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Abstract. Real-time railway operations are subject to stochastic dis-
turbances. However, a railway timetable is a deterministic plan. Thus
a timetable should be designed in such a way that it can absorb the
stochastic disturbances as well as possible. To that end, a timetable con-
tains buffer times between trains and supplements in running times and
dwell times. This paper first describes a stochastic optimization model
that can be used to find an optimal allocation of the running time sup-
plements of a single train on a number of consecutive trips along the
same line. The aim of this model is to minimize the average delay of the
train. The model is then extended such that it can be used to improve a
given cyclic timetable for a number of trains on a common infrastructure.
Computational results show that the average delay of the trains can be
reduced substantially by applying relatively small modifications to the
timetable. In particular, allocating the running time supplements in a
different way than what is usual in practice can be useful.

1 Introduction

Punctuality of railway services is a highly important issue, since punctuality
is considered as one of its main performance indicators. In the Netherlands,
punctuality is defined as the percentage of trains that arrive with a delay of less
than 3 minutes at one of the larger railway stations. In several other countries, a
5 minute margin is used. Delays of trains occur since real-time railway operations
are subject to stochastic disturbances. However, the underlying railway timetable
is a deterministic plan. Therefore, the stochastic disturbances in the operations
should be taken into account in the design of a timetable as well as possible.
In order to cope with the disturbances in the real-time operations, a timetable
contains buffer times between trains and supplements in the running times and
in the dwell times of the trains.
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Many authors addressed the analysis and the improvement of the punctu-
ality of railway services: several relevant models have been developed to that
end. The main examples of these models are the following: (i) simulation mod-
els (see Bergmark (1996), König (2001), Middelkoop and Bouwman (2000), and
Wahlborg (1996)), (ii) Max-Plus models (see Goverde (1998), De Kort (2000),
and Soto Y Koelemeijer et al. (2000)), and (iii) analytical models (see Carey
(1999), Higgins and Kozan (1998), and Huisman and Boucherie (2001)). Other
relevant literature on stochastic methods for the improvement of railway timeta-
bles is Hallowell and Harker (1998), Schwanhäußer (1994), Mühlhans (1990), and
Petersen and Taylor (1982). However, a drawback of the existing models is that
they are mainly evaluation models and that, based on these models, optimization
of a timetable can only be achieved by trial-and-error. That is, the timetable is
modified and then the evaluation model is used afterwards to evaluate the effect
of the modification. If necessary, these steps are repeated.

In contrast with the existing models, this paper describes a stochastic opti-
mization model (see Birge and Louveaux (1997)) that can be used to modify a
given cyclic timetable and, at the same time, to evaluate the modified timetable
by operating a number of realizations of the trains in the timetable. These trains
are operated as much as possible according to the modified timetable, but subject
to external stochastic disturbances. The main criterion that is used to modify
the timetable is minimization of the average delay of the trains. Note that other
criteria can be handled as well. The structure of the model is such that it is a
symbiosis of a timetabling model and a simulation model.

The first model in this paper generates a timetable for a single train that
is operated under stochastic external disturbances on a number of consecutive
trips along the same line. Here a trip is a movement of a train from one station
to the next. The model is used to allocate a fixed total amount of running time
supplement to the consecutive trips such that the average delay of the train
is minimal. The model is then extended to be applicable in a more complex
situation where several trains are operated according to a given cyclic timetable
and on a common railway infrastructure. These trains are also operated under
stochastic external disturbances. The extended model is used here to improve the
timetable with respect to the average delay of the trains by re-allocating buffer
times and time supplements. The application of the extended model to a practical
case shows that, within the model, the improvement of a given timetable may
lead to a substantial reduction of the average delay of the trains.

This paper is structured as follows. Section 2 describes several aspects that
are relevant for the allocation of running time supplements. In Section 3 we de-
scribe the above mentioned first stochastic optimization model. In Section 4, we
prove that, if the train runs over just two consecutive trips and if there is a finite
probability distribution of the disturbances, then the results of the stochastic
optimization model converge to the true optimum if the number of realizations
tends to infinity. In Section 5, we present the computational results related to the
model of Section 3. Section 6 describes the above mentioned extended stochas-
tic optimization model. Computational results that were obtained by applying
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this model to the railway corridor between Haarlem and Maastricht/Heerlen are
described in Section 7. The paper is finished with conclusions in Section 8.

2 Running time supplements

2.1 A trade-off

To obtain a high punctuality of the railway services, it is desirable that trains
are able to run faster than planned in order to make up for earlier delays. This
means that the planned running times should be longer than the technically
minimum running times. The difference between the planned running time and
the technically minimum running time is the running time supplement.

Also other processes (e.g. halting at stations) may obtain time supplements
in the planning. However, in this paper we only focus on the allocation of run-
ning time supplements. Note that these other process time supplements may be
handled in the same way as the running time supplements.

In general, higher running time supplements lead to a better punctuality
of the railway services. However, higher running time supplements also lead
to higher planned running times. This means that the planned travel times of
the passengers increase as well. Note that these planned travel times do not
only depend on the total amount of running time supplements, but also on the
distribution of the running time supplements among the trips in the timetable.
Note further that running time supplements may even have a negative influence
on the realized travel times. Indeed, each minute of running time supplement in
the timetable brings the risk that it is not needed, since there are no disturbances.
Furthermore, longer planned running times increase the block occupation times
and therewith the track occupation rates. Additionally, longer planned running
times require more personnel and rolling stock, hence they are negative for the
efficiency of the railway system.

On the other hand, running time supplements add to the predictability of
the realized travel times and to the reliability of the railway system as a whole.
As a consequence, the running time supplements should be chosen by a trade-off
between the above elements.

2.2 Application in practice

In the Netherlands, running time supplements are approximately 7% of the tech-
nically minimum running times. This percentage is used nationwide for all types
of passenger services. However, due to rounding -because of the integer character
of the timetable- and local circumstances, the actual percentages may deviate
from this percentage. Furthermore, cargo trains are usually planned 5 kilometer
per hour below their maximum speed. Additionally, a running time supplement
of 5% of the running times may be used for cargo trains. On top of that, for
a cargo train, the planned acceleration and deceleration times are based on a
maximum total weight of the train. The difference between this maximum weight
and the actual weight of the train acts as an extra running time supplement.
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In Switzerland, running time supplements have several components (see Halde-
man (2003)). First, there is a proportional running time supplement, which
equals 7% of the running time for passenger trains and 11% for cargo trains.
Secondly, special operational supplements are added at highly utilized nodes.
Additionally, one minute of supplement is added for each 30 minutes of running
time. For trips with high average speeds, the supplements are even higher. In
the United Kingdom running times are based on past performance on a railway
section (see Rudolph (2003)). Supplements are not explicitly defined here.

Leaflet 451-1 of the UIC (see UIC (2000)) gives recommendations for run-
ning time supplements. It recommends a running time supplement to be the sum
of a distance dependent supplement and a percentage of the technically mini-
mum running time. The distance dependent supplement is 1.5 minute per 100
kilometer for locomotive-hauled passenger trains and 1 minute per 100 kilome-
ter for multiple unit passenger trains. The running time dependent supplements
may vary between 3% for relatively slow trains and 7% for faster trains. For
locomotive-hauled trains, this percentage also depends on the weight of the train.
For cargo trains, supplements are generally higher. The running time dependent
supplement can be replaced by a second distance dependent supplement.

It can be concluded that in practice it is common to allocate the running time
supplement on a certain trip to a large extent in proportion to the running time
on that trip. In this paper, such an allocation is called the proportional allocation.
However, this paper demonstrates that, from a punctuality point of view, it is
better to allocate a somewhat larger part of the total running time supplement
to the first trips of the complete route of a train. Indeed, a delay reduction on
a certain trip does not only reduce the delay on the respective trip, but also
on all subsequent trips. This means that the delay reduction is measured at all
subsequent measuring points. Consequently, an early running time supplement
is more effective than a late running time supplement. Therefore, one would
expect to have a relatively large part of the running time supplements early
on. But there is also a downside: if there are no early disturbances, then early
supplements are lost. Hence they are useless in that case.

The stochastic optimization model described in this paper can be used to
analyze this stochastic trade-off for a cyclic timetable. Also the choice between
running time supplements and dwell time supplements can be supported by this
model. However, for ease of presentation, we first focus in Section 3 on the allo-
cation of a fixed amount of running time supplement to the consecutive trips of a
single train. This allocation is done in such a way that the average arrival delay
of the train is minimal. Thereafter, in Section 6, we describe a more complicated
situation where several trains are operated on a common infrastructure.

3 A single train on a single line

In this section, we present a stochastic optimization model for allocating a fixed
amount of running time supplement S to N consecutive trips of a single train on
a single line. On each of the trips, the train is subject to external disturbances,
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possibly leading to a delay of the train. This delay is measured at the end of
each trip. The objective is to minimize the average delay of the train.

This situation is illustrated in Figure 1. Here the running time supplements
on the trips t are denoted by the variables st. The external disturbances are
denoted by the parameters δt, and the resulting delay is represented by the
variables Dt. The figure represents the fact that the disturbances δt are partially
compensated by the running time supplements st, so that they can “leave the
train” again. The disturbances that cannot be compensated, since the running
time supplements have been used completely, accumulate in the delays Dt.

Fig. 1. Relation between disturbances, running time supplements, and delay.

In this paper we assume that all running time supplement allocated to a
trip can be used for recovering from a disturbance at the same trip. In other
words, the disturbances are assumed to take place at the start of a trip (or at
the preceding station), as is shown in Figure 1. This assumption may be relaxed
by splitting the trips into a number of smaller trips.

The stochastic optimization model contains a planning part for determining
the running time supplements and an evaluation part for determining the re-
sulting average delay of the train. To that end, at the same time as the running
time supplements st are determined, R realizations of the train are operated
along the N trips subject to externally generated disturbances. Let δt,r denote
the disturbance incurred on trip t by realization r of the train. Furthermore, the
resulting delay of realization r of the train by the end of trip t is denoted by Dt,r.
Then the following relation describes the balance of the external disturbances,
the running time supplements, and the delay:

Dt,r = max{ 0, Dt−1,r + δt,r − st } for t = 1, . . . , N ; r = 1, . . . , R. (1)

Note that equation (1) is a mathematical representation of Figure 1. It follows
that, if δt,r > st, then the delay of realization r of the train increases over
trip t. If δt,r ≤ st, then the delay of realization r of the train may decrease
over trip t. Note that equation (1) assumes that the train is not influenced by
other trains: disturbances are assumed to be autonomous and external. A further
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consequence of equation (1) is that the amount of running time supplement Ut,r

that is actually used by realization r on trip t equals

Ut,r = min{ Dt−1,r + δt,r, st } for t = 1, . . . , N ; r = 1, . . . , R. (2)

Obviously, equation (1) is not a linear equation. However, it can be linearized
easily. Now the complete model can be described as follows:

minD =
N∑

t=0

R∑
r=1

wtDt,r/R (3)

subject to
Dt−1,r + δt,r − st ≤ Dt,r for t = 1, . . . , N ; r = 1, . . . , R (4)

N∑
t=1

st ≤ S (5)

Dt,r ≥ 0 for t = 0, . . . , N ; r = 1, . . . , R (6)
st ≥ 0 for t = 1, . . . , N (7)

The objective function (3) indicates that the objective is to minimize the
average weighted delay D. For t = 1, . . . , N , the weight wt indicates the weight
of the delay at the end of trip t, depending on the number of involved passengers
or on the status of the station at the end of trip t (e.g. an ordinary station or a
transfer station). Constraints (4) and (6) together give the linearized version of
equation (1) relating the delay at the end of trip t to the delay at the end of trip
t−1. Next, constraint (5) expresses the fact that only a fixed amount of running
time supplement is to be distributed among the trips. Finally, constraints (6)
and (7) indicate that the variables are to be non-negative.

4 Convergence

In this section we consider the same model as in the previous section, but for
the case of a single train that is operated over two consecutive trips. We assume
that the probability distribution of the disturbances (δ1, δ2) has a finite set I of
possible values. Each of these values (δi

1, δ
i
2) has a probability of occurrence pi.

For this case we prove that the results of the stochastic programming model
converge to the optimal allocation of the running time supplement if the number
of realizations tends to infinity. Here we assume that the optimal allocation of the
running time supplement is unique. The latter is not essential, but it simplifies
the proof somewhat. The assumption holds e.g. if |I| is odd and all disturbances
(δi

1, δ
i
2) satisfy δi

1 + δi
2 > S, but also in many other situations. Further results on

convergence in stochastic optimization can be found in Linderoth et al. (2002).

4.1 Optimal running time supplement

The running time supplement allocated to trip 1 is denoted by s. Then the
running time supplement allocated to trip 2 equals S − s. Figure 2 shows the
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partitioning of the positive (δ1, δ2) quadrant for a given value of s into the areas
A1(s), A2(s), A3(s), and A4(s). For example, A1(s) is the area with relatively
small disturbances on both trips. As a consequence, on both trips the delays can
be compensated by the running time supplements. Similarly, A2(s) is the area
with relatively small disturbances on the first trip and relatively large distur-
bances on the second trip. This results in delays on the second trip only.

Fig. 2. Partitioning into the areas A1(s), A2(s), A3(s), and A4(s).

The delay of the train by the end of trip t (t = 1, 2) if the disturbances equal
(δi

1, δ
i
2) is denoted by Di

t. In that case, the total weighted delay of the train
over the two trips is denoted by Di. As a consequence, for a given value s of
the running time supplement on the first trip, the following weighted delays are
caused by the disturbances (δi

1, δ
i
2):

– If (δi
1, δ

i
2) in A1(s), then Di

1 = 0 and Di
2 = 0. Hence Di = 0.

– If (δi
1, δ

i
2) in A2(s), then Di

1 = 0 and Di
2 = δi

2 − (S − s). Hence Di =
w2(δi

2 − S + s).
– If (δi

1, δ
i
2) in A3(s), then Di

1 = δi
1 − s and Di

2 = 0. Hence Di = w1(δi
1 − s).

– If (δi
1, δ

i
2) in A4(s), then Di

1 = δi
1 − s and Di

2 = δi
1 + δi

2 − S. Hence Di =
w1(δi

1 − s) + w2(δi
1 + δi

2 − S) = (w1 + w2)δi
1 + w2δ

i
2 − w1s− w2S.

From the foregoing it follows that, for a given value s of the running time sup-
plement on the first trip, the average weighted delay D(s) of the train can be
expressed as follows:
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D(s) =
∑

i∈A2(s)

piw2(δi
2 − S + s) +

∑
i∈A3(s)

piw1(δi
1 − s) +

∑
i∈A4(s)

pi((w1 + w2)δi
1 + w2δ

i
2 − w1s− w2S). (8)

The minimization problem to be solved is to find a value s∗ for the running time
supplement on the first trip such that the average delay D(s∗) is minimal.

It is not difficult to see that the average delay D(s) is a continuous and
convex piecewise linear function in s. Furthermore, (8) implies that, if s is not
equal to one of the values δi

1 and S − s is not equal to one of the values δi
2, then

a slight modification ∆s of the running time supplement on the first trip gives
the following modification ∆D(s) of the average delay on the two trips:

∆D(s) =
∑

i∈A2(s)

piw2∆s−
∑

i∈A3(s)

piw1∆s−
∑

i∈A4(s)

piw1∆s

= ∆s

 ∑
i∈A2(s)

piw2 −
∑

i∈A3(s)∪A4(s)

piw1

 .

It follows that the average delay is minimal if the running time supplement s
on the first trip is such that, around s, the above expression changes from a
negative value (decreasing average delay D(s)) to a positive value (increasing
average delay D(s)). Hence, the optimal running time supplement s∗ on the first
trip is such that the expression∑

i∈A2(s)

piw2 −
∑

i∈A3(s)∪A4(s)

piw1

is negative for s = s∗−∆s and is positive for s = s∗+∆s for a sufficiently small
value of ∆s. It follows that s∗ coincides with one of the values { δi

1, S−δi
2 | i ∈ I }.

Note that here the assumption is used that there is a unique optimal allocation
of the running time supplement.

4.2 Stochastic optimization model

Next, suppose that we have a random sample of R realizations of pairs of dis-
turbances. Let Ri denote the number of occurrences of the pair (δi

1, δ
i
2) in this

sample. Furthermore, let s denote the proposed value for the running time sup-
plement on the first trip. Then, in the same way as in the previous section, it
follows that the average delay DR(s) can be expressed as follows:

DR(s) =
∑

i∈A2(s)

Ri

R
w2(δi

2 − S + s) +
∑

i∈A3(s)

Ri

R
w1(δi

1 − s) +

∑
i∈A4(s)

Ri

R
((w1 + w2)δi

1 + w2δ
i
2 − w1s− w2S). (9)
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As above, the average delay DR(s) is a continuous and convex piecewise linear
function in s. A similar argument as in the previous section can be used to show
that, if the average delay DR(s) has a unique optimal running time supplement
s∗R, then this optimal value s∗R is such that the expression∑

i∈A2(s)

Ri

R
w2 −

∑
i∈A3(s)∪A4(s)

Ri

R
w1

is negative for s = s∗R − ∆s and is positive for s = s∗R + ∆s for a sufficiently
small value of ∆s. Note that this optimal value s∗R is the value that is obtained
by applying the stochastic optimization model. Figure 3 represents parts of the
graphs of the functions D(s) and DR(s).

Fig. 3. The convex piecewise linear functions D(s) and DR(s).

4.3 Proof of Convergence

Theorem 1. If the minimization problem has a unique optimal solution s∗ with
0 < s∗ < S, then limR→∞ P (s∗R = s∗) = 1.

Proof. Let 0 ≤ s1 < s∗ be such that the interval (s1, s
∗) does not contain any

value δi
1 and such that the interval (S − s∗, S − s1) does not contain any value

δi
2. Similarly, let s∗ < s2 ≤ S be such that the interval (s∗, s2) does not contain

any value δi
1 and such that the interval (S − s2, S − s∗) does not contain any

value δi
2. Next, let ∆1 and ∆2 be defined by

∆1 :=
∑

i∈A2(s1)

piw2 −
∑

i∈A3(s1)∪A4(s1)

piw1,
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∆2 :=
∑

i∈A2(s2)

piw2 −
∑

i∈A3(s2)∪A4(s2)

piw1.

Since s∗ is a unique minimum of the average delay D(s), ∆1 < 0 and ∆2 > 0.
Note that ∆1 and ∆2 are represented in Figure 3 by the differences D(s∗)−D(s1)
and D(s2)−D(s∗). In other words, the slopes of the solid lines A1B1 and B1C1

are negative and positive, respectively.
Next we will show that, if R tends to infinity, then the probability that the

differences DR(s∗)−DR(s1) and DR(s2)−DR(s∗) are also negative and positive
tends to 1. In other words, if R tends to infinity, then the probability that the
slopes of the dashed lines A2B2 and B2C2 in Figure 3 are negative and positive,
respectively, tends to 1. A consequence is that, if R tends to infinity, then the
probability that s∗R = s∗ tends to 1, as is to be proved.

To that end, first choose ε > 0 and let W be defined by W := max{ w1, w2 }.
Because of the Law of the Large Numbers, we know that for all i ∈ I there exists
an integer Ni such that for all R > Ni the following holds: P

(∣∣Ri

R − pi

∣∣ ≥ −∆1
W |I|

)
<

ε
2|I| . It follows that for all R > R̃1 := max{ Ni | i ∈ I }:

P (the slope of A2B2 < 0) =

P

 ∑
i∈A2(s1)

Ri

R
w2 −

∑
i∈A3(s1)∪A4(s1)

Ri

R
w1 < 0

 =

P

 ∑
i∈A2(s1)

(
Ri

R
− pi

)
w2 −

∑
i∈A3(s1)∪A4(s1)

(
Ri

R
− pi

)
w1 < −∆1

 ≥

P

(∑
i∈I

∣∣∣∣Ri

R
− pi

∣∣∣∣W < −∆1

)
≥ P

(⋂
i∈I

{∣∣∣∣Ri

R
− pi

∣∣∣∣ < − ∆1

W |I|

})
=

1−P

(⋃
i∈I

{∣∣∣∣Ri

R
− pi

∣∣∣∣ ≥ − ∆1

W |I|

})
≥ 1−

∑
i∈I

P

(∣∣∣∣Ri

R
− pi

∣∣∣∣ ≥ − ∆1

W |I|

)
> 1− ε

2
.

Similarly, there exists an integer R̃2 such that for all R > R̃2

P (the slope of B2C2 > 0) =

P

 ∑
i∈A2(s2)

Ri

R
w2 −

∑
i∈A3(s2)∪A4(s2)

Ri

R
w1 > 0

 > 1− ε

2
.

As a consequence, for all R > max{ R̃1, R̃2 } the minimum of DR(s) is obtained
for s∗R = s∗ with probability at least 1− 2( ε

2 ) = 1− ε. ♦

Theorem 2. If the minimization problem has a unique optimal solution s∗ with
0 < s∗ < S, then for all δ > 0 limR→∞ P (|DR(s∗R)−D(s∗)| < δ) = 1.
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Proof. First, choose δ > 0 and ε > 0, and let the positive number R̃0 be such
that P (s∗R = s∗) > 1− ε

2 for all R > R̃0. According to the proof of Theorem 1,
such a number R̃0 exists. Next, we have the following (in)equalities:

|DR(s∗)−D(s∗)| = (10)∣∣∣∣∣∣
∑

i∈A2(s∗)

(
Ri

R
− pi

)
w2(δi

2 − (S − s∗)) +
∑

i∈A3(s∗)

(
Ri

R
− pi

)
w1(δi

1 − s∗) +

∑
i∈A4(s∗)

(
Ri

R
− pi

)
((w1 + w2)δi

1 + w2δ
i
2 − w1s

∗ − w2S)

∣∣∣∣∣∣ ≤ M ×
∑
i∈I

∣∣∣∣Ri

R
− pi

∣∣∣∣ ,
where M is an appropriately chosen positive number. Again, because of the Law
of the Large Numbers, we know that for all i ∈ I there exists an integer Ni such
that for all integers R > Ni the following holds: P

(∣∣Ri

R − pi

∣∣ ≥ δ
M |I|

)
< ε

2|I| .
Then, it follows that for all integers R > max{ Ni | i ∈ I } the following holds:

P

(∑
i∈I

∣∣∣∣Ri

R
− pi

∣∣∣∣ < δ

M

)
≥ P

(⋂
i∈I
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R
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∣∣∣∣ < δ

M |I|

})
= (11)

1− P

(⋃
i∈I

{∣∣∣∣Ri

R
− pi

∣∣∣∣ ≥ δ

M |I|

})
≥ 1−

∑
i∈I

P

(∣∣∣∣Ri

R
− pi
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2
.

Combining the results in (10) and (11) gives that the following holds for all
integers R > max{ { Ni | i ∈ I } ∪ { R̃0 } }:

P (|DR(s∗R)−D(s∗)| < δ) ≥ P ((|DR(s∗R)−D(s∗)| < δ) ∩ (s∗R = s∗)) =

P (|DR(s∗R)−D(s∗)| < δ | s∗R = s∗)× P (s∗R = s∗) ≥

P

(∑
i∈I

∣∣∣∣Ri

R
− pi

∣∣∣∣ < δ

M

)
× P (s∗R = s∗) ≥

(
1− ε

2

)(
1− ε

2

)
> 1− ε.

♦

Note that the results of Theorems 1 and 2 also hold if the optimal solution s∗

is not unique or if s∗ equals 0 or S. However, slight modifications of the proofs
are required then.

5 Computational results

In this section, we describe the computational results that were obtained by
applying the model described in Section 3 to a number of theoretical cases.
Computational results for a real-life case are presented in Section 7.
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All results in this section are based on equally and exponentially distributed
disturbances and on equally weighted delays. However, as was noted earlier al-
ready, the latter is certainly not essential. It is also possible to use other proba-
bility distributions and different weights, including empirical ones.

The results described in this section were obtained by implementing the
model in the modeling system OPL Studio and by solving it with the corre-
sponding solver CPLEX 9.0 on an Intel Pentium IV PC with 3.0 GHz processor
speed and 512 MB internal memory.

In all cases described in this section, the number of realizations R has been
set to 1000. In our experiments, this number turned out to be large enough to
generate stable results that were more or less independent of the detailed values
of the disturbances. On the other hand, this number of realizations also led to
acceptable running times of at most a couple of minutes.

5.1 Optimal allocation of running time supplements

In the experiments described in this section, the running times are subject to
exponentially distributed disturbances with an average value of 1 minute. Fur-
thermore, in this section the total amount of running time supplement S equals
the total number of trips. That is, the total amount of running time supplement
equals the average total disturbances. In Section 5.2, different amounts of run-
ning time supplement are applied. In all cases, the objective is to allocate the
total amount of running time supplement to the trips in such a way that the
average delay is minimal. Note that in the proportional allocation, each trip gets
a running time supplement of 1 minute.

The results of the case with 10 trips are shown in Figure 4. The horizontal
axis shows the 10 trips, and the vertical axis shows the optimal amounts of
running time supplement to be allocated to the trips. The vertical line in the
figure represents the weighted average distance of the running time supplements
from the starting point. This weighted average distance, WAD, is defined by:

WAD =
N∑

t=1

2t− 1
2N

× st. (12)

In Figure 4, the value of the WAD equals about 0.425. For the proportional
allocation of the running time supplements, the WAD equals exactly 0.5.

Note that, in comparison with the proportional allocation of the running time
supplements, the allocation of the running time supplements according to Figure
4 has a negative effect on the average planned travel times of the passengers.
Indeed, if the numbers of travelers between all O/D-pairs of stations are more
or less the same, then minimal average planned travel times of the passengers
are obtained either by skipping the running time supplements completely, or by
allocating the running time supplements as much as possible to the first or to the
last trips along the line. However, it is likely that this allocation of the running
time supplements leads to an unreliable timetable.
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Fig. 4. The optimal allocation of the running time supplements for 10 trips.

In Figure 5, the upward bending line shows the average delay by the end of
each trip for the optimal allocation of the running time supplements. The nearly
diagonal line in this figure shows the average delay by the end of the trips for the
proportional allocation of the running time supplements. Obviously, the optimal
allocation performs better on almost all trips. Only on the last trips, the average
delay increases quickly for the optimal allocation. This is due to the fact that
the supplements have been shifted from the last trips towards the first trips.

Figure 6 presents results that have been obtained by applying the model
to 2 to 25 consecutive trips. The average delays of the optimal solutions are
compared with the average delays of the proportional allocation of the running
time supplements. The figure shows that the average delay decrease is only 1.2%
for 2 trips, but the decrease is already 9.5% for 5 trips and 20.1% for 15 trips.
Although the shapes of the supplement allocations and the average locations
of the supplements are quite similar in all cases, the relative decreases in the
average delay are far from equal for the different cases.

5.2 Different amounts of running time supplement

Next, we consider the effect of a different total amount of running time supple-
ment. Figure 7 shows the results of a case with 10 trips, where each trip is subject
to exponentially distributed disturbances with an average value of 1 minute. In
this case half a minute or two minutes of running time supplement are available
per trip. That is, S = 5 minutes (dots) or S = 20 minutes (diamonds).

If S = 5 minutes, the optimal allocation of the running time supplement is
even more concentrated on the earlier trips. This is understandable, since early
supplements are still more effective and the probability of an excessive early
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Fig. 5. The average delay by the end of the trips for 10 trips.

Fig. 6. The decrease in average delay for the optimal supplement allocation in com-
parison with the average delay for the proportional supplement allocation.
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supplement decreases when the total amount of supplement decreases. There is
an apparent shift to the left, which is supported by the WAD, which is 0.32 in
this case. The decrease in the average delay goes up from about 16.3% for the
case with S = 10 minutes to about 17.8% for the case with S = 5 minutes.

In the opposite situation with S = 20 minutes, where the total amount of
running time supplement is twice as large as the total average disturbances, the
allocation of the running time supplement shifts into the opposite direction. Now
the WAD equals 0.492. The decrease in the average delay goes down to about
2.9% for the case with S = 20 minutes. In this case, the difference with the
proportional allocation is small.

Fig. 7. The optimal allocation for half and double the total amount of supplement.

6 Several trains on a common infrastructure

In this section, we describe an extension of the stochastic optimization model
presented in Section 3. Here a given cyclic timetable for a number of trains over
a common part of the railway infrastructure is improved with respect to the
average weighted delay of the trains. The underlying timetabling model shows
some similarity with the well-known Periodic Event Scheduling Model (PESP,
see Serafini and Ukovich (1989)). Several researchers have studied the application
of PESP for railway timetabling, see e.g. Nachtigall (1996) and Peeters (2003).

The extended model is again a variant of a stochastic optimization model.
That is, in order to evaluate and optimize the timetable under construction, R
realizations of the processes in each cycle time are operated subject to stochas-
tic disturbances. The R realizations are operated one after another. As a con-
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sequence, the delayed trains in realization r − 1 may influence the trains in
realization r if they use the same parts of the infrastructure. Thus, in contrast
with the model described in Section 3, the R realizations are not independent
of each other. These interactions between successive realizations are enabled by
the cyclic nature of the timetable. They imply that the model is a non-standard
variant of a stochastic optimization model (Birge and Louveaux (1997)).

The model aims at improving a given cyclic timetable with respect to the
average delay of the trains. The main purpose of the model is to optimally re-
allocate buffer times and time supplements to the various process times in the
timetable, thereby leaving the orders of the trains on the tracks unchanged.
Furthermore, for ease of presentation, we assume that the given timetable does
not contain complex cycles, for example caused by the rolling stock circulation
or by circular chains of passenger connections. In general, this assumption is
valid if the railway network has a tree-like structure and the railway traffic is
considered in just one direction. It should be noted that this assumption can be
relaxed, but then a more complex model results.

6.1 Timetabling part of the model

We consider a given cyclic timetable with a cycle time T . Such a timetable
consists of a number of processes that have to be carried out. For example, trains
have to run from one station to another, they have to dwell for a certain period
of time in a station, there has to be a certain headway time between two trains
on the same infrastructure, etc. For all processes, appropriate process times have
to be determined. The begin of a process and the completion of a process are
called events. Also the corresponding event times are to be determined.

We assume that P processes are to be carried out in each cycle time and
that there are E corresponding events. For each process p, the events b(p) and
c(p) (with 1 ≤ b(p), c(p) ≤ E) denote the begin and completion events of process
p. The parameter mp denotes the technically minimum process time of process
p. Furthermore, the variable sp denotes the planned supplement for the process
time of process p. The planned event time of event e is denoted by the variable
ve. We use a linear time axis. This implies that

vc(p) − vb(p) = mp + sp for p = 1, . . . , P.

Thus the planned process time of process p equals the difference between
the planned completion time and the planned begin time of process p. Most of
the constraints to be satisfied in a cyclic timetabling model can be expressed in
terms of constraints on the process times (see e.g. Peeters (2003)). In our model,
each constraint therefore has the following form:

lp ≤ vc(p) − vb(p) ≤ up for p = 1, . . . , P.

Here lp and up are appropriate lower and upper bounds. For example, pro-
cesses such as running along a track, dwelling in a station, and passenger con-
nections between trains can be modeled in this way. Note that for modeling the
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headway processes, the assumption that the aim of the model is to improve a
given cyclic timetable, thereby leaving the orders of the trains on the tracks
unchanged, is essential. Indeed, in a cyclic timetable minimum headway times
between trains depend on the orders of the trains on the tracks. If the latter are
not known a priori, then additional binary variables are required to model these.
This highly complicates the model. However, given the orders of the trains on
the tracks, a minimum headway time of at least h minutes between two consec-
utive trains departing from the same station and entering the same track can be
enforced by the following constraint:

vc(p) − vb(p) ≥ h.

Here the events b(p) and c(p) denote the departures of the first and the second
train, respectively (that is, the begin and completion events of the corresponding
headway process p). Note that the headway times do not have to be bounded
from above, since these have only positive effects. This is in contrast with running
time supplements, which also have a negative effect, e.g. on the travel times.

In order to allocate a certain amount of time supplement to the process times,
Q subsets of processes are selected. Each subset q of processes is connected with
a certain amount of time supplement Sq to be allocated to the processes in the
set q. Thus the following constraints are to be satisfied:∑

p∈q

sp ≤ Sq for q = 1, . . . , Q.

For example, such a constraint may indicate that a certain total amount of
running time supplement is to be allocated to the consecutive running times of a
single train. This corresponds with the problem described in Section 3. However,
a certain amount of time supplement may also have to be allocated to the trips
of a number of trains together.

Final relevant constraints specify that, at each part of the infrastructure,
the difference between the last and the first planned event time in each cycle
time should not exceed the cycle time minus the minimum headway time T −h.
Moreover, non-negativity constraints have to be imposed on the variables sp,
and if one wants to obtain a timetable that is specified in integer minutes, then
integrality constraints have to be imposed on the corresponding event times.

6.2 Evaluation part of the model

In the same way as in the model described in Section 3, the timetable is evaluated
during its modification by operating R realizations of the trains in each cycle
time subject to predetermined stochastic disturbances. To that end, we use R
realizations of the processes and the events in each cycle time.

The stochastic disturbance of realization r of process p is denoted by the
parameter δp,r for p = 1, . . . , P and r = 1, . . . , R. Furthermore, the realized event
time of realization r of event e is denoted by the variable ṽe,r for e = 1, . . . , E
and r = 1, . . . , R.
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Mainly the delays of the events corresponding to arrivals of trains are mea-
sured, but also other delays can be taken into account. The measured events are
called the relevant events. The set of relevant events is denoted by Ẽ. The delay
of realization r of relevant event e is denoted by the variable De,r. The average
weighted delay over all processes is denoted by D.

The variables De,r and D are assumed to be non-negative. The objective is
to minimize the average weighted delay of the trains. Thus the objective is to

minimize D =
R∑

r=1

∑
e∈Ẽ

weDe,r/R. (13)

Here the weights we indicate the weights of the different delays. The con-
straints linking the event times of the processes to the technically minimum
process times and the disturbances are the following:

ṽc(p),r − ṽb(p),r ≥ mp + δp,r for p = 1, . . . , P ; r = 1, . . . , R. (14)

Furthermore, processes do not begin too early, and a delay occurs if a relevant
process ends too late. This results in the following constraints:

vb(p) + rT ≤ ṽb(p),r for p = 1, . . . , P ; r = 1, . . . , R, (15)

ṽe,r − ve − rT ≤ De,r for e ∈ Ẽ; r = 1, . . . , R. (16)

Note that here we use the cyclic character of the timetable, since the planned
event time of realization r of event e equals ve + rT .

As was mentioned earlier, the R realizations of the cycle times are operated
one after another. As a consequence, the delayed trains in realization r− 1 may
influence the trains in realization r if they use the same parts of the infrastruc-
ture. To that end, let e1 be the first planned event in a cycle time on a certain
part of the infrastructure, and let e2 be the last planned event in a cycle time
on the same infrastructure. Then the following constraint is to be satisfied:

ṽe1,r − ṽe2,r−1 ≥ h. (17)

In other words, realization r of event e1 cannot be carried out earlier than
the headway time h after realization r − 1 of event e2 has taken place. Also
other interactions between successive realizations can be modeled. For example,
realization r − 1 of a train that is one of the last trains in each cycle time may
have a passenger connection with realization r of a train that is one of the first
trains in each cycle time. As was noted earlier, these interactions imply that the
model is a rather non-standard stochastic optimization model.

7 Computational results

In this section, we describe the computational results that were obtained by
applying the model described in Section 6 to a real-life case of NS Reizigers, the
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main Dutch operator of passenger trains. This analysis was carried out for study
purposes. The results have not yet been implemented in the real timetable.

For solving the model to optimality, we again used the modeling system
OPL Studio and CPLEX 9.0 on an Intel Pentium IV PC with 3.0 GHz processor
speed and 512 MB internal memory. For this case we always used 500 realizations
per run, because this gave sufficiently stable results and the computation times
remained at an acceptable level of about one hour on the indicated hardware.

7.1 Case: Haarlem–Maastricht/Heerlen

The model was applied to improve the 2004 timetable of NS Reizigers on the
corridor from Haarlem (Hlm) in the western part of the Netherlands to Maas-
tricht (Mt) and Heerlen (Hrl) in the southern part. Throughout this section, this
original timetable is called the reference timetable. All passenger trains on this
corridor were included in the model. Cargo trains were left out, both from the
reference timetable and from the improved one. As a consequence, the results
for the two timetables are still comparable.

The lines on the studied corridor are shown in Figure 8. In this figure, the
dotted lines indicate the stoptrains, the other lines indicate the intercity lines.
The main stations, represented by boxes, are the stations where the delays are
measured. All trains dwell at these stations. The black dots indicate the other
dwell stations of the trains.

The main lines on the studied corridor are the intercity lines 800 (Haarlem-
Maastricht) and 900 (Haarlem-Heerlen), which are both operated once per hour.
These lines have the corridor from Haarlem to Sittard (Std) in common. On this
corridor, there is nearly a 30 minute cycle time, since almost all lines are operated
there twice per hour with an exact 30 minute cycle time. The order of the trains
on the different trips follows from the reference timetable. The overtakings of
the stoptrains in Abcoude (Ac), Geldermalsen (Gdm) and ’s-Hertogenbosch (Ht)
remain unchanged.

Turn-around constraints at the line endpoints have not been taken into ac-
count in the model. This means that the southbound and the northbound trains
are almost independent of each other. Therefore, two nearly independent prob-
lems are created: the southbound problem and the northbound problem. Only
the southbound problem is described here.

The planned running times in the reference timetable include on average
7.92% of running time supplement on each trip. The only exceptions can be
found on the line 3500, which bears additional supplements of 1 minute between
Duivendrecht (Dvd) and Abcoude, and 4 additional minutes between Abcoude
and Breukelen (Bkl). Only the trains that are overtaken have dwell time supple-
ments. The other planned dwell times are equal to the minimum dwell times.

For the lines that are not fully covered by the corridor, the departure and
arrival times at the stations where these lines enter or leave the model have been
fixed to the event times in the reference timetable. In the realizations, these
trains are assumed to enter the model at these stations without a delay.
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Fig. 8. The lines on the corridor Haarlem–Maastricht/Heerlen.



Cyclic Railway Timetabling: a Stochastic Optimization Approach 21

In this case study, we mainly used exponential distributions for generating
the disturbances to the process times. However, as was noted earlier, also other
probability distributions could have been used. Anyway, in the sensitivity anal-
ysis, other probability distributions were used as well.

7.2 Results

First, the reference timetable was evaluated. That is, after fixing all event times
according to this timetable, the stochastic optimization model was applied to
operate 500 realizations of the trains according to this timetable but under
stochastic disturbances.

Each trip between two measuring stations was disturbed with an average
disturbance of 7.92% of the minimum running time. This average is the same as
the planned running time supplement in the reference timetable. This percentage
was also chosen in such a way that the evaluation led to a punctuality of 83.7%,
which is comparable to the punctuality observed in practice. The evaluation led
to an average delay of 1.38 minutes.

Next, the timetable was optimized by unfixing most of the event times and by
operating 500 realizations of the trains under the same stochastic disturbances
as in the evaluation of the reference timetable. The objective was to modify the
timetable by re-allocating the running time supplements and the buffer times in
such a way that the average delay at the ten measuring stations was minimal.
Other relevant measures, such as the punctuality, were determined afterwards.

The optimization led to a model with 160,000+ variables and 300,000+ con-
straints. Because of the size of the model, the event times were allowed to be
fractional, so that the model could be solved by Linear Programming. By the
optimization, the average delay was reduced to 0.947 minutes, which is 31.4%
less than the average delay in the reference timetable. The 3-minute punctuality
increased from 83.7% for the reference timetable to 89.5%: this is a reduction of
the number of late trains by 35.2%.

The optimal running time supplements for the lines 800 and 900 obtained by
the optimization are shown in the last column of Table 1. The third and fourth
column (“per line”) show the results that were obtained by applying the single
line model described in Section 3 to the lines 800 and 900 separately.

As in the reference timetable, an exact 30-minute cycle time was enforced
for most lines on the corridor from Haarlem to Sittard, leading to identical sup-
plements there for the lines 800 and 900 up to Sittard. Because of the longer
running time between Sittard and Heerlen as compared to the running time
between Sittard and Maastricht, there was 0.22 minute more running time sup-
plement available for the line 900 than for the line 800. The latter could only be
allocated to the trip Sittard-Heerlen, due to the 30-minute cycle time between
Haarlem and Sittard.

For the rest of the corridor, the supplement allocation is very similar to the
one found by the single line model described in Section 3. The only remark that
can be made in this respect is that slightly larger supplements are found for
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the most busy parts of the infrastructure between Amsterdam and Utrecht, and
smaller supplements for the somewhat quieter parts south of ’s-Hertogenbosch.

Table 1. The running time supplements in minutes for the lines 800 and 900 obtained
by single line optimization and by corridor optimization.

avg. disturbance running time supplements
per line per line corridor

trip 800 900 800 & 900

Hlm-Asd 1.03 0.85 0.87 0.90
Asd-Dvd 0.81 1.01 1.02 1.16
Dvd-Ut 1.25 1.43 1.44 1.96
Ut-Ht 2.05 2.63 2.67 2.51
Ht-Ehv 1.32 1.71 1.72 1.55
Ehv-Rm 2.27 2.57 2.64 2.18
Rm-Std 1.10 0.72 0.78 0.67
Std-Mt 1.10 0.00 - 0.00
Std-Hrl 1.32 - 0.00 0.22

7.3 Sensitivity Analysis

The timetable found by the stochastic optimization model is only optimal with
respect to the applied disturbances. Therefore we carried out a sensitivity analy-
sis in order to investigate the behavior of this timetable under other disturbances
from the same distribution and under disturbances from other distributions. For
this analysis, again only the southbound timetable was considered. In the follow-
ing description, the preferred timetable is the timetable which is optimal with
respect to exponentially disturbed running times with an average disturbance of
7.92% of the respective minimum running time.

First, we analyzed the consequences of other sets of random disturbances
from the same disturbance distribution. The timetable was not optimized again
for these other sets of disturbances, but both for the reference timetable and for
the preferred timetable, the delay propagation resulting from these disturbances
was evaluated. Ten random sets of disturbances from the same distribution were
used, leading to ten evaluations of both timetables.

This led to the results shown in Table 2. The range of the average delay and
the unpunctuality has a width of at most 10%. This is relatively small in com-
parison with the differences between the reference and the preferred timetable.

Next, we evaluated the preferred timetable, but now for sets of disturbances
from other probability distributions. All distributions described here were mul-
tiplied by 0.0792 times the technically minimum running time. In this way, the
original disturbance distribution could be described as an exponential distribu-
tion with an average value of 1 minute. First, the timetable was evaluated for the
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Table 2. The influence of randomness on the punctuality measures.

measure timetable avg. min. max. range σ

average delay reference 1.34 1.30 1.38 6.0% 0.03
average delay preferred 0.92 0.89 0.95 5.8% 0.02

unpunctuality reference 15.6% 15.0% 16.3% 8.0% 0.5%
unpunctuality preferred 10.0% 9.5% 10.5% 10.1% 0.4%

situation where a large part of the running times was not disturbed, and the rest
was disturbed again by exponentially distributed disturbances. Furthermore, a
uniform distribution and a triangular distribution were applied.

The results of this sensitivity analysis are summarized in Table 3. This table
shows that the preferred timetable outperformed the reference timetable for all
disturbance distributions that were applied. The worst results were obtained for
the relatively large disturbances that occur with a low probability (80% 0 and
20% exp. 6). This was to be expected, since the running time supplements are
intended for handling small disturbances only.

Table 3. Punctuality gain for different disturbance distributions. The parameter for
the exponential distributions is the average (not the reciprocal of the average).

disturbance reference timetable preferred timetable improvement
distribution avg. delay punct. avg. delay punct. avg. delay punct.

exp. 1 1.38 83.7% 0.95 89.5% 31.4% 35.2%
50% 0 and 50% exp. 1.5 1.43 83.6% 1.05 87.9% 26.4% 26.2%
80% 0 and 20% exp. 6 1.50 89.9% 1.24 91.4% 17.0% 14.9%

uniform (0,2.5) 1.66 79.8% 1.01 91.1% 39.1% 55.7%
triangular (0,0,4) 2.02 75.4% 1.33 85.3% 34.4% 40.2%

Finally, we compared the preferred timetable with the timetables that were
obtained by optimizing the timetable under different disturbance distributions.
Again, the optimization was carried out with respect to the average delay, and
the punctuality was determined afterwards. The obtained results are shown in
Table 4. In this table, the column “optimal timetable” represents the optimal
timetable for our samples of the corresponding disturbance distribution. Hence,
each row in this column corresponds to a different optimal timetable. Table 4
shows that the preferred timetable is close to the optimal timetable for each of
the applied distributions.

It can be concluded that the preferred timetable has a relatively high quality
under a range of disturbance distributions. For further details of the experiments
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Table 4. Optimality gap of the preferred timetable.

disturbance preferred timetable optimal timetable improvement
distribution avg. delay punct. avg. delay punct. avg. delay punct.

exp. 1 0.95 89.5% 0.95 89.5% 0.0% 0.0%
50% 0 and 50% exp. 1.5 1.05 87.9% 1.04 88.0% 1.1% 1.1%
80% 0 and 20% exp. 6 1.24 91.4% 1.17 92.2% 6.1% 10.0%

uniform (0,2.5) 1.01 91.1% 1.00 91.2% 1.6% 1.5%
triangular (0,0,4) 1.33 85.3% 1.31 85.3% 1.2% 0.2%

that were described here and for a description of further experiments that have
been carried out we refer to Vromans (2005).

8 Final remarks and further research

In this paper, we showed that stochastic optimization is a useful approach for
improving cyclic railway timetables. We first described a simple model for al-
locating a fixed amount of running time supplement to the consecutive trips
of a single train. Thereafter, we extended the model such that it can be ap-
plied for optimally allocating time supplements and buffer times if several trains
are operated according to a given cyclic timetable on a common infrastructure.
This stochastic optimization model is a symbiosis of a timetabling model and a
simulation model. Indeed, during the modification of the timetable, a number
of realizations of the timetable under construction is operated under stochastic
disturbances. The time supplements and buffer times are selected by the model
such that the resulting total average delay is minimal.

The results obtained by the first model indicate that a proportional distri-
bution of the running time supplements does not lead to a minimum average
delay. A relatively large part of the running time supplements has to be shifted
towards the earlier trips of a train. The motivation is that delay reductions early
on are counted on all subsequent trips. A consequence is that running time sup-
plements on the last trips are relatively low, since these decrease the delay on
the last trips only. The difference between the optimal allocation and the pro-
portional allocation of the running time supplements is largest when the average
amount of running time supplement per trip is relatively small in comparison
with the average size of the disturbances.

The results obtained by the second model indicate that a significant reduction
of the average delay can be achieved by re-allocating time supplements and
buffer times in a given timetable. We focused on the timetable on the corridor
between Haarlem and Maastricht/Heerlen in the Netherlands. On this corridor,
the average delay could be reduced within the model by about 30%. Further
experiments, for example including both directions of the studied corridor and
integer departure times, will be carried out to further validate the model.
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So far, we mainly experimented with disturbances from exponential proba-
bility distributions. However, the latter is not at all essential. Any probability
distributions, including empirical ones, can be used. Moreover, each process can
be subject to disturbances from its own probability distribution. Obviously, the
applied probability distributions should be such that the disturbances are as
much as possible realistic in practice. This may require a lot of field research in
order to determine the appropriate probability distributions.

As was noted earlier, the allocation of the time supplements that leads to a
minimal average delay of the trains need not lead to minimal average planned
or realized travel times of the passengers. Indeed, if the objective is to minimize
these, then in principle it is optimal to skip all time supplements: each minute of
time supplement brings the risk that it is redundant in certain realizations, since
there are no disturbances. Moreover, if the objective is to minimize the average
travel times of the passengers, given the allocation of a certain fixed amount of
running time supplements, then these running time supplements should mainly
be allocated to the first or the last trips of the trains: these are usually the
parts of a line with the lowest numbers of passengers. However, it is likely that
a timetable with such an allocation of the running time supplements or without
any time supplements is quite unreliable. Therefore, a trade-off has to be made
between the improved reliability that is caused by the time supplements and
several other criteria, such as the travel times of the passengers and the efficiency
of rolling stock and crew. This is a subject for further research.

In our further research, we will also experiment with relaxations of the as-
sumptions described in Section 6. That is, we will first assume that the given
timetable may contain cycles that are caused by the rolling stock circulation or
by chains of passenger connections. Under certain conditions, this seems to be a
relatively easy extension. Next, we will assume that the orders of the trains on
the tracks have not been fixed a priori. Since this extension requires many ad-
ditional binary variables, it strongly reduces the computability of the timetable.
However, the gain will be that the model will not only be able to improve a given
timetable, but even to generate from scratch a timetable that is optimal with
respect to the average delay of the trains.
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