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A global electromagnetic gyrofluid model based on the full-F gyrokinetic model is derived. The

gyrofluid moment variables are not split into fluctuating and equilibrium parts. Profiles are evolved

freely, and gyro-averaging operators are not parametrized, but are functions of the gyrofluid moment

variables. The fluid moment hierarchy is closed by approximating the gyrokinetic distribution

function as a finite order Hermite-Laguerre polynomial and by determining closure approximations

for terms involving the gyrokinetic gyro-averaging operator. The model exactly conserves the

gyrokinetic full-F energy invariant evaluated using the Hermite-Laguerre decomposition. The model

is suited for qualitative studies of the interplay between turbulence, flows, and dynamically evolving

profiles in magnetically confined plasmas. [http://dx.doi.org/10.1063/1.4813241]

I. INTRODUCTION

Gyrofluid models and fluid models, in general, are

widely applied in studies of basic plasma phenomena. The

reduced dimensionality compared with more precise kinetic

models provides much less computationally expensive tools

to advance the understanding of plasma turbulence and the

associated transport.

Non-linear simulations of the edge and scrape-off-layer

(SOL) regions in magnetically confined fusion plasmas are

particularly numerically demanding. These regions are char-

acterized by fluctuation amplitudes that approach or even

exceed unity. This especially holds true in the SOL which is

dominated by intermittent transport1 mainly carried by

coherent structures created in the vicinity of the last closed

flux surface and expelled into the empty SOL. The filament

gradient length scale2,3 is typical on the order of 5� 20qs,

where qs ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the cold ion acoustic gyroradius; X

is the gyro-frequency, Te is the electron temperature, and mi

is the ion mass. Temperature measurements in the edge and

SOL regions indicate4–9 that the ion temperature is compara-

ble to or higher than the electron temperature. It is, therefore,

expected that finite Larmor radius (FLR) effects are of

importance to the turbulent transport.10 In most situations,

a stationary equilibrium is never reached. Profiles are

formed by the interplay between flows, magnetic topology,

turbulence, and the conditions at the plasma edge. The

characteristic time-scale for the evolution of profiles is in

low-confinement (L-mode) operation an order of magnitude

longer than the turbulence de-correlation time, but the two

time-scales are comparable in the low to high (L-H) confine-

ment transition and in edge-localized mode (ELM) events

when large turbulent structures are expelled into the SOL.

Furthermore, the characteristic gradient length-scale of the

background profiles in the edge region in H-mode operation

becomes comparable with the poloidal gyroradius.11

Simulations of the edge and SOL region plasmas therefore

require long time-series due to the disparate, but equally

important, time-scales, high resolution due to steep gradients

and large fluctuation amplitudes, inclusion of FLR effects,

self-consistent evolution of the background profiles, and

finally the usage fully non-linear models.

Previous gyrofluid models12–16 were all partly linearized

by splitting fluid fields into small-amplitude fluctuation and

stationary background parts. The models were based on the

partly linearized delta-F version of the gyrokinetic model.

Essentially, only the E � B-advection non-linearity was

kept. In the Maxwell’s equations, polarization and magnet-

ization effects were linearized, parallel advection was like-

wise linearized, and gyro-averages were everywhere

evaluated using a fixed background thermal gyro-radius.

Previous gyrofluid models are therefore not well-suited for

studying edge/SOL turbulence.

In this paper, we present a fully non-linear electromag-

netic gyrofluid model consisting of continuity equations for

the six first gyrofluid moments, a quasi-neutrality constraint,

and the component of Ampere’s law parallel to the stationary

background magnetic field governing the perturbed perpen-

dicular magnetic field. The gyrofluid model is derived from

the so-called full-F gyrokinetic model which is characterized

by not splitting the distribution function into background and

perturbed parts. The gyrokinetic Maxwell’s equations are

made tractable by taking terms associated with polarization

and magnetization in the long wave-length (LWL) limit. All

approximations are made at the gyrokinetic level. This

includes the quasi-neutrality assumption and the neglect of

parallel magnetization currents in Ampere’s law. The gyro-

fluid continuity equations are obtained by approximating the

gyrokinetic distribution function as a finite order Hermite-

Laguerre polynomial. A closure approximation for the zeroth

order moment of the gyro-averaging operator C1 is found by

evaluating the Bessel function representation of the kinetic

gyro-averaging operator using the decomposed distribution

function. Closure approximations for higher order gyrofluid

moments of the gyro-averaging operator are given as linear

combinations of C1 and the FLR correction C2 to C1, which

match to order k2
?q

2. The gyrofluid model satisfies an exact

energy conservation law. The energy invariant equals thea)Electronic mail: jmad@fysik.dtu.dk
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gyrofluid moment of the corresponding full-F gyrokinetic

energy invariant. The knowledge of an exact and physically

sensible energy invariant is especially important for non-

linear simulations because unintended violation of energy

conservation can lead to sources or sinks of free energy.

The remainder of this paper is organized as follows. In

Sec. II, the gyrokinetic Vlasov-Maxwell equations including

an exact energy conservation law are derived. The Hermitte-

Laguerre decomposition of the gyrokinetic distribution func-

tion and the definition of gyrofluid moment variables are

given in Sec. III. The gyrofluid continuity and field equations

are derived in Secs. III A and III B, respectively. Closure

approximations for the gyro-averaging operators are deter-

mined in Sec. III C. The exact energy invariant satisfied by

the gyrofluid model is given in Sec. III D. Finally, results are

summarized in Sec. IV.

II. GYROKINETIC MODEL

The focal point of gyrokinetic theory17 is low-frequency

electromagnetic fluctuations. Gyrokinetic theory provides a

self-consistent Vlasov-Maxwell system of equations in

which the fast time-scale associated with the fast cyclotron

motion is eliminated. In gyrokinetic theory, the elimination

of the fast time-scale is accomplished by asymptotically

eliminating the cyclotron motion phase coordinate h from

the phase-space Lagrangian of a charged particle in an elec-

tromagnetic field.18 The expansion parameter is given by the

standard non-linear gyrokinetic ordering: q/=T � x=X
� kk=k? � dB=B � �d � 1 and k?qi � 1, where / denotes

the electrostatic potential, dB is the fluctuating magnetic

field, T is the temperature, x is the characteristic fluctuation

frequency, X ¼ qB=m is the background gyro-frequency,

where m and q denote mass and charge, respectively, and B
is the amplitude of the background magnetic field. kk and k?
are the characteristic parallel and perpendicular fluctuation

wave numbers, respectively. The asymptotic elimination of h
is accompanied by the construction of an invariant _l ¼ 0,

namely, the magnetic-dipole-moment-like coordinate l. In

the process of eliminating h from the charged particle

Lagrangian at each order of �, generating functions Sn

describing the purely oscillatory part of the dynamics are

determined. The generating functions in combination with

the gyrokinetic Lagrangian determine the gyro-center coor-

dinate transformation ðx;mvÞ ! Z ¼ ðX; vk; l; hÞ.
Using the one-particle gyrokinetic Lagrangian, a gyroki-

netic Vlasov-Maxwell action19–22 S can be formulated which

uniquely determines the gyro-center coordinate transforma-

tion, the equations of motion _Z, the Vlasov equation, the

Maxwell’s equations, and conservation laws for phase-space,

momentum, and energy. The general gyrokinetic Vlasov-

Maxwell system is always simplified because especially the

general gyrokinetic Maxwell’s equations are not tractable. It

is therefore desirable to carry out all simplification on the

gyrokinetic action only. Variations of the simplified S there-

fore guarantee inter-equation self-consistency, which is oth-

erwise cumbersome to prove and achieve.

Usually, only terms in the second order part of the gyro-

kinetic Lagrangian are simplified. The second order terms

lead to polarization and magnetization effects in the

Maxwell’s equations. There are two traditional ways of sim-

plifying the Maxwell’s equations, which have different bene-

fits and drawbacks. In the so-called “delta-F” approach, the

distribution function is split into a stationary background

part and a small perturbed part. In the delta-F polarization

and the magnetization densities, the perturbed part of the dis-

tribution function is neglected. Only linear terms involving

the stationary background part of the distribution function are

retained. In this approach, arbitrary wavelengths k?q0 � 1 are

everywhere accounted for. Previous gyrofluid models13–16

were based on the delta-F gyrokinetic equations.

Here, we derive a gyrofluid model based on the so-called

“full-F”23 gyrokinetic Vlasov-Maxwell equations. In the full-F

approach, all terms in the gyrokinetic Lagrangian density

which are quadratic or higher in the electromagnetic potentials

are taken in the LWL k3
?q

3
0 � 1. This approximation implies

that the corresponding polarization and magnetization densities

entering Maxwell’s equations appear in the LWL. Arbitrary

wavelengths are retained in all terms linear in the electromag-

netic potentials, e.g., in the gyro-averaged E � B-drift. Contrary

to the delta-F approach, no a priori assumptions are made

about F. A simultaneous self-consistent treatment of turbulence

and equilibrium is therefore possible in the full-F approach. We

note that as a consequence of the gyrokinetic ordering

q/=T � �d, the gyrokinetic model presented here is only valid

for subsonic E� B-flows.

We use a mixed Eulerian-Lagrangian19–22 action

S ¼
ðt2

t1

dt
nX

a

Lpa þ
ð1
�1

d3rLf

o
(1)

to derive the full-F gyrokinetic Vlasov-Maxwell equations.

The particle Lagrangian is given as

Lpa ¼
ð

d6Z0B�k0 F0aðZ0ÞLaðZaðZ0; tÞ;/;AkÞ; (2)

which describes a smooth continuum of particle trajectories

ZaðZ0; tÞ parametrized by t; a denotes species, and B�k is the

gyrokinetic volume-element. The particles are labeled by

their initial conditions ðZ0; t0Þ. The density of initial condi-

tions is given by a smooth labeling function F0aðZ0; t0Þ. The

gyrokinetic particle Lagrangian density is taken in the sym-

plectic formalism where the magnetic perturbation hAki does

not enter the Hamiltonian, and which leads to a numerically

tractable gyrofluid Ampere’s law24

La ¼ qa

�
Aþ hAkib̂ þ

ma

qa
vkab̂

�
� _Xa þ

ma

qa
la

_ha � Ha; (3)

where qa and ma denote particle charge and mass, and b̂ ¼ B=B
is a unit vector directed along the background magnetic

field B ¼ r� A. The corresponding volume-element is

given as B�k ¼ b̂ � B� ¼ Bþ ½ma
qa

vk þ hAki�b̂ � r � b̂, where

the generalized magnetic field is defined as B� ¼ B
þ ma

qa
vkr� b̂ þr� ðhAkib̂Þ. The Hamiltonian is given as

Ha ¼ laBþ 1

2
mav

2
ka þ qaw; (4)

072301-2 Jens Madsen Phys. Plasmas 20, 072301 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.38.67.112 On: Thu, 12 Dec 2013 14:08:03



where we have defined the generalized electric potential

w ¼ h/i � mau2
E

2qa
: (5)

The gyro-averaged electric potential is defined as

h/i ¼ 1

2p

ð2p

0

dh /ðXa þ q0aÞ; (6)

where q0a ¼ X�1
a b̂ � v?a is the lowest order gyroradius vec-

tor and uE ¼ B�1b̂ �r/ðXa; tÞ is the E � B-drift. The elec-

tromagnetic field energy Lagrangian density is here given as

Lf ¼ �
jr?Akj2

2l0

; (7)

where l0 is the vacuum permeability and the perpendicular part

of the gradient operator is defined as r? ¼ �b̂ � ðb̂ �rÞ. In

this article, we assume that the plasma is quasi-neutral, and

hence we do not include the electric field energy in Lf .
25 The

gyrokinetic Lagrangian Eq. (3) has been simplified in the fol-

lowing ways: (I) all terms of order k3
?q

3
0 or higher in the second

order part of the general gyrokinetic Hamiltonian have been

neglected. Therefore, only the E � B-energy contained in w,

which is responsible for the important polarization effects, is

retained. (II) Shear Alfv�enic fluctuations are included through

the magnetic perturbation Ak, but compressional Alfv�en waves

are not. (III) All terms non-linear in the magnetic vector poten-

tial have been neglected. This approximation implies that the

magnetization current density is not present in Ampere’s law.

(IV) Higher order terms due to inhomogeneities of the back-

ground magnetic field have been neglected.

The gyrokinetic distribution function written in terms of

Eulerian coordinates Z (Refs. 19 and 22) is defined as

B�kFaðZ; tÞ ¼
ð

d6Z0aB�k0Fa0d
ð6ÞðZ� ZaÞ; (8)

which can be shown to be gyro-angle independent;26 dð6ÞðZÞ
is the Dirac delta function. The time-evolution is governed

by the gyrokinetic Vlasov equation

@

@t
ðB�kFÞ þ r � ð _XB�kFÞ þ

@

@vk
ð _vkB�kFÞ ¼ 0: (9)

Species labels are omitted in the remainder of the paper.

In the equations of motion _X and _vk, the ratio of the gen-

eralized magnetic field B� to the volume-element B�k enters.

In order to avoid ratios of the gyrokinetic velocity-like varia-

bles ðvk; lÞ in the forthcoming derivation of the gyrofluid

model, we take

B�

B�k
¼ b̂ þ

vk
X
ðr � b̂Þ? þ

rhAki � b̂

B
; (10)

where we neglect the second order contribution hAkir � b̂
for the sake of simplicity. Using this expansion, a variation

of S with respect to Xa gives the gyro-center velocity

_X ¼ b̂vk þ
v2
k

X
ðr � b̂Þ? þ

lb̂ �r ln B

q
þ b̂ �rw

B

þ
vkrhAki � b̂

B
; (11)

and a variation of S with respect to vka gives the parallel

gyro-center acceleration

_vk ¼ �
1

m

�
lBb̂ þ

vklB

X
ðr� b̂Þ? þ

lB

B
rhAki � b̂

�
� r ln B

� q

m
@thAki �

q

m

�
b̂ þ

vk
X
ðr� b̂Þ? þ

rhAki � b̂

B

�
� rw:

(12)

Variation of S with respect to /ðrÞ yields the quasi-

neutrality constraint

X
a

ð
d6ZB�k

�
qhFdðr�X� q0Þiþr �

�
Fdðr�XÞ m

B2
r?/

��

¼ 0: (13)

The last term in Eq. (13) is the polarization charge density

which originates from E � B-energy term �mu2
E=2 in the

gyrokinetic Hamiltonian Eq. (4). We note that energetic con-

sistency is guaranteed by everywhere retaining the second

order part �mu2
E=2 of w in the equations of motion _X and _vk.

In gyrokinetic models, the polarization charge represents the

polarization drift.17 The LWL approximation of the second

order Hamiltonian therefore implies that FLR corrections10

to the polarization drift are neglected.

Similarly, variation of S with respect to Ak results in the

parallel component of Ampere’s law

1

l0

r2
?Ak þ

X
a

q

ð
d6ZB�k vkhFdðr � X � q0Þi ¼ 0: (14)

Again, we emphasize that the magnetization current does not

appear. Therefore, no terms quadratic in the parallel mag-

netic potential appear in the equations of motion (11) and

(12) in order to ensure energetic consistency.

The corresponding energy-invariant for the Vlasov-

Maxwell system is

E ¼
ð

d3r

� jr?Akj2

2l0

þ
X

a

ð
d6ZB�kFdðr � XÞ

�
lBþ 1

2
mv2
k þ

1

2
mu2

E

��
;

(15)

which consists of the magnetic field energy, the perpendicu-

lar and parallel thermal energy, and the E � B-energies,

respectively. Note that the electric field energy is absent in

as a consequence25 of replacing Gauss’s law by the quasi-

neutrality condition Eq. (13).

III. GYROFLUID MODEL

The gyrofluid model rests on the gyrokinetic model. It is

obtained by taking gyrofluid moments of the gyrokinetic

Vlasov equation (9) and by expressing the quasi-neutrality
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condition Eq. (13) and Ampere’s law (14) in terms of these

gyrofluid moments. The gyrofluid moments are defined as

k llvk
k k¼

ð
dvkdldhB�k Fllvk

k: (16)

Note that the volume-element in previous linearized gyro-

fluid models was approximated taking B�k ’ B. In this article,

we derive equations governing the time evolution of the first

six gyrofluid moments

N ¼k1k; U ¼kvk k =N; P? ¼klBk;
Pk ¼ km~v2

k k; Qk;? ¼klB~vk k; Qk;k ¼ km~v3
k k; (17)

where ~vk ¼ vk � U. In order to close the fluid hierarchy and

guarantee consistency, we express the gyrokinetic distribu-

tion function as a finite dimensional Hermite-Laguerre poly-

nomial27,28 in ðvk; lÞ space

F ¼ FMð1þ nÞ; (18)

where

FM ¼ N
1

2pT?m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pTkm

s
exp

�
�

mðvk �UÞ2

2Tk
� lB

T?

�
(19)

is a shifted gyrokinetic Maxwellian and

n ¼
mQk;?
NT?Tk

�
lB

T?
� 1

�
ðvk � UÞ þ

Qk;k
6N

ffiffiffiffiffiffi
m3

T3
k

s
~vkffiffiffiffiffiffiffiffiffiffiffi

Tk=m
p

�
�

~vk
2

Tk=m
� 3

�
: (20)

The gyrofluid temperatures are defined as T? ¼ P?=N and

Tk ¼ Pk=N. Higher order moments entering the gyrofluid

moments equations are evaluated using the Hermite-

Laguerre decomposition given in Eq. (18)

R?;? ¼kðlBÞ2 k¼ 2P?T?; R?;k ¼ klBm~v2
k k¼ PkT?;

Rk;k ¼ kðm~v2
kÞ

2 k¼ 3PkTk; S?;k;k ¼ klBm~v3
k k¼ 3Qk;?Tk þ Qk;kT?;

S?;?;k ¼ kðlBÞ2~vk k¼ 4Q?;kT?; Sk ¼ km2~v5
k k¼ 10Qk;kTk: (21)

A. Moment equations

The gyrofluid moment equations are obtained by taking integrals of the form
Ð

dldvkdh llvk
k of the gyrokinetic Vlasov

equation (9) using the Hermite-Laguerre decomposition Eq. (18) of the gyrokinetic distribution function F

@

@t
N þr � ðb̂UNÞ þ r �

�
Pk þ mNU2

qB
ðr � b̂Þ?

�
þr �

�
P?b̂ �r ln B

qB

�

þr �
���� b̂ �rw

B

����þr �
���� vkrhAki � b̂

B

���� ¼ KN; (22)

@

@t
ðmNUÞ þ r � ðb̂½Pk þ mNU2�Þ þ r �

�
Qk;k þ 3UPk þ mNU3

X
ðr � b̂Þ?

�

þr �
�
½UP? þ Q?;k�

b̂ �r ln B

X

�
þr �

����mvk
b̂ �rw

B

����þr �
����mv2

krhAki � b̂

B

����
þ
�

P?b̂ þ X�1½UP? þ Q?;k�ðr � b̂Þ? þ
���� lBrhAki � b̂

B

����
�
� r ln Bþ q k@thAkik

þ kqb̂ � rwk þ
����mvk

B
ðr � b̂Þ? � rw

����þ q

����rhAki � b̂

B
� rw

���� ¼ KU; (23)

@

@t
P? þ r � ðb̂½UP? þ Q?;k�Þ þ r �

�
U2P? þ 2UQk;? þ m�1R?;k

X
ðr � b̂Þ?

�

þr �
�

R?;?
b̂ �r ln B

qB

�
þr �

����lB
b̂ �rw

B

����þr �
���� vklBrhAki � b̂

B

����
�
�
½P?U þ Q?;k�b̂ þ

U2P? þ 2UQk;? þ m�1R?;k
X

ðr � b̂Þ?

þ
����lB

b̂ �rw
B

����þ
���� vklBrhAki � b̂

B

����
�
� r ln B ¼ KP? ; (24)
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@

@t
ðPk þ mNU2Þ þ r � ðb̂½mNU3 þ 3UPk þ Qk;k�Þ þ r �

�
½mNU4 þ 6U2Pk þ 4UQk;k þ m�1Rk;k�

ðr � b̂Þ?
X

�

þr �
�
½U2P? þ m�1R?;k þ 2Q?;kU�

b̂ �r ln B

X

�
þr �

����mv2
k

b̂ �rw
B

����þr �
����mv3

krhAki � b̂

B

����
þ 2

�
½P?U þ Q?;k�b̂ þ X�1½U2P? þ 2UQk;? þ m�1Rk;?�ðr � b̂Þ? þ

���� vklBrhAki � b̂

B

����
�
� r ln B

þ 2q kvk@thAkik þ2q kvkb̂ � rwk þ2

����mv2
k

B
ðr � b̂Þ? � rw

����þ 2q

���� vkrhAki � b̂

B
� rw

���� ¼ KPk ; (25)

@

@t

�
Qk;? þ UP?

B

�
þr �

�
b̂

B
½U2P? þ m�1Rk;? þ 2UQ?;k�

�

þr �
�
½mU3P? þ 3UR?;k þ 3PkQ?;k þ S?;k;k�

ðr � b̂Þ?
qB2

�
þr �

�
UR?;? þ Sk;?;?

qB2
b̂ �r ln B

�

þr �
����lvk

b̂ �rw
B

����þr �
����lBv2

krhAki � b̂

B2

����
þ
�

R?;?
mB

b̂ þ
UR?;? þ Sk;?;?

mXB
ðr � b̂Þ?þ km�1ðlBÞ2rhAki � b̂ k

�
� r ln Bþ kqm�1l@thAkik

þ q

m
klb̂ � rwk þ

���� lBvk
B2
ðr � b̂Þ? � rw

����þ q

m

����lrhAki � b̂

B
� rw

���� ¼ KQk;? ; (26)

@

@t
ðQk;k þ mNU3 þ 3UPkÞ þ r �

�
b̂½mNU4 þ

Rk;k
m
þ 6U2Pk þ 4UQk;k�

�

þr �
�
½mNU5 þ

Sk
m
þ

b̂URk;k
m
þ 10U2Qk;k þ 10PkU

3� ðr � b̂Þ?
X

�

þr �
�
½S?;k;k þ mU2P? þ 3mU2Qk;? þ 3UR?;k�

b̂ �r ln B

qB

�

þr �
����mv3

kb̂ �rw

B

����þr �
����mv4

krhAki � b̂

B

����
þ3

��
U2P? þ

R?;k
m
þ 2UQ?;k

�
b̂ þ X�1

�
U3P? þ 3U2Q?;k þ

3UR?;k
m

þ
Sk;k;?

m

�
ðr � b̂Þ?

�
� r ln B

þ3 kv2
klrhAki � rb̂ k �r ln Bþ 3q kv2

k@thAkik
þ3q kv2

kb̂ � rwk þ3 kmv3
kB
�1ðr � b̂Þ � rwk þ3q kv2

kB
�1rhAki � b̂ � rwk¼ KQk;k : (27)

Equations (23), (25)–(27) govern the time evolution of com-

binations of the gyrofluid moments defined in Eq. (17).

Equations governing the individual gyrofluid moments can

be obtained by inserting the lower order gyrofluid moments,

e.g., inserting the gyro-center density continuity equation

(22) into the parallel gyro-center momentum continuity

equation (23).

Dissipative mechanisms are not explicitly added to the

moment equations in this work but are simply represented by

the “K” terms on the right hand sides of Eqs. (22)–(27). In

previous local gyrofluid models, terms modeling kinetic col-

lisionless dissipation mechanisms, such as Landau damping,

non-linear FLR phase mixing, and grad- B and curvature

drift phase-mixing are added14,29 to the moment equations in

a way which mimic the linear response of the kinetic plasma

dispersion function. Different sets of closure coefficients

were used close to and away from stability threshold in order

to mimic the linear kinetic response satisfactorily. Since full-

F gyrokinetic models and the global gyrofluid model are

fully non-linear, the linear methods used in previous local

gyrofluid models are not applicable here. Collisional effects

have also been added to local gyrofluid models in an ad-hoc
manner.14,16 A correct inclusion of collisions in gyrofluid

models, local and global, is troubled by the fact that collisions

take place between particles and not between gyro-centers.

Particle collision operators must be expressed in terms of

gyro-center positions and velocities, and an explicit gyro-

average must be carried out. The resulting gyro-averaged
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gyrokinetic collision operator is very complex and cannot

readily be simplified without breaking conservation of par-

ticles, momentum, and energy.30 To the knowledge of the

author, no gyrokinetic collision operator in the full-F approx-

imation has been derived. A collisional closure of the gyro-

fluid model presented here is therefore left for future work.

The “K” terms can also represent sinks, sources, and terms

added when solving the model equations numerically. The

K’s are kept in order to show how they enter the conserved

energy given in Sec. III D, which is not only important for

the physical understanding of the model, but is also a good

indicator of accuracy in numerical simulations.

All terms involving the gyro-averaging operator are left

unspecified. Closure approximations for these terms are dis-

cussed and derived in Sec. III C.

B. Field equations

The quasi-neutrality constraint (13) and Ampere’s law

(14) are evaluated using the Hermite-Laguerre decomposi-

tion Eq. (18). Evaluating the gyro-center integrals using the

Dirac delta functions, we get

X
a

q

���� hFðr � q0Þi
F

����þr �
�

mN

B2
r?/

�
¼ 0; (28)

�l�1
0 r2

?Ak ¼
X

a

q

���� vkhFðr � q0Þi
F

����: (29)

In both equations, closure approximations of the terms

involving the gyro-averages of the distribution function F
are needed. Closure approximations are given in Sec. III C.

C. Closure approximations for gyro-averaging
operators

In this section, we determine closure approximations for

the gyro-averaging operators appearing in the gyrofluid

moment equations (22)–(27) and in the field equations (28)

and (29). The closure approximations are most easily

obtained when gyro-averaged functions are expressed in

terms of their inverse Fourier transform

h/i ¼ 1

2p

ð2p

0

dh/ðxÞ ¼
ð

d3k eik�XJ0ðk?q0Þ/k (30)

because the gyro-averaging operator in wave number space

is the zeroth order Bessel function of the first kind J0. In

gyro-center space, J0 translates into a linear differential oper-

ator. The series expansion of the n’th Bessel function is

JnðzÞ ¼
X1
l¼0

ð�1Þl

22lþnl!ðnþ lÞ!
z2lþn: (31)

The Bessel function arguments k?q0 depend on the gyro-

center position X and the magnetic-dipole-moment-like

coordinate l through the amplitude of the zeroth order gyro-

center radius q0 ¼
ffiffiffiffiffiffiffi
2lB

mX2

q
. Moments involving the gyro-

averaging operator therefore require an infinite set of

moments, and hence closure approximations are required.

Before discussing explicit closure approximations, we

note that the effects of the gyro-averages appearing in the

gyrokinetic equations of motion Eqs. (11) and (12) and in

the gyrokinetic field equations (13) and (14) are different. In

the equations of motion, the gyro-averaging operator

describes that charged particles, not gyro-centers, interact

with the electromagnetic fields. Effectively, the gyro-

averaging operator takes particle position-dependent poten-

tials, e.g., /ðxÞ, into gyro-averaged gyro-center-dependent

potentials, e.g., h/iðX; lÞ, that interact with gyro-centers. In

the field equations, the gyro-averages give the averaged con-

tributions to the charge density at a given position r from

gyro-centers whose gyro-orbits intersect r. Here, the gyro-

averaging operator provides the charge contribution at posi-

tion r of the gyro-center dependent distribution function

F(X).

In order to investigate how the two different gyro-

averaging operations emerge in gyrofluid models, we evalu-

ate the gyrofluid moment of the gyro-averaged electric

potential using the Bessel function series expansion Eq. (31)

and the Hermite-Laguerre decomposition Eq. (18)

kh/ðX þ q0Þik¼ NC1/ ¼ Nð1þ q2=2r2
? þ � � �Þ/; (32)

where q2 ¼ T?=ðmX2Þ. Note that T? entering C1 is not fixed

at a constant reference temperature as in linearized gyrofluid

models.13,16 Similarly, the gyrofluid moment of the gyro-

averaging operator entering the quasi-neutrality constraint

Eq. (13) becomes

khFðr � q0Þi=Fk¼ ðN þr2
?ðNq2=2Þ þ � � �Þ; (33)

where we emphasize that r2
? acts on q and N because the

distribution function itself is gyro-averaged. Comparing the

gyrofluid moments shows that the gyrofluid gyro-averaging

operators are Hermitian adjoint,31 and hence we can write

the gyro-average in Eq. (33) as

khFðr � q0Þi=Fk¼ C
†

1N: (34)

We note that in local models, the coefficients in C1 are held

constant and C1 is therefore Hermitian. For the parallel cur-

rent in Ampere’s law (14), we get

q khvkFðr � q0Þi=Fk¼ q

�
C

†

1NU þ C
†

2

Qk;?
T?

�
: (35)

In the equations of motion Eqs. (11) and (12), the elec-

tromagnetic potentials are everywhere operated on by a gra-

dient operator. In order to evaluate gyrofluid moments of

these terms, the distribution F and the Bessel function J0

must appear together

krh/ik ¼ NC1r/ þ 1

2

ð
d3k eik�X kk?q0J1 k /kr ln B;

(36)

where the identity dJ0ðzÞ=dz ¼ �J1ðzÞ was used. The second

term is evaluated using a trick13
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kk?q0J1 k	 �
@

@b

����
b¼1

kJ0ðk?q0bÞk¼ �2NC2; (37)

where

C2 ¼ T?
@C1

@T?
¼ q2=2r2

? þ � � � : (38)

C2 is associated with deviations from a circular gyro-orbit

due to variations of the perpendicular temperature T? and

the background magnetic field B. The behavior of C1 and C2

in the limit of zero Larmor radius is therefore fundamentally

different in the sense that C1 ! 1 for q! 0 whereas C2 ! 0

in the same limit.

Terms involving the gyro-averaged electromagnetic

potentials in the higher order moment equations are dealt

with in the following way. The gyrofluid moments are eval-

uated using the Bessel function series expansion Eq. (31)

and the distribution function decomposition Eq. (18), e.g.,

klBh/ik	 P?ð1þ q2r2
? þ � � �Þ/; (39)

which neither match C1 nor C2. For such terms, we simply com-

bine C1 and C2 such that the series expansion match to order k2
?

klBh/ik ¼: P?ðC1 þ C2Þ/: (40)

In order to ease the forthcoming derivation of the con-

served energy and to ease comparison with previous gyro-

fluid equations, we choose to arrange the electromagnetic

potentials together with the gyro-averaging operators. As an

example, Eq. (36) becomes

krh/ik¼ NrðC1/Þ þ NðC2/Þrg; (41)

where

rg ¼ r ln B�r ln T?: (42)

The remaining closure approximations for gyro-

averaging terms are

kvkrh/ik ¼ UNrðC1/Þ þ C2/

�
NU þ

Qk;?
T?

�
rg

þ
Qk;?
T?
rðC2/Þ; (43)

klBrh/ik¼ P?rðC1/þ C2/Þ þ 2P?C2/rg; (44)

kvklBrh/ik¼UP?rðC1/þC2/ÞþQk;?rðC1/þ3C2/Þ
þð2UP?þ4Qk;?ÞC2/rg; (45)

kmv2
krh/ik ¼ ½Pk þ mNU2�rðC1/Þ þ

2UQ?;k
T?

rðC2/Þ

þ C2/

�
mNU2 þ Pk þ

2UQ?;k
T?

�
rg; (46)

kmv3
krh/ik ¼ ½mNU3 þ 3UPk þ Qk;k�rðC1/Þ þ

3½MU2 þ Tk�Q?;k
T?

rðC2/Þ

þ
�

mNU3 þ 3UPk þ
3½MU2 þ Tk�Q?;k

T?
þ Qk;k

�
C2/rg; (47)

kmv4
krh/ik ¼ ½mNU4 þ 6U2Pk þ 4UQk;k þ 3PkTk�rðC1/Þ þ

½4mU3 þ 12UTk�Qk;?
T?

rðC2/Þ

þC2/½mNU4 þ
½4mU3 þ 12UTk�Qk;?

T?
þ 6U2Pk þ 4UQk;k þ 3PkTk�rg; (48)

kmv2
klBrh/ik ¼ ½PkT? þ mP?U2 þ 2Qk;?U�rC1/þ ½PkT? þ mP?U2 þ 3Qk;?U�rC2/

þ ½2PkT? þ 2mP?U2 þ 5Qk;?U�ðC2/Þrg; (49)

kðlBÞ2rh/ik¼ 2T?P?rC1/þ 4T?P?rC2/þ 6C2/½T?P?�rg: (50)

Terms involving / and Ak are evaluated in the same way

kvkrhAki � b̂ � rh/ik ¼ NU½rðC1AkÞ � b̂ � rðC1/Þ þ C2Akrg� b̂ � rðC1/þ C2/Þ
þC2/rðC1Ak þ C2AkÞ � b̂ � rgþrðC2AkÞ � b̂ � rðC2/Þ�

þ
Qk;?
T?
½rðC1Ak þ 2C2AkÞ � b̂ � rðC2/Þ þ rðC2AkÞ � b̂ � rðC1/Þ

þC2Akrg� b̂ � rðC1/þ 3C2/Þ þ C2/rðC1Ak þ 3C2AkÞ � b̂ � rg�; (51)
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krhAki � b̂ � rh/ik ¼ N½rðC1AkÞ � b̂ � rðC1/Þ þ C2Akrg� b̂ � rðC1/þ C2/Þ
þC2/rðC1Ak þ C2AkÞ � b̂ � rgþrðC2AkÞ � b̂ � rðC2/Þ�; (52)

klBrhAki � b̂ � rh/ik ¼ P?½rð½C1 þ C2�AkÞ � b̂ � rð½C1 þ C2�/Þ þ 2C2Akrg� b̂ � rðC1/þ 2C2/Þ
þ 2C2/rðC1Ak þ 2C2AkÞ � b̂ � rgþ 2rðC2AkÞ � b̂ � rðC2/Þ�; (53)

kmv2
krhAki � b̂ � rh/ik ¼ ðPk þ mNU2Þ½rðC1AkÞ � b̂ � rðC1/Þ þ C2Akrg� b̂ � rðC1/þ C2/Þ

þC2/rðC1Ak þ C2AkÞ � b̂ � rgþrðC2AkÞ � b̂ � rðC2/Þ�

þ 2
Qk;?
T?
½rðC1Ak þ 2C2AkÞ � b̂ � rðC2/Þ þ rðC2AkÞ � b̂ � rðC1/Þ

þC2Akrg� b̂ � rðC1/þ 3C2/Þ þ C2/rðC1Ak þ 3C2AkÞ � b̂ � rg�: (54)

Note that the terms involving two gyro-averages have not

been simplified as in Ref. 15. So far, no explicit choice for

the gyro-averaging operators C1 and C2 has been given. One

particular choice is to use the Pad�e approximant

C1 ¼
1

1� q2=2r2
?
; (55)

which is easily implemented in numerical codes13 and is

well behaved at large k?q. Using the definition Eq. (38), the

Pad�e approximant for C2 becomes

C2 ¼
�b=2

ð1þ b=2Þ2
: (56)

The moment equations (22)–(27) together with the field

equations (28) and (29) form a closed model when the gyro-

averaging closure approximations are inserted. The model is

based on the full-F gyrokinetic model given in Sec. II. In the

delta-F approximation of the gyrokinetic equations, the gyro-

kinetic distribution function is split into background and per-

turbed parts, whereas the full distribution function is retained

in the full-F approximation. The two approximations other-

wise only differ in how polarization and magnetization den-

sities are simplified. In the delta-F approximation, only the

background part of the distribution function is retained in the

polarization and magnetization terms. The full distribution

function is everywhere retained in the full-F approximation,

but the polarization and magnetization terms are taken in the

LWL limit. The delta-F and the full-F models therefore agree

if the polarization and magnetization terms in the delta-F

model are taken in the LWL limit, and the distribution func-

tion in the full-F model is split into background and per-

turbed parts, and the perturbed part of the distribution

function is discarded in the polarization and magnetization

terms. In Ref. 32, it is shown that local delta-F gyrokinetic

based gyrofluid models are supersets of local low-frequency

drift-fluid models. The gyrofluid gyro-averaging operators

C1 and C2 agree in the LWL with the corresponding opera-

tors in Ref. 32 when evaluated at constant background tem-

peratures and magnetic field strength. The global gyrofluid

model presented here is therefore also a superset of local

drift fluid models. We expect that a similar correspondence

exists between global drift fluid models33 and the global

gyrofluid model presented here. However, proving this asser-

tion will require a substantial amount of further work

because of the non-linear nature of the field equations, and is

therefore left for future work.

D. Energy conservation

In this section, we present the conserved energy of the

gyrofluid model. The energy conservation law is

@tE ¼ K: (57)

The energy E is obtained by inserting the Hermite-Laguerre

decomposition Eq. (18) into the gyrokinetic energy conser-

vation law Eq. (15)

E ¼
X

a

ð
d3X

mNu2
E

2
þ mNu2

2
þ

Pk
2
þ P? þ

jr?Akj2

2l0

: (58)

The energy consists of the E � B-energy density, the parallel

kinetic energy density, the parallel and perpendicular inter-

nal energy densities, and the perturbed magnetic field energy

density, respectively. The dissipative effects K originating

from the unspecified dissipative terms on the right hand sides

of the gyrofluid moment equations (22)–(27) are given by

K ¼
X

a

ð
d3X qðv� C2/ÞKN þ

qC2/
T?

KP? þ KP? þ
KPk

2
;

(59)

where v ¼ C1/� mu2
E=e is the gyrofluid generalized electric

potential.

The energy conservation law is exactly obeyed by the

gyrofluid moment equations (22)–(27) and the gyrofluid field

equations (28) and (29) in the combination with the closure

approximations given in Sec. III C. The energy conservation

law Eq. (57) is proved by explicitly evaluating the time
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derivative of E using the gyrofluid moment equations

(22)–(27) and the gyrofluid field equations (28) and (29).

The evaluation is mostly straightforward and follows the

same path as in local gyrofluid models.34 The only term in E
which requires special attention is the E � B-energy part.

Multiplying the quasi-neutrality constraint Eq. (28) by the

electric potential / and performing partial integration,31 we

get

d

dt

ð
d3X

mNu2
E

2
¼
ð

d3r q½v� ðC2/Þ�
@N

@t
þ q
ðC2/Þ

T?

@P?
@t

:

(60)

Terms quadratic in / cancel. The remaining terms, except

non-specified dissipative terms, are canceled by terms in the

internal and parallel kinetic energy terms of E which depend

on / and Ak. We note that the exact conservation of the

energy invariant E is independent of the choice of C1 pro-

vided that C2 is given by Eq. (38).

IV. CONCLUSIONS

In summary, we have derived a non-linear electromag-

netic six-moment gyrofluid model based on the full-F version

of gyrokinetics. The time evolution of the gyrofluid moments

is governed by Eqs. (22)–(27), the quasi-neutrality constraint is

given in Eq. (28), and the parallel component of Ampere’s law

for the perturbed perpendicular magnetic field is given in

Eq. (29). Closure approximations for all terms involving gyro-

averaging are found in Eqs. (41) and (43)–(54). No terms in

the gyrofluid model have been linearized including gyro-

averaging operators, the quasi-neutrality constraint, and

Ampere’s law. The model is therefore suited for qualitative

studies of basic mechanisms such as the interplay between the

small scale turbulence, sub-sonic large scale flows, and dynam-

ically evolving profiles. The fluid hierarchy is closed by taking

the gyrokinetic distribution function as a finite dimensional

Hermite-Laguerre polynomial in the parallel gyro-center ve-

locity and the magnetic-dipole-moment-like coordinate having

the gyrofluid moments retained in the model as coefficients.

The quasi-neutrality constraint, Ampere’s law, and the closure

approximations of terms involving the gyro-average are calcu-

lated using the decomposed gyrokinetic distribution function.

The exactly conserved energy invariant therefore equals the

gyrokinetic energy conservation law evaluated with the

decomposed gyrokinetic distribution function.

We would like to emphasize that to our knowledge the

model presented here is the first published global gyrofluid

model. Global fluid models including FLR effects were

derived by Strintzi et al. in Refs. 31 and 35. The models

were based on a constructed fluid Lagrangian and were

derived using a constrained variational principle. These mod-

els were also termed gyrofluid models. However, the fluid

moment variables in the global model by Strintzi et al. are

not gyrofluid moments as defined in Eq. (16), but are stand-

ard velocity moments

kvkp ¼
ð

d3v f ðx;vÞvðvÞ; (61)

which only equal the gyrofluid moment Eq. (16) to zeroth order

on the gyrokinetic smallness parameter �d.10,24,36 Therefore, the

moment equations in Strintzi’s model have non-physical dia-

magnetic advection terms which are eliminated by hand after

performing the constrained variation. Diamagnetic advection

terms do not enter gyrofluid models because the gyro-viscous

cancellation problem is bypassed24,36 using gyrokinetic theory.
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