## Example 1

A Health Agency has to decide about opening new ambulatories to serve a set of $m$ users $(i=1, \ldots, m)$. A preliminary investigation suggests a set of $n$ potential locations. Each users can be served by an ambulatory on location $j$ $(j=1, \ldots, n)$ if the location is not "too far" from the user's home. Thus, we are given a matrix $A$ whose entry $a_{i j}$ has value 1 if user $i$ can be served by an ambulatory open in location $j$ and 0 otherwise. The cost of opening an ambulatory on location $j$ is equal to $c_{j}$. Moreover, the ambulatory in location $j$ can serve at most $M_{j}$ users. Finally, for planning reasons, the Health Agency wants to open at least $P$ ambulatories, serve all users and minimize the overall cost.

Integer Linear Programming Model:
$x_{i j}:=\left\{\begin{array}{ll}1 & \text { if user } i \text { is served by ambulatory } j \\ 0 & \text { otherwise }\end{array} \quad i=1, \ldots, m ; j=1, \ldots, n ;\right.$

$$
\begin{array}{cr}
y_{j}:=\left\{\begin{array}{ll}
1 & \text { if ambulatory } j \text { is open } \\
0 & \text { otherwise }
\end{array} \quad j=1, \ldots, n ;\right. \\
\min \sum_{j=1}^{n} c_{j} y_{j} & \\
\sum_{j=1}^{n} a_{i j} x_{i j}=1 & \forall i=1, \ldots, m \\
\sum_{i=1}^{m} x_{i j} \leq M_{j} y_{j} & \forall j=1, \ldots, n \\
\sum_{j=1}^{n} y_{j} \geq P & \\
y_{j} \in\{0,1\} & \forall j=1, \ldots, n \\
x_{i j} \in\{0,1\} & \forall i=1, \ldots, m ;
\end{array} \quad \forall j=1, \ldots, n
$$

## Example 2

The Ministry of Home Security must decide concerning the opening of new Fire Stations so as to serve $q$ neighborhoods $(i=1, \ldots, q)$ in Bologna. A preliminary investigation led to the consider a set of $s$ potential areas $j, j=1, \ldots, s$ where a Fire Station can be built. Each neighborhood $i$ can be served by a Fire Station on area $j$ if that is not "too far". Then, we are given a binary matrix $A$ whose entry $a_{i j}$ is 1 if neighborhood $i$ can be served by a Fire Station on area $j$ and 0 otherwise. The opening cost for the Fire Station in area $j$ is $r_{j}$. For security reasons, each neighborhood must be potentially served by at least 2 (open) Fire Stations, and at least $B$ Fire Stations must be open. The constraints must be satisfied by minimizing the overall opening cost.

Integer Linear Programming Model:

$$
\left.\begin{array}{rl}
y_{j}:= & \left\{\begin{array}{ll}
1 & \text { if Fire Station } j \text { is open } \\
0 & \text { otherwise }
\end{array} \quad j=1, \ldots, s ;\right. \\
& \min \sum_{j=1}^{s} r_{j} y_{j} \\
& \sum_{j=1}^{s} a_{i j} y_{j} \geq 2 \\
& \sum_{j=1}^{s} y_{j} \geq B \\
& y_{j} \in\{0,1\} \tag{2d}
\end{array} \quad \forall j=1, \ldots, q\right\}
$$

## Example 3

A pet shop has $n$ water pools to be used to show a set of $m$ tropical fishes. Each pool $j$ has a cost of $c_{j}$ and a volume $V_{j}$. The shop owner wants to minimize the overall cost of the pools used by considering that, for space reasons, the shop can use at most $K$ pools simultaneously. It is given a graph $G=(V, E)$ whose generic edge $a_{i h}$ defines the incompatibility between fishes $i$ and $j$, respectively, of being put in the same pool (because of the natural nutrition chain). Moreover, we are given a binary matrix $B$ whose entry $b_{i j}$ is equal to 1 if fish $i$ can be assigned to pool $j$ and 0 otherwise. Finally, each fish $i$ needs a living space of $v_{i}$, thus the sum of the living space of the fishes assigned to the same pool $j$ cannot be higher than the volume of the volume $V_{j}$.

Integer Linear Programming Model:

$$
\begin{align*}
& y_{j}:=\left\{\begin{array}{ll}
1 & \text { if pool } j \text { is used } \\
0 & \text { otherwise }
\end{array} \quad j=1, \ldots, n ;\right. \\
& x_{i j}:= \begin{cases}1 & \text { if fish } i \text { is assigned to pool } j \quad i=1, \ldots, m ; \quad j=1, \ldots, n ; \\
0 & \text { otherwise }\end{cases} \\
& \min \sum_{j=1}^{n} c_{j} y_{j}  \tag{3a}\\
& \sum_{j=1}^{n} y_{j} \leq K  \tag{3b}\\
& \sum_{j=1}^{n} b_{i j} x_{i j}=1 \quad \forall i=1, \ldots, m  \tag{3c}\\
& \sum_{i=1}^{m} v_{i} x_{i j} \leq V_{j} y_{j} \quad \forall j=1, \ldots, n  \tag{3~d}\\
& x_{i j}+x_{h j} \leq y_{j} \quad \forall(i, h) \in A, j=1, \ldots, n  \tag{3e}\\
& x_{i j}, y_{j} \in\{0,1\} \quad \forall i=1, \ldots, m, j=1, \ldots, n \tag{3f}
\end{align*}
$$

Discuss alternatives and/or possible improvements to the above model.

