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Abstract
Airline seat inventory control is a very profitable tool in the airline industry. Mathematical
programming models provide booking limits or bid-prices for all itineraries and fare classes
based on demand forecasts. But the actual revenue generated in the booking process fails to
meet expectations. Simple deterministic models based on expected demand generate better
revenue than more advanced probabilistic models. Recently suggested models put even more
effort into demand forecasting. We will show that the dynamic booking process rather than
the demand forecasts needs to be addressed. In particular the nesting strategies applied in
booking control will counter-effect the profitability of advanced estimation of booking limits
and bid-prices.
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1. Introduction 
Airline seat inventory control is about “selling the right seats to the right people at the

right time”1. If an airline would sell tickets on a first-come first-serve basis, its capacity is
likely to fill up early with leisure travelers, eager to fix their holiday trip. Later bookers,
typically business travelers willing to pay a higher fare, will then find that there aren’t any
seats left, and these sales will be lost. By imposing booking limits on the lower fare classes
this can be avoided. Delta Airlines has estimated that selling only one seat per flight at full
rather than at discount rate can add over $50 million to its annual revenues2. This illustrates
the economic significance of Revenue Management.
 Since the enormous potential profitability of Revenue Management was recognized in
the early 1970’s, mathematical models have been developed to determine a booking strategy
in a sophisticated way. Typically booking limits are determined at the beginning of the
booking process based on demand estimates. They are updated several times during the
booking period, although it is practically undesirable to recalculate them every time a booking
request is made. The models used to determine the booking limits all share the need of
accurately forecasting future demand for each class, for which purpose the demand
distributions are estimated from historical booking data. But each model differs in the
approach and in the level of detail in representing the booking process. For a comprehensive
and up-to-date overview of the area we refer to McGill and van Ryzin (1999) containing a
bibliography of over 190 references.

Current methodology can be divided into leg-based and network-based models. Leg-
based methods are aimed at optimizing the passenger mix on a single-leg flight. Network-
based models consider booking requests for multiple legs at the same time. Developments in
the field of leg-based models started with Littlewood’s (1972) study of a single-leg example
with two fare classes under the assumption that low-fare class passenger's book first. Other
references on this subject include Richter (1982), Belobaba (1987), Wollmer (1992) and
Brumelle and McGill (1993). Most of this work involves dynamic programming models.

A major flaw of such leg-based models is that they only locally optimize booking
control, whereas an airline should strive to maximize revenue from its network as a whole.
These objectives might even conflict. To see this, think of a booking request for a high-fare
class flight from Brussels to Amsterdam. Alternatively, this seat can be sold to a passenger of
a lower fare class traveling from Brussels to Singapore via Amsterdam. When the direct flight
from Amsterdam to Singapore has ample capacity, granting the latter request is more
profitable because of its higher ticket price. But if booking control is optimized locally, the
former request should be granted, because that is the one for the highest fare class. Airlines
typically offer hundreds of such combinations of origin, destination and fare class (ODF).
Hence determining an overall booking control strategy for the entire network is by far a trivial
matter.

Williamson (1992) has performed a comprehensive research into network revenue
management. She studied two network-based mathematical programming models. The first
model incorporates probabilistic demand and should be solved by probabilistic mathematical
programming (PMP). The second model simplifies the problem by substituting uncertain
demand by its expectation so that deterministic mathematical programming (DMP) can be
used. After an extensive simulation study she concludes that optimizing booking control over
the complete network instead of legs yields significant profit gains.

Booking control can be implemented in various ways. The mathematical programming
models we consider are explicitly aimed at determining booking limits. Booking requests are

                                                       
1 “The Art of Managing Yield,” American Airlines Annual Report (1987)
2 “Yield Managers Now Control Tactical Marketing,” Lloyd’s Aviation Economist (May 1985)
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rejected if the respective booking limits would otherwise be exceeded. An alternative form of
booking control that can be derived from the dual information of these models is based on
bid-prices. Bid-prices are linked to each itinerary over the network and no tickets are sold for
such an itinerary unless its fare exceeds its bid price. Williamson found no significant
difference between these two booking control methodologies.

Surprisingly, she did find that implementing the DMP booking limits consistently
produces higher revenues than if the PMP booking limits were used. One should expect that
the PMP technique would produce better revenues since it puts more effort into dealing with
the unknown demand. Talluri and van Ryzin (1998) show that bid-prices based on the DMP
model have better asymptotical properties when the seat capacity on each leg of the network
approaches infinity. This might explain Williamson’s results for bid-price booking control.

Talluri and van Ryzin (1999) propose an elegant way to incorporate the probabilistic
nature of demand into the DMP framework for networks, which they call Randomized Linear
Programming (RLP). Instead of using demand expectations, they simulate a sequence of
realizations of demand for each itinerary and each fare class in the network. For every
realization of demand, the optimal booking control policy is determined by DMP. The
resulting sequence of bid-prices is then averaged in order to obtain an approximation of the
optimal booking control policy under the assumptions of the probabilistic model. But again,
the more advanced probabilistic method fails to uniformly dominate the basic DMP model in
their concluding simulation experiments.

Ciancimino et al. (1999) in their study of railway revenue management find that their
probabilistic model does yield significantly higher revenues than its deterministic counterpart.
Unfortunately, solving this model requires non-linear programming techniques, which for
large-scale problems tends to push the optimization time beyond what is acceptable in
practice. But, as McGill and van Ryzin (1999) point out, recently developed approximation
methods for stochastic programming may overcome this problem and make this methodology
a promising and practically feasible option in revenue management.

We study a model (SLP) from the field of stochastic programming that can be seen as
a promising alternative for the PMP model by Williamson. In fact, it contains the model by
Williamson as a special case. We will show that the observed domination of the DMP model
over probabilistic techniques is a fortunate by-product of ignoring the uncertainty related to
demand. This phenomenon is based on nesting. The solution of the mathematical
programming problem divides the available seats among the various ODF. This suggests that
booking requests for an ODF should be accepted as long as they fit into its allocated part of
the plane. But this might lead to declining high-fare booking requests in a situation that there
are still empty low-fare seats, which cannot be a sensible strategy. Hence passengers from
highly profitable classes are given restricted access to seats allocated to less desirable classes,
using a nesting strategy. None of the mathematical programming models take nesting
strategies into account, but probabilistic models suffer more from this deficiency. In a
simulation study, the revenue generated by using bid-prices and booking limits based on the
stochastic model SLP is compared to the optimal revenue for a single-leg network and to the
DMP revenue for multiple-leg networks.

The outline of this paper is as follows. In Section 2 we discuss the DMP and the PMP
models by Williamson and introduce the SLP model. In Section 3 we discuss how their
solution can be translated into an effective (nested) booking control policy in multiple-leg
networks. In Section 4 we present a dynamic model of the arrival of booking requests. This
model is used to simulate the booking process, which enables us to compare the effectiveness
of different forms of booking control. In Section 5 we show that booking limits based on
DMP, PMP or SLP are not optimal and investigate the cause. In addition, we investigate the
factors that influence (the size of) the optimality gap. In Section 6 we compare the revenues
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generated by DMP and SLP booking limits in a small-scale simulation study for a multiple-
leg network. Again we will see that the DMP solution dominates the SLP revenue in most
cases and discuss why. Finally, Section 7 summarizes our conclusions.

2. Network models for seat inventory control
The goal of airline seat inventory control is to maximize the expected total revenue

from its supply of origin, destination and fare class combinations (ODF), using estimated
demand distributions. Each ODF in the network consists of one or more flight legs. The
limited capacity on each flight leg has to be used in the most profitable way. This can be
achieved by limiting the number of seats available to the less profitable classes. Therefore, let
xODF denote the number of seats reserved for each separate ODF. This definition implies that
each seat on each flight leg is available for only one particular ODF. The partitioned approach
ensures that the passengers are divided into homogeneous groups whose contribution to the
total revenue of the network is clear. Let N be the total number of flight legs in the ODF
network. The set of ODF combinations available on flight leg l is denoted by Sl. The
probabilistic aggregated demand for each ODF is called DODF. Although demand is in fact a
discrete variable, continuous approximations of the demand distributions are generally used.
Furthermore, let fODF be the fare required for an ODF and let Cl denote the seat capacity on leg
l. The xODF are integer decision variables that should be chosen to maximize the airline’s
expected profit. At take-off the number of passengers per ODF equals min{xODF, DODF}. Hence
the general problem can be formulated as

2.1 Deterministic approximation methods
A simple approximation method to PMP is to substitute each DODF by its expectation EDODF.
This results in the deterministic mathematical programming problem DMP.

Maximize f xODF ODFODF∑           (DMP)
subject to

∑ ∈
≤

lSODF
lODF Cx  for all flight legs l = 1,...,N

ODFODF EDx ≤  for all ODF

Madansky (1960) has shown that the objective value of DMP overestimates the expected
outcome of implementing the solution of the deterministic approximation in a booking
process. Thus the objective value of DMP provides an upperbound on the actual revenue that
will be generated. The LP relaxation DLP is commonly solved instead of the integer-
programming problem, since DMP is hard to solve if the number of decision variables and
constraints is large. This will often be the case in a real-world situation involving global
networks and many different fare classes. The LP approximation is tight if the constraint

Maximize ( )E f x DODF ODF ODFODF
min{ , }∑                 (PMP)

subject to

∑ ∈
≤

lSODF
lODF Cx  for all flight legs l = 1,...,N

ODF all for integerxODF    0≥

ODF all for integerxODF    0≥
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matrix is totally unimodular. This is only true if the “network” consists of a single multi-leg
flight without allowing for connecting traffic (Ciancimino et al. (1999)). We restricted our
examples to be of this kind, so we could use the LP approximation to obtain optimal integer
solutions.

2.2 Probabilistic approximation methods
One should expect that ignoring the probabilistic nature of demand has a negative impact on
total revenue. Suppose that the upper fare classes are highly more profitable. Then it would
certainly be rewarding to reserve more high-fare seats than the airline actually expects to sell
on average, in order to earn the upward potential of high-fare demand. Therefore, it could be
profitable to solve the model PMP exactly. Probabilistic mathematical programming problems
explicitly take into account uncertainty of demand.

The most common way to incorporate probabilistic demand is given by a model based
on expected marginal revenue (EMR) that was developed by Wollmer (1986):

In this model, the decision variable xODF(i) is a binary variable representing whether  i seats or
more are allocated to the ODF. Again, the LP relaxation of this model is tight if the network
consists of single multiple-leg flights. The objective coefficient represents the expected
marginal revenue of allocating an additional ith seat to the ODF. The interpretation of model
EMR is intuitively clear, but its large number of decision variables limits its practical
applicability.

Another formulation of PMP can be a stochastic programming problem with simple
recourse (e.g. Birge and Louveaux (1997)). This class of problems is characterized by a
separable objective function that includes a deterministic part and a part consisting of
functions of a single random variable. Suppose DODF can only take the values {dODF,1< dODF,2<
… < dODF,Kodf}. Following a result from Wets (1983) the LP relaxation of PMP is equivalent to

Maximize ∑ ∑ ≥
ODF

i
ODFODFODF ixiDPf )()(                    (EMR)

subject to

∑ ∑∈
≤

lSODF
i

lODF Cix )(  for all flight legs l = 1,...,N

}1,0{)( ∈ixODF  for all ODF and i = 1,… , maxl{Cl|ODF∈Sl}

Maximize ( )∑ ∑ ∑
=

≤−
ODF ODF

K

j
jODFjODFODFODFODFODF

ODF

xdDPfxf
0

,,                                    (SLP)

subject to
∑ ∈ ≤

lSODF lODF Cx  for all flight legs l = 1,...,N

1,0,

0
,

ODFODF

K

j
jODFODF

dx

xx
ODF

≤

= ∑
=

jODFjODFjODF ddx ,1,, −≤ + (j=1,...,KODF - 1)

0, ≥jODFx (j=0,...,KODF )
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The left-hand term of the objective function is the revenue that would be generated if all
planes would depart fully loaded, the term on the right is a correction for the uncertainty in
demand. Each xODF is split up in several smaller allocations xODF,j, which are meant to
accommodate the part of the demand DODF that is between dODF,j and dODF,j+1. However, if DODF

does not exceed dODF,j, these seats will all remain unsold. The expected “costs” of this event are
exactly P(DODF≤ dODF,j)fODFxODF,j. Birge and Louveaux remark (page 194) that practical experience
suggests that SLP can be solved in a time of about the same order of magnitude as DLP.
Although we have modeled demand as a discrete random variable defined on all positive
integers, limiting the demand distribution to the set of integers bounded by its 1% and 99%
percentiles is a good approximation. In addition, it reduces the computational load of
stochastic optimization significantly. Therefore, we propose to solve SLP to obtain a close
approximation of the solution of PMP. For single multiple-leg flights the LP relaxation of
PMP is tight and the solution of SLP consists of integer values.

In fact, the LP relaxation of EMR is just a special case of model SLP, as can be seen
by letting dODF,j+1-dODF,j=1 and dODF,1=0. But model SLP is a more efficient representation
because it involves fewer decision variables. In addition, model SLP can be simplified to any
extends by considering only a limited number of possible scenarios, e.g. low, average and
high demand. This reduces the problem size significantly, while still taking into account part
of the uncertainty about future demand. If only one scenario is considered (the expected
demand) the SLP model reduces to the LP relaxation of DMP. Hence both models can be seen
as special cases of the SLP model where DMP contains only one and EMR covers all possible
scenarios.

3. Booking control policies
The mathematical models from the previous section determine booking limits for each ODF
based on a partitioning of the seats in the planes. In this section we describe how booking
limits can be determined by nesting seat allocations and discuss the bid-price approach.

3.1 Nested booking limits
A nesting order of the booking limits for the ODF's should be established based on the
contribution of each ODF to the network revenue. Williamson (1992) suggests three ways of
measuring this: ordering by fare class, by fare or by shadow prices. Ordering by fare classes,
where a full-fare economy class passenger is always rated higher than one from a discount
class, does not take into account the magnitude of the total fare. The passenger with a long
journey will contribute more than one with only a short flight leg. Ordering by fare will rank
flights with the highest fares on top while also the load factors of the flights should be taken
into account. Shadow prices measure the incremental network revenue that would be
generated if an extra seat would be made available to an ODF. Customer contribution is best
measured by shadow prices.

Williamson suggests using the shadow prices of the demand constraints in the
deterministic programming formulation. A more general approach is to sum up the shadow
prices of the capacity constraints of the legs that the ODF traverses. This is an approximation
of the opportunity costs of this itinerary. Subtracting these costs from the ODF’s fare results
into an estimate of an ODF’s contribution to network revenue. For the deterministic model
this is equivalent to Williamson's suggestion, but the generalization can be used for the
stochastic programming problem as well.

After a ranking order has been established, a booking control strategy has to be
determined. Every time a booking request arrives for any ODF in the network, a quick



6

decision should be made whether or not to accept the request. Let (j,k) denote the ODF
combination of fare class k with OD pair j. We assume that model PMP or an approximation
has been solved and let x(j,k) be the number of seats that are allocated to ODF (j,k). We
assume that the ODF have been ranked according to their shadow price and we let (j,k)>(p,q)
say that ODF (j,k) is ranked higher than (p,q). Let n(j,k) be the number of booking requests
for (j,k) that have already been accepted and let RCl be the remaining capacity on leg l. If leg l
is part of itinerary j, this is denoted by l∈Tj. We propose to use the following algorithm for
nested ODF-based booking control.

0.  Initialize the variables lRC  by the leg capacities of the flight network. Let
0),( =kjn  for all ODF ),( kj .

1.  A booking request for an ODF ( , )p q  arrives and should be considered for
acceptation.

2.  Define { }0),,(),(max),( kjnkjxkjb −=  for all ODF ),( kj .
3.  Define ∑

>∈
=

),(),(:),(

),(
qpkjSkj

l
l

kjbb  for all legs pTl ∈ .

4.  Define }|min{min pll TlbRCc ∈−= .

5.  If 0min >c  accept the booking request, let 1−= ll RCRC  for all legs pTl ∈  and let
1),(),( += qpnqpn . Decline the request otherwise.

6.  If another booking request arrives within the booking period, go to step 1. End the
algorithm otherwise.

Step 0 is the initialization phase that occurs only at the beginning of the booking
period. In step 1 we consider a booking request for a specific ODF that is made at some time
in the booking period. The variables b(j,k) that are defined in step 2 represent the number of
seats we wish to protect for ODF (j,k) against lower ranked ODF's in the remainder of the
booking period. The initial value for each ODF depends on the solution of the PMP model
and decreases each time that a booking request for this ODF is accepted. Note that by the
nesting principle it is possible that the number of accepted booking requests for an ODF
exceeds the number of seats that was assigned to it by the solution of the model. If this is the
case, we do not wish to hold any additional seats for this ODF. The variables bl represent the
number of seats on each leg that should be protected for ODF that are ranked higher than
(p,q). They are calculated in step 3 for each leg that is part of ODF (p,q). In step 4 we
calculate how many seats are available for ODF (p,q) after the remaining capacity on each leg
in this itinerary has been corrected for the desired level of protection. This number, cmin, is the
minimum of the available number of seats per leg. If there are still seats available, the
booking request is accepted and the remaining capacity on each leg and the number of
accepted booking requests for this ODF are adjusted accordingly in step 5. If this is not the
case, the booking request is declined and no further adjustments have to be made. Finally, if
within the booking period another booking request is made, the whole procedure is repeated.
Otherwise, the algorithm is ended.

Other booking control strategies could be considered to incorporate the nesting
principle. Further research should be done whether other nesting heuristics have a positive
impact on total revenue. For our study on comparing PMP and DMP models, however, we
restrict ourselves to the above booking control method.
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3.2 Bid-prices
The booking limit control process described above requires much administration. This can be
avoided by using the dual information of the optimization model. For each OD its
contribution to network revenue can be approximated by summing the shadow prices of the
capacity constraints of the legs it crosses. If a passenger is willing to pay more for an itinerary
than its actual value, it is profitable to grant the request. The value of an OD to the network is
called its bid-price. Only if an OD’s fare is higher than its bid-price, this class is open for
bookings. Otherwise, the class is closed. The advantage of this approach is that one only has
to reckon with remaining capacity and ODF status (open/closed). Moreover, the nesting
principle is automatically satisfied. But when a class is open to bookings, there is no limit on
the number of accepted requests. It would therefore be possible that passengers from an ODF
that only marginally contributes to network value start filling up capacity. This is an
undesirable situation. The problem can be solved by frequently recalculating bid-prices while
taking into account bookings at hand. This may lead to closure of some previously open
classes and to reopening certain others. Williamson (1992) found through simulation that in
this case, bid-prices and nested booking limits lead to comparable results.

A better way to calculate bid-prices (although only for single-hub networks) is given
by Günther (1998), but since his approach does not involve mathematical programming, his
results are outside the scope of this research.

4. Simulating the booking process
In order to compare the effectiveness of different forms of booking control we have simulated
the airline booking process. In modeling the arrival of booking requests, two characteristics
should definitely be included. Naturally, their total number is not known beforehand. But in
addition, the arrival intensity of each fare class can change over time. The non-homogeneous
Poisson process (NHPP) allows modeling both aspects simultaneously. According to the
overview given by McGill and van Ryzin (1999), the Poisson process is by far the most
popular dynamic model of airline demand. The arrival intensity λODF(t) consists of two
factors. The expected total number of bookings AODF  is assumed to have a Gamma
distribution, which has been shown to fit empirical reservation data (e.g. Beckmann and
Bobkoski (1958)). The Gamma distribution also is the conjugate prior of the Poisson
distribution (e.g. DeGroot (1970)), which strongly simplifies analytical study of the model.
Including such a factor in the Poisson process solves the problem that the mean and variance
of Poisson distributed demand are equal, which need not hold in practice. The arrival pattern
is modeled by the standardized beta distribution βODF(t), which is chosen for its flexible
shape. Hence the model we have used for our simulation experiments is a NHPP with arrival
intensity

It is well known (e.g. Stuart and Ord (1994), page 182) that the total number of booking
requests follows a negative binomial distribution. Model (4.1) also introduces a positive
correlation between the number of ODF bookings in separate parts of the booking period,
hence bookings at hand provide information about bookings to come. If during the booking
period the booking control policy is re-optimized, the demand forecast should take this into
account. It is easy to derive that the conditional distribution of the number of bookings in the
remaining part of the booking period follows a negative binomial distribution as well.

ODFODFODF Att *)()( βλ =        AODF ~ Gamma(p,γ)                                               (4.1)
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Our model is considered a simplification of the model proposed by Weatherford et al.
(1993), who let demand for different fare classes on the same flight be positively correlated.
But demand for different fare classes is often motivated in different ways and factors that
influence business travel need not affect tourists as well. Moreover, pricing strategies are
often aimed at isolating such influences. This suggests that for revenue management purposes,
demand for separate fare classes can be assumed independent. According to Swan (1993),
most researchers in the field share this view.

In order for our simulation results to be of any practical value, the model presented
above should be a realistic representation of the airline booking process. We are not aware of
any recent empirical study of airline demand that might confirm this. A popular reference on
this subject still is Beckmann and Bobkoski (1958). For this reason, we have tested the model
against real airline booking data, provided by a major European carrier (De Boer (1999)). The
main result was that both the negative binomial aggregate demand distribution as well as the
beta arrival pattern fitted the data very accurately. We should point out, however, that the data
were aggregated on flight leg level, hence we were not able to distinguish between local and
through traffic. Moreover, the data consisted of accepted booking requests only, hence they
are censored by the presence of booking limits and capacity constraints. We have dealt with
this problem by only considering demand for high-fare classes, which are unlikely to be
closed for bookings. Better booking data should be available for a more complete test.

5. DMP versus PMP: single-leg networks
In this section we consider a well-known basic example (Littlewood (1972)) of a single-leg
flight with two fare classes under the assumption that low-fare passengers book before high-
fare passengers. We will show that the solution of the probabilistic model follows the effects
of the optimal solution where the deterministic solution does not. However, both methods
tend to reserve too many seats for the high-fare customers, probably due to the absence of
nesting in both models. The single leg case can be used to get a better insight into the
effectiveness of DMP and PMP booking limits for multi-leg networks.

5.1 The optimal, DMP and PMP booking limits
Let Φ i be the cumulative distribution function of Di and let xi be the number of seats assigned
to class i=1,2 (x2 = C-x1; f1>f2). Littlewood (1972) suggested that class 2 should be closed for
further bookings when the revenue of accepting another class-2 booking request is exceeded
by the marginal expected revenue of holding the seat for class 1. Richter (1982) proved that
this rule indeed is optimal. Hence the optimal protection level x opt

1 for class 1 satisfies

The (PMP) for this example becomes

f
f

P D x opt2

1
1 1= >( )                          (5.1)

Maximize E ( )f x D f x D2 2 2 1 1 1min{ , } min{ , }+
Subject to

x1+x2≤ C
xi ≥ 0    integer for i=1,2.
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The unconstrained solution of (PMP) satisfies

which is the well-known optimality condition that the marginal value of adding a single extra
seat is equal for both classes. Note that this condition only holds when high-fare demand is
unlikely to exceed capacity, but otherwise the discount rate wouldn’t have been introduced in
the first place. Comparing (5.1) and (5.2) learns that the PMP solution always protects more
seats for the high-fare class than the optimal protection level. The solution to the deterministic
problem is to assign as many seats to class 1 as one expects to sell, hence ][ 11 DExdmp = . The
deterministic protection level can be either too high or too low, depending on the
circumstances.

Both x opt
1 and pmpx1 are increasing in f1 whereas dmpx1 is a constant. Indeed, for higher

values of f1 it is profitable to protect additional seats for this class. Furthermore, from (5.1)
and (5.2) it also follows that both x opt

1 and pmpx1 are increasing in σ1
2=Var(D1), provided

that x opt
1 (or pmpx1 ) > E(D1). This effect can be explained by the fact that a higher variance

implies a larger upward potential in D1. On the other hand, if the ratio of  f1 and f2 decreases,
the impact of Var(D1) reverses. In this case, the uncertainty about high–fare demand grows,
whereas its incremental profit is relatively low. The negative effect of a high protection level
on the load factor is not sufficiently compensated by the positive effect of carrying more high-
fare passengers. Neither factor affects the DMP solution, which is an obvious disadvantage of
ignoring the probabilistic nature of demand.

5.2 Numerical example
We consider a numerical example to get a better insight into the nature of the optimality gap
of the DMP and PMP booking limits. Let c = 130, f2 = 100, D2 ~ N(100,1000) and D1 ~ N(50,
σ1

2). According to McGill and van Ryzin (1999), empirical studies have shown that the
Gaussian distribution is a good continuous approximation to the distribution of airline
demand. Moreover, (5.1) and (5.2) now can easily be solved in a spreadsheet to obtain the
optimal and the PMP booking limits. The results are given in Table 5.1, where ∆dmp=x1

dmp-x1
opt

and ∆pmp=x1
pmp-x1

opt denote the size of the optimality gap. Note that we did not bother to get
integer solutions, since we are not interested in actually implementing the booking limits but
only in the differences between them.

Table 5.1
Comparison of the optimal, DMP and PMP booking limits

f1=130 f1=180 f1=230
σ1 10 15 20 10 15 20 10 15 20

x1
dmp 50 50 50 50 50 50 50 50 50

x1
pmp 48.61 48.07 47.63 52.01 52.84 53.58 54.18 55.97 57.62

x1
opt 42.64 38.98 35.33 48.60 47.90 47.21 51.65 52.43 53.28

∆dmp 7.36 11.02 14.67 1.4 2.1 2.79 -1.65 -2.43 -3.28
∆pmp 5.97 9.10 12.30 3.41 4.93 6.38 2.53 3.54 4.33

It is clear from Table 5.1 that both mathematical programming models tend to overprotect
seats for the upper fare class, unless (DMP-case) its fare is exceptionally high in relation to

)()( 1112
1

2 pmppmp xDPxCDP
f
f >=−>                                (5.2)
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the fare of the other class. Moreover, it depends solely on the difference between the fares
what method suffers from this most.

There is only one possible explanation for the optimality gap. The models assumes
distinct seat inventories for different fare classes, whereas in practice seat allocations are
nested. Hence in order to carry larger numbers of high-fare passengers, it is not necessary to
reserve an accordingly large number of seats. Nesting can often accommodate the remaining
part of high-fare demand. Lower protection levels lead to higher load factors and, by the
principle described above, initially only at the cost of a relatively small fraction of high-fare
passengers.

5.3 Simulation results
To examine the impact of non-optimal booking limits on leg revenue, we have used the NHPP
demand model from Section 4 to simulate the airline booking process. The PMP booking
limits were approximated by the SLP solution. Demand expectations and variances as well as
the seat capacity are as in Section 5.2, with σ1=20. The simulation statistics include expected
total revenue (ER), expected load factor (LF), expected yield per passenger (YP) and the
expected load factor of the highest class (LFHC). The LFHC is calculated by dividing the
number of accepted high-fare bookings by its non-nested seat allocation. Hence if classes are
nested, it can take values greater than 1. The parameters α and β of the beta distributions that
determine the arrival patterns are such that high-fare bookings almost certainly arrive after all
low-fare bookings3. The simulation results are given in Table 5.2. To make the results more
insightful, we have presented the optimality gap (ER-ERopt)/ERopt rather than the expected
dollar amounts.

Table 5.2
Simulation results with optimal, DMP and SLP booking limit (10000 iterations)

f1=130 f1=180 f1=230
method Opt. DMP SLP Opt. DLP SLP Opt. DLP SLP

x1 34 50 47 45 50 52 51 50 56
Gap ERopt 0% -1.7% -1.0% 0% -0.1% -0.6% 0% 0% -0.5%

LF 0.94 0.91 0.92 0.93 0.92 0.91 0.91 0.91 0.89
LFHC 1.09 0.86 0.90 0.92 0.87 0.84 0.86 0.86 0.80

YP 109 110 110 127 129 129 147 147 150
With expected total revenue (ER), expected load factor (LF), expected yield per passenger (YP), expected load factor of the highest class
(LFHC)

The simulation results support our thesis that booking limits based on mathematical
programming models tend to overprotect seats for high-fare classes. The optimal booking
limit leads to higher load factors and only a slightly lower average fare per passenger. Note
that the opportunity costs of using a non-optimal booking limit are significant and can be as
high as 1.7%.

Tables 5.1 and 5.2 show that our thesis holds for different fare levels and different
degrees of demand uncertainty. However, our results may have been affected by the stringent
assumption about the arrival order. Therefore, we have performed an additional simulation in
which we have relaxed the assumption that low-fare passengers always book first4. Titze and
Griesshaber (1983) have found that even if low-fare requests only tend to arrive before high-
fare requests, this does not have a significant impact on the optimal seat allocation, provided
that D1 and D2 are assumed to be independent. Consequently, condition (5.1) can still be used

                                                       
3 To be precise: α1=2;β1=13;α2=13;β2=2.
4 Now: α1=2;β1=5;α2=5;β2=6.
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to approximate the optimal booking limit. Additional simulation results indicate that when
there is no strict arrival order, the effect of the overprotection even worsens. This is because if
part of low-fare demand comes after high-fare demand, the chances of being able to accept
additional high-fare bookings by nesting have improved, which favors setting a low
protection level. This illustrates another shortcoming of the models under consideration. They
are static, whereas booking control is typically a dynamic process.

6. DLP versus SLP: multiple-leg networks
In this section we simulate the booking process for a single multiple-leg flight to compare the
performance of the DLP and SLP models in a network environment. Notice that in this case
the totally unimodularity assumption holds and that the solutions are integers. We consider a
flight over three legs, each with a capacity of 200 seats. The airline offers all six possible OD
pairs. Passengers can choose from three different fare classes for each OD. Booking requests
are accepted starting from 150 days before departure. The initial demand and fare settings are
given in the appendix. Long haul flights are relatively cheap compared to single-leg flights.
The highest fare class is relatively expensive. The parameters of the customer arrival process
are chosen to let low-fare passengers in general book before high-fare passengers.

6.1 Bid-pricing versus booking limits
We are interested in the differences between the bid-price and the booking limit approach. In
our first example, the booking control strategy is optimized only once, in the beginning of the
booking period. The optimization results for both models are in Table 6.1.

Table 6.1
Solutions to DLP and SLP for the initial example

Class 3 Class 2 Class 1
Leg DLP SLP DLP SLP DLP SLP
1 41 42 40 40 30 40
2 0 0 25 18 20 22
3 0 0 24 21 20 17
4 30 23 20 19 20 27
5 1 15 20 16 20 22
6 45 38 40 36 30 35
Objective value DLP: 84915, SLP: 71767.35

The SLP solution assigns more seats to the upper fare classes than the DLP solution (as was
observed in the single-leg network). In addition, the simulation results from Table 6.2 show
that the DLP method outperforms the SLP approach.

Table 6.2
Simulation results with the initial settings (5000 iterations)

booking limit control bid price controlBooking Control
Policy DLP SLP DLP SLP
ER 75983 74726 73501 73416
LF 0.897 0.886 0.96 0.96
YP 195 197 177 177
LFHC5 0.96 0.875 0.60 0.54
With expected total revenue (ER), expected load factor (LF), expected yield per
passenger (YP) and the expected load factor of the highest valued class (LFHC)
                                                       
5 Keep in mind that classes are ranked by shadow prices, hence the highest class might differ
between models.
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We see that applying DLP instead of SLP booking limits leads to significantly higher revenue
(1.7 %). The positive effect of the higher LF apparently more than makes up for the lower YP.
It seems that the SLP solution keeps too many seats away from low-fare classes, which is
especially clear from the much lower LFHC resulting from this method. This is consistent
with the tendency to overprotect high-fare seats on single-legs that we found in Section 5.
Another interesting observation from Table 6.2 is that the DLP solution overestimates
expected revenue whereas SLP underestimates it.

Table 6.2 suggests that bid-price-booking control is less profitable than the booking
limit approach. As we pointed out in Section 3.2, bid-price-booking control does not have a
limit on the number of requests that are accepted once a class is open for bookings. When
low-fare classes requests arrive before the other classes, the plane will fill up quickly with
relatively low yielding passengers, resulting in the lower YP and LFHC for the bid-price
approach. The higher LF is exclusively caused by accepting more low-yield passengers, and
apparently does not form sufficient compensation. For the bid-price approach to work, the
bid-prices have to be adjusted regularly during the booking period.

With the next example we aim to illustrate the positive effects of frequently updating
the booking control strategy. Booking limits and bid-prices are recalculated at 1/3 and 2/3 of
the booking period using bookings at hand. The simulation results are in Table 6.3.

Table 6.3
Simulation results implementing two updates (1000 iterations)

booking limit control bid price controlBooking Control
Policy DLP SLP DLP SLP
ER 76248 75863 76431 75962
%ER increase 0.35% 1.52% 3.99% 3.47%
LF 0.91 0.90 0.95 0.96
YP 195 195 187 185

Indeed, expected revenue has risen and bid-price-booking control now results into similar (or
slightly better) expected revenue. The higher LF of the bid-price approach compensates its
lower YP, which are both caused by the absence of booking limits. DLP is again more
profitable than SLP, although the difference has decreased. The uncertainty about future
bookings decreases throughout the booking period and the solutions of the deterministic and
stochastic model become more alike. Additional simulations with more updates confirmed
these conclusions, hence our results about the effectiveness of the DLP and the SLP model are
essentially independent of which method for booking control is used. For this reason, we have
not considered the bid-price approach in our further analysis.

6.2 Sensitivity analysis: demand distribution and fares
We will now investigate the factors that may have affected our comparison of the DLP and
the SLP model. We start by examining the influence of demand variance on booking limits
and on total expected revenue. Recall that we have shown in Section 5 that more uncertainty
concerning high-fare demand leads to a larger degree of overprotection and less revenue. We
therefore limit our examination to the consequences of increased low-fare demand variance
(exact values in the appendix). Since Belobaba (1987) has reported 0.33 as a common
coefficient of variance for demand in the airline industry, our initial variances were rather
low. Because the DLP model only involves the demand expectations, its solution does not
change. The new solution to the SLP model is given in Table 6.4.
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Table 6.4
SLP solution for increased low-fare demand variance
Objective value: 70679.23 class 3 class 2 class 1

1 41 41 41
2 0 15 23
3 0 21 18
4 22 19 28
5 17 15 22
6 35 36 36

Comparison of Tables 6.1 and 6.4 learns that expected revenue has decreased and that the
seats allocations to both lower classes are slightly smaller. The simulation results are given in
Table 6.5.

Table 6.5
Simulation results with increased low-fare
demand variance (5000 iterations)
Booking limit control DLP SLP
ER 75362 74662
%ER decrease against
average low-fare demand

0.08% 0.01%

LF 0.883 0.878
YP 197 201

Once again, DLP outperforms SLP, but the increased demand uncertainty has affected the
deterministic model most. The number of accepted booking requests for an ODF is truncated
from above by the respective booking limit, hence using demand expectations overestimates
the occupation of the plane. The effect of the truncation is worsened by the increased
uncertainty about demand, and the deterministic model is not able to take this into account
and adjust the seat allocations accordingly. As a result, DLP overestimates accepted high-fare
demand by failing to recognize the truncation, while SLP underestimates it by ignoring the
possibility of nesting. The optimal expected revenue will be somewhere in the middle, which
provides an airline useful bounds on the incremental profit of implementing network-based
booking control.

In Section 5.2 we found that a smaller spread between fares for different classes favors
SLP compared to DLP. We now examine whether this conclusion holds in a network
environment. The adjusted fares are in given in the appendix.

Table 6.6
Solutions to DLP and SLP for smaller spread between fares

Class 3 Class 2 Class 1
Leg DLP SLP DLP SLP DLP SLP
1 41 45 40 41 30 36
2 0 4 25 20 20 14
3 0 22 24 18 20 25
4 30 20 20 22 20 21
5 1 21 20 17 20 17
6 45 38 40 37 30 30
Objective value DLP: 70615, SLP: 60549.43

Comparison of Table 6.6 with Table 6.1 learns that the SLP seat allocations to the highest fare
class have significantly decreased, as was expected. In some cases the SLP solution even
allocates fewer seats to a first class OD than the DLP solution. A possible explanation is that
the number of seats allocated to the highest fare class nearly equals expected demand, which
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aggravates the demand truncation. The number of seats allocated to the lowest fare class will
often be smaller than its expectation, which weakens the impact of the truncation. Moreover,
this class is not unattractive for the airline anymore. It is therefore a good strategy to shift
reserving seats from first to third class, but the DLP model fails to recognize this opportunity.
The simulation results are in Table 6.7.

Table 6.7
Simulation results for a smaller spread
among fares (5000 iterations)
Booking limit control DLP SLP
ER 63356 63181
LF 0.90 0.92
YP 164 163

The revenue generated by DLP is now only slightly higher  (0.3 %). It is interesting to see that
the roles have reversed: the YP resulting from the DLP booking limits is higher, and the LF
lower.  Our earlier conclusion that DLP causes the largest overprotection of high-fare seats if
the spread among fares is small appears to hold in a network environment as well.

We can conclude that the SLP model can only produce better revenue than DLP if the
differences among the fares become very small and the variance for low-fare demand
becomes large. Indeed we were able to construct an example where the SLP model
outperformed the DLP. However, the example is not representative for airline demand.

Notice that the SLP model is basically the same as EMR when the full demand
distributions are incorporated. One might wonder whether distinguishing fewer demand
scenarios will improve the performance of SLP compared to DLP. However, fewer scenarios
will only diminish the gap between DLP and SLP revenue by removing some of the
uncertainty related to demand. Beside the fact that it is a rather odd strategy to simplify a
model in order to get a better solution, the DLP model will still outperform SLP regardless of
the number of scenarios.

7. Conclusions
It is well known that taking into account the network aspect of seat inventory control

significantly increases an airline’s revenue. We have examined two mathematical
programming models that are aimed at doing so: one that incorporates probabilistic demand
and a deterministic approximation of this model. The solution of both models is a partitioning
of network capacity into seat assignments to all possible combinations of flight-origin,
destination and fare class. When translated to an actual booking control policy, however,
these seat allocations are nested. This roughly implies that profitable passengers also have
access to seats assigned to travelers that contribute less to network revenue. As a result, the
booking control policy is non-optimal and in general leads to an overprotection of seats for
the most attractive classes. This results into lower load factors but only in a marginally higher
average fare per passenger. We have shown that this can lead to a loss of revenue of up to 2%
even in a simple network environment.

The probabilistic model suffers heavier from ignoring the nesting property than its
deterministic counterpart. In order to earn the upward potential of high-fare demand, it
assigns even more seats to these classes, which in fact only aggravates the degree of
overprotection. Only if these classes are highly profitable, this approach will pay off. The
deterministic model is unable to recognize this potential at all, which is a major weakness. For
this reason, the probabilistic model will yield higher profits in a non-nested environment, but
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in a nested environment this weakness of the deterministic model turns to be profitable. This
explains the results by Williamson (1992) and shows that stochastic programming techniques
will not be successful either. In railway practice (Ciancimino et al. (1999)) the assumption
about non-nested seat allocations actually holds. This explains why this application area is an
exception to this rule, where the more sophisticated probabilistic model yields better results.
Here model SLP offers a practical alternative to the non-linear programming technique that
they propose to use. The problem size can easily be limited by considering only a small
number of demand scenarios and the optimal integer solution can be obtained by ordinary
linear programming.

Factors that turn out to have a negative impact on the effectiveness of both
probabilistic and deterministic models are uncertainty about the number of future bookings,
small spreads between fares for different classes and booking requests for different fare
classes arriving simultaneously. This indicates that an airline can diminish the degree of non-
optimality by offering well-differentiated fare classes to market segments of significant size.
However, optimal booking control is only possible by including the possibility of nesting into
the models and only then will the more advanced probabilistic model pay off. Ideally, this
method should also be dynamic of nature to deal with unknown future demand and be capable
of incorporating corrections in the booking limits or bid-prices for nesting. Hence alternative
modeling approaches are needed.
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Appendix
In Tables A. 1 – A. 4 we give the parameter settings for the examples considered in Section 6.
Recall from Section 4 that we simulate the booking process by a non-homogeneous Poisson
process with arrival intensity λODF(t) =AODF βODF(t), in which AODF~Gamma(p,γ) and βODF(t)
is the standardized beta distribution with parameters α and β. We let E and Sdev denote the
expectation and standard deviation of the aggregate demand for an ODF during the booking
period, which follows a negative binomial distribution.

Table A.1: Initial fare settings
OD Number Origin - Destination Fare class 3 Fare class 2 Fare class 1

1 A – B 75 125 250
2 A – C 130 170 400
3 A – D 200 320 460
4 B – C 100 150 330
5 B – D 160 200 420
6 C – D 80 110 235

Table A.2: Initial demand settings
Class 3

α=5, β=6
Class 2

α=2, β=5
Class 1

α=2, β=13
OD P γ E Sdev p γ E Sdev p γ E Sdev
1 80 1.6 50 9.01 80 2 40 7.75 3 0.1 30 18.17
2 80 2 40 7.75 50 2 25 6.12 2 0.1 20 14.83
3 60 2 30 6.71 72 3 24 5.66 2 0.1 20 14.83
4 60 2 30 6.71 40 2 20 5.48 2 0.1 20 14.83
5 60 2 30 6.71 60 3 20 5.16 6 0.3 20  9.31
6 80 1.6 50 9.01 80 2 40 7.75 6 0.2 30 13.42

Table A.3: Increased variance of demand for classes 2 and 3
class 3 class 2 Class 1

OD P γ E Sdev p γ E Sdev p γ E Sdev
1 20 0.4 50 13.23 20 0.5 40 10.95 3 0.1 30 18.17
2 20 0.5 40 10.95 5 0.2 25 12.25 2 0.1 20 14.83
3 15 0.5 30 9.49 18 0.75 24 7.48 2 0.1 20 14.83
4 15 0.5 30 9.49 10 0.5 20 7.75 2 0.1 20 14.83
5 15 0.5 30 9.49 15 0.75 20 6.83 6 0.3 20 9,31
6 20 0.4 50 13.23 20 0.5 40 10.95 6 0.2 30 13.42

Table A 4: Smaller spread between fares
OD Number Fare class 3 Fare class 2 Fare class 1

1 75 125 175
2 130 170 220
3 200 320 440
4 100 150 210
5 160 200 250
6 80 110 160


