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(e-mail: jano.mtz.glz@gmail.com, cerfranfer@gmail.com).
∗∗ Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506),
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Abstract: This paper proposes an analytical method to characterize the behavior of critical
multiple roots for quasi-polynomials with two delays. The proposed approach is based on the
Weierstrass polynomial, that is employed as a tool to analyze the stability behavior of such
characteristic roots with respect to small variations on the delay parameters. The proposed
results are illustrated by considering a numerical example.
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1. INTRODUCTION

The stability analysis of linear time-invariant (LTI) sys-
tems with time-delay have been studied for a long time,
and there exists an abundant literature covering this sub-
ject, see, for example, Gu et al. (2003), Michiels and
Niculescu (2014) and the references therein. Even though
delays have been associated with “undesired” behaviors
(as, for examples, oscillations, bandwidth sensitivity), re-
cently has been shown that in some situations the presence
of delays may induce stability, where the classical example
was presented in Abdallah et al. (1993), where a simple
oscillator is controlled by one delay “block” (gain, delay),
with positive gains and extremely small delay values. As
discussed in Michiels and Niculescu (2007), such a prop-
erty opens an interesting perspective in using delays as
control parameters in some situations, as, for example
in, Niculescu and Michiels (2004) (stabilizing chains of
integrators by using delays), Kharitonov et al. (2005)
(multiple delay blocks), and Mazenc et al. (2003) (bounded
input, single delay). Nonetheless, the approach appears
conservative in other cases; see, for instance, Michiels and
Niculescu (2007); Sipahi et al. (2011).

In the works of Chen et al. (2010b), the above observa-
tions have been explored in detail for a general retarded
LTI delay system with multiple commensurate delays.
Specifically, they have first, fully characterized the sta-
bility properties of such systems by proposing conditions
to find the set of critical delay values, at which the sys-
tem’s characteristic quasi-polynomial has critical zeros on
the imaginary axis. Secondly, considering the delay as a
variable parameter and by adopting an operator based-
approach (see, for instance, Chen et al. (2010a)) they have
expanded the solutions of the quasi-polynomial in terms
of a Taylor (or Puiseux) series, allowing them to analyze

the behavior of the solutions as the delay varies around a
critical delay value.

It is well recognized (Chen et al. (2010b)) that even in
the case of a fixed delay, the testing of stability for a
time-delay system is not a simple task. Furthermore, it
is well known that delay systems (and in consequence,
quasi-polynomials) have always infinitely many solutions
(see, for further details, Gu et al. (2003) and the references
therein), however in general, we will only be interested in
analyzing the behavior of a critical zero of finite multiplic-
ity.

Multiple delays can also be presented in a more general
form, as non-commensurate delays, that is, all delays are
assuming to be independent of each other. In this case,
the stability of the related quasi-polynomial becomes more
complex and is less studied. For the case of solutions of
multiplicity two, in Irofti et al. (2018) the authors have
proposed two sectors to study the behavior of these roots
when delays are subject to small deviations and restricted
to such sectors. In this vein, it is worth to mention that un-
like the case of a single parameter, in the multiparameter
case there exist some singular and unexpected behaviors
(see, the motivating examples section) which have to be
taken into account (see, for instance Monforte and Kauers
(2013)), in order that the problem is well-posed. In other
words, the Puiseux type arguments cannot be extended
straightforwardly from one parameter to multiparameter
case.

Based on the above arguments, the main goal of this
paper is two-fold. First, give conditions that guarantee
the existence of a convergent Puiseux (or Taylor) series
solution around roots of multiplicity m > 1. Second,



extend the use of the well known Newton diagram to the
case of two parameters.

The remaining part of the paper is organized as follows:
Section II introduces some preliminary results, motivat-
ing examples and the problem formulation. Section III
is devoted to the main results; specifically we present a
method to compute the Weierstrass Polynomial, and an
algorithm to find Newton polygon. Furthermore, necessary
conditions to obtain Generalized Puiseux series are pre-
sented. Finally, section IV a numerical example illustrates
the proposed results. The contribution ends with some
concluding remarks.

Notations: In the sequel, the following notations will be
adopted: C is the set of complex numbers, i :=

√
−1. Next,

R+ denotes the set of positive real values. The order of

a power series f(x, y) =
∑

ai,jx
iyj will be denoted by

ord (f) and defined as the smallest number n = i+ j such
that ai,j 6= 0. The ring of complex formal power series is
denote by C[[x]], with subring C{x} of convergent power

series. Finally, given two polynomials f(z) =

n∑
j=0

an−jz
j

and g(z) =

m∑
j=0

bm−jz
j , the resultant of f , g is defined as

the determinant of Sylvester matrix as follows

R (f, g) := det



a0 a1 a2 · · · an
a0 a1 · · · · · · an

. . .
. . .

. . .
. . .

a0 a1 · · · · · · an
b0 b1 b2 · · · bm

b0 b1 · · · · · · bm
. . .

. . .
. . .

. . .
b0 b1 · · · · · · bm


,

with n rows of ai and m rows of bi.

2. PRELIMINARIES

2.1 Retarded Linear Time-Invariant Systems

Consider a retarded LTI system with ha−delays τk, as

ẋ (t) = A0x (t) +

ha∑
k=1

Akx (t− τk) , τk ≥ 0, (1)

with characteristic function given by the quasi-polynomial:

f(s, τ) =

ha∑
k=0

pk(s)e−τks, τk ≥ 0, (2)

where the polynomials pk are given by

p0(s) = sn+

n−1∑
`=0

a0`s
`, pk(s) =

n−1∑
`=0

ak`s
`, k = 1, . . . , ha.

In order to perform an asymptotic behavior analysis of
multiple imaginary roots, we will make use of the following
results and definitions.

2.2 Local Representation of Analytic Functions

It it possible to reduce the analytic properties of f(x, y)
to algebraic ones. To this purpose, let us consider the

following result (for further details see Mailybaev and
Grigoryan (2001)).
Theorem 1. (Weierstrass Preparation Theorem). Let f(z,x)
be an analytic function vanishing at the singular point
z0 ∈ C, x0 ∈ Cn, where z = z0 is an m−multiple root of
the equation f (z,x) = 0, i.e.,

f (z0,x0) =
∂f

∂z
= · · · = ∂m−1f

∂zm−1
= 0,

∂mf

∂zm
6= 0.

where derivatives are evaluated at (z0,x0). Then, there
exist a neighborhood U0 ⊂ Cn+1 of the point (z0,x0) ∈
Cn+1 in which the function f (z,x) can be expressed as

f (z,x) = W (z,x) b (z,x) , (3)

where W (z,x) is given by

(z − z0)
m

+ wm−1 (x) (z − z0)
m−1

+ · · ·+ w0 (x) ,

and w0(x),. . . ,wm−1(x), b (z,x) are analytic functions
uniquely defined by the function f (z,x), and wi(x0) = 0,
b (z0,x0) 6= 0.

Remark 2. The holomorphic function

W (z,x) = zm + wm−1 (x) zm−1 + · · ·+ w0 (x) , (4)

is known as the Weierstrass polynomial (for further details
on Weierstrass polynomials, see, for instance, Wall (2004)).

Remark 3. It can be seen from Theorem 1, that since
b (z,x) is an holomorphic non vanishing function at
(z0,x0), then, there must exist some neighborhood U ⊂
Cn at which b(z,x) preserves the same property. Hence,
based on this observation we can ensure that the roots be-
havior of a given quasi-polynomial f in the neighborhood
U will be completely described by the roots behavior of
W (z,x).

2.3 Newton Diagram Method

It is well known that solutions of the equation f(x, y) = 0
with x, y ∈ C can be computed term by term by means
of the Newton Diagram Method. Thus, in order to use
such a procedure, let us introduce the following notation
(for more details, see, for instance, Vainberg and Trenogin
(1974)). Let f (x, y) be a pseudo-polynomial in y, i.e.,

f (x, y) =

n∑
k=0

ak(x)yk, (5)

where the corresponding coefficients are given by,

ak (x) = x ρk

∞∑
r=0

arkx
r/q, (6)

ark ∈ C, x and y are complex variables, ρk are non-
negative rational numbers, q is an arbitrary natural num-
ber, an(x) 6≡ 0, and a0(x) 6≡ 0.
Since by simple translation, any point on a curve can
be moved to the origin, we will consider expansions of
the solution of (5) f(x, y) = 0 around the origin, in the
following form

y(x) = yε1x
ε1 + yε2x

ε2 + yε3x
ε3 + · · · , (7)

where ε1 < ε2 < ε3 < · · · and yε1 6= 0. To determine the
possible values of ε1, yε1 , ε2, yε2 , . . ., it is necessary to
consider the Newton’s diagram.

Definition 4. (Newton’s Diagram and Polygon). Given a
pseudo-polynomial of the form (5) with coefficients given
by (6), plot k versus ρk for k = 0, 1, . . . , n (if ak (·) ≡ 0,



the corresponding point is disregarded). Denote each of
these points by πk = (k, ρk) and let

Π = {πk : ak(·) 6= 0} ,
be the set of all plotted points. Then, the set Π will
be called the Newton diagram, and the Newton polygon
associated with f(x, y) will be given by the lower boundary
of the convex hull of the set Π.

For a given f(x, y), Fig.1 simply illustrates Definition 4.
Thus, the leading term of the expansion (7) of the solutions
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Fig. 1. The Newton Diagram for f(x, y).

have exponents given by ε = γ where γ is the slope between
two points of the Newton polygon. The coefficients are
given by the non-zero solutions of the polynomial equation

P(yε) :=
∑
i

a0,iy
i
ε = 0, (8)

where the sum runs over the terms satisfying ρk + γk =
ν with constant ν ∈ Q. For equations f(x, y) = 0,
the Newton Diagram Method can be formalized by the
following theorem ( see Wall (2004)).

Theorem 5. (Puiseux Theorem). The equation f(x, y) =
0, with f given in formal power series such that f(0, 0) = 0,
posses at least one solution in power series of the form:

x = tq, y =

∞∑
i=1

cit
i, q ∈ N.

The procedure described above can be generalized to more
than one parameter, to this end, we consider the following
definitions.

2.4 Generalized Puiseux Series and Cones

When we deal with singularities of greater dimension, we
must use a ring of multi-variable fractional power series.
In McDonald (1995) the author defines fractional power
series ring that contains the solutions of algebraic hyper-
surfaces. This is done through formal power series defined
in a geometric way, by taking infinite power series

∞∑
i=1

cai
xai/d, where xa = xa11 · · ·xann ,

where the exponents a are taken from a fixed convex cone
with a structure related to its Newton polytopes, Ziegler
(2012). We will use fractional iterated power series of
several variables as Generalized Puiseux Power Series (see
Soto and Vicente (2011); Neumann (1949)), denoted by

Kx,d. This series can be constructed by induction, taking
as a bases the univariate case Kx1,d and then, proceed

with the field of power series in x
1/d
1 with power series

coefficients in x
1/d
2 · · ·x1/dn such that

Kx,d = C
((
x
1/d
1

))
· · ·
((
x1/dn

))
.

2.5 Motivating Examples

Even though we can reduce the analysis of a given entire
function f to the study of an algebraic function W , in this
section we aim to point out some difficulties that arise in
regarding multiparameter functions. In order to illustrate
such arguments, let us consider the following motivating
example.

Example 6. Consider the following polynomial

P (z, ε1, ε2) = z2 + 3ε1z + 2
(
ε21 + 2ε22

)
, (9)

where ε1 and ε2 are considered as perturbation parameters.
It is clear to see, that for ε1 = ε2 = 0, z = 0 is a root of
multiplicity two.
In this case, the solutions z1,2 (ε) are not analytic at
ε := (ε1, ε2) = (0, 0) = 0. Furthermore, z1,2 (ε) does not
have a unique representation as a power series which is
convergent in some punctured neighborhood of the origin.
In order to illustrate this assertion, let us consider the
region |ε1| < |ε2|, in this region the solutions admit the
following representation

z1,2 (ε) =−1

2
(3ε1 ± i4ε2) +

1

16
ε1

(
±iε1
ε2
± i

64

(
ε1
ε2

)3

+

± i

2048

(
ε1
ε2

)5

+O

((
ε1
ε2

)5
))

.

Now, if instead of the previous region, we consider the
region |ε2| < |ε1|, then for k ∈ {1, 2} the solutions admit
the following representation

zk(ε)=−2k−1ε1+(−1)
k
4ε2

(
ε2
ε1

+4

(
ε2
ε1

)3
+ 32

(
ε2
ε1

)5
+O

((
ε1
ε2

)5)
.

The above arguments clearly have shown that some further
considerations must be taken into account in the case of
multiparameter functions. Next, as mentioned in previous
sections, in the single parameter case, the Newton diagram
is a powerful tool to analyze the asymptotic behavior for
the solutions of pseudo-polynomials. However, in order to
be able to apply such a procedure to the multiparameter
case, some special situations must be taken into consid-
eration. In order to motivate the above arguments, let us
consider the following.

Example 7. Consider the polynomial

P (z, ε) := z5 +
(
ε1ε

3
2 + ε21ε

2
2

)
z3 +

(
ε21ε

2
2 + ε31ε2

)
z2 +

(
ε41ε2

)
.

Clearly, z = 0 is a 5−multiple root at ε = (0, 0). Now, let
us form the Newton diagram with respect to ε1, obtaining
Π = {(0, 4), (2, 2), (3, 1), (5, 0)}, illustrated in Fig.2(a).
The slope β0 = 1 determines 3−solutions with respect to
ε1, and coefficients that are solutions of the polynomial

P(ξ) = ε2 + ε22ξ
2 + ε32ξ

3 = 0.

In this case, it is clear that the solutions cannot be easily
computed. In order to compute solutions by applying the
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(a) Newton polygon with re-
spect to ε1.
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(b) Newton polygon with re-
spect to y2.

Fig. 2. Newton polygons for P (z, ε) in Example 7.

Newton procedure, we seek for a monic polynomial. Thus,
with the aim of overcoming such difficulty, let us consider
the change of variables (blowing-ups)

ζ := ξ ε1 = v1ε2 ε2 = v2,

and
v1 = y1v2 v2 = y2.

In addition, these changes of variables will enable us to
avoid horizontal segments in the subsequent steps of the
process. The resulting polynomial P ′(y1, y2) posses the
same Newton polygon, and the segment with β0 = 1 has
a monic polynomial

y−52 P ′(ξ, y2) = y42 + y2ξ
2 + ξ3 = 0.

Applying the Newton procedure, (see figure 2(b)) to the
above equation, we derive the fractional power series
solution of P ′:

ζ1(y1, y2) = −y2y1 + o (y1y2) ,

ζ2,3(y1, y2) = ±iy2/32 y1 + o
(
y1y

1/3
2

)
.

2.6 Problem Formulation

The present work is focused on computing the first ap-
proximation of the solution of quasi-polynomials around
multiple imaginary roots. In this vein, we will focus in the
following problems:

(i) compute an approximation of the associated Weier-
strass polynomial;

(i) extend the Newton diagram procedure to Weierstrass
polynomial of several variables;

(iii) obtain conditions that allow obtaining Puiseux series
solutions

s(τ1, τ2) = c(τ
1/d
2 )τβ1 + o(τ

1/d
1 τ

1/d
2 ),

where β = α/d and α ∈ N.

3. MAIN RESULTS

3.1 Computation of Weierstrass Polynomial

In Mailybaev and Grigoryan (2001), the authors propose
a method to compute the Weierstrass polynomial for an
holomorphic function. This method is based on its partial
derivatives and combinatorial factors related in a recursive
way. For the case of holomorphic function, f(z,x) of
complex variables with x = (x1, x2) and z = 0 a m-
multiple root at (x1, x2) = (0, 0) the computation is
given as follows. The coefficients wi in (4) are analytic,
wi(0, 0) = 0 and can expressed in the form of Taylor series:

wi(x1, x2) =

∞∑
h1+h2=1

1

h1!h2!
wi,hx

h1
1 xh2

2 ,

where h = (h1, h2). The following notation is used:

wi,h =
∂h1+h2wi

∂xh1
2 ∂xh2

1

∣∣∣∣∣
(0,0)

, Fj,h =
∂h1+h2Fj

∂xh1
2 ∂xh2

1

∣∣∣∣∣
(0,0)

.

Since the analytic function locally satisfy f = Wb, thus its
partial derivatives satisfy the following recursive relations

wi,h =

i∑
j=0

αijFj,h, (10)

Fj,h = fj,h −
j∑

k=0

∑
h′+h′′=h

c (j, k;h′,h′′)wk,h′bj−k,h′′ ,

with h′ 6= 0, h′′ 6= 0 and constant coefficients:

αjj =
m!

j!fm,0
, αij = − m!

fm,0

i−1∑
k=j

fm+i−k,0αkj
(m+ i− k)!

,

c (j, k;h1,h2) =
j!

(j − k)!

2∏
s=1

(h′s + h′′s )!

h′s!h
′′
s !

,

and for h′ 6= 0, k′ = k +m, bk,h is given by

k!

(m+k)!

fk′,h−m−1∑
j=0

∑
h′+h′′=h

c (k′, j;h′,h′′)wj,h′bk′−j,h′′

 .
Since we are only interested in the leading terms of wi,
namely a first approximation of the Weierstrass polyno-
mial, we adopt the following notation.

Definition 8. Let the natural numbers n
(j)
i , for i ∈

{0, 1, · · · ,m − 1} and j = 1, 2, denote the first non zero
partial derivative in (z, x1, x2) of f , such that the following
conditions hold

f(0, 0, 0)=
∂if

∂zi
= · · · = ∂i+n

(j)
i
−1f

∂zi∂τ
n
(j)
i
−1

j

= 0,
∂i+n

(j)
i f

∂zi∂τ
n
(j)
i

j

6= 0,

with derivatives evaluated at (0,0). For n
(j)
i =∞ we have

derivatives

∂if

∂zi
= · · · = ∂i+n

′
i−1f

∂zi∂τ
n′
i
−1

2

= 0,
∂i+n

′
if

∂zi∂τ
n′
i

2

6= 0,

evaluated at (z,x) = (0, 0, 1).

Leading terms of coefficients wi can be easy found up to

the n
(j)
i and n′i derivatives, as a first observation we give

the following result.

Proposition 9. Suppose that the Weierstrass polynomial
has first non-zero partial derivative, such that

n
(j)
i > n

(j)
i+1, 0 ≤ i < m and j = 1, 2.

Then, the leading terms of wi(x) are given by

wi(x1, x2) = αiifi,(n(1)
i
,0)
x
n
(1)
i

1 + αiifi,(0,n(2)
i

)
x
n
(2)
i

2 + · · · .

If n
(j)
i =∞ we get

wi(x1, x2) = αiifi,(n′
i
,η)x

n′i
1 x

η
2 + · · · .

Remark 10. There may be a case in which

fi,(h1,h2)

∣∣
(0,0,0)

= 0 ∀ h1, h2 ∈ N.
Since wi are analytic functions, this is equivalent to
wi(x) ≡ 0 for 0 ≤ i ≤ κ− 1. Thus, according to Theorem
1 f has the following local structure:

zκ
[
zm−κ + wm−κ(x)zm−κ−1 + · · ·+ wκ(x)

]
b(z,x).



3.2 The Newton Diagram Method for Two Parameters

Consider the monic pseudo-polynomial f(z,x) of the form

zm + am−1(x1, x2)zm−1 + · · ·+ a0(x1, x2), (11)

with ai(x) ∈ C [[x]], such that f(0,0) = 0. The equation
f = 0 can be solved by applying the Newton diagram
method, this is done taking into account just one variable,
say x1, and proceeding iteratively. We take the point πk as
the order of ak in x1, taking x2 as an element of C ((x2)).
For such a purpose, the following definition will be useful

ρk := ordx1
(ak(x1, x2)) = ord (ak(x1, 1)) . (12)

Then, the Newton Polygon of f(z,x), with respect to x1,
is defined by the lower boundary of the convex hull of the
points (k, ρk) ∈ Π (see, Definition 4). In order to apply the
the Newton diagram procedure, according to Section 2.4,
the solution z will take the following structure

z(x1, x2) =
∑
i

ci(x2)x
i/d
1 ,

where the coefficient ci(x2), is in general, given by an
univariate Puiseux series in x2.

First Step into the Newton Procedure Let us suppose
that we have determined the Newton diagram of the
Weierstrass polynomial (11) of f . Since we are dealing
with monic polynomials, the Newton polygon has a finite
number of segments, each one with a corresponding set of
points Π(`) and rational numbers β` ≥ 0 satisfying

β0 > β1 > · · · > βr.

Therefore, the segments are presented in two possible
ways. The first one corresponds to a Newton polygon with
a horizontal segment with βi = 0, and the second one
where βj > 0 (for i 6= j). In this vein, for 0 ≤ ` < m, the
Newton Diagram Π is given as the set Π = Π′ ∪Π′′:

{(0, ρ0), . . . , (`, 0)}∪ {(`, 0) , . . . , (k, ρk), . . . , (m, 0)} .
Lets take at the first step of the process a horizontal
segment with slope βr = 0. We have the next two
propositions.

Proposition 11. Let f(z,x) be a pseudo-polynomial with
the same structure as (11). Suppose that at least one
coefficient ai(x) posses order ρi = 0. Then, the equation
P(ξ, x2) = 0 (8) of the corresponding horizontal segment

has solutions ck(x
1/d
2 ) in the form of Puiseux series.

Now, at the first step of the process, the case with negative
slope is considered. Hence, applying to f the change of
variables z = ζ, x1 = ya11 and x2 = ya22 we get f̃(ζ, y1, y2).

Proposition 12. Assume that f has the same structure as
(11) and assume that the first Newton diagram posses a
segment with negative slope. Then, there exist a change of
variables (z, x1, x2) 7→ (ζ, y1, y2) such that the polynomial

P(ξ, y2) has Puiseux series solutions ck(y
1/d
2 ).

The iterative process continues by solving P = 0, using
the usual Newton diagram procedure.

3.3 Newton Polygon Algorithm

Let us consider the points π` = (`, ρ
(1)
` ) ∈ Π to get the

Newton polygon, obtaining a finite number of segments
with slopes −βr. Now, based on the Newton procedure

Algorithm 1 Auxiliary Puiseux Series Expansion

Let f(s, τ ) have a root s∗ = iω∗ of multiplicity m at
τ = (τ∗1 , τ

∗
1 ). Consider the initial values as r := 0, i−1 := κ,

`−1 := nκ.

1) Set Er :=
{
`−`r−1

ir−1−i : (i, `) ∈ Π, and i > ir−1

}
.

2) Let βr := max Ej and Π(r) := {(ir−1, `r−1)} ∪{
(i, `) ∈ Π : βr ≡ `−`r−1

ir−1−i

}
.

3) Set (ir, `r) ∈ Π(r) such that ir ≥ i, ∀(i, `) ∈ Π(r).
4) Set mr := ir − ir−1 and r = r + 1.
5) If ir−1 < m go to step 1. Otherwise the algorithm ends.

introduced in Section 2.3 we propose Algorithm 1. In the
algorithm, κ is defined according to Remark 10.

3.4 Puiseux Series for Quasi-Polynomials with two delays

Since any critical solution (s∗, τ∗1 , τ
∗
2 ) can always be trans-

lated to the origin by appropriate shifts s 7→ s − s∗,
τ1 7→ τ1 − τ∗1 , τ2 7→ τ2 − τ∗2 , hereinafter we will assume
that (s∗, τ∗1 , τ

∗
2 ) = (0, 0, 0).

Proposition 13. Consider the following quasi-polynomial

f(s, τ1, τ2) = p0(s) + p1(s)e−sτ1 + p1(s)e−sτ2 , (13)

with s = 0 a m-multiple root at τ = (0, 0) and local

representation f(s, τ ) = W (τ )b(s, τ ). If n
(j)
i = 0 for

i = 0, 1, . . . , k then, the k+1 coefficients of the Weierstrass
polynomial W satisfy

wm−i(τ ) ≡ 0, i ∈ {0, 1, . . . , k}.
Proposition 14. Let quasi-polynomial f(s, τ ) have a m-
multiple roots s = 0 at τ = (0, 0), with associated
Weierstrass polynomial W . Assume that

R
(
W,

∂W

∂s

)
= τa11 τa22 U(τ1, τ2) such that U(0, 0) 6= 0,

where (a1, a2) ∈ Z2
≥0 \{0}, U ∈ C{τ1, τ2}. Then, f = 0

posses m solutions given by a generalized Puiseux series.

Finally, the following result gives some conditions to have
a regular Newton diagram.

Proposition 15. Let W (s, τ1, τ2) be the Weierstrass poly-
nomial of a given quasi-polynomial f(τ1, τ2). Assume
that for a given `−segment of the Newton diagram, be
−β` < 0 its slope with corresponding points Π(`) =
{(k1, ρk1), (k2, ρk2), . . . , (ks, ρks)}. Then, the equation P
can be solved without any change of variables if the leading
terms of the coefficients wki satisfy

wki,(ρki
,ηki

) 6= 0 whenever ηki > ηks , i < s.

.

4. NUMERICAL EXAMPLE

Example 16. Consider the following quasi-polynomial

f(s, τ ) =
(
s2 − 2s+ 1

)
− 2e−sτ1 + 2πse−sτ2 + e−2sτ2 ,

with τ = (1, π), we have a triple root at s = 0. In order

to apply the proposed results, let us consider f̃(s, τ ) :=
f(s, τ1 + 1, τ2 + π). Now, by the Weierstrass Preparation
Theorem, we know that the local behavior around the
solution 0 of f̃ , are captured by the solutions of s3 +
w2 (τ) s2+w1 (τ) s+w0 (τ). Since, the first non-zero partial



derivatives are such that n
(1)
0 = n

(2)
0 = ∞, for h1 =

(1, 0), h2 = (0, 1), we have according to Remark 10 the

natural numbers n
(j)
1

f1,hj
= (−1)j+12 ⇒ n

(j)
1 = 1, j = 1, 2.

Similarly, for n
(j)
2 we have

f2,h1
= −4, f2,h2

= 4π ⇒ n
(j)
2 = 1.

Thus, applying Proposition 9 we obtain

w1(τ ) =
6

1− π3
τ1 −

6

1− π3
τ2 + · · ·

w2(τ ) =
−3
(
3 + 4π3 (π − 1)

)
2 (π3 − 1)

2 τ1 +
3 (4π − 1)

2 (π3 − 1)
τ2 + · · · .

Now, by taking the set of points Π′′ = {(1, 0), (2, 0), (3, 0)}
as input of Algorithm 1, we get a horizontal segment with
β0 = 0, deriving the polynomial P(ξ, τ2). Hence, applying
the Newton method to

P(ξ, τ2) = w1(0, τ2) + w2(0, τ2)ξ + ξ2,

we derive the leading terms of the solutions. Then, fol-
lowing the Newton procedure we get the points Π′ =
{(0, 1)(1, 1), (2, 0)}. Thus, its Newton polygon has slope
γ = 1/2 and associated polynomial

P(ξ) := − 6

1− π3
+ ξ2 = 0.

Therefore, we conclude that the first terms of solutions of
f around 0 are given by

s1(τ1, τ2) = 0,

s2,3(τ1, τ2) = ±
√

6

1− π3
τ
1/2
2 + o

(
τ
1/2
1 τ

1/2
2

)
.

5. CONCLUSION

In this paper, we have considered some issues concern-
ing the asymptotic behavior of multiple critical roots for
quasi-polynomials with two delays. The presented method
is based on the Weierstrass Preparation Theorem which
allows to deeply analyze the local behavior of a given solu-
tion. The proposed approach, using an extended Newton
diagram method, can be effectively applied to find power
series solutions in the form of generalized Puiseux series.
Finally, we gave some conditions in which the solutions
possess a regular behavior in the form of Puiseux series.
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