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Abstract

Microsimulation models are increasingly used in the evaluation of cancer screening.

Latent parameters of such models can be estimated by optimization of the goodness-of-fit. We

compared the efficiency and accuracy of the Response Surface Methodology and the Nelder

and Mead Simplex Method for optimization of microsimulation models. To this end, we

tested several automated versions of both methods on a small microsimulation model, as well

as on a standard set of test functions. With respect to accuracy, Response Surface

Methodology performed better in case of optimization of the microsimulation model, whereas

the results for the test functions were rather variable. The Nelder and Mead Simplex Method

performed more efficiently than Response Surface Methodology, both for the

microsimulation model and the test functions.
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1 Introduction

In this paper we investigate the performance of two classes of algorithms for optimization

of stochastic simulation models: algorithms based on Response Surface Methodology and

variants of the Nelder and Mead Simplex Method. Our particular interest in these algorithms

stems from the need for efficient minimization algorithms that can be used in optimizing

microsimulation models of disease control. In microsimulation models individual fictitious

life histories, including disease processes and the impact of intervention, are simulated.

For example, cancer screening microsimulation models are used in the evaluation of mass

cancer screening programmes. To make inferences about parameters that cannot be observed

directly, such as duration of preclinical screendetectable stages of cancer (Day and Walter,

1984), a cancer screening microsimulation model is fitted on observed screening results and

cancer incidence data by optimizing the goodness-of-fit of the model (van Oortmarssen et al.,

1990). Such a fitting procedure involves optimization of an objective function that can only

be observed indirectly from the microsimulation model, which gives a stochastic response

function that cannot be given explicitly as a function of the parameters.

Consequently, microsimulation models are often considered as stochastic black-box

models (Pflug, 1996), where the optimization routine acts as a shell around the existing

microsimulation program and only uses observations of the stochastic response function. In

this paper, we consider microsimulation models for which all parameters included in the

optimization are real-valued numbers. An optimization algorithm for microsimulation models

should be efficient in terms of the number of evaluations needed for finding an optimum,

since function evaluations (i.e. runs of the microsimulation model) are computationally

expensive. The algorithm should be reliable, in the sense that repeated optimizations should

give comparable results. Furthermore, the algorithm should be accurate, in the sense that an

observed optimum should be close to the real optimum. Accuracy is required in statistical

comparison of different parameterizations of a model where one should be confident that

indeed the best fitting models are compared.

Among optimization methods that only use observations of the stochastic response

function are the Nelder and Mead Simplex Method, Stochastic Approximation, Response

Surface Methodology and Simultaneous Perturbation Stochastic Approximation (see

Kleijnen, 1974; Jacobson and Schruben, 1989; Spall, 1992; Fu, 1994). Both the Nelder and

Mead Simplex Method and Response Surface Methodology are frequently used for the

optimization of simulation models. However, there are surprisingly few papers in which the

performances of these optimization methods are compared systematically. Barton and Ivey

(1996) investigated the performance of the Nelder and Mead Simplex Method in simulation
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optimization, and studied various modifications of the method that might improve its

performance. Response Surface Methodology sequential procedures provide a very general

methodology for optimization via simulation (Fu, 1994). The aim of this paper is to compare

the two most successful Nelder and Mead Simplex Method algorithms (according to Barton

and Ivey) with several algorithms based on Response Surface Methodology. We test the

automated algorithms using a standard set of deterministic test functions for unconstrained

optimization and an existing microsimulation model.

The remainder of this paper is organized as follows. In the next section the optimization

methods will be described. Next, we will describe how we will test these methods and give

the results of the tests. We will conclude with some recommendations.

2 Optimization Methods

We consider the minimization of an objective function ))(()( xx FEf = ,

1, ≥ℜ⊂∈ nD nx , where )(xF  denotes the stochastic response function of the simulation

model and ))(( xFE  denotes its expected value. The arguments ),...,x(x n1=x  represent the

parameters of the microsimulation model. In this section we will describe the Nelder and

Mead Simplex Method (NMSM) and Response Surface Methodology (RSM). The issue of

selecting a criterion for ending the optimization procedures is not addressed in this study.

Therefore, we use for both NMSM and RSM a predefined fixed, large number of evaluations.

2.1 The Nelder and Mead Simplex method

NMSM is a direct-search method that has shown a good performance on both

deterministic objective functions (Nelson, 1985) and stochastic functions (Dennis and Woods,

1987). A detailed description of the algorithm can be found in (Barton and Ivey, 1996).

For the minimization of a function of n variables, NMSM defines a simplex with (n+1)

vertices. During an iteration, the objective function is evaluated at each vertex of the simplex,

and the vertex with the lowest value ( lowx ), the vertex with the highest value ( hix ) and the

vertex with the next-to-highest value ( nexthix ) are determined. Vertex hix  is reflected through

the centroid 0x  of the remaining vertices to find a new vertex ( reflx ):

hirefl xxx αα −+= 0)1( , 0>α , and the objective function is evaluated in vertex reflx . Next,

a new simplex is constructed as follows:
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• If )()( hirefl FF xx ≥ , then the objective function is evaluated in a contracted vertex

between hix  and 0x , defined by 01 )1( xxx ββ −+= hicontr , 10 << β . If

)()( 1 hicontr FF xx < , then the new simplex is found by replacing vertex hix  by vertex 1contrx ,

otherwise the new simplex is found by shrinking the current simplex around vertex lowx , by

replacing vertex ix  by lowilowi xxxx ≠−+ ,)1( δδ , 10 << δ .

• If )()()( hireflnexthi FFF xxx <<  then the objective function is evaluated in a

contracted vertex between reflx  and 0x , defined by 02 )1( xxx ββ −+= reflcontr , 10 << β .

If )()( 2 reflcontr FF xx < , then the new simplex is found by replacing vertex hix  by vertex

2contrx , otherwise the new simplex is found by shrinking the current simplex around vertex

lowx , by replacing vertex ix  by lowilowi xxxx ≠−+ ,)1( δδ , 10 << δ .

• If )()()( nexthirefllow FFF xxx ≤≤  then the new simplex is found by replacing

vertex hix  by vertex reflx .

• If )()( lowrefl FF xx <  then the objective function is evaluated in an expanded

vertex between reflx  and 0x , defined by 0exp )1( xxx γγ −+= refl , 1>γ . If

)()( exp lowFF xx < , then the new simplex is found by replacing vertex hix  by vertex expx ,

otherwise the new simplex is found by replacing vertex hix  by vertex reflx .

The next iteration begins with the new simplex. If during an iteration a vertex is defined

outside the feasible region D, then this vertex is projected onto the boundary of this region.

The initial simplex is given by

{ }),...,(),...,,...,(),,...,( 00
1

0
1

0
1

00
1 nnnn cxxxcxxx ++

where ),...,( 00
1

0
nxx=x  is called the starting point and the size of this simplex is determined

by the stepsizes },...,{ 1 ncc . The parameters ),,,( γδβα  are commonly set to

)2 , 5.0 , 5.0 , 1(  (Barton and Ivey, 1996).

Barton and Ivey also studied modified NMSM algorithms. The most successful

modification re-evaluates the objective function in the best vertex at each shrink step and

reduces the simplex by 10% (δ= 0.9) at each shrink step rather than 50% (δ= 0.5). They found

that this algorithm, which we will denote with NMSM2, leads to small improvements in the

expected value of the objective function at termination at the cost of more function

evaluations (Barton and Ivey, 1996). We tested both the original algorithm (denoted with

NMSM1), and the modified algorithm.
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2.2 Response Surface Methodology

RSM is a collection of statistical and mathematical techniques useful for optimizing

stochastic functions (Myers and Montgomery, 1995). The methodology is based on

approximation of the objective function by a low order polynomial on a small subregion of

the feasible region D. The coefficients of the polynomial are determined by regression

analysis applied to a number of observations of the objective function. To this end, the

objective function is evaluated in an arrangement of points referred to as an experimental

design (Kleijnen, 1997). Based on the fitted polynomial, local best values of the parameters

nxx ,...,1  are derived, which represent the center point of the new subregion (Fu, 1994).

 In the absence of a consensus standard algorithm we attempt in this paper to construct a

standard RSM algorithm for automated optimization based on prevailing principles and ideas

found in literature. This algorithm comprises two phases: a first-order phase in which first-

order polynomials are fitted iteratively until a plateau is reached, or until too much curvature

is found (Cochran and Cox, 1962), and a second-order phase in which the objective function

is approximated iteratively by second-order polynomials.

The algorithm starts with constructing the first subregion

],[...],[ 00
1

0
11

0
1 nnnn cxcxcxcx +−××+−  using the starting values of the parameters

),...,( 00
1

0
nxx=x  and the initial stepsizes },...,{ 1 ncc . The parameters are scaled between –1

and +1 such that the subregion corresponds to ]1,1[...]1,1[ −××−  to avoid numerical

problems that may occur when parameters vary in orders of magnitude (Free et al., 1987). In

the subregion we fit a first-order polynomial represented by

∑
=

+=
ni

iibby
,...,1

0ˆ ξ

where ( )nξξξ ,...,ˆ
1=  are the scaled parameters. To this end the objective function is

evaluated in the n2  points of a 2-level factorial design, given by the factorial points

),...,,( 0
2

0
21

0
1 nn cxcxcx ±±±  (Myers and Montgomery, 1995). If the design is not within the

feasible region D, then it is moved into this region (Smith, 1979). Since we will investigate

the objective function for presence of curvature, the objective function is evaluated four times

in the center point ),...,( 00
1 nxx  for testing for lack of fit (Myers and Montgomery, 1995). If

there is no systematic curvature present at a 5% significance level, then we test for the

presence of a plateau, i.e. we test the hypothesis 0...: 10 === nbbH  against the alternative
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hypothesis 0::1 ≠∃ ibiH . If the null hypothesis is rejected at a 5% significance level then

we accept the first-order polynomial and we conclude that a steepest descent direction exists.

In this case, a line search is performed in the steepest descent direction given by

),...,( 1 nbb −− (Myers and Montgomery, 1995). A number of equidistant points in the steepest

descent direction will be evaluated, starting at scaled distance 1 from the center point. As

soon as a boundary of the feasible region D is crossed, the line search is continued along the

projection of the search direction on this boundary (Smith, 1979). The line search is ended

when an observed value of the simulation response function is higher than the preceding

observation. The last point for which the simulation response function was decreasing will be

the center point of the next subregion, where again a first-order polynomial is fitted.

If the first-order polynomial is not accepted, then a second-order polynomial is fitted in

the current subregion. We use a central composite design (CCD) for determining the

coefficients of the second-order polynomial (Kleijnen, 1975), consisting of the center point

),...,( 00
1 nxx  which is evaluated four times, n2  scaled factorial points

),...,,( 0
2

0
21

0
1 nn cxcxcx ±±±  and n2  scaled axial points

),0,...,0(),...,0,...,0,( 0
1

0
1 nn cxcx αα ±±  where 4/2n=α  (Box and Draper, 1987). A CCD is

widely used for fitting second-order polynomials (Myers et al., 1989). The fitted polynomial

is represented by

B??b? ′+′+=++= ∑ ∑
=

≤
=

0
,...,1 ,...,1,

0ˆ bbbby
ni

ji
nji

jiijii ξξξ

where ( )nξξ ,...,1=?  are the scaled parameters. We do not test this polynomial for lack of

fit.

The stationary point of the quadratic surface is determined by

bB 1

2
1 −−=s

Let E be the nn×  matrix of normalized eigenvectors of B and let nνν ,...,1  be the

eigenvalues of B. If all eigenvalues are positive, then the quadratic surface has a minimum at

the stationary point. If this point lies within the current subregion, then it is taken as the center

point of the new subregion, whereas the stepsizes },...,{ 1 ncc  that are used for construction of

the subregion are decreased by 50%. In the new subregion again a second-order polynomial

will be fitted.

If all eigenvalues are positive but if the stationary point lies outside the current subregion,

the stationary point is not regarded as the center of the next subregion. The same applies when
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the eigenvalues are mixed in sign, i.e. the stationary point is a saddle point or when all

eigenvalues are negative, i.e. the stationary point is a maximum.

In this case, ridge analysis is performed, which means that we search for a stationary

point R?  on a given radius R  such that the quadratic surface has a minimum at this

stationary point (Myers and Montgomery, 1995). Using Lagrange analysis with multiplier µ ,

this stationary point is given by

2)( b?IB R −=− µ

and it should hold that ii
νµ min<  and R=′RR?? . We can write

∑
=







−
′=′=

n

i i

iR
1

2

2

)(2 µν
be

?? RR

where ie  is the eigenvector corresponding to the ith eigenvalue iν . We consider the radius of

the circumscribed sphere of the subregion, i.e. 2=R , which means that we have to find

ii
νµ min<  such that

2
)(21

2

=





−
′∑

=

n

i i

i

µν
be

Standard numerical methods for finding the root of an equation are used to determine µ . The

stationary point that results from the ridge analysis will be used as the center point of the next

subregion, in which again a second-order polynomial will be fitted.

The algorithm described above is referred to as RSM1. To study some of the choices we

made in constructing this algorithm we also investigate the following algorithms, which are

equal to RSM1 except for a single modification:

• RSM2: if the stationary point is a minimum inside the subregion, then the stepsizes

},...,{ 1 ncc  are decreased by 10% instead of by 50%.

• RSM3: the significance level used for statistically testing of the first-order

polynomial equals 2.5% instead of 5%.

• RSM4: the stepsizes },...,{ 1 ncc  are decreased only if for two consecutive second-

order polynomials the stationary point is a minimum inside the subregion, instead of

decreasing the stepsizes as soon as a minimum is found inside the subregion.
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3 Test problems

We test the six optimization algorithms on a set of 18 deterministic test functions for

unconstrained optimization, that were made stochastic by adding random noise. Barton and

Ivey (1996) also used these functions in comparing different versions of the NMSM

algorithm. As it is not clear whether these functions represent real microsimulation models we

also consider a microsimulation version of an existing cancer screening model. This model

has three parameters that need to be estimated from an observed data set by constrained

minimization of a goodness-of-fit test statistic. For this particular model the optimal

parameters can also be determined analytically.

3.1 One stage-one test breast cancer model

The microsimulation model is a simulation implementation of the breast cancer screening

model developed by Day and Walter (1984). In this model only one disease stage, the

detectable preclinical phase (DPCP), is modeled. The DPCP has incidence rate J and we

assume that the duration of the DPCP is exponentially distributed with parameter λ. At the

end of the DPCP a cancer is clinically detected, whereas during the DPCP a cancer can be

detected by breast cancer screening.

A screening programme consisting of four annual screening rounds is simulated. The

sensitivity of the screening test is denoted with ϕ. In each microsimulation run 50,000

individual life histories, including the disease processes and the impact of screening, are

simulated. The microsimulation model simulates detection rates at each of the screening

rounds and incidence rates of clinical disease in the period following a negative screening

test, for each of the screening rounds and for different intervals since the screening test.

The model will be applied to data from the first randomized trial for breast cancer

screening, viz. the HIP study (Day and Walter, 1984; Shapiro et al., 1974; van Oortmarssen et

al., 1990). In the HIP study approximately 62,000 women, who were aged between 40 and 64

at entry, were randomly allocated to either a study group or a control group. Only the study

group was offered annual breast cancer screening for four years. About 65 percent of the

study group (20,166 women) agreed to take part and were screened at least once (these

women all attended the first screening). We will use follow-up data until 5 years after the last

screening. The results from the HIP screening trial that will be used are described by Day and

Walter (1984), and consists of 4 detection rates and 14 incidence rates of interval cancers

occurring after a previous negative test result.



9

The parameters J, λ and ϕ will be estimated from the observed data set through

minimization of a chi-square goodness-of-fit test statistic. The simulation response function is

given by

∑
=

−=
18

1

2 ),,()),,(),,((),,(
i

iii JEJEJOJF ϕλϕλϕλϕλ

where iO  is the observed number of cancers during screening round or interval i and iE  is the

number of simulated cancers during screening round or interval i, 181,...,i = . The true

optimal parameters of the model for the HIP data were derived using the objective function

∑
=

−=
18

1

2 ),,()),,(),,((),,(
i

iii JAJAJOJf ϕλϕλϕλϕλ

where iA  is the number of cancers during screening round or interval i, 181,...,i = , as

predicted by the analytical implementation of the breast cancer screening model (Day and

Walter, 1984). We determined the optimal parameters ),,( *** ϕλJ  of the model applied to

the HIP data set by extensive enumeration (using the stepsizes 510 −  for J , 410 −  for λ and
510 −  forϕ ) of ),,( ϕλJf :

13.4696)8760.0 , 620.0 , 0021.0(),,( *** ≈= fJf ϕλ .

Starting values, constraints and initial stepsizes for the parameters J, λ and ϕ that were used

for the minimization of the goodness-of-fit test statistic are given in Table 1.

3.2 The test functions

In addition to the HIP screening model we test randomized versions of 18 deterministic

unconstrained nonlinear minimization problems that were suggested by Moré et al (1981). In

their paper, the starting points that are used in this study, and most of the optimal solutions of

the test problems are given. The test functions can also be found in the NETLIB collection

(http://www.netlib.org/uncon/). In case the dimensions of the test functions can be varied, we

use the same dimensions as Barton and Ivey (1996). In Table 2 the dimensions, the optimal

solutions as well as the starting points used in the optimization of the 18 test functions are

given. For each test function we use initial stepsizes )1,...,1(},...,{ 1 =ncc .

Following Barton and Ivey we make the 18 test functions stochastic by adding a standard

normal distributed random variable truncated to ±3. Independent random number streams are

used for each optimization run.
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4 Experiments and statistical analysis

For both the microsimulation model and each of the test functions, we performed twenty

optimization runs with each optimization algorithm. For the test functions, optimization runs

were terminated after 5000 function evaluations for both the NMSM algorithms and the RSM

algorithms (Barton, 1987). The optimization of the microsimulation model was terminated

after 2000 function evaluations, since the number of parameters is low and the evaluation of

the objective function is rather time-consuming compared to the evaluation of the test

functions. In all cases the runs were long enough for the optimization algorithms to stabilize

on some value.

For comparing the six algorithms, the observed best parameter values optx  of an

optimization run as well as the corresponding value of the simulation response function need

to be specified. For the NMSM algorithms optx  is given by the best vertex of the last

complete simplex, and the corresponding value of the simulation response function is given

by )( optF x  as obtained during the optimization run. For the RSM algorithms, optx  is given

by the center point of the last subregion for which the objective function has been evaluated

four times in the center point. The corresponding value of the simulation response function

)( optF x is given by the average value of these four evaluations.

To evaluate the accuracy and reliability of an optimization run, we define the error of an

optimization run as the difference between the expected simulation response function value

)( *xf  in the true optimal point *x  and the expected simulation response function value

)( optf x  in the observed best point of the run:

)()( *xx ff opt −=ε .

For each algorithm }4,3,2,1,2,1{  , RSMRSMRSMRSMNMSMNMSMii ∈ , the

errors 20,...,1,, =jjiε  resulting from the twenty optimization runs are mutually independent.

We assume that for each algorithm the twenty errors come from the same continuous

distribution. However, as can be seen in the next section, the distributions for the six

algorithms can be different.

For both the microsimulation model and for each of the test functions, we compare the

reliability of the six algorithms by looking at the variance of the errors.

The accuracy of the six algorithms is compared by using nonparametric tests to determine

if there is any stochastic difference between the algorithms (Hollander and Wolfe, 1973),
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using a 5% significance level. For comparison of the NMSM algorithms with the RSM

algorithms we pooled the errors from the two NMSM algorithms as well as the errors from

the four RSM algorithms, which results in two sets of errors:

1,...,20j NMSM2,NMSM1,i, , ==jiε  and 1,...,20jRSM4,RSM1,...,i, , ==jiε .

Letting ( )[ ]21)( −<=∆ RSMNMSMP εε  we test the hypothesis 0:H 0 =∆ , i.e. there is no

stochastic difference between the two sets of algorithms, by using the Wilcoxon rank sum

test. We also used this test in a similar way for the mutual comparison of the two NMSM

algorithms.

For comparison of the four RSM algorithms we use the Kruskal-Wallis test. Here, the null

hypothesis that the errors of the four algorithms are stochastically equal is tested against the

alternative hypothesis that at least one of the algorithms performs stochastically different. In

case of stochastic difference between the RSM algorithms, algorithms RSM2, RSM3 and

RSM4 are compared to the basic algorithm RSM1 by using distribution-free multiple

comparisons based on the Kruskal-Wallis test.

We also consider the efficiency of the optimization algorithms by looking at the number

of function evaluations needed for the best point of an iteration to come within a certain

distance of the observed optimum. We define the following measure for each iteration

Mii ,...,1, = (Barton, 1984):

)()(
)()(

1

1

opt

i
i FF

FF
G

xx
xx

−
−=

Here M is the total number of iterations performed in the optimization run. For the NMSM

algorithms )( iF x  is given by the simulation response function value in the best vertex of the

simplex in iteration i. For the RSM algorithms, )( iF x  is given by the average of the four

simulation response function values in the center point of the subregion used in iteration i.

Since )()( 1 optFF xx −  is the gap between the observed starting value of the simulation

response function and the simulation response function value in the observed best point of the

run, iG  describes the reduction of this gap that is achieved after i iterations of this

optimization run. It should be noted that due to noise it is possible that ]1,0[∉iG  for some

iteration i. Moreover, we have 01 =G  and 1=MG . For each optimization run we consider

the first iteration for which iG  exceeds a predefined percentage ]1,0[∈θ . To compare the

efficiency of the six algorithms, we define θS  as the cumulative number of evaluations

performed up to and including this iteration. We consider the values 95.0=θ  and 99.0=θ ,
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which gives for each algorithm twenty values for 20,...,1,,95.0 =iS i  and twenty values for

20,...,1,,99.0 =iS i .

5 Evaluation of the results

5.1 Results for the microsimulation model

In Figure 1 the errors resulting from 20 optimization runs for the six algorithms are

shown. The variance of the errors across the algorithms NMSM1 and NMSM2 is much higher

than the variance across the RSM algorithms, which make the latter more reliable. In many

cases the algorithms NMSM1 and NMSM2 performed less accurately than the RSM

algorithms. The averages and standard deviations of the errors resulting from the optimization

of the microsimulation model are given in Table 3. On average the algorithms RSM2 and

RSM4 have the smallest error, and all the RSM algorithms outperform the two NMSM

algorithms. Indeed, from the Wilcoxon test we conclude that the RSM algorithms perform

stochastically better and thus are more accurate than the NMSM algorithms. Moreover, we

find that the modified NMSM algorithm performs stochastically better than the original

NMSM algorithm, which is consistent with the findings of Barton and Ivey. The Kruskal-

Wallis test indicates that there is stochastic difference between the RSM algorithms. We find

that algorithms RSM2 and RSM4 perform stochastically better than the basic algorithm

RSM1. Compared to the basic algorithm RSM1, these algorithms differ in the way the

stepsizes are decreased during an optimization run.

The first-order polynomial that was fitted in the first subregion of an optimization run was

not accepted in all the optimization runs done with all four RSM algorithms. This was the

case for both the 2.5% significance level (RSM3) and the 5% significance level (RSM1,

RSM2, RSM4), which explains why there is no stochastic difference between the basic

algorithm RSM1 and algorithm RSM3.

Figures 2a - 2f show the observed best function value in an iteration as function of the

cumulative number of evaluations performed up to and including this iteration for each of the

20 optimization runs and for each of the six algorithms. The averages and standard deviations

of the efficiency measures 95.0S  and 99.0S  are given in Table 4. On average algorithm

NMSM2 converges much faster to the observed optimum than algorithm NMSM1. For

algorithm NMSM1 the variance of 95.0S  and 99.0S  is quite large, which is explained by the
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many cases in which the observed best function value gets stuck during the optimization run

but improves in one of the last iterations of the run, as can be seen in Figure 2a. Furthermore,

on average the NMSM algorithms are faster than the RSM algorithms, and RSM1 is the

fastest RSM algorithm.

We conclude that for the microsimulation model the modification in the original NMSM

algorithm both leads to higher accuracy, higher reliability and more efficiency. The RSM

algorithms perform more accurately and reliable than the NMSM algorithms. However, the

RSM algorithms are considerably less efficient. The modified RSM algorithms RSM2 and

RSM4 perform more accurately than RSM1, at the cost of lower efficiency.

5.2 Results for the test functions

In Table 5 the averages and standard deviations of the errors resulting from the

optimization of the test functions are given, and Table 6 shows the statistical results for the

six algorithms and for the 18 test functions. With respect to the reliability of the algorithms

we find that the results are mixed: for some test functions the errors resulting from the NMSM

algorithms are much more variable than the errors resulting from the RSM algorithms, but the

reverse can also be found. We find that for most test functions the modified NMSM algorithm

is more reliable than the original NMSM algorithm. We find that for 11 test functions the

NMSM algorithms performed clearly more accurately than the RSM algorithms, whereas for

6 test functions the RSM algorithms performed more accurately than the NMSM algorithms.

For some test functions the RSM algorithms performed very bad, as can be seen in Table 5.

Like Barton and Ivey we found that the modified NMSM algorithm has a better performance

than the original algorithm NMSM1, although this difference was not statistically significant

for some test functions. For eight test functions we found a stochastic difference between the

RSM functions. We find that in most cases algorithm RSM1 performs stochastically better

than the algorithms RSM2 and RSM4, whereas no difference is found between RSM1 and

RSM3. Again we find for all RSM algorithms that the first-order polynomial that was fitted in

the first subregion in most cases was not accepted.

The averages and standard deviations of the efficiency measures 95.0S  and 99.0S  are given

in Tables 7 and 8. Again it can be seen that on average algorithm NMSM2 converges faster to

its observed optimum than algorithm NMSM1, and that both NMSM algorithms converge

faster than the RSM algorithms. Moreover, for some test functions and algorithms the

variances of 95.0S  and 99.0S  are quite large.

We conclude that also for the test functions the modification in the original NMSM

algorithm both leads to higher accuracy, higher reliability and more efficiency. We did not
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find an algorithm that outperformed the other algorithms for all the test functions with regard

to accuracy or reliability. However, we did find that the RSM algorithms are considerably less

efficient than the NMSM algorithms.

6 Conclusions and Further Research

The growing demand for complex microsimulation models requires continuous efforts to

devise and test robust and efficient optimization methods. Barton and Ivey (1996)

investigated NMSM for its use in simulation optimization. They reported that a modified

NMSM algorithm performed better than the original method. However, the performance of

this method in comparison to alternative methods such as RSM still had to be established.

This study is the first attempt to compare the performance of NMSM and RSM using a

standard set of difficult test functions, and a representative (albeit simple) microsimulation

model.

Both with respect to a microsimulation version of a cancer screening model and a set of

test functions we found that the modified NMSM algorithm performed more accurately and

reliable than its original. In contrast to the findings of Barton and Ivey (1996), we found that

this modified algorithm performed more efficiently than the original algorithm. However, this

is probably caused by the use of different criterions for ending the optimization runs.

With respect to the microsimulation model we found that the tested RSM algorithms

performed more accurately than the two NMSM algorithms, although the NMSM algorithms

did show rather accurate results in some optimization runs. The reliability of the NMSM

algorithms is rather low compared to the RSM algorithms. Using multistart when optimizing

with a NMSM algorithm in combination with increasing the simulation size to decrease the

noise coming from the microsimulation model, could probably prevent highly inaccurate

optimization results and increase the reliability.

No consistent results were found for the test functions. None of the algorithms performed

satisfactorily on all functions with respect to accuracy, although the NMSM algorithms often

outperformed the RSM algorithms. The test functions are difficult and show rather erratic

behavior. For some of the test functions, the observed best function value gets stuck far away

from the real optimum when using the RSM algorithms. The NMSM algorithms seem to be

better suited for this erratic behavior.

For both the microsimulation model and the test functions, the RSM algorithms were

clearly less efficient than the NMSM algorithms. The slower convergence of the RSM

algorithms is first of all caused by the large size of its designs. Since each point of the design
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induces a function evaluation, which in case of microsimulation can be very time consuming,

designs with fewer points, such as fractional factorial designs, could be more efficient.

Moreover, the first-order polynomial that was fitted during the first iteration of any RSM

algorithm was almost always rejected. This means that during an optimization run only

second-order polynomials are considered, without the possibility of returning to the first-order

phase. However, during this first-order phase large steps towards the optimum can be taken

due to the use of line search, whereas during the second-order phase only steps are being

made within a subregion. Therefore, it could be explored whether it is more efficient if in a

certain fixed number of subregions at the start of the optimization run only first-order

polynomials are fitted before going to the second-order phase, or if returning to the first-order

phase would be allowed.

In addition to considering possible improvements of the RSM and NMSM algorithms, the

question how these algorithms compare to other algorithms such as Stochastic Approximation

and Simultaneous Perturbation Stochastic Approximation remains to be addressed.
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Table 1 Starting values, stepsizes and constraints for the microsimulation model parameters.

Parameter Start Lower limit Upper limit Stepsize

Incidence rate J 0.002 0.00002 0.02 0.0001

Duration parameter λ
(mean duration = 1/λ)

0.6 0 1 0.01

Sensitivity ϕ 0.6 0 1 0.01
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Table 2 The 18 test functions used for testing the NMSM and RSM algorithms.

Test function Dimension Starting point Optimal value

1. Helical valley function 3 (-1,0,0) 0

2. Biggs Exp6 function 6 (1,2,1,1,1,1) 0

3. Gaussian function 3 (0.4,1,0) 1.12793… e-8

4. Powell badly scaled function 2 (0,1) 0

5. Box 3-dimensional function 3 (0,10,20) 0

6. Variably dimensioned
function

4 ( 0,41,21,43 ) 0

7. Watson function 9 (0,… ,0) 1.39976… e-6

8. Penalty function I 8 (1,2,3,4,5,6,7,8) 5.42152… e-5*

9. Penalty function II 8 ( 21,...,21 ) 1.23335… e-4*

10. Brown badly scaled function 2 (1,1) 0

11. Brown and Dennis function 4 (25,5,-5,-1) 85822.2…

12. Gulf research and
development function

3 (5,2.5,0.15) 0

13. Trigonometric function 8 ( 81,...,81 ) 0

14. Extended Rosenbrock
function

4 (-1.2,1,-1.2,1) 0

15. Extended Powell function 8 (3,-1,0,1,3,-1,0,1) 0

16. Beale function 2 (1,1) 0

17. Wood function 4 (-3,-1,-3,-1) 0

18. Chebyquad function 8 ( 98,...,91 ) 3.51687… e-3

*) This optimum was found by using the NEOS server
    (http://www-unix.mcs.anl.gov/neos/Server). We used the NMTR routine
    (a trust region version of Newton's method).
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Table 3 Averages and standard deviations of the errors resulting from the optimization of the
microsimulation model. An error is defined as the difference between the expected simulation
response function value in the true optimal point and the expected simulation response
function value in the observed best point of an optimization run.

Optimization
Algorithm NMSM1 NMSM2 RSM1 RSM2 RSM3 RSM4

Average error
(st.dev. error) 6.54 (4.80) 3.27 (4.05) 0.57 (0.23) 0.26 (0.16) 0.72 (0.29) 0.20 (0.14)
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Table 4 Averages and standard deviations of the efficiency measures 95.0S  and 99.0S  (as
defined in Section 4) of the optimization of the microsimulation model.

Optimization
Algorithm

Average of 95.0S
(standard deviation of 95.0S )

Average of 99.0S
(standard deviation of 99.0S )

NMSM1 198   (262) 612   (574)

NMSM2   49   (20)   67   (32)

RSM1 218   (19) 329   (122)

RSM2 253   (38) 531   (218)

RSM3 230   (34) 328   (211)

RSM4 280   (84) 491   (251)



22

Table 5 Averages and standard deviations of the errors resulting from the optimization of the
test functions. An error is defined as the difference between the expected simulation response
function value in the true optimal point and the expected simulation response function value
in the observed best point of an optimization run.

Optimization Algorithm

Test
Function NMSM1 NMSM2 RSM1 RSM2 RSM3 RSM4

1. 0.58
(0.29)

0.48
(0.34)

0.19
(0.10)

21.48
(10.68)

0.23
(0.14)

13.73
(21.75)

2. 0.52
(0.17)

0.42
(0.09)

1.00
(0.52)

1.19
(0.20)

1.00
(0.47)

1.27
(0.22)

3. 0.21
(0.20)

0.18
(0.16)

0.33
(0.21)

0.47
(0.15)

0.31
(0.21)

0.53
(0.12)

4. 0.52
(0.68)

0.27
(0.19)

1.13
(0.23)

1.12
(0.17)

1.10
(0.18)

1.10
(0.11)

5. 0.35
(0.36)

0.22
(0.15)

0.15
(0.11)

0.17
(0.10)

0.20
(0.24)

0.10
(0.11)

6. 0.28
(0.32)

0.19
(0.16)

6.88
(0.00)

6.88
(0.00)

6.88
(0.00)

6.88
(0.00)

7. 0.48
(0.22)

0.23
(0.14)

143.77
(1.94)

143.42
(1.78)

144.20
(2.01)

144.22
(2.04)

8. 0.58
(0.46)

0.35
(0.32)

0.01
(0.01)

0.06
(0.00)

0.02
(0.02)

0.01
(0.01)

9. 0.16
(0.15)

0.12
(0.10)

0.18
(0.10)

0.78
(0.09)

0.18
(0.10)

0.20
(0.10)

10. 0.96
(0.58)

0.75
(0.56)

9.99E+11
(0.00)

9.99E+11
(0.00)

9.99E+11
(0.00)

9.99E+11
(0.00)

11. 0.36
(0.24)

0.25
(0.17)

0.29
(0.20)

0.21
(0.13)

0.21
(0.11)

0.21
(0.16)

12. 6.92
(0.43)

6.73
(0.16)

6.65
(0.14)

6.69
(0.25)

6.66
(0.12)

6.37
(0.24)

13. 0.2199
(0.18)

0.1520
(0.07)

0.7285
(0.11)

0.73
(0.12)

0.70
(0.10)

0.69
(0.15)

14. 9.05
(0.30)

8.85
(0.26)

120.99
(24.74)

131.99
(33.19)

113.65
(30.84)

126.57
(29.72)

15. 9.68
(1.40)

8.79
(1.64)

0.49
(0.17)

0.75
(0.09)

0.40
(0.11)

0.30
(0.09)

16. 0.75
(0.60)

0.41
(0.41)

0.42
(0.33)

0.20
(0.22)

0.28
(0.27)

0.12
(0.12)

17. 8.36
(0.35)

8.12
(0.19)

95.81
(22.43)

89.01
(16.27)

87.06
(15.03)

84.24
(14.47)

18. 0.57
(0.23)

0.30
(0.12)

0.21
(0.04)

3.55
(0.00)

0.22
(0.05)

0.27
(0.06)
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Table 6 Results from the comparison of the six algorithms using nonparametric statistical
methods

• NMSM/RSM: Comparison NMSM and RSM algorithms: preferred method
• NMSM: Comparison algorithms NMSM1 and NMSM2: preferred method
• RSM: Comparison RSM algorithms: do the four algorithms perform stochastically different?
• RSM2/RSM1: Comparison RSM1 and RSM2: preferred method
• RSM3/RSM1: Comparison RSM1 and RSM3: preferred method
• RSM4/RSM1: Comparison RSM1 and RSM4: preferred method

N.B. '---' means that there was no preferred method, 'n/a' means that the nonparametric statistical method was not
applicable.

Test
function

NMSM /
RSM NMSM RSM RSM2 /

RSM1
RSM3 /
RSM1

RSM4 /
RSM1

1. --- --- YES RSM1 --- RSM1

2. NM NMSM2 --- n/a n/a n/a

3. NM --- YES --- --- ---

4. NM --- --- n/a n/a n/a

5. RSM --- --- n/a n/a n/a

6. NM --- --- n/a n/a n/a

7. NM NMSM2 --- n/a n/a n/a

8. RSM NMSM2 YES RSM1 --- ---

9. NM --- YES RSM1 --- ---

10. NM --- --- n/a n/a n/a

11. RSM --- --- n/a n/a n/a

12. RSM --- YES --- --- RSM4

13. NM --- --- n/a n/a n/a

14. NM NMSM2 --- n/a n/a n/a

15. RSM NMSM2 YES RSM1 --- RSM4

16. RSM NMSM2 YES RSM2 --- RSM4

17. NM NMSM2 --- n/a n/a n/a

18. NM NMSM2 YES RSM1 --- RSM1
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Table 7 Averages and standard deviations of the efficiency measure 95.0S  (as defined in
Section 4) resulting from the optimization of the test functions.

Optimization Algorithm

Test
function NMSM1 NMSM2 RSM1 RSM2 RSM3 RSM4

1. 9 (0) 9 (0) 36 (0) 36 (0) 36 (0) 36 (0)

2. 715 (653) 299 (1107) 396 (504) 866 (1201) 1352 (1634) 754 (1092)

3. 411 (351) 144 (308) 120 (94) 276 (473) 263 (480) 97 (82)

4. 702 (893) 310 (1105) 212 (210) 211 (469) 148 (151) 188 (262)

5. 17 (0) 17 (0) 216 (0) 216 (0) 216 (0) 216 (0)

6. 7 (0) 7 (0) 56 (0) 56 (0) 56 (0) 56 (0)

7. 250 (215) 105 (76) 2670 (755) 2590 (818) 2884 (834) 2884 (873)

8. 111 (0) 111 (0) 1932 (0) 1932 (0) 1932 (0) 1932 (0)

9. 69 (4) 64 (5) 842 (62) 552 (0) 869 (101) 552 (0)

10. 157 (0) 157 (0) 4764 (0) 4764 (0) 4764 (0) 4764 (0)

11. 65 (0) 65 (0) 448 (0) 448 (0) 448 (0) 448 (0)

12. 218 (162) 22 (16) 93 (29) 316 (213) 91 (39) 238 (266)

13. 277 (210) 379 (1119) 912 (1055) 802 (992) 593 (101) 1259 (1400)

14. 43 (10) 32 (5) 84 (0) 84 (0) 83 (6) 84 (0)

15. 44 (3) 45 (3) 1587 (123) 2484 (0) 1559 (135) 1656 (0)

16. 102 (74) 19 (18) 117 (37) 108 (33) 203 (127) 167 (70)

17. 13 (0) 13 (0) 84 (0) 84 (0) 84 (0) 84 (0)

18. 384 (297) 128 (232) 1466 (1346) 1727 (802) 1549 (1350) 1742 (1833)



25

Table 8 Averages and standard deviations of the efficiency measure 99.0S  (as defined in
Section 4) resulting from the optimization of the test functions.

Optimization Algorithm

Test
function NMSM1 NMSM2 RSM1 RSM2 RSM3 RSM4

1. 21 (26) 20 (1) 108 (0) 50 (24) 108 (0) 82 (20)

2. 821 (666) 302 (1107) 424 (546) 922 (1202) 1412 (1665) 942 (1396)

3. 617 (702) 154 (315) 130 (115) 302 (555) 419 (893) 97 (82)

4. 844 (859) 319 (1104) 232 (279) 211 (469) 153 (156) 210 (267)

5. 29 (3) 27 (3) 252 (0) 252 (0) 252 (0) 252 (0)

6. 34 (16) 13 (7) 84 (0) 84 (0) 84 (0) 84 (0)

7. 670 (842) 158 (207) 4073 (748) 4000 (683) 4199 (749) 4226 (741)

8. 128 (0) 128 (0) 2208 (0) 2208 (0) 2208 (0) 2208 (0)

9. 150 (45) 98 (34) 1187 (130) 662 (208) 1242 (385) 690 (443)

10. 161 (0) 161 (0) 4956 (0) 4956 (0) 4956 (0) 4956 (0)

11. 76 (0) 76 (0) 644 (0) 644 (0) 644 (0) 644 (0)

12. 677 (647) 28 (27) 95 (32) 356 (215) 93 (38) 469 (751)

13. 432 (401) 388 (1121) 912 (1055) 802 (992) 593 (101) 1259 (1400)

14. 217 (238) 58 (30) 84 (0) 84 (0) 83 (6) 84 (0)

15. 85 (11) 94 (16) 3119 (221) 4181 (101) 3119 (239) 3091 (212)

16. 393 (332) 30 (29) 129 (48) 126 (41) 346 (476) 205 (128)

17. 22 (0) 22 (0) 112 (0) 112 (0) 112 (0) 112 (0)

18. 467 (366) 177 (330) 1466 (1346) 1809 (825) 1744 (1549) 1742 (1833)
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Figure 1 Errors resulting from 20 optimization runs for the microsimulation model,

for each of the six optimization algorithms. An error is defined as the difference

between the expected simulation response function value in the true optimal point and

the expected simulation response function value in the observed best point of an

optimization run.
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Figures 2a - 2f Observed best function value in an iteration (as defined in Section 4)

as function of the cumulative number of evaluations performed up to and including

this iteration, resulting from 20 optimization runs of the microsimulation model with

each of the six algorithms.

These figures are available on request from the first author.


