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Abstract

The thermodynamic properties obtained in the Fluctuation Solution Theory are based on spatial 

integrals of molecular TCFs between component pairs in the mixture. Molecular simulation, via 

either MD or MC calculations, can yield these correlation functions for model inter- and 

intramolecular potential functions. However, system-size limitations and statistical noise cause 

uncertainties in the functions at long range, and thus uncertainties or errors in the integrals. A 

number of methods such as truncation, distance shifting, long-range modeling, transforms, DCF 

matching, finite-size scaling and adaptive resolution, have been explored to overcome these 

problems. This chapter reviews the issues and published work associated with using molecular 

simulation to obtain FST properties. The results suggest that molecular simulation should now be 

more fully utilized for obtaining quantitative FST thermodynamic properties of solutions. 
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6.1 Introduction 

Although FST integrals may be obtained from simulations, most modeling has been done with 

empirical expressions for the integrals which appear in the final exact expressions. These are 

described in Chapter 9 for both pure and mixed systems. However, since the RDFs for the three 

molecular pairs of a binary mixture can be directly obtained from MD simulations, in principle 

these may be integrated numerically to yield TCFIs. With force fields capable of representing 

real behavior, real FST property variations can be computed. However, this task has proven to be 

more difficult than might have been expected. We are not aware of a fully reliable method for 

obtaining TCFIs from RDFs for polyatomic molecules.  However, recent progress in calculating 

RDFs, as described in this chapter, should eventually lead to direct applications for real systems 

of interest, significantly expanding the knowledge and application of fluctuation solution theory. 

The focus here is on smaller molecules; simulations of proteins and larger substances have been 

described in Chapter 5. 

 

 6.2 Basics 

Unlike the atomic TCFs and pair RDFs introduced in Chapter 1, which are functions of only the 

spatial distance r between the centers of mass of the two molecules, molecular correlation 

functions depend on orientations, 1 and 2. The TCF can be resolved into isotropic and 

anisotropic parts (Gray and Gubbins 1984),  

 ( )
12 1 2 12 12 1 2( , , ) ( ) ( , , )a

ij ij ijh r = h r  + h r  6.1

where the isotropic part 12 12( ) ( ) 1ij ijh r  = g r   is obtained by averaging over angles, 
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1 2

12 12 1 2 ,
( ) ( , , )ij ijh r h r  6.2

with, 

 
1

2 1 2

1 1 12 2 -1 0

1 1 (cos )
8 8 0

d d d d  6.3

Thus, the anisotropic part is constructed to vanish upon averaging over orientations, 

1 2

( )
12 1 2 ,

( , , ) 0a
ijh r = 6.4

For flexible molecules, the correlation functions are also functions of the molecular 

conformation.  We consider small substances those for which conformation effects can be 

ignored. The molecular OZ equation defines the molecular DCF, cij(r12, 1, 2) (Gray and 

Gubbins 1984), 

 
3

12 1 2 12 1 2 13 1 3 32 3 2 3( , , ) ( , , ) ( , , ) ( , , )ij ij l il lj
l

h = c + x h c dr r r r r  6.5

where  denotes the overall number density of the fluid and xi is the number fraction of 

component i. In analogy with Equations 6.1, 6.2, and 6.4 the DCF can be written as a sum of 

isotropic and anisotropic parts, 

 ( )
1 2 12 12 1 2( , , ) ( ) ( , , )a

ij 12 ij ijc  = c r +cr r  6.6

Substituting Equations 6.1 and 6.6 into Equation 6.5 and angle-averaging leads to, 

 

1 2 3

13 32 3

( ) ( )
13 1 3 32 3 2 3

( ) ( ) ( ) ( )

            ( , , ) ( , , )

ij ij l il lj
l

a a
l il lj

l

h r = c r + x h r c r d +

x h c d

r

r r r
 6.7

Neglecting the last term in Equation 6.7 gives a simplified version of the OZ equation, in which 

the isotropic DCFs and TCFs are related without the anisotropic terms, 
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 ( ) ( ) ( ) ( )ij ij l il lj
l

h r = c r + x h - c r dr r r  6.8

The various approaches to spatial integration of molecular simulation data described in section 

6.3 use this equation instead of the full OZ equation. While this may not be fully rigorous, it is 

supported by several different analyses. First, Equation 6.8 is exact in some integral equation 

theories of fluids with anisotropic interactions, such as the mean-spherical approximation and the 

generalized mean field theory (Gray and Gubbins 1984).  Second, Wang et al. showed from MC 

simulations of LJ particles with significant dipole and quadrupole moments, that anisotropic 

forces have limited effects on hij(r) (Wang et al. 1973). Also, Gubbins and O’Connell  showed 

that, for dense fluids, compressibility data for water and argon could be scaled with only two 

parameters, meaning that the anisotropic effects were not apparent in the water data (Gubbins 

and O’Connell 1974). In addition, several studies show successful corresponding-states scaling 

for the DCFIs (Brelvi and O’Connell 1972, 1975a, 1975b; Campanella, Mathias, and O’Connell 

1987; Huang and O’Connell 1987; Abildskov, Ellegaard, and O’Connell 2009, 2010a, 2010b), as 

described in detail by O’Connell (O’Connell 1994).  Finally, the approximation of Equation 6.8 

is the first term of the spherical harmonic expansions of the molecular correlation functions.  It is 

worth noting that Equation Equation 6.8 can be systematically improved by considering the 

spherical harmonic expansions of the orientation-dependent TCFs and DCFs (Gray and Gubbins 

1984). The significance of this improvement is currently unknown, and probably depends on the 

system. 

 

6.2.1 Equivalence of Ensembles 

FST is based on the VT ensemble, so the KBIs are integrals over RDFs for an open system. 

However, simulations are most conveniently performed in the NpT, NVT, or NVE ensembles. 
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MD simulations in the VT ensemble are possible (Cagin and Pettitt 1991), but nontrivial due to 

the problems associated with inserting new particles (Beutler et al. 1994).  For this and other 

reasons, simulations are normally done on closed systems, though rigorously, the corresponding 

KBIs are equal to 0 for unlike pairs and -1 for like pairs, VT and NpT RDFs differ by a term of 

the order of 1/N, and the principle that gij(r ) = 1 is violated for closed systems (Ben-Naim 

1990a).  Fortunately, as illustrated in previous computational studies, RDFs in open and closed 

systems are extremely similar (Weerasinghe and Pettitt 1994). This means that while the original 

KB theory cannot be rigorously applied to a closed system, calculations converge to correct 

results with increasing N. Thus, it has become standard to use the equivalence of ensembles and 

to determine TCFIs using the MD simulations in the (NpT/NVT) ensembles rather than the VT 

ensemble. 

 

6.2.2 Integration 

The usual approach to determine the function gab(r) between the centers of mass of particle 1 of 

species a and particle 2 of species b separated by the distance r, is the accumulation of the 

number of particles b lying in the interval [r, r + dr] from a given particle a, and for all available 

values of r within the central box. Numerical integration of the RDFs from molecular simulation 

is less straightforward. Theoretically, hij(r) goes to zero when r goes to infinity. However, 

because the integral is evaluated numerically, convergence requires that hij(r) goes faster to zero 

than r2 goes to infinity.  For practicality, since the upper limit of the integral is infinite, for a 

convergent integral, there must be some upper separation distance, Rlim, beyond which the 

integrand no longer contributes significantly to the value of the integral. Thus, one defines 
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 lim 2
lim 0

( ) ( )
R

ij ijH R = r h r dr  6.9

with Rlim is chosen sufficiently large that the integral is converged. This means that Hij(Rlim) 

should be insensitive to larger values of Rlim. Experience shows, however, that Hij(Rlim) 

frequently does not include all of the nonzero values of r2 hij(r) from an MD simulation 

(Salacuse, Denton, and Egelstaff 1996). An example of this is shown in Figure 6.1 (Wedberg 

2011). 

[Insert Figure 6.1] 

 

The lack of convergence is mainly due to the RDFs retaining subtle structure over relatively long 

distances that contribute to the integral. While using a larger system might minimize the effects 

of omitting such contributions, the result would be significantly increased computational time 

without necessarily ensuring accuracy or reliable extrapolation. There are techniques (Theodorou 

and Suter 1985; Nichols, Moore, and Wheeler 2009) to allow calculation of pair correlation 

functions for distances up to 3/2 times the box dimension. However, convergence may not be 

obtained with the RDFs exhibiting substantial noise as the upper limit is approached (Salacuse, 

Denton, and Egelstaff 1996). 

 

6.2.2 Asymptotic Properties of RDFs and Potential Truncations 

One clever approach to obtaining better convergence is to include asymptotic properties of the 

pair correlation functions (Lebowitz and Percus 1963). In particular, exact asymptotic 

expressions have been obtained by Attard and co-workers (Attard 1990; Attard et al. 1991) such 

as for dipolar fluids. Other work has extended simulation results for a system with a truncated 

potential to give those for the full potential (Lado 1964). The effects on pair distribution 
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functions of potential truncations are important, for example, when the long-range tail of a 

potential must be truncated at some finite distance and the effect of the neglected part of the 

potential must be determined. 

6.3 Methods 

The task of extending the pair distribution function based on theoretical considerations has been 

addressed many times (Verlet 1968; Galam and Hansen 1976; Jolly, Freasier, and Bearman 

1976; Ceperley and Chester 1977; Dixon and Hutchinson 1977; Foiles, Ashcroft, and Reatto 

1984) . Often the goal has been to study the correlation functions themselves or to calculate 

structure factors, not to obtain properties. Here we will emphasize applications aimed toward 

representing thermodynamic properties of molecular fluids that do not have conformational 

variations. While many publications have been confined to atomic model fluids, such as LJ 

particles, we focus here on applications for real molecular systems and their mixtures. 

 

6.3.1 Direct correlation function matching 

The method of Verlet (Verlet 1968) is intended to correct correlation functions from simulation 

for the effects of finite-sized systems, such as those summarized by Salacuse et al., and to extend 

computed correlation functions to long range (Salacuse, Denton, and Egelstaff 1996). The 

method was originally used for a pure LJ fluid in a study of the DCF and the structure factor. 

Later it was extended to a LJ mixture (Jolly, Freasier, and Bearman 1976). With the method, pair 

TCFs are extended by forcing the corresponding DCF at large separations to be consistent with 

the result, 
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 MD( ) ( ) ,
( ) ( ( ), ( )) ,

h r h r r R
c r a u r h r r R

 6.10

Here hMD(r) is given by the simulation result and a is a closure relation giving the DCF in terms 

of the TCF, h(r), and the potential, u(r), evaluated at the same r. Verlet’s method utilizes the 

simple structure and short range of c compared to h. The approach can use either the Mayer f-

function or the Percus–Yevick relation to extend pair distribution functions obtained from 

simulations of the pure LJ fluid. For the LJ fluid, three different relations a(u,h) have been 

commonly used: the Mayer function, 

 ( ( ) ( )) ( ) exp( ) 1a u r ,h r = f r  = - u  – 6.11

the PY relation, 

 ( ( ) ( )) ( )(1 )(1 exp( ))a u r ,h r = f r + h - - u 6.12

and the first-order virial expansion of c (Wedberg et al. 2010), 

 ( ( ), ( )) ( ) 1 ( ' ) ( ') 'a u r h r f r f f r drr r  6.13

Note that these theories for c are all consistent with the asymptotic result c(r)  u(r)/kT, when    

r   (Lebowitz and Percus 1963). As shown in Foiles, et al. , Equations 6.11-6.13 usually 

yield similar results and there is no rigorous basis for selecting one over another (Foiles, 

Ashcroft, and Reatto 1984). Calculations of isothermal compressibilities by integration of the 

extended pair correlation functions were reported only for three state conditions by Verlet 

(Verlet 1968), and the statistical uncertainties were large. It is not clear whether these 

uncertainties were due to the quality of the simulations and their analysis or to the assumptions 

made by the extension method. Furthermore, while the compressibilities were fairly reasonable 

for noble gases, agreement with experiment was not reported in quantitative terms, due to the 

focus of the paper being on other properties of the correlation functions.  
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For some time, the numerical solution of the liquid structure integral equations remained a 

challenge. Progress along these lines was made by the numerical implementation of Verlet’s 

method, based on the Newton-Raphson method, known as the Gillan scheme for solving the OZ 

equation (Gillan 1979; Abernethy and Gillan 1980; Enciso 1985). Also a factorization approach 

to the OZ equation was demonstrated by Jolly et al. (Jolly, Freasier, and Bearman 1976). Before 

describing applications of our variant of the Verlet method to systems resembling real molecular 

mixtures in Section 6.4, we review other approaches designed to improve convergence. 

 

6.3.2 Truncation 

One of the simplest strategies is called truncation (Weerasinghe and Smith 2003b). With this 

method, the VT RDF is approximated by the NpT RDF truncated at a specific distance chosen 

for Rlim. This distance is chosen to be, “The range over which the intermolecular forces dominate 

the distribution of particles.” Ideally, the truncated NpT RDF captures the major features of the 

VT RDF, and its integral provides a good approximation to the desired KBIs. Truncated RDFs 

obtained from NpT simulations have been obtained for several different mixtures, and used to 

obtain properties, such as partial molar volumes (Lin and Wood 1996), and to express the KB 

equation in terms of local compositions (Mansoori and Ely 1985).  

 

As described in Chapter 5, Smith and co-workers have employed the truncation method in order 

to develop accurate force fields for solutions, especially those with biochemicals and proteins. 

Over the past decade, a series of force-field development and validation studies have been 

published using KBIs (Chitra and Smith 2001a; Weerasinghe and Smith 2003d, 2004; Gee et al. 
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2011). The truncation approach can be successful if the TCFIs converge within the range of 

distance sampled by simulation. If not, the results will depend sensitively on the choice of Rlim. It 

is therefore common to average H(Rlim) with Rlim varying over a selected interval. There seem to 

be no general rules for selecting the interval, other than suggesting that it should cover one 

oscillation of the TCF. 

 

6.3.3 Distance-Shifting 

Distance-shifting is another method employed with data on systems resembling real molecules. 

Both Perera and Sokoli  (Perera and Sokolic 2004) and Hess and van der Vegt (Hess and van der 

Vegt 2009) attempt to correct the RDFs obtained from simulation by rescaling according to 

 (0)( ) ( ) ( )ij ij ijg r r g r  6.14

Here ij is chosen in order to enforce that gij(r) approaches unity at long distances. Perera and 

Sokoli  (Perera and Sokolic 2004) presented NpT simulations of the water + acetone binary 

mixture. Although a correction of the order 1/N is required, the result gab(r)  1 (for r  ) is 

often valid for simple fluids after a few molecular diameters. This can be realistic in simulation 

boxes with a few hundred particles. However, for systems characterized by microscopic 

aggregation, the RDFs decay in irregular fashions with the range of correlations in the RDF 

differing from that of pair interactions, even at conditions remote from a critical point. The 

apparent problem in evaluating these quantities is the upper bound of the integral relative to the 

range of the correlations described by the simulations. If the system is large enough, one may 

consider that the correct asymptotic behavior is attained at some cutoff Rlim smaller than the half-

box length Lbox/2. Accordingly, the KBI can be computed by replacing the infinite upper bound 

by Rlim, as in truncation methods. Though this may be satisfactory for simple fluids, it is 
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probably incorrect for fluids with long-range correlations. If the upper bound is not large enough 

to capture the correct asymptotic behavior, it will lead to incorrect estimation of the KBIs. For 

water/solute systems, these correlations probably extend over five to six water diameters, which 

is too large even for a system with N = 1024. 

 

Since the Lbox/2 values of all partial gij(Lbox/2) are always close to unity, Perera and Sokoli  

(Perera and Sokolic 2004) restored the correct asymptotic value at the natural half-box cutoff by 

shifting the value to unity. The expression used is, 

 (0)
(0)

box box

1( ) ( ) ( ), ( )
1 2 ( 2) 1ij ij ij ij

ij

g r r g r r
r L g L

 6.15

where gij
(0)(r) is the uncorrected RDF. This procedure leaves values of the RDF at contact nearly 

unchanged if gij
(0)(Lbox/2) is close to unity. Perera and Sokoli  (Perera and Sokolic 2004) found 

that N = 864 is just enough to satisfy this condition, though N = 2048 is much better. The merit 

of this equation is the use of all r < Lbox/2 values in the calculation of the KBI, and, in particular, 

avoiding artifacts in the evaluations of the canonical ensemble KBIs. 

 

Hess and van der Vegt (Hess and van der Vegt 2009) studied cation binding affinity with 

carboxylate ions. They computed the excess coordination numbers, Nij, defined in Section 1.1.5, 

for water (w) or cations (c) about cations, 

 2

0
4 ( ( ) 1)jc c jcN g r r dr  6.16

where j = w, c and computed the chemical potential derivatives of Equation 1.49 from closed 

system NpT simulations. The finite-size correction is accounted for in a novel way. The idea is to  

consider a small part of a large system, such that this small part can be considered as open, and 
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then evaluate the integral up to a finite distance where it has converged within the larger system. 

Since the RDFs can not converge exactly to unity, the Hess/van der Vegt approach employs a 

scaling factor to account for the fact that the fluid composition far from a given molecule is 

different from the overall composition.  The scaling factor is chosen, “Such that the RDF 

becomes exactly 1.” Assuming that Njc(R) is constant beyond a distance Rlim, the RDF can be 

normalized to 1 by dividing it by the ‘observed’ number of particles and multiplying by the 

‘expected’ number, 

 lim box

lim box lim

(1 ( ) )
(1 ( ) ) ( )

j
jc jc

j jc jc

N V R V
g g

N V R V N R
 6.17

where Nj is the number of particles of species j, V(R) is the volume of a sphere with radius R and 

Vbox is  the volume of the simulation box, cc = 1 and wc = 0. For a system with 100 ion pairs, the 

scaling factor is around 1.005 (or one particle in 200). The correction for gwc is two orders of 

magnitude smaller. Although the methods are straightforward to implement, they still require 

selecting an appropriate truncation distance, and there seems to be no systematic way to choose 

the value of Rlim. This aspect can be a limitation, since in our experience the results are very 

sensitive to the selection of this value (Wedberg 2011). 

 

6.3.4 Long Range Modeling 

To avoid searching for an Rlim that gives the value of a converged, KBI, an alternative is to find a  

model, and its parameters, for the long-range tail of the RDF to effectively extend the simulation 

results to infinite separation.  The intention is to minimize sensitivity to the location where the 

simulation results are considered unreliable. 
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Matteoli and Mansoori (Matteoli and Mansoori 1995) gave a parametric expression for the RDFs 

of LJ fluids and their mixtures. That work arrived at a final form of the RDF based on the 

asymptotic conditions for zero density and infinite distance, as required by statistical 

thermodynamics, rather than rigorous geometrical and spatial considerations. Seven adjustable 

parameters were fitted to literature data on RDFs for each LJ fluid at different temperatures and 

densities. These were in turn expressed as functions of reduced temperature and density, so the 

complete parameterization used a total of 21 parameters. The capability of the expression to fit to 

RDFs of mixtures was checked against literature simulations of binary LJ mixtures with different 

diameters, molar fractions and AA/ BB ratios. The agreement between calculated and simulation 

curves was satisfactory. The values of the reduced pressure and internal energy calculated by 

numerical integration of the completely parameterized equation compared reasonably well with 

literature MD simulations. This approach allows calculation by integration of related quantities 

such as compressibility, internal energy, pressure and, using FST, the chemical potentials and 

partial molar volumes of the LJ mixture components for which RDF results are available. The 

works of Christensen et al. (Christensen et al. 2007a; Christensen et al. 2007b; Christensen et al. 

2007c) addressed molecular simulations of systems resembling real molecules. 

 

As shown in Figure 6.2 (a) for the benzene(1)/ethanol(2) binary mixture, the solid line is g22(r) 

which deviates much less than 1% from unity near rmax. However, divergence is clearly seen in 

Figure 6.2b, starting at r  15 Å, where a local maximum in the integrand, dG22, has a negative 

value. This is magnified in the TCFI because r2 is a factor in the integrand, dG22. To overcome 

this issue, a data reduction procedure based on tail modeling, in the sense of Matteoli/Mansoori 
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(Matteoli and Mansoori 1995) was tried. Unfortunately, the assumptions underlying the 

Matteoli/Mansoori RDF are not valid in the direct correlation range (first peak) for the kinds of 

substances frequently encountered in chemical engineering applications, such as hydrogen 

bonding species. For example, the Matteoli correlation assumes that the variations of the RDF 

from unity decrease from peak to peak so a combination of the exponential and cosine functions 

can be used. However, this is not always the case with real molecules. For example, the ethanol-

ethanol RDF at high concentrations of benzene shows an irregular multi-peak behavior not seen 

in LJ mixtures. This reflects dilute solution association effects of the ethanol molecules. As a 

result, Christensen et al. abandoned the LJ expression and integrated the simulation results 

numerically for the range of direct interactions. Then, since the indirect part of the RDF does not 

change dramatically when different interaction potentials are used, especially when averaging 

over angles, the long-range shape of gij(r) is simple and similar to that of hard spheres.  Further, 

when a model expression is used, it is possible to analytically integrate the indirect gij out to rmax, 

and ultimately to rnc, beyond which there is no contribution to the TCFI. The model expression 

selected was, 

 ( )indirect ( ) 1 exp sin ( )b r c
ijg r a d r e  6.18

The five-parameters are determined by regression with the objective to reproduce gij(r) from the 

third unity, ru3, to rmax, with initial guesses found from, 

 

min,2
init max,2 init

min,2 max,2 max,2

init max,2 init init 3
4 3

1 ( )1( ) 1, ln
( ) 1

, ,

ij
ij

ij

u
u u

g r
a g r b

r r g r

c r d e r
r r

 6.19

Here ru3 and ru4 are the radii of the third and fourth zeros of hij(r), respectively, while rmax,2 is the 
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radius of the second maximum of gij(r), or the first maximum of the indirect interaction, located 

between the third and fourth zeros of hij(r). The quantities gij(rmax,2) and gij(rmin,2) are the values 

of the second maximum and minimum, respectively. The dashed curve in Figure 6.2 is the result 

of such a regression. The contribution to Hij from integration from rmax to rnc is viewed as a long 

distance correction term.  

[Insert Figure 6.2] 

 

Thus, the final form for TCFIs has three contributions as shown in Figure 6.3: 1) the direct 

interaction part of the RDF, Hij
direct, integrated numerically; 2) the integral of a trial function 

from the end of the direct interaction to the maximum distance determined by the box size, Hij
box; 

and 3) the long distance contribution, Hij
ld, 

 
3

3

direct indirect ld

2 2 direct indirect ld

0
( ( ) 1) ( ( ) 1)u

u

ij ij ij

r

ij ij ij ij ij ijr

H H H

H r g r dr r g r dr H H H  
6.20

The statistical uncertainty of the direct interaction part of the RDFs is normally negligible. 

Uncertainties are small for the first portion of the indirect part, though they could be significant 

at greater distances. Finally, the contribution of Hij
ld to Hij is the least, so its uncertainty can be 

ignored. 

[Insert Figure 6.3] 

 

The 2006 International Fluid Properties Simulation Challenge (IFPSC) 

(http://fluidproperties.org/) competitions were initiated in 2001 to stimulate and assess prediction 

methods for properties of industrially important fluids, by comparing methods, assessing the 
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state of the art in simulation, and enhancing alignment of academic efforts with industrial needs. 

The 3rd IFPSC was held from March to September 2006. The focus of this contest was on the 

transferability of force fields and simulation methods for bubble pressures of mixtures of 

1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea refrigerant) and ethanol, based on limited data. In 

addition to their interesting pure component chemical properties, HFCs are often mixed with 

other fluids to be replacements for environmentally damaging chlorofluorocarbon refrigerants, 

and for cleaning-solutions, fire-retardants, and propellants. In the system of interest, hydrogen 

bonding interactions could occur between the HFC-227ea proton and the ethanol hydroxyl, 

leading to attractive unlike interactions. It was expected that this system would not be well-

modeled by simple EoS mixing rules. 

 

Entrants were provided with the experimental bubble points for 15 mixture compositions of 

1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) and ethanol at 283.17 K, and properties of the 

pure materials at 343.13 K. The challenge was to compute bubble points for seven mixture 

compositions at 343.13 K, using any experimental data for the pure components but the only 

mixture points were those at 283.17 K. Entries using any theory/modeling/simulation method 

were accepted. Entries were judged based on the criterion, 

 
7

,exp ,calc

1 ,calc

100
7

i i

i i

P P
SCORE

P
 6.21

The experimental data for the mixtures at 343.13 K, measured at DuPont, were not released until 

all entries had been received. The four contestants used a range of different techniques including 

statistical-mechanical and molecular-simulation approaches that gave significantly more accurate 

predictions than from the semi-empirical NRTL model (Prausnitz, Lichtenthaler, and Gomes de 

Azevedo 1999). The entry provided by Christensen, et al. (Christensen et al. 2007a) was based 
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on an NPT-MD simulation of the liquid phase at each mixture composition with FST linking the 

predicted microscopic structure (from the calculated RDF), to parameters that optimized a GE-

model for the liquid phase. It was assumed that the vapor phase was an ideal gas. For this contest 

the CHARMM force field was modified by revising the LJ parameters for the –CHF- part of the 

HFC-227ea molecule to fit experimental densities. The long-range modeling method of 

Christensen et al. (Christensen et al. 2007a) was sufficiently accurate to win (Case et al. 2007) in 

the ‘State Conditions Transferability’ category. Their predictions of VLE behavior shown in 

Figure 6.4 gave a SCORE of 1.52. Activity coefficients found for this system are unusual in 

behavior, as shown in Figure 6.5. The total pressures show positive deviations from Raoult’s 

law, but the activity coefficients have a maximum for HFC-227ae and a minimum for ethanol 

near x1 = 0.45. 

[Insert Figures 6.4 and 6.5] 

 

The approach of Christensen was later modified by Wedberg et al. (Wedberg, Peters, and 

Abildskov 2008). First, the 5-parameter form of Equation 6.18 was changed to a 4-parameter 

form, 

 ( )indirect ( ) 1 exp sin ( )b r c
ijg r a d r c  6.22

Next, a tail model corresponding to the anti-derivative of the trial expression for g(r) was fitted 

to the truncated numerical integral of g(r) as a function of the upper integration limit. This tail 

model was then used to extrapolate H(Rlim) to Rlim =  which yielded the value of the TCFI. 

Defining the running integrals of the RDF, G(r), 

 2

0
( ) 4 ( ) 1 , lim

r

r
G r r g r dr H G  6.23



 

 

19

 

the anti-derivative of Equation 6.23 used is, 
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6.24

The parameters for Gsmooth(r) were fitted to the sampled G(r) for r ranging from ru3 to rmax, as 

defined above. The method was used to obtain isothermal compressibilities of five pure alkanes 

at three different state points and these were compared to the values derived from simulated 

overall density fluctuations. Results showed that the two approaches were fully consistent in 

values and uncertainties. Further, the computations converged in approximately the same 

simulation times. This suggests that computation of TCFIs is a route to isothermal 

compressibility, as accurate and fast as well-established benchmark techniques, with the 

advantage that it can be used in any ensemble (Puliti, Paolucci, and Sen 2011). Note that this 

approach has only been successfully tested on pure fluids. The main limitation of both methods 

(Christensen et al. 2007a; Christensen et al. 2007b; Christensen et al. 2007c; Wedberg, Peters, 

and Abildskov 2008) is that they apply only to systems where the TCF tails can be approximated 

by the model equations, which may not be true in general. 

 

6.3.5 Transforms 

Nichols et al. developed a method using finite-Fourier-series expansions of molecular 

concentration fluctuations in order to reduce systematic errors from the simulation boundary 

conditions (Nichols, Moore, and Wheeler 2009). The procedure was validated and compared to a 

truncation method for a non-ideal binary liquid mixture of LJ particles tuned to imitate the 
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system CF4 and CH4. A fluctuation expression is applied to a portion of the total volume within a 

closed simulation such as NVT. Rather than the sampling volume being spherical and centered on 

a single moving molecule, the sampling volume is one or more rectangular-slab regions that are 

stationary with respect to the simulation cell. This leads to two alternative expressions, 

 2

0

sin( )( ) ( ) 1 4ij i ij i j ij
qrS q x x x g r r dr

qr
 6.25

and, 

 
1( ) ( , ) ( , ) ( , ) ( , )ij i i i jS N t N t N t t
N

q q q q q  6.26

where i(q,t) is the Fourier mass coefficient at the time t of the component i, and the wave vector 

q has components that are integer multiples of 2 /Lbox. The TCFIs are found from the structure 

factors via Gij = Sij(0)  1.  

 

For an infinite system, the definitions of Sij in Equations 6.25 and 6.26 are equivalent. However, 

for finite systems, truncation of the integrals can lead to errors in the integral of Equation 6.25. 

The advantage of Equation 6.26 relative to Equation 6.25 is that the structure factor can be based 

on a discrete Cartesian-based Fourier transform, rather than a continuous, spherically symmetric 

Fourier transform, Equation 6.26, is evaluated at various values of q which are most accurate at 

larger values.  The q-dependent Sij are then extrapolated to q = 0 by fitting them to polynomials, 

the range of q and the polynomial order being selected empirically. Thus, it is not gij(r) that is 

corrected; it is done via the structure factors related to the RDFs using the radial Fourier 

transform. The sampling volumes of the method do not truncate intermolecular correlations at a 

particular radial distance and no assumption is made that gij  1 at large intermolecular 
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separations. In effect, this approach is consistent with periodic boundary conditions, but immune 

to long-range truncation effects. The inaccuracies in simulation RDFs at large r become 

unreliable Sij(0) because of the system size but extrapolation to q = 0 provides the correction.  

Good results are obtained for LJ mixtures, but the method has apparently not yet been tested for 

molecular fluids.  

 

6.3.6 Finite-size scaling 

The approach of Schnell et al. is to sample small non-periodic systems in a (periodic) simulation 

box (reservoir) and then scale the results (Schnell et al. 2011). The simulation system has sides 

of Lt in each dimension. Small systems are randomly selected sub-volumes, denoted by Ln-1, Ln, 

and Ln+1, and can exchange energy and particles with the rest of the system. While the reservoir 

may not be a grand-canonical ensemble, the small systems will be when Ln << Lt.  Finite-size 

scaling of KBIs determined from different-sized small systems is done by fitting and 

extrapolating them to the thermodynamic limit using essentially straight lines. The values 

compare well with those from integrating the RDF using a truncation method. In all cases, visual 

inspection is needed to identify where the subvolume results follow straight lines, but this is 

straightforward. While this approach has not been extensively tested, there is promise for such 

computations for practical applications with relative insensitivity to system size. 

 

6.3.7 Adaptive Resolution 

Quite recently, Mukherji et al. (Mukherji et al. 2012) have proposed an adaptive resolution 

simulation method (‘AdResS’). In a way resembling the distance-shifting method of Hess and 
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van der Vegt (Hess and van der Vegt 2009), the ‘AdResS’ method divides the simulation domain 

into a small region of high resolution (atomistic) molecules and a large region of (coarse-

grained) lower resolution. Mukherji et al. analyze their method with a mixture resembling 

methanol and water by comparing the results with all-atom simulations and existing 

experimental results. Excellent agreement is found with the much larger and computationally 

more expensive all-atom simulations as well as with data. As with other methods that need to 

select an integration limit such that the integral converges to a plateau value or oscillates in a 

well-controlled way around a mean value, the ‘AdResS’ method also selects a high resolution 

region width.  The results indicate that a radius of 2 nm is adequate for the specific system of 

methanol and water, but a general approach to selecting the radius is uncertain. 

 

6.4 DCF Matching – Mixtures of Polyatomic Molecules 

Recently we (Wedberg et al. 2010; Wedberg 2011; Wedberg et al. 2011a, 2011b) have 

investigated more thoroughly the extension method of Verlet (Verlet 1968) for mixtures with 

polyatomic molecules. This section gives a more complete description of our implementation, 

including some results not previously published. We have analyzed MD simulations of both pure 

(Wedberg et al. 2010) and mixed (Wedberg et al. 2011a, 2011b) LJ and Stockmayer fluids for 

wide ranges of state conditions and compared the results with the truncation method of 

Weerasinghe and Smith (Weerasinghe and Smith 2003b) and the distance-shifting method of 

Hess and van der Vegt (Hess and van der Vegt 2009). 
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6.4.1 Method

For potentials that decay faster than r-3, the asymptotic behavior of the DCF is (Lebowitz and 

Percus 1963), 

 
2( ) ( ) ( )c r u r O u r  6.27

Here u is the pair intermolecular potential. In order to extend the TCF obtained from simulation, 

one chooses a value R within the range for which h(r) is sampled, and determines h and c 

according to Equation 6.10. These requirements, together with the OZ equation, define a closed-

form integral equation, which can be solved in order to obtain h(r) for r > R. Simultaneously, c(r) 

is obtained for all r. In our implementation, h and c are discretized as linear splines and both 

functions are assumed to be zero beyond a finite distance Rc. For example, in the cases of LJ and 

Stockmayer particles Rc = 15 , where  is the LJ diameter. For “real” fluids, other values are 

used. Selecting this truncation radius is straightforward since the integrals generally converge, as 

can be checked by plotting the running integral versus r. If not converged, one repeats the 

calculation with a larger Rc. The Fourier-transformed OZ equation (Lebowitz and Percus 1963) 

is employed to express c explicitly in terms of h. This transforms the integral equation into a 

system of nonlinear equations for which a numerical solution is found using Newton’s method 

(Wedberg et al. 2011a). The Jacobian is evaluated analytically and 5–15 iterations are normally 

required for convergence. Commonly, the Wiener-Hopf factorization technique is applied when 

the DCF is computed numerically from the TCF or vice versa (Jolly, Freasier, and Bearman 

1976; Gray and Gubbins 1984; Press et al. 1992; Ramirez, Mareschal, and Borgis 2005). For the 

present application, the three-dimensional Fourier-transformed OZ equation can be employed. 

Applying the Fourier transform to Equation 6.6 gives a product, 
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1

ˆ ˆˆ ˆ( ) ( ) ( ) ( )ij ij il l lj
l

h k c k h k x c k  6.28

where ij(k) denotes the Fourier transformation of hij(r).  Due to radial symmetry, this is the 

zeroth-order Hankel transform, defined by, 

 2

0

sin( )ˆ ( ) 4 ( )ij ij
krh k drr h r

kr
 6.29

This same formulation holds for ij(k). The function hij(r) is recovered from the inverse Hankel 

transform and is given by, 

 2
3 0

4 sin( ) ˆ( ) ( )
(2 )ij ij

krh r dkk h k
kr

 6.30

Utilizing that 12(k) = 21(k) and 12(k) = 21(k), Equation 6.28 can be written as a linear system, 

 ( ) ( ) ( )k k kh I H c  6.31

with, 

 
11 1 11 2 1211

12 12 1 11 2 12

2222 1 12 2 22

ˆ ˆ ˆ( ) ( ) ( ) 0ˆ ( )
ˆ ˆ ˆˆ( ) ( ) ( ) ( ) , ( ) 0 ( ) ( )
ˆ ˆ ˆˆ ( )( ) 0 ( ) ( )

h k x h k x h kc k
k h k , k c k k x h k x h k

c kh k x h k x h k

h c H  6.32

where I denotes the identity matrix. Equations 6.32 assume that the fluid mixture has at most two 

components. Equations 6.29-6.31 provide a route for computing cij(r) given hij(r). The function 

hij(r) is Hankel-transformed to yield ij(k). The linear system in Equation 6.31 is then solved for 

ij(k) at each k, followed by applying the inverse Hankel transform to obtain cij(r). Solution of the 

problem of Equation 6.10 requires that the long-range part of hij(r) is adjusted until the long-

range part of cij(r) matches a trial function tij(r). This is accomplished by a Newton iteration 

scheme for which grids in r and k space are introduced, 



 

 

25

 

 
, 0,...,
, 0,...,

r r N
k k N

 6.33

The upper cutoffs are Rc = N · r and Kc = N · k for the integrals in Equations 6.29 and 6.30, 

respectively. Note that Rc is not the sampling limit set by the simulation box dimensions, but is 

typically much larger. The TCFs, DCFs, and their Hankel transforms at an iteration step t are 

represented by discrete vectors, 

 
( ) ( ) ( ) ( )
, ,

( ) ( ) ( ) ( )
, ,

( ), ( ), 1,...,

( ), ( ), 1,...,

t t t t
ij ij ij ij

t t t t
ij ij ij ij

h h r c c r N

h h k c c k N
 6.34

Equation 6.29 for the TCF is approximated by truncating the integral at Rc and using the 

trapezoidal rule, 

 ( ) ( )t t
ij ijh T h  6.35

Elements of the matrix T are, 

 2 0sin
4 1

2
Nk r

T = r r -
k r

 6.36

with  = 1, . . . ,N,  = 1, . . . ,N, with sin(kr)/(kr) being unity if either k or r is zero. Equation 

6.30 for the DCF is approximated in a similar way by truncating the integral at Kc, 

 ( ) ( )t t
ij ijc U c  6.37

with, 

 02
3

sin4 1
(2 ) 2

Nk r
U = k k -

k r
 6.38

with  and  as in Equation 6.36. As stated above, the middle step of converting ij
(t) to ij

(t) is 

carried out by solving the linear system of Equation 6.31 for each value of . If nij denotes 
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indexing such that 1ij ijn ij nr R r , and hij
(t) and cij

(t) denote vectors containing the elements of hij
(t)  

and cij
(t), respectively, with nij +1    N, hij

(t) is updated at each iteration step according to, 

 ( 1) ( ) ( )t t t
ij ij ijh h h  6.39

Here, hij
(t) in Newton’s method is found by solution of the linear system, 

 

11 11 11 ( ) ( )
11 12 22 11 11
12 12 12 ( ) ( )
11 12 22 12 12
22 22 22 ( ) ( )
11 12 22 22 22

t t

t t

t t

J J J h c
J J J h c
J J J h c

 6.40

where the right-hand side represents the difference between the approximation of the long-range 

DCF to be enforced and the currently computed DCF, 

 ( ) ( )
, ,( ) , 1,.....,t t

ij ij ij ijt r n Nc c  6.41

The Jacobian has the elements, 
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h h
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h h

J  6.42

These are partial derivatives that can be expanded by the chain rule to,  

 , , , ,,

0, 0 0, 0, , ,, ,

N N
ij ij ij ijab

ab ij abab ab

c c c ch
U T

h c hh h
 6.43

The last equality is due to the result, 

 , ,

, ,

ij ij

ab ab

c c
h h

 6.44

a consequence of Equations 6.31, 6.39, and 6.41. The partial derivatives are obtained from three 

linear systems derived from Equation 6.31 by differentiation with respect to 11, , 12,  and 22, . 
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The results are, 

 

11, 11, 11,

11, 12, 22,

1 11, 2 12,
112, 12, 12,

1 12, 2
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1
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I H 22,

1 12, 2 22,

0
0

1x c x c
 6.45

At each iteration step, these systems are solved for the partial derivatives which then are used to 

evaluate the Jacobians in Equation 6.44. 

 

The short-range parts of the calculated DCFs are not used within the iteration scheme though the 

short-range part of the DCF obtained from the final iteration is considered in selecting the 

parameters Rij. Initially, the discretized TCFs are set to h(0)
ij,  = hMD,ij(r ) for all r  within the 

sampling range for hMD,ij(r), and h(0)
ij,  = 0 for larger . The iteration is carried out until, 

 
2( ) 2

,
, 1ij

N
t

ij
i j n

rc  6.46

with  = 10 4 or less. Typically, this is achieved after 5-15 iterations. For some systems, in 

particular those at high density where the functions hij(r) have significant structure beyond the 

sampling range, the tail model by Christensen et al. (Christensen et al. 2007a; Christensen et al. 

2007b; Christensen et al. 2007c) was used to estimate the long-range behavior for the initial 

guess h(0)
ij, . Using this approach, the Newton iterations have converged for all systems we have 

studied to date. Issues of how to select the matching distance, and the angle-averaging of 

potentials are discussed in detail by Wedberg (Wedberg 2011). 
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6.4.2 Results

We now discuss results from MD simulations that test the capabilities of the method. The KBIs 

are primarily verified by comparing the derivative properties obtained from the integration 

procedure with the same properties obtained from alternative analyses, or from simulation results 

in the literature. For the simulations of water/organic solvent mixtures, the derivative properties 

obtained by integration are also compared against values derived from correlations of 

experimental data. In this last case, consistency depends not only on the accuracy of the 

integration procedure, but also on the accuracy of the force field.  

 

6.4.3 Model Fluids 

The methodology was first tested on pure and mixed LJ and Stockmayer fluids (Wedberg et al. 

2010) for several reasons. First, these fluids are well-defined, so simulation results over wide 

temperature and density ranges could be acquired with limited computational effort. Second, the 

thermodynamic derivative properties obtained from the extended pair-distribution function can 

be validated against data derived from correlations of previous simulations. Third, the simple 

form of the inter-atomic potentials allows a basic test of the assumption that the OZ equation can 

be resolved into isotropic and anisotropic parts. For the Stockmayer fluid, this form of the OZ 

relation is inexact, becoming less accurate as the (reduced squared) dipole moment, *2, 

increases. The accuracy of the properties obtained for large *2 could indicate validity of the 

isotropic OZ equation. In what follows, the physical quantities are in dimensionless values, 

where the quantities marked with an asterisk (*) have been reduced with respect to the LJ 

parameters  (energy),  (length) and the atomic mass. Here we give here later developments 

(Wedberg 2011; Wedberg et al. 2011b) than described by Wedberg et al. (Wedberg et al. 2010), 
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which has less reliable approximations for the DCF tail. 

 

6.4.4 LJ Fluids 

Figure 6.6 compares the isothermal compressibilities obtained from the method with those 

obtained from the EOS of Mecke et al.  for LJ fluids (Mecke et al. 1996). At all four 

temperatures, our results are qualitatively consistent with the EOS, with differences in the range 

of 1-5%. The comparisons are not as good at the two lowest temperatures, where the differences 

are as high as 6%. 

[Insert Figure 6.6] 

 

The greatest disagreement is seen when T* = 1.5 and * is 0.3 or 0.4, which are the state points 

closest to the critical point of c* = 0.304 and Tc* = 1.316 (Smit 1992). At those conditions, the 

differences are 7% and 8%, respectively. This disagreement is not surprising considering that the 

reduced bulk modulus ( kBT T = 1 C) can be very small in this region. We conclude that our 

method is best suited for systems at liquid density (  > 2 c). For * = 0.7 and * = 0.8, the 

agreement with the EOS was better at higher temperature (1% at T* = 2.5) than at lower 

temperature (6% at T* = 0.85). It is possible that derivatives of the Mecke EOS are less accurate 

at lower temperatures since the EOS does not reproduce the simulation pressures very well under 

these conditions and at higher temperatures. Nevertheless, though low temperatures seem to offer 

more of a challenge, the results obtained under those conditions may still be considered 

satisfactory. The standard error in T was less than 0.5 %, indicating that the calculations were 

well converged. 
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6.4.5 LJ/Stockmayer Mixtures 

LJ/Stockmayer mixtures include “Stockmayer” atoms (2) with finite dipole moments and “LJ” 

atoms (1) with zero dipole moment. LJ-LJ and LJ-Stockmayer interactions thus follow the LJ 

potential, while Stockmayer-Stockmayer interactions include dipole-dipole interactions. The 

EOS of Gross and Vrabec (Gross and Vrabec 2006) describes mixtures of fluid particles with 

different dipole moments and thus can be used to obtain the isothermal compressibility. Values 

of the reduced bulk modulus obtained from our method are compared in Figure 6.7 with the 

Gross/Vrabec EOS. For *2 = 1 (a), the Verlet values agrees very well with the EOS; the 

differences are 1–1.5%. For the higher dipole moments, the agreement is still good when x2 is 

small but deteriorates as x2 increases (b) and(c). This becomes more pronounced for *2 = 3 

where the discrepancies are as large as 11% at Stockmayer-rich compositions. Since the 

Gross/Vrabec EOS did not reproduce simulation pressures very well (Wedberg 2011) with errors 

increasing with larger *2 and x2, the discrepancy may not be only in the simulation results. 

[Insert Figure 6.7] 

 

6.4.6 Comparison with existing approaches 

The truncation (Weerasinghe and Smith 2003b) and distance-shifting (Hess and van der Vegt 

2009) methods were also employed to calculate kBT T. Simple truncation requires averaging 

H(Rlim) over a specific interval, where H(Rlim) is the numerical TCFI as a function of the upper 

integration limit Rlim. It is not obvious how to choose these values. Here, the TCFIs have been 

averaged with Rlim in the interval [2 , 3 ], where  roughly corresponds to the oscillation period 

of hij(r). With the Hess method, the scaling factor ij was evaluated with R = 4 . The RDFs were 
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re-scaled, but the integrals still did not converge within the sampled range. The integration of the 

re-scaled RDFs was thus carried out as with the truncation method, but using larger truncation 

radii, based on the idea that corrected RDFs are more reliable at large separations. The TCFIs 

were averaged using truncation radii in the interval [3.5 , 4.5 ]. The values obtained for the 

isothermal compressibility (Figure 6.7) demonstrates the limitations on simple truncation and 

distance-shifting methods. Truncation overestimates the compressibility by 10–15% while 

distance-shifting underestimates it by 10–40%. These are sensitive to the choice of truncation 

radii, so it is possible that better results could have been obtained with other radii. The methods 

should also perform better with significantly larger simulation systems, but this was not tried 

here. The Verlet method yielded accurate results for LJ/Stockmayer mixtures as indicated by 

comparisons with benchmark values. While the method achieves better accuracy than simpler 

integration approaches, caution is advised regarding activity coefficient derivatives when a 

system is nearly ideal or when the mole fraction of a component is less than approximately 15%, 

as discussed by Wedberg et al (Wedberg et al. 2011a). 

 

6.4.7 Aqueous Alcohol Mixtures 

The major goal is to establish an integration method that accurately predicts activity coefficient 

derivatives, partial molar volumes, and isothermal compressibilities from simulations of 

molecular mixtures with atom-atom interaction models. This section focuses on such 

applications with results compared to values derived from correlations of experimental data. It 

should be noted that the accuracy also depends on the validity of the molecular force fields and 

reliability of experimental data. As with the analysis of the LJ/Stockmayer mixtures, the simple 
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truncation (Weerasinghe and Smith 2003b) and distance-shifting methods (Hess and van der 

Vegt 2009) were employed to evaluate the same properties. Simple truncation averaging of the 

integral varied in the interval for Rlim from 1.0 to 1.5 nm. With the distance-shifting method, the 

scaling factors ij were evaluated from the calculated RDFs with the parameter R = 2.0 nm. 

Numerical integration of the re-scaled RDFs did not converge within the sampling range, so the 

integrals of the rescaled TCFs were evaluated by truncation using intervals of 1.4–1.9 nm. The 

truncation radii employed for integration of the re-scaled TCFs were larger than those used with 

the simple truncation approach since the rescaled TCFs probably were more accurate than the 

original TCFs for large r, as discussed in Section 6.3. For comparison, isothermal 

compressibilities were evaluated via the fluctuations of the simulation box volume. The results 

are shown in Figure 6.8. The Verlet method reproduced the fluctuation formula results to within 

5%, while the simple truncation and distance-shifting methods were greatly in error.  In fact, 

distance-shifting yielded negative compressibilities. It is likely that reliable results by these 

methods require simulations of larger systems. 

[Insert Figure 6.8] 

 

In order to validate the partial molar volumes obtained by the different integration methods, the 

excess molecular volume, VE, was evaluated for the simulations at each composition according 

to, 

 
1 1 1 1 2 2( )  ( ) -   -  E o o

m mV x V x xV x V  6.47

where Vm(x1) denotes the average molecular volume obtained at the composition x1, the mole 

fraction of water. Also, 1
oV  and 2

oV  denote the average molar volumes of the corresponding pure 
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components, obtained from separate simulations. The polynomial model of Handa and Benson 

(Handa and Benson 1979), 

 2
1 2 0 1 2 1 2 2 1(model) = [ ( - ) ( - ) ]E

mV x x a a x x a x x  6.48

was fitted to the calculated values of the excess molar volume. Reduced partial molar volumes 

were evaluated by analytical differentiation of the model according to, 

 
21 1 , ,    [ ( ) / ]E E

m m T p NV V NV N  6.49

In Figure 6.9, the results for 1V are compared with TCFIs calculated by our Verlet, simple 

truncation, and distance-shifting methods. The partial molar volumes obtained from the 

correlations of simulation volumes are in very good agreement with those obtained from 

experimental correlations (Handa and Benson 1979).  The results obtained via the three TCFI 

calculation methods agreed very well with both correlations. Furthermore, the three methods 

yielded similar results, though for dilute water systems, simple truncation underestimates the 

values relative to the other methods and experimental data. 

[Insert Figure 6.9] 

 

Figure 6.10 shows activity coefficient derivatives over the whole composition range for 

experiment from three correlations, and the Verlet method. A procedure for experimental data 

analysis was described by Wooley and O’Connell (Wooley and O’Connell 1991), in which one 

extracts the isothermal compressibility, partial molar volumes, and activity coefficient 

derivatives from experimental data. The activity coefficient derivatives are obtained by fitting 

mixture vapor-liquid equilibrium data to obtain parameters for at least two different GE models. 

Wooley and O’Connell employed the Wilson, non-random two liquid (NRTL) and modified 

Margules (mM) models. Partial molar volumes are obtained from correlations of mixture 
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densities (Handa and Benson 1979).  Isothermal compressibilities are either taken from 

measurements or estimated with the correlation of Huang and O’Connell (Huang and O’Connell 

1987).  Figure 6.10 also shows the relation y =  1/x1; for complete miscibility, the activity 

coefficient derivative must always lie above this curve. The simulation value at x1 = 0.1 may be 

unreliable due to diluteness.  The results from the NRTL and mM correlations show 

immiscibility, which is not observed, while the simulations suggest complete miscibility. The 

Wilson correlation cannot give two liquid phases so it is more consistent with the simulations at 

dilute alcohol concentrations. 

[Insert Figure 6.10] 

 

As described in Chapter 1, neither TCFIs nor DCFIs can be measured directly in experiments, 

though they can be derived from correlations of experimental data for other thermodynamic 

properties or integrals of x-ray or neutron scattering measurements. Figure 6.11 shows TCFIs 

from the correlated results of Figures 6.9 and 6.10 along with results from our Verlet method. 

[Insert Figure 6.11] 

 

The TCFIs obtained by our Verlet method apparently converged at all compositions, indicating 

phase stability over the whole composition. They compare favorably with those from simple 

truncation (Weerasinghe and Smith 2003b), and the distance-shifting (Hess and van der Vegt 

2009) methods. When a simulated system is sufficiently large, the three methods can be expected 

to yield similar results, but the Verlet method is superior for smaller systems and when the RDFs 

have significant structure beyond the sampling limit. This is an important result, since the Verlet 

method might allow thermodynamic derivative properties to be accurately obtained from 
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simulations of complex systems with relatively low computational effort. 

 

6.5 Future Applications 

Classical thermodynamics can only provide relations among properties; values must be found by 

experiment or computation.  Given our current techniques, future applications of TCF-

integrations for properties may be achieved in the following areas. 

 

6.5.1 Enzyme solutions 

Water activity is an important element of non-aqueous biocatalytic systems. Recently, we have 

explored different approaches to this property via MD simulation (Wedberg, Abildskov, and 

Peters 2012). Two main strategies to study how protein properties depend on water activity are 

termed “real-time” control and “a posteriori” analysis. The former comprises simulations of the 

protein in a non-aqueous medium in which the number of water molecules is adjusted to 

maintain a desired water activity.  In the latter strategy, conventional MD simulations are carried 

out, but the water activity is calculated through post-analysis of the simulations. The study of 

Branco et al. (Branco et al. 2009) is apparently the only work that explicitly considers water 

activity as a variable. However, their medium was assumed to be an ideal mixture. The greater 

challenge of nonideal media, such as aqueous organic solutions, has been addressed (Wedberg, 

Abildskov, and Peters 2012). Much more work needs to be done before establishing a standard 

method. 
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6.5.2 Diffusion and Reaction 

The current works on properties have involved only equilibrium properties. Computed RDFs for 

homogeneous, but non-equilibrium, states could lead to local chemical potential gradients for 

diffusional driving forces and chemical reaction driving forces. Such computations would be 

unique and powerful for both thermodynamic and transport phenomena. 

In particular, the Stefan-Maxwell constitutive equation for multicomponent diffusion in non-

ideal solutions (Curtiss and Bird 1999; Wheeler and Newman 2004a, 2004b) has driving forces 

derived from chemical potential gradients of all but one component. The non-ideality adjustment 

has been obtained for mutual diffusion in binary mixtures using FST (Jolly and Bearman 1980; 

Schoen and Hoheisel 1984; Chitra and Smith 2001c). Simulations based on the methods 

described here could describe higher multicomponent systems, which are of significant interest. 

6.6 Conclusions 

The successes described in this Chapter for both model and real mixtures indicate that molecular 

simulation methods for FST should now be ready for greater implementation and extension.  

Investigations to refine the various methods to compute KBIs are still ongoing. At this point, our 

extended Verlet method appears to be the most general and reliable for obtaining thermodynamic 

properties, especially for dense systems. Its advantages of minimal computational effort and 

limited need for case-by-case judgment in analysis indicate its efficiency and robustness. 
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Figure 6.1 (left) RDFs from simulation of water (1) + t-butanol (2) at x1 = 0.65, at 323 K and 1 

atm; (right) Numerically evaluated (non-converged) integrals Hij(Rlim) from  Equation 6.9.

 

Figure 6.2.  (a) Distribution function of benzene (1) / ethanol (2), g22(r), at x2 = 0.5; (b) 

Differential contributions to the G22 integral, dG22, at x2 = 0.5. (Reprinted with permission from 

S. Christensen,  G. H. Peters, F. Y. Hansen, J. P. O’Connell, and J. Abildskov. 2007. Generation 

of thermodynamic data for organic liquid mixtures from molecular simulations. Molecular 

Simulation. 33, 449.) 

 

Figure 6.3. Spatial RDF – Blocks for integrating h(r). Direct from simulation; End-of-Box for 

matching simulation to fitted function such as Equation 6.18; Long Distance from fitted function. 

Figure 6.4. Ethanol/HFC-227ea pressure-composition diagram at 343 K. -- -- Experiment (Case

et al. 2007), from simulation, Ideal solution.  Modified from S. Christensen, G. H. 

Peters, F. Y. Hansen, J. P. O'connell, and J. Abildskov. 2007. State conditions transferability of 

vapor-liquid equilibria via fluctuation solution theory with correlation function integrals from 

molecular dynamics simulation. Fluid Phase Equilibria. 260, 169. 

Figure 6.5. Activity coefficients (based on simulations) of (1) ethanol ( , ) / (2) HFC-227ea 

( , ) at 283.17K ( ) and 343.13 K (- - -). (Reprinted with permission from Modified from S. 

Christensen, G. H. Peters, F. Y. Hansen, J. P. O'connell, and J. Abildskov. 2007. State conditions 
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transferability of vapor-liquid equilibria via fluctuation solution theory with correlation function 

integrals from molecular dynamics simulation. Fluid Phase Equilibria. 260, 169) 

Figure 6.6. Values (x) for results (left) and relative residuals (right) from calculations of the 

reduced bulk modulus, kBT T, for the pure LJ fluid at the reduced temperatures T* = 0.85, T* = 

1.0, T* = 1.5 and T* = 2.5. Lines derived from EOS of Mecke, et al. (Mecke et al. 1996) are also 

shown. 

Figure 6.7.  Values of kBT T for LJ/Stockmayer mixtures vs. the mole fraction of Stockmayer 

particles, x2, for dipole moments of (a) *2
 = 1, (b) *2

 = 2 and (c) *2
 = 3, derived from the 

Gross/Vrabec EOS (Gross and Vrabec 2006) ( ), compared with results from our MD-Verlet 

( ), truncation (Weerasinghe and Smith 2003b) (o), and distance-shifting (Hess and van Der 

Vegt 2009) ( ) methods. 

Figure 6.8. Isothermal compressibilities for the mixture water (1) / t-butanol (2).  Results from 

our Verlet ( ), truncation (Weerasinghe and Smith 2003b) (o), and distance-shifting (Hess and 

van Der Vegt 2009) ( ), methods compared with values obtained from the fluctuation formula 

( x ). 



 

 

3

 

Figure 6.9. Relative partial molar volumes ( ) for water (1) / t-butanol (2). The results from 

the Verlet ( ), truncation (Weerasinghe and Smith 2003b) (o), and distance-shifting (Hess and 

van Der Vegt 2009) ( ) methods for obtaining the TCFIs compared with results from full 

simulations smoothed with a quadratic polynomial (- - -) and with smoothed experimental data 

(  

Figure 6.10. Composition derivative of the activity coefficient for water vs. the water mole 

fraction x1 of water (1) / t-butanol (2). The Verlet method ( ) is compared with experimental 

data smoothed using the Wilson ( ), NRTL (---) and mM ( ) models. For phase stability, 

activity coefficient derivatives must everywhere lie above the curve y =  1/x1 ( ). 

Figure 6.11. TCFIs vs. mole fraction, x1, for water (1) / t-butanol (2): (a) H11, (b) H12, and (c) 

H22, obtained from simulations using the Verlet method (+), compared with TCFIs obtained from 

experimental data using the procedure of Wooley and O’Connell (Wooley and O’Connell 1991), 

based on the Wilson ( ), NRTL (---) or mM ( ) models. The NRTL and mM models 

approach infinity since they falsely predict a phase split. 
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Symbol Description      
 
Greek 

p  Isobaric thermal expansion coefficient (Equation 1.6) 
23  Preferential binding parameter (Equation 1.86) 

+  Mean ion molal activity coefficient (Equation 1.92) 

i Lewis-Randall/rational/mole fraction activity coefficient (Equation 1.19) 

i
c

 Molar activity coefficient  
 

i
m

 Molal activity coefficient 
 

  Isothermal-isobaric partition function (Equation 1.28) 

Gij  Gii+Gjj-2Gij (Equation 1.93) 

2  1+ ciGii + cjGjj + cicj(GiiGjj - Gij
2) (Equation 1.66) 

12  ci + cj + cicj(Gii + Gjj - 2Gij) (Equation 1.66)    
T  Isothermal compressibility (Equation 1.5) 
i  Thermal de Broglie wavelength of specie i 

i  Absolute activity of i 
i  Chemical potential of component i 

ij  Chemical potential derivative (Equation 1.1) 
 Number of cations/anions,  = + + -  
  Grand canonical partition function (Equation 1.28) 

  Osmotic pressure  
  Mass or total number density 
i  Number density of i, = Ni/V, see also ci     
i  Volume fraction of i, =  
i  Fugacity coefficient of i (Equation 1.23) 

  Microcanonical partition function (Equation 1.28) 
 
Mathematical 
< >  Ensemble or time average 

{X}  Set notation, {X1, X2, …} 
1  Unit matrix     

|A|  Determinant of matrix A 
Aij  Cofactor of matrix A     

A Matrix with elements Aij 
I Identity matrix  

ij  Kronecker delta 

Xi  Instantaneous fluctuation, Xi - < Xi >   

< ( X)2 > Mean square fluctuation of a property X   



2

Latin 

+  Cation       
-  Anion       
o  Pure         

  Infinitely dilute (limiting)    

1  Solvent      
1/kBT         
2  Solute     
3  Cosolvent/cosolute/additive     

rG  Reaction Gibbs energy (function) 
rH  Reaction enthalpy 
rS  Reaction entropy 

  Preferential solvation parameter (j surrounding i) 
  Corrected referential solvation parameter 

VT  Grand canonical ensemble     
  Fourier transformed X 

Xi  Partial molar property of X    
  Mean activity of electrolyte in solution 

A  Helmholtz energy (function)  
Ai  Aggregate/Multimer of i monomers 
ai Activity of i   

aq  Aqueous solution 
ci  Molarity of i, see also number density, i     

Cij  cij(r)dr, DCFI, elements of the C matrix (Equation 1.39) 
cij(r)  Direct correlation function    
Cp  Constant pressure heat capacity (Equation 1.7)      
D  Activity derivative, concentration fluctuation term (Equation 1.73) 
fi  Fugacity of a substance i in a gaseous mixture (Equation 1.21) 

G  Gibbs energy (function)     

gij   Radial (pair) distribution function, RDF    

Gij  Kirkwood-Buff integral, KBI  

H  Enthalpy      
h  Planck’s constant     
Hij  hij(r)dr = Gij, TCFI (see below Equation 1.38), or Henry’s law constant  
hij(r)  Total correlation function, TCF, gij(r)-1 
id  Ideal (mole fraction scale)      
K  Equilibrium constant 
k  Rate constant  

kB  Boltzmann constant    



3

kH  Henry’s law constant, see also Hij     

M  Monomer  
m  m-value for protein denaturation (see Equation 1.99) 
mi=ci/c1 (Dimensionless) molality 
mix   Mixing process 
n     Number of monomers in an aggregate      
nc  Number of components in the system   
NA  Avogadro’s number     
Ni  Number of entities (usually molecules, atoms, or ions) 

Nij  Excess coordination number        

NpT  Isothermal-isobaric (Gibbs) ensemble 

NVE  Microcanonical ensemble 
NVT  Canonical ensemble 
p  Pressure  

Q  Canonical partition function (Equation 1.28) 
r  |r1-r2|, distance between COM of molecules  
R  Gas constant 
Rcor  Correlation radius (see Vcor)      

S  Entropy  
T Temperature (thermodynamic) 

Tm  Melting temperature 
trs  Transfer between two phases 
U  Internal energy 
V  Volume 
Vcor  Correlation volume (see Equation 1.81) 

X*  Reduced or characteristic quantity X     

Xc  Critical X (X is pressure or temperature) 

XE  Excess of X   
X r  Residual of quantity X   

xi  Liquid phase mole fraction composition    

Xm  Molar quantity 
yi  Gas phase mole fraction composition, or solute solubility      
z+/-

  Charge of cation/anion    
 
Acronyms 
COM  Center of mass      
DCF  Direct correlation function 
DCFI  Direct correlation function integral 
EOS  Equation of state 
FF  Force Field 
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FST  Fluctuation solution theory 
FT  Fluctuation theory 

GD  Gibbs-Duhem 
IG  Ideal gas      

KB  Kirkwood-Buff     

KBFF  Kirkwood-Buff Force Field 

KBI  Kirkwood-Buff integral 
LJ  Lennard-Jones 
MC  Monte Carlo 

MD  Molecular Dynamics 

MDF  Molecular Distribution Function 
MM  McMillan-Mayer  
MW  Molecular Weight 
NRTL  Non-Random Two Liquid 
OSA  Osmotic stress analysis 

OZ  Ornstein-Zernike     

PF  Partition function  

PI  Preferential Interaction 

PMF  Potential of mean force    
PS  Preferential Solvation 
PY  Percus-Yevick 
RDF  Radial distribution function 
RK  Redlich-Kister 

RISM  Reference interaction-site model 
SAFT  Statistical associated-fluid theory 

SANS  Small-angle neutron scattering 
SAXS  Small-angle X-ray scattering 

SI  Symmetric ideal     
SPT  Scaled particle theory     
TCF  Total correlation function 
TCFI  Total correlation function integral 
UNIFAC UNIversal Functional Activity Coefficient 
UNIQUAC UNIversal QUAsiChemical 

VDW  van der Waals  
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