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A Note on Stock Sampling and Maximum Du-

ration

Abstract

An issue hardly ever mentioned in the analysis of labour market tran-

sitions is that for some individuals labour market transitions occur at

a very low rate. Therefore, these individuals might stay on disability

benefits or in domestic care till they reach the retirement age of 65.

This implies that the duration on disability and of non-participating

women has a upper bound of the time till retirement.

Despite the growing availability of panel data on labour market

transitions many household surveys are still based on stock based

sampling. In this paper estimation of a duration model in which a

positive fraction of individuals reaches a maximum duration is de-

rived for stock sampled data. A mixed proportional hazard model

with a piecewise constant baseline hazard leads to a relatively sim-

ple closed-form expression in the log likelihood. Discrete unobserved

heterogeneity is assumed. Non-constant entry rates into the labour

market state are allowed for by assuming a yearly fluctuating rate.

JEL classification: C41; J64

Key words: Maximum duration; Stock sampling; Mixed propor-

tional hazard; mover-stayer model
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1 Introduction

In most Western countries unemployment benefits and disability benefits

cease after retirement. In fact, everybody leaves the potential workforce when

reaching the retirement age. An issue hardly ever mentioned in the analy-

sis of labour market transitions is that for some individuals labour market

transitions occur at a very low rate. Therefore, these individuals might stay

on disability benefits or in domestic care till they reach the retirement age

of 65. This implies that the duration on disability and of non-participating

women has a upper bound of the time till retirement.

Despite the growing availability of panel data on labour market transi-

tions many household surveys are still based on stock based sampling. In

these surveys the data are obtained from the stock of people in a particular

labour market state. The kind of problems generated with such sampling

scheme are discussed in Nickell (1979), Ridder (1984), Heckman and Singer

(1984a), Lancaster (1990) and Murphy (1996). The main problem is that

sampling from the stock results in length-biased sampling, because the stock

contains more longer durations in a particular state than the inflow to that

state. Murphy (1996) showed that a mixed proportional hazard specification

with a piecewise constant baseline hazard and a gamma unobserved hetero-

geneity distribution lead to a rather simple likelihood specification.

In this paper the model of Murphy (1996) is extended to account for

the possibility that some individuals have a positive probability to reach a

maximum duration, like the time till retirement. The gamma unobserved

heterogeneity assumption is also relaxed. Finally, non-constant entry rates

into the labour market state is allowed for by assuming a yearly fluctuating

rate.
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2 Maximum duration in a duration model

In duration analysis the hazard rate or intensity is usually modelled. A

common way to accommodate the presence of observed characteristics is to

specify a proportional intensity model

λ(t|x) = λ0(t)e
β′xi(t),

where λ0(t) represents the baseline hazard, that is, the duration dependence

of the intensity common to all individuals. The covariates affect the inten-

sity proportionally and the time-varying variables are external variables that

change independent of the employment state, such as the age of a disabled

individual.

Suppose that the duration of each individual has an upper bound of t̄i.

An example of such a maximum duration is the time left till retirement of an

individual on disability benefits. If a non-zero, albeit unknown, percentage

p of the individuals reach the upper bound, the survival conditional on not

have reached the maximum duration is (for 0 ≤ t ≤ t̄i)

S(t|t̄i, xi) = (1− p)
exp

(

−
∫ t

0
λ0(s)e

β′xi(s) ds
)

− exp
(

−
∫ t̄i

0
λ0(s)e

β′xi(s) ds
)

1 − exp
(

−
∫ t̄i

0
λ0(s)eβ′xi(s) ds

)

+ p

Thus a fraction of 1−p the individuals will make a transition before the max-

imum duration is reached. This is an extension of a so-called mover-stayer

model that accounts for an upper bound in the duration. This approach was

developed by Boag (1949) and applied to model the recidivism of criminals

(Schmidt and Witte 1989) and labor market transitions (Dunsmuir et al.

1989).1 It assumes that a latent group of individuals have a zero probability

1Schmidt and Witte (1989) use the term ‘split-population’model. In the biomedical

literature the mover-stayer model is known as cure-model. Maller and Zhou (1996) discuss

the implications of such models.
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to make a transition, the stayers. Here the stayers are those individuals that

reach the maximum duration.

If we do not account for possible missing variables, the parameter estima-

tor may be biased. It may lead to spurious negative duration dependence.

Therefore, it is important to allow for individual-specific unobserved hetero-

geneity in the model. The conventional way to capture this effect is to include

a multiplicative random variable in the hazard to get a mixed proportional

hazard model with hazard

λ(t|vi, xi) = viλ0(t) exp
(

β ′xi(t)
)

, (1)

where the vi > 0 are i.i.d. random variables with (mixture) distribution

function G(v). The Gamma distribution with mean one and variance σ2 is

most often chosen to represent the unobserved heterogeneity. However, if

the underlying distribution of the unobserved heterogeneity is not a gamma

distribution the results may be biased. Any other mixture distribution, like

the normal, or log normal distribution, have the same problem. More ro-

bust, and very flexible, is to assume that the mixture distribution can be

approximated by a finite discrete mixture, see Heckman and Singer (1984b).

For a discrete mixture model, there are a finite number of values or classes,

vl (l = 1, . . . , L), each having probability ql (l = 1, . . . , L) in the population,

where
∑

ql = 1. The observed survival function S̃(t|t̄i, xi) is obtained by

integrating out v.

It is important to point out that the presence of stayers is compatible with

a discrete mixture duration model. Heckman and Walker (1987) recognize

that some specifications of the latent intensity can deliver stayers, like for

one particular l′ : vl′ = 0 with ql′ > 0. The close link between mover-stayer

models and a discrete mixture model implies that the two can easily be

combined.
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3 Stock sampling

If we sample from a stock of individuals at time 0 (in calendar time) in a par-

ticular state, e.g. from the stock of people on disability benefits, and observe

the elapsed time e in that state (together with some covariates), then the

distribution of the observations e is a conditional distribution. The condi-

tion is the presence of a particular individual in the stock. First, consider the

case of stock sampling with no unobserved heterogeneity. I follow Lancaster

(1990) to derive the conditional distribution.

Abstracting from early retirement schemes the time till retirement, t̄a,

depends only on the age, a, of the individual. Let r(−e|a, xi) be the entry

rate, the probability to enter the state during [e, e + de) in the past given xi

and age a. Denote by S−y(t|t̄a, xi) the survival up to t ≤ t̄a of an individual

of age a and with covariates xi entering the state at y time ago. Then, the

size of the observed stock at time 0 of individuals who entered at age a with

observed covariates xi is

∫ t̄i

0

r(−s|a, xi)S−s(s|t̄a, xi) ds (2)

Of this total number of individuals, the number of individuals who have been

in the state for at least a period of length t is

∫ t̄i

t

r(−s|t̄i, xi)S−s(s|t̄i, xi) ds (3)

Thus the proportion of individuals in the population from which we sample

who have been in the state for at least t time units is the ratio of (2) to (3).

If we assume (i) there are no calendar time (business cycle) effects on the

survival, that is the survival is independent of the entry time S−s(s|t̄i, xi) =

S(s|t̄i, xi), (ii) a (Mixed) proportional hazard model as in (1), (iii) the age of

the individual only enters the hazard through exp
(

β ′xi(t)
)

and, (iv) following
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Nickell (1979), the entry rate is separable r(−s|a, xi) = r1(−s)r2(xi)r3(a),

then the density of the elapsed duration is (in a PH model)

h(e|xi, a) =
r1(−e)

[

(1 − p)e−Λ(e|xi) +
(

p − e−Λ(t̄a|xi)
)

]

(1 − p)
∫ t̄a

0
r1(−τ)e−Λ(τ |xi) dτ +

(

p − e−Λ(t̄a|xi)
) ∫ t̄a

0
r1(−τ) dτ

where Λ(e|xi) =
∫ e

0
λ0(s) exp

(

β ′xi(s)
)

ds, the integrated hazard. In an MPH

model with unobserved heterogeneity the terms e−Λ(e|xi) and e−Λ(t̄a|xi) in the

density are replaced by
∫ ∞

0
e−vΛ(e|xi)dG(v) and

∫ ∞

0
e−vΛ(t̄a |xi)dG(v) respec-

tively.

In practice it is hard to find a closed form solution to integrals in the den-

sity. For example, the commonly applied Mixed proportional hazard model

with Weibull baseline hazard and unit-mean gamma distributed unobserved

heterogeneity lead to intractable integrals. Although these integrals may be

approximated, the Weibull baseline and gamma unobserved heterogeneity

are also very restrictive.

4 Piecewise constant entry rates and baseline

hazards

A reasonable assumption for entry into disability benefits is that the entry

rate is constant on (yearly) intervals. A very flexible and tractable assump-

tion is to use a piecewise constant baseline hazard. Then with a discrete

unobserved heterogeneity we have a closed form expression for the density of

the elapsed duration, from which we can easily derive a maximum likelihood

estimator for the parameters of the model.

Suppose the baseline hazard is constant on M intervals. Let the intervals

Im(t) = I(dm−1 ≤ t < dm) for m = 1, . . . , M with d0 = 0 and dM = maxi{t̄i}

be the intervals on which we define the baseline hazard. Then, the baseline

5



hazard is λ0(t) =
∑M

m=1 eαmIm(t). Suppose the time-varying covariates may

only change on the same intervals then the integrated hazard is

Λ(t|x) =

M
∑

m=1

[

Jm(t)(dm − dm−1) + Im(t)(t − dm−1)
]

exp(αm + x(dm−1)β)

where Jm(t) = I(t > dm). When the unobserved heterogeneity distribution

is discrete the density becomes

h(e|xi, a) =

[

r1(−e)
[

(1 − p)
L

∑

l=1

qle
−vlΛ(e|xi) +

(

p −
L

∑

l=1

qle
−vlΛ(t̄a|xi)

)

]

]

÷

[

(1 − p)

∫ t̄a

0

r1(−τ)

L
∑

l=1

qle
−vlΛ(τ |xi) dτ

+
(

p −
L

∑

l=1

qle
−vlΛ(t̄a|xi)

)

∫ t̄a

0

r1(−τ) dτ

]

If we assume a piecewise constant hazard and that the covariates and the

entry rate may only change on the same intervals, the density involves the

summation of M integrals2

r(−dm)

∫ dm

dm−1

L
∑

l=1

ql exp
(

−vlΛ(τ |xi)
)

dτ

=
L

∑

l=1

ql exp
(

−αm − xi(dm−1)β − vl − evl

m−1
∑

j=1

(dj − dj−1)e
αj+x(dj)β

)

−

L
∑

l=1

ql exp
(

−αm − xi(dm−1)β − vl − evl

m
∑

j=1

(dj − dj−1)e
αj+x(dj)β

)

The latent probability of reaching the maximum duration lays between

zero and one and can be modelled in a logit form p = 1/(1 + eγ) or in a

log-log form p = exp(−e−γ). This proportion of survival till retirement can

also depend on observed characteristics of the individuals.

2This is for notational convenience. If either the covariates or the entry rate or both

changes at different points, we can just add additional change points.

6



5 Conclusion

When we have stock sampled duration data for durations that reach with

a positive probability a maximum, like the duration on disability benefits,

a mixed proportional hazard model with a piecewise constant baseline haz-

ard leads to a relatively simple closed-form expression in the log likelihood.

Bijwaard and Veenman (2006) apply these results to model data for four dif-

ferent ethnic groups in The Netherlands on the duration on unemployment

benefits, on disability benefits and of women in domestic care.
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