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Abstract
When customers are classified into ordered categories, which are defined from the
outset, it may happen that the majority belongs to a single category. If a market
researcher is interested in the correlation between the classification and individual
characteristics, the natural question is whether one needs to collect data for all
customers in that particular category. We address this question for the ordered logit
model. We show that there is no need to consider all those customers. All that is
required is a simple modification of the log-likelihood, which is based on Bayes' rule.
We illustrate our proposed method on simulated data and on data concerning risk
profiles of customers of an investment bank.
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1. Introduction
For marketing purposes it is often of interest to classify customers into various
segments. For example, an investment firm, with access to a large database with
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information on characteristics of its customers and their past investment behavior,
may want to classify its customers according to risk profiles. Usually, these risk
profiles are defined from the outset as discrete categories. Assuming there are m such
categories, category 1 can contain the most risk-averse customers while categories 2
to m contain increasingly less risk-averse customers. The investment firm may now be
interested in examining possible correlations between the characteristics of a customer
and his or her classification into one of the risk profiles. As the variable to be
explained is an ordered and discrete variable, one usually has to rely on an ordered
regression model to summarize the correlations.

The database of an investment firm can be very large as it contains a host of
information on oftentimes all customers. On the other hand, it may well be that only a
few customers fall into one of the abovementioned categories. For example,
supposing that there are N customers and m = 3 categories with N1, N2 and N3
customers, N1 and N3 may be substantially outnumbered by N2. A natural question is
then whether one needs to include all N2 individuals in the analysis of the ordered
logit model. Indeed, if only a fraction of N2 will suffice, one would save much time
and effort, as not all data have to be collected, checked for errors, and stored. In this
paper, we address this question for the ordered logit model. We will show that there is
indeed no need to collect information on all N2 customers, and that only a fraction will
do. A modification of the likelihood function will give similar inference for both
cases, that is, both estimates refer to the same parameters. In practice they do not
differ substantially.

The outline of this paper is as follows. In Section 2, we briefly discuss some
essentials of the ordered logit model. In Section 3, we put forward the modification of
the log-likelihood, which allows for selective sampling from a large number of
individuals who all would be classified into the same category. In Section 4, we
evaluate our modification in a limited simulation experiment. In Section 5, we apply
our method to risk profiles data from a large Dutch investment bank. In Section 6, we
conclude with some remarks.

2. The ordered logit model

Consider the following dependent variable
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where j can be thought of as a risk profile class, such that j= 1 corresponds with
highly risk averse customers. Assume that there is a latent variable y*, which can be
modeled as
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that is, y* can be explained by k explanatory variables contained in x (where x does not
contain a column of ones for identification purposes). The logistic distribution with
mean 0 has the following pdf
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The individuals are classified into the m categories by the following rule:



3

*
1,

*
1-j,

1
*

1,

 if1

1,..,2for   if1

           if1

immi

jiji

ii

yy

mjyy

yy

<=
−=≤<=

≤=

−α
αα
α

           (4)

The thresholds αi must satisfy α1 < α2 < …  < αm-1. When we introduce α0 = -∞  and
αm = +∞ , customer i belongs to category j if , m, j ,y j

*
ij- …=≤< 11 αα . Combining

(1), (2) and (3), we obtain that
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where F denotes the cumulative density function of the logistic distribution. This
model in (5) is called the ordered logit model, see for example McKelvey and Zavoina
(1975) and McCullagh (1980) for some early applications.

The parameters of the model can be estimated using the maximum likelihood
technique. The likelihood function follows directly from equation (5), that is,
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The parameters are estimated by maximizing the log-likelihood, given by

[ ]∑ ∑ ′−−′−= −
i j

ijijij xFxFyL )()(lnln 1 βαβα            (7)

We use the Conjugate-Gradient numerical optimization algorithm to maximize the
log-likelihood. This technique is available in a Matlab toolbox by the Numerical
Algorithms Group Ltd. The method performs successive line minimizations along
conjugate directions. The algorithm uses the derivatives of the log likelihood. To save
notation, we write

)(

)(

ijij

ijij

xff

xFF

βα
βα
′−=
′−=

The derivatives are now given by

1,,1
ln

ln

,1,
1,

1,

1,

1,

−=
−

−
−

=
∂
∂

−
−

=
∂

∂

+
+

−

−

−

∑

∑ ∑

mk
FF

f
y

FF
f

y
L

x
FF

ff
yL

kiki

ik

i
ki

kiik

ik
ik

k

i j
i

jiij

ijji
ij

K
α

β
           (8)



4

Unrestricted optimization of the log-likelihood does not guarantee a feasible
solution. In fact, the estimated thresholds should obey the restriction α1 < α2 < …  <
αm-1. To make sure this restriction is satisfied we can make two adjustments. One
possibility is to introduce a penalty in the log-likelihood. When the restriction is not
satisfied we add a large negative value to the likelihood. This adjustment makes sure
that an infeasible parameter configuration cannot maximize the log-likelihood. The
second possibility, which seems more convenient, amounts to using a parameter
transformation. That is, we transform the parameters of the threshold in such a way
that the restriction is always satisfied. Instead of maximizing over α we maximize the
likelihood over µ, where
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Note that this transformation implies that α1 ≤ α2 ≤ …  ≤ αm-1. When we maximize
over µ instead of α, we need the derivatives of the log-likelihood with respect to µ.
The derivatives in (8) have to be replaced with
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The variance of the maximum likelihood estimators can be estimated by the inverse of
the information matrix
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Estimates of this variance can be obtained using the analytical second order
derivatives, but we choose to calculate the derivatives numerically. The numerical
second derivatives are obtained from the Taylor expansion of the first derivatives, that
is,
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The application of this formula will give a vector of derivatives. To obtain the full
matrix of second derivatives, the above formula should be applied to all parameters.
When all vectors of derivatives are stacked, an estimate of the second order
derivatives (Hessian) is obtained. Although the likelihood is a continuous
differentiable function, the estimated Hessian is not always symmetric. This is due to
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round-off errors and the approximation of the derivatives. A symmetric estimate can
be obtained by applying

)(2
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where H denotes the Hessian.

To obtain accurate estimates from the optimization algorithm it usually helps to
standardize the regressors. The mean is subtracted from the regressors and then one
divides by the standard deviation. To obtain the estimates of the original coefficients,
the following transformations have to be made
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In the next section, we examine how we have to modify the log-likelihood to obtain
proper estimates in case we reduce the sample.

3. Selective sampling and the ordered logit model

When a market researcher makes an endogenous selection of the available
observations, the estimation method needs to be adjusted. This adjustment follows
from an application of the theorem of Bayes, see also Cramer, Franses and Slagter
(1999) for related results for a censored regression model. Recall that when we
assume an ordered logit model, the true probabilities in the population for customer i
and category j are

)()()|1( 1 ijijiijij xFxFxyPP βαβα ′−−′−=== −           (15)

When the full sample is a random sample from the population with sampling fraction
α, the probabilities that individual i is in the observed sample and is a member of
class 1, 2, to m are then
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These probabilities do not sum to 1 because it is also possible that an individual is not
present in the sample, which happens with probability (1-α). If however the number
of observations in class j is reduced by γj, where the deleted observations are selected
at random, these probabilities become
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Of course, when all observations are kept, then γj = 1. To simplify notation, we collect
the reduction factors in the vector Γ and the true population probabilities Pij in the
matrix Pi, that is
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The probability of observing yij = 1 in the reduced sample is now given by
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When we apply Bayes’ theorem directly we obtain the same result, that is
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With these adjusted probabilities, we can construct the new likelihood (and log-
likelihood) function as follows:
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To optimize the likelihood we need the derivatives of the log-likelihood to the
parameters, where it should be noted that the constants in Γ are known. Writing θ for
β or αk, we have

∑ ∑


















Γ′
∂
∂Γ′−Γ′

∂
∂

=
∂

∂
i j iij

ij
i

i
ij

ij PP

P
P

P
P

yL θθ
θ

ln                                   (21)

with

[ ]



 =

=

−=′−−′−=
∂
∂

−=′−−′−−=
∂
∂

−=′−−′−=

−−−−

−−

−−

otherwise0
if1

)()(

)()()(

)()(

,

1,,1,,1,1,

,1,1

1,1

kl

ffxfxf
P

xffxxfxf
P

FFxFxFP

kl

jikjjikjijkjijkj
k

ij

ijijiiijij
ij

jiijijijij

δ

δδβαδβαδ
α

βαβα
β

βαβα

          (22)



7

When γj =1 for all j, no observations are deleted, and in that case we have
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This matches exactly with the derivative in the ordered logit model without selective
sampling.

Maximizing the log-likelihood in (20) gives estimates of the relevant parameters. It
is difficult to derive any exact results for the effect of reducing the samples.
Therefore, we analyze our method for simulated data in the next section.

4. Simulation results

To evaluate the practical usefulness of our method which involves a correction of the
likelihood function, we consider the following model to generate realizations of an
ordered logit process:
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Model (24) implies that approximately 77% of the individuals can be classified into
category II, where categories I and III both contain approximately 11.5% of the
observations. Hence, in a random sample the individuals in category II outnumber
those in the other two groups. We use different factors to reduce the observations for
group II to investigate the effect of this reduction on the precision of the parameter
estimates. The estimates based on the full sample are compared to naïve estimates,
which are calculated using the standard method based on the reduced sample, and to
estimates obtained from the adjusted likelihood, also based on the reduced sample.

     The full sample consists of 5000 observations and we generate 100 replications.
Before we analyze all parameters, we present some typical results in Figure 1. Figure
1 depicts the average estimates of the second threshold parameter over 100
replications for each method and reduction factor. The dashed line gives the average
estimate for the naïve method. The solid lines give the estimates based on the full
sample and the estimates based on the adjusted method, which are of course based on
the reduced sample. It is quite clear that the estimate of the second threshold is biased
for the naïve method. In contrast, the adjusted method does provide an unbiased
estimate. Notice that we would expect the line for the full sample to be a straight line.
However, for every reduction factor we generate new data, and therefore the estimates
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based on the full sample also differ. Naturally, when the number of replications or the
number of observations is very large, these differences will become very small.

     Table 1 gives the estimates of all parameters for all reduction factors. It is clear
that the estimates of the thresholds obtained from the naïve method are highly biased,
although the regressor coefficient estimates (slopes) are all estimated quite close to
the true values. As expected, our adjusted method gives unbiased estimates, while also
the slopes are closer to the true values than estimates by the naïve method.

      However, we have to be careful in drawing general conclusions from one
simulation experiment. Therefore, we repeat our simulation study for the case with
thresholds equal to 5 and 10 and we reduce the number of observations in the first
category (which contains roughly 67% of the observations). Table 2 shows that, when
we reduce the observations in the first category, almost all coefficients are incorrectly
estimated by the naïve method. The thresholds are again affected the most, with the
first threshold of the naïve method often taking values smaller than 4 whereas the true
value is 5. For this data generating process, the bias of the estimated slopes is larger
than for the previous process. Clearly, the adjusted method outperforms the naïve
method.

     It is also of interest to investigate the effect of the reduction on the absolute errors
of the estimates. For this purpose, we can use the mean squared error (MSE) to
compare the results. The MSE measures the average squared deviation of the estimate
from the true value, that is,
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Upon using this MSE we can calculate an empirical confidence interval around the
estimates, with the width of this interval measuring the accuracy of the estimates. We
assume that the center of the interval is the true parameter value. So the intervals are
based on the assumption of unbiasedness of the estimates.

     We conclude from Table 3 that the confidence intervals, for the method based on
the adjusted log-likelihood, are slightly wider than the intervals based on analyzing
the full sample. This is of course due to the fact that the adjusted method uses less
data. The intervals for the slopes do not differ that much between the naïve and the
adjusted method, but the intervals for the adjusted method are in general less wide.
For the second model (see Table 4) almost the same conclusions can be drawn. The
difference between the performance of the naïve and the adjusted method is even
larger. The intervals for the estimates of the first two slope coefficients with the naïve
method are often more than two times as large as the intervals based on the full
sample. Using the adjusted method the intervals for all parameters are less than 1.5
times as large. Additionally, these last intervals compare favorably with the intervals
one would obtain if the rule of the square root of the number of observations would
apply.

      Based on the outcomes of this limited simulation experiment it is difficult to find
general rules for the most appropriate reduction factor. The adjusted method will give
good estimates for a wide range of reduction factors. As in an ordered logit model all
observations contain an equal amount of information, we might want to use the
general rule of equally sized groups.
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5. An application to risk profiles

In this section we illustrate the method based on the adjusted log-likelihood for real-
life data. Our potential data set consists of 41582 customers, who can be classified as
having a low, middle or high risk profile. From Table 5, one can see that most  (that
is, almost 98%) individuals are classified into the middle category and that only about
850 individuals are classified as having low or high risk profiles. For each of these
customers we have information on 9 explanatory variables, where we should mention
that these have not been used to determine the classification. These variables appear
on the left–hand side of Table 6. Due to confidentiality reasons, we cannot provide
further details on the variables, except that they can concern the current state of a
customer (for example, number of type I funds) or the behaviour in the recent past
(for example, number of type I transactions).
      The estimation results for an ordered logit model, where we consider various
reduction factors for the observations concerning the middle category, are reported in
Table 6. From this table, we can conclude that considering 10% or 20% of the 40772
observations yields approximately the same parameter estimates (and not very
different standard errors) as in case we analyze the model for all individuals. This is
even more clear from the relative parameter values given in Table 7. Only for the
variable "Number of type III transactions" (which concern transactions on a high risk
type of financial product), we observe that substantial differences appear. In Table 8,
we demonstrate that this is most likely due to aberrant observations in the middle
category. A few individuals in this category have exceptionally large values for this
variable.

.

6. Concluding remarks

We proposed a simple modification to the log-likelihood of an ordered logit model,
which enables a market researcher to discard a large number of observations from a
category containing substantially more observations than other categories do. Through
Monte Carlo simulations and an analysis of real-life data, we showed that our method
results in unbiased estimates and that the estimated standard deviations do not
increase to a large extent. Our method is useful for practical purposes as one may save
on collecting, checking and storing data.
     Our empirical analysis highlighted that outliers can have a large effect on the final
results. As expected, such observations become less influential in a very large data
set, and their effect becomes more pronounced if the market researcher is unlucky
enough to select these observations for the reduced sample. Hence, a further topic for
research is to consider methods that can help to prevent such unfortunate selections.
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Reduction Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted
0.1 -15.053 -8.391 -15.076 15.033 8.390 15.076 4.007 4.094 4.021 2.005 2.048 2.011 -1.010 -1.033 -1.014
0.2 -15.000 -10.296 -15.037 15.029 10.328 15.069 4.011 4.053 4.026 1.999 2.025 2.011 -1.020 -1.023 -1.016
0.3 -15.007 -11.460 -15.025 15.020 11.483 15.048 4.017 4.059 4.044 2.001 2.015 2.008 -1.013 -1.033 -1.030
0.4 -14.974 -12.290 -15.011 14.977 12.281 15.002 3.987 4.010 4.002 2.002 2.015 2.010 -1.029 -1.032 -1.029
0.5 -15.129 -13.097 -15.160 15.097 13.039 15.102 4.022 4.036 4.031 2.016 2.023 2.021 -1.014 -1.013 -1.012
0.6 -15.171 -13.655 -15.175 15.119 13.603 15.123 4.039 4.042 4.039 2.020 2.023 2.021 -0.999 -0.998 -0.997
0.7 -14.940 -13.877 -14.940 14.929 13.874 14.937 3.980 3.985 3.983 1.991 1.992 1.991 -0.995 -0.992 -0.992
0.8 -15.048 -14.378 -15.042 15.025 14.361 15.026 4.009 4.011 4.010 2.010 2.011 2.011 -1.010 -1.005 -1.005
0.9 -15.009 -14.703 -15.017 14.996 14.685 15.000 4.001 4.006 4.005 1.995 1.997 1.997 -0.980 -0.981 -0.981

1 -14.991 -14.991 -14.991 14.992 14.992 14.992 3.998 3.998 3.998 2.003 2.003 2.003 -1.013 -1.013 -1.013

α1 (-15) α2 (15) β1 (4) β2 (2) β3 (-1)

Table 1: Average parameter estimates with the true parameter value in parentheses

Reduction Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted
0.1 4.990 -1.936 5.013 9.995 7.190 10.006 3.993 3.436 4.001 2.004 1.719 2.002 -1.027 -0.858 -0.991
0.2 4.985 0.083 4.990 9.982 7.842 9.992 3.997 3.616 3.999 2.000 1.811 2.004 -1.019 -0.924 -1.020
0.3 5.015 1.318 5.016 10.051 8.346 10.043 4.010 3.728 4.008 2.009 1.865 2.004 -0.993 -0.920 -0.992
0.4 4.982 2.158 4.980 9.987 8.650 9.991 3.991 3.787 3.992 2.002 1.903 2.006 -0.995 -0.933 -0.983
0.5 5.023 2.883 5.025 10.065 9.039 10.080 4.032 3.885 4.038 2.018 1.949 2.026 -0.996 -0.967 -1.004
0.6 4.998 3.414 4.995 10.033 9.259 10.045 3.996 3.900 4.009 2.000 1.948 2.003 -0.982 -0.954 -0.981
0.7 5.038 3.939 5.045 10.037 9.483 10.047 4.007 3.935 4.010 2.010 1.975 2.013 -1.013 -0.994 -1.012
0.8 4.999 4.307 5.000 10.009 9.657 10.014 4.019 3.979 4.024 2.008 1.986 2.008 -0.998 -0.992 -1.003
0.9 4.991 4.661 4.989 9.992 9.820 9.992 3.997 3.977 3.998 2.000 1.990 2.001 -1.011 -1.005 -1.010

1 5.011 5.011 5.011 10.021 10.021 10.021 4.007 4.007 4.007 2.007 2.007 2.007 -1.001 -1.001 -1.001

β3 (-1)α1 (5) α2 (10) β1 (4) β2 (2)

Table 2: Parameter estimates when reducing first group
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Reduction Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted
0.1 0.838 13.255 1.069 0.896 13.261 1.125 0.276 0.447 0.428 0.123 0.213 0.202 0.263 0.479 0.467
0.2 0.798 9.457 0.994 0.807 9.397 1.032 0.252 0.369 0.365 0.121 0.188 0.186 0.289 0.436 0.433
0.3 0.786 7.137 0.919 0.780 7.089 0.900 0.241 0.351 0.346 0.131 0.145 0.144 0.273 0.359 0.357
0.4 0.834 5.498 0.935 0.812 5.510 0.902 0.262 0.301 0.302 0.127 0.152 0.152 0.285 0.376 0.374
0.5 0.799 3.899 0.912 0.799 4.014 0.883 0.237 0.266 0.264 0.126 0.152 0.152 0.279 0.323 0.323
0.6 0.888 2.824 0.929 0.839 2.921 0.890 0.232 0.255 0.253 0.130 0.143 0.142 0.261 0.305 0.305
0.7 0.830 2.406 0.873 0.768 2.398 0.836 0.235 0.249 0.251 0.124 0.131 0.132 0.300 0.304 0.304
0.8 0.666 1.427 0.704 0.706 1.465 0.720 0.207 0.223 0.223 0.095 0.101 0.100 0.281 0.291 0.291
0.9 0.902 1.093 0.919 0.878 1.083 0.883 0.248 0.257 0.257 0.133 0.136 0.137 0.320 0.318 0.318

1 0.784 0.784 0.784 0.746 0.746 0.746 0.245 0.245 0.245 0.112 0.112 0.112 0.244 0.244 0.244

α1 (-15) α2 (15) β1 (4) β2 (2) β3 (-1)

Table 3: Width of empirical confidence interval ( )(2 θMSE ), all three methods.
Results are based on first data generating process.

Reduction Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted Full Naïve Adjusted
0.1 0.363 13.881 0.523 0.475 5.657 0.588 0.195 1.158 0.273 0.099 0.576 0.142 0.265 0.415 0.339
0.2 0.325 9.844 0.458 0.516 4.368 0.610 0.212 0.815 0.288 0.105 0.399 0.139 0.245 0.347 0.339
0.3 0.368 7.376 0.433 0.505 3.357 0.528 0.214 0.588 0.233 0.110 0.296 0.128 0.241 0.333 0.312
0.4 0.341 5.698 0.409 0.442 2.743 0.458 0.188 0.473 0.212 0.108 0.225 0.117 0.230 0.290 0.275
0.5 0.355 4.250 0.385 0.548 2.013 0.581 0.247 0.348 0.278 0.118 0.162 0.138 0.246 0.288 0.289
0.6 0.328 3.191 0.345 0.532 1.588 0.549 0.218 0.302 0.231 0.098 0.148 0.108 0.295 0.314 0.312
0.7 0.371 2.151 0.375 0.518 1.170 0.541 0.218 0.271 0.242 0.114 0.131 0.126 0.242 0.274 0.280
0.8 0.338 1.427 0.344 0.457 0.841 0.478 0.204 0.214 0.217 0.104 0.115 0.114 0.262 0.256 0.258
0.9 0.370 0.775 0.378 0.474 0.605 0.483 0.222 0.231 0.228 0.094 0.099 0.098 0.260 0.274 0.276

1 0.371 0.371 0.371 0.509 0.509 0.509 0.213 0.213 0.213 0.111 0.111 0.111 0.228 0.228 0.228

α1 (5) α2 (10) β1 (4) β2 (2) β3 (-1)

Table 4: Width of empirical confidence interval.
Results are based on second data generating process.

No. Obs Percentage
Low 531 1.28%
Middle 40,772 97.93%
High 329 0.79%

Table 5: Number of observations and percentages in full sample
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0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1
No. type I funds 0.072 0.066 0.057 0.059 0.060 0.062 0.064 0.063 0.062 0.063

(3.068) (2.730) (2.434) (2.689) (2.712) (2.773) (2.915) (2.867) (2.840) (2.868)
No. type I transactions -0.043 -0.041 -0.034 -0.037 -0.042 -0.037 -0.037 -0.038 -0.038 -0.038

(-3.264) (-3.219) (-2.964) (-3.196) (-3.554) (-3.200) (-3.274) (-3.445) (-3.369) (-3.369)
Ind. type Ia funds 0.545 0.542 0.493 0.482 0.472 0.472 0.455 0.464 0.471 0.474

(4.264) (4.230) (3.925) (3.914) (3.795) (3.816) (3.704) (3.800) (3.861) (3.885)
No. type II funds 0.086 0.090 0.088 0.088 0.096 0.085 0.078 0.082 0.080 0.079

(7.231) (7.894) (8.680) (8.743) (9.257) (8.793) (8.828) (9.072) (9.079) (9.075)
Ind. type II funds 0.534 0.490 0.440 0.447 0.419 0.447 0.471 0.454 0.474 0.479

(4.140) (3.883) (3.566) (3.634) (3.397) (3.654) (3.883) (3.766) (3.936) (3.981)
No. type III transactions 0.186 0.130 0.132 0.101 0.066 0.101 0.029 0.065 0.028 0.029

(9.219) (8.938) (10.262) (9.167) (6.541) (9.949) (5.588) (6.368) (6.134) (6.246)
Turnover 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.003

(1.906) (2.932) (2.675) (2.627) (3.287) (3.145) (4.150) (3.703) (4.261) (4.374)
Wealth measure 0.023 0.020 0.021 0.021 0.022 0.021 0.019 0.023 0.021 0.021

(2.182) (2.324) (2.505) (2.757) (2.926) (2.765) (2.532) (2.966) (2.762) (2.788)
No. of special accounts 0.540 0.561 0.600 0.644 0.673 0.646 0.725 0.698 0.737 0.741

(5.109) (5.400) (5.921) (6.346) (6.731) (6.255) (7.302) (6.976) (7.423) (7.464)
α1 -3.455 -3.488 -3.546 -3.548 -3.561 -3.560 -3.557 -3.557 -3.547 -3.544
α2 6.199 6.123 6.055 6.024 6.004 6.010 5.961 5.985 5.981 5.982

Reduction factor

           Table 6: Parameters and t-values in parentheses for different reduction factors

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1
No. type I funds 1.139 1.043 0.913 0.945 0.962 0.989 1.020 0.999 0.989 1
No. type I transactions 1.143 1.081 0.891 0.991 1.126 0.973 0.970 1.022 1.000 1
Ind. type Ia funds 1.150 1.145 1.041 1.018 0.997 0.996 0.959 0.980 0.995 1
No. type II funds 1.089 1.145 1.122 1.116 1.223 1.078 0.992 1.036 1.017 1
Ind. type II funds 1.114 1.023 0.919 0.933 0.875 0.932 0.983 0.948 0.989 1
No. type III transactions 6.480 4.541 4.580 3.512 2.288 3.507 1.012 2.261 0.981 1
Turnover 0.762 1.335 0.750 0.681 0.894 0.843 0.981 0.933 0.978 1
Wealth measure 1.122 0.943 1.032 1.010 1.071 0.998 0.905 1.109 0.996 1
No. of special accounts 0.729 0.758 0.810 0.870 0.908 0.872 0.979 0.942 0.995 1
α1 0.975 0.984 1.001 1.001 1.005 1.005 1.004 1.004 1.001 1
α2 1.036 1.024 1.012 1.007 1.004 1.005 0.996 1.000 1.000 1

Reduction factor

Table 7: Parameters relative to estimates in full sample

Number of
transactions Low Middle High

> 25 2 31 14
> 50 0 12 5
> 75 0 7 5
> 100 0 6 3
> 400 0 1 1

Number of observations

Table 8: Customers with many type III transactions
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