylation and transcriptional activation
was recently shown for yeast GCNS and its human homolog (Wang et al. 1997). Because
CBP and p300 can interact with a wide array of different transcription factors, they were
postulated to be involved in the cross-talk between multiple signal transduction pathways
(Kamei et al. 1996, Yao et al. 1996},

The DNA bending protein HMG-1 has been reported to stimuiate the PR and ER DNA
binding {Ofiate et al. 1994, Verrier et al. 1995). Co-immunoprecipitation experiments showed
that both HMG-1 and PR can be found in a complex with the PRE although it appeared that
HMG-1 enhanced PR binding without stably participating as a component of the final
PRE/PR complex (Prendergast et al, 1994). The physiological relevance of enhanced steroid
receptor/HRE binding by HMG-1 needs to be determined.

Besides co-activators, also co-repressors have been described. For the non-steroid nuclear
receptors TR, RAR and RXR, two candidate co-repressor proteins have been identified, a
2770 kDa protein N-CoR (Hérlein et al. 1995, Kurokawa et al. 1995) and the related 168 kDa
protein SMRT (Chen & Evans 1995), Members of the TR/RAR/RXR family of nuclear
receptors can bind to DNA in the absence of ligand and actively repress transcription. N-CoR
and SMRT are thought to exert their function by their interaction with DNA bound,
unliganded TR/RXR and RAR/RXR heterodimers. Upon ligand binding, the co-repressor
dissociates and thereby allows interaction with co-activators, and subsequent transcriptional
activation by the ligand bound receptor dimer. So far nuclear co-repressors for steroid
hormone receptors have not been reported. It might be argued that co-repressors for steroid
receptors do not exist, because the unliganded steroid receptor is unable to bind to DNA.
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1.1.4, CROSS-TALK OF STEROID HORMONE RECEPTORS

Alternative pathways of receptor activation

For many years, ligand binding was assumed to be a prerequisite for activation of steroid
hormone receptors. With the observation that modulation of kinase activity can cause
activation of steroid hormone receptors in the absence of hormene (reviewed by Weigel
1996), it became apparent that there are alternative, steroid-independent, pathways.

In addition to the nuclear receptor signal transduction pathway, there are three general
mechanisms of signal transduction by extracellular components that involve protein
phosphorylation (reviewed by Hill & Treisman 1993, Karin & Hunter 1995). Figure 1.9
represents a schematical and simplified overview of these general mechanisms.

GROWTH FAGTOR
RECEPTOR

STERCIDS

MAP KINASE
CASCADE

CYTOPLASM NUCLEUS

Figure L9, General mechanisms of signal transduction. HR: sterofd hormone receptors.
Y indicates tyrosine residues.

One pathway involves the mitogen-activated protein (MAP) kinase cascade. Growth factor
or peptide hormone binding resuits in transmembrane receptor dimerization, that triggers
auto-phosphorylation of tyrosine residues, followed by activation of intrinsic protein tyrosine
kinase activity. This in turn leads to the activation of the MAP kinase family of
serine/threonine protein kinases. This signal transduction pathway also involves the PKC
family of protein kinases. Ultimately the MAP kinase pathway leads to activation of AP1
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family of transcription factors in the nucleus. A second signal transduction pathway involves
the intraceliufar Janus protein fyrosine kinases (JAKs). Upon polypeptide (for example
cytokines and interferon) binding to a specific transmembrane receptor, JAKs phosphorylate
members of the Stat family of transcription factors, Following dimerization, phosphorylated
Stat protein is able to bind DNA at the Stat-response element and regulate expression of
target genes. The third mechanism is formed by the G protein coupled "seven
transmembrane” receptors. In this pathway, binding of the ligand, for example dopamine,
ultimately results in rise of the CAMP concentration in the cell. cAMP then activates the
cAMP dependent protein kinase (PKA), which transiocates to the nucleus, where it can
phosphorylate its specific target proteins, including the CREB transcription factor.

Ligand independent activation of steroid hormone receptors was initially discovered for the
chicken PR, that can be transcriptionally activated by both a protein kinase A activator and
a phosphatase 1 and 24 inhibitor (Denner et al. 1990). Subsequent studies showed membrane
receptor mediated signal transduction pathway coupled activation of PR by dopamine (Power
et al. 1991). At present, a considerable amount of evidence for ligand-independent activation
of mammalian PR in transiently transfected mammalian cells and in animal models is
available (reviewed by Power et al. 1992, and O'Malley et al. 1995).

Steroid-independent receptor activation in many cases involves growth facior/receptor
tyrosine kinase pathways. Recently, it has been shown that a serine residue (Ser 118),
essential for full transcriptional activation of the ER, can be phosphorylated by mitogen-
activated protein (MAP} kinase in vitro (Kato et al. 1995b} and by EGF and IGF-1
activation, and activated K-ras in vive (Kato et al, 1995b, Bunone et al. 1996). Curtis et al.
(1996) demonstrated that ER-o knockout mice lack the estrogen-like response mediated by
EGE in ER positive mice, clearly indicating the coupling of EGF and ER signaling pathways
in vivo. At present, a wide array of growth factors, mitogens and other compounds affecting
phosphorylation by PKA or PKC activation have been shown to be able to activate the
unliganded steroid hormone receptors or enhance steroid-dependent transcriptional activity
(reviewed by Weigel 1996).

The outcome of the effect of growth factors and mitogens on steroid-independent receptor
activation can be influenced remarkably by the celi type, and culture condition used (Nordeen
et al. 1995, Reinikainen et al. 1996, Nazareth & Weigel 1996). Similarly, the effect of ligand
independent activation of steroid receptors is promoter dependent, Therefore, it is important
to study the mechanism of ligand independent activation in more detail, and establish its in
vivo relevance. Steroid-independent receptor activation might coniribute to the failure of
endocrine therapy in several human tumors.,

Cross-talk of steroid hormone receptors with other specific transcription factors

The cross-talk between steroid hormone receptors and other signal transduction pathways
not only leads to alternative activation of the steroid hormone receptor, but the cross-talk can
also work in the opposite direction. Ligand bound GR can act as a transcriptional activator
of Stat5 and enhances Stat5-dependent transcription (Stdcklin et al. 1996). Phosphorylated
Stat5 and the liganded GR are able to form a complex, and cooperate in transcriptional
activity of a Stat5 inducible promoter. DNA binding by the GR is not necessary for the
transcriptional activity of the Stat5/GR complex since a GR mutant, lacking DNA binding,
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is still functional. It is suggested that the strong transactivation domain of the GR enhances
Stat5 action. As a result of Stat5/GR dimerization, glucocorticoid induction of a GR target
gene is strongly repressed.

Several groups have reporied interaction between steroid hormone receptors and AP-1
components {fos and jun) (reviewed by Herrlich & Ponta 1994), Depending on the promoter,
the cell line and the specific receptor, both negative and positive regulatory interactions have
been described (Shemshedini et al. 1991). The mechanism by which this cross-talk acts is
still elusive. Evidence leading early on to the idea that AP-1 and steroid hormone receptors
form complexes which abort DNA binding, might represent an in vitro artefact. A recently
postulated alternative hypothesis is that AP-1 and steroid hormone receptors do not interact
directly, but via transcriptional mediators (Pfahl 1993, Beato et al. 1995, Gronemeyer &
Laudet 1995, Kallio et al. 1995). This hypothesis is supported by the recent discovery that
activation of auclear receptors requirs CBP or p300 (Kamei et al, 1996, Yao et al. 1996).
As discussed above, CBP (Kwok et al. 1994} and p300 (Eckner et al. 1994} directly interact
with the LBD of several steroid hormone receptors. Previous studies already revealed that
CBP/p300 is required for AP-1 activation (Arias et al. 1994, Arany ct al. 1995, Lundblad
et al. 1995}, Combination of these results led to the proposition that inhibition of AP-1 by
nuciear receptors and vice versa might be the result of competition for limiting amounts of
CBP/p300 present in target cells (Kamei et al. 1996),

Negative cross-talk has also been observed between NF-4B and members of the steroid
hormone receptor family (Stein & Yang 1995, Marx 1995). Best studied in this respect, is
the mediation of immunosuppression by glucocorticoids. RelA, the p6oS subunit of the
composite transcription factor NF-xB, is not only inhibited by GR in stimulating NF B-
responsive genes but also antagonizes GR action on GRE-containing promoters (Ray &
Prefontaine 1994, Caldenhoven et al. 1995, Scheinman et al, 1995a). Additionai research
showed that direct binding of the GR to NF-kB perhaps comprises only part of the molecular
mechanism of glicocorticoid suppressed immunity. Expression of IkBe, the NF-xB inhibitory
protein that keeps NF-¢B trapped in the cytoplasm, is increased by glucocorticoids. As a
result, NF-xkB might be retained in its inactive form in the cytoplasm, even under conditions
where it would normally be released to migrate to the nucleus, and act as transcriptional
regulator (Auphan et al, 1995, Scheinman et al. 1995b).

Cross-talk has also been observed between AR and GR, and calreticulin. Calreticulin, a
ubiquitously expressed intracellular Ca**-binding protein has been shown fo bind to integrins
as well as to nuclear receptors. Calreticulin binds to a six amino acid motif, KxFFK/RR,
found in the DBD of all nuclear receptors (Buras et al. 1994, Dedhar et al. 1994). These
amino acids are crucial for DNA binding, and calreticulin is believed to block the ability of
steroid receptors to bind to their response elements, and thereby inhibit transcriptionai
activity, Caireticulin may represent a fink between ceilular phenotype, via the extracellular
matrix, and specific gene expression {Dedhar 1994).
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I.2. ANDROGEN REGULATED AND PROSTATE SPECIFIC GENE
EXPRESSION

The male sex hormones or androgens [testosterone (T) and its metabolite 5o
dihydrotestosterone (DHT)] play a central role in development of the male phenotype during
fetal life and puberty, and control male fertility and sexual behavior in adults. T is produced
by the Leydig cells in the testis. In target tissues, T can be converted into the more active
DHT by the enzymes Sa-reductase 1 and 2 (Andersson et al. 1989, 1991), Sa-Reductase 1
is predominant in nongenitat skin, whereas Sa-reductase 2 is mainly expressed in the male
urogenitai tract (Thigpen et al. 1993). Both T and DHT exert their biological functions by
activation of the AR. High AR expression is mainly restricted to the male urogenital system,
including the prostate.

L.2,1, ANDROGEN REGULATED PROSTATE DEVELOPMENT

The presence of a functional AR and the appropriate androgenic hormone are essential for
the development and maintenance of the prostate (Cunha et al. 1987, Cunha 1994). The
prostate is an exocrine male reproductive organ, that is only present in mammals, The
prostate gland is composed of ductal-acinar structures with a complex architecture. The acini
and ducts are lined by a double layer of epithelial cells, the basal and luminal ceils. Along
the secretory epithelial cells, a third epithelial cell type, the neuroendocrine cells, which form
a small proportion of the epithelial compartment, can be found. A role in prostate growth and
differentiation, and in homeostasis has been proposed (reviewed by Noordzij et al. 1995),
The acini and ducts are surrounded by stromal tissue, that is mainly composed of smooth
muscle cells, connective tissue and lymphatic cells. The function of the basal ductal cells is
essentially upknown, although it has been suggested that prostate stem cells are located within
this cell layer (Bonkhoff & Remberger, 1996}, The luminal epithelial cells are regarded as
highly differentiated, and produce many components of the seminal fluid. The best known
of these is prostate specific antigen (PSA), but large amounts of prostate acid phosphatase
{PAP) and Prostate-Specific Protein (PSP,,) are also secreted.

The prostate is situated immediately below the bladder and surrounds the urethra. Prostate
merphology is different in various species. In the human prostate, regions with different
anatomy are fused together to form a compact organ with a chestnut-like shape. In contrast,
the prostate of rodents is organized in dorsal, lateral, ventral and anterior lobes, each of
which has a distinct function, in keeping with its unique branching pattern and the production
of specific proteins (Cunha et al. 1987).

In humans, prostate development initiates around the 10th week of gestation from selid
epithelial outgrowths (prostatic buds) of the urogenital simus, Embryonic prostate
organogenesis is strictly androgen dependent. During the initial steps of prostate development
the AR is expressed in the mesenchymal compartment, but undetectable in the epithelial cells.
However, it has been well established that epithelial cell differentiation is regulated by
androgens (Cunha et al. 1987, Cunha 1994). It is assumied that androgen regulated growth
factors and extracellular matrix components produced by the mesenchyme drive the initial
androgen regulated differentiation of the prostate epithelium (see Figure 1. 10). Keratinocyte
growth factor (KGF), an androgen regulated member of the fibroblast growth factor family
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that is expressed in stromali cells, is suggested to be involved in androgen reguiated prostate
development (Yan et al. 1992, Sugimura et al, 1993, Rubin et al. 1995, Cunha et al. 1996).

DEVELOPING ADULT
PROSTATE PROSTATE

EPITHELIAL CELL

STROMAL CELL

Figure L10. Schematic representation of androgen driven interactions between epithelial and
mesenchymal cells during prostate developmient and between epithelial cells and stromal cells in the
mature prostate. AR+ indicates the presence of functional androgen recepiors,

During puberty a second, androgen-dependent, step in prostate growth and development
takes place, ultimately resulting in the formation of the adult prostate and the production of
prostate specific proteins (Cooke et al. 1991, Donjacour & Cunha 1993). In these later stages
of development, AR expressed in the epithelial cells is aiso an essential factor. Androgens
are indispensable for the maintenance of prostate structure and function, because orchiectomy
or inhibition of AR activity by anti-androgens leads to prostate involution, concomitant with
a rapid loss of luminal epithelial cells. DHT is the androgenic hormone responsible for
prostate development, since patients with Sev-reductase deficiency show rudimentary or absent
prostate glands, despite the presence of functional AR and T (Wilson et al. 1993}.

Besides their role in normal prostate development and differentiation, androgens are
implicated in prostate carcinogenesis (see for reviews Henderson et al. 1991, Karp et al.
1996) and benign prostatic hyperplasia (BPH). For example, prostate cancer develops only
rarely in men, who have been castrated before puberly or int early adulthood (Pienta & Esper
1993). The role of the AR in prostate cancer will be discussed in section 1.2.7.
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1.2,2, THE ANDROGEN RECEPTOR

cDNAs encoding the full length human AR have been cloned by several groups {(Chang
et al. 1988a,b, Lubahn et al. 1988a,b, Trapman et al. 1988, Faber et al. 1989, Tilley et al.
1989). The open reading frame of the AR ¢cDNA (approximately 2.7 Kb) is flanked by very
long 5 and 3’ untranslated regions (UTRs) (1.1 Kb and 6.8 Kb, respectively). The AR gene
is located on the X chromosome at q11,2-q12, and spans at least 90 Kb (Faber et al. 1989,
Kuiper et al. 1989, Lubahn et al. 1989). The gene is composed of § exons, the N-terminal
domain is encoded by part of exon 1, the DBD is encoded by exons 2 and 3, and exons 4
to 7 and part of exon 8 encode the LBD,

The N-terminal domain of the AR contains several homopolymeric amino acid stretches,
including long, glutamine (encoded by CAG) and glycine (encoded by GGN) stretches
(Chang et al. 1988b, Faber et al. 1989). Especially the glutamine stretch is highly
polymorphic (Caskey et al. 1992, Edwards et al. 1992, Sleddens et al. 1992). Cloned AR
cDNAs encode proteins of 910 and 919 amino acid residues with an apparent molecular mass
of 110-114 kDa (Faber et al. 1989, Quarmby et al. 1990, Wilson et al, 1992, Jenster et al,
1991, 1994). The variability in the lenght of the CAG and GGN repeats has resulted in
confusion concerning the exact size of the AR, and the numbering of the individual amino
acids. In this chapter, the numbering of the amino acid numbers correspond to an AR
composed of 910 amino acid residues (20 Gln and 16 Gly), A variant (87 kDa} form of the
AR has also been described (Wiison & McPhaul 1994, 1996). This truncated receptor is
believed to originate from translation initiation at the first internal translation start codon
(methionine, position 188). It represents about 10% of the total AR level in fetal tissues and
adult genital skin fibroblasts. Its in vivo relevance is unknown.

Nortitern blot analysis revealed the presence of two hAR mRNA species of approximately
11 and 8.5 Kb, the latter as a result of alternative splicing in the 3° UTR (Trapman et ai.
1988, Faber et al. 1991, Wolf et al. 1993). In many cell lines and tissues, androgens
decrease the level of AR mRNA, however, in some tissues and possibly also at certain
developmental stages, AR mRNA is upregulated by androgens {(Quarmby et al. 1990,
Burnstein et al 1995, Dai et al. 1996, Dai & Burnstein 1996). The physiological role of this
differential auto-regulation is nnknown as yet. In LNCaP prostate cells, androgen induced
decrease of the AR mRNA level is found to be the result of a decrease in transcription rate
(Blok et al. 1992, Wolf et al. 1993). The observed upregulation of AR protein in LNCaP
cells by androgens (Kongrad et al. 1991, Wolf et al. 1993) might be the result of stabilization
of the ligand (and DNA) bound AR during the protein extraction procedures (Kemppainen
et al. 1992, Wolf et al, 1993, Zhou et al, 19952a),

Immunohistochemical staining of human tissues with specific AR directed antibodies
revealed a high level of AR expression in tissues of the male urogenital system. Low levels
of expression were found in several other tissues including female mammary gland, kidney,
liver, brain, genital skin fibroblasts and keratinocytes, hair follicles and cardiac muscle
(Ruizeveld de Winter et al. 1991, Kimura et al. 1993}, At variance with AR expression in
humans, rodents show high AR expression in salivary glands.

Starting from the intact AR, deletion mapping of the N-terminal domain has been
performed to identify the regions essential for AF-1 transactivating activity. A large part
{amino acid residues I to 485} was found to be necessary for maximal transcriptional activity
of the AR (Simental et at. 1991, Jenster et al. 1991, 1995). A core segment, covering more
than 50 percent activity has been defined between amino acids 101 and 370 {Jenster et al.
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1995), Recently, Chamberlain et al. (1996) postulated the presence of two noncontiguous
transactivation units in the AF-1 core region of the rat AR. The first region (AF-1a) consists
of a 16 amino acid segment, of which the inner 14 amino acids (position 154 to 167) are
predicted to form a $-turn foilowed by an amphipatic o-helix, An identical region is present
in the human AR (positions 172 to 185). An acidic activator (AF-1b) has been postulated
between amino acids 295 to 359. The comparable region (amino acids 296 to 360) in the
human AR is also acidic, which is not unexpected because the N-terminal domain is highly
conserved between species. Deletion of the individual AF-1 subfragments resulted in a smali
reduction of transcriptional activity of the mutant receptors. However, an AF-1a and AF-1b
double mutant receptor showed less than 10 percent transcriptional activity compared to wild
type AR. Interestingly, in addition to the AF-1 core region active in the fuil length receptor,
amino acids 360 to 485 of the human AR N-terminal domain function as a strong
transactivation domain (tau-5) in a constitutively active AR mutant lacking the entire L.LBD
(Jenster at al. 1995). This observation suggests interactions between the N-terminal domain
and LBD, Recent in vivo protein-protein interaction studies with separate AR LBD and N-
terminal domains demonstrated that such a functional interaction is possible (Langley et al.
1995, Doesburg et al. 1997). This interaction is figand dependent, and might be direct or
indirect. However, it is unknown whether interaction between the LBD and N-terminal
domain really occurs in the full length AR.

For all steroid hormone receptors except for AR a transactivation function in the LBD
(AF-2) has been demonstrated. Although the AF-2 core sequence is present in the AR LBD,
AR mutants composed of DBD and LBD do not display a clear transactivation function
(Simental et al. 1991, Jenster et al. 1991, Wurtz et al. 1996).

Recently, it was shown that the co-activator TIF2(GRIP1) can functionally interact with
GAL4(DBD)AR(LBD} fusion proteins (Voegel et al, 1996, Hong et al. 1996}, As already
discussed, this interaction is not AR specific. A more specfic interaction can be found
between AR LBD and ARA70 (Yeh & Chang 1996). Co-transfection of ARA70 and AR
expression plasmids to ARA70 minus prostate cells leads to upregulation of reporter gene
expression. These effects were much less proncunced for GR and PR.

AR, like the other steroid hormone receptors, shows a basal phosphorylation levei, and
hormone binding initiates additional phosphorylation events. Most of the hormone induced
phosphorylation sites are located in the N-terminal domain (Kempainen et al. 1992, Kuiper
ef al. 1993), with phosphorylation occurring predominantly at serine and threonine residues,
Recently, three phosphorylation sites in the human AR have been identified, two sites, Ser80
and Ser93, in the N-terminal domain, and Ser641 in the hinge region (Zhou et al. 1995b}).
The effect of loss of each individual phosphorylation site on transcriptional activity was
studied by mutation of the individual serine residues to alanine. Mutation of Ser81 and Ser94
had little effect, whereas mutation of Ser641 resulted in a smnall reduction of transcriptional
activity.

1.2.3. ANDROGEN RECEPTOR MUTATIONS IN HUMAN DISEASE
Mutations in the AR gene have been demonstrated in the androgen insensitivity syndrome

(AIS), Kennedy’s disease, and in prostate cancer (Gottlieb et al, 1997). Best documented are
the mutations in AIS. The initial recognition of AIS dates 60 years back, when individuals
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with a female phenotype, but with undescended testes instead of ovaria were reported
(Peiterson & Bonnier, 1937). AlS constitutes a wide clinical spectrum of phenotypes. The
complete form of AIS is characterized by an external female phenotype in combination with
a 46, XY karyotype (reviewed by Quigley et al. 1995). Patients with complete AIS show
intra-abdominal testes, a blind ending vagina, absence of the uterus and ovaries, and
gynaecomastia. Besides the complete form, mutations in the AR gene can result in partial
impairment of AR function leading to partial AiS (pAIS}). Clinical indications for pAIS can
be abnormal sexual development with a predominant male phenotype (micropenis,
hypospadias), or clitoromegaly in individuals with a predominantly female phenotype. A
variety of different mutations in the AR causing AIS have been reported {reviewed by Pinsky
et al. 1992, Brinkmann & Trapman 1992, McPhaul et al. 1993, Quigley et al. 1995, Brown
1995, Gottlieb et al. 1997). They include farge deletions, frameshifts and point mutations.
Especially the mutated receptors showing a single amino acid substitution have revealed
important information concerning the structure and function of the AR. Most point mutations
resulted in inhibition of ligand or DNA binding. Only a few mutations have been detected
in the N-terminal domain, alt leading to the synthesis of a truncated protein.

A disease related to AIS is Sa-reductase deficiency, an androgen (DHT) biosynthesis
defect. Sa-Reductase deficiency caused by mutations in the So-reductase type 2 gene leads
to male pseudohermaphreditism with rudimentary or absent prostate glands (Wilson et al,
1993). The occurrence of this disorder indicates the physiological importance of DHT, and
proposes a different role for T and DHT in AR mediated activity.

Kennedy’s disease (a slowly progressing spinal and bulbar muscular atrophy) is linked to
an expansion of the glutamine (CAG) stretch in the N-terminal domain of the AR to over 40
residues (La Spada et al. 1991). In the normal population, this stretch ranges from 11-35
elements with an average of 21 (Caskey et al. 1992, Edwards et al. 1992, Sleddens et al.
1992). Depending on the cell and promoter tested, the expanded glutamine siretch has been
shown to cause a minor decrease, or no effect at afl on transactivational activity (Jenster et
al. 1994, Kazemi-Esfarjani et al. 1995). Choong et al. (1996) recently reported that the
expanded CAG repeat reduces mRNA and protein expression, and does not alter AR
functional activity. The possible role of AR mutations in prostate cancer will be discussed
in section [.2,6.

I.2.4. FUNCTIONAL AREs IN ANDROGEN RECEPTOR TARGET GENES

Androgen responsive gene expression can be regulated at the level of transcription, RNA
processing, RNA stability and translation. Regulation of transcription can be direct or
indirect. Direct regutation is the result of direct interaction of the activated AR with one or
more androgen response clements {AREs) in the regulatory regions of the gene. In
secondary response genes, androgen regulation of transcription is indirect and needs protein
synthesis. In this case, androgen regulation of one gene can trigger regulation of the
secondary response gene.

Although many androgen-regulated genes have been identified, for most of them only
limited information on the mechanism of androgen regulation is available. A serious
drawback in the study of directly androgen regulated genes is the lack of cell lines expressing
both the gene of interest and the AR, Therefore, functional analysis of potential androgen
response sequences is mostly studied in heterologous cells, and in cells cotransfected with
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an AR expression vector. An exception forms the analysis of the androgen regulation of the
PSA promoter in LNCaP human prostate cancer cells (Horoszewicz et al. 1983), which
showed endogenous expression of both AR and PSA. Many genes known to be regulated by
androgens also display a cell or tissue specific expression pattern, Especially in this situation,
structural analysis of complex regulatory elements involved in tissue-specific and androgen
regulated gene expression will depend on the availability of cell lines expressing the target
gene, which implicates the expression of all necessary franscription factors, (including AR)

and co-activators.

Table 1.2. Functional AREs in human and rodent androgen-regulated genes.

GENE ARE-SEQUENCE POSITION REFERENCES
PSA (ARE-TI) (h) AGAACA gca AGTGCT - 170 | Riegman et al. 1991b
PSA (ARE-ITI)} {h) GEATCA ggg AGTCTC - 394 | Cleutjens et al. 1995
PSA {ARE-IXI) (h) GGAACA tat TGTATC ~= 4206 Cleutjens et al., 1997
Factor IX (h) AGCTCA gct TGTACT - 36 §{ Crossley et al. 1992
hGK-1 (= hKL¥K2) {h) GGAACA gca AGTGCT - 170 Murtha et al. 1983
C3(1) core II (x) AGTACG tga TGTTCT + 1359 | Claessens et al. 1989
Probasin (ARE-I) {(r} ATAGCA tct TGTTCT - 241 Rennie et al. 1993
Probasin (ARE-II) AGTACT cca AGAACC -~ 140 Rennie et al. 1993
(x) Claessens et al. 1996
Slp (HRE 3) {(m) AGAACA gcc TGTTTC -~ 1922 Adler et al. 1991
Gus (m) AGTACT tgt TGTTCT + 7833 Lund et al. 1991
oDC  {(m) AGAACA agt GGGACT - 924 Crozat et al. 1992
arMEP24 (m) TGTTGA gag AGAACA - 896 | Ghyselinck et al.1993
MVDP {m) TGAAGT teo TGTITCT - 111 | Fabre et al. 1994
ARE CONSENSUS Roche et al, 1992

GGIACA nan TETTCT

(h): human, (1): rat, (zn): mouse.
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At present, only a limited number of functionat AREs have been characterized and studied
in detail. Table 1.2 summarizes the functional AREs identified in human and rodent
androgen-regulated genes. None of the functional AREs in natural genes is completely
identical to the ARE consensus sequence GGT/AACAnnTGTTCT, However, in most AREs
one half site is almost or completely identical to the consensus sequence. Exceptions are the
rat probasin ARE-2 and the ARE in the mouse arMEP24 promoter. In most functional AREs
af least 5 of the 6 nucleotides (positions 2,3 and 5 in each half-site, underlined in Table .2)
most critical for high affinity AR binding and functional activity (Nordeen et al. 1990, Roche
et al. 1992) are present.

c3 (1)

ocCcT NF ¥ PROSTATE
SPECIFIC
FACTOR

SLP

- Sk /
.'OCT !

i —1
120 bp ANDROGEN
RESPONSIVE ENHANCER REGION

160 bp ANDROGEN AND GLUCOCORTICOID
RESPONSIVE ENHANCER REGION

CRP 1/ 20 kDa PROTEIN

N4
N3g C/EBP
D2

D1

Figure L11. Schematic representation of (putefive) regulatory elements involved in
androgen-regulated expression of the C3(1), Slp, and crp1/20 kDa protein. Tss represents
the transcripfion start site. Core I and Il in the C3(1} gene are AR binding sites. N39, DI
and D2 in the CRP1/20 kDa protein represent candidate complex enhancer regions.
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Best documented examples of androgen regulated genes are the C3(1) (prostatic binding
protein) gene (expressed in rat veniral prostate), the probasin gene (expressed in rat
dorsoiateral prostate), the mouse Skp genes (sex limiting protein) and GUS (B-glucuronidase)
both expressed in kidney, and the human PSA gene.

The C3(1) gene

The androgen regulated C3(1) gene encodes the C3 glycoprotein component of rat prostatic
binding protein (Heyas et al. 1978). Androgen regulation occurs at least in part at the
transcriptional level (Page & Parker 1982}. For many years C3(1) expression was thought
to be confined to the ventral prostate, but recently C3(1} expression was also detected in the
lacrimal giand (Allison et al. 1989, Buttyan & Slawin 1993, Vanaken et al. 1996). A
schematical representation of the (putative) regulatory regions of the C3(1) gene is shown in
Figure 1.11. Three candidate AREs have been found in the C3(1) gene, one in the proximal
promoter (-150/-136, AGAACActgGTTTCA), and two in the first intron:
AGAACAactTGGCTA [Core I (+1307/+1321)] and AGTACGtgaTGTTCT [Core II
(+1359/+1375)] (Claessens et al. 1989, 1993, De Vos et al. 1991, Tan et al. 1992),
Although in vitro binding of AR to the promoter ARE and hoth Core I and IT has been
observed, only Core II is active in transfection experiments. Activity of Core II is strongly
enhanced by surrounding sequences including Core I, candidate OCT and NF-I binding sites,
and a binding site for an unidentified prostate-specific factor (Celis et al. 1993). Zhang ¢t al.
{1990) showed tissue-specific differences in proteins binding to the CCAAT box at position -
63 to -35, and posmlated the involvement of the C/EBP transcription factor family in C3
promoter activity. Additienally, they observed binding of an androgen regulated protein fo
the proximal promoter {position -149 to -119) region (Zhang et al. 1993}, It is at present
unknown whether these two proximal promoter regions contribute to maximal androgen
regulated gene expression in the ventral prostate. The functional analysis of putative
regulatory sequences was hindered by lack of appropriate cell cultures expressing C3(1). This
problem: might have been overcomte recently by the discovery of C3(1) expression in primary
cultures from lacrimal gland (Vanzken et al, 1996).
The mouse sex-limited protein (Slp} gene

Sip is a duplicated complement C4 gene, whose expression is androgen-dependent in several
tissues including liver and kidney due to an inserted provirus, that functions as a hormone-
dependent enhancer. A schematical drawing of the candidate regufatory elements in the
enhancer fragment is presented in Figure L.11. A 160 bp fragment directs both androgen and
glucocorticoid response, whereas a 120 bp subfragment is activated by AR in CV-1 cells, and
by both AR and GR in T47D cells. In the 120 bp androgen responsive enhancer, three
tandemly repeated HRE-like sequences are present (Adler et al. 1992). The most proximal
HRE3 [AGAACAggcTGTTTC (—1922/ —1908)} is sufficient to confer both androgen and
glucocorticeid induction if linked to a TK promoter. Mutationai analysis and protein binding
assays demonstrated that in addition to the AR binding HRE3, other sequences including two
HRE-like structures GTAATTatcTGTTCT (-1954/-1940) and TGGTCApggcAGTTCT
{—1938/—1924), and several non-receptor binding elements, including an OCT binding site,
contribute to the characteristic androgen response of this complex enhancer (Adler et al.
1993)., The observation that the OCT binding site was occupied in males, but not in females,
and only in tissues expressing sip, in in vivo footprinting experiments, provided evidence that
it is involved in tissue-specific androgen regulation (Scarleit & Robins 1995). Scheller et al.
recently reported that a NF-xB binding site present in the 160 bp, but not in the 120 bp
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enhancer fragment might be important for GR induced activity as observed in CV-1 cells
{Scheller et al, 1996). In CV-1 cells, one or more proteins binding to the NF-£B binding site,
allow GR mediated activity of the enhancer. In T47D cells these sequences seem not essential
for glucocorticoid induced activity.
The cystatin related protein (erp) 1720 kDa protein gene

Expression of the crpl gene, also referred to as 20 kDa protein gene in the ventral prostate
and lacrimal gland of the male rat strongly depends on androgens (Ho et al. 1989,
Winderickx et al. 1990, 1994). DNasel footprinting revealed the presence of a region in the
proximal promoter interacting with the AR DBD. This putative ARE
(GGGAACaagTGTACT, -139 to -125) differed strongly from the ARE consensus sequence
and binds AR with low affinity in band shift experiments. Mutation of the ARE strongly
affected the androgen response of a proximal promoter fragment (-271 to +11} (Devos
1995). A second candidate region for androgen regulation was found in the first intron (sec
Figure 1.11}. It contains a cluster of three ARE-like half sites (underlined) spanning the 39
bp fragment N39 (CAGAGCAGATCATGTACTGGCAATGGTFCTTACCTGTCCT:
+2684/+2722), which shows AR binding and confers weak androgen response to a
heterologous promoter. Additional sequences surrounding this cluster of ARE-like sequences
are needed for full activity (Ho et al. 1993), These include a flanking upstream region {D2],
that showed high AR binding affinity and androgen, but not glucocorticoid induced enhancer
activity (see Figure 1.11). In D2, initially no candidate ARE sequences were identified.
However, as a result of the establishment of the functional activity of AREs that deviate
considerably from the consensus sequence (Table 1.2}, two candidate AREs can be predicted,
TGATCAWGGTGAT (+2559 to +2573) and GGATCAttcAATTCA (+2637 to +2651),
Like in the Slp and C3 promotfers, other transcription factors, including OCT and C/EBP (sce
I>1 in Figure 1.11), are supposed to be involved in the full AR specific response of the 20
kDa Protein/crpl gene (Ho et al. 1993),
The probasin gene

The rat probasin gene codes for a nuclear and secreted protein of the dorsolateral prostate.
Its expression is in vive regalated by androgens (Dodd et al, 1983), and to a lesser extent by
glucocorticoids (Matusik et al. 1991). In the probasin promoter, two fragments [ARBS-1:
ATAGCATCTTGTTCTTTAGT (-241/-223) and ARBS-2:
GTAAAGTACTCCAAGAACCTATTT (-140/-117), putative AREs are underlined], that are
important for androgen-regulation of the promoter and that bind AR, can be found (Rennie
et al. 1993, Kasper et al. 1994). Although both sequences were able to interact with AR
outside the probasin promoter context, initially both AR binding sites were found to be
individually functional inactive (Kasper et al. 1994). Even three copies of the two separate
AR binding sites failed to give rise to androgen-induced reporter gene activity. The putative
ARE in the ARBS-2 region (PB-ARE2: AGTACTccaAGAACC, -136 to -123) represents the
first AR binding site which selectively interacts with the AR-DBD and not with the GR-DBD
(Claessens et al. 1996). From studies with swapped half-sites, it was deduced that the right
hand half-site, 5’-AGAACC-3’ excludes GR binding. Reporter constructs, containing three
copies of PB-ARE-2 linked to a minimal TK promoter, showed in transfections iduction
upon androgen treatment but not after glucocorticoid treatment, indicating that PB-ARE-2
represents a functionally active, AR specific ARE. The functional activity of PB-ARE-2 was
unexpected, because of the previous negative results of Kasper et al. (1994). The observed
discrepancy might be due to differences in cell lines and culture conditions used.
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The S-glucuronidase (gus) gene

The mouse gus gene is constitutively expressed in almost all tissues, but its expression is
androgen regulated in kidney cells (Lund et al. 1988). The identification of the regulatory
elements involved in this androgen regufated expression benefitted from the occurrence of
three natural genetic variants displaying different phenotypes of androgen regulated gus
expression (Lund et al, 1991), The presence of an androgen-inducible DNAsel hypersensitive
site in intron 9 coincided with the androgen responsive phenotype. Careful analysis of this
region revealed the presence of a functional ARE (AGTACTigtTGTTCT, +7833 to +7847)
which cooperates with a 57 bp segment at position +7990 to +8046 fo generate maximal
androgen response, Mice showing & complete absence of the androgen response were found
to have a mutation in the ARE sequence, whereas mice with a reduced androgen response
showed a deletion of the +8005 to +8026 segment. This region is recognized by an
androgen inducible and kidney specific transcription factor (Lund et al. 1991),
The human coagulation factor IX gene

The presence of a functionally active ARE in the factor IX gene has been suggested by
natural occurring mutations. A mutation at position -26, within the putative ARE sequence
(AGCTCAgetTGTACT; -36 to -22) in the promoter of this gene caused a variant form of
Hemophilia B Leyden, a bleeding disorder due to a very low level of factor IX (Crossley et
al. 1992). Unlike the classical cases, the patient carrying this -26 mutation did not recover
during puberty, when circulating T levels start (o rise. Despite the mutation in the ARE
sequence, the mechanism of failure of androgen response is not clear. Although AR can bind
to this ARE, AR is only a weak activator of factor IX promoter activity in transient
transfection experiments. The putative ARE sequence overlaps with a HNF-4 binding site
(I'TGTACTTTGGT; positions -28 to -17). The -26 mutation has been shown to completely
block HNF-4 binding, and it has been suggested that Hemophilia throughout life is a result
of the complete loss of HNF-4 binding (Reijnen et al. 1990), CCAAT-box binding proteins,
binding to a region (positions + to +18) just downstream of the first major transcription
start site (Reijnen et al. 1992), have been suggested to be involved in the phenotypical
recovery of Hemophifia B Leyden around puberty in most patients (Pickets et al. 1993).
The human glandular kallikrein-1 (hGX-1) gene

hGK-1 (also known as KLK2 and hK2) is a member of the human kallikrein-like serine
protease family. This family consists of three members, hGK-1, tissue kallikrein KLK1, and
the extensively studied PSA gene (see sections L2.5., 1.2.6 and Chapters HI, V and VI).
Both PSA and hGK-1 expression are regulated by androgens at the level of transcription
(Riegman et al. 1991b, Wolf et al. 1992), The proximal promoter regions of both genes show
80 percent homology, Expression of the hGK-1 gene is restricted to the prostate.
Transcriptional activity of hGK-1 promoter fragments is induced upon androgen treatment
(Murtha et al. 1993). In the proximal promoter a putative ARE (GGAACAgcaAGTGCT;
—170 to -156) was identified, this sequence differs at only one position from the functionally
active ARE at the same position in the PSA gere (Riegman et al. 1991b, Chapter IHI).
Deletion of one half-site of this putative ARE completely abolished androgen response of
hGK-1 promoter fragments, and two copies of the ARE sequence conferred hormone
response to a minimal TK prontoter (Murtha et ai. 1993). These resulis clearly indicate that
the sequence at position -170 to -156 in the hGK-1 gene represents a functionally active
ARE.
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Other androgen regulated genes

Transcription of the prostate arginine esterase gene, a dog kallikrein-like gene related to
the human PSA and hGK-1 genes, is regulated by androgens (Gauthier et al. 1993). Two
putative ARE sequences could be identified (Arg-est-ARE2: AGGGCTataGGTCCT at
positions -230 to -216, and Arg-est-ARE1; AGGACAacaGGTGTT at positions -165 to -151)
(Dubé et al. 1995). Although Arg-est-AREl was shown to interact with the AR, no
significant effect on androgen regulation of a heterologous promoter was observed in
transfection experiments. Arg-est-ARE2 was not tested in this respect. It might be postulated
that cooperative action of both AREs is needed to obtain measurabie androgen-induced
activity.

Mouse vas deferens protein (MVDP} is exclusively expressed in the epithelial cells of the
vas deferens. In the MVDP gene promoter two ARE sequences, one in the proximal
promoter: TGAAGTtecTGTTCT (—111/-97) and one more upstream: AGAACAtgecTGCTCT
{-1186 /—1172), are preseni (Fabre et al. 1994). Only the proximal ARE is functionally
active when fused to a heterologous promoter. Although a minimal MVDP promoter
fragment (-121 to +41) is sufficient for androgen regnlation, the region -510 to + 41 gave
maximal androgen induction, Putative binding sequences for several sequence specific
transcription factors, including Sp1, NF-1, OCT and CCAAT box binding factors were found
to be located in this region.

Ornithine decarboxylase (ODC) is an ubiquitously expressed enzyme involved in polyamine
biosynthesis, Androgen regulated expression is found in ventral prostate, seminal vesicle and
kidney of rodents. The mouse ODC promoter region contains an ARE sequence
{AGAACAagtGGGACT) at position -924 to -910. This sequence binds AR in vitro and an
ODC promoter fragment containing this sequence confers a low level of androgen response
to a reporter gene (Eisenberg & Jinne 1989, Crozat et al. 1992).

The androgen-regulated murine epididymal protein (arMEP24) is an androgen-dependent
glutathione peroxidase-like protein synthesized and secreted by the mouse epididymis
(Ghyselinck et al. 1993). An ARE sequence has been found in the upstream promoter region
{(TGTTGAgagAGAACA; -896 to -882). Two or three copies of this sequence are able to add
limited androgen regulation to a TK promoter.

Functional transcriptional analysis of a 481 bp region of the mitochondrial aspartate
aminotransferase {(mAAT) gene showed that this region, containing two putative ARE
sequences (GGAAAAgacTGTTCT at position -1439 to -1424 and TCTCCAtcetTGTTCT at -
1465 to -1450) is sufficient for androgen reguiated expression of the gene (Juang et al.
1895).

From the combined data presented above several general conclusions can be drawn:
(i) Functional AREs can deviate considerably from the consensus high affinity binding site.
{(ii) Androgen regulated genes in general contain two or more AREs, which act
synergisticatly.
(iit) In addition to AREs, binding sites for ubiquitous transcription factors, and for tissue
specific transcription factors are essential for high, androgen regulated promoter activity.
(iv) Different mechanisms of AR specificity can occur, including ARE sequence, binding
sites for other transcription factors and cell specific factors.
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I.2.5. REGULATION OF PSA EXPRESSION

PSA is a single chain glycoprotein with a molecular weight of approximately 33 kDa, first
isolated by Wang et al. (1979). The protein was independently isolated by others, and
therefore is known under different names, as -y seminoprotein (Schaller et al. 1987) and P-30
{Graves et al. 1990). PSA is a member of the family of human kallikrein-like serine
proteases. As mentioned before, other members of this family are hGK-1 and tissue kallikrein
KLKI. PSA is synthesized in, and secreted by the luminal epithelial cells of the human
prostate, Mature PSA is composed of 237 amino acids, its precursor contains a 17 amino
acid signal peptide. For full proteolytic activity, posttranslational processing is needed
{(reviewed by Clements 1994, and Peehl 1995). In vivo, PSA may function to liquify the
seminal coagulum by proteolysis of seminogelin and fibronectin (Lilja et ai. 1985). Laminin,
IGF-BP3, TGF-f and cell surface receptors have also been suggested as substrates for PSA
(Lee et al. 1989, Cohen et al. 1992, Killian et al. 1993, Webber et al. 1995).

PSA cDNA (Lundwail & Lilja 1987, Riegman et al. 1988, Henntu & Vihko 1989) and the
PSA gene (Riegman et al. 1989a, Lundwall et al, 1989) have been isolated and completely
sequenced. The gene consists of five exons, and spans a region of approximately 5 Kb. The
PSA gene is clustered with the hGK-1 and KLLK-1 genes in the order (KLKI1)-(PSA}-(hGK-
1), in an area of 60 Kb on human chromosome 19q13.2-13.4 (Evans et al. 1988, Riegman
et al. 1989b, Schonk et al. 1990, Riegman et al. 1992). PSA, and also hGK-1, is almost
exclusively expressed in the human prostate and prostate derived tumors and tumor cell lines
(Chapdelaine et ai. 1988, Trapman et al. 1988, Riegman et al. 1988, 1991a, Henntu et al,
1993 and 1992, Henntu & Vihko 1992, Young et al. 1991, 1992, Nevalainen et al. 1993).
PSA mRNA expression does not only show cell specificity, but is also tightly regulated by
androgens (Riegman et al. 1991a,b, Hemntu et al. 1992, Young et al. 1991, 1995).
Androgen-stimulated expression is at least partially regulated at the level of transcription
(Riegman et'al. 1991b, Wolf et al. 1992).

At present, three functional AREs have been identified in the PSA regulatory regions. Two
functionally active AR binding sites were identified in the proximal PSA promoter, at
positions -170 (ARE-I; AGAACAgcaAGTGCT) and -394 (ARE-II;
GGATCAgeggAGTCTC), respectively (Riegman et al. 1991b, Cleutjens et al. 1996; Chapter
HI). In transient transfection experiments in LNCaP prostate tumor cells, the high affinity
AR binding site, ARE-1 (-170) by itself gave rise to weak (2-fold) stimulation in the presence
of androgens. ARE-1 (-170) had to cooperate with the low affinity AR binding site, ARE-II
at position -394 to obtain maximal (~6-fold) androgen induction of the proximal PSA
promoter. A 6 Kb PSA promoter construct showed much higher (~3000-fold) androgen-
induced activity when transfected to LNCaP cells. A high affinity AR-binding site (ARE-III,
GGAACAtatTGTATC), was identified in this long PSA promoter fragment, ~4200 bp
upstream of the transcription start site (Cleutjens et al. 1997; Chapter V). ARE-II, like
ARE-], closely resembles the ARE consensus sequence; whereas ARE-II, which binds AR
with lower affinity, deviates more. Although ail three AREs contributed to maximal androgen
inducibility, the presence of ARE-III in the upstream enhancer region was absolutely essential
for high androgen regulated activity of the 6 Kb PSA promoter, ARE-TII {~-4200) turned
out to be part of a complex, very strong androgen regulated enhancer region (Schuur et al.
1996, Cleutjens et al. 1997),
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The upstream enhancer region showed synergistic cooperation with the proximal PSA
promoter, and was found to be composed of at least three separate, but cooperating
regutatory regions, Although the presence of ARE-III was a prerequisite, it was not sufficient
for strong androgen regulated activity of the enhancer region. The importance of the
upstream enhancer for androgen regulated PSA expression was confirmed by the presence
of a strong, androgen reguiated DNase I hypersensitive site at this position in LNCaP cell
chromatin.

Transiently transfected PSA promoter constructs were active in cells with endogenous PSA
expression (LNCaP prostate cells), but inactive in cells without endogenous PSA, with the
exception of T47D cells (Schuur et al. 1996, Cleutjens et al. 1997, Chapter V). The cell
specificity was retained within a 440 bp core enhancer region, encompassing the upstream
ARE-IIL. {Cleutjens et al, 1997, Chapter V). Interestingly, the 6 Kb PSA promoter did not
only show largely prostate cell specific activity in fransient transfection experiments, but was
also capable to direct prostate specific transcription in transgenic mice (Chapter VI),

PSA promoter activity is not AR specific. In T47D mammary tumor cells, PR stimulated
expression of a PSA promoter driven reporter gene could be demonstrated. Similarly, in
LNCaP cells stably transfected with a GR expression vector, activated GR was able fo
stimulate endogenous PSA expression, as well as the activity of a transfected, PSA promoter
driven reporter gene (Cleutjens et al. 1997, Chapters IV and V).

1.2.6. PSA EXPRESSION IN PROSTATE CANCER

In Western countries, adenocarcinoma of the prostate is the most frequently diagnosed
tumor in men, and the second leading cause of male cancer death (Parker et al. 1996).
Therapeutic approaches for prostate cancer depend on the stage of the malignancy. In
clinically localized prostate cancer, surgical curability is feasible through complete excision
of the prostate (radical prostatectomy). First line therapy of locally invasive or metastatic
disease is generally based upon androgen ablation, or blockade of AR function by anti-
androgens. Unfortunately, the effects of endocrine therapy are only temporary and after a
variable period of time, a finally hormone refractory tumor continues to grow.

PSA is expressed in the vast majority of prostate cancers, although its expression level is
decreased and more heterogeneous in undifferentiated tumors (Keillor & Aterman 1987,
Gallee et al, 1990, Partin et al, 1993, Ruizeveld de Winter et al. 1994), Incidentally, prostate
cancers can even be PSA negative (Mai et al. 1996). Although PSA is considered to be the
best tissue specific marker available, low PSA expression has been demonstrated in some
male salivary gland derived tumors (vanKrieken 1993), and in mammary tumors, lactating
breast tissue and in endometrial tissue in women (Diamandis et al. 1994, Yu & Diamandis
1994, Clements & Muktar 1994), Also in the non-prostatic tissues, expression of PSA was
suggested to be steroid hormone-dependent (Yu & Diamaadis 1994, Graves 1995).

PSA as serum marker of prostate cancer

Although not per se a tumor marker, increased serum PSA is a strong indication of
prostate cancer (Catalona et al 1991, Oesterling 1991). In spite of its limitations, the serum
PSA test is now a widely accepted method to screen for prostate cancer. Because occasionally
inflammation of the prostate and BPH can also give rise to positive serum PSA values,
additionat tests, including a needle biopsy are needed for final proof.
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Increase of serum PSA during endocrine or other therapy is generally considered as
cvidence for recurrence or progression of the tumor. What determines the increase in serum
PSA during the development of an apparently hormone refractory tumor? Several alternative
mechanisms can be proposed. One factor can be that, although PSA expression in individual
tumor cells is decreased, the increase in tumor foad leads fo a net increase in serum PSA.
Other hypotheses include hormone independent activation of the AR (Culig et al. 1994), or
GR or PR induced PSA expression (this thesis). However, whether prostate tumors contain
functionatly active GR or PR is presently unknown. An alternative explanation could involve
the induction of hormone independent PSA expression using an unidentified mechanism.

The currently widespread application of serum PSA-based prostate cancer screening has
led to a considerable increase in the number of prostate cancer diagnoses, and a concomitant
decrease in twmor stage at time of diagnosis (Rosen 1995, Bangma et al. 1995). Early
detection might provide the opportunity to defect a larger number of prostate confined
tumors, which might still be curable. On the other hand, it is a real possibility that PSA-
based screening leads to overdiagnosis and subsequent overtreatment,

Because, like PSA, hGK-1 expression is prostate specific, it is a second candidate for
application in prostaie cancer diagnosis. The hGK-I mRNA level has been estimated to
amount 10 to 50 percent of PSA mRNA in prostate (Chapdelaine et al. 1988, Henntu et al.
1990, Young et al. 1992, Young 1996). In serum, the proportion of hGK-1 relative to PSA
seemns to be low (Plironen et al. 1996). Therefore, the clinical significance of serum hGK-1
tests remains elusive.

PSA mRNA as marker of circulating tumor cells

In addition to its role in the early detection of prostate cancer, and as a marker for
monitoring therapy, PSA expression might have additional clinical relevance. Approximately
50 percent of patients with clinicalty localized prostate cancer show extra-prostatic disease
upon histopathological screening of the prostate and regional lymphnodes (Epstein et al.
1993, Rosen et al. 1992). A substantial proportion of these patients will, despite radical
prostatectomy, relapse with locally recurrent or metastatic disease. In patients with clinically
localized prostate cancer, the detection of prostate cells in the circulation might be an
indication of the presence of micrometastases, and thus might be a means to discriminate
between the presence of locally confined tumors and tumors with extra-prostatic spreading.
Establishment of otherwise undetectable micrometastases might lead to a different
therapeutical approach.

Circuiating prostate tumor cells can theoretically be detected by means of RT-PCR for
mRNAs, specifically expressed by prostate (tumor) cells and not by other cells in the blood.
Because PSA is almost exclusively expressed by prostate epithelial cells, it is a good
candidate. Several reports, applying PSA mRNA based RT-PCR for detection of circulating
tumor cells, have now been published (Hambdy et al. 1992, Moreno et al. 1992, Israeli et
al, 1994, Katz et al. 1995, Cama et al. 1995, Jaakola et al, 1{993). There is substantial
variation in the percentage of patients with proven mctastases, in which PSA mRNA is
detectabie in the blood. Because of the very low level of PSA mRNA in the blood, the
method is prone to false negative and false positive (contamination) values, Therefore, the
clinical relevance of the assay remains to be established,

Besides PSA-based RT-PCR, a second related analysis, RT-PCR based upon Prostate
specific membrane antigen (PSM or PSMA) mRNA for detection of circulating prostate
fumor cells is currently under investigation. Cloning of the cDNA encoding PSM (Israeli et
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al. 1993) showed that it is a transmembrane glycoprotein. A high level of expression was
observed in normal prostate and both primary and metastasized prostate tumors (Israeli et al.
1994). Recently, the prostate specificity of PSM expression has become a matter of debate.
Examination of a set of normal tissues revealed the presence of significant PSM expression
in duodenal mucosa, a subset of renat tubules and cerfain neurocrine cells in the colon crypts
(Silver et al. 1997). Leek et al. (1995) suggested the existence of a second, related gene,
which might further complicate the specificity of PSM.

1.2.7. THE ANDROGEN RECEPTOR IN PROSTATE CANCER

One of the most important questions in prostate cancer biology concerns the role of
androgens. Initially, the growth of the majority of prostate tumors depends, like normal
prostate development, on androgens. Therefore, as discussed above, therapy of metastasized
tumors is generally based upon androgen abiation or blockade of AR function, After onset
of endocrine therapy, most prostate tumors show regression. However, essentially ail
originally hormone responsive tumors become apparently hormone independent during time.
From a clinical point of view it is very imporiant to elucidate the mechanisms involved in
androgen dependent and androgen refractory prostate tumor growth.

An important first question concerns the role of the AR. The majority of locally
progressive, hormone refractory tumors show high AR expression, although more
heterogeneous than in the normal prostate (van der Kwast et al. 1991, Sadi et al, 1991, Sadi
& Barreck 1993, Chodak et al. 1992, Ruizeveld de Winter et al. 1994, Tilley et al. 1994,
reviewed by Trapman & Brinkmann 1996). Interestingly, distant prostatic carcinoma
metastases in bone express AR (Hobish et al. 1995) and the expression level seems even
higher and more homogenecous than in locally recurrent tumor (Kleinerman, unpublished).
An increased level of AR expression could allow cancer cells to continue androgen-dependent
growth in the presence of a low level of serum androgen. AR overexpression could be the
result of amplification of the AR gene, as rccently observed in a proportion of hormone
refractory prostate tumors (Visakorpi et al. 1995, Koivisto et al. 1997). Importantly, AR
gene amplification has never been detected in tumors prior to endocrine therapy.

Additionally, aiternative AR activation could play a role in apparently androgen-
independent prostate cancer. In prostate cancer cell lines, growth factors {for example IGF-1
and KGF) have been found to induce AR mediated, promoter specific transcriptional
activation (Culig et al. 1994). Furthermore, cross-talk between AR and both the PKA or
PKC-signalling pathways has been reported (Ikonen et al. 1994, deRuiter et al, 1995,
Nazareth & Weigel 1996).

Also, structural changes in the AR could account for androgen-independent activation of
the receptor. A classical example is the point mutation in the AR gene in the LNCaP prostate
cancer celf line (alanine to threonine substitution at position 868 in the LBD), which renders
the receptor responsive to anti-androgens, estrogens and progestins (Veldscholte et al. 1590),
Mutations in the AR gene have been detected in both primary prostate cancer and in
metastases. Their prevalence in locally progressive, hormone dependent or refractory prostate
tumors is low according to most studies (Newark et al. 1992, Culig et al. 1993, Suzuki et
al. 1993, Gaddipati et al. 1994, Peterziel ef al. 1995, Quigly et al. 1995, Koivisto et al.
1997). The proportion of mutations seems highest in late stage tumors {Taplin et al. 1995).
For a limited number of tumors, it has been shown that the mutation can lead to altered
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ligand specificity (Culig et al, 1993, Ris-Stalpers et al. 1993, Pieterziel et al. 1995, Taplin
et al. 1995). At present the prevailing explanation for AR mutations in prostate cancer is,
that they represent a mixfure of functional and random mutations resuiting from genetic
instability (Trapman & Brinkmann, 1996},

In AR negative prostate tumors, none of the previously described mechanisms can account
for the androgen-independent growth of the tumor, In these tumors, alternative tumor specific
pathways must have bypassed the AR dependent process of growth stimuiation. These
pathways may implicate inactivation of tmmorsuppressor genes and activation of oncogenes
{Thompson 1990). However, the genes involved in the majority of prostate cancers have not
been identified as yet.

Although in general AR stimulates prostate cancer growth, AR mediated tumor cell growth
repression was recently also shown (Zhau et al, 1996). Whether the androgen-repressed
phenotype is an incidental occurrence or may represent a targer subpopulation of hormone
refractory prostate tumors remains fo be established.

In conclusion, several not mutually exclusive mechanisms for the growth of hormone-
refractory prostate tumers have been proposed. Elucidation of the mechanisms involved in
hormone-refractory prostate tumor growth can ultimately lead to the improvement of the
currently available therapeutic regiimens.

1.2.8. PROSTATE SPECIFIC PROMOTERS IN PROSTATE CANCER MODELS

Progress towards a better understanding of the biology of prostate cancer, including its
escape from regulation by androgens would benefit enormously from animal models
displaying the full range of clinical stages of this disease. These models wifl also be
indispensable for the development of new therapeutic approaches. Prostate cancer is
essentially unique to humans, Generally spoken two different prostate cancer model systems
can be envisaged: serial transplantable humar xenografts and transgenic animal models, Both
model systems display their own specific favorable and unfavorable features. Serially
transplaniable prostate cancer xenografts, although in an athymic nude mouse host, are of
human origin {Nagabhushan et al. 1996, van Weerden et al. 1996). A major disadvantage
of xenograft models is the variation of tumor take and growth rate and metastatic capacity,
dependent on the site of transplantation. Furthermore, the effect of the immune system on
tumor progression cannot be studied. Essentially, transgenic animals constitute a usefuf model
for the study of multistep tumor progression and may serve as experimental system to
develop and evaluate new therapeutic approaches. They provide a source of reproducible
tumors with known genetic make-up. Major drawbacks of these models are the limitation to
tumors of rodent origin (e.g. mouse), and the lack of knowledge of the most important genes
involved in human prostate cancer, which can be applied to build the model.

A prerequisite of the establishment of a transgenic prostate cancer model is a promoter
to target a heterologous gene with oncogenic properties to the appropriate prostate epithelial
cells. Several attempts to generate inbred mouse prostate cancer models have been made.
Schafiner et al. (1995) explored the capacity of the proximal 632 bp PSA promoter to induce
prostate cancer in transgenic mice, However, mice carrying a Ha-rasT24 oncogene driven
by the proximal PSA promoter, developed salivary gland and gastrointestinal tract tumors.
Mutant Ha-ras expression was confirmed in salivary gland tumors, but not in gastrointestinal
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tumors. Tumors arose in animals over 44 weeks of age, The late onset of tumorigenesis
could indicate that the proximal PSA promoter driven oncogene expression was a secondary
event,

A C3(1) promoter fragment was successfully applied to direct prostate fumor development
in mice. Transgenic mice carrying a 5.7 Kb C3(1) promoter fragment linked to the SV40
large T antigen (Tag) developed prostate adenoma or adenocarcinoma in almost ail males
surviving to the age of 7 months (Maroulakou et al. 1994). All female mice carrying this
transgene acquired mammary adenocarcinomas. Besides prostate and mammary
adenocarcinomas, the mice developed other phenotypic changes including several
proliferative lesions and malignancies leading to premature death, So this model seems not
the most promising to generate a prostate cancer model.

Transgenic mice carrying the 426 bp probasin promoter driven SV40 large T antigen
oncoprotein (TRAMP mice), develop progressive forms of prostatic cancer (Greenberg et al.
1995, Gingrich et al. 1996). Tumors have been detected specifically in the prostate as early
as 10 weeks of age, and distant metastases can be found at 12 weeks (Gingrich et al. 1996).
It is important to note that expression of Tag precedes the histological appearance of
carcinomas, Furthermore, not aill FTag expressing cells became hyperplastic or cancer cells
(Gingrich et al. 1996). The same observation was made in the fransgenic mouse model using
the $V40 large T antigen oncogen, driven by the C3(1) promoter (Maroulakou et al. 1994).
Cells expressing the transgene seem to be initiafly in a preneoplastic state and additional
events are probably needed to confer the cells to the full matignant state. In all presenily
available transgenic prostate cancer models, strong viral oncogenes are targeted to the
prostate. In the future, additional transgenic animal models, targeting gene products
implicated in clinically important human prostate cancer might reveal extra information about
the mechanisms underlying the different stages of prostate cancer initiation and progression.

43



Chapter I

I.3. SCOPE OF THIS THESIS

The goal of the present study was the identification and characterization of prostate specific
transcription factors involved in growth and differentiation of the prostate. It was
hypothesized that these factors could also play a role in the initial development and
progressive growth of prostate cancer. To reach the target, two complementary experimental
approaches were employed. The first approach included a search for novel, prostate specific
members of known families of transcription factors, based upon the homology in the DNA
binding domains. Using PCR techmiques, expression in the prostate of the C/EBP
transcription factor family was studied. The C/EBP family was selected as a potentially
interesting candidate, because of literature data, suggesting the involvement of C/EBP in the
prostate specific activity of the rat C3(1) promoter. As a result of this attempt, the C/EBPS
gene was cloned. C/EBP$ found to be the major C/EBP expressed in LNCaP cells (Chapter
D), however, C/EBPS expression appeared not to be prostate specific.

The second approach focussed on the mechanism of PSA expression, PSA is one of the
main producis of luminal prostate epithelial cells, the cell type which prostate cancer cells
resemble most. Furthermore, high levels of PSA expression are only observed in prostate and
prostate derived tumors, At the time of initiation of the work described in this thesis, one of
the factors involved in the regulation of PSA expression was already identified, the AR. In
the prostate, the AR is not only involved in the regulation of PSA expression, but is also
essential for its development and maintenance of function. Although the AR is not prostate
specific, AR expression is also high in other cells of the male urogenital tract, it was
considered as an important candidate for further study. So, knowledge on molecular
mechanisms involved in PSA gene expression would provide information on mechanisms of
androgen regulated, and prostate-specific gene expression. As additional spin off, the
knowiedge on regulatory elements involved in prostate specific PSA expression might be used
to direct high, prostate specific expression of a therapeutic gene to the prostate, and to
develop animal prostate cancer models.

The analysis of the regulatory regions involved in androgen regulated and prostate specific
expression of the PSA genc was initiated by transient transfection experiments in PSA and
AR positive LNCaP prostate cells. The studies resuited in the identification of three
functionally active androgen response elements in the PSA promoter, two (ARE-T and ARE-
II) in the proximal promoter (Chapter IIf), and one (ARE-III} in a far upstream enhancer
regiont (Chapter V). Because the sequence for high affinity DNA binding of the AR and
several other steroid hormone receptors including the GR is identical, the mechanism
underlying the apparent androgen specific induction of PSA promoter activity in LNCaP
prostate celis was investigated (Chapter IV), The far upstream enhancer region,
encompassing ARE-III, showed mainly LNCaP prostate cell activity in transient transfection
experiments (Chapter V). In order to test whether a 6 Kb PSA promoter fragment containing
both the upstream enhancer region and the proximal promoter, was able to direct prostate
specific and androgen regulated activity in vivo, transgenic mice with the 6 Kb fragment and
the proximal PSA promoter fragment linked to the LacZ reporter gene were generated. The
results presented in Chapter VI clearly indicate that the 6 Kb promoter fragment is indeed
capable to direct prostate specificity. Chapter VII summarizes our findings, reviews them in
light of recent literature data and indicates future directions for research.
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Chapter I

ABSTRACT

In an attempt to identify C/EBP-like transcription factors expressed in the prostate, a
cDNA homologous to the mouse C/EBPS (CRP3) and the rat CELF gene was isolated. A
genomic clone containing the entire C/EBPS gene was isolated using a cDNA fragment as
a probe. The gene was characterized by restriction mapping and sequence analysis. By
fluorescent in situ hybridization, using the biotinylated genomic clone as a probe, the C/EBPS
gene was assigned to the pericentromeric region of human chromosome 8, most probably to
8qll. This chromosomal localization was confirmed by analysis of a panel of human x
hamster somatic cell hybrid DNA samples with a C/EBPS specific STS. As a result, the
C/EBPé gene could be positioned between the PLAT and MOS locus.

INTRODUCTION

The CCAAT/enhancer-binding protein (C/EBP) family of transcription factors is imporiant
for regulation of the expression of many different genes (2). C/EBP-like proteins are
members of the family of leucine zipper (bZIP) transcription factors, characterized by a basic
DNA binding domain linked to heptad leucine repeats, which mediate dimerization. The
DNA binding domain is well conserved between the different C/EBP-like proteins, but
further structural homology is limited (14).

Expression of C/EBP-like proteins can be cell type dependent, and can vary during
differentiation. C/EBP (13), hereafter called C/EBPu;, is primarily expressed in liver and fat
tissue, and at lower levels in intestine and lung (2,22). C/EBPx expression in these tissues
is restricted to terminally differentiated ceils, C/EBPS (6) {also named CRP2 (24), AGP/EBP
(4), IL-6DBP (16), NF-IL6 (1) and LAP (9)], C/EBPy (6) [1g/EBP (18)], and C/EBPS (6)
fCRP3 (24) or CELF (11)] are almost ubiquitously expressed in different tissues, but at
varying levels. C/EBPS expression is most abundant in kidney and testis.

To identify C/EBP-like transcription factors which are expressed in prostate, first strand
cDNA of poly(A)* RNA from LNCaP cells, a human prostate carcinoma cell line, was
prepared with a TI12SITE primer (3’ TTTTTTTTTTTTCCTAGGCTTAAGCGTACG 5°),
using standard conditions. The first strand cDNA was then amptified by PCR using the SITE
primer (3' CCTAGGCTTAAGCGTACG 5°) and a primer specific to the DNA binding
domain of C/EBP-like transcription factors (3° CAACATCGCGGTGCGCAAGAGC 3°).
Botl: primers contain a restriction site (underlined; EcoRI and Fspl, respectively), which
were used to insert the PCR producis in the pTZ19 vector (Pharmacia, Uppsala, Sweden).
Twenty seven independent clones were isolated. Subsequent sequence analysis identified four
clones containing an insert encoding a heptad leucine repeat. The four clones showed the
same sequence, which turned out to be closely related to the 3’ region of the mouse C/EBPé
(CRP3) gene (24) and the rat CELF gene (11), indicating the isolation of the human C/EBPS
(CELF) homoloque. The selective isolation of the C/EBPS ¢cDNA, and no other known or
unkaown C/EBP-like cDNAs, could implicate that the C/EBP§ mRNA is the most abundant
C/EBP-like transcript in human prostate. Alternatively, the PCR conditions might have been
in favour of this specific cDNA.
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-120 CCCCCGCGGTGCCGEAGTCGGGECEEEGCGTGCACGTCAGCCGEEGGCTAGAAAAGGCGGT
-60 GGGGCTGGGCCCAGCGAGGTGACAGCCTCGCTTGGACGCACGAGCCCGGCCUGACGCCGLC
M s A A L F § L D@ P ARG AUPMW P A E
1 ATGAGCGCCGCGCTCTTCAGCCTGGACGGLCCGGLGCECGECECACCCTGGUCTGCGGAG
P A P F Y E P GRAG K P GR G A E P G
61 CCTGCGCCCTTCTACGAACCGGECCGGECGEACAAGCCGGECCACGEEGCCGAGCCAGHG
A L G E P G A A A P A M Y P D E S A I D
121 GCCCTAGGCGAGCCAGGCGCCGCCGCCCCCGCCATGTACGACGACGAGAGCGCCATCGAC
F §8 A Yy I b g M A A VvV P T L E L C H D E
181 TTCAGCGCCTACATCGACTCCATGGCCGCCETGCCCACCCTEEAGCTGTGCCACGACGAG
L F A DL F N S8 N H K AGGAOG P L E L
241 CTCTTCGCCGACCTCTTCAACAGCAATCACAAGGCGGGCEGECAECGGGECCCCTGGAGCTT
L P G G P A R P L G P G P A A P R L L K
301 CPTCCCGGCGGCCCCECECGCCCCTTGRECCCGEGECLCTGCCEGCTCCCCGCCTGCTCAAG
R E P Db WG D GD AP G 5 L I P A G V 4
361 CGCGAGCCCGACTGGGECGACGECGACGCGCCCGGUTCGCTGTTGCCCGCGCAGGTGGEC
P C A O TV V § L A A A G QP T P P T §
421 CCGTECGCACAGACCAGTGGTGAGCTTGGCGGCCGCAGEGCAGCCCACCCCGCCCACGTCG

P E P P R § 8 P R O T P A P G P A R E K
481 CCGGAGCCGCCGCGCAGCAGCCCCAGGCAGACCCCLGCGCCCGGCCCCGCCCGGGAGARG

S A G KR G P DR G S P E Y R O RERE R
541 AGCGCCGGCAAGAGGGECCCGEACCGECGECACCCCUGAGTACCGECAGCEECGCGAGCET
N N I A V R K S8 R D K A K R RN QO E M @
601 AACAACATCCCCGTGCGCAAGRAGCCGCGACAAGGCCAAGCGGCGCAACCAGGAGATGCAG
g K L v E L 8§ A ENUEU KL HOQW RV E @ L
661 CAGAAGTTGGTGCAGCTGTCGGCTGAGAACGAGAAGCTGCACCAGCGCGTGGAGCAGCTC
T R DL AG L R O F F K O L P g P P F L
721 ACGCGGGACCTGECCGGCCTCCGGCAGTTCTTCAAGCAGCTGCCCAGCCCGCCCTTCCTG

P A A G T A D C R
781 CCGGECCGCCGEEACAGCAGACTGCCGGTAACGCGCGGCCGEEGCCGGAGAGACTCAGCAA
841 CGACCCATACCTCAGACCCGACGGCCCGGAGCGEAGCGCGCCCTEGCCCTGECGCAGCCAG
901 AGCCGCCGGGTGCCCECTGCAGTTTCTTGGGACATAGEGAGCGCAAAGAAGCTACAGCCTG
961 GACTTACCACCACTARACTGCGAGAGAAGCTARACGTGTTTATTTTCCCTTAAMATTATTT
1021 TTGTAATGGTAGCTTTTTCTACATCTTACTCCTGTTCATGCAGCTAAGGTACATTTGTAA
1081 AAAGAAAAARAACCAGACTTTICAGACAAACCCTTTGTATIGTAGATAAGAGGAAAAGAC
1141 TGAGCATGCTCACTTTTTTATATTAATTTTTACAGTATTTGTAAGAATAARGCAGCATTT
1201 GARATCGCCCCTGCTTCCTATATTCGCAGTGACTCCCGCCCECCCGCCECCGCCEGTCGG
1261 AGGACCCGGCTCCGEAAGGGCGTTCCGGACCECAGCCAGCCAGCACCTAGGGAGCCCGGEC
1321 GCCAGGTETGTGTETGECEGEGEECECEGEGATEGECGCAGCGECGAGCTACTCAGGAGAG
1381 AGGGTCTGTCGCTTTTAAAACCCATTAAAGGCTCTCTCCTGECCTTATITAACTTGCCTA
1441 AGCTAGGTGGAGCACGGCTGAGCTC

Figure IL1. (A} Restriction map of the genomic clone (ZN2KI1) containing the C/EBPS sequence. A
more detailed restriction map of a region of 5.5 kb encompassing the entire gene is shown below. The
open reading ﬁ‘ame is shown as a dark box. The 5'- and 3'-untranslated regions are represented by
open boxes. The horizontal arrow indicates the direction of transcription. B=BamHi; E=FcoRi;
=Hindlll; S=38sti; IS;;=SphI s P=Psti. (B) Nucleotide and deduced amino acld sequence of the
fwnan C/EBPS gene. The presumed TATAAA box and the polyadenylation signal are underlined. The
position of the trauscriptional start site, as indicated by an arrow, is drewn on basis of similarity ro
the mouse C/EBPS gene. The poly(4) attaclunent site is indicated by an asterisk. The primer in'the
DNA binding domain, used for mnp{gﬁmz‘ion of first strand ¢cDNA is double underlfined. The latter
oligo and the reverse of the 962 to 983 sequence were used as STS for chromosomal napping.
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A human genomic library (Sau 3A partial digest in EMBL3) was screened with the
C/EBPS cDNA fragment as a probe. This resulted in the isolation of one clone (A2K1),
which contains the complete C/EBPS gene (Fig.1A). The gene was characterized by
restriction mapping and sequence analysis (Fig.1A,B). The human C/EBPS turned out to be
a one exon gene with a large open reading frame encoding a protein of 269 amino acids.
Southern blot hybridization of geromic DNA with a human C/EBPS probe showed the human
C/EBPé gene to be single copy {data not shown). The homology with the mouse C/EBPS
{CRP3) gene is 80% on nucleotide level and 85% on amino acid level, The homology with
the rat CELF gene is 75% and 86 %, respectively. When this work was in progress Kinoshita
et at. reported the isolation of the human NF-IL6/ gene (12). Although there is a difference
of two amino acids {amino acid residues 2 and 13, respectively) and a homology of only 95%
in the 3’ untranslated region, the NF-IL6S and the human C/EBP$ gene most probably are
two different allelic forms of the same gene.

Figure I1.2. (A) Competitive In Situ hybridization of luman metaphase chromosonte spreads with the
genomic C/EBPS clone N2K1, The position of the fluorescently labeled C/EBPS gene at chromosome
8 is indicated by an arrow. (B) Comparison of chromosome 8 In Situ hybridization with probe \2K!
(B1} with R-banding (B2).

To determine the chromosomal localization of the C/EBPS gene, simultaneous fluerescent
in situ hybridization (FISH) and R-banding on metaphase chromosome spreads were
performed (7,8). The biotinylated genemic clone A2K1 was used as a probe. By comparison
of the FISH results with the R-banding, the human C/EBP$ gene could be assigned to
chromosome 8 (Fig.2). The results are very suggestive for an 8ql1 localization, very close
to the centromere (Fig.2B), however, mapping to the short arm at 8pl1 cannot completely
be ruled out.
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Figure I1.3. Regional assignment of the C/EBPS gene, using a human X hamister somatic hybrid cell
panel. (4} Schematical representation of the chromosome 8 fragments present in the mapping panel
(see also ref. 23). (B) Mapping of the C/EBPS genomic fragment on the cliromosome 8 panel.
Radiocactive PCR and PAGE analysis of the amplified C/EBPS fragment were essentially as described

(159},

To confirm the chromosomal localization, and to determine in more detail the regional
position of the human C/EBP$ gene at the chromosomal map, a panel of human x hamster
somatic cell hybrids, containing chromosome 8 as the single human chromosome (CL17),
or chromosome 8 fragments (see Fig.3 and ref.23) was analyzed with a C/EBPS specific STS
{see legend to Fig.1). The results obtained are summarized in Figure 3. As expected, CL17
gave a positive signal of the correct size. All data obtained with hybrids containing
chromosome 8 fragments are in agreement with the assignment of the C/EBPé gene to the
pericentromeric region of chromosome 8. Most importantly, the amplified C/EBP$ fragment
was present in clone 1SHL3 and absent in 1SHL27 and 20xP0435-2 (Fig.3B). This positions
the C/EBPS gene between MOS at 8q11 and PLAT, which has been mapped to 8pl12-q11.2
(23, and refs therein). The pericentromeric localization of the C/EBPS gene links it to the
autosomal dominant retinitis pigmentosa locus (RP1) (3).
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Two other C/EBP genes, C/EBPa and DBP (15) are located at human chromosome 19
(10,20). The C/EBPf gene is assigned to human chromosome 20 (10,21). So, with possibly
one exception, the C/EBP gene family, as mapped so far, is scattered over the human
genome, The murine C/EBPS gene has recently been linked to chromosome 16 (cited in 24).
The mouse MOS locus is at chromeosome 4 (17); PLAT at chromosome 8 (3). This shows
that the pericentromeric region of human chromosome 8 (8p11-qi1) is not conserved in one
specific mouse chromosomal segment,
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Chapter III

SUMMARY

Transcription of the Prostate-specific Antigen (PSA) gene is androgen regulated. The PSA
promoter contains at position — 170 the sequence AGAACAgcaAGTGCT, which is closely
related to the ARE (androgen response element) consensus sequence GGTACAnnnTGTTCT,
This sequence is a high affinity androgen receptor {AR} binding site and acts as a functional
ARE in transfected LNCaP cells. A 35 bp segment starting at -400 (ARR: Androgen
Response Region; GTGGTGCAGGGATCAGGGAGTCTCACAATCTCCTG) cooperates with
the ARE in androgen induction of the PSA promoter. A construct with three ARR copies lin-
ked to a minimal PSA promoter showed a strong (104-foid}, androgen induced activity. The
ARR was aiso able to confer androgen responsiveness to a minimal thymidine kinase (TK)
promoter. Both AR binding and transcriptional activity resided in a 20 bp ARR subfragment:
CAGGGATCAGGGAGTCTCAC (25). Mutational analysis indicated that the sequence
GGATCAgggAGTCTC in the 28 fragment is a functionally active, low affinity AR binding
site. Like AR, the glucocorticoid receptor (GR) was able to stimulate PSA promoter activity.
Both the ARE and ARR are involved in dexamethasone regulatin of the PSA promoter. Both
the AR and GR promoter constructs were 20- to 100- fold more active on ARR-PSA and
ARR-TK promoter constructs than in other cell types (COS, Hela, Hep3B and T47D celis),
indicating (prostate) cell specificity.

INTRODUCTION

Androgens exert their function via the intracellular androgen receptor (AR), which is a
member of the family of the steroid hormone receptors (see for reviews 1,2). Upon ligand
binding, steroid receptors interact with specific DNA sequences and regulate the
transcriptional activity of target genes (1-3). The DNA structures to which steroid receptors
bind with high affinity are imperfect palindromic sequences, separated by a 3 bp spacer. The
consensus sequence of the response element for the glucocorticoid receptor (GR), progeste-
rone receptor (PR} and AR is identical: GGTACAnonTGTTCT (HRE: hormone response
element) (1-6). However, in natural target genes, the binding site can deviate considerably
from the consensus sequence. Analysis of natural and synthetic promoters has shown that
steroid receptors are able to act synergistically with a variety of other transcription factors
(2,7-9). Synergistical interaction of {wo HREs has also been observed (7,8). At present it is
unclear how specificity of the AR/GR/PR response operates. Several mutually not exclusive
mechanisms have been proposed, including subtle differences in sequences flanking the HRE,
differences in affinity to general or specific transcription factors, interaction with specific
accessory proteins, or differences in cellular concentration of the specific receptors and
ligands.

We use the Prostate-specific Antigen (PSA) gene as a model for androgen regulated gene
expression. PSA is expressed at high level in the luminal epithelial cells of the prostate, and
is absent or expressed at very low levels in other tissues. PSA is a member of the human
kallikrein gene family, and is well known as a prostate-specific tumor marker (10,11).
Further members of the kallikrein gene family are the hGK-1 gene and the tissue kallikrein
gene (KLK-1} (12-15). The three genes are clustered in an area of 60 kb on chromosome
19q13.2-13.4 (15-18). In previous studies we and others have shown that PSA mRNA
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expression is androgen-regulated (19-22). Androgen-stimulated expression of PSA is at least
partially reguiated at the level of transeription (22,23). A functional ARE {androgen
responsive element) was defined at —170 which closely resembles the ARE consensus
sequence (23).

In the present study we address the following questions: (i) which PSA promoter elements,
additionally to the ARE {— 170} are the major contributors to its androgen regulation, (ii) is
PSA promoter regulation AR specific, and (iii) is steroid hormone regulation of the PSA
promoter cell type specific.

MATERIALS AND METHODS

Cell culture

LNCaP cells were cultured in RPMI 1640, supplemented with 5 % fetal calf serum
(Boehringer, Mannheim, Germany) and antibiotics, For fransfection, cells were grown in
Dulbeceo’s Modification of Eagle’s Medium supplemented with 5 % steroid-depleted
(dextran-charcoal treated) fetal calf serum. For examination of androgen-driven promoter
activation by fransfection, the synthetic androgen Ri881 (New England Nuclear, Boston,
MA) was added to a final concentration of I nM. For examination of glucocorticoid-regulated
activation, a final concentration of 10 nM of the synthetic glucocorticoid dexamethasone
{Sigma, St. Lonis, MO) was used,

Construction of plasmids

All plasmid constructs were prepared using standard methods (24). The human AR
expression plasmid pARO, the rat GR expression plasmid PSTC GR 3-795 and the plasmid
pRIT2TAR to produce AR{DBD) were described previously (25-27). The promoter-less basic
plasmid pL.UC, which was used for cloning of PSA promoter fragments in front of the LUC
reporter gene, was derived from pSLA3 (28) by insertion of an oligonucleotide containing
a multiple cloning site (MCS) (HindIII, Pvull, Nhel, Bglll and Ncol) in the HindIH and Ncol
sites of PSLA3. PSA-LUC constructs, PSA-4-LUC (EcoRI/HindIIT; -632/ + 12), PSA-5-L.UC
{Bglll/HindIII, -539/-4-12), PSA-6-LUC (Xholl/Hindill; —324/+12) and PSA-7-LUC
(Nhel/HindIH; -157/+12) were generated by ligation of the appropriate fragments in the
MCS of pL.UC.

Constructs PSA-8 to PSA-11-LUC were obtained by exonuclease 111 digestion of PSA-2-
CAT (-632/ +123(23) from the Sall site. After exonuclease I incubation according to the
"Erase a base’ protocol (Promega, Madison, WI1), the plasmid was digested with HindIIf and
the derived promoter fragments were ligated in the MCS of pLUC. This resuited in the
constructs PSA-8-LUC, starting at -488, PSA-9-LUC, starting at -456, PSA-10-LUC starting
at -395 and PSA-11-LUC, starting at -376. Construct PSA-12-LUC was prepared by
introduction of a Pstl site at position -174 by PCR. The PCR product was digested with Pstl
and HindIII (+12) and isolated from a 1.5 % agarose gel. The isolated fragment was ligated
in the Pstl and HindIH sites of the pLUC MCS. One and three copies of the -400 to —366
oligomer were cloned in front of the PSA-12-LUC and the TK-LUC construct. Double-
stranded oligonucleotides spanning ARR (-400 (o -366)
5’GATCCGTGGTGCAGGGATCAGGGAGTCTCACAATCTCCTG 3° were inserted in the
BamHI site of PSA-12-LUC and TK-LUC. Double stranded oligenucleotides spanning three
copies of the ARR-1S; GTGGTGCAGGGATCAGGGAG, ARR-2S;
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CAGGGATCAGGGAGTCTCAC, ARR-3S region; GAGTCTACAATCTCCTG and the
ARR-28 mutants {mutations are underlined) ARR-25-1; CAGGGGATGAGGGAGTCTCAC,
ARR-285-2; CAGGGATCAGGGACTCTCAC and ARR-25-3;
CAGGGATCAGCGAGTCTCAC, containing Sall compatible ends were inserted in the Sall
site of PSA-12-LUC. All constructs were verified by sequencing.

Transfections

LNCaP cells were transfected according to the calcium phosphate precipitation method
essentially as described (29), using 1 x 10° cells per 25cn? flask, 5 ug of the appropriate
PSA-LUC construct, and where indicated 2.5 ug pARO or PSTC GR 3-795 (GR expression
vector}. After overnight incubation with the precipitate, the culture medium was removed and
replaced by phosphate buffered saline (PRS), containing 15% glycerol (incubation for 50 sec
at room temperature). Subsequently, transfected cells were incubated in culture medium in
the absence or presence of the appropriate hormone (R1881 or dexamethasone) for at least
24 h. Transfections were performed at least three times in duplicate, using at least two
independent plasmid isolates.

Luciferase activities were corrected for variations in protein concentrations within the 100
pl ceil extracts, Luciferase activities and relative induction factors are expressed as mean and
standard error of the mean (SEM).

Luciferasc assay

Cells were washed once with PBS and lysed in 300 pl lysis buffer (25 mM Tris-phosphate
pH 7.8, 8 mM MgClL, 1 mM DTT, 1 % Triton X-100, 15 % glycerol). Next, 100 pl
Luciferin {0.25 uM) (Sigma)/ 0.25 uM ATP was added to 100 pl of each extract, and
luciferase activity was measured in a LUMAC 2500 M Biocounter (LUMAC, Landgraaf,
The Netherlands). After a delay of 2 sec (according to supplier), the light emission during
5 sec was recorded.

Gel retardation analysis

Nuclear extracts were prepared as described by Dignam et al, (30). Coupled
transcription/translation of human AR cDNA cloned in BluescriptlI-KS (31) was carried out
according to the protocol of the manufacturer of the system (Promega). AR synthesis was in
the presence of 10 uM ZnCl,. Production in E. coli, and purification of AR(DBD) was done
as described previousty (27).

Double stranded oligonucleotide probes used in gel retardations:

ARE: 5’ GATCCTTGCAGAARCAGCAAGTGCTAGCTG 3r
GAACGTCTTGTCGTTCACGATCGACCTAG

ARR: 5' GATCCGTGGTGCAGGGATCAGGGAGTCTCACAATCTCCTG 3
GCACCACGTCCCTAGTCCCTCAGAGTGTTAGAGGACCTAG

ARR-18: 5/ GATCCGTGGTGCAGGGATCAGGGAG 37
GCACCACGTCCCTAGTCCCTCCTAG

ARR~28: 57 GATCCAGGGATCAGGGAGTCTCACG 3
GTCCCTAGTCCCTCAGAGTGCCTAG

ARR-35: 57 GATCUGAGTCTCACAATCTCCTGAG 3
GCTCAGAGTGTPAGAGGACTCCTAG
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ARR-28-1: 57 GATCCAGGUATGEAGEGAGTCTCACG kY
GTCCCTACTCCCTCRAGAGTGCCTAG

ARR-28-2: 5/ GATCCAGGGATCAGGGACTCTCACG 3’
GTCCCTAGTCCCTGAGAGTGCCTAG

ARR-28-3: 5 GATCCAGGGATCAGCGAGTCTCACG 3
GTCCCTAGTCGCTCAGAGTGCCTAG

ARR~2S5-4: 5' GATCCAGGGATCAGGGAGTTCCACG 3
GTCCCTAGTCCCTCAAGGTGCCTAG

ARR-25-5: 5* GATCCAGGGAACAGGGTGTTCCACG 3!
GTCCCTTGTCCCACAAGGTGCCTAG

Probes were filled in with MMLV-reverse transcriptase in the presence of a-*’P-dATP,
and subsequently isolated from non-denaturing polyacrylamide gel. For gel retardation
assays, 20-50x10° cpm of each probe was added to 20 pl reaction mixture, containing 2 ug
poly dldC, 2 pg BSA, 10 pM ZnCl, | mM DTT and 2 pl 10x binding buffer (100 mM
Hepes pH 7.6, 300 mM KCl, 62.5 mM MgCl, and 30 % glycerol), and in indicated cases
10 pg LNCaP nuclear protein, in vitro transtated AR (7-10 fmol) or AR(DBD} (5 pmol). In
experiments using the AR antibody Sp197 (epitope amino acid residues 1-20), 0.1 pi portions
of antiserum were added to the reaction mixture (32). Incubation was for 30 min at RT. In
addition to oligonucleotides described above, (100-fold excess of) double-stranded
oligonucleotides containing a C/EBP binding site, 5°’-
GACCTTACCACTTTCACAATCTGCTAG-3" (33) and a GRE 5°-
TCGACTGTACAGGATGTTCTAGCTACT-3" (Promega) were used in competition
experiments. Samples were loaded on a 4 % polyacrylamide (19:1) gel and electrophoresed
in 2 50 mM Tris. HCl, 41.5 mM Boric acid, 0.5 mM EDTA buffer for 2 h at 150 V and RT.
Subsequently, gels were fixed, dried and exposed to X-ray film,

RESULTS

Deletion mapping of the PSA promoter; effect of androgen receptor overexpression

In a previous study we analyzed androgen regulation of the PSA promoter in COS cells
which were co-transfected with several different PSA promoter-chloramphenicol
acetyltransferase (CAT) reporter gene constructs and the AR expression vector pARO (23).
This resulted in the functional characterization of an ARE (AGAACAgcaAGTGCT), which
is closely related to the consensus sequence, at position -170, and the identification of a
second region, from -539 to -324, important for PSA promoter activity.

Essentially the same data were obtained in LNCaP cells which endogenously express the
AR and PSA gene (Figure 1A). Transfection of PSA-4-LUC (—632/+12) or PSA-5-LUC
(-539/ 412} resutted in an approx. 7-fold higher LUC activity in the presence of R1881 than
in its absence. Similar resuits were found with constructs containing longer promoter
fragments {up to approx. 4 kb (data not shown)]. Removal of the -339 to —324 fragment
(PSA-6-LUC) caused a 3.5-fold drop in relative induction. Subsequent removal of the -324
to -157 region (containing the ARE sequence at position -170), resulted in the complete
abolishment of androgen induction (construct PSA-7-LUC),
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Figure IIL1. Androgen regulation of the PSA promoter in LNCaP cells. (A) LNCaP cells were
transfected with PSA-LUC construcis (left panel) and with PSA-LUC constructs plus the AR expression
plasiiid pARO (right panel) as described in Materials and Methods, Start positions of PSA promoter
constructs are indicated below the figure and in Figure IB. After overnight incubation with the
precipitate, transfected cells were further incubated in the presence or absence of 1 nM R188! for 24
h. The absolute activity and relative induction factor were calculated as the mean of five or more
independent transfection experiments, which were all done in duplicate. Closed bar: Activity in the
presence of R1881; open bar: activity in the absence of RI1881. Hormone induction is given at the top
of the bars. SEM of absolute activiry is represented by a vertical stripe; SEM of induction is given in
parentheses. The TATA box is represented by a hatched box; the ARE by a black box. (B) Sequence
of the proximal PSA promoter. Transcription start sites are indicated by asterisks. Arrows indicate
starting points of constructs used in transfections. The ARE sequetice starting at position -170 is
double underlined, the ARR{-400) is single underlined and the TATA box is indicated by siripes.
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To investigate in more detail sequences in the -539 to —324 region important for PSA
promoter activity, a series of exonuclease III deletions was generated (see Figure 1B for PSA
promoter fragments in different constructs). Transfection of LNCaP cells with constructs
PSA-8-LUC, PSA-9-LUC and PSA-10-LUC resulted in a high (6- to 7-fold), androgen-
regulated PSA promoter activity, which is comparable to that of the PSA-5 construct.
Importantly, construct PSA-11-LUC, starting at —376, showed a low (2.2-fold), androgen-
induced activity, which is identical to that of PSA-6 (starting at —324), These resulis
indicated sequences in the region -3935 to -376 to be essential for high androgen-induced PSA
promoter activity.

Co-transfection with the AR expression plasmid pARO resuited in considerable higher PSA
promoter activity, both in absolute values as well as in relative induction levels without
affecting the significance of the -324 to -157 region containing the ARE at position -170, and
the -395 to —376 region (Figure 1A). The co-transfection experiments showed again that
truncation of the promoter from -3935 to -376 gives risc to a markedly lower androgen-
induced activity (compare PSA-10 and PSA-11); deletion of the -324 to -157 region again
resulted in a complete loss of androgen inducibility of the PSA promoter (compare PSA-6
and PSA-7).

Mutations in the ARE at -170 in construct PSA-4-LUC resulted in an almost complete
inhibition of androgen activation of the PSA promoter (23, and data not shown), indicating
cooperativity between the -395 to -376 region and the ARE sequence at position -170.
Androgen receptor binding to the ARE(-170} motif

To confirm that the sequence AGAACAgcaAGTGCT (-170) was able to interact directly
with the AR, gel retardation experiments were done with LNCaP nuclear extracts, in vitro
synthesized AR, and AR DNA-binding domain [AR(DBD)] produced in E. coli (Figure 2A-
C). Using LNCaP nuclear extract, addition of an AR-specific antibody (Sp197) to the
incubation mixture resulted in the visualization of a stable, specifically supershifted AR-
ARE(-170) complex (compare Figure 2A, lanes 1-4). The retarded complexes visible in the
absence of antibody Sp197 (lane 1) are considered to be non-specific because a 100-fold
molar excess of unlabelled ARE(-170) did not inhibit the formation of these complexes (lane
3). Additionally, none of these bands was supershifted after adding the specific AR antibody
(lane 2),

A specific AR-ARE(-170) retarded complex could be observed, if in vitro synthesized AR
was used, addition of the Spi97 antibedy again resulted in the formation of a much more
stable supershifted complex (Figure 2B). Application of the AR(DBD) in the gel retardation
assay revealed a clear AR(DBD)-ARE(—170) complex in the absence of antibody (Figure
20).

Effect of the - 400 fo -366 fragment (ARR) on basal PSA and TK promoter activity

To further elucidate the properties of the -395 to -375 region, one and three copies of an
oligonucleotide, spanning this region [-400 to -366;
GTGGTGCAGGGATCAGGGAGTCTCACAATCTCCTG (denoted ARR, androgenresponse
region) underlined in Figure 1B] were inserted in front of a "minimal" PSA promoter,
starting at position -174. The "minimal” PSA promoter {PSA-12-LUC), which contains the
TATA-box and ARE(-170), was approx. 6 times more active in R1881-treated, pARO co-
- transfected LNCaP cells than in the absence of hormone (Figure 3A). Constructs PSA-12.1s-
LUC and PSA-12.1as-LUC, containing one ARR copy in sense and anti-sense orientation,
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respectively, gave rise to an increased R1881-induced activity of the promoter (22- to 23-fold
induction). PSA-12.3-LUC, with threc ARR copics, showed a 185-fold higher promoter
activity in the presence of R1881, clearly indicating cooperativity between the ARR motifs.
Importantly, even three ARR copies did not affect basal PSA promoter activity in the absence
of hormone. This suggested that ARR activity could be directly androgen reguiated.

B A a - 4 C aARDBD - ¢

44

FREE
PROBE

2

ARE: TTGCAGAACAGCAAGTGCTAGCT

Figure IIL2. Gel retardation analysis of AR/ARE(-170) complexes. (4) 20c1(¥ cpm ARE(-170) was
incubated with LNCaP muclear exiract, and complexes were analyzed by PAGE as described in
Marerials and Methods. Incubations were in the absence (lane 1) or in the presence of antibody Spi197
{lanes 2-4). Incubation of ARE with SpI97, without nuclear extract did not give rise to a complex
{(dara not shown). Specific, supershifted AR/ARE complexes are indicated by an arrow {lanes 2 and
4), Sequences of the oligonucieotides containing the ARE(-170} and the non-specific C/EBP competitor
{lane 4) are given in Materials and Methods (see for the -170 ARE also the underlined sequence below
the figitre). (B) 40x10° cpm ARE{(-170) was incubated with in vitro synthesized full length AR, and
AR/ARE(-170) complexes were analyzed by PAGE as described in Materials and Methods. Lane I and
2: ARE with reticulocyte lysate, comtaining in vitro synthesized AR, Incubations were in the absence
(lane 1} and in the presence of amibody Spi197 (lane 2). Arrows indicate the position of the AR/ARE
complex (lane 1) and supershified ARIARE complex (lane 2). (C) Gel retardation analysis of
AR(DBD)/ARE(-170} compleves. Lane 1: Free ARE(-170) probe (SOx10° cpm). The arrow indicates
the position of the AR(DBD)/ARE complex. Lane 2: 50010° cpm ARE(-170) was incubated with
AR(DBD) expressed in E. coli, and purified as described in Materials and Methods, Subsequently,
the reaction mixture was analyzed by PAGE,
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Figure IT1,3. (A) Effect of the -400 to -366 region (ARR) on basal PSA promoter activity in LNCalP
cells overexpressing the AR, The ARR is represented by a harched triangle, the ARE by a black box,
and the TATA elemeit by a hatched box. (B} Effect of the —400 to -366 region of the PSA promoter
{ARR) on TK promoter activity in LNCaP celis overexpressing AR. The ARR is represented by a
hatched triangle. The mean of Iluciferase acrivity and relative induction levels are from four
independent, duplicate experiments. Experimental details are identical to those described in Figure
1A, The ARR sequence is single underlived in Figure 1B.

To investigate this further, one or three ARR copies were inserted in front of a minimal
Thymidine Kinase (TK) promoter linked to the LUC gene and co-transfected with pARO to
LNCaP cells, Basal TK promater activity was hardly inducible by androgen (Figure 3B). The
construct containing one ARR (TK-1-LUC) showed a 4.7-fold higher LUC activity in the
presence of R1881 than in the absence of hormone, TK-3-LUC (with three ARR copies)
showed a 104-fold induction. In the absence of hormone, the ARR-TK-LUC reporters had
the same activity as the TK-LUC basal construct.
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Figure ITL4. Gel retardation analysis of AR/ARR complexes. (A) 40:10° cpm ARR was incubated
with LNCaP nuclear extract, and complexes were analyzed as described in Maferials and Methods.
Complex formation was in the absence {lane 1} or in the presence of antibody SpI197 (lanes
2-4). Incubation of ARR with Sp197, without nuclear extract did not give rise to a retarded
band (data not shown). Competition experiments were in the presence of a 100-fold excess
ARR(-400) (lane 3) and ARE(-170) {lane 4). ARR and ARE sequences are presented below
the figure. (B) 40x10° cpm ARR was incubated with nuclear extract of LNCaP cells grown
in steroid depleted medium for 6 days and an additional 24 h in the presence (lane 2} or
absence (lane 1) of 1 nM RI88I. (C) 20x10° cpm ARR was incubated with in vitro
synthesized fill lenigth AR, in the absence (lane 1} and in the presence of antibody Spi197
{lane 2), and subsequently analyzed by PAGE as described in Materials and Methods. Lanes
3 to 6: 40x10° cpm ARE incubated with in vitro synthesized AR. Complexes were analyzed
by gel retardation assay as described in Materials and Methods. Incubations were in the
presence of antibody Sp197. Competition was with 100-fold excess ARE(-170) (lane 4), ARR
(lane 5), C/EBP (lane 6). The arrow indicates the position of supershified AR/ARR and
AR/ARE complexes. (D) Gel retardation analysis of AR(DBD}/ARR complexes, Lane 1: Free
ARR probe. Lane 2: 50x10° cpm ARR was incubated with AR(DBD) expressed in E.coli and
purified as described in Materials and Methods and subsequently analyzed by PAGE, The
arrow indicates the position of the AR(DBD)/ARR complex.

Gel retardation analysis of the androgen response region (ARR)

To find out whether the AR could directly interact with the ARR(-400 to -366), a series
of in vitro protein-DNA interaction experiments was carried out. First of all, nuclear extract
of ENCaP cells grown in the presence of R1881 was used to study proteins interacting with
the ARR. Gel retardation analysis with this extract revealed the presence of at least three
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specific complexes (Figure 44, lanes 1-3). Incubation with antibody Spl197, did not result
in a visible supershift {Figure 4A, lane 2; compare Figure 2A for ARE(-170) shifts], nor
could one of the complexes be competed with an excess of unlabeled ARE(-170) (Figure 4A,
lane 4). Identical complexes were formed with extracts from cells grown in the absence or
in the presence of hormone, indicating that the expression or activity of none of the proteins
visualized in Figure 4B is androgen regulated.

If in vitro synthesized AR was used in AR-ARR gel retardation assays, in the presence of
S$p197 a very weak retarded complex could be detected (Figure 4C), suggesting the presence
of a low affinity AR binding site in the ARR. In agreement with this observation, a 100-fold
excess ARR could partially compete the formation of an AR-ARE(-170) complex (Figure 4C,
lanes 3-6). A similar excess of nnlabeled ARE completely inhibited the formation of the AR-
ARE complex. The unrelated C/EBP oligo had no effect on AR-ARE complex formation.
The most sensitive assay, gel retardation with AR(DBD) produced in E. coli clearly revealed
the formation of an AR(DBD)-ARR complex (Figure 4D).

B CONSTRUCT LUCIFERASE ACTIVITY

A

ARE TATA
PSA 12 LU —l——ﬁ-{: 6.2{2.8)
-174
-—
ARE TATA
P3A 18 LUC e 9.8 (2.4}
PS8A 25 LUC e 128 (25)
7.1{2.3
PSA 35 LUC we { )
FRAEE
PROBE 1 [ i 1
qQ 15 30 45 3 60
1 23 4566 A ARR-18 {400 t0 -38§) [ - atvesl x10
I + Buest
ARR  : GTGGTGCAGGAATCAGGRAGTGTCACAATCTCCTG A ARR-26 {394 10 -375)
ARA -« 15: GTGOTGCAGGAATCAGGRAG
ARF - 25 : CAGGAATCAGRRAGTCTCAR A ARR-3S {-253 to -366)
MRR.3S: ——— GAGTCTCAGAATCICETA

Figure IIL5. Analysis of the AR binding segment in ARR. {A) Gel retardation analysis of
AR(DBDYARR subfragment complexes, S0xI0F cpm ARR-IS (lanes 1,2), -28 (lanes 3,4) and -3§
(lanes 5,6} were incubated with AR(DBD)} and analyzed by gel retardation assay as described in
Materials and Methods. 18, 25 and 35 sequenices are shown below the figure. The arrow indicates
the position of the AR(DBD)/ARR-28 complex. (B) Effect of the ARR-18 (-400 to -381), -2§ (-394 fo -
375} and -35 (-383 to -366) on PSA basal promoter activity in LNCaP cells overexpressing the AR.
The ARR-subfragments are represented by triangles, the ARE(-170) by a black box and the TATA box
by a hatched box. Mean values and SEM are from three independent, duplicate experiments. Further
experimental details are identical to those described in Figure 14.
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Next, three copies of 18, 25 and 3S were inserted in front of the minimal PSA promoter
construct PSA-12-LUC and co-transfected with pARO o LNCaP cells. The construct
containing three copies of the 15 region (PSA-18-LUC) gave rise to a 9.6-fold higher activity
in the presence of R1881 than in the absence (Figure 5B). Construct PSA-2S-LUC,
containing three copies of 28 gave rise to a 128-fold higher activity upon R1881 treatment,
The construct with three copies of 35 (PSA-35-LUC) produced a 7.1-fold higher activity in
the presence of R1881. So, there is complete concordance between the presence of AR
binding and functional, hormone dependent enhancer activity in 28, and the absence of these
activities in IS and 38,

Analysis of the AR binding site in ARR-28

Sequence alignment showed that in 2S the highest percentage of homology to the ARE
consensus sequence is in the sequence GGATCAgggAGTCTC. This sequence deviates in 2
out of 6 most essential positions, (positions 2,3 and 5 in each half-site, underlined) and
overall in 6 out of 12 positions from the ARE consensus GGTACAnnnTGTTCT. To test
whether this sequence could indeed be responsible for low affinity AR binding, gel
retardation analyses were performed with five ARR-2S mutants (mutations are underlined).
Two mutants expected to decrease AR affinity to the putative AR binding site ARR-2S-1
(GGATGAgggAGTCTC) and ARR-23-2 (GGATCAgeggACTCTC) and one presumed silent
mutant ARR-25-3 (GGATCAgegAGTCTC) were tested for their AR binding capacity (Figure
6A). Gel retardation experiments confirmed our hypothesis: AR binding to ARR-25-1 and
ARR-25-2 was almost compietely abolished; ARR-28-3 did not show a marked difference
in AR affinity as compared to ARR-25. AR(DBD) gel retardation with mutants with a higher
homology to the consensus ARE sequence (ARR-25-4 and ARR-2S-5:
GGATCAgpggAGTTCC and GGAACAggsTGTTCC, respectively) substantiated these
findings.

A 2§ 25-1 25-2 28-3 2§5-4 255

AR-DBD - + - 4+ - + - + -+ -+

ARR-25 : CAGGGATCAGGGAGTCTCAC

ARR - 28-1: G

ARR . 28.2 ; c
ARR - 253 ; c

ARR - 28-4 : 1C
ARR - 285 : A T OTC

FREE
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i 23 4 5§ 67 B 9 1011712
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Figure I11.6, Mutation analysis of the ARR-2S5 segment. (4) Gel retardation analysis of ARR-2S and
ARR-28 muianis with AR(DBD), 50x10 cpm ARR-2S (lanes 1,2) ARR-28-1 (lanes 3,4), —25-2 (lanes
5,6) -28-3 (lanes 7,8), -25-4 (lanes 9,10) and — 28-5 (lanes 11 and 12} were incubated with AR(DBD)
and analyzed by gel retardation assay as described in Materials and Methods. Sequences of ARR-28
and ARR-2S8 mutants are shown below the figure. The arrow indicates the position of the
AR(DBD}/probe complex. (B} Effect of the ARR-25-1, -28-2 and —25-3 sequences on PSA basal
promoter activity in LNCaP cells overexpressing the AR. ARR-2S and mutant ARR-25 oligo’s are
represented by triangles, the ARE(-170) by a black box and the TATA box by a hatched box. Mean
values of luciferase activity and induction levels and their respective SEM are from three independent,
duplicate experiments. Experimental details are as described in Figure 14. Closed bar: Activity in the
presence of RI881 (I nM); Open bar: activity in the absence of hormone.

Next, mutated 2S-elements were tested in LNCaP cells for enhancer activity, To this end,
three of the mutant oligonucleotides, 25-1, 28-2 (both abolishing AR-binding) and 28-3
(spacer mutation), were cloned in front of the minimal PSA promoter construct PSA-12-
LUC. PSA-2S-1-LUC and PSA-25-2-LUC were hardly more active than PSA-12-LUC upon
R1881 induction in AR co-transfected LNCaP cells (Figure 6B). Construct PSA-2S5.3-1.XIC
showed a 100-fold higher activity in the presence than in the absence of R1881. These data
strongly suggest the importance of the GGATCAgggAGTCTC motif in androgen-regulated
activity of the ARR in the PSA promoter.

Effect of glucocorticoid receptor overexpression on PSA promoter activity

Because on the one hand the DNA motif for high affinity AR and GR binding is identical
and on the other hand AR and GR might show specificity on individual promoters, we
investigated whether GR was able to mediate PSA promoter activity, LNCaP cells were co-
transfected with the GR expression plasmid PSTC-GR and selected PSA-LUC constructs.
Without GR co-transfection, no response of the different PSA promoters to dexamethasone
was observed (data not shown). As depicted in Figure 7A, the pattern of PSA promoter
activity induced by dexamethasone in the presence of GR turned out to be identical to AR
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Figure II1.7. Effect of glicocorticoid receptor overexpression on PSA promoter activity in LNCaP
cells. (4) LNCaP cells were transfected with PSA promoter construcis in the presence of the GR
expression plasmid PSTC-GR (see Materials and Methods for experimental details}. After transfection,
cefls were cultured in the presence or absence of 10 nM dexamethasone, Closed bar: activity in the
presence of dexamethasone; open bar: activity In the absence of hormone. Induction value of the
various prowoter constriicts is indicated to the right of each black bar. Absolute luciferase activity
and inductiont values are the means of at least four independent experiments performed in duplicate.
SEM of Iuciferase activity is given by the horizontal bar; SEM of induction factor is given in
parentheses. (B) Effect of the -400 to -366 region (ARR} on minimal PSA and TK promoter activity
in LNCaP cells overexpressing the GR. The ARR is represented by a hatched triangle, the ARE by a
black box and the TATA box by a hatched box. Further experimental details are as described in
Figure 74.
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mediated activity {(compare with Figure 1A): the ARE at position -170 could function as a
GRE {(glucocorticoid response element) and the ARR(-400 to -366) was needed for maximal
dexamethasone inducibility.

Co-transfection of LNCaP cells with PSTC-GR and the constructs containing one and three
copies of the ARR(-400) linked to the minimal PSA prometer or TK promoter showed a very
strong synergistic, dexamethasone induced activity (Figure 7B). So, the GR seems to act
exactly identical to the AR in activation of the PSA promoter. In fact, under the conditions
used, the GR is an even more potent stimulator of PSA promoter activity than the AR.
Cell specificity of ARR activity

To investigate whether or not steroid hormone induced activity of ARR(-400) was LNCaP
specific, PSA-12-LUC and TK-LUC constructs (see Figures 3 and 7B) and pARO or PSTC-
GR were co-transfected to several non-prostate cell lines: COS, HeLa, Hep3B and T47D.
In the non-prostate cell lings, the minimal PSA promoter construct PSA-12-1UC containing
the ARE(-170), is at least 2.5-fold less induced by R1881 and dexamethasone as compared
to LNCaP ceils. Essentially identical results were obtained in comparising AR and GR
induction of ARR-PSA and ARR-TK constructs. Both activated receptors were abie to induce
these promoters far better in LNCaP cells than in other cell types (AR/PSA-12.3-LUC: 42-
to 97- fold; GR/PSA-12.3-1L.UC: 26- to 48-fold; AR/TK-3-LUC: 18- to 54- fold; GR/TK-3-
LUC: 27- to 78-fold). Our data indicate that LNCaP cells contain one or more factors, which
- affect PSA minimal promoter activity and ARR(—400) activity. It is tempting to speculate
that this factor{s) directly or indirecily interacts with the steroid receptors bound to its
response elements.

Table IIL.1. Effect of R1881 (A} and dexamethasone (B) on ARR(-400) PSA promoter and ARR(-
400) TK promoter activity in COS, Hela, Hep3B, T47D and LNCaP cells co-transfected with (A)
the androgen recepior expression plasmid pARO and (B) glucocorticoid receptor expression plasmid
PSTC-GR.

CONSTRUCT RELATIVE INDUCTION (+/- hormone)’
LNCaPp cos Hela Hep3B T47D
PSA-12-LUC" 4,4 + 1.7 1.1+ 0.1 1.1+ 0.4 1.8 + 0.4 1.1+ 0.2
PSA-12.3-LUC 127 + 28 2,0 £ 0.3 3.1+ 0.8 3.14+¢0.8 1.3 + 0.2
TK-LUC 1.5 ¥ 0.2 1,1% 0.1 1.1 %+ 0.3 1.1 % 0.3 0.8 + 0.1
TK-3-LUC Bl + 22 2.1+ 0.4 2.0+ 0.9 4.4 % 2.0 1.5 + 0.3
PSA-12-LUC 8.9 £+ 2.3 1.3 % 0.3 3.5+ 0.8 3.6+ 1.2 1.8 + 0.4
PSA-12,3-LUC 361 + 83 9.7 £ 1.0 7.5 + 1.3 14 + 3.0 13 & 4.7
TK-LUC 1.7 £ 0.4 0.8 £+ 0.2 1.7 £ 0.7 1.0+ 0.1 1.11% 0.1
TK-3-LUC 468 + 101 13 £ 1.7 6.3 + 1.3 17 + 3.4 8.2 £ 2.6

'} Induction factor is the mean of three to seven independent, duplicate

.. experiments i SEM.
) Constructs are as described in Materials and Methods.
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DISCUSSION

In the present study, analysis of prostate-specificity and androgen-regulation of the PSA
promoter is performed in LNCaP cells, the only available prostate derived cell line, that
endogenously expresses the PSA gene in an androgen-dependent fashion (34). Two regions
in the PSA promoter were identified, which are essential for androgen stimuiation in LNCaP
cells.

The first region (ARE) encompassed the imperfect palindromic sequence
AGAACAgcaAGTGCT at -170 to -156 (see Figures 1B and 2). Comparison of this sequence
with a GGTACAnnnTGTTCT ARE/GRE consensus sequence (4-6) revealed four deviations.
However, none of these was at one of the six positions (positions 2,3 and 5 in each half-site),
most critical for high affinity AR binding and/or functional activity (4,6). The ARE(-170)
by itself gave rise to a weak activation of the PSA promoter (approx. 2-fold without pARO
co-transfection). It had to cooperate with the second androgen response region: ARR (-400
GTGGTGCAGGGATCAGGGAGTCTCACAATCTCCTG -366) for high, androgen induced
activity. This ARR contains a low affinity AR binding site. Results of both gel retardation
and transfection experiments indicate an important role of the sequence
GGATCAgegAGTCTC, which is a degenerated palindromic sequence (6 out of 12 positions
are identical to the consensus ARE; GGTACAnnnTGTTCT). Low AR affinity can probably
be explained by deviation from the consensus sequence at position 3 in the 5’-part (T instead
of A) and at position 5 (T instead of C) in the 3’-part of the palindromic sequence.

Although several androgen-regulated genes have been described, only few functional AREs
have been studied in detail. The mechanism of PSA promoter regulation by androgens seems
different from other genes studied in this respect. In the MVDP gene promoter, two ARE
sequences are present (35). Only the proximal ARE is functionally active, and no synergism
between the two AREs was detected. In the probasin promoter, aiso two fragments, which
are important for androgen-regulation of the promoter and which bind AR, can be found
(36,37). Although both sequences are able to interact with AR outside the probasin promoter
context, both AR binding sites are individually functionally inactive, even three copies of the
two separated AR binding sites fail to give rise to androgen-induced reporter gene activity.
This is in contrast to the AR binding sites in the PSA promoter, ARE(-170) and ARR-2S,
which are clearly independently active, and when multimerized act synergisticaily (23, and
this study).

Three candidate AREs have been found in the C3 gene; only one of them, Core II, C is
functionally active in transfection experiments (38,40). Activity of Core II is strongly
enhanced by surrounding sequences including candidate OCT-1 and NF—1 binding sites (41).

Functional synergism between multiple ARE-like sequences and binding sites for other
transcription factors has been found in the complex enhancer elements of the 20 kDa protein
and Slp genes. In the androgen responsive enlancer in the promoter of the Slp gene, three
tandemly repeated HRE-like sequences are present (42). Additionally, several non-receptor
binding elements contribute to the characteristic androgen response of this complex enhancer
(43). The first intron of the 20 kDa protein gene contains a cluster of three ARE-like haif
sites spanning a 39 bp fragment (N39) which shows AR binding and confers weak androgen
responsivity to a heterologous promoter, Additional sequences surrounding this cluster of
ARE-like sequences are needed for full activity of this enhancer (44}. These additional
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sequences include a region (D2) that shows high AR binding affinity and androgen induced
transcriptional activity, but no candidate ARE seguences were identified. Taking into
consideration the results obiained in our present study, which show that multiple weak AR
binding sites can give rise to strong androgen inducibility, weak AREs might be postulated
to be present in the D2 region. Like the Slp and C3 promoter, non-steroid receptor factors,
including OCT-1 are supposed to be involved in establishment of the full AR specific
response of the 20 kDa Protein promoter.

The complex promoters of the Slp and 20 kDa protein genes show an AR, but no GR
response in transfection assays, although both AR and GR are able to bind and induce
activity of smaller enhancer fragments (42,44). Both AR and GR are able to stimulate
probasin promoter activity however AR is markedly more potent than GR in this respect
(36). This in contrast to results on the PSA promoter presented in this study. Co-transfection
of LNCaP cells with PSA-LUC constructs and a GR expression plasmid showed that GR can
replace AR in high, steroid hormone regulated PSA promoter activation. This is not only
related to the ARE(-170), but is also true for the ARR at —400. Preliminary evidence
indicates that GR is also able to activate the promoter of the endogenous PSA gene in LNCaP
cells (Cleutjens, unpublished). From these findings we conclude that the apparent AR
specificity of the PSA promoter in LNCaP cells is due to the absence of other members of
the steroid receptor family in this particutar cetl line, The absence of PSA expression in GR
or AR positive, non-prostate cells must be explained by additional, inhibitory mechanisms
in these cells or absence of other essential regulatory proteins involved in PSA expression.

Transfection experiments further indicated that ARR(-400) and minimal PSA promoter
activity [including ARE(-170)] are cell dependent. We studied this aspect in more detail for
ARR (—400). Even in the presence of high levels of AR and GR, ARR(-400) activity in
LNCaP cells is much higher than in the non-prostate cell Hnes tested (Table ). This indicates
that in addition to AR or GR, other factors are involved in steroid receptor regulated PSA
promoter activation, These factors might be present in a higher concentration in LNCaP cells
than in the non-prostate cell lines tested. Candidates regarding ARR{-400) could be the
proteins detected in gel retardation experiments with the ARR(-400) and LNCaP nuclear
extract (Figure 4A), However, these factors are not androgen regulated (Figure 4B) and in
gel retardation experiments using nuclear extracts from the non-prostate cell lines COS,
T47D, HeLa and Hep3B essentially the same protein complexes could be found (data not
shown). The absence of LNCaP specific ARR{(-400)/ protein complexes may be due to a
refative weak or unstable interaction of these factors with the ARR(-400). Alternatively,
specific factors affect AR and GR activity by protein-protein interaction.
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Chapter 1V

SUMMARY

Androgen receptor (AR) positive LNCaP cells were stably transfected with a rat
glucocorticoid receptor (GR) expression plasmid. Ligand hinding studies in the generated cell
lines revealed high affinity binding of the cognate ligands to their receptors. Transfection
cxperiments with the newly derived cell lines showed that, like AR, GR can induce activity
of a PSA promoter fragment linked to the luciferase gene. Similarly, dexamethasone can
stimulate expression of endogenous PSA mRNA. Cell proliferation could be induced by
R1881. In contrast, dexamethasone treatment of the GR positive sub-lines had no stimulatory
effect on cell growth, In conclusion, the newly generated cell lines form: together with the
parental LNCaP cell line an attractive system to study the mechanism of specificity of steroid
hormone regulation of gene expression. In addition, these cells can be applied to identify
novel, steroid hormone-specific regulated gene(s).

INTRODUCTION

Steroid hormones affect many biological activities of the cell by modulating gene activity
via interaction with specific nuclear receptors (1-3). Upon ligand binding, steroid receptors
interact with specific DNA sequences and regulate the transcriptional activity of target genes
(1-4). The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), progesterone
receptor (PR) and androgen receptor {AR) bind with high affinity to a DNA element
composed of an inverted repeat, separated by a 3 bp spacer sequence. The consensus high
affinity binding site for GR, MR, PR, and AR (HRE: hormone response element) is identical
(5-8). Although there are genes which can be regulated by more than one specific steroid
hormone receptor, the biologicat function of the different receptors is quite distinct. This
presents the problem of specific gene activation in case multiple receptors, which recognize
the same DNA binding site, arc present in one and the same cefl, Af present it is essentially
unknown how this mechanism operates. Several mutually not exclusive mechanisms,
including subtle differences in receptor-DNA interaction, specificity of the interaction of the
receptor with other proteins, receptor levels and ligand availability have been proposed (1-3).

LNCaP is an androgen-sensitive human prostatic carcinoma cell line (9), which expresses
AR, but facks GR and PR (10,11). It was previously shown that growth of LNCaP cells,
maintained in steroid-depleted culture medium, is stimulated by the addition of androgens
(11). The syathetic androgen R1881 at a concentration of 107'® M increases the growth rate;
a higher R1881 conceniration is suboptimal to cell profiferation, and might even have no
stimulatory effect at all. Androgen treatment of LNCaP cells increases the mRNA level,
production and secretion of prostate specific antigen (PSA) (12-14).

In the present study we describe the generation and initial characterization of LNCaP
sublines, in which the GR was stably expressed. In this way a system was established for
comparison of AR and GR molecular and biological functions.
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MATERIALS AND METHODS

Cell culture

LNCaP prostate cells were cultured in RPMI 1640 supplemented with 5 % fetal calf serum
(Boehringer, Mannheim, Germany) and antibiotics. For transfection, cells were grown in
Dulbecco’s Modification of Eagle’s Medium supplemented with 5 % fetal calf serum.
Plasmids and probes

The rat GR expression plasmid PSTC-GR(3-795) and the selection plasmid pSV,Neo were
described previously (15,16). PSA-61-LUC was generated by integration of a 6 Kb HindIII-
HindIll (-6000/+12) fragment of the PSA promoter in the multiple cloning site of pL.LUC
(17). Southern and Northern blots were hybridized with a rGR cDNA fragment (nucleotide
2256-2543) obtained by PCR amplification with primers:
5" —GAGTCTCACAAGACACTTCG-3’ and 5’ —~GAAACATCCATGAGTACTG -3’ and
plasmid PSTC-GR(3-795) as template using standard methods. Northern blots were
hybridized with the 320 bp EcoRI-Clal fragment of PSA75 ¢DNA (18), and a 1.2 Kb Pstl-
PstI hamster actin cDNA fragment as a control.
Transfections
Stable transfection

LNCaP celis were transfected according to the calcium phosphate precipitation method
essentially as described (19), using 3 x 10° cells per 10 cm dish, 10 pg PSTC-GR(3-795) and
2 pug pSV,Neo. After overnight incubation with the precipitate, the culture medium was
repiaced by phosphate buffered saline (PBS), containing 15% glycerol {incubation for 90 sec
at room temperature). Subsequently, transfected cells were incubated in culture medium for
24 h. Next, cuiture medivm was replaced by maintenance medium supplemented with G418
(Gibco BRL, Grand Island, NY) at a concentration of 1.2 mg/mi. The resulting G418-
resistant clones were seeded into 96-well plates, and selected for GR expression by
immunohistochemistry {see below).
Transient transfection

The GR positive clones LNCaP-1B7 and LNCaP-1F5, and the parental LNCaP celis were
transiently transfected according to the calcinm phosphate method using 1 x 10° cells per
25cm® flask and 5 pg PSA-61-LUC. After overnight incubation with the precipitate, the
culture medium was removed and cells were shocked in phosphate buffered saling (PBS),
coniaining 15% glycerol (90 sec at room temperature). Subsequently, transfected cells were
incubated in culture medium in the absence or presence of 10 nM of the synthetic
glucocorticoid dexamethasone (Dex) (Sigma, St. Lounis, MO) or 1 nM R1881 (DuPont NEN,
Boston, MA) for 24 h. Transfections were performed three times in duplicate, using two
independent plasmid isolates. Luciferase activities were corrected for variations in protein
concentrations in 100 pl cell extract samples.
Luciferase assay

Cells were washed once in PBS, and subsequently lysed in 300 ul lysis buffer (25 mM
Tris-phosphate pH 7.8, 8§ mM MgClL, ImM DTT, 1 % Triton X-100, 15 % glycerol). Next,
100 p1 0.1 pM luciferin (Sigma)/ 0.25 uM ATP was added to 100 pl extract, and luciferase
activity was measured in a LUMAC 2500 M Biocounter (LUMAC, Landgraaf, The
Netherlands). After a delay of 2 sec (according to the supplier), the light emission during 5
sec was recorded.
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Immunohistochemistry
Immunostaining for GR was performed with the monoclonal anti-GR (rat) antibody Mab

7 (20). Cells were seeded at a density of 3 x 10° cells per well on sterile micro slides i four-
well tissue culture plates (Heraeus Instruments, Hanau, Germany) in maintenance medinm
supplemented with G418, and cultured until 50-60% confluence. Next, 10 nM Dex was
added, and the incubation was continued for 24 h, Cells were washed in PBS, and fixed for
10 min in 10% phosphaie-buffered formalin (pH 7.4}. Subsequently, the slides were rinsed
in PBS (pH 7.4) and attached cells were made permeable in methanol (-26°C, 5 min), and
acetone (-20°C, 2 min). After rehydration in PBS, the slides were incubated it 5% non-
immune rabbit serum in PBS followed by overnight incubation in 1: 1000 diluted monoclonal
antibody Mab7 at 4°C. Excess antibody was removed and rGR immunoreactivity was
visualized wsing rabbit anti-mouse immunoglobulin (DAKO, Glostrup, Denmark) as
secondary antibody, and mouse monoclonal PAP complexes (DAKQ) as third-step reagent.
After three PBS washes, the slides were incubated with diaminobenzidine. The reaction was
stopped in water, Cells were counterstained with Mayers hematoxylin,

Southern and Northern blot analysis

Total cellular DNA of LNCaP and GR positive sublines LNCaP-1F5 and LNCaP-1B7 was
isolated using standard procedures (21). 10 pyg DNA was digested with EcoRY for 16 h,
clectrophoresed on 0.8 % agarose gel and transferred to a Hybond N* membrane
(Amersham, Cardiff, UK). Filters were hybridized at high stringency with random primed
#p-iabeled probes. Both DNA transfer and filter hybridization were carried out according
to the protocol of the manufacturer.

Isolation of totai celluiar RNA from the different cell lines was carried out by the
guanidinium thiocyanate method (22). Glyoxal denatured RNA (10 ug/lane) was separated
by electrophoresis on a 1 % agarose gel and transferred to a nylon membrane (Gene Screen,
DuPont NEN, Boston, MA). The blot was hybridized with random primed *P-labeled rGR,
PSA or actin cDNA probes in 50 % formamide at 42°C, using standard conditions.

Radio ligand binding assay

Cells were cultured in maintenance medium uatil 50-60% confluence. To deplete for
steroids, cell culturing was continued in RPMI 1640 supplemented with dextran-charcoal-
stripped {dcc) serum for 48 h.

[PH]-R1881 (87 Ci/mmol) and unlabeled R1881 (methyl-trienolone) were purchased from
DuPont NEN. [PH}-Dex (94 Ci/mmol) was obtained from Amersham. For radio ligand
binding analysis, cells were rinsed in PBS and harvested as a single-cell suspension by
trypsinization. Cells were washed four times, counted and resuspended in ice cold PBS. In
order to measure the ceflular AR and GR content and figand affinity of both receptors, cells
were incubated with serial PH]-R1881 dilutions (0.125-16 nM, in the absence and presence
of a 100-fold molar excess of unlabeled R1881) or [*H]-Dex dilutions (0.5-32 nM, in the
absence and presence of a 100-fold molar excess of uniabeled Dex) for 90 min at room
temperature. Free steroid was removed by extensive washing of the cells in ice cold PBS.
Radioactivity was measured in a scintillation counter. Specific binding of PHJ}-R1881 and
[PH]-Dex was calculated by subtraction of non-specificatly bound radioactivity from total
bound radioactivity, and used for Scatchard analysis with the radioligand binding analysis
program *Ebda/Ligand’ by GA Pherson from Elsevier-BIOSOFT. All assays were performed
in triplicate.
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Cell growth studies
Cells were trypsinized, seeded in RPMI medium containing 5% fetal calf serum in 25 cm?

tissue culture flasks at a density of 5 x 10 cells, and cultured for three days. Subsequently,
medium was replaced by medium containing 5% dce serum, and the incubation was
continued for an additional 3 day period. At this time point (¢t=0), medium was replaced by
RPMI mediwm containing 5 % dcc serum and indicated hormones at different concentrations.
R1881 was added to final concentrations of 10", 0% and 10° M; Dex was added to final
concentrations of 1G'%, 10° and 108 M, respectively. Control cultures without steroids were
supplemnented with 0.1 % (v/v) ethanol. At day 4, medium was renewed. At day 8, cells
were washed in PBS, trypsinized and the cell sumber in each tissue culture flask was
determined using a Biitker's cell counting chamber. Experiments were performed in
triplicate.

RESULTS

Generation of GR expressing L.NCaP transfectanis

LNCaP cells were transfected with the GR expression vector PSTC-GR and the pSV,Neo
selection plasmid, Cells were grown in medium supplemented with G418 to select for
fransfected cells. After 3 weeks, G418 resistant clones were picked, Clones were
immunohistochemically stained with the GR antibody MAb 7. Out of sixty G418 resistant
clones, five showed strong reactivity with the antibody, indicating high GR expression.
Thirty-two clones showed [ow or heterogeneous GR expression, whereas in the remaining
clones, no GR immunoreactivity was observed. Staining of two clones with high levels of
GR expression (LNCaP-1B7 and LNCaP-1F5), is shown in Figure 1A,B; staining of the
parental LNCaP cells for GR was negative (Figure 1C). Note that the morphology of GR+
sublines is different from that of the parental cells, indicating a so far unexplained specific
effect of the activated GR on cell physiclogy. LNCaP-1B7 and LNCaP-1F5 were selected
for more detailed studies.
Chargcterization of LNCaP-1B7 and LNCaP-1F5

Southern blot analysis of EcoRI digested genomic DNA isolated from the LNCaP-1B7 and
LNCaP-1F5 transfectants, demonstrated the presence of one or more copies of the complete
CMV-GR cDNA fragment in both clones (lanes 2 and 3, Figure 2A; indicated by an arrow).
The rat GR probe showed cross-hybridization to twe fragments corresponding to the
endogenous human GR gene (bands a and b; see also lane 1, containing parental LNCaP
DNA). Both LNCaP-1B7 and LNCaP-1F5 DNA contained also at least one incompiete
PSTC-GR fragment (bands ¢ and d). Densitometric scanning of the blot revealed the presence
of 6 to 7, and 2 complete copies of CMV-GR ¢DNA in LNCaP-1B7 and LNCaP-1F5,
respectively.

Northern blot anaiysis of LNCaP-1B7 and LNCaP-1F5 RNA showed expression of GR
mRNA of the expected size (2.7 Kb} in both clones, no hybridization signal was observed
in the parental LNCaP cell line (Figure 2B).
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Figure IV. 1. Immunohistochemical staining of GR positive LNCaP sub-lines LNCaP-IB7 (4),
LNCaP-1F5 (B) and the parental LNCaP cells (C) with the anti rat-GR monoclonal antibody Mab7,
utilizing the indirect PAP technigue. Cells were counterstained with Mayer’s hematoxylin. Prior to
immunolistochemical analysis, cells were cultured for 24 It in the presence of Dex.
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Figure IV.2, Southern and Northern blot analysis of the integrated GR ¢DNA (A), and GR mRNA
expression (B) in GR+ LNCaP sublines and parental LNCaP cells. (A) Southern blot analysis of
EcoRI digested genomic DNA from LNCaP (lane 1), LNCaP-1B7 (lane 2), and LNCaP-1F5 (lane 3).
DNA (10 pgllane) was hybridized with a rat GR ¢DNA probe, homologous to hunan GR cDNA.
Bands a and b: endogenous human GR gene; bands ¢ and d. integrated, partial rGR cDNA fragments.
The arrow indicates the position of integrated, complete CMV-GR ¢DNA copies. (B) Northern blot
analysis of 10 ug total RNA from LNCaP (lane 1}, LNCaP-1B7 (lane 2}, and LNCaP-1F5 (lane 3)
hybridized with a rat GR cDNA probe. The lower panel shows §-actin mRNA expression.
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Radio-ligand binding assays on LNCaP, LNCaP-1B7 and LNCaP-1FE5 ceils were
performed to establish the number of GR and AR molecules per cell, and the respective
dissociation constanis for both receptors (Figure 3). The parental LNCaP cell line showed
for R1881 a B, of 75 pM, which is equivalent to approximately 15,000 AR molecules per
cell (see legend to Figure 3). LNCaP-1B7 and LNCaP-1F5 contained approximateiy 30,000
and 32,000 AR molecules per cell, respectively, which is comparable to parental LNCaP
cells (see above), All three cell lines showed an identical binding affinity for R1881 (K, 1.1
oM).
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Figure IV.3, Analysis of glucocorticoid and androgen binding activity in parental LNCaP and the
GR transfectant I1B7 and 1F5 cells, Scatchard representation of R188I binding activity (panel A) and
Dex binding activity (panel B} of LNCaP, LNCaP-1B7 and LNCaP-1F5 cells. Cellular AR and GR
concentrations were deduced from (B, (M) x N_)/number of cells per liter (3xIF in panel 4, and
Sx I6P in panel B). Reeeptor bound £ Hj-steroid was measured by a whole cell assay in the presence
and absence of a 100-fold molar excess of unlabeled hormone. The valiees shown are the mean of a
triplicate experiment, and represent specific binding after subtraction of nonspecific binding.
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As expected, in the parental LNCaP cell line, binding of Dex could not be detected. From
the B, values it could be deduced that LNCaP-1B7 contains approximately 31,000 GR
copies per cell, and LNCaP-1F5 115,000 copies. The K; for Dex binding was 3.1 aM in
both LNCaP sublines.

GR activity in GR positive LNCaP sublines

To investigate whether the GR present in LNCaP-1B7 and LNCaP-1F5 cells was
functionally active, the cells were transiently transfected with PSA-61-LUC, which contains
a 6 Kb PSA prometer fragment. This promoter contains a strong androgen dependent
enhancer region, approximately 4.2 Kb upstream of the transcription start site of the PSA
gene (17,23). As expected, PSA-61-LUC showed clear, R1881 induced luciferase activity
in transfected parental LNCaP celis. No luciferase activity was detected upon incubation of
the PSA-61-LUC transfected parental LNCaP cells with Dex (Figure 4). Transient
transfection of LNCaP-1B7 and LNCaP-1F5 cells with the PSA-61-LUC construct resulted
in a comparable R1881 induced luciferase activity, both in absolute luciferase activity and
in induction level (1310- and 1940-fold, respectively). Dex induced a slightly higher PSA-61-
LUC activity, clearly indicating the transactivating capacity of the GR encoded by the stably
integrated rGR expression vector (Figure 4).
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Figure IV.4, R1881 and Dex regulation of the PSA promoter activity in LNCaP and GR positive
LNCaP sublines, LNCaP, LNCaP-1B7 and LNCaP-1F3 cells were transfected with the PSA-61-LUC
reporter gene construct as described in Material and Methods. After overnight incubation with the
precipitate, cells were incubated for 24 I either in the presence or absence of I nM R1881 or 10 nM
Dex. Activity in the absence of hormone is indicated by a solid bar, activity in the presence of R1881
with a hatched bar and in the presence of Dex by a grey bar. Fold- induction is displayed on top of
the bars.
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Regulation of endogencus PSA mRNA expression
In previous studies we and others (12-14) have shown that PSA mRNA expression is

induced upon androgen incubation of LNCaP cells. To investigate whether GR can replace
AR in induction of the endogenous PSA gene, we performed Northern blot analysis with
RNAs isolated from the parental LNCaP cell line, and from LNCaP-1B7 and LNCaP-1F5
celis, grown in the absence and in the presence of hormone (Dex or R1881). Hybridization
with a PSA specific cDNA probe demonstrated that GR can replace AR in high, steroid
hormoene induced expression of the PSA gene (Figure 5). In the parental LNCaP cell ling,
PSA mRNA expression was induced by R1881 but not by Dex, In contrast, in the two GR
positive clenes, Dex treatment clearly resulted in stimufation of PSA mRNA expression,
although to a slightly lower level (approximately 3-fold) than R1881 upregulated PSA
mRNA.

R1881 -+ - -+ - -+ -
Dex - -+ - -+ - -+

PSA

ACTIN

Figure IV.5. Expression of the rat GR renders the endogenous androgen-regulated PSA gene
inducible by Dex in the LNCaP sublines 1B7 and 1F5. Northern blot analysis of 10 ug tofal RNA
of LNCaP-1B7, LNCaP-1F5 and LNCaP cells hybridized with a PS4 ¢cDNA probe. Cells were treated
Jor 24 h with Dex, RI881 or were grown in the absence of hormone. The lower panel shows
hybridization of the B-actin cDNA probe as a control.

Regulation of cell proliferation

Growth of LNCaP cells depends on androgens in a concentration dependent fashion.
Previous studies indicated a bell shaped dose-response curve for the stimulatory effect of
androgens {11). Maximal growth stimulation of R1881 was observed at a concentration of
0.1 nM. To find out whether GR was able to replace AR in growth regulation of LNCaP
cells, we compared the effects of different R1881 and Dex concentrations on growth of
LNCaP cells, and of the two GR positive LNCaP sublines. At day 8 after addition of
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hormone, all three cell lines showed a clear growth stimulation upon treatment with 0.1 nM
R1881, and to a somewhat lower extent at 1 nM R1881. However, at none of the tested Dex
concentrations a growth stimulatory effect was observed (Figure 6). Similar negative results

were obtained with

hydrocortisone (data not shown). These results clearly indicated that GR

was unable to replace AR in growth stimulation of LNCaP cells.
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Figure IV.6. Effects of Dex and RI881 on cell growth of parental LNCaP, and the GR+ 1B7 and

1F5 cells. At day 0,

washed, trypsinized

and at day 8 qf incubation in the absence or presence aof hormone, cells were
and counted. The values shown are the mean of experimenis in triplicate.
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DISCUSSION

In this paper we describe the generation and properties of LNCaP sublines, that express
not only AR but aiso GR. These novel cell lines facilitate the direct comparison of GR and
AR effects on celluiar functioning. Furthermore, they can be employed for investigation of
interference between GR and AR activated molecular and biological processes. We
demonstrated that AR and GR positive cells behave identically in up-regulation of the
expression of a transfected PSA promoter driven reporter gene, and the expression of the
endogenous PSA gene. Interestingly, they were found to differ in hormone induced effects
on cell proliferation.

At Teast part of the effects of steroid hormone receptors on gene expression is on
transcription initiation, Upon ligand binding, steroid receptors interact with specific DNA
sequences (IIREs), and regulate the transeription of target genes. The
GGT/AACAnTGTTCT consensus sequence for high affinity DNA binding of GR, MR,
PR and AR is identical (5-8). Despite this common DNA binding site, the different receptors
ntediate distinct cellular responses. Many independent mechanisms to achieve specificity of
the steroid hormone response have been proposed (see for reviews 3 and 24). These include
differential affinities to natural receptor binding sites, or to binding sites in their natural DNA
context (25-27), differential affinity to general and specific transcription factors (28-31),
differences in interaction with receptor specific accessory proteins, or coactivators (32-34),
differential modification of specific chromatin structures (35,36), differences in cellular
concentration of the specific receptors (37}, and variations in ligand availability (38,39).

The observation that PSA mRNA was Dex inducible in the GR expressing LNCaP sublines
showed that the steroid receptor content determines at least in part the specific activation of
the PSA gene in wild type LNCaP cells. Transient transfection of the 6 Kb PSA promoter
to the LNCaP sublines resulted also in activation by both AR and GR. In contrast, in case
of the MMTYV promoter, differences have been reported on the effect of GR and PR on
transiently transfected reporter gene constructs and stably integrated plasmids (35,36). It
appears that the native chromatin structure can prevent PR activation, and permits GR
stimulation of the stably integrated target gene,

AR activation of the PSA promoter involves at least three AREs, two in the 600 bp
proximal promoter region, and one in a far upstream enhancer region (17,40). Although
uitimate PSA promoter induction is comparable for AR and GR, it cannot be excluded as yet,
that AR and GR affect the individual regulatory regions differentially. Such an observation
has been made for GR and PR activation of the MMTYV promoter, which contains four
HREs. Differences might be accounted for by distinct chromatin structures over the
individual HREs, and the ability of the different receptors to affect these structures, and/or
the interaction with other specific transcription factors (31).

As shown above, GR expression cannot be detected in wild type LNCaP cells, this in
contrast to normal human prostate tissue (41). However, in normal prostate highest GR
expression is in the stromal compartment. In epithelial cells expression of AR appears much
higher than GR expression. In prostate cancer, GR expression seems even to decrease.
Therefore, GR might not be a major factor in PSA expression. No data are available about
PR expression in prostate tissue, another candidate for regulation of PSA expression (17).
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The stimulatory effect of androgens on LNCaP cell proliferation shows a befl-shaped dose-
response curve (11,42). At low androgen concentrations (up to 1079 M R1881), LNCaP cells
proliferate in a dose dependent manner; at higher hormone concentration, the proliferation
rate is less. The molecular mechanism of growth stimulation by androgens, including the
remarkable dose response is not fully understood, although it has been proposed that TGF-31
mediates at least part of the growth arrest observed at high androgen concentration (43). The
cefl growth studies clearly demonstrated that Dex was unable to induce proliferation of
LNCaP-1B7 and LNCaP-1F5 cells. The molecular mechanism responsible for the differential
effects of glucocorticoids and androgens on growth remains to be investigated. In a probably
oversimplified view it can be hypothesized that a limited number differentially expressed
genes are involved. Differential AR and GR regulated TGFS and other growth factors or
inhibitors, and their corresponding receptors should be considered i this regard.

Using a differential display PCR approach, we initiated a search for differentialty
expressed genes in the AR+GR -+ LNCaP sublines. Although many genes appeared to be
regulated by both GR and AR, so far one novel mRNA was detected, that could be up-
regulated by AR, but not by GR (44). This observation demonstrates the validity of the
model here presented. We expect that further analysis of the regulation of expression of this
gene will provide information about the mechanism of AR specificity.
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Chapter V

ABSTRACT

Prostate-specific antigen is expressed at a high level in the luminal epithelial cells of the
prostate, and is absent or expressed at very low levels in other tissues. PSA expression can
be regulated by androgens. Previously, two fanctional androgen response elements were
identified in the proximal promoter of the PSA gene. In order to detect additional, more
distal contro! elements, DNasel hypersensitive sites (DHSs) upstream of the PSA gene were
mapped in chromatin from the prostate derived cell line ENCaP grown in the presence and
absence of the synthetic androgen R1881. In a region 4.8 to 3.8 kb upstream of the
transcription start site of the PSA gene, a cluster of three DHSs was detected. The middle
DNAsel hypersensitive site (DHSIL, at approximately — 4.2 kb) showed strong androgen
responsiveness in LNCaP cells, and was absent in chromatin from HeLa celis. Further
analysis of the region encompassing DHSII provided evidence for the presence of a complex,
androgen responsive and cell specific enhancer. In transient transfected LNCaP cells, PSA
promoter constructs containing this upstream enhancer region showed approximately 3000-
fold higher activity in the presence thae in the absence of R1881. The core region of the
enhancer could be mapped within a 440 bp fragment. The enhancer showed synergistic
cooperation with the proximal PSA promoter, and was found to be composed of at least three
separate reguiatory regions. In the center, a functionally active, high affinity androgen
receptor binding site (GGAACATATTGTATC) could be identified. Mutation of this element
almost completely abolished PSA promoter activity. Transfection experiments in prostate and
non-prostate cell lines showed largely LNCaP cell specificity of the upstream enhancer
region, although some activity was found in the T47D mammary tumor cell line,

INTRODUCTION

Prostate-specific antigen (PSA) is a kallikrein-like serine protease, that is almost
exclusively synthesized by the luminal epithelial cells of the humar prostate. It is well known
as a prostate tumor marker {1,2). The PSA gene is a member of the human kallikrein gene
family. Further members of the kallikrein gene family are the hGK-1 gene, which is also
expressed in the prostate, and the tissue kallikrein gene (KLK1), which is expressed in the
pancreas and kidney {(3-6). The three genes are clustered in the order [KLK-1]-{PSA}-[hGK-
1], in an area of 60 kb on human chromosome 19q13.2-13.4 (7). The PSA and hGK-1 genes
are separated by 12 kb, the distance between KLK1 and PSA, which are transcribed from
opposite strands is approximately 31 kb (7). PSA expression does not only show cell
specificity, but is also tightly regulated by androgens, as mediated by the androgen receptor
(AR) (8-12). The strong tissue specificity makes the PSA promoter a good candidate through
which to deliver therapeutic genes in prostate cancer.

Two functionally active AR binding sites (androgen response elements, or AREs) were
identified in the proximal PSA promoter, at positions -170 (ARE-I} and -394 (ARE-ID),
respectively (11,13}, Although the proximal PSA promoter, including ARE-I and ARE-II,
is more active in LNCaP prostate cells than in non-prostate cells, its activity is relatively
low. This low level of activity suggested that the proximal PSA promoter is not sufficient to
account completely for androgen regulation of the endogenous PSA gene, as observed in
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LNCaP cells (11), This indicated to us that additional cis-acting control elements residing
ouiside the proximal promoter might contribute fo androgen regulated PSA gene expression.
For several strong, tissue specific promoters, like those of the beta-globin and tyrosine amino
transferase (TAT) genes, it has been well established that important contro! elements are
focated in regions far upstrcam of the proximal promoter (14-16). These distal enhancers
cooperate with the proximal promoter for high expression of the specific gene.

To identify putative regulatory efements upstream of the PSA gene, DNasel hypersensitive
sites (DHSs) were mapped in chromatin from LNCaP prostate cells. Functional analysis of
a DNasel hypersensitive region far upstreamn of the PSA gene showed the presence of a
complex, androgen regulated enhancer. In this study we present a detailed analysis of this
strong enliancer, which contains a functionally active, high affinity AR binding site (ARE-
1IT). Furthermore, we compare the AR binding affinity and the functionality of this novel
ARE with that of the previously identified AREs -I and -1I (11,13)}. An abstract describing
parts of this work has been published previously (17).

While this work was in progress, Schuur et al. (18) reported the identification of a 1.6 Kb
upstream enhancer fragment (-3.7 to -5.3). This fragment encompasses the 440 bp core
enhancer region, which is the basis of the present study.

RESULTS

Mapping of DNasel hypersensitive sites in the PSA upstream region

In a previous study we identified two regions in the PSA proximal promoter which are
involved in androgen regulation (13). A functional active, high affinity, AR binding site,
ARE-T (AGAACAgcaAGTGCT), was found to be present at position -170. ARE-I by itself
gave rise to a weak (2-fold) stimuiation of the PSA promoter activity in the presence of
R1881. ARE-I had to cooperate with a second, low affinity AR binding site, ARE-II
{GGATCAgggAGTCTC) at position -394 for maximal {(approximately 6-fold} androgen
induction of proximal PSA promoter activity in transfected LNCaP cells.

To identify additional regulatory elements, we mapped DHSs in the 31 kb region between
the PSA and KLKI genes in chromatin from the prostate derived celi line LNCaP, grown in
the presence and absence of androgens, and in HeLa cell chromatin, DNA from DNasel
treated nuclei was digested with EcoRI and evaluated for location of DHSs by Southern blot
analysis with the appropriate hybridization probes. With two different probes, DHSs could
be found (Figure 1). No other DHSs were detected over the 31 kb region with any of the
probes tested (data not shown). Hybridization of EcoRI digested DNA from LNCaP cells
with a 1.1 kb HindIII-EcoRI fragment, spanning exon 1 and intron 1 of the PSA gene,
showed one DHS (DHSIV), which was most prominent in the presence of R1881 (Figure
1C). This DHS mapped to the proximal promoter region. Hybridization of genomic DNA
from R1881 treated LNCaP cells with a 0.5 kb EcoRI-HindIII probe (-6 kb) reveaied the
presence of a cluster of three DHSs, approximately 4 kb upstream of the PSA gene (Figure
1A). The position of this cluster of DHSs could be confirmed by hybridization with a more
downstream located probe (data not shown). Analysis of the same region in chromatin from
LNCaP celis grown in the absence of hormone showed that DHSII af -4.2 kb is clearly
androgen regulated. Intensity of DHSI, at approximately -4.8 kb, is also influenced by the
presence of R1881 during LNCaP culturing. The weak DHSHI (at — 3.8 kb) could be found
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both in the absence and presence of R1881. Although weak, DHSI and DHSIIT might also
be present in chromatin from HeLa cells, which do not express PSA (Figure 1B). In contrast,
DHSII was clearly absent in Hel.a cell chromatin, indicating cell specificity.
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Figure V.1, DNAsel hypersensitive sites in chromafin upstream of the PSA gene. Southern
blot analysis of genomic DNA from nuclei of LNCaP (A, C) and Hela (B) cells incubated with
increasing amounts of DNasel (lanes 2-7, and 9-14 in A; 2-6 in B; and 2-7, and 9-14 in C;
Lanes I and 8 in A; I in By I and 8 in C are controls without DNAsel treatment), and
digested with EcoRd. Hybridization was with an EcoRI-Hindill probe at -6 kb (A,B) or a
HindII-EcoRI probe at +1 kb (C). Nuclei were isolated from LNCaP cells grown in the
absence (A, lanes 1-7; C, lanes 1-7) or presence of Ri881 (A, lanes 8-14; C, lanes 8-14),
or (B) from Hela cells grown in 5% complete foetal calf serum. (D) Schematical
representation of the PSA gene, Black boxes represent the five exons of the PSA gene.
Hybridization probes are indicated by horizontal bars in the partial restriction map. Positions
of DHSs are indicated by arrows (DHSI-IV).

Functional analysis of the Dnasel hypersensitive region upstream of the PSA gene

To identify the function of the DNA segment containing the upstream DHSs, a 6 kb PSA
promoter fragment was inserted upstream of the luciferase reporter gene (PSA-61-LUC), and
the activity of this fragment was compared with that of 2.2 kb (PSA-1-LUC) and 632 bp
(PSA-4-LUC) PSA promoter fragments. Transient {ransfection to LNCaP cells showed for
PSA-61-LUC a much higher (3000-fold) activity in the presence than in the absence of
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R1881 (Figure 2A). PSA-1-LUC and PSA-4-LUC gave rise to a 6-fold and 4-fold induction,
respectively, upon hormone treatment. These experiments clearly indicated the presence of
a very potent enhancer between -6 and -2.2 kb,
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Figure V.2, Androgen regulation of the PSA promoter in LNCaP cells. (A) LNCaP cells were
transiently transfected with PSA-LUC constriicts as described in Materials and Methods. Following
4 I incubation with the plasmid precipitate, transfected cells were caltured for 24 h in the absence
or in the presence of RI1881 (I nM). The absolute activity and relative induction facior were
calculated as the mean of four or more independent experiments, which were done in duplicate.
Closed bar: Activity in the presence of RI881; open bar: activity in the absence of R1881, The SEM
of the absolute activity is represented by a horizontal stripe. The induction level is indicated at the
right side of the bars. Positions of ARE-I and ARE-II in P54 promoter constructs are represented by
black boxes. Positions of DHS 1, I and I are indicated Dy arrows, (B} Partial restriction map of the
PSA promoter. "Sall” represents the position of an artificial Sall site derived from the border of a
human genomic DNA fragment in lambda FMBL3,

To map this upstream region in more detail, a 2.2 kb Xbal-Stul fragment (see Figurc 2B
for a partial restriction map of the PSA promoter), encompassing the three upstream DHSs,
was inserted in front of the proximal PSA promoter in PSA-4-LUC, which starts at the
EcoRl site at -632, and which contains ARE-1 {-170) and ARE-II (-394) (13) (Figure 3A),
giving rise to construct PSA-64-s-LUC. Transfection of PSA-64-s-LUC to LNCaP cells
resulted in an even higher (over 6000-fold) induction of promoter activity upon R1881
activation (Figure 3A), indicating that the upstream enhancer activity resides within this 2.2
kb fragment. The 2.2 kb Xbal-Stul fragment in the opposite orientation gave rise to a similar
high activity (PSA-64-as-LUC in Figure 3A).
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Figure V,3. Identification of the androgen regunlated core enhancer rvegion, upstream of the PSA
gente. (A) Detailed deletion mapping of the upstream region of the PSA gene in transfected LNCaP
cells, Experimental details of the transfections are described in Materials and Methods, and in the
legend to Figure 2A. The activity of the PSA-61-LUC construct in the presence of R1881 is set at 100
%. The mean of the luciferase activity and the relative induction levels are from at least four
independent experiments. (B) Sequence of the 440 bp BstEII-Pstl upstream core enhancer fragment.
Tmportant restriction sites are indicated above the sequence, The ARE-II sequence is underlined, with
the two half sites in capitals. (C) Effect of the core enhancer region on TK promoter activity in
LNCaP cells. The hatched box represents the 440 bp core enhtancer. Experimental details are as in

Figure 24,
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To determine the borders of the upstream enhancer region, a series of truncated fragments
was linked to the proximal PSA promoter in LUC reporter gene constructs. Both PSA-73-
LUC (1 kb Pstl-BamHI) and PSA-74-LUC (0.9 kb Pstl-Pstl) showed an induction and
absolute activity, which was approximately 50% of PSA-64 activity. A further 200 bp 3’
truncation in construct PSA-78-LUC (Pstl-EcoRV) resulted in a 4-fold drop of activity upon
R1881 treatment, Similarly, defetion of the distal end (PSA-83-LUC), resulted in an 8-fold
reduction in activity. The 440 bp BstEI-Pstl fragment (PSA-85-LUC) turned out {o be the
smallest fragment with strong enhancer activity (Figure 3A). We defined the BstEI-Pstl
fragment as the core enhancer. The sequence of this core enhancer is shown in Figure 3B.
Because further 5'- or 3'- deletion resulted in a partial decrease of core enhancer activity,
fwo or more separate enhancer elements must be present in this fragment. Most accurate
cafculations of the positions of DHSs -1, -II, and -1l showed that DHSII is located within the
core enhancer fragment, however, this is not the case for DHSI and DIISIT. Most likely,
DHSI is situated close to the Pstl site at -4.8 kb, and DHSIII close to the BamHI site at -3.8
kb (see Figure 2B).

To find out whether core enhancer activity was directly androgen regulated, the BstEII-PstI
fragment was linked in both orientations to the TK promoter (TK-85-s-LUC and TK-85-as-
LUC, respectively), and LNCaP cells were transfected with these constructs (Figure 3C).
The result clearly showed that this 440 bp fragment contained orientation independent,
intrinsic androgen responsive enhancer activity. This observation correlated with the strong
androgen regulation of DHSII, linking resuits of the transient transfection studies with the
activity of the promoter of the endogenous PSA gene. Additionally, the resuits indicated
synergistic cooperation between the upstream enhancer and the proximal PSA promoter,
because PSA-61-LUC and PSA-85-LUC were considerably more active than TK-85-LUC
(Figures 2A, 3A and 3C, and data not shown).

Identification of an androgen response element in the core enhancer region

To identity candidate AR binding sites, DNasel footprints were determined over four
overlapping core enhancer segments, utilizing the purified AR DNA binding domain (AR-
DBB). The only clear protection that was observed, was located in the middle part of the
fragment, over the sequence 5-ACTCTGGAGGAACATATTGTATCGATT-3’, directly
upstream of the Clal site (Figure 4A). The protected area contained the sequence
GGAACATGTATC, which shows high homology (overall 9 out of 12 bp), with the
consensus sequence GGT/AACAnnTGTTCT for high affinity AR binding (19). Competition
was found with a 100-fold excess ARE consensus oligo, but not with an excess of an NF-1
consensus oligo (Figure 4A, lanes 4 and 5), indicating specificity of the interaction. Although
both the BstEII-Sail and the EcoRV-Pstl subfragments contributed to maximal activity of the
core enhancer (Figure 3A), AR binding was not observed in one of these fragments (data not
shown). Gel retardation analysis of a double stranded oligonucleotide encompassing the
upstream AR binding site (ARE-III: ggaGGAACAtatTGTATCgat) with AR-DBD confirmed
that this fragment contains a specific, high affinity AR binding site (Figure 4B).

To test whether ARE-III was functionally active, the sequence was mutated to
GCATAATTCAAC in TK-85-s-LUC, resulting in construct TK-85-I1-LUC. In transfection
experiments, the mutated enhancer was no longer R1881 inducible (Figure 4C). This not only
indicated that ARE-III was functionally active, but also provided evidence for a pivotal role
of ARE-III in androgen regulation by the core enhancer region.
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Figure V.4. Identification of a functionally active AR binding site in the core enhancer region. (4)
DNAsel footprint analysis over ARE-III. The lower strand of pHS2 ("Sall"-EcoRV fragment in the core
enthancer} was 32P-end labelled, digested with DNasel in the absence {lanes I and 6} and presence
of 10 (lane 2) and 20 pmol (lanes 3-5) AR(DBD) fusion protein, and subjected to gel electrophoresis
(see Materials and Methods). Lanes 4 and 5: competition with a 100-fold excess double stranded non
specific (NF-1 consensus oligo, lane 4), and specific oligonucleoride {ARE consensus, fane 5). Maxam
and Gilbert sequence reactions are run alongside the footprint (G and G+4). The sequence of the
protected areq is depicted at the right. The two ARE-II half sites are in capitais. LS: lower strand;
US: upper strand. (B} Gel retardation analysis of the ARE-III*AR(DBD) complex. Experimental
details are as described in Materials and Methods. Lane 1. free ARE-III probe; lanes 2-5: ARE-IIl
probe incubated with AR(DBD). Lanes 3-5: competition with a 100-fold excess ARE-II oligo (lane
3}, ARE consensus oligo (lane 4) and NF-I consensus oligo {lane 5}. The arrow indicates the position
of the AR-IIFFAR(DBDY} complex. The ARE-II sequence is presented below the figure, (C) The effect
of ARE-III inactivation on the androgen regulated core enhancer activity in transiently transfected
LNCaP cells. Experimental details are as described in Materials and Methods, and in the legend to
Figure 24. Closed bar: Activity in the presence of R1881 (1 nM); Open bar: activity in the absence
of hormione. Mean values of Iuciferase activities and induction levels, and the SEM (horizontal stripe)
are from three independent, duplicate experiments. The hatched bar in the constructs represents the
core enhancer, ARE-III is given as a black box. The inactivated ARE-IIl is represented by a cross.
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Comparison of ARE-1, ARE-Il, and ARE-III

The presence of (at least) three AREs [ARE-I{-170); AGAACAgcaAGTGCT; ARE-1I(-
394): GGATCAgggAGTCTC, and ARE- (—4200): GGAACAtatTGTATC] in the PSA
promoter raised the question of relative AR binding affinities of the individual AREs, and
their separate contribution to overall androgen regulation of PSA promoter activity, To
compare AR binding to these AREs, gel retardation analyses were performed with serial
dilutions of purified AR-DBD (Figure 5A). ARE-T and ARE-III turned out to be high affinity
AR-DBD binding sites, with comparable AR binding affinity. The fn vitro interaction of AR-
DBD with ARE-H was much weaker,

Next, three copies of ARE-III were inserted in front of the minimal TK promoter in TK-
LUC, and the activity was compared with similar ARE-T and ARE-TI TK-LUC constructs.
Transient transfection experiments in LNCaP cells showed ARE-IH to be functional active,
albeit less than ARE-I; 10-fold, and 34-fold induction upon R1881 stimulation, respectively
(see Figure 5B). However, both ARE-1 and ARE-III were more active than ARE-IL.

A ARE| ARE i ARE Il
‘ ‘ ‘ AR-DBD
Ar—
FREE PROBE

12 3 465 6 7 8 ¢ 10 11 12 13 t4 15

ARE 1| @ UQcAGAACAgQCaAGTGCTaget
ARE H# : cagGGATCAgggAGTCTCac
ARE 1l : 99aGGAACAtal TGTATCgat
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Figure V.5. Comparison of ARE-I, ARE-II and ARE-III in vitro AR(DBD) binding and functional
activity, (A) Gel retardation analysis of ARE-I, ARE-IT and ARE-III complexed with AR(DBD), ARE-1
{lanes 1-5), ARE-If (lanes 6-10}, and ARE-HI (lanes 11-15) (SOxIQ° cpm) are incubated with an
increasing amount of AR(DBD) and analyzed by gel retardation assay as described in Material and
Methods. Lanes 1, 6 and 11: free probe. Lanes 2, 7 and 12: 30 finol AR(DBD), In each panel, the
Jollowing lane contains four tines more AR(DBD). The arrow indicates the position of the
AREZARDBD} complex. ARE-I, ARE-II and ARE-III sequences are presented below the figure. (B)
Effect of ARE-I, ARE-Il and ARE-IIl on minimal TK promoter activity in transiently transfected
LNCaP cells. LNCaP cells were cotransfected with the indicated reporter gene construct and the AR
expression vector pSVARo (2.5 ng). The ARE-fragments are represented by triangles, mean values
and SEM are from three independemt, duplicate experiments. Further experimental details are
described in Materials and Methods and in the legend to Figure 24,

Mutationa] analysis of AREs -1, -II, and -1if

To investigate the role of the individual AREs in overalt androgen induced transcriptional
responsiveness of the 6 kb PSA promoter, for each individual ARE two different knock out
mutations were introduced in PSA-61-LUC (see Materials and Methods for sequences of
mutated AREs). Transient transfection of LNCaP cells with the resulting mutated PSA
promoter-LUC constructs showed that all three AREs contributed to androgen regulation.
ARE-I(-170) mutations resulted in an 80% reduction of promoter activity (Figure 6). Both
mutations in ARE-TI(-394) had a limited effect (5S0% or less reduction). Mutations in ARE-IIT
had by far the most dramatic effect. As compared to wild type PSA-61-LUC, less than 1%
of activity was retained in the mutated promoter. This finding indicated that ARE-III is not
only a key element in the 440 bp upstream core enhancer, as shown in Figure 4C, but also
in the context of the 6 kb PSA promoter.
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Figure V.6. The effect of the inactivation of ARE-I, ARE-II and ARE-III on androgen regulation
of the PSA promoter. Experimental details are as described in Materials and Methods, and in the
legend to in the lepend to Fig 2A. PSA-61-LUC activity in LNCaP cells cuitured in the presence of
RI88I is set at 100%. The ARE mutations in the 6 Kb PSA-6I-LUC construct are indicated by
crosses. Mean values and SEM are from four independent, duplicate experiments. Hormone induction
values are given at the right side of the bars.

Tissue specificity of the PSA promoter

Previous work in our laboratory showed that the proximal PSA promoter is more active
in LNCaP prostate cells than in non-prostate cells (13). To study whether the androgen
induced activity of the upstream core enhancer also showed cell specificity, reporter
constructs PSA-61-LUC (Figure 2), TK-85-s-LUC and the TK-LUC control (Figure 3C)
were cotransfected with the AR expression plasmid pSVARo to a series of AR negative
prostate and non-prostate cell lines. In contrast to the high activity in LNCaP cells, TK-85-s-
LUC showed hardly any activity over basal TK promofer activity in the androgen
independent prostate cell lines PC-3 and D{J145, and in COS (monkey kidney) and Hep3B
(human hepatoma) cells (Table I). Furthermore, the ¢ kb PSA promoter was hardly active
in these cells. For comparison, MMTV-LUC was transfected to the same set of cell lines.
In PC3 and DU145 cells, a low R1881 induced activity was detected. In COS, Hep3B and
LNCaP cells, the MMTV promoter was strongly induced. Interestingly, in COS and Hel.a
cells, induction of MMTV promoter activity was 40-60 times higher than that of PSA-61.
In contrast, in LNCaP cells, PSA-61-LUC was 6 times more active than MMTV-LUC, These
findings clearly indicate cell specificity of the PSA promoter.
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Table V.1. Effect of R1881 on PSA-61-LUC, TK-85-LUC and MMTV-LUC qactivity in PC3, DUI45,
COS, Hep3B cells, co-transfected with the AR expression plasmid pSVARo, as compared to LNCaP
cells,

CONSTRUCT RELATIVE INDUCTION (+/- R1881)°

PC3 DU145 cosg Hep3B LNCaP
TK-85-5-LUc" 1.5+ 0.2 1.2 + 0.1 1.8 %+ 0.2 1.3 & 0.4 163 + 17
TK-LUC .5+ 1.1+ 0.3 1.3 £+ 0.4 1.1+ 0.3 1.4 + 0.2
PSA-61~LUC 1.7+ 0.5 1.2 + 0.1 1.4 £ 0.3 2,1 + 0.8 3000 + 224
MMTV-LUC .B+1.5 2.6 0.9 58 £ 20 115 & 36 476 + 64

') Induction is the mean of three independent, duplicate experiments i SEM.
*} Constructs are described in Materials and Methods,

The only tested cells, besides LNCaP cells, in which the PSA promoter was active was
the human mammary carcinoma cell line T47D. Transfection of TK-85-s-LUC to T47D ceils
resulted in a 25-fold induction of luciferase activity upon R1881 stimulation, even in the
absence of pSVARo cotransfection (Table IIA). PSA-61-LUC could be stimulated
approximately 100-fold by R1881. Because T47D cells are known to contain the progesterone
receptor (PR), and a Iow level of AR, and because R1881 can activate both AR and PR,
experiments were repeated with the pure androgen dihydrotestosterone (DHT} and the pure
progestin R5020. DHT stimuiation of T47D cells transfected with TK-85-s-LUC and PSA-61-
LUC resulted in a 4-fold and 15-fold induction of LUC activity, respectively, R5020
stimulation of T47D cells transfected with TK-85-s-LUC and PSA-61-LUC gave rise to
induction levels, comparable to R1881 stimulation, Cotransfection of T47D cells with
pSVARo slightly increased DHT induced PSA promoter activity (Fable IIB). These results
indicate that the PSA promoter is not completely cell specific, and also, that PSA promoter
activity is not completely AR specific. However, comparison of PSA (PSA-61 and TK-85)
and MMTYV promoter activity in T47D cells with that in LNCaP cells (Tables I and II) still
indicates a strong preference of the PSA promoter for LNCaP cells.

Table V.II. Effect of RI881, DHT and R5020 on PSA-61-LUC, TK-85-LUC and MMTV-LUC
activity in T47D cells, without (A) and with co-transfection of the AR expression plasniid pSVARo
(B).

CONSTRUCT RELATIVE INDUCTION (+/- hormone)*

A R1881 DHT R5020 B DHT
TK-85-s-LUC" 25 + 4 4,3 + 0.4 26 + 3 8.2 ¢+ 1.7
TK-LUC 1.3 + 0.2 1.1 + 0.2 1.1 + 0.1 1.3 + 0.3
PSA-61-1LUC 97 ¢ 21 17 ¢ 4 157 + 29 25 + 7
MMTV - LUC 504 + 50 228 + 21 512 + 690 478 + 45

:) Induction is the mean of three independent, duplicate experiments + SEM.
} Constructs are described in Materials and Methods.
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DISCUSSION

1t is well established that PSA expression is directly androgen regulated, and cell specific.
Previousty, in transient transfection experiments with PSA promoter constructs, combined
with in vitro protein-DNA interaction assays, two ARFEs were identified in the proximal PSA
promoter: ARE-I at position -170, and ARE-II at -394 (11,13). Activity of a 632 bp proximal
promoter was approximately 6-fold induced by R1881 in LNCaP cells. Cotransfection with
an AR or glucocorticoid receptor (GR) expression plasmid resulted in an increase of absolute
activity and induction level of the proximal promoter upon R1881 treatment, The low level
of induction obtained with the endogenous AR suggested that the proxinial PSA promoter was
not sufficient to account completely for the androgen induction as observed for the
endogenous PSA gene (11). In the present study we characterized a strong upstream
enhancer, which is required for high, androgen regulated and cell specific expression of the
PSA gene. The results described extend our own previous work, and the recent work of
Schuur et al. {18). As compared to the latter study, two major differences seem obvious: (i)
In the experiments described in the present study, approximately 50% of the activity of the
upstream enhancer region is retained within the 440 bp BstEII-Pstl (-4.3 to -3.9) fragment
(see Figure 3A), whereas in the work of Schuur et al. essentially all activity is lost by
deletion of sequences downstream of the Xbal site at -5.3 Kb. At the 3’-border of the
enhancer region the differences are less dramatic. Deletion from the Pstl site to the EcoRV
site in constructs PSA-73 and PSA-74 results in an approximately 5-fold loss of activity (see
Figure 3A); the comparable constructs in ref. 18 ({CN70 and CN71) show a 2-fold drop in
activity. Summarizing, we found the minimal region with high enhancer activity to be
approximately 1 Kb smaller at the 5’-border. Although it can always be argued that different
L.NCaP sublines and culture conditions have been used, there is no obvious explanation for
the differences observed. (ii) A second difference between the data in ref, 18 and owr
findings concerns the induction level of the 6 Kb PSA promoter (3000 as compared to 38).
Part of the difference in induction might be accounted for by the reporter genes used (LUC
and CAT, respectively). The higher sensitivity of the LUC assay enabled us to compare the
properties of ARE-III in the upstrcam enhancer with those of ARE-I and ARE-II in the
proximal promoter.

An important goal of the present study was the analysis of the chromatin structure in a 31
kb region upstream of the PSA gene by the identification of DHSs. Although other
explanations are possible, DHSs in chromatin, which reflect structural alterations, are a
strong indication for the interruption of the nucleosome structure due to binding of
transcription factors to the DNA, In chromatin from LNCaP cells, three DHSs were found
clustered in the area from 3.8 to 4.8 kb upstream of the PSA gene. DHSIH (at -3.8 kb) is
weak and also present in chromatin from HeLa cells, which do not express PSA. DHSI (at -
4.8 kb) is clearly androgen induced in LNCaP cells. DHSII (at -4.2 kb) is by far the most
prominent: it is strongly androgen induced in LNCaP cells and absent in HeLa cells. The
differcnces in structure between chromatin from LNCaP celis, grown in the presence and
absence of R1881, and from HelLa cells indicated to us a functional role of the DHS cluster
in androgen regulated and cell specific expression of the endogenous PSA gene.

In transient transfection experiments, the -4.8 to -3.8 region showed strong, androgen
regulated enhancer activity (PSA-64-s-LUC and PSA-64-as-LUC in Figure 3A). Ikt is not
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clear whether sequences corresponding to DHSI and DHSIII are present in the shorter active
enhancer construct PSA-73-LUC, Most likely, DHSI maps very close to the Pst] site, which
is at the 5* border of PSA-73-LUC; DHSIII maps close to the BamHI site, which determines
the 3’ border of PSA-73-LUC. An even shorter fragment, PSA-85-LUC, lacks both DHSI
and DHSIII, but contains DHSII, which maps close to the Clal site, The finding that PSA-85-
LUC still shows approximately 50% of the enhancer activity suggests that, in transient
transfections, DHSI and DHSIII sequences play no or enly a minor part in PSA promoter
activity. Whether they are required for proper expression of the endogenous PSA gene
remains (o be determined. The finding that ARE-IIT at -4.2 kb corresponds to DHSII in the
chromatin suggests that ARE-HI is not only essential in the PSA promoter in transient
transfections, but also in androgen regulated expression of the endogenous PSA gene.

The upstream core enhancer most probably has a complex structure. We were unable to
narrow down the size of the core enhancer to less than 440 bp without loosing substantial
activity. Combined with the essential role of ARE-III in the enhancer, at least three separate
active regions can be identified in the core enhancer: ARE-II, and the 5°- and 3’- end
fragments (see Figure 3). In each of the two end fragments, one or more binding sites of
ubiquitous or prostate specific transcription factors might be located. The possibility that
these fragments contain one or more weak, so far not identified, AR binding sites cannot be
excluded. In cooperation with ARE-IH, and additional cis-acting sequences within the 130
bp Sall-EcoRYV fragment, a complex enhancer might be formed with cooperative interactions
between the different components. Further experiments are obviously required {o elucidate
the detailed composition of this core enhancer.

A functional ARE-II is a prerequisite for high activity of the upstream enhancer,
Inactivation of ARE-IIE almost completely abolished core enhancer activity. In contrast,
truncation of the 5°- and 3’-fragments resulted only in a partial reduction of enhancer
activity. However, there is little doubt about a synergistic cooperation of ARE-IH with other
cis-acting elements in the core enhancer: when hooked to the TK promoter, the core
enhancer, containing one ARE-11I, is superior to even three copies of ARE-III coupled to the
TK promoter. A mechanism explaining the central role of ARE-III could be AR induced
DNA bending, enabling the direct or indirect interaction between other transcription factors
in the core enhancer., Alternatively, ARE-Ill bound AR might be a key element in the
interaction of the upstream enhancer with the proximal promoter region, or recruitment of
the RNA polymerase II holoenzyme to the PSA promoter (20,21). In this respect the PSA
upstream enhancer might function as a classical complex, steroid hormone regulated control
region. Similar upstream glucocorticoid regulated enhancers, composed of GR binding sites,
binding sites for the liver enriched transcription factors HNF-3 and HNF-4, and binding sites
for more ubiquitous transcription factors have been identified for the TAT gene, which is
highly expressed in liver parenchymal cells (15,16). The enhancer motifs restrict the
hormonal activation of the TAT gene to liver cells, not only in cultured cells, but also in
fransgenic mice (22). The PSA gene is the first example of an androgen-regulated, prostate
specific gene for which such a potent upstream enhancer is documented. Farther study of this
enrhancer can be of great help for the identification of prostate specific transcription factors,
and for the elucidation of the mechanism of cooperative interaction between the AR and other
transcription factors.
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The identification of three AREs in the PSA promoter in the present, and in our previous
studies (11,13) readily raised the question of relative AR binding affinities and functional
activities, ARE-T and ARE-III were found to be of similar potency, whereas ARE-II was less
active. Mutational analysis indicated a clear synergistic cooperativity between ARE-I and
ARE-III, and to a lesser extent ARE-II. However, inactivation of ARE-III had a far more
impressive effect on the 6 kb PSA promoter than mutation of ARE-E. From these findings
it can be concluded that the context in which the ARE is present has a pivotal effect on its
functional activity. As indicated above, this might involve interactions with other
transcription factors, including the spacing between specific cis-acting elements.

Although the PSA gene is the first example of a gene containing a very potent far upstream
ARE, clear synergistical interaction between multiple ARE sequences has also be found in
the proximal (600 bp) PSA promoter (see ref. 13, as discussed above) and in the proximal
{426 bp), prostate specific rat probasin (PB) promoter (23). Both the proximal PSA and the
PB prometer contain one high affinity and one low affinity, functionally active AR binding
site (13,23). Although much more active in their natural setting, multimers of the different,
separate AREs from the PSA promoter are functionally active when fused to a heterologous
promoter (Figure 5B, and ref. 13). In contrast, cooperative binding of the AR to both AREs
in the PB promoter is required for androgen induction (24).

To mvestigate cell specificity of PSA upstream core enhancer, we compared its activity
in several prostate and non-prostate cell lines, Transient transfection experiments in (PSA
negative) PC3, DU145, Hep3B and COS cells did not reveal any activity, although two of
the ceil lines (PC3, DU145) originate from a prostate background. The MMTV promoter
showed a very limiled activity in AR cotransfected PC3 and DU145 cells, but was clearly
active in COS and HelLa cells. Together these findings indicate the absence of one or more
transcription factor(s) or coactivator(s) essential for PSA promoter activity in these cells.
Alternatively, a specific inhibitor of PSA promoter activity is present. The specificity of
DHSH provided additional evidence for cell specific activity of the PSA promoter,

TK-85-LUC and PSA-61-LUC were both found to be active in T47D cells. In T47D cells,
PSA promoter activity was not only mediated through the AR but also via the PR (Table IT}.
These results indicate that activity of the 6 kb PSA promoter is not entirely prostate and
androgen specific. However, PSA promoter activity in LNCaP cells is superior to T47D cell
activity. The issue of receptor specificity should be investigated in more detail in cell lines
containing comparable amounts of PR and AR, either endogenously or after cotransfection
with the respective steroid receptor expression plasmid. In a similar type of experimental
setup, we generated LNCaP sublines containing a stable transfected GR expression plasmid.
This resulted in dexamethasone inductior of the endogenous PSA gene, and GR regulated
activity of the 6 kb PSA promoter in transient transfections (K.B.J.M. Cleutjens, in
preparation). In summary, steroid hormone regulated expression of the PSA promoter
depends on the properties of the cell line: the presence of AR, PR or GR is an essential, but
not the only factor. Absence of specific inhibitors or presence of additional transcription
factors and/or coactivators will also be essential.

Although PSA expression was originally thought to be strictly restricted to prostate
epithelial cells, low PSA expression in mammary tumor cells has been recently published
(25,26). The activity of the PSA promoter in transfected T47D cells, which are negative on
Northern blots for endogenous PSA expression, could be in accordance with these findings.
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It would be of interest to find out whether in mammary tumor tissue PSA expression is
progesterone regulated, and could be used as a reliable marker for PR positive tumors, To
obtain more definite information on tissue specificity of the 6 kb PSA promoter in both
normal and tumor cells, animal studies with PSA promoter constructs are required. If the
upstream enhancer is able to confer preferential expression of a target gene to prostate cells,
in vive applications in humans, including gene therapy for delivery of pharmaceutical
reagents to the prostate, can be further explored.

MATERIALS AND METHODS

Cell culture

LNCaP cells (FGC), originally obtained from Dr. Horoszewicz (27), were cultured in
RPMI 1640 and supplemented with 5% FCS and antibiotics. For transfection, cells were
grown in DMEM supplemented with 5% steroid-depleted (dextran-charcoal treated} FCS. For
examination of androgen induced DHSs, and androgen driven promoter activity in
transfection experiments, the synthetic androgen R1881 (DuPont NEN, Boston, MA) was
added to a final concentration of 1 nM. In indicated cases, DHT (Steraloids, Wilton, NH)
and R5020 (DuPont NEN) were added to final concentrations of 100 nM and 10 nM,
respectively.

Hel.a, T47D and COS cells were grown in DMEM, Hep3B cells were grown in MEM-
aipha, supplemented with 5% FCS and antibiotics. PC3 and DUI145 cells were grown in
RPMI 1640, supplemented with 7.5% FCS and antibiotics. For transfection, PC3 and DU145
cells were grown in DMEM.

Mapping of DHSs

Cultured cells (LNCaP cells, grown in the presence and absence of 1 nM R1881, and
Hela cells) were washed with ice cold phosphate buffered saline (PBS). Cells were
suspended in 3 ml ice cold HS-buffer (15 mM Tris-HCI pH 7.4, 60 mM KCi, 15 mM NaCl,
0.2 mM EDTA, 0.2 mM EGTA and 5% glycerol, supplemented with | mM dithiothreitol,
0.15 mM spermine and 0.5 mM spermidine, directly prior to use). The cells were disrupted
by passing 5 to 10 times through a 0.5 x 16 mm (25G) needle. Disruption was monitored by
light microscopic examination. Nuclei were collected by centrifugation for 5 min at 2500
rpny, and resuspended in HS buffer to a final concentration of 5 X 10° nucleifml. Limited
DNasel digestion was carried out in a final volume of 0.5 m! HS-buffer containing 5 x 10
nuclei, 5 mM MgCl, and DNasel (0-800 U; Boehringer Mannheim, Germany). The mixture
was incubated for 30 min on ice, and the reaction was stopped by addition of 10 gl 0.5 M
EDTA, 12.5 pl 20% SDS and 50 pl Proteinase K (10 mg/ml}. Next, the sample was
incubated overnight at 37 °C. Subsequent to phenol/chloroform extraction, the DNA was
collected by isopropanol precipitation. The DNA was dissolved in 100 pl Tris-EDTA buffer
and digested with EcoRI. Restriction fragments were separated by electrophoresis in a 1%
agarose gel and transferred to a nylon membrane (Hybond N*, Amersham, Cardiff, UK).
Filters were hybridized at high stringency with random primed *P-labeled probes (as
indicated in Figure 1) using standard procedures (28).
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Construction of plasmids

All plasmid constructs were prepared using standard methods (28), The promoterless basic
plasmid pLUC, PSA-4-LUC, TKLUC, the human AR expression plasmid pSVARo, the
AR(DBD) expression plasmid pRIT2TAR and pMMTV-LUC were described previously
(13,29-31). PSA-61-LUC was generated by insertion of the Hind II/HindIIl (-6 kb/+12)
fragment of the PSA promoter in the MCS (multiple cloning site) of pLUC. PSA-1-LUC was
generated by ligation of the BamHI/HindIII (-2.2 kb/+12) fragment in the MCS of pl.UC,
PSA-64-s-L.UC and PSA-64-as-LUC (Xbal-Stul, -5.4/-3.2 kb), PSA-73-LUC (Pstl-Pstl, -
4.7/-3.9 plus PstI-BamHI -3.9/-3.8 kb}, PSA-74-LUC (Pstl-Pstl, -4.7/-3.9 kb}, PSA-78-LUC
(Pstl-EcoRV, -4.8/-4.1 kb), PSA-83-LUC (Sall-BamHI, -4.25/-3.8 kb} and PSA-85-LUC
(BstEII-PstI, -4.35/-3.9 kb) were generated by insertion of the appropriate fragments in front
of the proximal PSA promoter (—632/+12) in construct PSA-4-LUC, The artificial Sall site
(—4.25 kb) was derived from the 5’-end of a human genomic DNA phage insert (4P1, see
ref 7).

Constructs TK-85-s-LUC and TK-85-as-LUC were generated by insertion of the 440 bp
BstEIH-Psti fragment inte the MCS of TKLUC. Constructs ARE-I.TKLUC and ARE-HI-
TKLUC were generated by cloning three copies of ARE-I, and ARE-III oligonucleotides in
TKLUC, respectively (sequences of oligonucleotides are shown below). ARE-II-TKLUC was
generated by ligation of the double stranded 3ARE-II oligonucleotide in the Sall site of
TKLUC. :

ARE-I 1 5' GATCCTTGCAGAACAGCAAGTGCTAGCTG 3
3 GAACGTCTTGTCGTTCACGATCGACCTAG 5

3ARE-IT : 5’ TCOACAGGGATCAGCGAGTCTCACCAGGGATCA-
3 GTCCCTAGTCCCTCAGAGTGGTCCCTAGT -

GGGAGTCTCACCAGGEATCAGGGAGTCTCACG 3
CCCTCAGAGTGGTCCCTAGTCCCTCAGAGTGECAGCT 57

ARE-IITI : 5’ TCGACGAGGAACATATTGTATCGAG 3/
37 GCTCCTTGTATAACATAGCTCAGCT 57

pHSI1, pHS2, pHS3 and pHS4, which were the starting material for footprint experiments,
were obtained by insertion of the blunt ended BstEIT/Clal, Sati/EcoRV, EcoRV/Pstl and
Clal/Ncol fragments, respectively, into the Smal site of pTZ19 (Pharmacia, Uppsala,
Sweden).

Generation of ARE nmtations

Muiations were introduced in ARE-I (-170), ARE-II (-394) and ARE-III (-4200) essentially
according to the PCR method of Higuchi et al. (32). Standard amplification conditions were
30 cycles of denaturation for I min at 95°C, annealing for 1 min at 55°C, and extension for
2 min at 72°C. The oligonucleotides which were used for the generation of the different
mutations are listed below. Two different sets of outer primers were used, one set for ARE-1
and -II mutations, and a separate set for ARE-1Il mutations. Substitutions in complementary
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sets of inner primers ARE-1-1, -2; ARE-II-1 and -2; ARE-1I-1 and -2 are underlined (see
below), PSA-61-LUC was used as the template for the first PCR step. In the second PCR
step, appropriate samples of the purified products of the first amplification reactions were
mixed at a 1:1 ratio. The resulting PCR fragments were cloned and after sequencing,
exchanged with the corresponding fragment of PSA-61-LUC.

ARE-T and -II outer primers:
forward primer : 5' CCACAAGATCTTTTTATGATGACAG 3/
reverse primer : 57 GCTCTCCAGCGGTTCCATCCTCTAG 3

ARE-III ocuter primers :
forward primer : 5' CTTCTAGGGTGACCAGAGCAG 3
reverge primer : 5' GCAGGCATCCTTGCAAGATG 37

Inner primers:

ARE-I-1: 5' GTAATTGCACATTAGCAATGGGTAACTCTCCC 3¢
3’ CATTAACGTGTAATCGTTACCCATTGAGAGGE 5’

ARE-I-2: 5’ GTAATTGCATAGTAGCAAAAGGTAACTCTCCC 37
3’ CATTAACGTATCATCGTTTTCCATTGAGAGGS 5'

ARE-II-1: 5’ GGTGCAGGCATAAGGGATGCTCACAATCT 3/
3¢’ CCACGTCCGTAITCCCTACGAGTGTTAGA 57

ARE-II-2: %' GGTGCAGGCATTAGGCAACCTGACAATCT 3!
37 CCACGTCCGTAATCCGTTGGACTGTTAGA 5/

ARE-III-1:5' CTCTGGAGCATAATATTTCAACGATTGTC 37
3’ GAGACCTCGTATTATAAAGTTGCTAACAG 5’

ARE-III-2:5' CTCTGGAGTAGTATATTACAGCGATTGTC 37
3’ GAGACCTCATCATATAATGTCGCTAACAG &*

Transfections

Celis were transfected according to the calcium phosphate precipitation method essentially
as described (33), using 1 x 10° cells per 25cm? flask and 5 ug of the appropriate PSA-LUC
construct. Following 4 h incubation with the precipitate, the culture medium was replaced
by PBS, containing 15% glycerol {incubation for 90 sec at room temperature). Subsequently,
transfected cells were incubated in culture medium in the absence or presence of the
appropriate hormone for 24 h. Transfections were performed in duplicate. Experiments were
repeated at least three times using two independent plasmid isolates.
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Luciferase assay
Cells were washed in PBS and lysed in 300 gl lysis buffer (25 mM Tris-phosphate pH 7.8,

8 mM MgClL,, | mM DTT, 1 % Triton X-100, 15 % glycerol}. Next, 0.1 ml Luciferin (0.25
#M) (Sigma)/ 0.25 uM ATP was added to 0.1 ml extract, and luciferase activity was
measured in a LUMAC 2500 M Biocounter (LUMAC, Landgraaf, The Netherlands). After
a delay of 2 sec (according to supplier), the light emission was recorded during 5 sec.
Luciferase activities were corrected for variations in protein concentrations of the cell
extracts, Luciferase activities and relative induction factors are expressed as mean and
standard error of the mean (SEM) of at least three independent experiments.

DNAsel footprint analysis
Production and purification of AR(DBD) was done as described previously (13,30).

Fragments for footprinting were generated by digestion of pHS1, 2, 3 and pHS4 with Xbal
and Sacl, or with Sphl and EcoRI, to be able to identify protected windows on both the
upper and lower strand. Subsequently, fragments were filled in with MMLV-reverse
transcriptase (Boehringer) in the presence of - P-dATP, and isolated from non-denaturing
polyacrylamide gel. The DNMasel footprinting experiments were performed essentially
according to Lemaigre et al. (34). Labelled probe (50,000 cpm) was incubated with 10-20
pmol AR(DBD) fusion protein for 30 min at 0°C, in the presence of 10 uM ZnCl,. In
indicated cases, a 100-fold excess competitor oligo’s (consensus ARE or consensus NF-1;
5’-GATCCAGGGAACAGGGTGTTCTACG-3’, and 5-ATTTTGGCTTGAAGCCAATATG-
3%, respectively)) was added. Digestion with 0.04 U DNasel (Boehringer) was for 60 sec at
20 °C in a final volume of 50 ui. In the absence of AR(DBD), 0.025 U DNAsel was used.
Following phenol/chloroform extraction and ethanol precipitation, DNA was dissolved in 5
¢l formamide-dye-mix (98 % formamide, 10 mM EDTA, 0.2% bromophenol blue and 0.2%
xylene cyanol). After heating to 95°C for 2 min and rapid cooling on ice, the DNA was
separated on a denaturing (7M urea} 6 % polyacrylamide gel. G and (G+A) sequence
reactions according to Maxam and Gilbert (35) of the same fragment were run as markers
alongside each footprint. After electrophoresis, gels were fixed, dried and exposed to X-ray
film.

Gel retardation analysis
The gel retardation experiments were performed as described previously (13). Double
stranded oligonucleotides used in gel retardations:

ARE-I : 57 GATCCTTGCAGAACAGCAAGTGCTAGCTG 3

3r GAACGTCTTGTCGTTCACGATCGACCTAG 57
ARE-TIT : 5' GATCCAGGGATCAGGGAGTCTCAG 31

3r GTCCCTAGTCCCTCAGAGTCCTAG 5¢
ARE-ITIX ¢ 5 TCGACGAGGAACATATTGTATCGAG 3

37 GCTCCTTGTATAACATAGCTCAGCT 57
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Shortly, probes were filled in with MMLV-reverse transcriptase in the presence of ¢->*P-
dATP, and subsequently isolated from non-denaturing polyacrylamide gel. Labeled probe,
50,000 cpm, was incubated with AR(DBD) (30 fmol to 2 pmol). In indicated cases 100-fold
excess ARE or NEF-1 competitor oligonucieotides was added, Following 20 min incubation,
samples were run on a 4 % non-denaturing polyacrylainide gel. Subsequently, gels were
fixed, dried and exposed to X-ray film.
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ABSTRACT

Prostate-specific antigen (PSA) is a kallikrein-like serine protease, that is almost
exclusively synthesized in the luminal epithelial cells of the human prostate. PSA expression
is androgen regulated, Previously, we characterized in vitro the proximal promoter, and a
strong enhancer region, approximately 4 Kb upstream of the PSA gene. Both regions are
needed for high, androgen regulated activity of the PSA promoter in LNCaP cells. The
present study aims at the in vivo characterization of the PSA promoter. Three transgenic
mouse lines carrying the E.coli LacZ gene driven by the 632 bp proximal PSA promoter, and
three lines with LacZ driven by the 6 Kb PSA promoter were generated. Expression of the
LacZ reporter gene was analyzed in a large series of tissues, Transgene expression could not
be demonstrated in any of the transgenic animals carrying the proximat PSA promoter. All
three lines carrying the 6 Kb PSA promoter showed lateral prostate specific 5-galactosidase
activity. Transgene expression was undetectable until 8 weeks after birth. Upon castration,
(3-galactosidase activity rapidly declined. It could be restored by subsequent androgen
administration. A search for mouse PSA-related kallikrein genes expressed in the prostate led
to the identification of mGK?22, which was previously demaonstrated to be expressed in the
submandibular salivary gland. Therefore, the 6 Kb PSA-LacZ transgene followed the
expression pattern of the PSA gene in humans, which is almost compietely prostate-specific,
rather than that of mGK22 in mice, In conclusion, the 6 Kb promoter fragment appears to
contain most, if not all, information for androgen-regulation and prostate-specificity of the
PSA gene,

INTRODUCTION

Prostate specific antigen (PSA) is a 30-33 kDa glycoprotein, that is almost exclusively
produced by the luminal epithelial cells of the human prostate. It is one of the predominant
proteins secreted into the prostatic fluid, Serum PSA is a well known marker for diagnosis
and monitoring of prostate cancer (1,2). The PSA gene {or KLK3) is a member of the human
kallikrein gene family. Other members of the kallikrein gene family are the hGK-1(KLK2)
gene, which is also expressed in the prostate, and the tissue kallikrein gene (KLK1), which
is mainly expressed in the pancreas and kidney (3-6}. The three genes are clustered within
the 60 Kb kallikeein locus on chromosome 19 (7,8). PSA expression can be regulated by
androgens (9-11). Previously, we and others characterized in vitro the 632 bp proximal
promoter (11,12), and a strong, 440 bp enhancer region, approximately 4 Kb upstream of
the transcription start site of the PSA gene (13,14). Both regions are needed for high,
androgen regulated activity of the PSA promoter in LNCaP cells, Two functionally active
androgen receptor binding sites (androgen response elements, or AREs) were identified in
the proximal PSA promoter, af positions -170 (ARE-1) and —394 (ARE-II), respectively
{11,12). The upstream enhancer showed synergistic cooperation with the proximal PSA
promoter, and was found to be composed of at least three separate, but cooperating,
regulatory regions. At -4.2 Kb, the presence of a functionally active, high affinity androgen
receptor binding site (ARE-111) was established (14). Transient transfection of a 6 Kb PSA
promoter fragment, containing both the proximal promoter and the upstream enhancer, linked
to the luciferase reporter gene, to prostate and non-prostate cell lines showed largely LNCaP

144



The PSA promoter directs prostate specificity in vivo,

prostate cell specific activity (13,14). The strong tissue specificity of the endogenous PSA
gene in vive and the 6 kb PSA promoter fragment in transient transfection experiments makes
the PSA promoter a candidate to deliver therapeutic genes to prostate cancer cells. To
explore this view, the present study aimed at the in vive characterization of the PSA
promoter in transgenic mice.

In mice, the kallikrein gene family is composed of 24 members, half of which are probably
pseudogenes (15). Although structurally related to the PSA gene, none of the mouse
kallikreins can be considered as the mouse homolog of human PSA, because of the different
tissue distribution (16). All functional mouse kallikrein genes are expressed in the
submandibular salivary gland (SMG). Individual genes show additional expression in
pancreas, kidney, spleen and/or testis. So far, mouse kallikrein expression in the prostate has
not been demonstrated. Two members of the closely related rat kallikrein gene family have
been found to be expressed in both prostate and SMG (17). In order to compare PSA
promoter specificity in transgenic mice with the promoter specificity of endogenous mouse
kallikreins we determined which, if any, of the mouse kallikrein genes was expressed in
prostate.

RESULTS

Activity of the PSA promoter LacZ fusion constructs in LNCaP cells

Previously, we characterized in transfection experiments the proximal promoter, and a strong
440 bp core enhancer region, approximately 4 Kb upstream of the transcription start site of
the PSA gene (11,12,14). Two functionally active AREs were identified in the proximal PSA
promoter, at positions -170 (ARE-I) and -394 (ARE-1l), respectivety (11,12). In the center
of the 440 bp upstream enhancer region a third functionally active ARE, ARE-IlI (-4200)
could be demonstrated (14}. Although both the proximal promoter and the upstream region
contributed to maximal androgen regulated and cell specific activity of the PSA promoter,
the upstream enhancer was found to be essential for high activity (12,14). To investigate the
regulatory regions of the PSA promoter in transgenic mice, two LacZ reporter gene
constructs were designed (Figure 1A). In these constructs, the LacZ gene is driven by the
632 bp proximal PSA promoter (PSA-4-LACH), or by the 6 Kb PSA promoter fragment
(PSA-61-LACH). The hormone induced activity of the constructs was tested in transiently
transfected LNCaP cells. The PSA-4-LACH construct, co-transfected with the human
androgen receptor expression plasmid pSVARo, was 7-fold more active in the presence than
in the absence of the synthefic androgen R1881 {Figure 1A}. In the absence of pSVAROo,
PSA-4-LACH showed a limited androgen inducibility (1.8 fold). Under these conditions
PSA-61-LACH activity was induced 600-fold by RI1881. These results are essentially
identical to those obtained with comparable fuciferase reporter gene constructs (12,14).
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Figure VI.1. Structure and activity of the PSA-LACH constructs imtroduced in transfected LNCaP
cells. (A} Schematical representation of constructs PSA-61-LACH and PSA-4-LACH. The 440 bp core
enhancer region is represented by a hatched box, ARE sequences are indicated by black bars. The
open box represents the LacZ open reading frame; numbered black boxes indicates exons 1 and 2 of
the mouse protamine gene. Positions of primers used to identify transgenic animals are indicated
below PSA-61-LACH. (B) LNCaF cells were transiently transfected with the PSA-4-LACH and PSA-
61-LACH constructs, or with PSA-4-LACH plus the androgen receptor expression plasmid as
described in Materials and Methods and ref. 14. Incubation with the plasmid precipitate was for 4
I, Induction values are given at the top of the bars.

Identification of transgenic mice )

Both PSA-4-LACH and PSA-61-LACH were used to generate transgenic mice. Three PSA-4-
EACH and five PSA-61-LACH founder animals were identified by PCR of tail DNA with
primers PSA-s and LacZ-as (data not shown), Transmission of the transgene to their
offspring was demonstrated for three PSA-61-LACH and all three PSA-4-LACH transgenic
lines. One PSA-61-LACH male founder did not transmit the transgene; another PSA-61-
1ACH male founder was infertile. Comparison of the hybridization signals of the transgene
and the endogenous mouse protamine-1 gene on Southern blots of genomic DNA revealed
the presence of 4, 2 and 38 copies of the transgene in lines PSA-61 TG2, TG28 and TG31,
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respectively. PSA-4 TG, PSA-4 TG2 and PSA-4 TG6 carried approximately 150, 100 and
126 copies of the transgene (Figure 2A, lanes 4-6, and 1-3, respectively). Note that the
endogenous mouse protamine-1 gene showed a restriction fragment length polymorphism,
resulting in 6 and/or 8 Kb hybridizing fragments (Figure 2A lanes 7,8).

The 6 Kb, but not the 632 bp PSA promoter directs lateral prosfate specific transgene
expression
To determine the expression pattern of the transgene, male mice were sacrificed at 8 to 16
weeks of age, and B-galactosidase activity was measured in twenty-six different tissue lysates
(see Materials and Methods). Thorough analysis of afl three PSA-61-LACH transgenic mouse
lines showed exclusive 8-galactosidase activity in extracts from lateral prostate. In all other
tissues, including the dorsal, ventral and anterior prostate lobes, LacZ expression was
undetectable (as shown in Figure 2B for PSA-61 TG28). 3-Galactosidase activity could aiso
not be detected in extracts from tissues of virgin or lactating female transgenic mice {data
not shown). In none of the tested tissues of PSA-4-LACH mice, (5-galactosidase expression
could be found (data not shown, and Figure 2C). For PSA-61-LACH, transgene activity was
independent of the number of integrations, since 3-galactosidase activity in the lateral prostate
was comparable, despite the difference in copy numbers (4, 2 and 38, respectively). The
level and specificity of transgene expression appearcd independent of the integration site.
To screen for the presence of low levels of transgene expression in the different prostate
lobes and Submandibular salivary gland (SMG), a known expression site of mouse
kallikreins, we performed RT-PCR with transgene cDNA specific primers, and GAPDH as
a control (See Materials and Methods). Again, transgene expression could only be detected
in the Iateral prostate (lane 2, Figure 2D).
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Figure V1.2, Characterization of transgenic mouse lines. {A) Southern blot analysis of the Kpni-Sacl
digested genomic DNA of PSA-4-LACH (lanes 1-3) and PSA-61-LACH (lanes 4-6) transgenic (TG}
lines. Lane 7 contains DNA of a control mouse. DNA (10 pgliane) was hybridized with a 175 bp
mouse protamine cDNA probe (see Materials and Methods). By comparison of the intensity of the
endogenous (see arrow heads) and transgene bands, the number of transgene copies present in the
individual transgenic lines was determined (umbers on top of each lane). For PSA-4-LACH
transgenic animals, two different exposure times of the same Southern blot are shown (4 4 h exposure
af the transgene hybridizing fragment and a 40 h exposure of the endogenous iouse protamine gene).
Note that the endogenous protamine fragment is polymorphic. (B) Liguid B-galactosidase assay of
tissue extracts of 10-week old PSA-61-LACH 1G28 male mice. (C) B-Galactosidase activity in lateral
prostate lysates of PSA-4-LACH TG 1, 2 and 6 and PSA-61-LACH TG 2, 28 and 31 animals as
compared to activity in control mice. (D) RT-PCR analysis of LacZ/Protaniine transgene mRNA in
RNA obtained from dorsal, lateral, ventral and anterior prostate and submandibular salivary gland
of PSA-61-LACH TG 28 male mice. Experimental details are described in Materials and methods. The
lower panel shows the result of RT-PCR analysis aof ubiquitously expressed GAPDH mRNA. PCR
products were separated over a 2 % agarose gel.
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Figure VI3, Transgene expression in the lateral prostate, (A,B) Whole moumt X-gal staining,
Jollowed by nentral red counterstaining of 5 um paraffine embedded sections of (B) lateral prostate
of a 10 week PSA-GI-LACH TG 28 male and (A) lateral prostate of a non-transgenic littermate
{Magnification 400 x}. Blue X-gal staining is shown as Dlue spots in the cytoplasm of Iuminal
epithelial cells.

Figure VI.4. RNA in situ hybridization analysis of lateral prostate tissue sections of a 10 week old
PSA-61-LACH TG 28 male transgenic mouse, Five um sections of paraffine embedded tissue were
incubated with a DIG-labeled protamine RNA probe, Hybridization was visualized with alkaline-
Phosphatase-conjugated antiDIG antibody (see Materials and Methods). (C,D) Tissue sections of a
14 week old PSA-61-LACH male transgenic mouse, (B) Non-transgenic littermate (anfisense probe;
400 x magnification) (4) Incubation of a transgenic mouse prostate with a sense protamtine riboprobe.
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PSA-61-L.ACH expression is restricted to the luminal epithelial cells of the lateral prostate
Whole mount $-galactosidase staining, followed by sectioning of the paraffine embedded
tissue was performed to investigate the cell type in the prostate expressing the LacZ gene.
As demonstrated in Figure 3B, 8-galactosidase staining was restricted to the luminal epithelial
cells. Staining was concentrated at the basal site of the cytoplasm. No staining was found in
the lateral prostate from age-matched controt mice (Figure 3A). To further evaluate PSA-61-
LACH expression, sections of the paraffine embedded lateral prostate of PSA-61-LACH
positive and control mice, were analyzed by in sifu hybridization using sense and antisense
DIG-iabeled protamine riboprobes. Results obtained with the antisense protamine probe
revealed that transgene mRNA was localized within the cytoplasm of the luminal epithelial
cells of the lateral prostate (Figure 4C,D). No hybridization signal was detected in control
mice, or with a sense protamine riboprobe (Figure 4A,B). The restricted expression of the
transgene to the luminal epithelial celis is consistent with cndogenous PSA expression in the
human prostate {18).

Developmental and hormonal reguiation of PSA-G1-1. ACH expression

PSA gene expression has been shown to be developmentally regulated and to follow plasma
testosterone levels (19). In in vitre studies, expression of PSA mRNA and protein, and PSA
promoter activity is strongly androgen regulated (9-14). To determine the pattern of the PSA-
61-LACH transgene expression during development, lysates of lateral prostate tissues were
prepared from line 28 males between 2 and 52 weeks of age. As indicated in Figure 5A, the
dorsolateral prostate of 2 weeks old and the lateral prostate of 4 weeks old mice did not show
significant 3-gatactosidase activity. In conirast, sexually mature males, ranging from & to 52
weeks of age, showed an almost constant, high level of pB-galactosidase activity
(approximately 1500 RLU/ug protein}.

To obtain additional information on androgen inducibility of the 6 Kb PSA promoter in
transgenic mice, sexually mature PSA-61-LACH males of line 28 were castrated, and 3-
galactosidase activity in the lateral prostate was determined at 4 days after castration, and at
2 days following hormone replacement. As demonstrated in Figure 5B, transgene activity
decreased dramatically following castration, and returned very rapidly to pre-castration levels
after DHT administration. This finding strongly indicates androgen regulation of transgene
expression,
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Figure VL5, Developmental (A) and androgen (B) regulation of PSA-61-LACH expression. (A) -
Galactosidase activity in extracts of dorso-lateral prostaie of 2 week, and lateral prostate of 4 week
and 8 to 52 week old PSA-61-LACH TG 28 mice. (B) Androgen regulation of B-galactosidase activity
in lateral prostate of PSA-61-LACH TG 28 mice. Mice were castrated ar 10 weeks of age. After 4
days, part of the mice were supplemented with DHT or vehicle as described in Material and Methods,
Lateral prostate of 10 week old PSA-61-LACH mice served as control.
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Mouse kallikrein expression
In order to investigate mouse kallikrein gene expression in the prostate, RNA was isolated

and RT-PCR was performed with primers overlapping highly conserved regions in exon 3
(KALK-3-s) and exon 4 (KALK-4-as) of all known mouse kallikrein genes (see GenBank data
for mouse kallikrein sequences). Thirty-four cloned, 146 bp PCR fragments were sequenced.
Thirty-two clones turned out fo contain a mGK22 fragment (20), the 2 additional cDNA
fragments were 94% identical, and both contained novel kallikrein sequences, with highest
homology to mGK16 (91 and 92%, respectively) (21). Previously, mGK22 was found to be
expressed in both male and female salivary glands, but absent in ail other tissues tested (22),
RT-PCR with mGK22 specific primers confirmed the presence of mGK22 mRNA in lateral
prostate and SMG, mGK22 was absent in dorsal, ventral and anterior prostate (Figure 6).
The expression level in SMG was much higher than in lateral prostate.

Figure VL 6. RT-PCR analysis of mouse Glandular Kallikrein 22 expression in the various
lobes of the mouse prostate and male submandibular salivary gland, The RT-PCR products
were blotted to Hybond N¥ membrane and hybridized with a random primed *P-labeled
probe specific for the expected 634 bp cDNA fragment. RT-PCR of GAPDH mRNA in the
RNA preparations of the different tissues is shown in the lower part.

DISCUSSION

Previously, we investigated the properties of the 632 bp proximal promoter, and a strong
far upstream (-4 Kb) 440 bp enhancer region of the PSA gene in transfected LNCaP cells
{11,12,14). Although both regions contributed to androgen regulated activity of the promoter,
the presence of the 440 bp core enhancer was a prerequisite for high activity. A 6 Kb PSA
promoter fragment, whick contains both the proximal promoter and the upstream enhancer
region, was mainly active in LNCaP prostate celis, However, PSA promoter activity was also
observed in T47D mammary tumor cells (14).

In this study we showed that the 6 Kb and not the 632 bp PSA promoter is capable to
direct reporter gene activity in fransgenic mice. In three independent transgenic lines,
carrying a LacZ reporter gene under contro} of the 6 Kb PSA promoter, hormonally and
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developmentally regulated expression of the transgene was exclusively targeted to the luminal
epithelial cells of the lateral prostate, which mimics the expression pattern of the endogenous
PSA gene in the human prostate, This strongly suggests that the 6 Kb PSA promoter contains
most, if not afl, information for prostate specific activity. The specific expression of the
transgene in the mouse lateral prostate is in agreement with the structural homology between
the human prostate and the nouse lateral prostate, and the mouse kallikrein expression in the
lateral prostate. The variable level of PSA expression in human breast cancer (23), and the
activity of the 6 Kb PSA promoter in transiently transfected T47D human mammary tumor
cells (14) could not be confirmed in normal breast tissue of female PSA-61-LACH transgenic
mice (data not shown).

Transgene expression was assessed in a lquid §-galactosidase assay, by RT-PCR and by
RNA in situ hybridization. Additionally, X-gal staining of the different tissues was
performed. X-Gal staining of adult mouse tissues is complicated due to high endogenous 3-
galactosidase activity present in mafiy iissues, including testis, epididymis, vas deferens,
liver, intestine and prostate. This problem was overcome by medification of the standard
protocols (24,25). Incubation at elevated temperature prior to staining (I h at 50° C), and
a raised pH (8.6) during the varicus incubation steps {see Materials and Methods} suppressed
endogenous £-galactosidase activity, without noticeable loss of activity of the E.coli derived
transgene. Only in epididymis, vas deferens and anterior prostate, endogenous f-
galactosidase activity could be found at a Iong (over 16 h) staining period, which precludes
detection of a low level of transgene expression in the X-gal assay (data not shown).

B-Galactosidase expression was undetectable in the PSA-4-LACH mice, despite the
presence of 100 or more copies of the transgene in all three transgenic lines. Transient
transfection of LNCaP cells with PSA-4-LACH (Figure 1) and also PSA-4-LUC constructs
(12,14) showed a low activity of this 632 bp promoter fragment, especially in the absence
of a co-transfected androgen receptor expression plasmid. The observation by Schaffner et
al. (see ref. 26), that transgenic mice carrying a Ha-rasT24 oncogene, driven by the 632 bp
proximal PSA promoter developed salivary gland and gastrointestinal tract tumors seems to
be in contrast to our findings for this promoter. However, mutant Ha-ras expression was
only confirmed in salivary gland tumors, and not in gastrointestinal tumors. Furthermore,
the late onset of tumorigenesis could indicate that Ha-ras expression was a secondary event.
This might be related to PSA expression in 2 subset of salivary gland tumors in humans (27).
An alternative hypothesis is that Ha-ras intron or exon sequences affect the selectivity and
level of expression of the oncogenic transgene.

The three PSA-61-LACH transgenic lines show a comparabie level of lateral prostate
specific, but copy number independent 3-galactosidase expression. This could indicate that
the PSA-61-LACH transgene cassette lacks elements, like matrix attachment regions or locus
control regions, which might determine boundaries in chromatin structure, leading to copy
number dependent and position independent activity of transgenes (see 28, and references
therein), The 6 Kb PSA promoter fragment contains afl DNAsel hypersenstive sites (which
indicate important regulatory regions) in the 31 Kb region upstream of the PSA gene (see ref.
i4), However, it might lack putative, so far unidentified regulatory sequences within the PSA
gene, or in the flanking region downstream of the PSA gene, or even downstream of the
hGK-1(KLK-2) gene, which is also prostate specifically expressed, and which is at a distance
of 12 Kb in the human genome (7,8). Alternative explanations for copy number independent
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activity arc also possibie. Although difficult to compare, the RT-PCR, and X-gal staining
experiments suggest that the expression level of the transgene in PSA-61-LACH mice is not
as high as that of the endogenous PSA gene in the human prostate. Although this might be
due to the integration site and the propertics of the LacZ and protamine part of the transgene
casselte, it is a real possibility that one or more trans-acting factors, that direct high level
PSA expression in the human prostate, are absent, or present in a much lower concentration
in the mouse prostate. If this is indeed the case, these factors could be limiting factors in the
expression of the transgene, which corresponds to a comparable activity of the 6 Kb PSA
promoter in the three independent transgenic lines. This might also explain the low
expression level of the mouse kallikrein mGK22 in the prostate. On the other hand, the fatter
might be caused by differences in promoter make up, Further analysis of mGK22 mouse
kailikrein promoter activity in human prostate cell lines should provide additional
information. In this regard, it is also interesting, that the 6kb PSA promoter driven transgene
expression pattern was different from that of mGK22, which is expressed at a high level in
SMGs. The PSA-61-LACH transgene follows the expression pattern of the endogenous PSA
gene in humans, and not that of mouse kallikreins,

The 6 Kb PSA promoter is the first human promoter, that directs prostate specific
expression in transgenic mice, Previously three rat promoters have been studied with respect
to prostate specificity and applicability in the development of rodent prostate cancer models,
rKIK8, C3(1) and probasin (29-35). Transgenic rats carrying a 2.5 Kb rKLKS rat kallikrein
promoter fragment did not show tissue specificity. Expression of the transgene was
demonstrated in almost all tissues tested, including prostate, but was absent at the major sites
of endogencus gene expression, the submandibular and sublingual salivary glands (29).
Transgenic mice carrying a 6 Kb 5’-flanking region of the rat C3(1) gene linked to the (-
galactosidase reporter gene (30) or a 9.5 Kb fragment carrying the C3(1) gene with 4 Kb
upsireamn and 2 Kb downsiream flanking sequences (31) did not direct t{ransgene activity
strictly to the prostate. Depending on integration site, expression was also detected in testis,
heart, lung and skeletal muscle. Transgenic mice bearing a 5.7 Kb C3(1) promoter linked
to the SV40 large T antigen region developed at 7 months a prostate adenoma or
adenocarcinoma (32). Female mice carrying this transgene acquired mammary
adenocarcinomas. The mice developed also other phenotypic changes including several
proliferative lesions and malignancies leading to premarure death. Greenberg et al. (33)
reported on a 426 bp promofer fragment of the rat probasin gene directing CAT reporter
gene expression to the prostate of transgenic mice. These transgenic mice showed CAT
expression in dorsal, lateral and ventral prostate. Low levels of transgene expression were
observed in the anterior prostate and in the seminal vesicles. Although prostate specific, the
expression level of the transgene was dependent on the integration site, and did not strictly
follow the expression pattern of the endogenous rat probasin gene, which is selectively
expressed in the dorsolateral prostate. Co-integration of chicken lysozyme matrix attachment
regions resulted in transgene expression in dorsolateral prostate of adult mice. Co-integration
of matrix attachment sites was insufficient to facilitate high level and copy number dependent
expression. Transgenic mice carrying the 426 bp Probasin promoter driven SV40 large T
antigen oncoprotein, developed progressive forms of prostatic cancer (34,35).

Progress towards the understanding of the biology of prostate cancer benefits enormously
from the availability of proper animal models displaying the whole range of clinical stages.
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The present study provides a baseline for the generation of such models, utilizing the 6 kb
PSA promoter hooked io the appropriate oncogenes. Because of its tissue specificity, and
integration site independent, constant activity it might even be preferred above the probasin
and C3(1) promoter driven prostate cancer models.

The observations as presented in this study, are not only relevant to the generation of
mouse prostate cancer models, but also to gene therapy programs of human prostate cancer.
The PSA gene is not only expressed in the luminal epithelial cefls of the normai human
prostate, but also in almost all prostate cancers. Therefore, the regulatory elements, that
determine PSA expression in prostate cancer are of potential interest for building a promoter
to drive expression of therapeutic genes in prostate cancer celis. The strict prostate specificity
of the 6 Kb PSA promoter fragment strongly supports the applicability of this Iarge promoter
fragment, or derivatives, in gene therapy of human prostate cancer. Preliminary experiments,
indicating prostate specificity of the 6 kb promoter driven TK gene in an adenovirus
construct are in accordance with this view (Gotoh et al., unpublished results).

MATERIALS AND METHODS

Cell culture

LNCaP prostate celis were cultured as described (36). For examination of androgen driven
promoler activity, the synthetic androgen, R1881 (DuPont NEN, Boston, MA), was added
to steroid depleted medium to a final concentration of 1 nM.

Consgruction of plasmids

All plasmid constructs were prepared according to standard procedures (37). The human
androgen receptor expression plasmid pSVARo and the LacZ containing reporter plasmid
pLACH were described previously (38,39). A mouse protamine gene fragment (mP1, +95
to +625, see ref. 24) provides the LacZ cassette with an intron and the 3’ untranslated
region, including the polyadenylation signal. PSA-61-LACH was generated by integration
of the blunt ended HindIII/HindIlI (-6 kb/+ 12) fragment of the PSA promoter into the Smal
site of the pLACH multiple cloning site (MCS). PSA-4-LACIH was generated by integration
of the EcoRI/HindIII (-632 /12 bp) PSA promoter fragment into pLACIH,

Transient transfections
Celis were transfected according to the calcium phosphate precipitation method, essentially
as described (14).

Generation and identification of transgenic mice

The 632 bp and 6 Kb PSA promoter driven LacZ genes were released from vector sequences
by restriction digestion, purified by gel electrophorests and prepared for injection according
to standard methods (40). The appropriaic fragments were microinjected into the male
pronuclei of fertilized eggs of C57BLAOxDBA2C (F1I) mice, The presence of the transgene
was established by PCR amplification on DNA from tail biopsies (40), using oligonucleotide
primers PSA-s: §$-TTGTCCCCTAGATGAAGTCTCCATGA-3' and LacZ-as: 5'-
CGCCAGGGTTTTCCCAGTCACGAC-3’ (indicated in Figure 1),
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Transgene copy numbers were quantitated by phospho image analyses of Southern blots
of tail DNA. To this purpose, 10 ug DNA was digested with Kpnl and Sacl, electrophoresed
on 0.8 % agarose gel and transferred to Hybond N* membrane (Amersham, Cardiff, UK),
Filters were hybridized at high stringency with a random primed *P-labeled protamine probe
(sce RNA in situ hybridization section). DNA transfer and filter hybridization were carried
out according to the protocol of the manufacturer.

In indicated cases, mice were supplemented once a day with 5 mg Dihydrotestosterone
(DHT) / Kg body weight. DHT in 100% ethanol was mixed with 9 volumes sesame oil, and
injected subcutaneously.

Liguid 3-galactosidase assay

3-Galactosidase activity was measured in lysates of LNCaP cells and mouse tissues using the
Galacto-Light Plus™ chemiluminescent reporter assay

{Tropix Inc., Bedford, MA). Two to 5 mg of mouse tissue was incubated in 100 pl lysis
solution, transfected LNCaP cells were collected in 350 ui lysis solution. 8-Galactosidase
activity in 10 pl extract was corrected for variations in protein concentrations (protein
microassay, Bio-Rad, Miinchen, Germany).

Whole mount 8-palactosidase staining

Immediately after sacrificing, mouse tissues were fixed by perfusion fixation in 2%
paraformaldehyde in a 0.1 M PIPES buffer (pH 6.9), containing 2 mM MgCl, and 1.25 mM
EGTA. Tissues were dissected and fixed for an additional 60-90 min at RT. To inactivate
endogenous S3-galactosidase activity, tissues were washed three times for 30 min in PBS (pH
8.6). Subsequently, tissues were incubated in PBS for 60 min at 50°C. After cooling to RT,
tissues were incubated in pre-staining solution (containing 2mM MgCl,, 5 mM K Fe{CN);,
53 mM K, Fe(CN); and 5 mM EGTA in PBS) for 60 min. After transfer to staining solution
{pre-staining solution supplemented with 0.5 mg/ml X-Gal), incubation was continued for 6-
24 h at RT. The reaction was stopped by extensive washing in PBS, and tissues were
postfixed in 4% paraformaldehyde in PBS prior to paraffine embedding. Five pm sections
were counterstained with neutral red.

RT-PCR :

Isolation of total celtuiar RNA was carried out according to the guanidinium isothiocyanate
micthod (41). Reverse transcription and PCR amplification of LACZ-protamine (primers
LACZ-s and PRO1/2-as), mouse kallikreins {primers KALK- 3-s and KALK-4-as), mGK22
(mGK22-1/2-s and mGK22-4/5-as) and GAPDH (GAPDH-s and GAPDH-as) were performed
on 1 pg total RNA in the single tube Access RT-PCR* system (Promega, Madison, W1},
according to the protocol of the manufacturer. Annealing steps were at 58° C, except for the
kallikrein cDNAs expressed in mouse prostate (primers KALK-3-s and KALK-4-as), which
was at 50° C.

RT-PCR primers:

LACZ-s : 5 AGCCATCGCCATCTG 3’
PRO1/2-as : 3 GACGGCAGCATCTTCGCCTC 37
KALK-3-3 3" TGCGGATCCTCAGGCTGGGGCAGCA 3’
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KAILK-4-as : 5" TGTCAGATCTCCTGCACACAA/GCAT 3
mGK22-1/2-s : 5* CTAGGAGGGATTGATGCTGC ¥
mKG22-4/5-as : 5 CCTCCTGAGTCTCCCTTACA ¥’
GAPDH-s 1 5 GGTCTACATGTTCCAGTATGACTCC 3’
GAPDH-as 1 5" GAGACAACCTGGTCCTCAGTGTAGC 3

The resulting PCR products were separated over a 2% agarose gel, and in indicated cases
transferred to Hybond N* membrane, Filters were hybridized at high stringency with random
primed *P-labeled probes specific for the expected cDNA fragment. The PCR product
obtained with primers KALK-3-s and KALK-4-as was cloned in PCR-II (Invitrogen, Leek,
The Netherlands), and resulting clones were sequenced.

RNA in_situ hybridization

Sense and antisense digoxygenin (DIG) labeled protamine RNA probes were generated on
a 175 bp protamine cDNA fragment, obtained by RT-PCR on mouse testis RNA with
primers PRO-s (5° GAAGATGTCGCAGACGGAGG 3’} and PRO-as (5
GATGTGGCGAGATGCTCTTG 3°). The PCR fragment was first cloned in pCR-II. After
sequencing, the EcoRI-EcoRI ¢cDNA, fragment was re-cloned in pTZ19 (Pharmacia, Uppsala,
Sweden). After linearization with HindIll, DIG labeled RNA was transcribed from the T7
promoter. Hybridization of 5 um paraffine embedded sections, and visualization with alkaline
phosphatase coupled anti-DIG antibodies and indoxil-nitroblue tetrazoiium (NBT/BCIP)
substrate were done essentially as described (42). Sections were counterstained with neutral
red.

Experimental animals
In accordance with the NIH Guidelines for Care and Use of Laboratory Animals, all

experiments were conducted using the highest standard for humane care.
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In an attempt to identify a candidate prostate-specific transcription factor, a novel member
of the C/EBP family of transcription faciors was cloned, C/EBPS. As a model system, the
molecular mechanism involved in androgen regulated and prostate specific expression of the
PSA gene was extensively studied. During the course of the work described in this thesis
three functionally active androgen response elements were identified in a 6 Kb PSA promoter
fragment, two in the proximal promoter (ARE-I and ARE-II}, and one in the far upstream
enhancer region (ARE-H1}. The upstream enhancer region is probably complex and shows
largely prostate specific activity in transfection experiments. Because the recognition
sequence for the AR and several other steroid hormone receptors including the GR is
identical, the mechanism underlying the apparent androgen specific induction of PSA
promoter activity in LNCaP prostate cells was investigated. Finally, the capacity of two PSA
promoter fragments in directing androgen regulated and prostate-specific activity of a reporter
gene in vivo was studied.

Cloning of a novel (candidate) prostate specific transcription factor of a known family

For the isolation of a novel, prostate specific member of a known family of transcription
factors, we focused on the C/EBP family, Comparison of band shifts of a CCAAT box
{TTGGGCAAT) in the rat C3(1) promoter with liver, ventrat prostate and testis nuclear
exfracts indicated prostate specificity of a member of the C/EBP family, which could be
involved in the prostate specific expression of the C3(1) gene (Zhang et al. 1990), At the
time our search for a C/EBP gene expressed in (human) LNCaP prostate cells was initiated,
only one human member of the C/EBP family, C/EBPS, had been identified. In rodents four
different C/EBRPs, including C/EBPE had been cloned, C/EBPa had been implicated in kver
and adipocyte specific gene expression. The C/EBP family members showed over 75 percent
homology in the DNA binding domains, but the homology in the remaining parts of the
proteins was limited. At present six different rodent C/EBPs have been identified, four of
which have alse been detected in humans (Akira et al. 1990, Kinoshita et al. 1992, Cleutjens
et al. 1993, Antonson & Xanthopoulos, 1995, Chumakov et al. 1997). In the course of our
study, we cloned the human C/EBPS gene, Independently, others reported the isolation of
the human C/EBP& gene by screening of a genomic library with a probe encoding the
C/EBPS DNA binding domain (Kinoshita et al. 1992). C/EBPé expression was detected in
a variety of fissues, with the highest level of expression in lung, adipocytes and kidney. The
expression of C/EBPS in lung and kidney is strongly enhanced by inflammatory cytokines,
whereas the expression in adipocytes is strongly increased by adipogenic hormones, including
insulin and dexamethasone (Cao et al. 1991). In prostate, C/EBPS expression is low, and
upregulated by androgens (Cleutjens et al. unpublished resuits). Until now no evidence for
a role of C/EBPG in prostate specific gene expression has been obtained.

Although the cloning of C/EBPS did not result in the identification of a prostate specific
transcription factor, the approach to identify prostate transcription factors by means of
cloning a novel member of a known transcription factor family is still valid. As explored for
C/EBP, a prostate specific protein, binding to the consensus sequence for a specific
transcription factor family in a band shift assay can be a first tool. Ideally, this binding site
is present in a region known to be important for prostate-specific gene expression but this
is not a prerequisite. Essentially, the approach of cloning a novel member of a known family
of proteins can also be applied for the identification of a putative prostate specific co-
activator,
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Is the androgen receptor a key plaver in prostate specific gene expression ?

Possibly, prostate specific gene expression is not dependent upon one single strictly
prostate specific transcription factor, but will be attained by a cooperative interaction of a set
of transcription factors and co-activators, all showing partial tissue specificity, As a result,
the target gene(s) will only be expressed at a high level in those cells which contain all
cssential factors, In this respect the AR might play a major role. AR is mainly expressed in
cells of the male urogenital tract. Importantly, alt genes showing (almost complete) prosiate
celt specific expression (inctuding PSA, hGK-1, C3(1), probasin and prostate specific
transglutaninase), were shown to be regulated by androgens (Heyns et al. 1978, Dodd ¢t al.
1983, Riegman et al. 1991a,b, Young et al. 1991, 1992, 1995, Henntu et al, 1992, ITo et al.
1992, Wolf et al. 1992, Dubbink et al. 1996). Obviously, AR is not sufficient to direct
prostate specific expression of these genes, because they are not expressed in other tissues
of the urogenital tract. Both from endocrine manipulation of rats, and from the AR mutations
in AIS, it is well established that AR is not only involved in tissue specific gene expression,
but also essential for prostate development, and maintenance of its structure (Cunha et al.
1987, Cunha 1994, Quigly et al. 1995, Gottlieb et al. 1997).

Evidence for cooperative interaction of the AR with other factors was obtained by studying
the cell specificity of the PSA promoter in transient transfection experiments. Reporter genes
driven by the PSA promoter show fargely LNCaP prostate celf specificity as compared to
several other prostate and non-prostate derived cell lines, despite co-transfection of a human
AR expression vector in these cells (Chapter V). This correlates with the expression of the
endogenous PSA gene (with the exception of T47D cells). AR might not be able to stimulate
PSA promoter activity in PSA negative celis due to the absence of essential cooperating
transcription factors or co-activators. One AR specific co-activator has been claimed,
ARA70., ARAT0 was shown to interact with the AR ligand binding domain, and selectively
enhance AR-dependent transcription (Yeh & Chang 1996). Although ARA70 is expressed in
prostate, it is not prostate specific. Expression was demonstrated in almost all tissues tested,
including AR negative tissues.

An alternative mechanism of absence of PSA expression in AR positive cells can be the
presence of specific silencers in these cells, that block AR mediated PSA promoter activity,
An indication for such a factor might be obtained by deletion mapping experiments in non-
prostate cells. Deletion of the sequence to which the silencing factor binds would result in
ubiquitous activity of the PSA promoter. Results obtained so far with the different PSA
promoter constructs demonstrate that if a silencer protein is active, it must act on the 440 bp
upstream enhancer region, because this fragment still shows prostate specificity (Chapter V)

Cooperative interaction of multiple AREs

Synergistic activity of multiple hormone response elements has been identified in many
genes, including androgen responsive genes. The proximal promoter region of the probasin
gene shows cooperative interaction of one high affinity and one low affinity AR binding site
{Rennie et al. 1993, Kasper et al. 1994, Claessens et al. 1996). Clear cooperative activity
between a high and a low affinity AR-binding sequence was also observed in the proximal
PSA promoter (Chapter IH). In case of the 6 Kb PSA promoter, the situation is even more
complex, cooperative activily of three ARE sequences has been observed (Cleutjens et al.
1997, Chapter V). Figure VIL.1. shows a schematical representation of the currently
identified regulatory elements in the PSA promoter.
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Figure VII. 1 Scliematical representation of regulatory elements in the promofer of the PSA
gene. AR: androgen receptor, TF: transcription factor, TFE: TF binding element, TIC:
transcription initiation complex, TSS: transcription start site.

In this model, interactions between the various AR homodimers and other transcription
factors in the upstream enhancer region, and presumably in the proximal promoter region
might be either direct or mediated by co-activators. Looping out of the intervening DNA
sequences might contribute to the observed communication between the distal enhancer, and
the transcription initiation complex and regulatory elements in the proximal promoter
(Gothard et al. 1996, and references therein),

The observed cooperative activity of the low affinity AR binding sites ARE-1
(ATAGCAtTGTTCT) in the probasin promoter and ARE-II (GGATCAgggAGTCTC)
present in the proximal PSA promoter revealed the functional relevance of degenerate
palindromic sequences with limited homology to the consensus ARE sequence and low AR
binding affinity. Footprint or bandshift analysis with recombinant AR-DBD or the full iength
AR is an attractive experimental approach to identify candidate AREs, with either high or
low AR binding affinity in the promoter or enhancer region of interest. However, functional
activity of the candidate ARE can only be demonstrated by experiments in which muitiple
copies of the candidate ARE are shown to be sufficient to confer androgen regulated activity
to a heterologous promoter and by mutational analysis of the candidate ARE.

To make the situation even more complex, in addition to palindromic repeats with a 3 bp
spacer, directly repeated half-sites have been shown fo act as response element for steroid
hormone receptors, although with several fold lower binding affinity and transactivation
efficiency (Kato et al. 1992 and 1995, Aumais et al. 1996}. In natural androgen-regulated
genes, a functional role of directly repeated half-sites has been implicated in the androgen-
regulation of the crp1/20 kDa protein gene (Ho et al. 1993). A 39 bp fragment in the first
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intron (N39) contains three ARE-like half-sites separated by 6 and 4 bp respectively. This
fragment shows low AR-binding affinity and confers weak androgen responsivity to a
heterologous promoter. In the upstream PSA enhancer region several ARE-like half-sites can
be identified (see Chapter V), cooperativity of these haff-sites with ARE-IIl cannot be
excluded, However, until now no information about their functional relevance is available.

A complex upsiream enhancer region
Inactivation of ARE-III, present in the centre of the 440 bp core of the upstream enhancer

region, almost completely abolished enhancer activity, indicating its central role. Truncation
of the 440 bp core enhancer region at either the 5° and 3' end resulied in partial reduction
of androgen induced activity. The reduction in activity might be the result of deletion of
binding sites for additional transcription factors. Additionaily, the spacing between the
upstream enhancer region and the proximal promoter might be a factor. The nature of the
transcription factors, acting cooperatively with the AR in maximal androgen induced activity
of the PSA core enhancer region has not been identified as yet. Although these factors might
include ubiquitously expressed transcription factors, one or more should contribute to prostate
specificity of the PSA promoter. Alternatively, a ubiquitously expressed transcription factor
interacts with a prostate specific co-activator,

The central role of ARE-III in activity of the upstream enhancer region raises the
possibility that binding of AR to ARE-III changes the chromatin structure in this upstream
region, thereby allowing additional transcription factors to bind to the DNA, possibly
followed by removal of the AR, This mechanism of cooperativity has previously been
proposed for GR activation of the proximal MMTV-LTR promoter, and in an upstream
enhancer region of the tyrosine aminotransferase (TAT) gene. The proximal MMTV
promoter contains a cluster of three degenerated HREs, and NF-1 and Oct binding sites, All
clements are required for optimal induction by steroid hormone receptors, as shown by
mutational analysis {Cato et al. 1988). Functional studies indicated that the observed
synergism between steroid hormone receptors and NF-I might be mediated by the
organization of the DNA in chromatin (Briiggemeier ¢t al. 1991). Binding of the activated
steroid hormone receptor is supposed to cause a displacement or disruption of the nucleosome
positioned over the proximal promoter region, thereby enabling free access of NF-1 to its
recognition sequence (reviewed by Beato & Sanchez-Pacheco 1996}, In a complex liver
specific and glucocorticoid regulated enhancer region, 2.5 Kb upstream of the TAT gene,
functional cooperativity between multiple GREs and the liver enriched transcription factor
HNF-3 has been observed (Rigaud et al, 1991, Nitsch et al, 1992, Roux et al. 1995), Results
obtained by in vivo footprinting experiments over this enhancer region suggested a hit-and-
run mechanism of transcriptionai activation by GR (Rigaud et al. 1991}, Activated GR binds
to the GRE, which partially overlaps with the binding site for HNF-3, and modifies the [ocal
chromatin structure. Subsequently, GR leaves the region accessible to HNF-3. Binding of
both HNF-3 and GR to this site is mutually exclusive, At present it is unknown if such a
mechanism is also responsible for the activation of the upstream PSA enhancer region.
However, the presence of a strong androgen regulated DNasel hypersensitive site in the
cenire of the upstream erhancer region is a strong indication for hormone-induced
nucleosome removai or disruption (Elgin 1988). Kinetics of protein interactions, as
determined by in vivo footprinting is nceded to determine whether or not AR binding to
ARE-HI induces chromatin remodelling, followed by binding of additionai factors, and if so,
whether AR is permanently or temporarily associated with the enhancer region,
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Besides by remodelling of the chromatin structure by one factor, and subsequent binding
of additional factors, synergistic activation between multiple transcription factors can be
obtained by cooperative binding of transcription factors to adjacent DNA-binding sites
{Ptashne et al, 1988, Tsai et al. 1989, Baniahmad et ai. 1991, Briiggemeier et at. 1991}).
Cooperative interaction of independently DNA binding transcription factors with a common
co-activator should also be considered as a mechanism for synergistic activity (Ptashne 1988,
Bradshaw et al. 1991, Martinez et al. 1991).

As a first start to identify regulatory sequences, that in addition to ARE-I1I contribute to
maximal androgen regulated and prostate-specific activity of this compiex enhancer, in vitro
foolprinting experiments can be done using nuclear extracts from LNCaP and T47D cells,
cultured in presence and absence of androgens and from a cell line in which the PSA
promoter is inactive. Appropriate smali fragments shown to be protected in footprints can
be used in bandshifts to study in somewhat more detail the proteins binding to this region.
Subsequently, these fragments can be deleted from the 440 bp enhancer region in reporter
gene constructs, and activity of the resulting fragment can be compared with activity directed
by the original fragment. Once regulatory elements involved in maximal enhancer activity
are identified, the cloning and characterization of the transcription factor(s) binding to such
an element can be initiated.

Especially when the observed synergistic activation in the upstream core enhancer is
attained by AR induced chromatin remodelling, it will not be easy to determine isolated
regufatory elements, since every small change in distance between AR and the additional
elements, or minor changes of sequences surrounding these regulatory elements can have an
effect on enhancer activity. So, results obtained by rather radical deletion mapping need to
be substantiated by experiments in which the region of interest is replaced by an inert
unrelated sequence of comparable length and by subtle mutational analysis.

AR target gene specificity

The consensus sequence for high affinity binding of all steroid hormoene receptors,
excluding ER is identical, GGT/AACAnnn TGTTCT. Despite the shared DNA-binding site,
these receptors mediate diverse cellular responses. The common high affinity DNA-binding
site raises the question of target gene specificity, if more than one receptor is expressed in
one and the same cell. At present the picture emerges that several distinct molecular
mechanisms may account for target gene specificity, including receptor expression level,
receptor-DNA interaction, interaction of the receptor with other proteins, and ligand
availability,

AR specific regulation of PSA expression in LNCaP cells is caused by the absence of GR
in these celis {Chapter IV}, No indication of differential activity of AR and GR on the
individual regulatory elements in the PSA promoter has been found. Transient co-transfection
of proximal PSA promoter constructs and AR or GR expression plasmids revealed an
approximately 2-fold higher Dex induced promoter activity (Chapter III). The 6 Kb promoter
was also slightly less activated by the AR. AR seemed slightly more active on the
endogenous PSA gene. A lack of receptor specificity in mediating PSA promoter activity was
also observed for AR and PR in T47D cells. These data suggest that an AR specific co-
activator, or other AR specific protein-protein interactions are not essentiat for PSA promoter
activity.

In contrast to the stimulation of PSA expression by both AR and GR, cell proliferation
could only be induced by R1881. This suggests that genes involved in cell proliferation are
differentially regulated. In a Differential Display search with a limited number of primers one
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novel mRNA was detected, that could be up-regulated by AR, but not by GR (Steketee,
unpublished results). In case the observed difference on the mRNA level is a reflection of
a difference of transcription initiation, further analysis of the regulation of expression of this
gene might provide information about the mechanism of AR specificity.

Recently, Claessens et al. (1996) reported on a selective ARE sequence. AR and GR
DBDs bind to most functional AREs in natural androgen regulated genes, including core 11
of the C3(1} gene, HRE-3 of the Slp gene, PSA ARE-I and the AREs present in the hGK-1
and factor IX genes, with comparable affinity (Rundlett & Miesfeld 1995, Claessens et al.
1996). Furthermore hoth ARE-IT and ARE-III of the PSA gene were found to interact with
both AR and GR DBD (Cleutjens et al., unpublished results), However, ARE-2
(AGTACTccaAGAACC) in the probasin promoter region selectively interacts with the AR-
DBD (Clacssens et al. 1996). A situation that was reflected in transient transfection
experiments with an ARE-II driven reporter gene. The functional C3(1) ARE is not specific,
Studies with probasin/C3(1) swapped haif-sites indicated that the right half site (5-
AGAACC-3’ of probasin ARE-2 prevents GR-DBD binding. Comparison of the probasin
ARE-2 sequence with all other known functional ARE sequences revealed that the AR
specific binding affinity of probasin ARE-II can not be attributed to a single nucleotide. More
detailed mutational experiments are needed to identify the mechanism determining the
observed specificity of AR-DBD binding,

LNCaP prostate cells

The research on regulatory elements invelved in androgen-regulated and prostate-specific
expression of the PSA gene has benefitted from the availability of the LNCaP prostate cancer
cell line, that endogenously expresses both AR and PSA {Horoszewicz et al. 1983), Initially
this cell line was not easy to transfect and it was a challenge to find the proper culture and
transfection conditions. Once the initial problems were overcome, the LNCaP cell line made
a very suitable model system. The LNCaP cell line harbors one unfavorable property, the
AR gene in the LNCaP cell line contains a point mutation in the LBD which renders this
receptor responsive not only to androgens but also to estrogens, progestins and several anti-
androgens (Veldscholte et al. 1990), For comparison it is very important to have additional
buman prostate cells available, expressing both AR and PSA. Hopefully, the recently
developed celt line PC346C can fulfil this requirement (Romijn, personal communication,
Dubbink et al. 1996).

In vive application of PSA regulatory regions

The 6 Kb PSA promoter is the first human promoter, shown to direct prostate specific
gene expression in transgenic mice, Out of the two rat promoters tested in transgenic mice
for prostate specificity [C3(1), and probasin] (Allison et al. 1989, Buttyan & Stawin 1993,
Greenberg et al, 1994), only the 426 bp rat probasin promoter fragment directed transgene
expression almost exclusively to the prostate (Greenberg et al. 1994). Transgene expression
(ventral and dorsolateral prostate) did not strictly follow the expression pattern of the
endogenous rat probasin gene, which is selectively expressed in dorsolateral prostate, This
indicates that additional reguiatory regions surrounding or present in the probasin gene are
needed for the tissue specific expression as observed for the endogenous gene.

Because of its strict prostate specific activity in transgenic mice, it can be argued that the
6 kb promoter contains most, if not all elements important for regulation of expression of the
endogenous PSA gene in human tissues. These results strongly support the application of the
PSA promoter in gene therapy of prostate cancer. Because the endogenous PSA gene is
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expressed in the vast majority of prostate cancers, it is Jikely that all transcription factors and
co-activators needed to drive a transgene PSA promoter are present. However, aithough
difficult to judge, expression of the 6 Kb PSA promoter driven transgene in the mouse
prostate did not look very high. Therefore, it might be beneficial to attempt to develop
maodified derivatives of the PSA promoter directing higher expression levels, To this end, the
most important componeats directing prostate specific activity of the PSA promoter need to
be determined. The 440 bp core enhancer seems a very attractive start point to identify such
elements. Furthermore, since neither of the three ARE sequences in the PSA promoter is
completely identical to the consensus sequence, substitution of these AREs by the consensus
ARE might result in an even higher, prostate specific activity of the PSA promoter or PSA
promoter derivatives.
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Summary

SUMMARY

In Western countries, adenocarcinoma of the prostate is the most frequently diagnosed
tumor in men, and the second leading cause of male cancer death. Although early
diagnosis, which can lead to successful surgical interference, is improving, a large
proportion of patients presents with disseminated disease. Furthermore, a considerable
number of surgically treated patients returns with metastases, First line therapy of locally
invasive or metastatic disease is generally endocrine therapy. Unfortunately, the effects of
this type of therapy are only temporary, and after a variable period of time, a then hormone
refractory tumor continues to grow.

In the present study transcription factors involved in the development, growth and
differentiation of the prostate were studied. These factors might also play a role in the
initiation and progression of prostate cancer. The main focus is on androgen regulated gene
expression. It was previously shown that the presence of a funetional androgen receptor
(AR), a member of the steroid hormone receptor family, and the appropriate androgenic
hormones are essential for the development and maintenance of the prostate. Chapter 1
gives an overview of the current knowledge of the steroid hormone receptor family.
Furthermore, androgen regulated and prostate specific gene expression are discussed.

To identify and characterize prostate specific transcription factors involved in growth and
differentiation of the prostate, two complementary experimental approaches were followed.
The first approach, a search for novel members of known families of transcription factors,
resulted in the identification of the human C/EBPS gene. The C/EBPS gene was assigned to
the pericentromeric region of chromosome 8. C/EBP3 was found to be the major C/EBP
family member expressed in LNCaP prostate cells, however, C/EBPS expression appeared
not to be prostate specific (Chapter II),

The second experimental approach focussed on the regulation of prostate specific antigen
(PSA) expression, the main subject of this thesis. PSA is a member of the human kaliikrein
gene family, further members of this family are the human glandular kallikrein (hGK-1)
gene and the tissue katlikrein gene, KLK-1. The three genes are clustered in an area of 60
Kb on chromosome 19q13.2-13.4. PSA is expressed at high level in the luminal epithelial
cells of the prostate, and at very low levels in other tissues, Expression of PSA is androgen
regulated, this regulation is at least partially at the level of transcription initiation.

Chapter HI reports the identification of two AR binding sites in the proximal PSA
promoter, identified by means of bandshift analysis with recombinant AR protein. At
position -170 a high affinity AR binding site, ARE-I {AGAACAgcaAGTGCT) was found
to be present; ARE-II (GGATCAgpgAGTCTC) at position -394, is a low affinity AR
binding site. Functional activity of these candidate androgen response elements or AREs
was shown by transient transfection experiments in PSA and AR positive LNCaP prostate
tumor cefls. The proximal PSA promoter, including ARE-T and ARE-II, is more active in
LNCaP cells than in the PSA negative prostate cell lines DU145 and PC3 cells and in
several non prostate celi lines. In LNCaP cells cotransfected with a glucocorticoid receptor
{GR) expression plasmid, the pattern of PSA promoter activity induced by dexamethasone
turned out to be identical to AR mediated activity.
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In order to directly compare the functional activity of the AR and the closely related GR
in prostate cells, a GR expression vector was stably integrated in AR positive LNCaP cells
{Chapter TV). Interestingly, both AR and GR were found to upregulate expression of the
endogenous PSA gene, but they were different in their growth stimulating properties of
LNCaP sublines. These cell lines provide a novel system for comparison of AR and GR
molecular and biological functions.

{ts relatively low activity suggested that the proximal PSA promoter is not sufficient to
account completely for androgen regulation of the endogenous PSA gene. In order to detect
additional, more distal conirol elements, DNasel hypersensitive sites (DHSs) upstream of
the PSA gene were mapped in chromatin from the prostate derived cell line LNCaP, grown
in the presence and absence of the synthetic androgen R1881. In a region 3.8 to 4.8 Kb
upstreamn of the transcription start site of the PSA gene, a cluster of three DHSs was
detected. The middle DHS (DHSII, at approximately -4.2 Kb) showed strong androgen
responsiveness in LNCaP chromatin, and was absent in chromatin from HeLa celis. Further
analysis of the region encompassing DHSII provided evidence for the presence of a
complex, androgen responsive and cell specific enhancer. In transiently transfected LNCaP
cells, PSA promoter constructs containing this upstream enhancer region showed
approximately 3000-fold higher activity in the presence than in the absence of R1881. The
core region of the enhancer could be mapped within a 440 bp fragment. The enhancer
showed synergistic cooperation with the proximal PSA promoter, and was found to be
composed of at least three separate regulatory regions. In the center, a functionally active,
high affinity AR binding site was identified (ARE-ITl: GGAACA@tTGTATC at position
-4.2 Kb). Mutation of this element almost completely abolished PSA promoter activity, To
study whether the activity of the upstream core enhancer showed cell specificity, luciferase
(LUC) reporter gene constructs were co-transfected with an AR expression plasmid to a
series of AR negative prostate and non-prostate cell lines. Tramsient transfection
experiments in (PSA negative) PC3, DU145, Hep3B and COS cells did not reveal any
activity of the PSA upstream core enhancer, although PC3 and DU145 cell lines originate
from the prostate. In addition to LNCaP cells, the PSA promoter is only active in T47D
mammary tumor cells. However, the androgen induced activity of the PSA promoter in
T47D cell is much lower than the activity in LNCaP cells. In T47D cells, the PSA-LUC
reporter gene activity could afso be induced by the activated progesterone receptor, again
indicating that the PSA promoter is not completely AR specific {Chapter V).

Chapter VI describes the in wivo characterization of the PSA promoter. A 6 Kb PSA
promoter fragment, but not a proximal 632 bp PSA promoter fragment, was sufficient to
direct prostate specific expression of the bacterial LacZ reporter gene in fransgenic mice.
For beth constructs three transgenic strains were generated. Integration was assayed by
PCR analysis on tail DNA, and confirmed and quantitated by Scuthern blotting. LacZ
expression was tested by RT-PCR, in sity hybridization, and [-galactosidase assay on
whole tissues and tissue sections. First of ail, lysates were prepared from 26 different
tissues, and tested for B-galactosidase activity in a solution assay. In none of the mouse
strains with the proximal (632 bp) PSA construct activity of the reporter gene could be
detected. In conirast, all three strains with integration of the 6 Kb PSA promoter-LacZ
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fragment showed expression of the transgene, which was completely prostate specific. The
level of expression was comparable in all three transgenic strains, and independent of the
number of integrated copies. Expression was absent in salivary glands, where many
members of the mouse katlikreing are expressed at a high level, and in male and female
mammary cells. Out of the different prostate lobes, reporter gene expression was
exclusively found in the lateral prostate. Whole mount X-gal assay, followed by
examination of staining in tissue sections, and in situ hybridization with a specific probe
showed exclusive expression of the reporter gene in the luminal epithelial cells, like the
endogenous PSA gene in the human prostate. The [3-galactosidase assays could be
confirmed by RT-PCR with reporter gene specific primers, Transgene expression was
undetectable until 8 weeks after birth. Castration of transgenic mice rapidly led to down-
regulation of P-galactosidase expression, which could be restored within 40 h by
dihydrotestosterone supplementation, Both the developmental expression pattern and the
hormone manipulation experiment indicated androgen regulation of the transgene, as found
in human LNCaP celis. The results obtained strongly indicate prostate specificity of the 6
Kb PSA promoter in normal celis, and suggest that the 6 Kb promoter contains most, if not
all etements important for regulation of expression of the endogenous PSA gene in human
tissues. The strict prostate specificity of the 6 Kb PSA promoter fragment strongly supports
its applicability in gene therapy of human prostate cancer. Furthermore, this fragment can
be employed to direct oncogene expression to the prostate, to generate new mouse prostate
cancer models.

The results as described in the previous chapters are reviewed in the light of recent
literature data in Chapter VI, Additionally, future directions for research are proposed in
this chapter.
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SAMENVATTING

Adenocarcinoom van de prostaat is de meest voorkomende tumor bij mannen in westerse
landen, en de op een na meest frequente corzaak van kankersterfie. Ondanks de mogelijkheden
tot vroege diagnose, met meer kans op succesvol chirurgisch ingrijpen, zijn er veel patiénten
waarbij de ziekte reeds is uitgezaaid op het moment van diagnose. Daarnaast worden bij een
substanticel deel van de pati€nten die chirurgisch behandeld werden, na verloop van tijd toch
metastasen waargenomen. Op dit moment is endocriene therapie de meest toegepaste
behandeling bij gemetastaseerd prostaat-carcinoom. Helaas is het effect van deze vorm van
therapie slechis tijdelijk, en na verloop van tijd groeit er een dan hormoon onafhankelijke
tumeor verder,

Het in dit proefschrift beschreven onderzoek richt zich op de identificatie van
transcriptiefactoren die betrokken zijn bij de ontwikkeling, groei en differentiatie van de
prostaat. Deze factoren spelen mogelijk ook een rol bij het ontstaan en de progressieve groei
van prosfaattumoren. Uit eerder onderzoek is reeds bekend dat de androgeenreceptor (AR),
een lid van de familie van steroidhormoonreceptoren en bepaalde androgenen onmisbaar zijn
voor de ontwikkeling en het instandhouden van de prostaat. In Hoofdstuk I wordt een overzicht
gegeven van de huidige kennis van de familie van steroidhormoonreceptoren en met name van
de structuur, de interactie met andere transcriptiefactoren en co-activatoren, en alternatieve
mogelijkheden van activatie van de receptor. Daarnaast worden een aantal aspecten van
androgeen gereguleerde en prostaatspecifieke genexpressie behandeld.

Twee complementaire strategieén werden gevolgd in de poging om prostaatspecifieke
transcriptiefactoren te identificeren, De eerste aanpak, die onderzoek naar een nieuw, prostaat
specifiek lid van een bekende familie van transcripticfactoren behelst, resuiteerde in de
identificatie en karakterisering van het humane C/EBPS gen. Het gen werd gelokaliseerd nabij
het centromeer van chromosoom 8, C/EBPS is het lid van de familie van C/EBP genen dat het
hoogst tot expressie komt in LNCaP prostaatcelien, Helaas bleck C/EBPS expressie niet
prostaat specifiek (Hoofdstuk IT).

De tweede experimentele benadering richtte zich op onderzoek naar de regulatie van de
expressie van prostaatspecifiek antigeen (PSA), het hoofdthenta van dit proefschrift. PSA is
een lid van de familie van humane kallikreine genen. Andere leden van deze familie zijn het
hGK-1 gen en het KLK-1 gen. Deze drie humane kallikreine genen liggen geclusterd in een
gebied van 60 Kb op chromosoom 19q13.2-13.4. PSA komt hoog tot expressie in de luminale
epitheliale cellen van de prostaat. De expressie is laag of afwezig in andere weefsels. Het
expressieniveau van PSA wordt gereguleerd door androgenen, en deze reguiatie vind op zijn
minst gedeeltelijk plaats op het niveau van transcriptie.

Hoofdstuk III beschrijft de identificatie van twee AR bindingsplaatsen in de proximale
promotor van het PSA gen mby bandshift analyse met recombinant AR eiwit. Op positie -170
bevindt zich een bindingsplaats met hoge affiniteit voor de AR, ARE]
(AGAACAgcaAGTGCT); ARE-I (GGATCAgggAGTCTC) op positie -394, is een
bindingsplaats met cen lage affiniteit. De functionele activiteit van deze kandidaat androgeen-
responsieve elementen of AREs werd bewezen mbyv transiénte transfectie-experimenten in
PSA- en AR-positieve LNCaP prostaat tumorcellen. Het proximale PSA promotor gebied,
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inclusief ARE-T en ARE-H, is actiever in LNCaP cellen dan in de PSA negatieve prostaat
cellijnen DU145 en PC3 en in een aantal niet-prostaat ceflijnen. In LNCaP cellen transiént
gecotransfecteerd met een glucocorticoid receptor (GR) expressieplasmide, is het patroon van
dexamethason geinduceerde activiteit van de PSA promotor gelijk aan de activiteit tot stand
gebracht door de geactiveerde AR,

Om de eigenschappen van de AR en de GR meer direct met etkaar te kunnen vergelijken
werden, dmyv stabiele integratie van een GR expressie plasmide, LNCaP sublijnen gegenereerd,
die niet alleen de AR maar ook GR constitutief tot expressie brengen (Hoofdstuk IV). Zowel
de AR als de GR bleek in staat de expressie van het endogene PSA gen te induceren, maar er
bleek een verschil in hun groeistimulerende effect op LNCaP sublijnen. Deze cellijnen vormen
een nieuw bruikbaar systeem voor de vergelijking van de moleculaire en biologische functies
van de AR en de GR.

De relatief lage activiteit van de proximale PSA promotor suggereerde dat niet alle
informatie die nodig is voor de androgeen gereguleerde expressie van het endogene PSA gen
hierin aanwezig is, Om additionele, meer distaal gelegen regulerende gebieden te identificeren
is gezocht naar DNase [ hypergevoelige gebieden (DHS}) in de chromatinestructunr voor het
endogene PSA gen in de LNCaP cellijn, gekweekt met en zonder het synthetische androgeen
R1881. In een gebied 3,8 tot 4,8 Kb voor de transcriptiestartplaats van het PSA gen, werd een
cluster van drie DHS gevonden. De middeiste DHS (DHSIE, op ongeveer - 4,2 Kb) laat sterke
gevoeligheid voor androgenen zien in LNCaP cellen, {erwijl deze DHS niet aantoonbaar is in
chromatine van Hela cellen, Verdere analyse van het gebied rond DHSII gaf aanwijzingen
voor de aanwezigheid van cen complexe, androgeengevoelige en celspecifieke "enhancer”. In
iransiéntf getransfecteerde LNCaP cellen zijn PSA promotorconstiucten die dit gebied omvatten
ongeveer 3000 maat meer actief in de aanwezigheid dan in de afwezigheid van R1881. De kern
van dit "enhancer” gebied wordt gevormd door een 440 bp fragment. De "kern-enhancer"
werkt synergistisch samen met de proximale PSA promotor en bestaat wit tenminste drie
afzonderlijke regulerende eiementen. In het centrum werd een functioneel actieve
bindingsplaats met sterke affiniteit voor de AR gevonden (ARE-HI: GGAACAtatTGTATC op
positie -4.2 Kb). Mutatie van dit element verhinderde bijna volledig de activiteit van de PSA
promotor. Om mogelijk prostaatspecifieke activiteit van de nieuwe enhancer te onderzoeken
werden een aantal AR negatieve prostaat en niet-prostaat afgeleide cellijnen gecotransfecteerd
met reportergen constructen en een AR expressieplasmide. Transiénte transfectic in (PSA
negatieve) PC3, DU145, Hep3B en COS cellen vertoonde geen activiteit van de PSA "kern-
enhancer”. De PSA promotor bleek naast in LNCaP cellen alleen in T47D borst tumorcellen
actief te zijn. De door androgenen geinduceerde activiteit van de PSA promotor in T47D cellen
is echter veel lager dan in LNCaP cellen. In T47D> cellen kan de activiteit van het PSA-LUC
reportergen cok geinduceerd worden door de geactiveerde progesteronreceptor, een nienwe
indicatie dat de PSA promotor niet geheel AR specifiek is.

Hoofdstuk VI beschrijft de in vivo analyse van de PSA promotor. Een 6 Kb, maar niet het
proximale 632 bp fragment van de PSA promotor bleek prostaat specificke expressie van het
bacteriéle LacZ reportergen in transgene muizen te kunnen induceren. Voor beide constructen
werden drie onafhankelijke transgene lijnen ontwikkeld. Integratie van het transgen werd
bepaald dmv PCR op DNA geisoleerd uit de staart, en bevestigd en gekwantificeerd dmv
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Southern blot analyse. LacZ expressie werd bestudeerd dmv RT-PCR, i situ hybridizatie, en
een f-galactosidase test op weefsels en coupes, Als eerste werd van 26 weefsels lysaat gemaakt
en vervolgens werd de [-galactosidase-activiteit in deze lysaten bepaald. In geen van de
transgene muizen met het proximale (632 bp) PSA construct kon LacZ activiteit worden
aangetoond. Daarentegen kon in alle transgene lijnen met integratic van het 6 Kb PSA
promotor-LacZ fragment expressie van het transgen worden aangetoond, Deze expressie bleck
specifiek voor de prostaat. Het expressieniveau was vergelijkbaar in afle drie de transgene
lijnen en was onathankelijk van het aantal geintegreerde kopieén van het transgen. Expressie
van het transgen was afwezig in de speekselklier, cen orgaan waar veel leden van de muize
kallikreine familie hoog tot expressie komen. Ook in mannelijke en vrouwelijke borstklier
cellen kon geen transgen expressie worden aangetoond. Expressie van het reportergen bleek
alleen aantoonbaar in de laterale prostaat, een van de vier lobben van de muize prostaat. De
resultaten konden worden bevestigd dmv RT-PCR met primers specifick voor het transgen
cDNA. X-gal kleuring van de hele prostaat, gevolgd door analyse van weefselcoupes, en
daarnaast in sifu hybridizatie tfoonden exclusieve expressie van het reportergen in de fuminale
epithelilale cellen aan, identiek aan expressie van het endogene PSA gen in de humane
prostaat. Expressie van het transgen kon niet worden aangetoond in muizen jonger dan 8
weken. Castratie van transgene muizen had een sterke afname van [3-galactosidase activiteit tot
gevolg, welke hersteld kon worden door toediening van dihydrotestosteron gedurende 40 uur.
Zowel het patroon van transgen expressie tijdens de ontwikkeling, alsmede het castratie-
experiment duiden op een regulering door androgenen regulering van het transgen, zoals ook
gevonden voor het endogene PSA gen. De verkregen resultaten laten duidelijk de prostaat
specifieke activiteit van de 6 Kb PSA promotor in normale cellen zien, en suggereren dat de
6 Kb promotor de meeste, zo niet alle elementen bevat, die nodig zijn voor de regulering van
expressie van het endogene PSA gen in humane weefsels. De strikte prostaat specificiteit van
de 6 Kb promotor is een sterke aanwijzing dat dit grote promotor fragment, of afgeleiden
ervan, toegepast kunnen worden in gentherapie voor humaan prostaatkanker. Daarnaast kan
dit fragment gebruikt worden voor de expressie van specificke oncogenen bij de ontwikkeling
van niewwe muize modellen voor prostaatkanker (Hoofdstuk VI),

In het afsluitende Hoofdstuk VII worden de resultaten die beschreven zijn in de voorafgaande
hoofdstukken besproken in het licht van recente literatuurgegevens. Tevens worden in dit
hoofdstuk de mogelijkheden voer toekomstig onderzoek beschreven.
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