Technical University of Denmark

The Influence of CO2 Poisoning on Overvoltages and Discharge Capacity in Nonaqueous Li-Air Batteries

Mekonnen, Yedilfana Setarge; Knudsen, Kristian Bastholm; Mýrdal, Jón Steinar Garðarsson; Younesi, Reza; Højberg, Jonathan; Hjelm, Johan; Norby, Poul; Vegge, Tejs

Publication date: 2013

Link back to DTU Orbit

Citation (APA):

Mekonnen, Y. S., Knudsen, K. B., Mýrdal, J. S. G., Younesi, R., Højberg, J., Hjelm, J., ... Vegge, T. (2013). The Influence of CO2 Poisoning on Overvoltages and Discharge Capacity in Non-aqueous Li-Air Batteries. Poster session presented at Nordisk Batterikonferens 2013 (NORDBATT), Uppsala, Sweden.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

The Influence of CO₂ Poisoning on Overvoltages and Discharge Capacity in Non-aqueous Li-Air Batteries

Yedilfana S. Mekonnen^{1,2}, Kristian B. Knudsen¹, Jon S. G. Mýrdal^{1,2}, Reza Younesi¹, Jonathan Højberg¹, Johan ⁴ Hjelm¹, Poul Norby¹, Tejs Vegge^{1,2}

¹Department of Energy Conversion, Technical University of Denmark, Frederiksborgvej 399 Building 238, DK-4000 Roskilde, Denmark. ²Center for Atomic-scale Materials Design and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark.

Introduction

The Li-O₂ couple is particularly attractive due to its high specific energy , ~5-10 times greater than currently available Li-ion batteries and mainly intended for onboard storage in vehicles.¹ As first reported by Abraham et al. in 1996, the Li-O₂ cell with aprotic solvent is shown to be rechargeable, when Li_2O_2 is formed during discharge.² However, Li_2CO_3 is also formed from the parasitic reactions between the Li_2O_2 and aprotic electrolytes, air impurities (e.g. CO₂) and the graphite.¹ Both Li_2O_2 and Li_2CO_3 are insulating materials with wide band gap of 4.9 and 8.8 eV, respectively. Hence, these materials deposit (5-10 nm) limit the conductivity and lead to sudden death.³

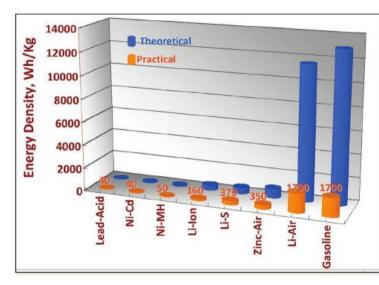


Fig1. Energy densities of M-air wrt Gasoline.

Methods

 ✓ Li-air cells were constructed using a Swagelok design. Each cell contained LiTFSI, DME and P50 cathodes. Experiments were performed using a galvanostat.
✓ DFT as implemented in GPAW code⁴ via ASE. RPBE approximation is used. The stepped (1100) Li₂O₂ surface with a super cell consisting of a 56-60 atoms slab with 18 Å vacuum layer and (4,4,1) kpoints are used. A four step, $2Li_2O_2$, growth mechanism on $(1\overline{1}00)$ Li_2O_2 surface⁵ with CO_2

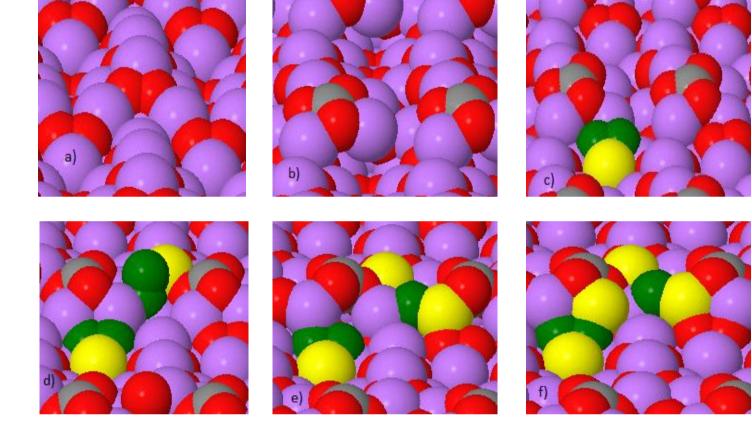
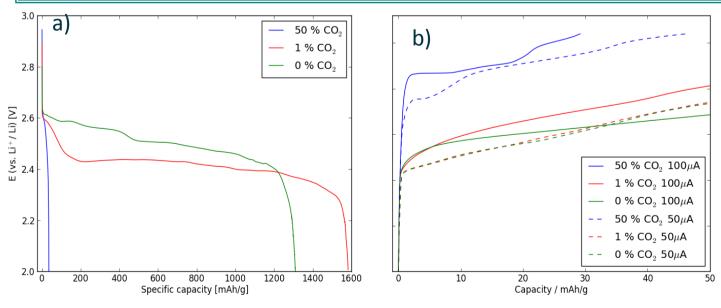



Fig3: a) Stepped Li₂O₂ surface. b) CO₂ adsorbs at step. c) 1st LiO₂ binds. d) 2nd LiO₂

Results

- ✓ CO₂ binds preferentially at step sites on the $(1\overline{1}00)$ Li₂O₂ surface and blocks the active nucleation sites.
- ✓ Both DFT and experimental results show that, CO_2 contamination strongly affects the recharging process.
- ✓ Higher overvoltages and large capacity losses are observed at 50 % CO₂.

Fig2: a) Discharge, b) Charge curves for pure & CO₂ *contaminated cells.*

References

- 1. McCloskey et al (2012). J. Phys. Chem. Lett., 3, 997–1001.
- 2. Abraham, K. M.; Jiang, Z., J. Electrochem. Soc. 1996, 143, 1-5.
- 3. Gowda et al (2013). Phys. Chem. Lett., 4, 276–279.
- 4. Enkovaara et al (2010). J. Phys. Condens. Matter, 253202, 253202
- 5. Hummelshøj et al (2010). J. of Chem. Phys., 132, 071101.

binds. e) 1^{st} Li binds. f) 2^{nd} Li binds to the surface; end up with 2 Li₂O₂ growth.

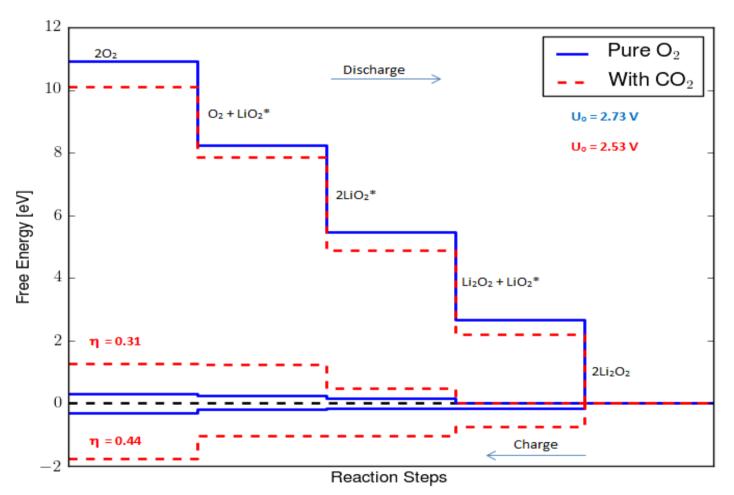


Fig4: Free energy diagrams for discharge mechanism of Li_2O_2 on Cathode surface with and without CO_2 .

Conclusions

- ✓ CO₂ is the most critical due to its high solubility in aprotic electrolytes & high reactivity with Li_2O_2 to form Li_2CO_3 .
- ✓ CO₂ binds favorably at steps sites on Li_2O_2 surface and once it is adsorbed at the step site, it is unlikely to diffuse elsewhere.
- ✓ The recharging process is strongly influenced by CO₂, and exhibits higher charging overvoltage, which is observed already at 1 % CO₂ while at 50 % CO₂ a large capacity loss is seen.

