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Résumé : 
Nous présentons une méthodologie pour simuler les écoulements viscoélastiques possédant des surfaces 
libres, dans la perspective de modéliser les procédés de mise en forme des polymères, tels que l’extrusion ou 
le moulage par injection. L’utilisation de lois de comportements viscoélastiques permet de prendre en 
compte les “effets de mémoire” des polymères déformés. Cependant, leurs utilisations engendrent aussi des 
difficultés d’ordre numériques, que nous résolvons avec une reformulation des contraintes viscoélastiques 
par la “log-conformation-transformation”. Par ailleurs, la nouveauté de ces travaux réside dans 
l’utilisation de la méthode dite des “volume-of-fluid” pour simuler le déplacement des surfaces libres du 
fluide viscoélastique. Enfin, nous présentons des résultats de simulations préliminaires où nous testons 
séparément les différentes possibilités de notre modèle. 

Abstract: 
We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are 
motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. 
One of the consequences of viscoelasticity is that polymeric materials have a “memory” of their past 
deformations. This generates some numerical difficulties which are addressed with the log-conformation 
transformation. The main novelty of this work lies on the use of the volume-of-fluid method to track the free 
surfaces of the viscoelastic flows. We present some preliminary results of test case simulations where the 
different features of the model are tested independently. 
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1 Introduction 
The simulation of viscoelastic flows with free surfaces is of particular interest for the modelling of polymer 
processing technologies, such as extrusion, injection moulding, blow moulding and tape casting, of single 
polymeric materials and ceramics colloidal suspension. Polymer solutions and melts are known for their non-
Newtonian behaviours: shear-thinning (when the viscosity decreases with the deformation-rate), and 
viscoelasticity (when the deformations are affected by memory effects). Viscoelasticity is responsible for 
stress relaxation, creep deformations and elastic drawback. Those non-Newtonian behaviours fundamentally 
arise from the complex microstructure of the material, where long polymer chains are able to slide between 
each other, get stretched and change conformations during the deformations [1]. Non-Newtonian effects can 
also cause viscous and elastic interfacial instabilities in stratified flows [2]. This issue is important from both 
theoretical and practical points of views, especially for the co-processing of multi-material architectures. 

Historically, the first studies of viscoelastic flows with free-surfaces were using Lagrangian methods (based 
on deforming meshes) in the context of finite-element analysis, to investigate the extrudate swell problem [3]. 
More recently, the marker-and-cell method [4] and the level set method [5] were implemented in order to 
track the free surfaces. Mixed Eulerian-Lagrangian methods were also developed [6]. In the present work, 
we use the volume-of-fluid (VOF) method, in which the free-surfaces are represented in a purely Eulerian 
manner. The main advantage of Eulerian methods over the Lagrangian methods is that they can adapt to 
arbitrary changes of topology of the free surfaces [7]. This is a very important feature for the simulation of 
injection moulding of complex geometries, in which junctions and separations of the material front 
frequently happen. 
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In the first part of the paper, we present the governing equations of the model. Then, the specific numerical 
techniques used to solve the viscoelastic flow problem and the free surfaces are briefly described. Each of 
those techniques has been implemented and tested separately with various test-case simulations. Finally, 
concluding remarks are summarized at the end of the paper. 

2 Governing equations 
The basic equations to be solved are the continuity equation (conservation of mass): 

 ( ) 0ρ∇ ⋅ =u  (1) 

and the momentum equations (conservation of linear momentum): 

 ( ) 2p
t

ρ ρ μ∂ + ∇ ⋅ = −∇ + ∇ + ∇ ⋅
∂
u uu u σ  (2) 

where ρ is the bulk density, μ is the (Newtonian) viscosity of the material, u is the velocity vector, p is the 
isostatic pressure and σ is the viscoelastic extra-stress tensor. In order to close this system of equations, a 
constitutive model which relates the viscoelastic stress tensor to the kinetics of the flow is required. The 
specificity of viscoelastic materials is that they behave both like liquids (viscous deformation) and solids 
(elastic deformation), depending on the time scale of observation or their rates of deformation. As a 
consequence, viscoelastic constitutive models cannot be expressed with algebraic relations, like for purely 
viscous and purely elastic materials. Indeed, viscoelastic constitutive models are either written on integral 
form or as partial differential equations (PDE), with respect to time. A large variety of models exist within 
those two classes of constitutive relations. On the one hand, some models were developed from an empirical 
approach, in order to fit particular experimental data best. On the other hand, generic models with the 
capability of describing most standard flow behaviours were derived, either from molecular kinetic theories 
or pure mathematical expansions [8]. In general, the appropriate constitutive model should be chosen 
considering its simplicity, its computational efficiency, its flexibility and its capability to describe the 
expected flow features. In this work, we use the Oldroyd-B model, which is one of the most popular 
viscoelastic constitutive relations. It is a linear partial differential constitutive model: 

 
t

λ η+ =σ σ γD

D
 (3) 

where λ is the relaxation time of the material, η is the viscosity of the viscoelastic deformations, 

( )T= ∇ + ∇γ u u is the strain-rate tensor, and 

 ( ) ( )Td

t dt
= + ⋅∇ − ∇ ⋅ − ⋅ ∇σ σ u σ u σ σ uD

D
 (4) 

is the upper-convected time derivative of the stress tensor. 

3 Numerical methods 

3.1 Discretisation 
The governing equations are discretized in space with the Eulerian finite-volume method. The calculation 
domain is divided in non-overlapping control volumes (CV), forming a structured orthogonal mesh of the 
geometry.  The pressure and the viscoelastic stress component are stored at the centre of the CV, while the 
different velocity components stored at the centres of boundaries of the CV, as represented in figure 1(a). 
This staggered arrangement of the variables avoids the odd-even pressure decoupling. The equations of 
conservation (of mass and linear momentum) are integrated on each CV, and expressed in terms of a flux 
balance, via the divergence theorem. The evaluation of the fluxes at the boundary of the CV requires an 
interpolation. We use a quadratic upwind interpolation scheme with second-order accuracy in space. 
Moreover, the boundedness of interpolation is insured by the use of flux limiters, enhancing the stability of 
the scheme [9]. The resulting PDEs are further discretized in time with the two-step backward differentiation 
formula (BDF2), and the non-linear convective terms are linearized with a Taylor expansion around the 
solution at the previous time-step. It results in a stable implicit scheme with second-order accuracy in time. 
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FIG. 1 – (a) Staggered variable arrangement on the mesh and (b) geometrical reconstruction of the free 
surface with a piecewise linear function. 

The dimensionless quantity commonly used to measure the effect of viscoelasticity is the Weissenberg 
number Wi, defined as Wi λγ=  , where γ  is a characteristic deformation rate of the flow. When elastic 
effects are dominant (at high Wi), the solution of the constitutive equation is a fast exponential decay. It is a 
typical “stiff problem” prone to numerical instability. This difficulty is known as the « High Weissenberg 
Number Problem » [10]. It can be remedied by the passage to logarithmic variables in the constitutive 
equation [11,12]. It is done by taking the matrix-logarithm of the conformation tensor 

 
λ
η

= +c I σ  (5) 

because it is always symmetric-positive-definite (at the contrary to the viscoelastic stress tensor), which is a 
necessary condition for the existence of the matrix-log. The matrix-logarithm transformation also required 
the diagonalisation of the conformation tensor: 

 ( ) ( ) Tlog log=c R Λ R  (6) 

where Λ is a diagonal matrix containing the eigenvalues of the conformation tensor, and R is the orthogonal 
matrix of the eigendecomposition. This transformation yields a conservation equation for the log-
conformation tensor ( )log=Θ c , which has a linear decay as solution. Without this transformation, the 

calculation of viscoelastic flows is still possible, but it is limited to Wi numbers below a threshold value 
depending on the kinetics of the flow and the discretisation techniques [13]. The results presented in the next 
section have been obtained without the use of the log-conformation transformation, in flow configurations 
below this limit. 

3.2 Solution procedure 
The velocities and the viscoelastic stresses can be calculated separately, by solving the momentum and 
constitutive equations sequentially. However, we do not have an evolution equation for the pressure, which 
is only seen in the momentum equations. The pressure is determined through the combination of the 
momentum and continuity equations instead. Indeed, the pressure can be seen as a Lagrange multiplier of the 
continuity equation, which limits the solution of the velocity to a divergence-free vector field. Therefore, the 
momentum and continuity equations have to be solved at the same time, but it is challenging from a 
numerical point of view, because the Jacobi matrix of the discretised system of equations is ill-conditioned. 
As a consequence, the numerical solutions are inaccurate and expensive to compute since only direct solvers, 
e.g. Gaussian elimination, can be used. The approach to remedy this problem is to derive a separate equation 
for the pressure, by taking the divergence of the momentum equations (the Chorin-Temam method). The 
resulting system of equations is further decoupled using a generalised LU-block decomposition [14]. We 
solve the problem efficiently with the GMRES iterative solver, based on conjugated-gradients. 

3.3 Free surfaces tracking 
Within the VOF method, a new discrete variable is introduced: the volume fraction 0 ≤ φ ≤ 1 of the control 
volumes. At the end of each time step, the volume fraction is transported explicitly with the flow, and the 
apparent material properties of the CV are updated with the rule of mixture accordingly. The capillary forces 

u 
v 
p, σij 

(a) (b) 
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(surface tension) are neglected, as in this case they are several orders of magnitude lower than the viscous 
and elastic stresses. The advection scheme of the VOF method conserves the mass, and consists of two steps: 

- The geometrical reconstruction: the interface inside cells where 0 < φ < 1 is represented by a 
piecewise linear function. The position of the interface is parameterized by two variables: its slope 
and its distance from the centre of the control volume; and has one constraint: the volume fraction 
inside the cell. The remaining free parameter is determined so that the prolongation of the piecewise 
linear function into the eight neighbouring cells (in 2D) fits the best their volume fractions, see 
figure 1(b). This consists in an optimization problem. We use the ELVIRA method [15], which 
evaluates only six candidates for the interface, and chose the one which minimise the least-square 
error, without iterations.  This method is of second-order accuracy. 

- The forward advection scheme: the volume fraction of the fluid is advected explicitly, using the 
reconstructed position of the interface to evaluate the conservative fluxes. The volume fractions 
which are exchanged with the neighbouring cells are the one of the volumes effectively 
donated/accepted, rather than the total one of the cells. The time-step size of the calculation is 
constrained by the Courant–Friedrichs–Lewy condition, but the numerical diffusion of the scheme is 
limited. We used a split advection, and alternate the order of the directions of advection at every 
time-step. It was shown in [15] that in this way the advection is second-order accurate in time. 

Unlike the front-tracking methods using markers or continuous chain of line segments to represent the 
interfaces, the VOF method naturally handles the junctions and separations of surfaces, without any need of 
surgical operations adding or removing boundary elements [7]. 

4 Results 
This section presents the results of preliminary simulations performed in order to validate the 
implementation of our methods. The first test-case simulation is the transient viscoelastic Poiseuille flow 
driven by a pressure gradient suddenly imposed at the initial time. This simulation is used to validate the 
temporal accuracy of the algorithm, as it is one of the few transient problems for which an analytical solution 
exists. The exact solution does not have a closed form and is expressed as an infinite series, see [16]. The 
numerical simulation is performed at Re = 0.02, Wi = 0.3 and η/μ = 0.75. Figure 2 presents the velocity 
magnitude at the central line of the channel, as well as the velocity profiles at different points of time. Unlike 
purely viscous fluids, here the velocity profile growths until it reaches a maximal amplitude, and then 
decrease slowly due to viscoelastic effects. The numerical results are in very good agreements with the 
analytical solution, and confirm the good temporal accuracy of the BDF2 scheme. 

The second test-case simulation is the steady-state viscoelastic flow in planar contraction-expansion 
geometry. The flow inlet and outlet are the west and east boundaries of the domain respectively, where fixed 
pressures are imposed. The south boundary is a symmetry line, and all the other boundaries are solid walls 
with the no-slip condition. Flows in planar contraction have already been investigated, both theoretically 
[17,18] and numerically [19,20]. It was notably used to assess the spatial accuracy of different interpolation 
schemes [9,13]. Indeed, the different components of the velocity vector and the viscoelastic stress tensor are 
strongly coupled; the flow exhibits vortices at the salient corners, and stress singularities at the reentrent 
corners. However, the use of a staggered mesh arrangement avoids the calculation of the stress singularities. 
Figure 3 displays the contour plots of the pressure level and the viscoelastic stresses for a creeping flow 
(Re = 0) at Wi = 1.04 with η/μ = 1. Unlike for purely viscous fluids, the viscoelastic creeping flow is 
unsymmetrical because of to the memory effects. 

The last test-case simulation is the extrusion of a Newtonian fluid with free surfaces at Re = 0. The position 
of the free surface at the end of the extrusion is represented in the figure 4. The swelling ratio, defined as the 
ratio of the diameter of the extrudate by the diameter die, is Rd/Re = 1.45. In this case, the swelling is due to 
dynamical effects only, as Newtonian fluids do not have memory effects. Indeed, the velocity profile, which 
has a parabolic shape at the die exit, has to rearrange itself to become a homogeneous velocity profile. We 
observe that it takes a distance of approximately 3Rd from the die exit for the material to obtain its final 
diameter. This simulation demonstrates the ability of the VOF method to track the free-surface in extrusion. 
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FIG. 2 – Transient viscoelastic Poiseille flow at Re = 0.02, Wi = 0.3 and η/μ = 0.75. Left: velocity magnitude 
at the central line of the channel. Right: velocity profiles at the times [sec]: 0.005, 0.01, 0.015 (growing 

velocity profiles), 0.03, 0.09, 0.18 (decreasing velocity profiles), and 0.6 (steady-state solution). 

 

  

FIG. 3 – Contour plot of the pressure level and the viscoelastic stresses for the viscoelastic creeping flow in 
the planar contraction-expansion geometry at Wi = 1.04 with η/μ = 1. 

 

FIG. 4 – Position of the free surface at the end of the extrusion of a Newtonian material at Re = 0. 

5 Concluding remarks 
A numerical framework for the modelling of viscoelastic flows with free surfaces has been presented. The 
different features of the model: the viscoelastic stress solver and the free surface tracking algorithm, were 
tested separately. Their coupling has not been done yet, and it will be the focus of our future work. The 
preliminary results show good temporal and spatial resolutions, thanks to the second-order accuracy of the 
BDF2 and the upwind quadratic interpolation schemes. Moreover, the VOF method is a robust technique to 
track the free surfaces of viscoelastic flows, since it can adapt to changes of topology of the free surfaces. 
This is of great interest for the simulation of polymers manufacturing processes. This method can also be 
used to predict the interface deformations, due to the flow instability and the secondary recirculation flows 
generated by viscoelastic effects, in the co-processing of multi-materials architectures. 
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