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We have investigated the terahertz-induced third-order (Kerr) nonlinear optical properties of the

amorphous chalcogenide glasses As2S3 and As2Se3. Chalcogenide glasses are known for their high

optical Kerr nonlinearities which can be several hundred times greater than those of fused silica.

We use high-intensity, single-cycle terahertz pulses with a maximum electrical field strength

exceeding 400 kV/cm and frequency content from 0.2 to 3.0 THz. By optical Kerr-gate sampling,

we measured the terahertz-induced nonlinear refractive indices at 800 nm to be n2 ¼ 1:746� 10�14

cm2=W for As2S3 and n2 ¼ 3:440� 10�14 cm2=W for As2Se3. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4832825]

Terahertz (THz) technology has the potential for appli-

cation in a broad range of fields, e.g., biology, medicine,1

communication, and in the space-, defense-, and semiconduc-

tor-industry.2,3 While there has been tremendous progress in

the development of THz sources, detectors, and passive

linear components, many applications, such as ultrafast all-

optical signal processing, require more versatile, nonlinear

components. To construct these nonlinear components, mate-

rials with nonlinear interactions between the THz electric

field and matter must be identified, developed, and

quantified.

Chalcogenide glasses, first reported six decades ago,4

have attracted significant attention in recent years due to

their unique properties such as high refractive index, mid-

infrared transparency, and very large third-order (Kerr) non-

linearity.5 Their large nonlinearities in the optical, near-, and

mid-infrared regions have made them promising candidates

for fast nonlinear optical devices.6

The measurement of the THz-induced optical Kerr

effect in solid-state materials has traditionally been ham-

pered by a lack of high intensity THz sources. However, the

recent introduction of tilted pulse front THz generation in

lithium niobate (LiNbO3)7 now makes THz field strengths of

the order of 1 MV/cm available.8,9 Such pulses were recently

applied for the investigation of the THz-induced optical Kerr

effect in liquids10 and in relaxor ferroelectrics.11

In this paper, we report the observation of the THz-

induced optical Kerr effect in two bulk, amorphous chalco-

genide glasses, As2S3 and As2Se3, and determine their

third-order nonlinear coefficients. Both glasses have become

very popular in optics due to their high nonlinear

coefficients12–15 and flexibility towards micro- and

nano-fabrication.16–18

Our experimental setup is shown schematically in

Fig. 1(a). Briefly, an amplified femtosecond laser system

(pulse energy 3.5 mJ, duration 100 fs, center wavelength

800 nm) drives a standard tilted pulse front scheme for gener-

ation of intense THz pulses in LiNbO3.8 The generated THz

beam is tightly focused onto the sample by a combination of

off-axis paraboloidal mirrors. A small portion of the 800 nm

laser beam is picked off prior to the LiNbO3 crystal and used

to sample the THz-induced birefringence in the chalcogenide

samples (0.716 mm thick As2S3 and 1.059 mm thick As2Se3)

in a Kerr-gate sampling configuration. The temporal shape of

the Kerr signal is recorded by gradually delaying the optical

probe beam with respect to the THz beam while monitoring

the THz-induced birefringence. In order to determine the

absolute field strength of the THz pulses, the chalcogenide

samples were replaced by an 300 lm thick electro-optic gal-

lium phosphide (GaP) crystal so that the temporal profile of

the THz pulses could be measured by electro-optic (EO)

sampling.19–21 The detected THz pulse is shown in Fig. 1(b)

and has a peak electric field strength of 400 6 10 kV/cm. This

number is a minimum value, and is determined by EO sam-

pling via the recorded phase retardation and its relation to the

absolute electric field strength, D/ ¼ xLn3
0r41ETHz=c, where

r41 is the electro-optic coefficient, n0 is the refractive index at

the probe wavelength (k ¼ 2p=x), and L is the length of GaP

crystal.22 During electro-optic sampling, the THz signal was

attenuated by a number of high-resistivity silicon wafers in

order to avoid over-rotation, and the attenuation from the

wafers was subsequently accounted for in the field calibra-

tion. The frequency content spans the 0.05–3 THz region

with 84% of the pulse energy concentrated within 0.2–1.0

THz. The alignment, and thus spatial overlap of generation

and probe beam paths, was unchanged during both the Kerr

characterization of the chalcogenide samples and the

electro-optic sampling of the pulse shape.

In the Kerr-gate experiment, the probe beam is initially

polarized at 45� with respect to the THz pulse polarization

while in EO sampling experiments the probe beam is parallel

with THz pulse polarization. The THz-induced phase differ-

ence, D/, between the two polarization components parallel

and perpendicular to the THz field polarization is detected as

a differential voltage relative to the unperturbed signal on

each photodiode. This signal, which is measured after propa-

gation through a quarter-wave plate and polarizing beam

splitter in a standard balanced scheme,10 can be modeled as

DV=V0 ¼ sinðD/Þ ¼ sinðDnxL=cÞ. Here, Dn is the THz-

induced modulation of the refractive index, x is the angulara)Electronic mail: mzal@fotonik.dtu.dk.
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frequency of the probe beam, and L is the effective propaga-

tion length in the crystal. The probe beam intensity was kept

at a low level to avoid any photodamage to the samples.

The recorded Kerr probe signals in As2S3 and As2Se3 at

varying THz field strengths are shown in Fig. 2. The field

strength was attenuated by a pair of wire grid polarizers

placed immediately after the first paraboloidal mirror. To

verify that the samples were not damaged during the charac-

terization, each sample was measured at the highest field

strength both at the beginning and at the end of the measure-

ment series. The results were then compared to confirm that

the samples had not been damaged during the characteriza-

tion. As expected, the recorded signal increases with the

THz pulse strength. At a field strength of 47 kV/cm, the

THz-induced signal is barely noticeable but it grows signifi-

cantly at higher field strengths. We used a 1 mm thick bulk

silica glass sample as a reference. Even with the full field

strength (400 kV/cm), no THz-induced birefringence was

observed due to the very small third-order nonlinearity of

silica compared to As2S3 and As2Se3.13

For both the chalcogenide glasses, we observe that the

temporal shape of the THz-induced Kerr signal closely fol-

lows the intensity profile of the THz pulse (dashed, red

curves). This is indicative of a very fast nonlinear response

for the two glasses, and is typical for nonresonant excitation.

In contrast to some liquid samples, such as CH2I2,10 where

the relaxation time can be rather long, there are no rotational

dynamics of molecules in solid glasses. In the case of As2S3,

the THz-induced signal instantly responds to the changes in

the intensity profile of the THz pulse, as there is good phase

matching between the THz wave and probe beam in the

glass. There is a slight indication of a delayed response from

As2Se3. However, this might be due to the large velocity

mismatch between the THz field and the optical probe, as

will be discussed further below.

The analysis of the peak values of the THz-induced sig-

nal in glasses reveals a standard third-order nonlinear behav-

ior, shown in Fig. 3. For the small values of the phase

retardation observed here, the recorded values are accurately

fitted by a quadratic fit DV=V0 � D/ ¼ k � E2, where k is a

constant and E is the electrical field strength. This demon-

strates that the observed THz-induced signals in the chalco-

genide samples are due to the Kerr effect (Dn ¼ kKE2),

where Dn is the change in the refractive index, k is the wave-

length, and K is the Kerr constant. The nonlinear refractive

index can be written as n2 ¼ Dn=I where I is the intensity of

the THz pulse averaged over either the propagation length in

the glass or the physical length of the sample, whichever is

shorter.

FIG. 1. (a) A schematic illustration of the LiNbO3 THz-TDS system used

for THz Kerr measurements. (b) THz pulse in time- (black curve) and

frequency-domain (red curve). 84% of the pulse energy is concentrated

between 0.2 and 1.0 THz, and is highlighted by dashed area. (BS) beam

splitter, (OPM) optical parabolic mirror, (PD) photodiode, and (PBS) polar-

izing beam splitter.

FIG. 2. The THz-induced birefringence in (a) As2S3 (0.716 mm) and (b)

As2Se3 (1.059 mm) bulk samples as a function of the peak THz field

strength. The intensity of the THz pulse normalized to the maximum

recorded signal is indicated by the dashed, red curve. The black curve is for

a 1 mm thick silica glass sample measured with 400 kV/cm field strength for

comparison.
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As we have previously reported, chalcogenide glass has

the universal characteristics of an amorphous system at

lower terahertz frequencies with a monotonous increase of

the absorption coefficient.23 However, crystalline phases

may exist within the amorphous matrix. To verify that our

samples are truly amorphous, we performed the Kerr meas-

urements with the full electrical THz field strength at differ-

ent orientation angles of the As2S3 sample (Fig. 4). No

significant change in the Kerr signal is observed when the

sample was rotated from 0� to 90�.
To determine the magnitude of the Kerr effect, we meas-

ured both the refractive index and absorption coefficient of

the two chalcogenide glasses in the terahertz range with a

Picometrix T-Ray 4000 THz-TDS system, as shown in Fig.

5. The refractive indices for both glasses in the frequency

range 0.2–1.0 THz are nearly constant (2.80 for As2S3 and

2.86 for As2Se3). The slightly higher As2Se3 refractive index

can be explained by the higher density of As2Se3

(4.75 g/cm3) compared to As2S3 (3.42 g/cm3). The group

indices for the 800-nm optical probe beam are 2.7624 and

3.6525 for As2S3 and As2Se3, respectively. The resulting ve-

locity mismatch between the optical probe beam and the

THz pulse may result in smearing of the recorded Kerr sig-

nals, and consequently a slight underestimation of the

extracted nonlinear coefficient. This effect will be most pro-

found for As2Se3. The absorption coefficient monotonously

increases from nearly zero to approximately 20–22 cm�1 for

both samples between 0.2 THz and 1.0 THz. This behavior is

universal for a wide range of glasses, and confirms the amor-

phous nature of chalcogenide glasses at low THz frequen-

cies.23,26 For further analysis, we calculated the weighted

average of the absorption coefficient over the pulse spectrum

in the range 0.2–1.0 THz. This range contains 84% of the

total intensity of the THz pulse (see Fig. 1(b)). Averaged

absorption coefficients a¼ 6.2 cm�1 and 10.8 cm�1 are

found for As2S3 and As2Se3 with a characteristic penetration

depth (Labs ¼ 1=a) of 1.61 mm and 0.93 mm, respectively.

We use these values to calculate the local THz field inside

the bulk sample taking absorption and Fresnel transmission

coefficients into account.

We determined the THz-induced nonlinear refractive

indices n2 ¼ 1:746� 10�14 cm2=W and n2 ¼ 3:440� 10�14

cm2=W at 800 nm for As2S3 and As2Se3, respectively, in

Table I. The larger THz Kerr effect for As2Se3 is consistent

with the significantly larger third-order nonlinear optical

coefficient in As2Se3 as compared to As2S3.5 The measured

FIG. 3. The peak values of the THz-induced Kerr signals for As2S3 (squares)

and As2Se3 (triangles). The red, dashed curves are quadratic fits to the meas-

ured data points.

FIG. 4. The THz-induced Kerr signal as a function of As2S3 rotation angle

at a THz electric field strength of 400 kV/cm. The rotation spans from 0� to

90� in steps of 10�.

FIG. 5. The refractive index (solid curves) and absorption coefficient

(dashed curves) for As2S3 (red) and As2Se3 (black) samples as measured by

THz-TDS.

TABLE I. THz-induced optical parameters of As2S3 and As2Se3 glasses.

As2S3 As2Se3

Dna [10�6] 5.34 6.30

n2
b [10�14 cm2/W] 1.7560.09 3.4460.17

n2;nir
c [10�14 cm2/W] 2.5 11.4

v 3ð Þd[10�20 m2/V2] 4.8460.24 9.9660.50

Ipeak
e [108 W/cm2] 3.0660.15 1.8360.09

aDn is the modulation of the refractive index.
bn2 is the nonlinear refractive index.
cn2;nir is the nonlinear refractive index measured at near infrared.12,14

dv 3ð Þ is the nonlinear susceptibility (v 3ð Þ ¼ 4
3
� e0c� n2

0n2, where n0 is linear

refractive index).
eIpeak is the peak intensity averaged through samples.
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nonlinear refractive index for As2S3 is comparable with the

values that were reported for the near infrared, n2;nir ¼ 2:5
�10�14 cm2=W,12 while that of As2Se3 is approximately 3

times lower, n2;nir ¼ 11:4� 10�14 cm2=W.14

In summary, we have reported the observation of the

THz-induced optical Kerr effect in solid materials, using

intense THz pulses of up to 400 kV/cm. Both chalcogenide

samples, As2S3 and As2Se3, reveal large nonlinear refractive

indices. Furthermore, due to the nonresonant nature of the

third-order nonlinearity in the amorphous glasses, a

near-instantaneous (faster than the time resolution of the

experiment) response of the Kerr signal was observed.
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