
Human Model Evaluation in Interactive Supervised
Learning

Rebecca Fiebrink1,2, Perry R. Cook1,2, and Daniel Trueman2

Departments of 1Computer Science and 2Music
Princeton University

Princeton, New Jersey, USA
{fiebrink, prc, dtrueman}@princeton.edu

ABSTRACT
Model evaluation plays a special role in interactive machine
learning (IML) systems in which users rely on their assess-
ment of a model’s performance in order to determine how
to improve it. A better understanding of what model cri-
teria are important to users can therefore inform the design
of user interfaces for model evaluation as well as the choice
and design of learning algorithms. We present work study-
ing the evaluation practices of end users interactively build-
ing supervised learning systems for real-world gesture anal-
ysis problems. We examine users’ model evaluation criteria,
which span conventionally relevant criteria such as accuracy
and cost, as well as novel criteria such as unexpectedness.
We observed that users employed evaluation techniques—
including cross-validation and direct, real-time evaluation—
not only to make relevant judgments of algorithms’ perfor-
mance and interactively improve the trained models, but also
to learn to provide more effective training data. Furthermore,
we observed that evaluation taught users about what types of
models were easy or possible to build, and users sometimes
used this information to modify the learning problem defini-
tion or their plans for using the trained models in practice.
We discuss the implications of these findings with regard to
the role of generalization accuracy in IML, the design of new
algorithms and interfaces, and the scope of potential benefits
of incorporating human interaction in the design of super-
vised learning systems.

Author Keywords
Interactive machine learning, evaluation, gesture, music

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Interaction Styles; I.2.6 Artificial Intelligence: Learn-
ing

General Terms
Design, Human Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

INTRODUCTION
Machine learning offers a set of powerful algorithmic tools
for understanding, modeling, and making decisions from data.
Application of these tools has been critical to advances in
domains as diverse as bioinformatics, information retrieval,
gaming, robotics, and beyond. Along with a growing num-
ber of human-computer interaction researchers, we are in-
terested in the question of how to leverage human interac-
tion and expertise in new ways to make machine learning
even more effective and useful in more application domains.
We are particularly interested in engaging human interac-
tion throughout the process of building a working machine
learning model, by enabling the user to iteratively evaluate
the current state of the model and take appropriate actions to
improve it.

Human model evaluation plays a critical role in an interac-
tive machine learning context: evaluation methods are use-
ful not only for informing the user about the relative or ab-
solute quality of a given model, but also for informing the
user how he or she might take action to improve it. As we
seek to build effective and usable interactive machine learn-
ing systems, it is crucial to understand users’ own evaluation
criteria for models, the ways users engage different evalu-
ation techniques to gain the information they need, and the
ways users employ this knowledge to shape their future in-
teractions with the system. This understanding can be used
to inform the design of user interfaces for model evaluation,
the choice and interpretation of model evaluation metrics,
and the selection and design of learning algorithms them-
selves. It can also lead to a greater appreciation for how
applied machine learning applications may stand to benefit
from incorporating human interaction. It is precisely this un-
derstanding that we have sought in this work, through three
studies observing end users employing interactive machine
learning to build real-world gesture analysis systems in mu-
sic.

Our most significant findings are summarized as follows:
Users’ criteria for model evaluation included more than just
correctness, encompassing subjective judgments of proper-
ties such as cost, decision boundary shape, confidence, and
complexity (which, notably, was sometimes highly desir-
able). The relative importance of these criteria and the way
they were defined varied appreciably across applications. A
hands-on, fine-grained, exploratory evaluation of models al-
lowed users to judge them against these criteria and to learn

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Goldsmiths Research Online

https://core.ac.uk/display/18506851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Training examples:
inputs + outputs algorithm model

New
inputs

New
outputs

Training

Running

Figure 1. A supervised learning algorithm creates a model from train-
ing data. The trained model can then compute new output values from
new inputs.

the information they most needed to improve models’ behav-
iors. Cross-validation was sometimes useful for quick com-
parison and validation, but even when generalization accu-
racy was of high importance to the user, cross-validation ac-
curacy did not necessarily correlate positively with the user’s
subjective rating of a model’s quality. Finally, model evalu-
ation also provided feedback to users that helped them learn
to interact more effectively with the supervised learning pro-
cess and to interactively discover and manage tradeoffs be-
tween building models that were easy to create and building
models that were most useful in practice.

BACKGROUND AND MOTIVATION

Supervised Learning
This work concerns a family of machine learning and pat-
tern recognition algorithms known as supervised learning.
Here we will give only a very basic overview of supervised
learning; a more thorough treatment can be found in [6],
which is the reference for our overview unless otherwise in-
dicated. A supervised learning algorithm is essentially a tool
for producing a mathematical model or function that, given
some input, produces some output. The algorithm infers, or
learns, this model from a training dataset, which is a col-
lection of data points or “instances” consisting of example
inputs paired with their corresponding outputs, or “labels.”
After this model is built, it can compute new output values
for new inputs, even for inputs not present in the training
set. Figure 1 illustrates the relationship between the data,
algorithm, training, and model.

The inputs to a model are vectors of numbers, or features.
For example, a model of human gesture might take in a fea-
ture vector extracted from sensors worn on the body, where
the features themselves are raw sensor values, statistics com-
puted on those sensor values, or both. The output of a model
is either a real number or one of a finite set of discrete labels,
depending on whether the model is for regression or classi-
fication. For example, classification could be used to build
a sign language alphabet classifier that outputs the written
word a human is signing, as in [1]. On the other hand,
regression could be used to build a continuous gesture-to-
speech controller, such as one component of Fels and Hin-
ton’s Glove-TalkII, in which continuous hand motions result
in gradually changing articulatory control over a speech syn-
thesis algorithm [8].

A primary goal of supervised learning is to model the re-
lationship between inputs and outputs in the training set in
a way that allows generalization, producing reasonable out-
puts for new inputs not present in the training data. Con-
cern for generalization is at the core of the theoretical anal-
ysis and design of many machine learning algorithms. In
the PAC-learning framework, for example, a learning algo-
rithm is by definition capable of classifying instances not
(necessarily) in the training set with a high accuracy rate,
with a high probability [21]. Widely-used algorithms such
as AdaBoost and support vector machines are designed to
explicitly to maximize generalization accuracy (that is, the
proportion of future inputs that are assigned the correct la-
bel) [6].

An emphasis on generalization accuracy underlies many stan-
dard metrics used to evaluate the suitability of an algorithm
(or parameterization thereof) for modeling a given dataset.
Unless one knows the identity of all future inputs to a model
and their proper labels (in which case building a perfect model
is trivial), generalization accuracy must be estimated from
the available data. Using accuracy on the model’s training
dataset is a poor estimate, as this can assign too favorable a
rating to a model that has “overfit” to the training data and is
poor at generalizing. So, the available data can be partitioned
into a training set and a mutually exclusive test set for eval-
uating performance. Cross-validation is a commonly-used
technique that repeats this procedure several times such that
each available instance is present in the test set of a single
iteration, then averages test set accuracy over all iterations.
Alternative measures such as F-measure, cost, precision, re-
call, and area under ROC may be used under certain circum-
stances, but in each case, the goal remains to estimate the
model’s relevant future behavior from the available, finite
data. In order to do this, it is standard for the learning algo-
rithms and evaluation procedures to make the basic assump-
tion that the future inputs to a model will look more or less
like the training data. This can be stated probabilistically as
the assumption that the training data and the future data ex-
amples are both sampled i.i.d.1 from a shared distribution
over the data space.

Interactive Machine Learning
Our work focuses on supporting human-computer interac-
tion in the context of creating machine learning systems,
where users are engaged in tasks including choosing and
training a learning algorithm, evaluating and comparing mod-
els, and supplying training data. The scope of relevant users
includes researchers applying machine learning techniques
to data analysis in an application domain of their expertise,
developers of user interfaces that contain machine learning
components, and end users of software tools that directly
engage the user in controlling some aspects of a machine
learning system, such as providing training data and evalu-
ating trained models.

There is an exciting thread of recent research investigating
how human interaction can be leveraged in new ways in the
1independent and identically distributed; i.e., having a shared un-
derlying probability distribution and being mutually independent

creation of machine learning systems. For example, Mani-
Matrix allows users to manipulate a confusion matrix to in-
teractively steer a model’s performance to reflect their pri-
orities [16], and EnsembleMatrix harnesses human users to
optimize ensembles of learners [20].

One significant opportunity for improving supervised learn-
ing systems using human interaction lies in enabling the user
to evaluate a model, then edit its training dataset based on his
or her expert judgments of how the model should improve.
This approach was proposed under the term “interactive ma-
chine learning” by Fails and Olsen [7], whose Crayons sys-
tem allows users to improve an image classification model
by iteratively evaluating the system, providing new training
data, and retraining. We have found this approach very use-
ful in building systems for audio analysis [12] and musical
gesture analysis [9]. This general approach has also been
applied to handwriting analysis in CueTip [19], web image
classification in CueFlik [13, 2, 3] (where it is termed “end-
user interactive concept learning”), document analysis by
Baker et al., [4], and sensor-based interaction design in Ex-
emplar [15]. This body of work suggests that, for domains
where it is feasible to provide additional training data, and
where a human user has knowledge of the modeling prob-
lem, user modification of the training data allows a natural
and effective means to take advantage of user expertise.

Motivation
We propose, along with prior work such as that of Amershi et
al. [3], that interactive machine learning interfaces must not
only enable the user to effectively edit the training data, but
also supply him with the information he needs to most effec-
tively guide the machine learning process. One aim of our
work is to learn more about what this information entails,
based on users’ own criteria for evaluating models and the
actions they take based on their evaluations. Additionally,
in any machine learning application, the choice of algorithm
and objective evaluation metrics reflect certain assumptions
about the goals for the trained model, for example the goal
of good generalization accuracy. A second aim of our work
is therefore to interrogate how knowledge of end users’ eval-
uation criteria and evaluation strategies can inform the selec-
tion or design of learning algorithms and evaluation metrics.
Finally, though interactive machine learning of this type has
not been widely studied in gesture analysis or in real-world
applications, several of the users we have worked with have
found it to be a transformative technique in their work in mu-
sic. So, a third goal is to provide an enriched understanding
of the merits of an interactive approach to supervised learn-
ing by studying users applying it to real-world problems in
this domain.

APPLICATION DOMAIN, SOFTWARE, AND STUDIES
Application Domain and Software
We have observed and worked with users applying super-
vised learning to different human gesture modeling prob-
lems in computer music composition and performance. Some
gesture analysis applications in music entail the identifica-
tion and classification of discrete control gestures, in order to
initiate computer audio or visual events (e.g., [18]). Certain

of these applications closely resemble gesture analysis prob-
lems in the design of interfaces for general-purpose control
(e.g., [23]) and gaming (e.g., [14]). Other applications in
music involve the analysis of acoustic performers’ musical
gestures, for example analysis of the bowing articulations of
a string player (e.g., [24]). These applications have certain
parallels to analysis of natural human motion, for example
in sports or medical diagnosis (e.g., [5]). A third category
of applications that has no clear counterpart in non-creative
domains is the design of new computer music instruments,
where the trained model provides a function mapping from
the sensed gesture space into the parameter space of an audio
synthesis algorithm (e.g., [17]). There, the goal is to allow a
human performer to “play” the synthesis algorithm expres-
sively in real-time, not to model human gesture “correctly,”
per se. Each of these application categories is represented in
at least one of our three studies.

Gesture modeling is a natural domain for applying interac-
tive machine learning: when the goal is to build a gesture
model of the user herself, it is easy to obtain representa-
tive training and evaluation data and to trust that she un-
derstands the goal of the modeling problem well enough to
make reasonable assessments of model quality. However,
despite widespread application of supervised learning to ges-
ture modeling in music, previous work does not incorporate
human interaction in this way.

The software used in all three studies, the Wekinator, has
been designed to facilitate the interactive application of stan-
dard supervised learning algorithms in real-time domains,
including music. The software is described in detail in [9].
It supports an iterative approach to IML illustrated in Figure
2, and it provides user interfaces for the creation, editing,
and visualization of the training data, the selection of ma-
chine learning algorithms and their parameters, and the run-
ning of trained models on real-time inputs. Users are able
to create and add to the training dataset by demonstrating
different inputs (here, physical gestures) in real-time while
providing the corresponding classification or regression la-
bels using the Wekinator GUI. Users can also run trained
models in real-time, producing a stream of real-time model
outputs in response to an incoming stream of gestural in-
puts. In this regard, the Wekinator is similar to the Exem-
plar system [15], though the Wekinator is a more general-
purpose tool that includes support for experimenting with
different algorithms and applying machine learning to vari-
ous real-time problems, including the analysis of audio and
other non-gestural inputs.

The Wekinator includes standard algorithms for classifica-
tion (AdaBoost.M1, J48 decision trees, k-nearest neighbor,
and support vector machines) and multilayer perceptron neu-
ral networks for regression. While the Wekinator can take
inputs from any external feature extractor, it includes several
simple, built-in gestural feature extractors that allow users
to provide gestural inputs using the webcam, the laptop’s in-
ternal accelerometers, the trackpad (used as a 2-dimensional
finger position sensor), and USB human interface devices
(HIDs) including standard game controllers.

Train	
algorithm	
to	 build	
model	

Create	 &	
edit	

training	
examples	

Evaluate	 trained	 model	

Compute	
accuracy	

(e.g.,	 cross-‐
valida>on)	

Directly	
evaluate	 by	
running	 on	
real-‐>me	
inputs	

Configure	 learning	 problem	 and	
algorithm	

Select	
features	

Choose	
algorithm,	
algorithm	
parameters	

= done in GUI
= involves user
physically
demonstrating gestures

Figure 2. The interactive machine learning workflow supported by the
Wekinator, where white actions are performed using the GUI and grey
actions are performed through real-time demonstration.

In the Wekinator, users can evaluate trained models both
by computing cross-validation and by hands-on, or “direct”
evaluation. In direct evaluation, illustrated in Figure 3, the
user provides inputs (here, gestures) in real-time and ob-
serves the model’s behavior. The user can view the model’s
current outputs as text fields in the GUI, or the models’ out-
puts can be sent over the Open Sound Control protocol2 to
another program, for example to control a visualization or
sound synthesis algorithm in real-time.

Studies
We have conducted three studies of people applying super-
vised learning to their work in computer music. In the first
study (“A”), we led a user-centered design process (see [22])
with seven composers, which focused on the refinement of
the Wekinator. The participants were six PhD students and
one faculty member in Princeton’s Music Composition de-
partment. Participants met weekly for three hours each week
for ten weeks. During each session, they discussed how they
were using the software in their work, proposed improve-
ments, asked questions, and experimented with the software.
We took written notes of composers’ questions, suggestions,
and discussion topics. In between meetings, we implemented
suggested improvements. After the ten meetings, partici-
pants completed a written questionnaire about their experi-
ences in the process and their evaluation of the software.

The composers in Study A primarily used the Wekinator
to build new musical instruments, creating neural network
models that input the sensed human gestures and output con-
trol parameters that drove a digital audio synthesis algorithm
in real-time. Participants used a variety of gestural input de-
vices, including webcams, laptop motion sensors, HID de-
vices, and custom-built sensor arrays. The two most fre-
quently used synthesis algorithms required the setting of sev-
eral (nine or more) real-valued control parameters, each of
which had highly nonlinear and interdependent effects on
the sound. Composers had found these algorithms difficult

2http://opensoundcontrol.org/

control	
or	 sensor	
interface	

feature	
extractor	

synthesis	
algorithm	

GUI	 output	 	 or	
visualiza9on	

“class=5”	

real-
time

gesture

input
features

output
parameters

and
/or

auditory &
visual
 feedback

trained	
model	

Figure 3. Direct model evaluation in the Wekinator. The user supplies
new gestural inputs in real-time and evaluates the model’s response
by observing the sonic or visual processes controlled by the model’s
outputs.

to control in a musically satisfying way using either a GUI
or an explicitly programmed control sequence. More infor-
mation about this study and a discussion of how participants
used supervised learning in composition is published in [11].

In the second study (“B”), we observed a group of 21 stu-
dents using the Wekinator in an assignment focused on su-
pervised learning in interactive music performance systems.
All students were enrolled in an interdisciplinary computer
science and music course that included a significant em-
phasis on interactive performance technologies. Students
ranged from first through fourth year in undergraduate study,
they came from a variety of majors, and most had only rudi-
mentary knowledge of machine learning. Prior to the assign-
ment, the students received an in-class discussion and demo
of the Wekinator software. In the assignment, each stu-
dent was asked to use an input device (USB controller, mo-
tion sensor, trackpad, or webcam) to create two gesturally-
controlled music performance systems, one that employed
a classifier to trigger different sounds based on each ges-
ture’s label, and one that employed a neural network to cre-
ate a continuously-controlled musical instrument (similar to
Study A). These tasks were assigned in preparation for the
midterm concert, which required students to compose and
perform pieces using interactive systems that they had built
(though not necessarily the systems built during the assign-
ment). The software logged the students’ actions during both
tasks. The assignment also included 12 short-answer ques-
tions about the process of creating the two systems. Students
were graded on completing the assignment and answering
the questions thoughtfully.

The third study (“C”) was a case study in which we worked
with a professional cellist/composer to build a gesture recog-
nition system for a sensor-equipped cello bow. This bow,
called the “K-Bow,”3 contains sensors for measuring the po-
sition and motion of the bow in real-time, including accel-
eration along three axes, tilt, horizontal and vertical position
of the bow relative to the instrument, hair tension, and grip
pressure. The goal of our work with the cellist was to build a
3http://www.keithmcmillen.com/products/k-bow/

!"

#"

$"

%"

&"

'!"

'#"

'$"

()*+""""
,-+-"

()*+""""""
./0"

()*+"
12-+3425"

64755""
8-/"

,*429+"
(:-/"

;2+4-*<"

!
"#
$%
&%
'(
)
"*
%+
,-
.$

%
/"

01
.0
)
"2

%34
"0
%5#

*6
7%

="

6"

Study

Figure 4. The mean number of times each interaction was performed,
for each task and user in B, and for each task in C.

set of gesture classifiers to process the bow sensor values in
real-time and produce musically appropriate labels. These
labels could then be sent to the cellists’ own composition
programs in Max/MSP (a standard music composition en-
vironment) and used to influence computer-generated sound
and/or visuals. Following a preliminary study with the cellist
to develop infrastructure for communicating the bow outputs
to the Wekinator and to choose gestures to classify [10], in
Study C we worked with the cellist to construct eight ro-
bust gesture classifiers that labeled the bow’s vertical posi-
tion, horizontal position, roll, speed, articulation style, direc-
tion, position on or off the string, and grip squeeze strength.
Throughout this process, the software logged all actions and
saved all iterations of the trained gesture models. We also so-
licited the cellist’s subjective rating of each model’s overall
quality, and we recorded observations of the model-building
process using video and written notes.

FINDINGS
Interactive, Iterative Model-Building
Participants in all three studies took an approach to model-
building in which they interactively created the training data
from scratch, then iteratively built models, evaluated the mod-
els, and modified the models by changing the training dataset,
learning algorithms, selected features, and/or algorithm pa-
rameters. Students in Study B retrained the algorithm an
average of 4.1 times per task (σ = 5.1), and the cellist in C
retrained an average of 3.7 times per task (σ = 6.8). In be-
tween retrainings, users most frequently changed the model
behavior by editing the training data. Figure 4 summarizes
the logged actions of users in B and C. For Study A, partic-
ipants’ questionnaires indicated that they also iteratively re-
trained the models, and they almost always chose to modify
the models only by editing the training dataset. In all stud-
ies, retraining of the models was nearly always fast enough
to enable uninterrupted interaction with the system (i.e., a
few seconds or less).

The Use of Cross-validation
In Study A, composers never used cross-validation. In B
and C, cross-validation was used occasionally; on average,
students in B used it 1.0 times per task (σ = 1.5), and the
cellist in C used it 1.8 times per task (σ = 3.8).

The five students in Study B who commented on their use
of cross-validation indicated that they treated a high cross-
validation accuracy as reliable evidence that a model was
performing well. At least one student used cross-validation
to validate his own model-building ability, writing “Follow-
ing [dataset creation], I would usually quickly check the
cross-validation and training accuracy and see if Wekinator
thought that my model was a good one. If it was, my next
step was usually to run the model myself and observe how
it reacted to different gestures.” This echoes the findings of
Amershi et al. [3], who observed that users felt pressure to
optimize cross-validation accuracy as an end in itself, rather
than using it as an informative tool.

In Study C, cross-validation was used to quickly and objec-
tively compare alternative classifier algorithms on the same
dataset. This was done either after direct evaluation had
shown that a reasonably good model had been built from
the current training dataset, and it was uncertain which al-
gorithm might perform most accurately, or when direct eval-
uation had revealed the learning problem to be particularly
stubborn, and many different algorithms and feature selec-
tions were tried in succession to see if any one might result
in a usable model. Cross-validation was convenient for this
purpose because it provided a faster and more consistent way
of comparing models than direct evaluation (each round of
cross-validation took, on average, 1.1 seconds; σ = 1.5).

The Use of Direct Evaluation
Participants were also able to perform direct, hands-on eval-
uation to assess model performance. In direct evaluation in
Studies A and B, models’ real-time outputs drove sound syn-
thesis algorithms. In C, the cellist had the option of display-
ing outputs textually in a GUI or controlling a live visualiza-
tion, as discussed below.

Participants in all three studies used direct evaluation more
frequently than cross-validation. Participants in A only used
direct evaluation; participants in B performed direct evalu-
ation an average of 4.8 (σ = 4.8) times per task, and the
cellist in C performed direct evaluation 5.4 (σ = 7.6) times
per task. (Note that C required a minimum of one direct
evaluation per retraining, as the cellist was required to as-
sign each model iteration a subjective rating based on her
evaluation.) Compared to cross-validation, direct evaluation
was used under a wider variety of circumstances and to eval-
uate the model against a wider array of subjective criteria. In
the following section, we discuss the criteria users employed
when directly evaluating models, and how users took action
to improve models against these criteria.

Direct Evaluation Criteria
Correctness
Predictably, direct evaluation was employed to systemati-
cally check a model’s correctness over a range of the input
space of gestures. In all studies—including the expressive
instrument design projects in A and B, where there was no
objectively right or wrong model behavior—users identified
the model’s behavior as incorrect when it produced an out-
put contrary to what they believed was appropriate and ex-

pected. Users typically reacted to this finding by modifying
the training dataset—adding new inputs similar to those that
caused the error, but with the correct labels—and retraining.
In extreme cases of failure, users deleted the training set and
recreated it from scratch.

Cost
Our observations suggest that users held an implicit error
cost function that variably penalized model mistakes based
on both the type of misclassifications (i.e., the user’s la-
bel and the model’s label) and their locations in the gesture
space. For example, the cellist in C verbally indicated that
classification mistakes a human cellist might easily make
were less problematic. Another concern for users in A and
B was whether a model could produce desirable or correct
outputs for the types of gestures that would be used in a per-
formance; the model’s behavior on gestures not used in per-
formance was inconsequential. Note that, for these users,
the goal of applying supervised learning was not to model
a gestural vocabulary that was strictly defined a priori: the
users had considerable leeway in choosing which gestures
would be used in performance. One student in B wrote about
his strategy for designing the training set: “I tried to as-
sess which [sounds] I would use more often and correlate
them with [features] that were easier to obtain on the [in-
put device]. . . ” One role of direct evaluation was to search
for input gestures that produced good outputs and practice
them to ensure that they could be performed reliably. Sev-
eral users in A and B likened this to practicing a traditional
musical instrument, and just as in learning to play the vio-
lin, for example, users accepted responsibility for adjusting
and improving their own performance-time actions to ensure
good behavior of the model. In other words, users were not
only seeking to improve the model to minimize cost, but they
were also interactively attempting to adjust the cost function
itself to favor the model.

In Study A, misclassification cost was also higher for ex-
amples similar to those in the training set: some composers
indicated that they designed their training examples with the
explicit intention of using the model to play those chosen
sounds when they made the corresponding chosen gestures,
and they were not happy when the trained model did not al-
low this. Composers were typically much less concerned
with the model behavior matching their pre-formed expec-
tations for input gestures dissimilar to those in the training
set.

Decision Boundary Shape
In Study C, the cellist occasionally complained that, as she
gradually changed from one bow gesture to another, a clas-
sifier’s output might jump around unpredictably before sta-
bilizing. When classifying horizontal bow position, for ex-
ample, it was very important to her that the classifier cleanly
switch from a label of “frog” to a label of “middle” at some
point during a down-bow stroke, rather than jump between
the two; it was less important that this label switching hap-
pen at a precise horizontal position. In other words, the
shape and smoothness of the classifier decision boundaries
in the gesture space were more important than their exact lo-

cations. Actions taken to smooth jagged decision boundaries
included changing algorithm parameters (e.g., increasing k
in k-nearest neighbor) and adding smoothly-labeled training
data along the boundary area.

Label Confidence and Posterior Shape
In Study C, the cellist also took model confidence into ac-
count when evaluating its quality. The cellist was proficient
in Max/MSP, and she worked with us during the study to
design several simple Max/MSP visualizations to help her
understand more about the model during direct evaluation.
One frequently-used visualization displayed the model’s es-
timated posterior probability distribution over the set of class
labels. When the model classified her current bow gesture
correctly but also assigned relatively high posterior proba-
bilities to several incorrect labels, the user expressed dissat-
isfaction (at one point exclaiming, “Come on, be more sure
than that!”) and attempted to improve the model’s confi-
dence, usually by adding more training data. The cellist also
considered the information gained from the posterior distri-
bution as potentially helpful for improving the practical use-
fulness of a poorly-performing classifier. For example, when
evaluating an articulation classifier using the posterior visu-
alization, she noticed that although the model often output
the wrong label for three of the articulations, the posterior
distribution for these articulations had a predictable “sig-
nature” shape that could be post-processed by some simple
code to produce the correct label.

Complexity and Unexpectedness
In Study A, composers valued models that produced soni-
cally interesting parameterizations of the synthesis algorithm,
which a human could manipulate over time in a musically
sensitive way. Composers typically did not construct the
models with a full set of physical and musical gestures al-
ready in mind; rather, a common strategy for building the
models was to choose a few different and interesting syn-
thesis parameter values that they wanted the instrument to
be capable of playing, match each of these with a different
gestural input in the training set, then directly evaluate the
trained model to discover and explore the sounds that arose
as they moved between and around the gestures present in
the training set.

When evaluating the model using gestures outside the train-
ing set, two of the characteristics that were most important
to composers were its complexity and unexpectedness. Un-
like in a typical machine learning application, complexity
was desirable, and composers sometimes added training data
with the explicit intention of making the model more com-
plex. Some composers remarked that the complexity of func-
tions generated by the Wekinator’s neural networks made
their new instruments feel more like traditional, acoustic in-
struments, which by nature involve very complicated rela-
tionships between the physical gestures of a performer and
the sound produced. Additionally, composers valued the
fact that they could be surprised by the sounds generated
by a gesture not in the training set, allowing them to find
unimagined and compositionally useful sounds in the syn-
thesis space.

Subjective Evaluation Versus Cross-validation
In Study C, every time an algorithm was trained or retrained,
the cellist evaluated the model using direct evaluation and
assigned it a subjective rating from 1 to 10. After the com-
pletion of the study, we computed cross-validation accuracy
for all models from the logged data. For each of the six clas-
sification tasks where three or more training iterations were
performed, we computed the Pearson’s correlation between
the cellist’s rating of each model and its cross-validation ac-
curacy. Even though model accuracy was extremely impor-
tant to the user, the data show that a model’s cross-validation
accuracy did not always positively correlate with its subjec-
tive rating. The horizontal position, vertical position, bow
direction, and on/off string classification tasks had negative
correlation coefficients (−0.59, −0.44, −0.74, and −0.50),
while speed and articulation classification tasks had positive
coefficients (0.65 and 0.93).

In the four tasks with negative correlations, the training sets
of certain iterations provided representations of the learning
problem that were both inaccurate and simple to model. For
example, an initial version of the horizontal position training
set contained mislabeled examples for all instances of one
class. The training dataset was easy to classify correctly but
the resulting model was useless. In the other tasks, the nega-
tive correlation likely resulted from the cellist unknowingly
co-varying the bowing class of interest with more easily dis-
tinguishable aspects of the gesture (such as the string be-
ing played), effectively leading the model to learn the wrong
concept. In all four cases, therefore, problems with the train-
ing set were undetectable using cross-validation. Direct eval-
uation allowed the cellist to discover the problems, fix them,
and ultimately create models rated “10” for each task.

Evaluation and Human Learning
Cross-validation and direct evaluation served as feedback
mechanisms to the users, enabling them to discover whether
or not their recent changes to the training set or algorithms
had had the desired effect on the retrained models. In fact,
as the Wekinator did not provide any machine learning tuto-
rials or hints, the feedback obtained from cross-validation or
direct evaluation was the only mechanism for users to learn
how their actions were likely to affect the system. In this
way, evaluation actions trained the users, none of whom had
significant experience or instruction in machine learning, to
use the system more effectively.

Teaching Users to Provide Better Data
In Study B, when asked about their strategies for model build-
ing, ten students indicated that they had learned during their
interaction with the software to provide training data that
more clearly expressed their intentions. One student wrote,
“In collecting data, it is crucial, especially in Motion Sensor,
that the positions recorded are exaggerated (i.e. tilt all the
way, as opposed to only halfway).” Another wrote, “I tried
to use very clear examples of contrast in [input features]. . . If
the examples I recorded had values that were not as satisfac-
tory, I deleted them and rerecorded. . . until the model under-
stood the difference.” Some students even learned to balance
class proportions in the training set (“Each extreme of a pa-

rameter should be trained with roughly the same number of
examples”), even though this more advanced machine learn-
ing concept was not introduced in class.

The cellist in Study C remarked that her strategy for provid-
ing training data “definitely evolved over the training ses-
sions.” By the end of the study, her strategy for classifi-
cation problems she knew from experience were easier to
model was to provide as varied a training dataset as possible,
varying “which string, bow position (frog to tip and finger-
board to bridge), speed and preparation (i.e., how high off
the string I would start). . . ” to make the trained model max-
imally robust to these effects. On the other hand, for prob-
lems that she discovered were more difficult to model, she
started by simplifying the problem represented in the train-
ing dataset, keeping variables such as speed and choice of
string constant across all training examples in order to build
a model more likely to discriminate between classes based
on only truly relevant criteria.

Teaching Users What is Possible
Users often adapted their goals for the system based on what
they discovered through direct evaluation. This was espe-
cially true for users in A and B, who had some choice in
the types of models they asked the computer to learn. One
reason for adaption was that, as machine learning novices,
users did not have well-formed expectations of how different
algorithms worked or what could be accomplished with su-
pervised learning. When discovering that their efforts were
failing to produce a model that worked how they wanted (for
example, failing to create a neural network with a smoothly
linear mapping between a gesture and a synthesis parame-
ter), users adjusted their goals. Another reason for adap-
tation was that, through hands-on experimentation with the
system, users discovered that models performed in unex-
pected ways that they actually liked better than their initial
goals. Twelve students in B indicated that they changed their
minds about which gestures they wanted to use after their
initial efforts failed to produce a model that worked how they
wanted, or when they discovered that a model did something
unexpectedly useful for a new gesture. Two other students
and the majority of the composers indicated that their strat-
egy was to choose performance-time gestures to use solely
through exploration, rather than start from a set of gestures
they were intent on incorporating. In C, the cellist’s goals
were more subtly adjusted to reflect knowledge about what a
model was able to learn alongside knowledge of what type of
model would be most useful in practice. For example, after
building a speed classifier that worked well for three classes,
she decided to try building a finer-grained speed classifier
for five classes.

Providing Feedback on Users’ Gestural Techniques
In Study C, the cellist also gained a new perspective on her
own bowing technique, when she discovered through con-
sistently poor system behavior that her training data was not
as clear as she thought it had been. For example, noticing
that the bowing articulation model was not discriminating
well between riccocet and spiccato strokes, she reexamined
her own technique for those strokes and discovered that her

spiccato technique actually needed to be improved in order
to be less like riccocet. After adjusting her technique, she
was able to both train a model that performed better and pro-
duce a better cello sound.

Usability and Usefulness of the Software
Our findings indicate that participants understood how to use
the software, found it useful, and were engaged in mean-
ingful interactions during our observations. At the conclu-
sion of Study A, composers highly agreed that the Wek-
inator allowed them to create more expressive models than
other techniques (mean = 4.5 on a 5-point Likert scale) and
to create models more easily (mean = 4.6). In Study B,
students highly agreed that they were able to create models
that learned what they wanted (mean = 4.6), that their clas-
sifiers provided reliable classifications (mean = 4.9), and
that their neural network models were musically expressive
(mean = 4.1). All students subsequently succeeded in em-
ploying the software in their midterm performances. In C,
the cellist rated the quality of six of the eight final bow ges-
ture classifiers as “10” and the other two as “9” on a 10-point
scale. A more thorough evaluation of software usefulness
and usability is provided in [9].

DISCUSSION
Model Evaluation in Interactive Contexts
Our observations suggest that metrics such as test set accu-
racy or cross-validation accuracy may be, on their own, in-
sufficient for assessing the quality of models designed for
interactive human use. First, users were concerned with
evaluating more than the overall accuracy or error rate. Di-
rect evaluation allowed them to identify where and how the
model was likely to make mistakes, enabling them to make a
cost-sensitive assessment based on criteria like error severity
and the extent to which it might be possible to avoid using
error-prone gestures during a performance. Direct evalua-
tion also allowed users to evaluate models against highly
subjective criteria, such as “unexpectedness” of model be-
havior.

Furthermore, in interactive machine learning, cross-validation
or held-out test set accuracy may be problematic for other
reasons. As demonstrated by the negative correlation be-
tween cross-validation accuracy and user rating for some
tasks in Study C, the training set may be a particularly poor
resource for estimating generalization performance during
certain stages of the interactive model creation process, es-
pecially when the human has not yet discovered problems
with the training data. Additionally, in this approach to IML,
the user manipulates the training set as a means to directly
influence the trained model’s behavior, for example by adding
properly-labeled examples to correct mistakes in error-prone
areas of the input gesture space. Given that the user is con-
sciously employing the training set to manipulate model per-
formance, it is not necessarily reasonable to assume that the
training examples will at all resemble the examples seen by
the model in the future. Speaking probabilistically, it may be
too strong an assumption to say that the training examples
and the future examples are sampled i.i.d from a shared un-
derlying distribution. So, evaluation based on a test set parti-

tion of the user-generated training data may not be meaning-
ful for estimating model performance on future inputs. At
the same time, in the case that the person driving the inter-
active machine learning process will also be the future user
of the trained model, the user may know how to generate
evaluation data that is more representative of future inputs.

Generalization Accuracy and the Choice and Design of
Algorithms for IML
Supervised learning algorithms are often explicitly designed
with the goal of maximizing generalization accuracy. Gen-
eralization accuracy was indeed a goal for many of our ob-
served users, in that they intended the system to produce rea-
sonably accurate outputs for gestural inputs that were not
identical to those in the training set. In the music perfor-
mance scenarios for which users were creating the models,
there would be inevitable variation in future inputs due to
human error and circumstances including room lighting and
camera position when using the video input, or non-identical
sensor calibrations when using the sensor bow. To some
degree, the human user can mitigate the effects of chang-
ing circumstances by adding more training examples and re-
training. But so long as the goal is to create a robust system
for use in performance, the ability to accurately generalize
to previously unseen inputs remains important.

As we have discussed, users were concerned with other model
characteristics in addition to accuracy. When these other cri-
teria are known and quantifiable, it may be useful to choose
or design algorithms that explicitly consider these criteria
during training. For example, algorithms might explicitly
enforce decision boundary smoothness or function complex-
ity. Alternatively, it may be useful to employ algorithms that
expose parameters that users can employ to explicitly adjust
models along dimensions that are important to them. For
example, many algorithms can incorporate a regularization
parameter controlling the degree to which overfitting is pe-
nalized [6], and exposing this parameter to the user could
allow a means of interactively adjusting the complexity of
the model.

Many learning algorithms are designed to produce a model
with good generalization accuracy (as estimated, again, from
the available training data), at the cost of good training ac-
curacy. Even when generalization accuracy is of primary
importance to the user, privileging generalization accuracy
at the expense of training accuracy might be problematic in
this type of interactive machine learning context. First, for
the reasons discussed above, the training set may sometimes
be a poor resource for estimating generalization accuracy.
Second, the IML user relies on the algorithm’s attention to
the training examples as the primary means of influencing
the model’s behavior after training. By down-weighting the
importance of training accuracy—that is, by being willing to
misclassify portions of the training dataset—the algorithm
may be ignoring an intentional attempt by the user to shape
the model’s behavior. It is possible, therefore, that training
accuracy may play a more important role in interactive su-
pervised learning than in conventional supervised learning.
Future work might investigate whether algorithms such as

k-nearest neighbor, which does not explicitly address gen-
eralization accuracy and which can trivially achieve perfect
training accuracy, are preferred by interactive machine learn-
ing users under certain circumstances.

The Benefits of Interactive Evaluation
Model evaluation provided a feedback loop that aided users
in developing effective strategies for building working sys-
tems. Users were “trained” by the system to take appropri-
ate actions to improve models according to their subjective
goals, for example learning to provide clearer training exam-
ples. This feedback also helped users learn what was pos-
sible to accomplish with the given learning algorithms and
features; in response, users sometimes adapted their interac-
tions with a model during performance to work around its
shortcomings. At other times, users made changes to flexi-
ble aspects of the learning problem, such as the number or
nature of gesture classes to be used, in order to create models
that were both feasible to build and most useful in practice.
These behaviors bode especially well for the usefulness of
interactive machine learning in other domains where users
have some freedom in defining and changing the concept
learned by the models, or where users are able to adapt their
behavior to treat a trained model more “gently.” In these
cases, interactive design of the machine learning component
can help users choose the most appropriate learning concepts
and learn to provide good training data for those concepts.

Though previous work, notably that of Amershi et al. [2],
has explored ways to provide the user with visual interfaces
to efficiently evaluate trained models and choose new train-
ing examples, it is not clear how to extend this work to mod-
eling problems for which there is no existing dataset of un-
labeled examples, or in domains for which it is difficult to
visualize examples. In this work, the exploratory nature of
direct evaluation provided a means for users to assess the
trained model’s behaviors against a variety of subjective cri-
teria, and the example-level granularity of the knowledge
gained this way was critical to both making judgments of
model quality and making corrective edits to the training
data. Further work exploring how to guide users’ evalu-
ations to interesting or important areas of the model input
space would be valuable. Additionally, it is worth exploring
whether a gesturally-controlled, example-granularity explo-
ration of the input space might be useful for directly evalu-
ating models in domains where the model input itself is not
human gesture.

CONCLUSIONS
We have observed people applying interactive supervised
learning to several gestural analysis problems in computer
music. User interactions included creating training data by
real-time demonstration, evaluating models by computing
cross-validation accuracy and by running them on new in-
puts in real-time, and iteratively improving models by chang-
ing aspects of the training data, algorithm, or features, and
retraining. These interactions are appropriate for domains
in which the user is capable of efficiently supplying training
data and competently judging the suitability of the trained
models for the application context.

In this work, we examined the criteria users held for assess-
ing the quality of trained models, the techniques they em-
ployed to evaluate models, and the ways that model eval-
uation informed their goals and interactions with the sys-
tem. We observed that cross-validation was sometimes use-
ful for quickly assessing accuracy, but direct evaluation al-
lowed users to make accuracy assessments that were cost-
sensitive, assess models against a wider set of criteria, and
detect problems with inaccurate models that were undiscov-
erable using cross-validation alone. Users employed cross-
validation and direct evaluation to inform their immediate
next actions with the system—for example, the choice of a
certain algorithm, or the addition of particular training data.
Model evaluation also provided feedback that enabled users
to develop more effective interaction strategies for guiding
the machine learning outcomes (especially strategies for pro-
viding better training data). Finally, through iterations of
model building and evaluation, users learned about what was
feasible to accomplish with the given features and algorithms,
and they sometimes modified the learning problem definition
or their goals for how the models would be used in order to
create models that were most useful in practice.

From these observations, we conclude that supervised learn-
ing models intended to be ultimately used in interactive con-
texts should be evaluated with attention to the model qual-
ities important to users in those contexts; in particular, ob-
jective accuracy metrics such as cross-validation may not be
sufficient to allow researchers or system designers to validate
or compare model quality. We also conclude that exploratory
evaluation of models can complement objective metrics in
allowing users to evaluate models against a wide range of
criteria. We propose that IML systems may benefit from the
use of existing or new algorithms designed to optimize var-
ious quantities (beyond generalization accuracy, and possi-
bly including training accuracy) that are important to users.
Lastly, we conclude that a previously-unexplored benefit of
IML is the ability for human domain experts to improve the
ultimate usefulness of a trained model, through iteratively
using model evaluation outcomes to inform changes to the
learning problem and to the context in which the model will
be used.

ACKNOWLEDGEMENTS
We are grateful to our participants for their time, feedback,
and insights. This material is based upon work supported un-
der a National Science Foundation Graduate Research Fel-
lowship. Any opinions, findings, conclusions or recommen-
dations expressed in this publication are those of the author
and do not necessarily reflect the views of the National Sci-
ence Foundation. This work is also supported by the Kim-
berly and Frank H. Moss ’71 Research Innovation Fund and
the David A. Gardner ’69 Magic Project.

REFERENCES
1. Allen, J. M., Asselin, P. K., and Foulds, R. American

sign language fingerspelling recognition system. In
Proc. of the IEEE 29th Bioengineering Conference
(2003).

2. Amershi, S., Fogarty, J., Kapoor, A., and Tan, D.

Overview-based example selection in end-user
interactive concept learning. In Proc. of the ACM
Symposium on User Interface Software and Technology
(UIST ’09) (2009), 247–256.

3. Amershi, S., Fogarty, J., Kapoor, A., and Tan, D.
Examining multiple potential models in end-user
interactive concept learning. In Proc. of the SIGCHI
Conference on Human Factors in Computing Systems
(2010), 1357–1360.

4. Baker, K., Bhandari, A., and Thotakura, R. An
interactive automatic document classification prototype.
In Proc. of the Third Workshop on Human-Computer
Interaction and Information Retrieval (2009), 30–33.

5. Begga, R., and Kamruzzaman, J. A machine learning
approach for automated recognition of movement
patterns using basic, kinetic and kinematic gait data.
Journal of Biomechanics 38 (2005), 401–408.

6. Bishop, C. M. Pattern Recognition and Machine
Learning, 2nd ed. Springer, 2007.

7. Fails, J. A., and Olsen, Jr., D. R. Interactive machine
learning. In Proc. of the International Conference on
Intelligent User Interfaces (IUI ’03) (2003), 39–45.

8. Fels, S. S., and Hinton, G. E. Glove-TalkII: An adaptive
gesture-to-formant interface. In Proc. of Computer
Human Interaction (SIGCHI95) (1995), 456–463.

9. Fiebrink, R. Real-time Human Interaction with
Supervised Learning Algorithms for Music
Composition and Performance. PhD thesis, Princeton
University, Princeton, NJ, USA, January 2011.

10. Fiebrink, R., Schedel, M., and Threw, B. Constructing a
personalizable gesture-recognizer infrastructure for the
K-Bow. In Proc. of the 3rd International Conference on
Music and Gesture (MG3) (2010).

11. Fiebrink, R., Trueman, D., Britt, C., Nagai, M.,
Kaczmarek, K., Early, M., Daniel, M. R., Hege, A., and
Cook, P. R. Toward understanding human-computer
interaction in composing the instrument. In Proc. of the
International Computer Music Conference (2010).

12. Fiebrink, R., Wang, G., and Cook, P. R. Support for
MIR prototyping and real-time applications in the
ChucK programming language. In Proc. of the
International Conference on Music Information
Retrieval (2008).

13. Fogarty, J., Tan, D., Kapoor, A., and Winder, S.
CueFlik: interactive concept learning in image search.
In Proc. of the SIGCHI Conference on Human Factors
in Computing Systems (2008), 29–38.

14. Gohring, N. Mundie: Microsoft’s research depth
enabled Kinect. PCWorld (July 2010).

15. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer,
S. R. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. In Proc. of the SIGCHI Conference on
Human Factors in Computing Systems (2007),
145–154.

16. Kapoor, A., Lee, B., Tan, D., and Horvitz, E. Interactive
optimization for steering machine classification. In
Proc. of the SIGCHI Conference on Human Factors in
Computing Systems (2010), 1343–1352.

17. Lee, M., Freed, A., and Wessel, D. Neural networks for
simultaneous classification and parameter estimation in
musical instrument control. Adaptive and Learning
Systems 1706 (1992), 244–55.

18. Peng, L., and Gerhard, D. A Wii-based gestural
interface for computer-based conducting systems. In
Proc. of the Conference on New Interfaces for Musical
Expression (2009).

19. Shilman, M., Tan, D., and Simard, P. CueTIP: A
mixed-initiative interface for correcting handwriting
errors. In Proc. of the ACM Symposium on User
Interface Software and Technology (UIST ’06) (2006).

20. Talbot, J., Lee, B., Kapoor, A., and Tan, D. S.
EnsembleMatrix: Interactive visualization to support
machine learning with multiple classifiers. In Proc. of
the SIGCHI Conference on Human Factors in
Computing Systems (2009), 1283–1292.

21. Valiant, L. G. A theory of the learnable.
Communications of the ACM 27, 11 (1984),
1134–1142.

22. Vredenburg, K., Mao, J.-Y., Smith, P. W., and Carey, T.
A survey of user-centered design practice. In Proc. of
the SIGCHI Conference on Human Factors in
Computing Systems (2002), 471–478.

23. Wilson, A., and Shafer, S. XWand: UI for intelligent
spaces. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (2003), 545–552.

24. Young, D. Classification of common violin bowing
techniques using gesture data from a playable
measurement system. In Proc. of the Conference on
New Interfaces for Musical Expression (2008).

	Introduction
	Background and Motivation
	Supervised Learning
	Interactive Machine Learning
	Motivation

	Application Domain, Software, and Studies
	Application Domain and Software
	Studies

	Findings
	Interactive, Iterative Model-Building
	The Use of Cross-validation
	The Use of Direct Evaluation
	Direct Evaluation Criteria
	Correctness
	Cost
	Decision Boundary Shape
	Label Confidence and Posterior Shape
	Complexity and Unexpectedness

	Subjective Evaluation Versus Cross-validation
	Evaluation and Human Learning
	Teaching Users to Provide Better Data
	Teaching Users What is Possible
	Providing Feedback on Users' Gestural Techniques

	Usability and Usefulness of the Software

	Discussion
	Model Evaluation in Interactive Contexts
	Generalization Accuracy and the Choice and Design of Algorithms for IML
	The Benefits of Interactive Evaluation

	Conclusions
	Acknowledgements
	REFERENCES

