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We show that surface arc-discharge deposited carbon plays a critical intermediary role in the

breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035 �C in

an Ar/H2 atmosphere, resulting in the formation of epitaxial copper silicide particles in � 10 lm

wide channels, which are aligned with the intersections of the (100) surface of the wafer and the

{110} planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles

within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with

scanning and transmission electron microscopy of focused ion beam fabricated lammelas and

trenches in the structure to elucidate the process of their formation. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821337]

INTRODUCTION

Metal silicides are of importance in microelectronics and

under study currently due to their potential applications in

Ohmic contacts, interconnects, gates, diffusion barriers, and

due to their determining influence on the properties of the

metal/silicon interface.1 Amongst their favorable properties

are high conductivity, thermal stability, and highly tunable

growth and synthesis via epitaxial and endotaxial growth or

alternative means, depending on the metal and growth sub-

strate in question.2,3 Also, chemical vapor deposition (CVD)

of carbon-containing precursor gases on catalytic metal foils

and physically deposited films has recently become a promis-

ing route for the scalable growth of graphene, and remains an

important tool for the synthesis of other materials on metal

catalyst precursors.4 In general, it is desirable that the catalyst

layer for CVD growth is supported by a standard size of sili-

con substrate, as this ensures compatibility with subsequent

microfabrication processing steps and gives the possibility of

integrating the as-grown CVD material into a final device

without the requirement for physical transfer to another sub-

strate, e.g., by chemical removal of the catalyst layer. It is

well known, however, that Cu and Si will form a eutectic at

temperatures as low as 800 �C, depending on the ratio of Cu

and Si, with the Cu easily penetrating any native oxide

through the atomic substitution mechanism.5 Eutectic forma-

tion is also possible in the case of thicker thermally grown sili-

con oxide diffusion barriers, in the event of pinholes or other

defects present in the oxide. However, the exact mechanisms

of the formation of copper silicides are not yet well described,

leading to some contradictory reports in the literature,6,7 as

has been discussed previously.8

Here we present the previously undescribed phenom-

enon of the formation of relatively ordered and uniform

etched channels containing copper silicide particles in the

range 1–100 lm in the thermal oxide layer of silicon wafers

(Figures 1(a) and 1(b)). Channels with a uniform width of

10 lm, which are exactly oriented along the intersections of

the (100) surface of the wafer and the {110} planes occur on

a Cu (400 nm)/SiO2 (90 nm)/Si (350 lm) substrate (Figure

1(c)) only in the presence of a layer of �10 nm of arc-

discharge deposited carbon at temperatures of 1035 �C in an

Ar/H2 atmosphere. The copper diffusion into the silicon at

high temperatures is enhanced by catalytic reduction of the

silicon oxide layer in the presence of carbon. During cooling,

copper silicide precipitates out of the silicon at the surface

forming hemispherical particles, and additionally forms

endotaxial copper silicide particles distributed along {110}

planes in the interior of the wafer. In the absence of a surface

carbon layer, copper instead dewets from the surface of the

silicon, and no copper silicide formation is observed.

EXPERIMENTAL SESSION

A thermal oxide layer of 90 nm is grown on undoped

350 lm Si(100) wafers via dry oxidation of Si. A 400 nm thick

copper film is deposited via electron beam evaporation

(Alcatel E-beam evaporator, 20 Ås�1). Subsequent to this, the

wafers are exposed to atmosphere before deposition of a

�10 nm layer of amorphous carbon by arc discharge

(Cressington 208HR, 30 s, 4 V, 80 mA.) As a control, we used

a physical mask in some cases to selectively inhibit carbon

deposition. The samples are then annealed in a CVD furnace

used for the growth of graphene (Aixtron Black Magic 400) at

1035 �C, at a controlled pressure of 10 millibars under a flow

of H2 (100 sccm) and Ar (500 sccm). The substrate tempera-

ture is controlled by a thermocouple, with heat supplied by a

graphite heater directly in contact with the substrate. Samples

were heated up at a rate of 200 �Cs�1 to the target temperature,

and either held at 1035 �C for 1 min (long anneal) or were

heated instantaneously up to 1035 �C (short anneal) before

cooling to< 100 �C in 45 min under continued gas flow. The

sample structure and annealing conditions are equivalent to

those used for the annealing of copper substrates prior to CVD

growth of graphene. Our control experiments consisted of car-

rying out the same procedures, but with the following changes:

(1) in the partial absence of carbon (through masking of thea)Electronic-mail: filippo.pizzocchero@nanotech.dtu.dk
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carbon deposition as described above); (2) on silicon wafers

with no thermal oxide layer; (3) during vacuum annealing, that

is, without the flow of Ar and H2 described above, and (4) with

an instantaneous cooling after the sample reached 1035 �C
(short annealing period, as described above).

After annealing, the samples were examined in a FEI

Helios NanoLab DualBeam Scanning Electron Microscope

(SEM), where lift-out lamellar specimens were produced by

Focused Ion Beam (FIB) for investigation of the interior of the

sample via SEM and FEI Tecnai G2 Transmission Electron

Microscope (TEM). Semiquantitative chemical analyses were

performed using Energy Dispersive X-rays Spectroscopy

(EDS) in both SEM and TEM and Back Scattered Electron

Spectroscopy (BSES) in SEM to provide chemical mapping.

RESULTS AND DISCUSSION

Figures 1(a) and 1(b) present typical results for this pro-

cedure. The sputtered copper layer is everywhere penetrated

with 10–200 lm long and approximately 10 lm wide stria-

tions or channels (Figures 1(d) and 1(e)), which are oriented

at 45� with respect to each other and exactly aligned to the

intersections of the (100) wafer surface and the {110} planes

(Figure 1(d), inset). Figure 1(b) shows the details of one

channel, where the copper is seen to dewet the edge of the

silicon oxide channels, which in turn contain a number of

particles. The channels present quite irregular edges, with a

line roughness on the order of 5 lm in the Cu layer, and

1 lm in the underlying oxide layer (Figure 1(e)). The par-

ticles inside the channels exhibit roughness on the nanometer

scale that qualitatively appears to increase with particle size;

this tendency was present in all the data.

EDS and BSES results showing the relative presence of

copper, silicon, and oxygen are presented in Figures

2(a)–2(d). Copper is detected in the x-ray spectrum around

the channel and to a lesser extent also in the particles within

the channel. The spectral maps indicate an increased pres-

ence of silicon in the opening in the copper, with a stronger

silicon response from the inner channel, indicating that the

inner channel consists mainly of exposed silicon. Oxygen is

most abundant between the outer and inner channels, indicat-

ing silicon oxide is still present in these regions, and on the

areas of the particles where copper is less abundant, possibly

indicating silicon oxide is present on the surface of the par-

ticles as well. It is not possible to resolve the presence of car-

bon using SEM-EDS in our experiments due to the low

atomic number of carbon. Secondary electron imaging, how-

ever, shows lighter contrast in areas away from channels,

which may indicate depletion of the deposited surface carbon

around channels (Figure 2(e)). Quantitative analysis is ham-

pered by the complex and heterogeneous 3D structure of the

sample making the precise boundary of the x-ray interaction

volume indeterminate.

To probe the 3D structure of the sample, a lamellar sec-

tion across a channel was prepared using FIB, directly

through a particle in a channel, for study in the TEM. A

bright-field TEM montage micrograph is shown in Figure

2(f). Prior to definition of the lamella and the subsequent lift-

out, a Pt capping layer is deposited in-situ by FIB deposition

on the surface for protection during preparation and for

bonding to the liftout probe; this layer is labeled in Figure

2(f). The deposited copper, thermal oxide, silicon substrate

and surface, and endotaxial copper silicide particles are also

labeled. Endotaxial copper silicide deposits are visible

arranged along the cross section of the (110) plane: the size

of these deposits is qualitatively seen to reduce further from

the substrate surface (i.e., deeper in the wafer). EDS spectra

acquired in-situ in the TEM are shown in Figures 2(g)–2(j),

with Figure 2(f) indicating the region from which the spec-

trum was acquired. A weak response corresponding to the

carbon K edge is visible in TEM EDS in Figure 2(h) around

0.3 keV in the bulk silicon. Both the endotaxial and surface

silicide particles (Figures 2(i) and 2(j)) are rich in both cop-

per and silicon, with potentially some oxygen present in the

surface particle (Figure 2(j)) – a 2–3 lm thick layer of silicon

oxide is also visible under the surface particle (Figure 2(f)).

In the cross-sectional image presented in Figure 2(f) the

hemispherical top surface of the particle contrasts starkly

with the lower boundary of the particle, which shows a com-

plex fractal-like interface with the silicon oxide beneath it.

FIG. 1. (a) Channel formation in Cu and SiO2. Channels are oriented along

the intersections of the (100) top surface of the wafer and the {011} planes.

Scale 100 lm. (b) Cu dewetting of SiO2 at edges of channel and copper sili-

cide particle formation in channel. Scale 5 lm. (c) Schematic cross section

of sample. (d) Distribution of channel lengths. Inset: polar plot of channel

length and orientation. (e) Line profiles for channels in (a). The dotted lines

are guides for the eye, spaced 10 lm apart. Inset: Binary thresholding is

used to estimate the width of the channel in oxide.
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By partially shadow-masking the surface (see

Experimental Section), regions with and without carbon dep-

osition are defined. In areas protected from carbon deposition

there is a complete absence of channels, and instead we

observe a dewetting of the copper from the oxide layer, with

voids of around 10 lm opening on the surface. In areas out-

side the masked region carbon deposition led to the expected

channeling behavior as observed previously. The transition

area between these areas is less than 5 lm at the edge of the

shadow mask (Figure 3(c)).

In the absence of a thermal oxide layer, the same experi-

ment leads to the strong formation of silicides universally

over the surface, as expected from previous reports.9 In the

absence of gases during the annealing step, i.e., under a vac-

uum of 10-3 millibars, the channels do not form, and the cop-

per does not dewet from the surface. The experiment was

also carried out at reduced temperatures of 800–1000 �C
with no evidence of channels observed.

Figures 3(d) and 3(e) shows the results of the process

where the sample is only allowed to heat up to 1035 �C instanta-

neously before being cooled. In this case, the precipitation of sur-

face silicide particles partially delaminates the deposited copper

from the surface. A cross section through a particle using FIB

shows the copper delaminating from the oxide (Figure 3(e)).

It is well known that copper forms a eutectic with sili-

con, with the eutectic melting temperature occurring around

800 �C, as compared to 1083 �C for pure copper.10 Copper

deposited on an oxidized silicon wafer with an oxide layer

thick enough to suppress the substitutional movement of

copper atoms through the oxide and into the bulk will show

dewetting at temperatures approaching the melting tempera-

ture of copper. In this work we observe that this dewetting

can be suppressed in the presence of an evaporated layer of

carbon (Figure 3(c)). Although the mechanism for this is not

clear, possible reasons for the difference observed include

(1) that the evaporated carbon reduces the surface energy of

the copper-atmosphere interface; or alternatively (2) the car-

bon prevents the evaporation of copper at high temperature.

A perfect oxide layer should form an effective barrier

against diffusion of copper into the bulk silicon;11,12 however,

in this work we observe the formation of particles of copper

silicide in areas where carbon is present, and a lack of silicide

formation where carbon is absent. This leads us to the conclu-

sion that the carbon is playing a key role in the penetration of

the oxide layer (Figure 3(a-i,ii)). The reduction of silicon ox-

ide by carbon at high temperatures has been reported previ-

ously, through the formation of a silicon carbide intermediate.13

It is likely then that carbon comes into contact with the silicon

oxide through diffusion between copper grains (the area density

of grain boundaries would then determine the area density of

channels formed) or in pinholes in the copper film whilst the

copper is more mobile at elevated temperature. The carbon

then reduces the silicon oxide, forming sites where copper is

able to penetrate the oxide more easily (Figure 3(a-iii)).

It is known that the particles form during the cooling of

the substrate, with the copper silicide eutectic precipitating out

of the Si at faults or voids in the crystal structure, and then at

the exposed surface of the substrate (Figure 3(a-iv,v)).7,8,14

FIG. 2. (a)–(c) EDS mapping of ele-

mental abundance of Cu, O, Si.

Abundance is indicated by pixel gray

value. Scale bars 10 lm. (d)

Backscattered electron detector image

of corresponding area. Scale bar

10 lm. (e) Light contrasting regions

between channels, marked by dotted

boundary could indicate the presence

of carbon, which is not detectable via

SEM EDS in our experiments. Scale

bar 50 lm. (f) TEM image (montage)

of a lamellar cross section through a

particle. Pt capping layer used during

sample preparation is marked. Also

visible is a copper silicide particle at

the surface with an underlying silicon

oxide layer with fractal boundary; and

smaller endotaxial copper silicide par-

ticles gathered on a (011) plane. Rings

with italic labels indicate regions

where EDS spectra are taken. Scale bar

5 lm. (g)-(j) EDS spectra from the

indicated regions in (f). Principal edges

and transition energies are marked for

C, O, Cu and Si. Spectra qualitatively

indicate a higher relative abundance of

Cu in the endotaxial particles (i) and

emerging particle (j), and of C in the

bulk (h). O is measured most strongly

in the oxide layer (g).
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The faults in the crystal are probably intrinsic,15 and the copper

silicides initially precipitate there. There is substantial stress in

the Si lamella investigated, visible from the presence of bend

contours in the crystal (Figure 2(f)). This is caused by com-

pressive stress induced by this precipitation, and expected

since aSi< aCuSi.

Our interpretation of the highly uniform width of the

channels is that the emerging silicide particles gather along

the edge of the intersections of the (100) wafer surface and the

{110} planes, and continue to catalytically remove the silicon

oxide and grow by absorption of surface copper, at a rate

determined by the prefactor and activation energy for the cata-

lytic removal of silicon oxide. The width of the channels in

the copper would then be determined by the width of the

channel in the silicon dioxide, but widened and roughened

somewhat from the local dewetting and consumption of the

copper during silicide particle formation and growth. We

therefore ascribe the striking uniformity in average width of

the inner channels etched in the silicon oxide to the uniform

rate of reduction of silicon oxide by copper silicide over the

wafer surface as previously observed.16 Copper silicide is

known to catalyse the reverse reaction of oxidation of silicon

to silicon oxide even at room temperature17—a process which

we believe explains our observation of an indistinct 2–3 lm

layer of silicon oxide with a fractal boundary beneath the par-

ticle visible in Figure 2(f), similar to previous reports.18

CONCLUSIONS

We have presented results on the annealing of copper

in a reducing environment on thermally oxidised silicon

wafers, in the presence of a carbon surface layer. The

carbon supresses the dewetting of the copper on silicon

dioxide, and at temperatures of 1035 �C reduces the

90 nm oxide layer, allowing subsequent copper substitu-

tion into the silicon wafer and the formation of copper

silicide eutectics. During heating, or on cooling, 1–10 lm

diameter copper silicide particles are precipitated at the

intersection of the (100) surface of the substrate and the

{011} planes, with silicide particles of< 1 lm diameter

visible along {011} planes in the bulk of the substrate,

introducing substantial strain. At the substrate surface,

channels with highly uniform widths of around 10 lm are

produced in both the oxide and the copper surface layer

that are exactly oriented with the intersection of the (100)

surface of the substrate and the {011} planes.

The role of carbon in the suppression of dewetting of

copper on silicon oxide has implications for the catalytic

growth of carbon nanomaterials on silicon-supported copper

catalysts where silicon dioxide is used as a diffusion barrier,

e.g., for the growth of graphene via CVD, and highlights the

need for effective oxide barriers in the presence of reducing

environments and carbon. The presence of pinholes or other

FIG. 3. (a) Schematic of the formation of CuSi particles. (i) The initial state of the sample. (ii) During annealing, the copper forms grains. Sputtered carbon on

the surface is then allowed to come into contact with the oxide layer by diffusion through grain boundaries. The oxide layer is removed through carbothermal

reduction, and copper diffuses into the bulk silicon. (iii)–(iv) Cooling the sample results in precipitation of copper silicide particles beneath the copper layer,

which delaminates the copper, as seen in Figures 3(d) and 3(e). Reduction of silicon dioxide by carbon results in breakdown of the oxide diffusion barrier, and

allows copper to diffuse into the silicon. (v) Continued annealing results in a higher concentration of copper in the silicon. (vi) On exposure to ambient atmos-

phere, the CuSi particles catalyse the formation of silicon oxide at the CuSi/Si interface (c.f. Figures 2(b) and 2(f)). (b) Schematic plan view of channel forma-

tion. Initially emerging particles grow at a uniform rate, removing the surrounding copper and oxide layers until the removed areas join into a channel with a

relatively uniform width. (c) Masked deposition of carbon results in dewetting of copper from silicon oxide in the masked region. (d) SEM micrograph of par-

ticles emerging from the surface of the substrate. (e) SEM micrograph of FIB cross sectional view of silicide particle emerging from the substrate.
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faults in a barrier oxide will hasten the onset of silicide

formation.

The formation of copper silicide eutectics in general

and the physics of metal semiconductor interfaces is a

subject of current research, and the determining role of

carbon in the breakdown of oxide diffusion barriers dem-

onstrated here may have relevance for the semiconductor

industry—particularly in the case where copper is used

as a via material in 3D packaging. Alternatively, further

research on controlling the density and size of the sili-

cide precipitates could result in processes for the control-

lable formation of patterned high density surface coatings

of silicide micro- and nanoparticles for MEMS purposes

or subsequent catalytic growth.
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