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Abstract

One of the many areas in which Correspondence Analysis (CA) is an effec-
tive method, concerns ordination problems. For example, CA is a well-known
technique for the seriation of archaeological assemblages. A problem with
the CA seriation solution, however, is that only a relative ordering of the as-
semblages is obtained. To improve the usual CA solution, a constrained CA
approach that incorporates additional information in the form of equality and
inequality constraints concerning the time points of the assemblages may be
considered. Using such constraints, explicit dates can be assigned to the seri-
ation solution. In this paper, we extend the set of constraints that can be used
in CA by introducing interval constraints. That is, constraints that put the
CA solution within a specific time-frame. Moreover, we study the quality of
the constrained CA solution in a simulation study. In particular, by means of
the simulation study we are able to assess how well ordinary and constrained
CA can recover the true time order. Furthermore, for the constrained ap-
proach, we see how well the true dates are retrieved. The simulation study
is set up in such a way that it mimics the data of a series of ceramic as-
semblages consisting of the locally produced tableware from Sagalassos (SW
Turkey). We find that the dating of the assemblages on the basis of constraints
appears to work quite well.

1 Introduction

An important classification problem concerns the ordination of objects in time. For
example, in archaeology one is often interested in ordering a set of assemblages on
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the basis of collected artefacts. The basic assumption underlying such an ordination
is the single-peakedness of the distribution of the artefacts over time. That is,
artefacts, for example, pots, shards, coins, etc., have a life cycle that goes from
non-existence, to popularity to disappearance. A popular statistical method that
can be used to solve the ordination problem is correspondence analysis (see, e.g.,
Greenacre, 1984).

Correspondence analysis (CA) renders, simultaneously, an ordination of the arte-
facts and assemblages on the basis of the archaeological data. For this purpose, data
are gathered in such a way that, for example, rows of the data matrix correspond
to assemblages and columns to artefacts. The cell elements of the data matrix then
either indicate the presence of a type of artefact in an assemblage, or the frequency
of artefacts encountered at a certain assemblage. The first type of data, where pres-
ences are typically denoted by ones and absences by zeros, is usually referred to as
incidence data. The second type is called abundance data. In this study, we focus
on seriation of abundance data.

A CA seriation solution only provides a relative ordering of the assemblages.
Without additional information it is impossible to determine the actual order in
time. That is, we cannot say which assemblages are older or newer. Typically,
additional archaeological information is present or can be inferred from the data, so
that the direction of the order can be determined. In an achaeological setting, it is
not uncommon that explicit information concerning dates of certain assemblages is
available. For example, adjacent assemblages at the same depth should most likely
be attributed to the same period and an assemblage that is physically below another
is older than one above it. Also, for some assemblages additional information may
be present (such as the find of dated objects) that make it possible to assign an
exact date. This additional information is ignored in the standard CA approach.
However, by using a constrained CA approach, the CA solution is forced to be in
accordance with the additional information. For example, if it is known that two
assemblages are from the same date, we can constrain the CA solution in such a
way that the CA scores for these assemblages are equal.

The importance and usefulness of introducing constraints in CA has been rec-
ognized and discussed by several authors. For example, Böckenholt and Böckenholt
(1990), Takane et al. (1991), Böckenholt and Takane (1994), consider several ap-
proaches for incorporating linear constraints in CA. Ritov and Gilula (1993) and
Groenen and Poblome (2003) also consider inequality constraints, that is, con-
straints that impose a certain order on the CA scores. Moreover, Groenen and
Poblome (2003) show that by using linear constraints it becomes possible to assign
explicit dates to all assemblages in an archeaological study, if the exact dates of at
least two assemblages are known . In an empirical study concerning tableware from
Sagalassos (SW Turkey), Groenen and Poblome (2003) and Poblome and Groenen
(2003) showed that results of such a constrained CA approach appeared to be plau-
sible. However, little can be said about the accuracy of the method. As the exact
dates of most assemblages in an archeaological study are unknown, there is no way
of knowing how well constrained CA is able to reconstruct the underlying time axis.
To overcome this problem we study the performance of the constrained CA approach
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under various conditions by using a simulation study. By mimicking archaeological
data, we study the quality of the explicit dating obtained using constrained CA.

The remainder of this paper is organized as follows. In the next section, we set
off with a brief introduction of CA and constrained CA. Then, in Section 3, we
describe the design of the simulation study, which is tailored after the Sagalassos
ceramic tableware data. Results of the simulation study are described in Section 4
and we conclude with a discussion.

2 Correspondence Analysis

In CA, scores are obtained for row and column variables of a contingency table in
such a way that the deviations from the independence model are best approximated.
There exist several excellent expositions of CA such as Greenacre (1984). For a
description of the method in the context of archaeology we refer to Shennan (1988)
and Cool and Baxter (1999).

Mathematically the correspondence analysis objective can be expressed as

min
a,b

L(a,b) =
∥

∥D−1/2

r (P − rc′ − Drab
′Dc)D−1/2

c

∥

∥

2

, (1)

where
‖X‖2 = trace(X′X)

denotes the sum of squared elements of X, P is the so-called n × p correspondence
matrix with as its ijth element the number of artefacts j encountered at assemblage i
divided through the total number of observations, r and c are vectors of, respectively,
row and column totals of P, and Dr and Dc are diagonal matrices with diagonal
elements the vectors r and c. Note that the sum of all elements of P equals one,

i.e.,
∑

i,j

pij = 1. To identify a and b, we standardize b so that

b
′

Dcb = 1.

A solution for a and b can be obtained by using the singular value decomposition
of D

−1/2

r (P − rc′)D
−1/2

c . Moreover, the solutions for the rows and columns, that is
the vectors a and b are related in the following way:

a = D−1

r Pb, (2)

and

b =
1

λ
D−1

c P′a, (3)

where λ is the largest singular value of D
−1/2

r (P − rc′)D
−1/2

c . The score vectors
for the rows satisfy a

′

Dra = λ2. For details on these properties, see, for example,
Greenacre (1984).

In an archaeological setting, the vectors a and b may represent the score vectors
for the assemblages and artefacts respectively. In such a case, the ordering in time

3



of the assemblages can be inferred from the elements of a. However, if (a,b) is a
solution then (−a,−b) is also a solution. Hence, CA does not define the direction
of the scale and only a relative order is obtained.

3 Constrained Correspondence Analysis

Groenen and Poblome (2003) proposed a method that allows explicit dating of the
assemblages by incorporating time constraints. That is, by using information pro-
vided by the archaeologist concerning dates of some assemblages, the score vector
obtained from CA is related to explicit dates. We distinguish four different types of
constraints:

1. For some assemblages the exact dates are known.

2. For some assemblages it is known that they are from the same date.

3. For some assemblages the order in time is known.

4. For some assemblages it is known that they are from before or after a specific
date.

The first three types of constraints were used in the study of Sagalassos Tableware
described in Groenen and Poblome (2003). The fourth type of constraint is new and
has not been applied before.

For the first type of constraints (Type 1), Groenen and Poblome restricted the
specific dates to the assemblages in a linear fashion. These linear constraints can
be formulated as follows. Let yi denote the date (year) corresponding to assemblage
i. We then restrict the CA score corresponding to the ith assemblage to be linearly
related to the date. That is, we impose: ai = d0 + d1yi, where d0 is an unknown
constant and d1 gives the slope of the line. Both the constant d0 and slope d1 must
be estimated.

Using the linear constraint, it becomes possible to assign dates to all assemblages.
For example, suppose that the dates of three assemblages, say A1, A2, and A6, are
known. Then, constrained CA ensures that the scores corresponding to these points
(i.e., a1, a2, and a6) are linearly related to the known dates. Thus, we can draw a
line going through these three points. Then, as is illustrated in Figure 1, the date for
assemblage A3 can be obtained by considering the point on the line corresponding
to the obtained constrained CA score a3.

For the second type of constraint (Type 2) we merely require certain scores to be
equal to each other. Hence, if assemblage i must have the same dat as assemblage
j (for i 6= j) we impose ai = aj . Hence, these equality constraints are also linear
constraints on a.

Both the equality constraints and the linear date constraints can be expressed
algebraically as Hd = a, where H is a design matrix (consisting of ones and known
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Figure 1: Assigning dates to scores and vice versa. A1, A2, and A3 have known
dates and CA coordinates are linearly related to these dates. The date of A3 is not
known but can be reconstructed from its CA analysis score a3 and the dotted line
linking the CA score to an actual date.

years and columns of dummy variables, one for each group of assemblages), d is a
vector of coefficients (that is, a vector consisting of the constant term d0, the slope
d1 and coefficients used to impose the equality constraints) and a is the vector of the
constrained correspondence analysis scores. To illustrate how the equality and linear
constraints work, consider the following example. The dates of the assemblages A1,
A2 and A6 are known to be, respectively, 20, 30, and 80. Furthermore, it is known
that assemblages A4 and A5 stem from the same date. Then, if there are only 6
assemblages in total, we let

H =

















1 20 0 0
1 30 0 0
0 0 1 0
0 0 1 0
0 0 0 1
1 80 0 0

















and d =









d0

d1

d2

d3









,

so that

Hd =

















d0 + 20d1

d0 + 30d1

d2

d2

d3

d0 + 80d1

















=

















a1

a2

a3

a4

a5

a6

















= a.

Böckenholt and Takane (1994), showed that solving the correspondence analysis
objective (1) subject to linear constraints Hd = a, can be reformulated by using
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the so-called null-space approach. In this approach, we first calculate the null-space
of H

′

, that is we obtain H0 satisfying H
′

H0 = 0. Then, the restrictions Hd = a

can be simplified by premultiplying both sides by H
′

0
so that H

′

0
a = 0. Rephrasing

the constraints in this fashion has as advantage that we do not need to explicitly
calculate the parameter vector d.

The third type of constraints (Type 3) concerns order restrictions. If it is known
that assemblage i is from a later date than assemblage j, the CA scores can be
restricted to satisfy this relationship as well, that is, ai ≥ aj . This type of inequality
constraint can be expressed as Ga ≥ 0, where G is a design matrix whose rows
correspond to an inequality. The column elements of G correspond to assemblages
involved in the inequality. They are minus one (for the older assemblage) and
plus one (for the newer assemblage). For example, if it is know that assemblage
A3 is from a date earlier that assemblage A5, G =

(

0 0 −1 0 1 0
)

so that
Ga = a5 − a3 ≥ 0.

Finally, the fourth type of constraint (Type 4) requires that certain assemblages
are from before or after a specified date. This constraint can be implemented only
if we have Type 1 constraints. In that case, the linear relationship between scores
and dates makes it possible to link actual dates to CA scores and vice versa. Hence,
using this relationship we are able to re-express inequality restrictions for the dates
as inequality restrictions for the scores. These inequality constraints can then be
implemented in a similar fashion as Type 3 constraints. For example, if it is known
that assemblage A4, stems from before the year 70 it follows that the CA score
must be lower than the score corresponding to the year 70. To find the appropriate
score we need two pairs of dates and years. Consider again the situation sketched in
Figure 1, where A1 and A2 are known to be from the years 20 and 30 respectively.
Then, it is not difficult to see that

a4 ≤ a1 + (70 − 20)
(a2 − a1)

(30 − 20)
,

0 ≤ a1 + 5(a2 − a1) − a4,

0 ≤ −4a1 + 5a2 − a4.

Hence, for the general case where yi and yj, with yj > yi, denote the known years
corresponding to the ith and jth assemblages, the restriction that the kth assemblage
is from before yk can be expressed as

0 ≤ (1 − γk)ai + γkaj − ak,

where γk = (yk−yi)/(yj−yi). Thus, Type 4 constraints can be expressed as Za ≥ 0,
where Z is a design matrix with elements 1,−1, γk and −γk in the appropriate places.
We refere to these constraints as interval constraints. Defining

G∗=

(

G

Z

)

,

allows us to express all inequality constraints as G∗a ≥ 0. For ease of notation,
we drop the superscribed * from here on so that the matrix G denotes the design
matrix for all inequality constraints.
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The objective of constrained CA that incorporates all types of constraints is
to minimize (1) subject to the restrictions H

′

0
a = 0 and Ga ≥ 0. We can solve

this problem by using a so-called alternating least-squares algorithm that alternates
between solving the objective for a for fixed column-score vector b, and for b for
fixed row-score vector a. The solution for b for fixed a can be obtained as follows.
First, note that, for the unconstrained CA solution the solution for the row and
column scores are related through formula’s (2) and (3). As we do not impose
any restriction on b other than its standardization, the optimal column-scores can
simply be obtained from (3).

To calculate the row-score vector a given a certain column score vector b we
must solve the following optimization problem:

min
a

∥

∥D−1/2

r (P − rc′ −Drab
′Dc)D−1/2

c

∥

∥

2

, (4)

s.t. H
′

0
a = 0 and Ga ≥ 0.

However, if b is (assumed) known and b
′

Dcb = 1, we can rewrite the problem as
follows:
∥

∥

∥
D

−
1

2

r (P − rc′ −Drab
′Dc)D

−
1

2

c

∥

∥

∥

2

=

trace

[

(

D
−

1

2

r (P − rc′)D
−

1

2

c − D
1

2

r ab′D
1

2

c

)′ (

D
−

1

2

r (P− rc′)D
−

1

2

c −D
1

2

r ab′D
1

2

c

)

]

=

trace (a′Dra) − 2 trace
(

b′ (P − rc′)
′

a
)

+ trace
(

D−1

c (P− rc′)
′

D−1

r (P− rc′)
)

=

trace

[

(

D
1

2

r a− D
−

1

2

r (P− rc′)b
)′ (

D
1

2

r a −D
−

1

2

r (P − rc′)b
)

]

+ e =

∥

∥

∥
D

1

2

r a −D
−

1

2

r (P − rc′)b

∥

∥

∥

2

+ e

where

e = trace
(

D−1

c (P− rc′)
′

D−1

r (P − rc′)
)

− trace
(

b′ (P− rc′)
′

D−1

r (P − rc′)b
)

.

As e is constant for fixed b, the minimization problem (4) is equivalent to

min
a

∥

∥D1/2

r a −D−1/2

r (P− rc′)b
∥

∥

2

,

s.t. H
′

0
a = 0 and Ga ≥ 0.

This is a least-squares problem with linear equality and inequality constraints. A
solution to this type of problem can be obtained by transforming it to a nonnegative
least-squares problem (see, Lawson and Hanson, 1974).

Combining the results we propose the following algorithm:

1. For fixed b, satisfying the standardization constraint b
′

Dcb = 1 use the algo-
rithm described in Lawson and Hanson (1974; pp168-169) to solve

min
a

∥

∥D1/2

r a −D−1/2

r (P − rc′)b
∥

∥

2

,

s.t. H
′

0
a = 0 and Ga ≥ 0.
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2. Let b∗ = D−1

c

(

P − rc
′
)

′

a, where a is the score vector obtained in step 1.

Rescale b∗ as b =ρD
−1/2

c b∗, where ρ = (b∗′Dcb
∗)−1/2 so that b′Dcb = 1.

Insert the thus obtained score vector b in the first step of this algorithm and
repeat until subsequent solutions remain constant up to a (small) pre-specified
constant.

By alternating between these two steps L(a,b) decreases monotonically. Un-
fortunately, it can not be guaranteed that the thus obtained minimum is a global
minimum. Therefore, it is better to use several random starts and select the thus
obtained best solution.

4 The Simulation Study

Constrained CA applied to Sagalassos tableware yielded results that were compat-
ible with the archaeological knowledge (Poblome and Groenen, 2003 compared to
Poblome, 1999). However, as the true dates of most assemblages are unknown, it is
difficult to ascertain how well the new method works. It is also unclear how accurate
the explicit dating is for the assemblages that had no exact dating. To consider the
performance of the constrained CA approach we use a simulation study. The idea
of using a simulation study in the context of archaeology is not new (Graham et
al., 1976; Herzog and Scollar, 1988; Lockyear, 1991). Some of these studies involve
the simulation of very specific data, for example, simulation of coin hoard forma-
tion (Lockyear, 1991) or cemetery data (Graham et al.,1976). Herzog and Scollar
(1988) provide a general simulation framework that also allows the generation of
abundance data. Their method is incorporated in the Bonn Archaeological Soft-
ware Package (BASP, http://www.uni-koeln.de/∼al001/basp.html). As BASP does
not allow simulation of the constraints, we developed our own simulation study.

4.1 Data Generating Process

We consider an archaeological setting that covers data for a certain pre-determined
timespan. We divide the complete timespan into equal-length time-intervals. For
each time-interval, we randomly determine the number of assemblages that corre-
spond to that period. Each of these assemblages is represented as a row in the data
table. Then, for each time-interval, we simulate the number of different types of
artefacts that are introduced during the interval. Each artefact type corresponds
to a column in our data table. Next, for each of the artefact types, we randomly
determine the total number of artefacts that was produced. These totals are the
column marginals of the complete table. Now we have a table where the rows rep-
resent assemblages associated to certain periods. The columns represent artefacts
corresponding to certain time-periods and the column totals are known. The next
step is to simulate, for each observed artefact, the time between introduction and
disappearance. Then, by adding this time to the introduction time, we can assign
the artefacts to appropriate assemblages. That is, an assemblage that corresponds
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to the time-interval containing the time it disappeared. Simulating data in this
manner yields a table in which we have several assemblages and several artefacts
for each time-period. The cell elements of the table are the number of times that
artefact j was found at assemblage i. We call this table the complete data table as
it contains all assemblages and artefacts.

Note that, the complete data table contains all assemblages and all types of
artefacts. However, in practice, the archaeologist will not have access to all assem-
blages, and not all artefacts are retrieved. Instead, typically, only a fraction of the
true assemblages and artefacts will be present on the archaeological site. Therefore,
we randomly select observed assemblages and artefacts, that is, we draw rows and
columns from the complete data table, to determine the observed data matrix.

4.1.1 Model Parameters

We model our simulation study after the Sagalassos tableware study by setting
the simulation parameters in such a way that the simulated data matrix resembles
the Sagalassos data. We consider a total time span of 1000 years that we divide
into 50 periods of 20 years. For each period, we randomly determine the number of
assemblages between 1 and 5. This means that on average there will be 3 assemblages
corresponding to the same interval. The total number of assemblages (rows) thus
lies between 50 (one assemblage in each time-period) and 250 (five assemblages in
each time-period). Similarly, corresponding to each period we randomly draw a
number between 1 and 10 that gives the number of types of artefacts that were
introduced. Hence, on average 5.5 different types of artefacts are introduced during
the same time-interval. The total number of artefact types (columns) lies between
50 (exactly one artefact in each time period) and 500 (10 types of artefacts in each
time period).

Next, we simulate for each artefact, the total number that was produced (the
column marginals of the complete table). Typically in archeological settings, there
are many artefacts for which we have a low total number of observations and few
artefacts that are frequently observed. To mimic a distribution that has a high peak
for low values while covering a large range of values, we use a Gamma distribution
with parameters 1/3 and 1500. The simulated numbers are rounded to obtain an
integer representing the number of introduced artefacts of a certain type. Figure 2
shows a histogram of the sample distribution based on 100 draws.

To determine the lifetime for an individual artefact we again use a Gamma
distribution. For the choice of parameters we consider two scenarios. In the first
scenario, the average lifetime of an artefact is approximately one generation: 30
years. We achieve this by choosing a Gamma distribution with parameters 1.5
and 20. For the second scenario we choose a Gamma distribution with parameters
1.5 and 10 so that the average lifetime equals 15 years. The density functions for
these two scenarios are plotted in Figure 3. On the basis of the introduction time
and the randomly determined lifetime, an artefact can be assigned to an appropriate
assemblage. If more than one assemblage exists for the same time period, the artefact
is randomly assigned to one of the assemblages.
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Figure 2: Histogram of 100 draws from a Gamma(1/3,1500) distribution and the
theoretical distribution.

After assigning all artefacts to appropriate assemblages, we obtain a matrix in
which we have observations for all assemblages and all artefacts. To determine the
observed artefacts and assemblages we randomly draw from this complete set. We
consider two cases:

1. From the total set of assemblages (which ranges between 50 and 250),we draw
20 assemblages.

2. From the total set of assemblages we draw 30 assemblages.

In both cases, the number of artefact types (the number of columns) is deter-
mined by randomly drawing 100 types from the complete set. After the selection
of assemblages (rows) and artefact types (columns) the situation may occur that
certain rows or columns have zero observations. Such rows and columns are deleted
from the observation matrix.

Note that the correct time interval for each pottery type and assemblage is
known. This knowledge can be used to generate constraints and to assess the quality
of our approximation. For Type 1 constraints (linear time constraints) we consider
two cases: three dates are known or four dates are known. For Type 2 constraints
(equality constraints), we take the number of existing equalities if there are three
or less equalities. If there are more than three equalities we randomly determine the
number of constraints between three and the total number of equalities minus one.
For Type 3 constraints (inequality constraints) we consider two cases: 5% or 10% of
all inequalities are given. Finally, we consider the situation where it is known that
all dates lie in the period -100 and 1100 years, thereby incorporating the interval
constraints introduced in Section 3. Table 1 summarizes the factors and their levels
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Table 1: Factors varied in the simulation study

Factors Levels
Number of Assemblages {20,30}
Average Lifetime of Artefacts {15,30}
Number of Known Years {3,4}
Percentage of Known Inequalities {5,10}
Interval Constraints {No,Yes}

varied in our simulation study. For each combination of factor levels, 500 simulations
were performed.

5 Results

To assess the performance of the constrained CA approach we consider various mea-
sures. First of all, a comparison is made regarding the Spearman rank correlation
coefficient between the true orders and the retrieved orders for both methods. Note
that the unconstrained approach does not yield actual dates and a comparison other
than the ordering in time of the two methods is all that we can achieve. Further-
more, the unconstrained approach does not give a unique direction. We therefore
used the absolute value of the correlations implicitly assuming that the direction
of the ordination is correct in the unconstrained approach. The average Spearman
rank correlations for the unconstrained and constrained approach can be found in
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Table 2: Spearman rank correlations. Mean lifetime of artefacts is 15 years

Known 20 Assemblages 30 Assemblages
Method years Ineq. Interval Mean Std Mean Std
CA - - - 0.46 0.27 0.55 0.30
CCA 3 5% No 0.89 0.19 0.93 0.16
CCA 3 5% Yes 0.93 0.09 0.95 0.10
CCA 3 10% No 0.92 0.15 0.96 0.12
CCA 3 10% Yes 0.95 0.07 0.97 0.08
CCA 4 5% No 0.93 0.14 0.96 0.17
CCA 4 5% Yes 0.95 0.08 0.97 0.08
CCA 4 10% No 0.96 0.09 0.98 0.05
CCA 4 10% Yes 0.97 0.05 0.98 0.06

Table 3: Spearman rank correlations. Mean lifetime of artefacts is 30 years

Known 20 Assemblages 30 Assemblages
Method years Ineq. Interval Mean Std Mean Std
CA - - - 0.81 0.30 0.94 0.18
CCA 3 5% No 0.90 0.26 0.93 0.21
CCA 3 5% Yes 0.96 0.19 0.96 0.14
CCA 3 10% No 0.91 0.22 0.95 0.16
CCA 3 10% Yes 0.96 0.11 0.98 0.09
CCA 4 5% No 0.94 0.17 0.95 0.17
CCA 4 5% Yes 0.97 0.06 0.98 0.10
CCA 4 10% No 0.96 0.14 0.97 0.12
CCA 4 10% Yes 0.98 0.05 0.98 0.06

Tables 2 and 3. We see that the results for the unconstrained approach (Method:
CA) are severely affected by the lifetime distribution. If artefacts have shorter
lifetimes, correspondence analysis has more difficulty in reconstructing the correct
order. When the lifetimes increase, the method performs quite well. Note also that
the number of assemblages plays an important role. More assemblages lead to higher
correlations. Also, for almost all settings, the average rank correlation is higher for
the constrained approach (Method: CCA) than for the unconstrained approach,
and it is typically quite high. Apparently, the constrained approach is successful
in achieving the correct ordering. Adding interval constraints has a positive effect
on the correlation coefficients. Note that, in contrast to the results for the uncon-
strained approach, the lifetime of artefacts does not appear to affect the correlation
coefficient.

The prime objective of this paper is to assess how well the constrained CA ap-
proach is able to retrieve actual dates. Therefore, we calculate, for each simulated
data set, the mean absolute difference between true dates and predicted dates. That
is, for all assemblages, the absolute difference between true and predicted dates is
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Table 4: Median of the mean absolute difference between reconstructed and true
periods of assemblages. The mean lifetime of artefacts is 15 years

Known 20 Assemblages 30 Assemblages
Method years Ineq. Interval Median IQR Median IQR
CA - - - - - - -
CCA 3 5% No 60.65 51.07 49.28 41.16
CCA 3 5% Yes 51.81 34.79 45.83 28.65
CCA 3 10% No 53.71 43.62 42.22 27.81
CCA 3 10% Yes 45.09 32.78 39.72 23.00
CCA 4 5% No 44.37 35.83 38.19 25.08
CCA 4 5% Yes 40.33 29.53 35.12 20.39
CCA 4 10% No 38.15 28.81 34.12 19.88
CCA 4 10% Yes 34.38 23.74 31.21 16.21

calculated and averaged over the number of assemblages. As the true dates are ap-
proximated up to the time-interval that they are assigned to (recall that assemblages
represent a period of 20 years), we calculate the difference between the predicted
date and the interval boundaries. If the predicted date falls in the interval, the
difference is zero. In Tables 4 and 5, the median and interquartile range of the
mean absolute difference for each parameter setting is given. We use the median
rather than the mean to account for possible outliers. In constrained CA without
interval constraints, extreme outliers occasionally occur. In such cases, dates are
assigned to assemblages that are far beyond the range of plausible values (tens of
thousands years before or after the actual dates). In practice, such a solution will
easily be discarded. Such outliers are avoided by the interval restrictions that we
impose. Comparing Tables 4 and 5 we see that the results for the scenario with
mean lifetimes of 15 years are consistently better than those with a mean lifetime
of 30 years. This concerns both the location (the median) but also the spread as
represented by the interquartile range (IQR). Also, we see that by introducing the
interval constraints the median and spread become smaller. This is due to the fact
that the interval constraint eliminates solutions with very large deviations. The
effect of the number of inequality constraints is limited when the mean lifetime is 30
years. However, when the mean lifetime is 15 years, adding inequality constraints
appears to decrease the mean absolute differences by approximately 5 years. Also,
note that the number of assemblages does not appear to have a large effect on the
median in the 30 years scenario, whereas it leads to a considerable improvement
when the mean lifetime of the artefacts is 15 years.

As an alternative measure for the fit of the solutions, we calculate, for each data
set, the percentage of assemblages with a difference between the true and predicted
dates of less than 60 years (i.e., two generations). Tables 6 and 7 give the medians
for the percentages of predictions within two generations for the 15 and 30 years
scenarios. We see that these percentages lie between 60%, for the 30 year lifetimes
with the lowest amount of restrictions imposed, and 83% for the 15 years scenario
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Table 5: Median of the mean absolute difference between reconstructed and true
periods of assemblages. The mean lifetime of artefacts is 30 years

Known 20 Assemblages 30 Assemblages
Method years Ineq. Interval Median IQR Median IQR
CA - - - - - - -
CCA 3 5% No 66.07 77.73 67.44 76.78
CCA 3 5% Yes 58.93 45.94 56.92 47.29
CCA 3 10% No 63.99 78.39 66.81 75.67
CCA 3 10% Yes 57.68 42.19 56.03 46.93
CCA 4 5% No 49.29 47.20 50.47 49.25
CCA 4 5% Yes 43.56 28.84 45.93 34.30
CCA 4 10% No 47.79 47.56 49.91 48.53
CCA 4 10% Yes 43.85 28.39 45.75 34.48

Table 6: Median of the mean percentage of assemblages correctly classified within
two generations. The mean lifetime of artefacts is 15 years

Known 20 Assemblages 30 Assemblages
Method years Ineq. Interval Median IQR Median IQR
CA - - - - - - -
CCA 3 5% No 0.65 0.20 0.68 0.21
CCA 3 5% Yes 0.70 0.23 0.70 0.21
CCA 3 10% No 0.70 0.25 0.73 0.23
CCA 3 10% Yes 0.70 0.20 0.73 0.20
CCA 4 5% No 0.75 0.20 0.77 0.19
CCA 4 5% Yes 0.75 0.20 0.77 0.17
CCA 4 10% No 0.75 0.20 0.80 0.17
CCA 4 10% Yes 0.80 0.15 0.83 0.18

Table 7: Median of the mean percentage of assemblages correctly classified within
two generations. The mean lifetime of artefacts is 30 years

Known 20 Assemblages 30 Assemblages
Method years Ineq. Interval Median IQR Median IQR
CA - - - - - - -
CCA 3 5% No 0.60 0.20 0.60 0.27
CCA 3 5% Yes 0.60 0.25 0.63 0.26
CCA 3 10% No 0.60 0.25 0.63 0.27
CCA 3 10% Yes 0.63 0.25 0.63 0.25
CCA 4 5% No 0.70 0.20 0.68 0.23
CCA 4 5% Yes 0.70 0.20 0.70 0.20
CCA 4 10% No 0.70 0.20 0.69 0.23
CCA 4 10% Yes 0.70 0.20 0.70 0.23
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Figure 4: Relationship between the Mean Absolute Difference and the range between
known years.

with the maximum amount of information imposed by means of the restriction.
Again, the solutions when the average lifetime is 15 years are consistently better
than for the 30 years scenario. Furthermore, from Tables 6 and 7 it is clear that the
addition constraints generally leads to an improvement of the solution.

The constraints in the simulation study are drawn randomly on the basis of the
observed assemblages. Therefore, situations may occur in which the known dates
are close to each other. In that case, the prediction of other dates is based on a
small interval and possibly less precise than if it was based on a larger interval. To
see if this is indeed the case, we plotted the average absolute deviations versus the
length of the time interval defined by the oldest and newest constraint dates for
the following settings. The patterns for the different settings are remarkably similar.
The most important difference concerns the situation without interval constraints.
In this case, some extremely bad solutions (mean difference in tens of thousands)
occur. These extreme cases occur mostly when the interval between known years is
small. To illustrate the similarity in the patters we have plotted the mean absolute
difference versus the range between known years for the setting in which 3 years and
5% of the inequalities where known and interval constraints were employed. We see
that, as expected, the average absolute deviations decrease as the intervals between
the known dates becomes larger. Thus, constrained CA tends to perform better if
the range of the known dates is larger.
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6 Discussion

In this paper, we studied the performance of constrained CA as proposed by Groenen
and Poblome (2003) by means of a simulation study. The results of the simulations
study showed that a constrained approach clearly outperforms the unconstrained
approach. This is especially true when the artefact lifetime is assumed to be rela-
tively small on average. In practice, this would be a more realistic setting in most
archaeological settings as artefacts do not typically have high lifetimes. We also
saw that by imposing linear year constraints, the predicted dates were quite good.
As the constrained CA approach makes its prediction based on the known years,
the range between known years plays an important role in the quality of the solu-
tion. We saw that, in general, a large interval between known years leads to better
predictions. We also observed that in some cases extreme outliers occurred. This,
however, could be remedied by employing interval constraints to place all dates in
a realistic time-frame.

The objective of this simulation study was to get insight into the performance
of CA and constrained CA as seriation techniques. We were particularly inter-
ested to see whether the linear year constraints lead to accurate predictions. To
achieve this, we have used a very simple design of the data generation process. The
parameter choices were made primarily to resemble the data from the Sagalassos
tableware study. Of course, different data generating processes could be studied as
well. Other features in the simulation study that could be varied in future studies
are the following. In our present study, we separately treated two different (but
similar) distributions for the lifetime. In practice, however, a mixture of several
distributions for the lifetime of artefacts will be more realistic. Also, instead of
considering equally spaced time-periods, the length of the periods for different as-
semblages could be determined randomly as proposed by Herzog and Scollar, 1988.
We believe that the present study shows that constrained CA can be a useful tool
for archeologists that improves datign of assemblages.

References
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