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Summary

Processes that change in time are in mathematics typically described by dif-
ferential equations. These may be applied to model everything from weather
forecasting, brain patterns, reaction kinetics, water waves, finance, social dy-
namics, structural dynamics and electrodynamics to name only a few. These
systems are generically nonlinear and the studies of them often become enor-
mously complex. The framework in which such systems are best understood is
via the theory of dynamical systems, where the critical behavior is systemat-
ically analyzed by performing bifurcation theory. In that context the current
thesis is attacking two problems.

The first is concerned with the mathematical modelling and analysis of an exper-
iment of a vibro-impacting beam. This type of dynamical system has received
much attention in the recent years and they occur frequently in mechanical ap-
plications, where they induce noise and wear which decrease the life time of
machines. From the modelling point of view these systems are often particu-
larly rich in nonlinear dynamics. In the present study a mathematical model is
derived. Amongst other outcomes the model was successfully applied to predict
a nonlinear phenomenon, namely the existence of isolas of subharmonic orbits.
These were then verified in the practical experiment in the lab.

The second problem that is addressed in the current thesis is a problem that
has developed as a consequence of the increasing power of computers which has
created the demand for analysis of ever more advanced and complex systems.
These complex systems are computationally very demanding and proper analysis
of the qualitative behavior of the systems becomes difficult. In general it is not
possible to construct bifurcation diagrams for these so-called high-dimensional
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models efficiently. In order to overcome this obstacle much research is going
into the direction of development of robust methods to perform dimension and
model reduction such as to pave the way for a qualitative analysis of the high-
dimensional problems by analyzing the low-dimensional models.

In this thesis we demonstrate how to reduce the dimension of a certain class
of dynamical systems by construction of k-dimensional submanifolds using the
so-called graph transform. The method is suitable for a specific class of prob-
lems with spectral gaps, these are often observed. In particular the method is
applied to a mechanical system. Furthermore the method has some unique and
promising properties compared to other methods.



Resumé

Processer som ændrer sig i tiden er i matematik typisk beskrevet af differen-
tialligninger. Disse kan anvendes til at modellere vejrprognoser, hjernemønstre,
reaktions-kinetik, bølger i vand, finansprognoser, social dynamik, strukturel dy-
namik, elektrodynamik og meget andet. Disse systemer er generisk ikke-lineære,
og studiet af dem er ofte enormt komplekst. Den bedste fremgangsm̊ade i anal-
ysen af disse systemer er via dynamisk systemer, i hvilke man systematisk kan
analysere den kritiske opførsel ved at anvende bifurkationsteori. I den sammen-
hæng angriber denne afhandling to problemer.

Det første omhandler den matematiske modellering og analyse af en bjælke som
bliver udsat for p̊atrykte svingninger og kolliderer med mekaniske stop. Denne
type af dynamisk system har været genstand for megen interesse i den seneste
årrække, og de optræder ofte i mekaniske applikationer, hvor de inducerer støj
og slitage der nedsætter maskiners levetid. Fra et matematisk modelleringssyn-
spunkt er disse systemer i særdeleshed rige p̊a ikke-lineær dynamik. I denne
afhandling bliver en matematisk model for dette system udledt. Modellen blev
blandt andet anvendt til at forudsige speciel ikke-lineær opførsel, nemlig nogle
isolerede løsninger, og disse blev efterfølgende eftervist i det praktiske eksperi-
ment i værkstedet.

Det andet problem, som er adresseret i denne afhandling, er et problem, der er
opst̊aet som en konsekvens af den forøgede beregningskraft fra computere, der
har skabt et behov for analyse af mere og mere avancerede og komplekse sys-
temer. Disse komplekse systemer er meget beregningstunge og grundig analyse
af systemernes kvalitative opførsel bliver meget vanskelig, i en s̊adan grad at bi-
furkationsdiagrammer for de s̊akaldt højt-dimensionale modeller ikke er muligt
at udføre effektivt. For at komme udenom denne forhindring g̊ar megen forskn-
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ing i retning af at udvikle robuste metoder til at udføre dimensionsreduktion og
modelreduktion for at muliggøre den kvalitative analyse af de højt-dimensionale
problemer ved at analysere de lavt-dimensionale modeller.

I denne afhandling viser vi hvorledes man kan reducere dimensionen af en speci-
fik klasse af dynamiske systemer ved at konstruere k-dimensionale delmang-
foldigheder ved anvendelse af den s̊akaldte graf-transform. Metoden er egnet til
en klasse af problemer som har en bestemt separation i sit spektrum, og disse
er ofte forekommende. Vi anvender endvidere metoden p̊a et mekanisk system.
Metoden har, til sammenligning med andre lignende metoder, nogle unikke og
lovende egenskaber.



Preface

This thesis was prepared at The Technical University of Denmark (DTU) at
the Department of Applied Mathematics and Computer Science (formerly the
Department of Mathematics), in partial fulfilment of the requirements for ac-
quiring the Ph.D. degree in Mathematics. The scholarship was granted by the
former Department of Mathematics. The main supervisor was Associate Pro-
fessor Jens Starke from the Department of Applied Mathematics and Computer
Science (DTU), and the two co-supervisors were Associate Professor Anton Ev-
grafov from the Department of Applied Mathematics and Computer Science
(DTU) and Associate Professor Jon J. Thomsen from the Department of Me-
chanical Engineering (DTU).

The thesis deals with modelling and dimension reduction of dynamical systems.
One part is on the derivation of a low-dimensional model of a vibro-impacting
mechanical system, numerical bifurcation analysis and comparison with an ex-
periment. The other part is devoted to dimension reduction via the approxi-
mation of k-dimensional attracting invariant submanifolds of high-dimensional
dissipative dynamical systems, with an example application from mechanics.

The thesis consists of an introduction to the applied mathematical methods and
theory and three papers of which Paper A and Paper C are active parts of the
thesis. Paper B is not discussed except for the part of the experimental results
that were found due to the mathematical modelling found in this thesis. Paper
A is introduced in Chapter 2 where it is to be read before Section 2.2; likewise
Paper C is to be read before Section 3.3.

Lyngby, November 2013

Michael Elmeg̊ard
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Chapter 1

Introduction

The current chapter is written in order to provide a reasonable basis for an
intuitive understanding of Chapters 2 and 3 and Papers A and C; for all the
theory that is presented, we refer to sources that we found particularly useful to
consult for detailed presentations. Furthermore, the chapter was written with
the intention to give readers the possibility of getting a feel for some very useful
and powerful methods in applied mathematics and a shortcut to understanding
illuminating concepts that were initially troubling for this author1 to wrap his
head around. That being said, the presentation assumes a certain amount of fa-
miliarity with mathematical analysis and ordinary differential equations (ODE).
A topic which is only implicitly explained is numerical analysis; while it is cen-
tral to the practical calculations, implementations, verifications and analysis
throughout the work, it is not particularly necessary in order to understand the
results.

In Section 1.1 and Appendix D we derive and discuss the relevant beam theory;
in Section 1.2 we describe the Galerkin principle which is very practical to get
an understanding of partial differential equations (PDE) by turning them into
often less complicated ordinary differential equations (ODEs); in Section 1.3 we
describe some of the general ideas of continuation and bifurcation analysis; and
discuss the practical aspects in 1.4, specifically we describe its application to
one of the most fundamental problems of mathematical physics, the boundary

1author:Michael Elmeg̊ard



2 Introduction

value problem (BVP); in Section 1.5 we introduce the notion of the skeleton of
a dynamical system and shortly discuss the concept of invariant manifolds; this
concept is very central to the theme of the thesis – Dimension Reduction.

1.1 Euler-Bernoulli beam theory

We shall give a minimal introduction to the main mechanical object that is
considered in this thesis, namely the cantilever beam. As a service to the reader
we present a more detailed account of the topic of beam theory in Appendix D. In
the Appendix we consider a beam as a one-dimensional ”body” and then give the
relations to a more general beam that may change its cross-sectional geometry
and material properties, i.e., we relate the one-dimensional theory of rods to the
three-dimensional theory of beams. This is relegated to the Appendix because
it is not strictly necessary to understand in high detail but it does facilitate a
better understanding of the mechanics used throughout the thesis. It provides
the means to evaluate if mechanical simplifications are expected to be valid
approximations. The presentation is based on [LL86], [Ant06], [Kla06].

The equations of motion of the small transverse vibrations of a beam may be
derived by, e.g., Newton’s laws, Eulers laws or Euler-Lagrange equations. In
the Appendix we derive it from Eulers laws so let us consider the approach
of Euler-Lagranges equations. The assumption is that the potential energy
from the displacements in the beam is determined by the curvature ∂zzu, the
elastic modulus E of the beam and the cross-sectional moment of inertia I. The
potential energy V of the planar deformations of a straight beam of length L is
given by

V =

∫ L

0

1

2
EI

(
∂2u

∂z2

)2

dz, (1.1)

where u(z) is the transverse displacement in the x-direction of the beam at the

z

x

ρA

EI

Figure 1.1: System sketch of a free beam, with coordinate system and physical
properties. The dashed line denotes the center-line that is displaced by u in the
x-direction for a given position z.
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z-position. We skipped the step going from three-dimensional beam to the one-
dimensional beam, so E, I are in general dependent on the z-coordinate unless
the beam has constant cross-sections and material parameters. The same goes
for the kinetic energy K of the beam, here we immediately obtain,

T =

∫ L

0

1

2
ρA

(
∂2u

∂t2

)2

dz, (1.2)

where ρ is the material density and A is the cross-sectional area of the beam,
both quantities are in general dependent on z. Using Euler-Lagrange equation
on the Lagrangian L = T − V we obtain

∫ L

0

ρA
∂2u

∂t2
+ EI

∂4u

∂z4
dz =

∫ L

0

F (z, t) dz, (1.3)

where we added a forcing term. From this derivation we see that the terms
on the left-hand side are the linear momentum of the beam and the elastic
resistance force, respectively; note that a straight beam has vanishing potential
energy. The local PDE form is

ρA
∂2u

∂t2
+ EI

∂4u

∂z4
= F (z, t), (1.4)

and this is known as Euler-Bernoullis beam equation. One of the reasons for
providing some detail about the mechanics at this stage is described quite well
in a quote of John von Neumann [Dys04]

With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.

In other words it makes sense to base the mathematical modelling on the theory
of mechanics such that the model is a product of reasoning and not simply a
fitting task; in particular all terms and parameters have a physical interpretation
and parameters may be estimated and this brings us to the next section on
Galerkins principle.

1.2 Galerkin principle

In this section we describe one of the very important methods of applied mathe-
matics, namely Galerkins method. In the derivation of the governing equations
for problems in applied mathematics, e.g., from fluid dynamics to electrody-
namics to quantum mechanics and back to structural mechanics, PDEs emerge
naturally.
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z

x E, I, ρ, A
x

m

k

Figure 1.2: The Galerkin principle for the cantilever beam with a single mode
approximation. The PDE is transformed into a single degree of freedom ODE.

In the cases where analytical solutions are attainable it makes sense to get an
understanding from the analytically given families of solutions; additionally we
may obtain useful information, such as, boundedness of solutions, the nature
of dissipation and global attractors. In the general nonlinear case it is often
difficult to understand, even qualitatively, the actual dynamics of the PDEs.
The a priori knowledge is mostly limited to statements about the appropriate
Sobolev spaces in which we should find our solutions; for all practical purposes
this is unsatisfactory unless the ambition is to see the convergence of a nu-
merical scheme. We note that the most useful insight may often be based on
Dimensional analysis and Scaling analysis [Bar96][Hun67]. (See [dH56] for an
excellent example in self-excited mechanical vibrations on oil-whirl).

In Paper A we apply the Galerkin principle as a method to obtain the proper
structure of the vibro-impacting system, and also to argue about orders of pa-
rameters. In Appendix E we describe the princple by considering the simple
example of applying Galerkins principle to the forced vibrations of the can-
tilever beam (cf. Equation (1.4)).

The Galerkin principle is illustrated in Figure 1.2 From Appendix E we observe
that a single mode φ1 approximation may be used to obtain the following ODE
approximation of the beam

0 = mä+ ka− f(t), (1.5)

where

m =

∫ L

0

ρAφ1φ1dz,

k =

∫ L

0

EI
∂2φ1

∂z2

∂2φ1

∂z2
dz,

f(t) =

∫ L

0

F (z, t)φ1dz,

(1.6)

this is a single degree-of-freedom model. In most textbooks, the process is to
start with single degree-of-freedom models and then building up the complexity
from there. The reader will quickly experience that the identification of dis-
tributed/continuous (PDE) problems as low-dimensional (ODE) problems is far
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from trivial in anything but the exceptionally simple cases. When models be-
come more complicated, e.g., model parameters ρ,A,E, I are not constant but
instead functions of the position in the cantilever and the cantilever is substi-
tuted by a more complicated beam shape, the reduction steps will seem increas-
ingly coincidental. Starting instead with the weak form facilitates a systematic
derivation and understanding of the geometric complexity and the parameters
of the ODE through the integral relations (1.6). Lastly, the most difficult part
is to have some a priori understanding of the qualitative behavior of the low-
dimensional ODEs, and a necessary prerequisite for this is some knowledge of
dynamical systems2.

Often the starting point of a modeling task will be data from experimental mea-
surements, and in this case the observed dynamics restricts the class of suitable
models considerably. In Paper A the qualitative behaviour is partly known a
priori from experiments, and this already sets constraints on the model choices,
e.g., the most trivial example is that if an experiment shows nonlinear behavior
then linear models are not suitable. More complicated examples could be ex-
periments that show limit sets that may only be embedded3 in dimension > 2,
e.g., chaos; or chemical systems with time-scale separation where one should
perhaps apply slow-manifold reduction. We further remark that Galerkin ap-
proximations have been frequently used in the context of applications of center
manifold reduction in dynamical systems, see e.g., [Hol77][MH79] or Gucken-
heimer and Holmes [GH83, § 7.6] and references therein.

1.3 Continuation and bifurcation analysis

We start this section of by explaining a few general concepts that are essential to
understand continuation and bifurcation theory properly. Consider the following
general zero problem,

F (X) = 0, (1.7)

where X ∈ RN , F : RN → Rn is smooth and N > n > 0. Assume that the
point X = X0 is a solution to the zero-problem, X0 can either be a regular or
a critical point. Regular points are characterized by F (X0) = 0 and that the
Jacobian ∂XF (X0) having maximal rank n; if the Jacobian of such a point does
not have maximal rank then the point is critical. From here it is possible to
proceed systematically only using results from analysis, however, we will try to
describe the geometric nature of the subject.

2This is one of the main reasons why standard dynamical systems such as Duffing, van der
Pol, Mathieu and combinations are studied so intensely in Dynamical Systems courses.

3We are considering vector fields and not maps in this discussion.
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First we note that the maximal rank condition on the derivative ∂XF is the
strongest that we may assume. In differential topology formulation this is equiv-
alent to demanding that the derivative is a surjective map and in turn we call F
a submersion at X0. Local submersions have a particularly simple interpreta-
tion, they mean that F behaves as a linear mapping and in fact we may choose
local coordinates, to obtain the canonical submersion, i.e.,

F (X) = (X1, . . . , Xn). (1.8)

The implications of this is that at regular points the local zero-set of F−1(0) is
simply (0, . . . , 0, XN−n, . . . , XN ), i.e., the solution set is the most trivial (N−n)-
dimensional manifold that we can think of. It follows that if every point X ∈
F−1(0) is a regular point, i.e., Rank(∂XF (X0)) = n for all X0 ∈ F−1(0),
then F−1(0) is a smooth submanifold of RN and dim(F−1(0)) = dim(RN) −
dim(Rn) = N − n; this is known as the pre-image theorem, see Guillemin and
Pollack [GP10]4; note that this is equivalent to the finite-dimensional Implicit
Function Theorem (IFT). A way to get some intuition for the consequences of
this theorem on submersions is to consider some well-known manifolds with easy
representations, e.g., a simple example is to consider,

f(x) = x2
1 + x2

2, (1.9)

and the derivative becomes,

∂xf = (2x1, 2x2). (1.10)

So, f : R2 → R is a smooth function and the derivative has maximal rank every-
where except at the origin. It follows that f−1(1) is a 1-dimensional manifold
and it happens to be the circle with unit radius. The corresponding results may
be deduced with little effort for n-dimensional spheres.

Continuation methods are mainly applied in order to take advantage of this local
structure to cover the zero-sets of nonlinear equations, and by application of the
pre-image theorem or the IFT we simply find the zero-set in a neighborhood
and advance the boundary via a new neighborhood. In Figure 1.3 we illustrate
the advancement of a cover on the two-dimensional sphere.

4The book was originally published by Prentice-Hall in 1974. The first line of the Preface
is ”The intent of this book is to provide an elementary and intuitive approach to differential
topology”; we highly recommend this book as well as the original inspiration for it, namely
Milnor’s Topology from a differential viewpoint of 1965 [Mil97].
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(a) (b)

(c) (d)

Figure 1.3: The advancement of a two-dimensional cover of the zero problem
of the two-dimensional sphere, i.e., f(x, y, z) = 1 − (x2 + y2 + z2) = 0. Panel
(a) shows the initial solution point marked by the red bullet. Panel (b) shows
the advancement of a cover (triangulation) of the zero set. Panel (c) further
advancement and Panel (d) a complete cover. The continuation was performed
using CoCo and adapting a demo on the sphere.
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While the covering is a technical task to implement, the real difficulty often
lies in the work that comes before, i.e., the construction of an interesting
regular continuation problem F and then the more detailed analysis of the
zero sets; especially at critical points X0, i.e., points where F (X0) = 0 and
Rank(∂XF (X0)) < n, the solution sets may be arbitrarily complicated. This
leads us to the topic of bifurcation theory.

This section on bifurcation theory is by no means complete, and proper reference
is given to books that address the topic in some detail, e.g., [Sey10][Wig03][Kuz04]
or via the singularity theory approach presented in [GS85]. Usually, mathemati-
cal models of physical systems are dependent on a set of parameters λ ∈ Rk, i.e.,
in this case there are k model parameters. Often, as we discussed in a previous
section on modeling, the parameters and possibly also the differential equa-
tions are only known within limited precision, and within this interval it makes
sense to demand that the results of the mathematical model does not vary with
small perturbations; this leads to questions of structural stability, genericity
and transversality, all of which are beyond the scope of this brief introduction.
We only try to paint a simple picture of the general ideas of bifurcation theory.
Consider the following mathematical model,

ẋ = F (x, λ), (1.11)

where (x, λ) ∈ Rn+k and F : Rn+k → Rn is a smooth function. Note that
in the following we describe some local bifurcation theory in the context of
rest/equilibrium/fixed points, explicitly. We consider the geometry of the zero
sets of F under parameter variations, i.e., we investigate the geometric properties
of Γ = {(x, λ) : F (x, λ) = 0} for relevant parameter regimes, i.e., it is the study
of a k-parameter family of differential equations or vector fields. For the purpose
of simplicity we consider the following setting,

g(y, λ) = 0, (1.12)

where (y, λ) ∈ R × R and g : R × R → R is a smooth function. This may
seem to be a rather crude assumption, but it is in fact very likely to be the
case that high-dimensional, even infinite-dimensional, dynamical systems can
be reduced in such a way near rest points via the Lyapunov-Schmidt reduction,
see [GS85], where the proof is done for the minimally degenerate case, i.e.,
F (x0, λ0) = 0 and Rank(∂xF )(x0,λ0) = n−1.5 In the context of continuation we
referred to such points as critical, in the current context they are often called
singularities. The term bifurcation was coined by Henri Poincaré, the father of

5Consider the set of n × n matrices, then the submanifold of matrices with rank r has
codimension (n−r)2, hence the minimally degenerate matrices has smaller codimension[Arn81]
than the latter, i.e., the minimally degenerate matrices are much more likely to be encountered
when we perform parameter variations; the rationale behind this type of reasoning will be
described later.
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qualitative analysis of dynamical systems, in the second half of the 19th century.
To ’bifurcate’ means to divide in two, and in our context a bifurcation point,
a bifurcation point is given at the parameter values for which the qualitative
dynamics change, i.e., a value at which we can not identify the orbits of an
original vector field uniquely into the orbits of the perturbed vector field; the
precise concept is topological conjugacy. A singularity for our reduced function g
is a point (x0, λ0) where g(x0, λ0) = ∂xg(x0, λ0) = 0. Using the implicit function
theorem we immediately see that any bifurcation point is a singularity.

By example, we will try to motivate the reasons why bifurcation analysis and
structural stability are essential concepts in nonlinear systems; consider the
following dynamical system,

ẋ = f(x) = x3, (1.13)

where there is only one rest point given at the origin x = 0; observe that the
origin is a singularity since f(0) = ∂xf(0) = 0. This is unlikely to be a realistic
model for any real-world application, for if we consider any linear perturbation,

ẋ = g(x, λ) = x3 − λx, (1.14)

with λ > 0, we observe that two rest points have emerged next to the rest point
at the origin. The zero-set of g is

Γ = {(x, λ) : 0 = x ∨ 0 = λ− x2}, (1.15)

and in Figure 1.4 we observe Γ is not a ’nice’ and smooth manifold, in particular,

−1 0 1

−1

0

1

λ

x

Figure 1.4: Pitchfork Γ = {(x, λ) : 0 = x∨0 = λ−x2}, notice the singular point
at the origin.

the origin (x, λ) = (0, 0) is an unnatural point because three rest points of the
system collapse to one at the same position – such a point is referred to as a
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branching point. This type of zero set Γ is known as a pitchfork. Consider the
addition of a constant term,

ẋ = h(x, λ, α) = x3 − λx+ α, (1.16)

where α 6= 0 but sufficiently small, in this case Γ is a disconnected set composed
of two smooth manifolds.

Equation (1.16) is the so-called cusp normal form and it happens to be a versal
unfolding of x3, meaning that any C1 perturbation of the vector field will not
change the structure in a neighborhood of (x, λ, α) = (0, 0, 0). The zero set
of h(x, λ, α) is the cusp surface and it is shown in Figure 1.5; note that the
cusp surface has multiple solutions in certain parameter regions of (λ, α). In

Figure 1.5: The cusp surface, i.e., the zero set of h(x, λ, α) = x3 − λx+ α. The
figure is produced using CoCo [DS13] and adapting a demo on the cusp normal
form. (CoCo is applying a two-dimensional covering algorithm to chart the zero
set; we observe the triangulation on the surface).

Figure 1.6 we added a curve and a point to the surface; observe that the special
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points of the surface is basically given by the red curve(s); and special point of
the red curve(s) is given by the black bullet. In this example the bifurcation
points are exactly the points traced out by this set and bifurcation theory offers
a systematic handling of these points based on a finite number of derivatives.
In the present case two types of bifurcation points are observed; the vertical
tangents and the point where they collide.

The bifurcation points that we consider on the cusp surface are fold points6

and a cusp point. We can classify these bifurcation points by evaluating a few
derivatives; this can be done by solving the recognition problem [GS85]. Fold
points are recognized by the following conditions,

h = 0,

hx = 0,
(1.17)

to these conditions we add so-called nondegeneracy conditions,

hxx 6= 0,

hλ 6= 0.
(1.18)

Using the two strict equalities the locus of possible fold points is given by

Γfp =
{

(x, λ, α) : x = s, λ = 3s2, α = 2s3, s ∈ R \ {0}
}
, (1.19)

note that the origin does not satisfy the nondegeneracy conditions. The locus of
fold points and together with the cusp point are shown in Figure 1.6. In Figure
1.7 we illustrate how the pitchfork relates to the cusp surface. The cusp point
is recognized from the following conditions,

h = 0,

hx = 0,

hxx = 0,

(1.20)

to these conditions we add the nondegeneracy condition

hxxx 6= 0,

hλhxα − hαhxλ 6= 0.
(1.21)

These where two simple examples of how special points may be classified using
bifurcation theory. We remark that the theory of unfolding and finding the
criterions for all the bifurcations is non-trivial, and as the number of unfolding
parameters increase the complexity explodes; this is not a huge problem in
applications because one typically observes bifurcations that are unfolded by
one or two parameters.

6or saddle nodes or limit points.
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Figure 1.6: The cusp surface, i.e., the zero set of h(x, λ, α) = x3 − λx+ α, with
the fold point loci Γfp given by the (two) red curves and the cusp point given
by the black bullet.

With the starting point of a the cusp normal form h(x, λ, α), see Equation (1.16),
a geometric ’viewpoint’ may provide a little extra insight in some of the details
without getting to concrete wrt. mathematical details.

The mapping h is regular, e.g., the derivative has maximal rank 1 throughout,

(hx, hλ, hα) = (3x2 − λ,−x, 1), (1.22)

and by the implicit function theorem (or the pre-image theorem) the solutions
set to h(x, λ, α) = 0 is a two-dimensional submanifold in R3.

For the fold points an additional strict equality is imposed together with two
nondegeneracy conditions, see Equations (1.17) and (1.18). The geometric sig-
nificance of the conditions are the following. The equality constraint is a vertical
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Figure 1.7: The cusp surface and the Pitchfork: Panel (a) shows that the pitch-
fork (the set marked by black) is the intersection between the hyperplane defined
by α = 0 and the cusp surface; imagine how the zero set breaks if α 6= 0.

tangency and combined with the non-degeneracy conditions it implies that the
solution curve folds and for parameter changes this means that we may go from
zero to two solutions and vice versa. The non-degeneracy conditions simply
means that we demand that the curve of fold points is regular, i.e., the map
(x, λ, α) 7→ (h, hx) must have maximal rank and if we consider α constant then
this amounts to

det
(
hx hλ
hxx hλx

)
= hxhλx − hλhxx = −hλhxx 6= 0, (1.23)

hence hλ 6= 0 and hxx 6= 0.

For the cusp points the story is very much the same. Equality and non-
degeneracy constraints are given by Equations (1.20) and (1.21). The equality
constraints are only met at the origin for the cusp surface, this is the isolated
point where the two fold curves meet. The non-degeneracy conditions are again
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simply a regularity condition of the map (x, λ, α) 7→ (h, hx, hxx), i.e.,

det

(
hx hλ hα
hxx hxλ hxα
hxxx hxxλ hxxα

)
= det

(
0 hλ hα
0 hxλ hxα

hxxx hxxλ hxxα

)
6= 0, (1.24)

hence hxxx 6= 0 and hλhxα − hαhxλ 6= 0.

From the above descriptions, it should be understood that in our example the
fold points are more likely to encounter compared to the isolated cusp point,
and this is explained by the concept of codimension. The fold bifurcation is a
codimension 1 bifurcation, and there are at least two ways to observe this; it
can be seen from the number of unfolding parameters in its normal form; it can
be found from the number of additional equality constraints in the recognition
problem. In a geometric sense each additional equality lowers the dimension of
the solution manifold by one. The codimension of a manifold W ⊂ V is given
as

codim(W ) = dim(V )− dim(W ). (1.25)

hence in the current example, if we call the cusp surface V and the fold point
curve W , then we immediately see that the fold point bifurcation is codimension
one. This interpretation generalizes better to models with more parameters,
because it is then reduced to a question of how certain submanifolds relate to
the manifolds in which they reside. Likewise, the cusp bifurcation was recognized
by additional constraint of hxx = 0, hence from the previous interpretation we
immediately see that it is a codimension-two bifurcation.

The geometric significance of the codimension of a bifurcation is that it provides
a hierarchy of how likely certain bifurcations are to encounter. Codimension-
one bifurcations, are boundaries that can separate domains, e.g., half line of a
football field, we cross it regularly if we move around; by the same analogy, a
codimension-two bifurcation is then the centre spot of a football field, and so we
can go to it if we make the effort. The fold and Hopf bifurcation are commonly
encountered examples of codimension-one bifurcations. From an applied point
of view, caution is therefore to be taken wrt. mathematical models that present
bifurcations of a higher codimension; in general such mathematical models are
unlikely to explain real-world applications properly unless they emerge by an
idealistic symmetry assumption.
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1.4 Practical continuation and bifurcation
analysis

In this section some of the practical aspects of the numerical implementation
of continuation and bifurcation methods is presented. Consider a continuously
differentiable function F (X),

F : Rn+k → Rn, (1.26)

and assume that F (X0) = 0 where X0,∈ Rn+k is a regular point, i.e., FX(X0)
has Rank(FX(X0)) = n. In this situation it was explained in Section 1.3 that
the solution set is diffeomorphic to a k-dimensional hyperplane, but this is not a
practical starting point for computations. Equivalently, we may instead use that
the implicit function theorem provides the existence and uniqueness of a smooth
k-dimensional manifold Z in the neighborhood of X0 that solves F (X) = 0.
Consider then all the smooth curves γ : Iε → Rn+k with the open interval
Iε = (−ε, ε), the base point γ(0) = X0 and γ(t) ∈ Z; by definition F (γ(t)) = 0.

F (γ(t)) = 0, t ∈ Iε (1.27)

⇒ ∂tF (γ(t))
∣∣
t=0

= FX(γ(t)) · γ′(t)
∣∣
t=0

= 0. (1.28)

The tangent space of Z at X0, TZX0 , is the span of the tangents of all the curves
γ at t = 0 (i.e. at X0), and it can be shown that

TZX0
= null(FX(X0)) = span(v1, v2, . . . , vk), (1.29)

where vi, wi ∈ Rn+k. We further assume that the vi’s constitute an orthonormal
basis of the null space and let wi with i = 1, . . . , n be a basis for the orthogonal
complement. It follows from the implicit function theorem that in a sufficiently

small neighborhood of X0 the zero set Z may be parameterized by p =
k∑
i=1

pivi

where pi ∈ R, i.e.,

Z =



X ∈ Rn+k : X = X0 +

k∑

i=1

pivi +

n∑

j=1

xjvj and xj = hj(p)



 . (1.30)

As an example we could consider the k-dimensional disc of radius R attached
at X0 and spanned by the orthonormal basis of the tangent space vi; for R
sufficiently small we can determine all xj = hj(p) inside the disc via Newton’s
method. This means that we can locally limit our focus to the case,

F : Rn × Rk → Rn (1.31)
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where x ∈ Rn, p ∈ Rk and Fx(x, p) is nonsingular. As long as the implicit func-
tion theorem does not fail, the front of the cover can be advanced without chang-
ing coordinate system and we simply patch together the discs; like the charts
of an atlas. We remark that it is not a trivial task to implement k-dimensional
covering algorithms, see e.g., Henderson’s paper on multi-parameter continua-
tion [Hen02]. With this discussion we only scratched some of the fundamental
principles of k-parameter continuation.

We remark that continuation is typically applied as one-parameter continuation,
i.e., set k = 1 in Equation (1.26).

The subject of continuation is not to be confused with bifurcation analysis;
continuation is not limited to the computation of certain families of special
solutions connected to bifurcations. As an example, one may ask for the family of
all solutions to F (x, λ) = 0 with the additional constraint that a scalar function
ψ(x, λ) = 0. We remark that ψ(x, λ) can be arbitrarily chosen, e.g., λ3x1x13 −
c = 0. If an initial solution is not provided then there are different strategies
to finding one. One way is to continue families of solutions while monitoring if
ψ(x, λ) changes sign and thereby finding ψ(x, λ) = 0, if this happens we have
an initial solution and the new system that is continued is,

F (x, λ) = 0,

ψ(x, λ) = 0.
(1.32)

This process can be repeated, i.e., constraints can be further added or released
as one likes. In [DS13] a rather general formalism to practical implementation
of continuation problems is developed, explained and exemplified together with
the Matlab continuation toolbox CoCo [DS].

In the context of bifurcation analysis the scalar functions ψ(x, λ) are called test-
functions, and the structure of these functions are related to the recognition
problem. If we are interested in for example fold points then while continuing
a regular family of solutions of F (x, λ) = 0 we monitor the appropriate test
function say ψfold(x, λ); if ψfold(x0, λ0) = 0 then (x0, λ0) is marked as a fold
point along the branch. If we want to continue the branch of fold points we
append the test function to the continuation problem, i.e.,

F (x, λ) = 0,

ψfold(x, λ) = 0.
(1.33)

It should be mentioned that we left out some detail in this argumentation,
the most important being that one must keep in mind that the value of k is
appropriate; in Equations (1.33) k ≥ 2 because the number of continuation
parameters ν is equal to the difference in the number of parameters n + k and
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the number of equations n+ 1, hence

ν = (n+ k)− (n+ 1) = k − 1 > 0. (1.34)

This sort of counting which is based on the implicit function theorem is essential
to constructing well-posed continuation problems. This implies that in order to
be able to continue certain families of solutions we may need to include more
parameters or simply let more parameters vary. The number ν defines the
dimension of the covering algorithm that must be used, and typically parameters
are fixed such that ν = 1.

This compact overview to the subjects left out a lot of details, interested readers
can consult, e.g., [Gov00][Kuz04] for numerical bifurcation analysis and [DS13]
for a focus on continuation methods. Most importantly, note that there exist
several software packages for performing numerical continuation and bifurcation
analysis, e.g., AUTO [DPC+07], MATCONT[DGK03],CoCo[DS]. Generally it
is possible to define a rather wide class of problems in the available software
packages.

1.4.1 From infinite to finite dimension

In many applications in engineering and science the governing equations are
formulated as differential equations. For the current analysis there is no need
to be specific about time and space variables but it is merely noted that the
infinite-dimensional systems may depend on several variables. Consider a gen-
eral nonlinear differential equation7,

N(u(x), λ) = 0, (1.35)

where u belongs to an appropriate infinite-dimensional function space with basis
{φi : i ∈ N}and λ ∈ Rk. It is only the exception to the rule that we may obtain
a closed form analytical solution to Equation (1.35). Consider a numerical
approximation of u(x),

uapprox(x) =

n∑

i=1

aiφi(x), (1.36)

where φi is the ith basis function and ai ∈ R the coefficient to the ith ba-
sis function and n is the cut-off number of basis functions. Substitution of

7We shall not worry about the details of functional analysis, but rather assume that these
allow the following analysis.
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Equation (1.36) in (1.35), satisfying boundary conditions and appropriate con-
tinuity/differentiability conditions throughout the domain yields an equation,

F (a, λ) = 0, (1.37)

where (a, λ) ∈ Rn × Rk, and we assume that F : Rn+k → Rn is sufficiently
smooth. The main argument is that numerical approximations yield finite di-
mensional representations, note also that discretization schemes a la finite dif-
ference yield the same result.

1.4.2 A two-point boundary value problem

Consider the general nonlinear first order dynamical system,

dx

dt
= f(x, λ), (1.38)

where f : Rn+k → Rn is sufficiently smooth. Let φ(t, ·) denote the flow of
Equation (1.38), i.e., x(t + τ) = φ(t, x(τ)); note that the flow also depends on
the parameter λ but this is suppressed in our notation. The flow φ(t, ·) is known
in closed form in many linear cases and only in exceptional cases for nonlinear
equations, however, the flow may be approximated using numerical integrators.
Note that the flow is also dependent on λ but we do not write this dependence
explicitly.

Considering a solution segment of the flow initialized at x0 and with flow-time
τ it is immediately clear that the segment is defined by n+ 1 conditions. If on
the other hand the solution segment is defined by n+ 1 conditions where some
values are specified at the initial point and the remaining at the end point of
the segment, then the problem is much more complicated as it is not handled
by direct integration and because solutions may not exist. In fact it is easy to
come up with bvps where solutions do not exist. With these constructions in
mind, we define the system

F (x0, x1, T, λ) =

(
φ(T, x0, λ)− x1

fbc(x
0, x1, T, λ)

)
= 0, (1.39)

where φ : R× Rn × Rk → Rn and fbc : Rn × Rn × R× Rk → Rn+1. Assuming
that ∂(x0,x1,T )F has maximal rank at a solution point (x0∗, x1∗, T ∗, λ∗), then
by the implicit function theorem the local solution set is k-dimensional since
(n+ n+ 1 + k)− (n+ n+ 1) = k. The simplest example possible is the initial
value problem,

fbc(x
0, x1, T, λ) =

(
x0 − x0∗

T − T ∗
)

= 0. (1.40)
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We did not discuss how to find an initial solution to the two-point boundary
value problem because there is no unique way to do this except in simple cases.

The described method is typically not the method of choice, because it is much
more unstable than alternatives such as multiple shooting or collocation meth-
ods. Multiple shooting is described quite nicely in [Sey10][Kuz04] and collo-
cation is described in detail in [DS13], the latter is a type of discretization of
the orbit segments by the use of (Lagrange) polynomials where all coefficients
are then variables in the continuation problem, this method has good stability
properties and it is trivial to increase the order of the numerical approximation,
but the dimension of the continuation problem is also much larger than that of
single shooting.

The important message of the section is that all of the mentioned techniques
are used to turn infinite-dimensional bvps into finite-dimensional nonlinear equa-
tions; a process which leads us back to the problem of analyzing zero sets of
nonlinear equations F : Rn+k → Rn.

1.4.3 Linear stability of orbits

Consider again a nonlinear differential equation,

dx

dt
= f(x, λ), (1.41)

where (x, λ) ∈ Rn+k and f is sufficiently smooth with flow φ(t, ·). We want
to understand what happens in the neighborhood of a trajectory in the trivial
case of an hyperbolic equilibrium point the neighborhood is understood via the
eigenvalues of the linearization; for trajectories that evolve in time the question
is more subtle. Consider a family of solutions,

x(t, ε) = φ(t, x̃0 + εv), (1.42)

where v ∈ Rn, x̃(t) = x(t, 0) and x̃0 = x̃(0) and ε ∈ R. The orbit of which
we will investigate the neighborhood of is x̃(t), i.e., this means that ε is to be
understood as a perturbation parameter and the whole family of solutions could
be restricted to the evolution of a ball around x̃0. Consider the expansion in ε,

φ(t, x̃0 + εv)− φ(t, x̃0) = εDφ(t, x̃0)v +O(ε2), (1.43)
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where D denotes ∂
∂xi

. A practical interpretation of Equation (1.43), as ε→ 0, is

to consider v as a vector with initial base point x̃0, such that8 vt := Dφ(t, x̃0)v
is interpreted as the vector with base point φ(t, x̃0), i.e., the matrix Dφ(t, x̃0)
contains information on local expansion and contraction of the trajectories.

By substitution in Equation (1.41) we have

d

dt
φ(t, x) = f(φ(t, x), λ), (1.45)

differentiating with respect to x in order to obtain,

d

dt
Dφ(t, x) = Df(φ(t, x̃0), λ)Dφ(t, x), (1.46)

and observe that Dφ(t, x̃0) is the solution matrix to the linear equation with
time-dependent coefficients,

dX

dt
= A(t, x̃0, λ)X. (1.47)

Even though Equation (1.47) is linear, it is important to note that in the case
with time-dependent coefficients there is no general solution method. Assume
that X(0) = In where In is the n × n identity matrix, then X(t) is called the
principal fundamental matrix of solutions [Chi06].

At this stage we can be a bit more concrete about what happens to pertur-
bations. Choose a flow time T and suppose u is a real eigenvector to matrix
X(T ) with real eigenvalue µ. Then the initial tangent vector is contracted or
expanded by |µ|,

||uT || = ||X(T )u|| = |µ|||u||, (1.48)

and this provides us with the stability information of the trajectory in a natural
way. Thinking about how other trajectories in phase space relates to the orbit
under consideration, e.g., some sets may approach the trajectory asymptotically
in forward or backward time. The eigenvalues µ are called multipliers. Consider
the special perturbation in the direction of the tangent to the trajectory,

d

dt
φ(t+ s, x) = f(φ(t+ s, x)), (1.49)

8Remember that when the flow is smooth this interpretation holds without adjustments in
the limit

lim
ε→0

φ(t, x̃0 + εv)− φ(t, x̃0)

ε
= Dφ(t, x̃0)v. (1.44)
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differentiate with respect to s at s = 0,

d2

dt2
φ(t+ s, x)

∣∣
s=0

= Df · d

dt
φ(t+ s, x)

∣∣
s=0

, (1.50)

⇒ d

dt
f(φ(t+ s, x))

∣∣
s=0

= Df · f(φ(t+ s, x))
∣∣
s=0

, (1.51)

d

dt
f(φ(t, x)) = Df · f(φ(t, x)), (1.52)

from the previous derivation of the fundamental solution matrix this implies (cf.
Equation (1.46)) that the initial value problem f(φ(0, x)) is solved by,

f(φ(t,x)) = X(t) · f(φ(0,x)) = X(t) · f(x), (1.53)

As a special case consider, x̃0 = φ(T, x̃0), i.e., φ(t, x̃0) is a periodic orbit of
period T , then

f(x̃0) = f(φ(T, x̃0)) = X(T ) · f(x̃0), (1.54)

hence the tangent direction of the periodic orbit is an eigenvector with eigenvalue
one, and it is called the trivial multiplier. The stability of the periodic orbit is
determined by the eigenvalues of X(T ); if, for example, all eigenvalues are inside
the unit circle except for the trivial one, then the periodic orbit is asymptotically
stable. A hyperbolic9 periodic orbit has a stable and unstable manifold that are
tangent to the corresponding eigenspaces just as it is the case for equilibrium
points. A slight twist is that the dimension of the stable and unstable manifolds
add up to n + 1 where n is the phase-space dimension. The eigenvalues X(T )
are usually referred to as Floquet multipliers in the case of periodic orbits. In
the continuation and bifurcation analysis of periodic orbits, the multipliers have
an importance corresponding to that of eigenvalues of equilibrium points; this
correspondence can be understood via the identification of a certain discrete
map known as the Poincaré map, see e.g., [Rob98][Chi06]. The bifurcation
points are related to the parameters at which the orbit fails to be hyperbolic,
i.e., some non-trivial multiplier is on the unit circle.

This section on linear stability of trajectories is only a small taste of some possi-
bilities in the analysis of dynamical systems. The discussion was limited to the
stability of trajectories; we remark that the concept of linear stability is applied
in a much more general setting of sets and higher-dimensional manifolds, in
fact our Paper C applies theory which relies crucially on certain uniform esti-
mates of the linear stability of a manifold (Generalized Lyapunov-type numbers
[Fen71][Wig94] ).

9all eigenvalues |µ| 6= 1 except for the trivial multiplier
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1.4.4 Discontinuous piecewise-linear dynamical system

In Section 2.2 we analyze periodic orbits in a discontinuous piecewise-linear
dynamical system, and while there are many similarities, there are also a few
crucial differences, e.g., the traditional results on uniqueness and existence, de-
pendence on parameters and such typically rely on Lipschitz continuous vector
fields, and lowering the regularity introduces many new challenges, see e.g.,
[BBCK07]. In particular, as it was clear from the previous sections most of the
methods in continuation and bifurcation analysis are developed in systems with
a sufficient smoothness assumed.

For periodic orbits in smooth systems some of the necessary detail was described
in Sections 1.4.2 and 1.4.3. In systems with nonsmooth events the principle is
generalized a little, such as to accommodate piecewise smooth vector fields and
jump discontinuities. In mechanical engineering applications piecewise-smooth
vector fields emerge naturally, e.g., rotor and stator interaction or stick-slip in
friction systems. Jump discontinuities are for example used to account for in-
elastic impact laws. It is natural to decompose periodic orbits of such dynamical
systems in multiple segments and disregarding some subtle theoretical details
the philosophy in the extension is really very simple; by a predefined decomposi-
tion the continuation problem becomes a finite sequence of (coupled) two-point
boundary value problems.

We formulate a multisegment continuation problem via the flow φ(t, ·); consider
an m-segment bvp and the continuation problem becomes,

x1 − g1(φ1(T1,x0, λ), λ) = 0,

x2 − g2(φ2(T2,x1, λ), λ) = 0,

...

xm − gm(φm(Tm,xm−1, λ), λ) = 0,

(1.55)

where gi may be a jump discontinuity. Let the dynamical system be n-dimensional
and the model parameters λ ∈ Rk then the continuation problem has mn equa-
tions and (m+ 1)n+m+ k unknowns, hence considering the implicit function
theorem under the assumption that the mapping is regular the covering of the
zero set is (n+m+ k)-dimensional. As usual we begin by fixing (k − 1) of the
model parameters. The underdetermination of the (n + m)-variables can in a
less general interpretation be attributed to a deficit of n boundary conditions
that are needed in the determination of the traditional two-point boundary value
problem for orbits, while the deficit of m is attributed to the conditions that
should be inferred because of the m-segmentation.

The addition of the (n+m) conditions is to be understood in the highest gen-
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erality, i.e., we should first of all understand that we can compute arbitrary
families of solutions; in the light of the current application we step down for the
application to the very special class of orbits that are periodic. In fact as we will
now show this is a rather trivial problem to define by restricting the previous
continuation problem (1.55), by adding the periodic boundary condition (n+ 1)
and m− 1 other conditions,

xm − x0 = 0,

T − (T1 + T2 + . . .+ Tm) = 0,

h1(xi, Ti, λ) = 0,

h2(xi, Ti, λ) = 0,

...

hm−1(xi, Ti, λ) = 0,

(1.56)

where each hi is a scalar function and by (xi, Ti, λ) we mean all variables and
parameters may be used as input. With the addition of the (n+m) equations
the continuation problem has one free parameter left, hence given an initial
solution the problem is a one-parameter continuation problem. Usually, the hi
scalar functions are used in a very obvious way to define the segments, e.g., for
smooth periodic orbits hi could define Ti directly. In piecewise smooth systems
some terminology has been introduced; hi’s are known as event functions, and
the zeros of these functions determine event surfaces; gi’s are known as jump
functions, that act on the end points of segments. Segments are defined in
between events, or more precisely they start where the jump map leaves it and
ends when it terminates on an event surface, i.e., the first segment is from x0

to event h1, the second segment is from x1 to event h2, etc..

For the purposes of bifurcation analysis it is of course still crucial to have a
measure of linear stability. In Section 1.4.3 we described the linear stability
analysis associated with trajectories in smooth systems and for single-segment
orbits; for multi-segment orbits in smooth systems the stability considerations
transfer by the group properties of the flow, e.g., observe the evolution of the
perturbation in a two-segment decomposition where T = T1 + T2,

vT = v2 = X(T2)v1 = X(T2)X(T1)v0 = X(T )v0. (1.57)

It is more technical to get the similar result for the evolution of families of
perturbations in the non-smooth setting. In Equation (1.42) we introduced the
family of perturbations with solutions defined by x = x(t, ε) = φ(t,x(0, ε)); now
consider the equation of a family of segments that impact upon the event surface
at time Tj(ε) parameterized by the perturbation,

xj0(ε) = gj(φj(Tj(ε),x
j−1
0 (ε))), (1.58)
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where we used x0(ε) = x(0, ε) and superscript j denotes the segment number.
The existence of the unique parameterization Tj(ε) can be shown via the implicit
function theorem (see [DS13]) under the condition that the orbit intersects the
corresponding event surface transversally. In such a case we may obtain the
following relation that describe the linear stability of the trajectory in the non-
smooth setting10,

vj+1 =
∂gj
∂x
·
(
Id − f ·Dh

Dh · f

)
·Xj

∣∣∣
ε=0
· vj = Mj · vj , (1.59)

where Xj is the linearized flow on the jth segment for the orbit x(t, 0) and

vj =
∂x0
j

∂ε

∣∣
ε=0

, i.e., we have obtained the evolution of the family of perturbations
over a segment, event surface and jump discontinuity and call define the map
as Mj . For a periodic orbit the stability is determined by the multipliers of M
in the following composition,

vm = Mm ·Mm−1 · . . . ·M2 ·M1v0 = Mv0. (1.60)

The trivial multiplier corresponding to the tangent of the periodic orbit is shifted
to 0 in this setting.

This short introduction only scratches upon the developed theory for non-
smooth dynamical systems. For the encoding of such problems we recommend
[DS13]; the current section was mainly inspired by the presentation in that book.
The theoretical basis of such dynamical systems is still under development, and
readers with further interest may look in, e.g., [BBCK07] for a recent overview.

10It takes a bit of work to get to this result and it is not particularly enlightening since
we already described the linear stability of trajectories in the smooth setting. However, it is
important to realize that DhR1×n is normal to the event surface since it is the gradient of
h and the geometric interpretation of the product Dh · f 6= 0 is that it is a transversality
condition on the trajectories.
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1.5 The skeleton of a dynamical system

In the previous sections we focussed on the geometric structure of families of so-
lutions as model parameters are varied; special focus was on equilibrium points
and periodic orbits. The bifurcation analysis of these two latter provides us
with crucial knowledge, e.g., it may be used to make decisions on design con-
siderations in applications, in order to take advantage of nonlinear phenomena
or avoid unwanted critical behavior. While this analysis is necessary to get a
clear understanding of a dynamical system it also has a soft spot; it is localized
to a very small part of phase space, i.e., a small sphere around the fixed point
or a tubular neighborhood of the periodic orbits. In many situations we must
expand these neighborhoods considerably to explain the significance of certain
complicated phenomena.

Bifurcation analysis of equilibrium points and periodic orbits is only part of the
understanding of dynamical systems, other orbits are of significant importance
to the structure, e.g., homoclinic orbits. As an example consider the unforced
vertical pendulum (without damping) and associate it to the natural description
with a cylindrical phase space (R × S1) attributed to the angular velocity and
the angle; the pendulum has two equilibrium points, the two vertical positions,
where one is a saddle and the other is a center. By energy considerations it
can be shown that there are two homoclinic orbits/connections for the saddle
point, and these two homoclinic orbits corresponds to the exact energy level at
which periodic solutions have infinite period and ’collide’ with the saddle. In the
interior region bounded by the homoclinics the periodic solutions librate around
the center, i.e., they are small oscillations that do only librate around the center
equilibrium; the region exterior to the homoclinics are periodic solutions that do
complete turns of the pendulum. This is perhaps one of the simplest examples
for explaining that the organizing centers of dynamical systems may be more
special objects than fixed points and periodic orbits; although, admittedly, as
we can also conclude in this case, there may be intimate connections between
the fixed points/periodic orbits and the special objects (homoclinics).

In the pendulum example everything is quite understandable mainly since the
complexity of the bounded asymptotic behavior, for smooth systems in the
plane, is restricted to fixed points and periodic orbits; there can not be more
complicated types of attractors. Furthermore, in a two-dimensional system or-
bits are codimension-one manifolds and this means that simple orbits may sep-
arate and therefore organize phase space.

While the bifurcation analysis of periodic orbits and fixed points in higher-
dimensional dynamical systems is basically unchanged (cf. center manifold
or Lyapunov-Schmidt reduction), the organizational importance of special or-
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bits decrease significantly. This is basically attributed to the orbits being
codimension-(n− 1) in n-dimensional dynamical systems; the organizing struc-
ture/centers of higher-dimensional orbits is then related to the arbitrarily com-
plicated structure of, e.g., stable and unstable manifolds. In [Arn06] V.I. Arnold
remarks,

”Little is known about three-dimenisonal manifolds. For ex-
ample, it is unknown whether a compact simply-connected three-
dimensional manifold is diffeomorphic to the sphere S3 (the Poincaré
conjecture11) or even homeomorphic to it.
In large dimensions the differential and topological classifications of
manifolds diverge. . . ”

In that perspective caution should be taken with intuitive interpretations in
higher-dimensional geometry; in the context of dimension reduction, we may
understand it as a warning and an encouragement at the same time.

The organizing geometric structure of a dynamical system is sometimes referred
to as the skeleton, according to [BKK94] this is made up by all compact invariant
manifolds, e.g., fixed points, periodic orbits, tori and homoclinic connections; it
may make sense to add the global stable and unstable manifolds of these to this
set, e.g., the two-dimensional stable manifold in the Lorenz system [KOD+05].
It is the idea that if the complete skeleton is known then the qualitative behavior
of any orbit is known merely from its initial condition (cf. the pendulum and
the homoclinic orbits).

One of the main ambitions of the current work is focused towards the approxima-
tion of attracting low-dimensional submanifolds in dynamical systems with the
purpose of dimension reduction. In some sense, we aim to construct a reduced
representation of a relevant dynamical system while respecting the skeleton of
the original dynamical system. Formally, let S(λ) denote the skeleton of the
dynamical system where the dependence on λ represents the parameters of the
dynamical system; equivalently let Sred(λ) be the skeleton of the reduced model
which is defined on some subset of U ⊂ Rn. Then the ideal dimension reduction
is one where formally

S(λ)
∣∣∣
U

= Sred(λ). (1.61)

In general dynamical systems this equivalence is impossible to show, in fact, it
is already in general cases complicated (impossible) to show the equivalence for
fixed points which are the simplest constituent of the skeletons. For practical

11Meanwhile this has been proven by the russian mathematician Grigori Perelman.
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reasons we must therefore aim lower; a reasonable comparison is to compare as
much of the qualitative structure that is constructed, and this is also how we
test the dimension reduction of the nonlinear mechanical vibrations example in
Paper C.

In the following we shall describe some of the basic and relevant results of struc-
tural stability in dynamical systems in the very simplest cases; when we then
later apply stronger theorems without having accounted for the extra theoretical
details of the generalizations it is the ambition that the similarity between the
results may pave the way for some deeper understanding. In the end we do this
hoping that it may pave the way for a better understanding and appreciation of
the crucial differences between the presented approach to dimension reduction
that is taken in this work in comparison to other types of reductive methods.

1.5.1 Invariant manifolds of fixed points

Consider the following n-dimensional linear dynamical system,



ẋ
ẏ
ż


 =



S 0 0
0 U 0
0 0 C





x
y
z


 , (1.62)

where (x, y, z) ∈ Rk × Rl × Rm and n = k + l + m. S ∈ Rk×k, U ∈ Rl×l,
C ∈ Rm×m. The eigenvalues of S have negative real parts, U have positive real
parts and C have zero real parts. In this case we have exponential estimates on
the solutions x(t), y(t), i.e.,

||x(t, x0)|| = ||φs(t, x0)|| = ||etSx0|| ≤ Ke−at, t ≥ 0, (1.63)

||y(t, y0)|| = ||φu(t, y0)|| = ||etUy0|| ≤ Kebt, t ≤ 0, (1.64)

(1.65)

where a, b,K > 0 exist. Before we go on to the nonlinear case, it is worth
noting that we do not have this type of exponential estimates on the linear
subspace corresponding to the center subspace, i.e., the subspace corresponding
to nonhyperbolic eigenvalues has a less rigid structure and we understand that
the center subspace(/manifold) of this linear dynamical system is the only part
that we really need to analyze. For example, observe that if S,U,C are depen-
dent on model parameters then small parameter perturbations can only have a
qualitative effect on the center subspaces.

For nonlinear dynamical systems everything gets technically more difficult, where
linear systems have a whole hierarchy of unique invariant one- and two-dimensional
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subspaces, much of this structure is lost. Consider a small smooth perturbation
of Equation (1.66),



ẋ
ẏ
ż


 =



S 0 0
0 U 0
0 0 C





x
y
z


+ ε



F (x, y, z)
G(x, y, z)
H(x, y, z)


 , (1.66)

where F,G,H are smooth functions. While, as we already know, for hyper-
bolic fixed points the theorem of Hartman-Grobman tells us that the linearized
system is locally topologically conjugate to the nonlinear system, the question
of topological equivalence is very complicated for nonhyperbolic fixed points
and this is the subject of bifurcation theory that we touched upon in Section
1.3 and 1.4. In the nonhyperbolic case, the center manifold theorem (see e.g.,
[Wig03]) gives the existence of a local m-dimensional invariant manifold, called
the center manifold Wc(ξ), that is tangent to the linear center subspace at the
fixed point ξ, and solutions that are bounded in a certain neighborhood U of
ξ in either forward or reverse time, will asymptotically approach the W c(ξ).
Locally W c(ξ) is a graph over the center subspace, i.e., it may be represented
by smooth functions x = hs(z) and y = hu(z). This is perhaps the simplest
dimension reduction method that does not ignore the complications of model
reduction in nonlinear dynamical systems; in fact the dimension reduction that
is used in Paper C is very similar.

While the stable W s and unstable manifolds Wu are unique the center manifold
W c is non-unique, and this introduces some practical problems in the determi-
nation of hs and hu. Often there will be a continuum of center manifolds, and
this may be understood from the classical example due to Anosov in the paper
of Kelley [Kel67],

ẋ = x2,

ẏ = −y. (1.67)

In this example the local center manifold is

W c
β(0, 0) = {(x, y) : y = hs(x, β)}, (1.68)

where

hs(x, β) =

{
βe1/x x < 0,

0 x ≥ 0,
(1.69)

hence there is a family of center manifolds parameterized by β ∈ R. One of
the important conclusions from this example is that there is a continuum of
center manifolds all of which have the correct qualitative behavior in a neigh-
borhood of the origin. In applications, and in the approach of Paper C, this
non-uniqueness is common, there are more strategies to implicitly or explic-
itly pick one of the center manifolds; for the current example Chicone [Chi06,
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p. 340] has a good detailed description on making the center manifold unique
by modifying the vector field via particular smoothing functions, often called
bump or cut-off functions. Alternatively, depending on the problem at hand,
it may be good enough and therefore practical to take β = β∗, i.e., to pick the
center manifold W c

β∗(0, 0) = {(x, y) : y = hs(x, β∗)}. The modification of the
boundary is necessary via the approach taken in [Chi06], because of a global
Lipschitz condition on the vector field; such modifications are often used when
proving local results.

Two common methods of proof that rely on fixed point mappings are the
Lyapunov-Perron (see e.g. [Chi06, Chap. 4]) method and the graph transfor-
mation method (see e.g. [SFLC87, Chap. 5]); while the former is of more ana-
lytical flavor via the variation-of-constants integral equations, the latter has an
appealing geometric nature.

Using these constructive proofs one may approximate the center manifolds and
reduce the dynamical system to the m-dimensional dynamical system,

ż = Cz + εH(hs(z), hu(z), z), (1.70)

where we used x = hs(z) and y = hu(z); we remark that hs and hu satisfies the
invariance conditions associated to the equations in x and y. We did not add
parameter dependencies in these equations because they may be assumed to be
included in the center subspace since a parameter λ can be added by λ̇ = 0.

It should be noted that it is not necessary for the eigenspectrum of C to have
real part zero, the criterion is more general, the real parts of the eigenspectrum
corresponding to both S and U must be larger in absolute value than any real
part in the C; this condition is similar to the condition of normal hyperbolicity
in Paper C. In fact it is particularly important to note that this gap in the
eigenspectrum between the center space and the unstable/stable spaces is crucial
to the type of dimension reduction that we apply, this gap is the so-called
spectral gap. We will apply generalizations of the center manifold theorem for
more complicated sets in Paper C, but the idea is very much the same; e.g. the
breakdown of a generalized spectral gap (generalized Lyapunov-type numbers)
for the so-called normally hyperbolic invariant manifold, implies a bifurcation
of the normally hyperbolic invariant manifold.



30 Introduction



Chapter 2

Modelling and analysis of a
forced impacting beam —

theory and comparison with
an experiment.

This chapter is concerned with the mathematical modelling and analysis of
a vibro-impacting beam experiment [BSS+13]. The experiment is part of a
collaborative research project at the Technical University of Denmark (DTU)
between the Department of Applied Mathematics and Computer Science (for-
merly Department of Mathematics) and the Department of Mechanical Engi-
neering. The project is focused on control-based continuation in experiments
[SK08][SGBN+08][BSS+13]. Control-based continuation is a method that al-
lows the continuation of families of special solutions in experiments; it is the
experimental equivalent to numerical continuation and bifurcation analysis in
dynamical systems. The experimental continuation is applied to branches of sta-
ble and unstable periodic solutions. The experimental setup is shown in Figure
2.1.
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Figure 2.1: The vibro-impacting beam experiment. The vibrating beam is the
steel ruler which is clamped and mounted on the base structure in the middle.
The mechanical stops are approximately at the half length. The lumped mass
point is surrounded by the magnetic controllers which are used for the control-
based continuation. The displacement of the base structure is measured by the
top laser and the displacement of the beam by the bottom laser. The shaker is
the black box on the left. See [BSS+13] for more details. Photo [Bur].
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The contribution of the thesis to the project was focused on the development
of a low-dimensional model (one degree of freedom). The objective behind the
modelling project was to increase the understanding of the mechanical system
and to create a basis for doing preliminary testing of ideas on a computer rather
than in the lab.

As the model was shown to perform well a secondary study was initialized with
the additional inclusion of Viktor Avrutin; the objective of this study was an
exploration of phase and parameter space in a quest to find special solution
branches disconnected from the 1:1 resonance component.

The current chapter is structured as follows: in Section 2.1 we introduce Paper
A which amongst other topics is concerned with the derivation of the vibro-
impact model of the experimental setup and some analysis of the 1:1 nonlinear
resonance tongue; in Section 2.2 the analysis of the model is expanded to a
larger parameter regime where we show the existence of isolas of subharmonic
orbits; in Section 2.3 we give an account of how certain decisions were and can
be substantiated in the mathematical modelling process. In addition, future
directions on the modelling task are discussed.

We remark that the current chapter and Paper A deals with most of the theory
that was described in Chapter 1.

2.1 Introduction to Paper A

Paper A may be decomposed into four smaller parts:

1. Derivation of a minimalistic mathematical model of the experimental setup

2. Smoothing of the non-smooth dynamical system

3. Bifurcation analysis of the smoothing and the forcing amplitude/frequency

4. Comparison with experimental data adapted from [BSS+13]

The mathematical modelling and analysis of vibro-impacting systems is far from
complete, there is not ’one model to rule them all’, many choices are non-unique
and models with good predictive quality may be very different. Inspired by
[MS83][Sha85] we derive the low-dimensional model description via Galerkin’s
principle, with a twist though since we only formally use the principle to get
the structure of the dynamical system and some useful information to estimate
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system parameters. Note that from a continuum physics point of view the
governing equation of this system is a nonlinear PDE. In fact, we assume it to
be described by a piecewise defined PDE.

While the derivation was most naturally done in the framework of a piecewise
defined description, the impacts of the beam with the mechanical stops are not
hard impacts (infinite stiffness) because the beam is rather flexible when im-
pacting upon the mechanical stops. For this reason we construct a smooth de-
scription by smoothing the piecewise defined dynamical system using a smooth
one-parameter switching function. The bifurcation structure showed an interest-
ing dependence on the smoothing parameter and this was analyzed in depth such
as to make sure that the smoothing did not have an unwanted effect. Rather
than viewing the smoothing procedure as a means to approximate a non-smooth
system it should be viewed as an alternative description of an impact process.

In the remaining parts of the paper we perform numerical bifurcation analysis
in one and two parameters. The results are compared with an experimental
data set from [BSS+13].

Now we refer the reader to Paper A in the Appendix.

2.2 Model-Exploration: Isolas and their experi-
mental verification

In a subsequent study the solution structure of the derived impact model (Pa-
per A) was further investigated in a search for special solutions primarily in
parameter regimes away from the 1:1 resonance. This study was initialized in
collaboration with Viktor Avrutin, where phase space was scanned for special
solutions in specified parameter regions. In this systematic scan of phase and
parameter space, we considered parameter variations of the forcing amplitude I
and the forcing frequency Ω; we consider the same two parameters as in Paper
A as a consequence of the experimental setup, i.e., these two parameters are the
free parameters for practical investigations in the experimental setup. The the-
ory provided in Section 1.4.4 is relevant in order to understand certain details in
the current section. We shall present the study in three subsections; in Section
2.2.1 we present some of the results of the scans of parameter and phase space;
in Section 2.2.2 we present some results of the numerical bifurcation analysis of
the periodic orbits in the piecewise smooth setting; in Section 2.2.3 the results
are compared to experimental measurements.
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2.2.1 Scans of parameter and phase space

In the previous discussions we have seen the occurrence of multiple solutions
co-existing, e.g., for the 1:1 nonlinear resonance tongue in Paper A we observed
two stable periodic orbits and one unstable periodic orbit in a parameter region
of forcing frequency and forcing amplitude; this type of multi-stability emerging
from fold points is amongst the simplest and this type of nonlinear resonance
tongue is well-known in this type of dynamical system. From a technical point
of view they are often easy to find because they are on the same connected
component as the small amplitude linear solutions. Since continuation methods
are based on path-following we can only trace out the connected component that
we initialize our continuation analysis on. The components of the bifurcation
diagram that we shall construct next are disconnected from the branch of trivial
small amplitude solutions, but first we describe how the orbits were found.

When we search for periodic solutions that are disconnected from the trivial
small amplitude periodic solutions in phase space one strategy is forward inte-
gration of initial conditions. Disregard the parameter variation for a moment
and consider the task of scanning for periodic solutions in a general dynamical
system,

ẋ = f(x), f : Rn → Rn. (2.1)

The complexity of a scan for periodic solutions grows in a computationally very
unattractive way with the phase space dimension, e.g., if we scan an n-cube ⊂
Rn which is composed of m points in each dimension then we must integrate
mn initial conditions, therefore it is implied that such scans are only realistic in
systems where it makes sense to scan very few dimensions.

In the present case the dynamical system is defined as follows,

ẋ = f(x),

θ̇ = 1,
(2.2)

where (x, θ) ∈ R2 × S1 and the introduction of the phase variable θ made the
system autonomous, in fact, the periodic forcing immediately implies that the
search for periodic orbits x(t) = x(t+ kT ) where k is an integer and T = 2π/Ω
is reduced to scanning in x ∈ R2 and checking the periodicity condition. This
is because the periodic forcing defines a trivial global transversal1 to the flow
which can be used as a global Poincaré section. The scans may then be repeated
for various parameter sets. The parameter scans were performed using AnT
[ALS+03].

1This is a codimension-one manifold which any trajectory intersects transversally.
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At low forcing frequencies and forcing amplitudes (I < 0.25), i.e., in the neigh-
borhood of the 1:1 nonlinear resonance tongue, parameter scans were performed
and these indicated no special solutions except for the ones associated with the
tongue (cf. Paper A, Figure 13).

While planning the scans there was an implicit constraint, namely, that we were
limited to the low end of forcing amplitudes and forcing frequencies because of
limitations due to the shaker in the actual experiment. In this context it should
perhaps be noted that the shaker force Fshaker is proportional to the forcing
amplitude I and the square of the forcing frequency Ω, i.e., Fshaker ∝ IΩ2.

The next region to scan, away from the 1:1 resonance, are for frequencies larger
than three times the fundamental frequency of the beam; note that this is al-
ready a much more demanding task for the shaker. In Figures 2.2a-2.2c some
scans are shown for a range of Ω ∈ [3, 5] and I = 0.08, I = 0.09 and I = 0.10; the
scans show what looks like isolas of special solutions and branch points. Note
how the apparent limit set structure changes quite radically over a reasonably
small change in forcing amplitude, this sensitivity and the overall occurrence of
several branches indicate a rich and complicated structure.

We remark that the harmonically forced impact oscillator with symmetric me-
chanical stops, may be expected to share much qualitative behavior with the
standard Duffing equation because they share the same overall structure; the
damping is identical, stiffness is similar (same symmetry) and they are harmon-
ically excited. These relations make it reasonable to hypothesize the existence
of subharmonic solutions. In particular it may be expected that it is possible
to find 1:3-subharmonic orbits, see e.g., [NM95, chap.4] for some practical per-
turbation calculations for subharmonics in systems with cubic nonlinearities.
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(a)

(b)

(c)

Figure 2.2: Scans for periodic orbits of the impact oscillator (α = 5.9, ξ = 0.03,
β = 0.885 and ν = 1 cf. Paper A): Panel (a) scans with forcing amplitude
I = 0.08, Panel (b) forcing amplitude I = 0.09 and Panel (c) forcing amplitude
I = 0.10. [AE]
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2.2.2 Preliminary numerical bifurcation analysis of two
isolas of subharmonic orbits

Subsequently, bifurcation analysis was initialized, this time the bifurcation ana-
lysis was performed on the non-smooth dynamical system using the CoCo soft-
ware package [DS] and the hspo2 toolbox. In Section 1.4.4 we described the
formulation of multisegment orbits, such as those that we encounter in non-
smooth systems; a further discussion of the details and differences that emerge
as the regularity of a dynamical system decreases can be very complicated be-
cause the traditional bifurcation analysis relies on smoothness of the solution
sets.

In addition to Section 1.4.4 we shortly introduce the concept of orbit signatures
by example of the signature of the 1:1 orbit. In Figure 2.3 we see the explicit
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Figure 2.3: Multisegmentation of a 1:1 periodic orbit; the orbit is split into five
segments, each segment is defined by Mode, Event, Reset. The thick dashed
gray lines indicate the mechanical stops. The model parameters are ξ = 0.03,
β = 0.9, α = 5.9, I = 0.1, ν = 1 and Ω = 5.

orbit segmentation; the Mode of a segment is determined by the condition that
|x1| > 1 is in the ’contact’ mode and |x1| < 1 is in the ’free’ mode; furthermore
the thick dashed grey vertical lines indicate the mechanical stops. In Table 2.1
the signature of the orbit is given; each segment has a signature that defines it,
the h scalar functions from Equation (1.56) are defined by the ’Event’ and the
g functions are defined by the ’Reset’. As an example segment I has the fol-
lowing interpretation; ’contact’ implies that the orbit must satisfy the piecewise
defined dynamical system for |x1| > 1, when the segment intersects the ’right’
mechanical stop the segment terminates and the ’impact’ reset is particularly

2hspo is an abbreviation for Hybrid System Periodic Orbit.
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Segment I II III IV V
Mode contact free contact free contact
Event right left left right vzero
Reset impact impact impact impact phase

Table 2.1: Signature for the periodic orbit shown in Figure 2.3.

simple in the current case because it is the identity. Each segment starts where
the previous segment terminates after its reset, hence segment V starts at the
right mechanical stop and terminates when the velocity is zero and then the
phase variable is reset to zero. Note that the signature for orbits is non-unique.
For details on the encoding of such problems consult, e.g., [DS13].

As we remarked in the previous section the scans that were performed with AnT
indicated a very rich bifurcation structure; in such cases numerical continuation
and bifurcation analysis is by far the best tool to investigate, understand and
map the qualitative and quantitative behavior of the dynamical system. In
Figure 2.4 we have computed a bifurcation diagram for I = 0.08 (cf. Figure
2.2(a)); the big isola (3 < Ω < 7) consists of 1:3 subharmonic orbits3 and
for this forcing amplitude it does not contain any branch points; in the lower
frequency range, 3 < Ω < 4, we see the occurrence of a smaller isola and this
consists of many different subharmonic orbits. In Figure 2.4(b) we focus on
this smaller isola which shows branch points and period-doubling bifurcations;
the largest component of the small isola consists of 3:9 subharmonic orbits and
then a period-doubling cascade seems to start at Ω ≈ 3.5, period-doubling
points are detected at Ω = {3.4920, 3.4849, 3.4835}, however these are not shown
in the current figures. We remark that the period-doubling bifurcations are
supercritical so at these points a branch of unstable periodic orbits continue
such that we expect many co-existing unstable orbits for e.g. Ω = 3.25.4 Note
that branch points are not a generic phenomenon in dynamical systems, in the
present system they occur as a consequence of the symmetry, perturbations that
do not preserve the symmetry will destroy the branch points.

3The identification of periodic orbits by the notation m:n in our case is not entirely unique
and deserves a short explanation. It is used to denote an orbit that is periodic with n-times
the period of the forcing and it makes m oscillations.

4It may be interesting to remark that the three period-doubling points Ω =
{3.4920, 3.4849, 3.4835} give (Ωpd1 −Ωpd2)/(Ωpd2 −Ωpd3) = 5.0714, and there is a universal
number called Feigenbaum’s constant cFeig = 4.669 . . . that the ratio of the period-doubling
bifurcations might approach, i.e., (Ωpdi−1 − Ωpdi)/(Ωpdi − Ωpdi+1)→ cFeig for i→∞.



40 Modelling and analysis of a forced impacting beam

3 4 5 6
1

2.5

4

5.5

1:3

3:9

(a)

3 3.25 3.5 3.75 4

1

1.2

1.4

3.5

1:3

3:9 'FP''BP'

'FP'

'PD'

'FP'

'BP'

'PD'

(b)

Figure 2.4: Numerical continuation results for subharmonic orbits at Ω ≥ 3:
Panel (a) shows the numerical bifurcation results obtained using CoCo; blue de-
notes stable, red unstable, ’PD’ period-doubling bifurcation, ’BP’ branch point,
’FP’ fold point. The branch type is identified by m:n. Panel (b) is a zoom. The
bifurcation diagram is constructed using ξ = 0.03, β = 0.9, α = 5.9, I = 0.08
and ν = 1.
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A more practical numerical remark concerned with the continuation of a period-
doubling cascade such as the one in Figure 2.4 is to realize that if the error
tolerance over the segments is to be kept constant then since the length of the
period-doubled orbit basically doubles this implies that the number of colloca-
tion points should also be doubled, i.e., the number of nonlinear equations to be
solved via Newtons method has growth proportional to 2k for the kth period dou-
bling in the cascade. Furthermore, since for every supercritical period-doubling
bifurcation a branch of unstable periodic orbits continues to the ’other’ side, cf.
Figure 2.4(b) Ω ∈ [3.10, 3.53], these branches of periodic orbits lie very close
to each other and it becomes more difficult to stay on a branch of (2kT )-orbits
since the signature fits all (2jT )-orbits with j ≤ k.
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2.2.3 Experimental verification and comparison of results

Based on the numerical evidence of a wide range of subharmonic orbits at three
times the fundamental frequency of the beam model, we took the numerical
results to the lab to verify that the subharmonics also existed in the physi-
cal experiment. In the experimental setup it is possible to mechanically shake
the system with perturbations of a certain amplitude, which was not sufficient.
We remark that brute-force numerical scans seemed to indicate that the basin
of attraction for the subharmonic orbits is very small, meaning that even if a
perturbation is large enough it was very likely to end up on the trivial stable
low-amplitude ’linear’ solution branch; the basin of attraction in the physi-
cal experiment shared this property but after some nudges with the hand the
experiment relaxed to a stable branch of 1:3 subharmonic orbits. Basic exper-
imental sweeps were conducted and a disconnected component was discovered.
Subsequently, attempts where made to perform continuation of the branches
of subharmonic orbits and while the control-based continuation in the experi-
ment had been performed successfully repeatedly at the nonlinear 1:1 resonance
tongue the isola of subharmonic orbits presented new challenges. Based on the
numerical investigations this is to be expected because of the rich bifurcation
structure; not only are branches of periodic solutions apparently close to each
other, but analysis indicates that there should be regions with many unstable
subharmonic orbits which the control-based continuation may detect.

The first report on the occurrence of the isola is presented in Paper B. The results
of the control-based continuation are shown in Figure 2.5(a) and compared to the
results of the mathematical model. We remark that the comparisons between
the mathematical model and the experimental results is only qualitative; the
shaker does not provide a perfect harmonic because it is weakly coupled to the
beam, and the amplitude of the forcing is not completely independent of the
forcing frequency.
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Figure 2.5: Experimental and numerical continuation results for subharmonic
orbits at Ω ≥ 3: Panel (a) shows the branches of subharmonic orbits found by
a parameter sweep and then two consecutive runs of control-based continuation
using different settings for both tolerances and step size; the + symbolize sweep
up and ◦ sweep down; the stability information of the continuation runs is
an interpolated measure, dark means stable and light means unstable. Panel
(b) is for structural comparison, it is identical to Figure 2.4(b) without zoom
boxes. The bifurcation diagram is constructed using ξ = 0.03, β = 0.9, α = 5.9,
I = 0.08 and ν = 1.
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The subharmonic orbits are predicted at the similar frequency range and the ex-
perimental results of the control-based continuation does indicate the existence
of multiple branches.

At least two things are crucial to note in Figure 2.5(a); firstly, at 26, 8Hz the
control-based continuation in the experiment terminates with an end-point event
’EP’, one explanation given in Paper B is that the branch terminates because
a shift in phase causes it to lose contact with the mechanical stop, another
explanation might be that the step size of the continuation run is to big to
detect the fold of an isola as that shown around Ω ≈ 3.9 in Figure 2.5(b).

Another observation is what looks like a branch switch around 26 Hz in Figure
2.5(a), the step size of the control-based continuation run is seemingly large
compared to the characteristic distance between branches and the radius of
curvature. This structure could be associated with the multiple branches that
are also observed in the numerical bifurcation analysis in Figure 2.5(b).

We remark that even if the different branches are not 1:3 subharmonic orbits
in the mathematical model, an explanation could be that other subharmonics
are within the tolerances that define a 1:3 subharmonic in the experiment, e.g.,
in an experiment it may be challenging to differentiate between 1:3 and 3:9
subharmonic orbits, unless the difference between the measured signals in an
L2 sense is sufficiently big relative to noise levels. (In the practical experiment
such a convergence check would amount to a squared difference between a small
number of Fourier coefficients). It is important to note that this is not a problem
of the control-based continuation methodology; it is only a property of the
experiment that the method is applied to. In the present case the control-based
continuation traces out much more structure than could ever be expected from
näıve brute-force scans in a lab.

We shall not go into the details of Paper B but only remark that it is concerned
with the problem of determining (quantifying) stability in the experiment and
the methods developed in the paper are based on the idea of finite-time Lya-
punov exponents and these exponents are intimately related to the idea of the
linear stability presented in Section 1.4.3. Remember that the linear stabil-
ity of a periodic orbit is central to the determination of bifurcation types in a
bifurcation analysis.

As a last remark it is important to acknowledge that while the model seems to
perform well at small amplitudes it is far from perfect and we shall not be overly
confident in the quality of the model, because it simply predicts 1:3 subharmonic
orbits, many ODEs of this type would do so. However, the mathematical model
has at least proven useful for the experimental work. In the following section
we shall discuss how to proceed.
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2.3 Discussions and future directions

During the project on the vibro-impacting beam, some small substructure
[BSS+13, Figure 14] was observed on the nonlinear 1:1 resonance tongue in the
experiment and this was not reproduced by the model. We started speculating
about what these could be, and what type of meaningful model extensions
would potentially explain this additional substructure. As a starting point it
is natural to assume that the derived model is an essential building block for
any low-dimensional model, i.e., while it does not predict the small additional
substructure in the investigated parameter regimes it performs quite well overall
for small amplitude orbits, e.g., in predicting the nonlinear resonance tongue and
the subharmonic isolas. Without screening for good and bad ideas for possible
explanations we list three examples, that are evaluated in the following.

1. Break the symmetry of the gap, i.e., the beam is off-centered between the
two mechanical stops

2. add a second axial mode, i.e., add the mode shape corresponding to the
second eigenfrequency

3. add a torsional mode to adjust for skew impacts, i.e., the case where the
beam impact line is not constant

1) The first point on the list is seemingly the easiest to dismiss; in the parameter
regimes of the 1:1 nonlinear resonance tongue the continuation and bifurcation
analysis did not detect any branching points that could be induced by the sym-
metry of the derived impact oscillator, in particular the nonlinear resonance
tongue shown in Paper A is structurally stable to perturbations; hence the bi-
furcation diagram would be robust with respect to an infinitesimal off-centering
of the beam. We remark that in the piecewise-linear system a break of the sym-
metry changes the grazing bifurcations; in the symmetric case the periodic orbit
grazes both mechanical stops at the grazing point bifurcation, in the symmetry-
broken case the periodic orbit grazes the closest one at the first grazing point
bifurcation. If there would be any difference between the smooth representation
and the non-smooth representation it should be insignificant from a practical
point of view.

Specifically, one may explain the expectation in a more practical manner. In the
non-smooth model description the stiffness of the beam changes in a piecewise-
linear manner, and the forcing changes discontinuously if ν 6= 0. Under the
assumption that the experiment is well described using the laws of physics of
continuous matter, then it is a very troubling idea that some forces must be
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modelled as non-smooth, e.g., force terms that change direction or strength
instantly.

In summary; the bifurcation structure of the nonlinear resonance tongue in
Paper A is stable in the smooth description with respect to perturbations, since
fold points and hyperbolic periodic orbits persist under small perturbations, it
follows immediately that breaking the symmetry of the gap in the considered
parameter regimes may be dismissed without further testing.

2) The addition of extra degrees of freedom from other bending modes, i.e.,
specifically the mode shape corresponding to the second eigenfrequency in the
transverse vibrations and the first torsional mode are evaluated. The strategy is
to estimate the characteristic time scales and amplitudes of these extra modes
in order to assess how likely they are to explain the effects. The word ’likely’
is used to express that this type of analysis is heuristic, because it is based
dimensional analysis and scaling.

The periodic orbits at the 1:1 resonance undergo two impacts per cycle, this
implies that the characteristic time between impacts Timpact is half the period
T ,

Timpact =
1

2
T =

π

Ω
, (2.3)

where Ω is the frequency of the forcing.

In order to come up with estimates from linear analysis or even simple scalings
from dimensional analysis, it is an advantage to be able to formulate the prob-
lems mathematically. The formulation for the free vibrations of a cantilever
beam with a concentrated mass at the end point and formally it writes as the
follows,

EI
∂4u

∂z4
+ ρA

∂2u

∂t2
+ δ(z − L)md

∂2u

∂t2
= 0, (2.4)

u(0) =
∂u

∂z
(0) =

∂2u

∂z2
(L) =

∂3u

∂z3
(L) = 0, (2.5)

where md is the concentrated mass at the end point5. The word ’formally’
is used to express that the equation, strictly speaking, does not make much
mathematical sense with the Dirac delta distribution in a strong form. In order
to solve such a system we may apply Galerkin’s method, which under certain
conditions converge to the weak solution of the problem, e.g., choice of function
space. Currently we are interested in the eigenfrequencies of the free vibrations
in the system, and these may be determined by standard calculations (see e.g.

5Note that we use L as the distance to the mass point for simplicity.
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[Mei01, Chap. 8]). The eigenfrequencies of the system can be determined from
the following equation from [Mei01],

− cos γ − cosh γ − sin γ + sinh γ

cos γ + cosh γ
(sin γ − sinh γ) (2.6)

+
md

ρbL
γ

(
sin γ − sinh γ − sin γ + sinh γ

cos γ + cosh γ
(cos γ − cosh γ)

)
= 0,

where γ4 = ω2ρbL
4/EI; ρb is the mass density of the beam per unit length.

Numerically, we find the two first eigenfrequencies γ1 = 0.77 and γ2 = 3.94, and
from this we may calculate the eigenfrequencies

fi = 2πωi = 2π

√
EIγ4

i

ρbL4
. (2.7)

For the current discussion we need only evaluate the ratio between the first and
second eigenfrequency,

f2

f1
=

(
γ2

γ1

)2

≈ 26, (2.8)

and thus the second eigenmode oscillates roughly 26 times for every period
T1 = 1/f1, it would be an unusual explanation to go for the idea of a resonance
between such two modes. Another interesting observation in this context is to
consider the characteristic damping time of the second eigenmode in comparison
to the time between impacts; we can do this under the assumption that the
mechanical system is well characterized by a linear modal damping model. In
that case all perturbations of the nth eigenmode are modulated by exp(−ξωnt).
Now, since the beam is both in the free and the contact mode we assume that it is
half of the time in each. Furthermore, we assume that the second eigenfrequency
increase with the same ratio as the first eigenfrequency calculated in Paper A,
i.e., ω2,c = (1 + α)ω2 and the damping changes as ξc = (1 + β)ξ. In particular
this implies,

C = exp

(
−ξcω2,c

Timpact

2

)
· exp

(
−ξω2

Timpact

2

)
≈ 0.65, (2.9)

which means that the already small response amplitude A2 of the second eigen-
mode is reduced to A2(t + Timpact) = CA2(t) before it impacts again. Note
that the energy from the impact is not focused to the second mode, it is a
broad spectrum of higher frequencies that are excited and therefore we expect
a very low excitation amplitude of the second mode at the impact time. Argu-
ments based on the properties of damping in a model may be rightfully critized
because damping is phenomenological and there are many models [Adh00] to
choose from; so essentially it is a modelling decision. An interesting remark
is found in Bolotin [Bol64, ch. 15, § 61] in a short paragraph on damping, in
particular, about linear modal damping; we quote



48 Modelling and analysis of a forced impacting beam

”The supposition about the diagonal form of matrix ε [damping
matrix] is equivalent to the assumption that there is no transfer of
energy between principal forms of vibrations by the resistance forces.
Experiments performed on a sufficiently wide class of systems show
that this assumption is plausible . . . Even if matrix ε is not diagonal,
then it can be easily shown that the influence of the elements outside
of the principal diagonal, on the damping of free vibrations is very
small.”

Principal forms refer to modal forms and the ε is the damping matrix. Further-
more, in impacting systems it is even less transparent how to apply damping,
in some cases modellers enforce restitution laws to model the inelastic effects
associated with mechanical impacts. In [BBCK07, Chap. 9] the high-frequency
noise from impact oscillators is discussed together with some of the difficulties
connected to this. We dismiss the idea that it could be a second eigenmode.

3) We consider now if the addition of a torsional mode, supposedly excited by
small out-of-plane bending of the beam, can explain the resonance. The PDE
governing small torsional vibrations with a mass at the end point is the wave
equation [LL86]

ρI
∂2θ

∂t2
− Cb

∂2θ

∂z2
= 0, (2.10)

ρI = mdIdδ(x− L) + ρbIb, (2.11)

where θ is the relative angular change between cross sections along the centroid
of the beam, θ is the torsion angle, Cb torsional rigidity of the beam and ρb beam
density per unit length, Ib is the polar moment of inertia6, md is the lumped
mass and Id is the polar moment of inertia of the lumped mass.

The analysis of the torsional mode can be simplified quite a lot by a few rea-
sonable assumptions,

∂θ

∂z
L� 1, (2.12)

θ ∝ z, (2.13)

and the beam length L is further assumed constant. Essentially, this setup
means that we only pay the price for the strain connected with rotating rigid

6The polar moment of inertia is Ib =
∫

(x2 + y2) dA where A is the cross section of the
beam. Note that Cb is not always possible to look up, it depends very much on the geometry
of the beam. Landau [LL86] has a particularly good discussion of the fundamentals of torsion
in rods.
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cross sections very little relative to each other. One can show that the potential
energy U of this deformation is given as,

U =

∫ L

0

1

2
Cb

(
∂θ

∂z

)2

dz, (2.14)

and the kinetic energy of the beam Tb,

Tb =

∫ L

0

1

2
ρbIb

(
∂θ

∂t

)2

dz, (2.15)

and the kinetic energy of the mass considered as a disc Td,

Td =
1

2
mdId

(
∂θ

∂t

)2

z=L

, (2.16)

where Id is the polar moment of inertia of the lumped mass md. The funda-
mental frequency of the torsional mode can then be found by letting7

θ(z, t) = A cos(ωt+ φ)z/L, (2.17)

such that an energy balance8 of kinetic and potential energy (Rayleigh-Ritz
method [CH53]) may be used to obtain,

ω2
torsion =

∫ L
0
Cb dz

∫ L
0
ρbIb(z/L)2 dz +mdIdL2

=
Cb/L

ρbLIb/3 +mdId
=

Cb/L

mbIb/3 +mdId
.

(2.18)

The torsional rigidity is non-trivial to obtain for general bodies and even for
beams it may be looked up in tables for different cross sections. For beams with
rectangular cross section where the width d is much smaller than thickness h,
one can obtain

Cb =
1

3
µdh3, h� d, (2.19)

Ib = 1/12 · (d3h+ dh3), (2.20)

Id = 1/12 · (d3
mhm + dmh

3
m), (2.21)

where µ is the Lamé second parameter, also known as the shear modulus or mod-
ulus of rigidity. Combining Equations (2.19) and (2.18) and µ = 77.2 · 109 Pa,
d = 2.5 · 10−2 m, h = 0.1 · 10−2 m, dm = 2.9 · 10−2 m, hm = 3.5 · 10−2 m,

7this is not the exact solution to the problem, but it is a good guess. (An exact solution
can be constructed if necessary, but there is no reason to do so).

8Energy balance and Rayleigh-Ritz method are great methods, but note that the approxi-
mation follows immediately from an application of Galerkin’s principle, and in such a case we
can easily handle lumped masses etc. without thinking too hard about the energy.
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md = 0.2116kg, ρb = 8 · 103 kg
m3 and L = 0.1275 m the fundamental frequency9

of the torsional vibrations is,

ftorsion = 2πωtorsion. (2.22)

In comparison to the fundamental frequency of the vibrations of the beam we
have,

ftorsion

f1
≈ 222, (2.23)

hence if the torsional damping is also approximated by linear modal damping
torsional effects are rendered insignificant.

Another explanation which was not given in the list is the reason we shortly
mentioned in the previous section, namely, that the shaker in the experiment
is coupled to the dynamics of the beam. This means that the shaker should be
added as an extra degree of freedom in the model. In [BSS+13] and Paper B the
observed system is not only the beam dynamics but rather the system composed
of the beam structure as well as the shaker. Since the small resonance bubble
is observed for impacting orbits with small amplitudes, it is probably not a bad
guess that the delay in the shaker control is approximately the same as the
length of the time-interval that the corresponding orbits spend from the time of
initial contact to the time at which the velocity changes direction. This was not
tested. As opposed to other additions the dynamics of the shaker is a bit more
difficult to add because the shaker does not come from the supplier with the
type of detailed information which is necessary for modelling the shaker as an
active degree of freedom. One possibility is to deduce a model of the shaker and
perform parameter fitting by using the experimental data. On another note, yet
another addition to the model could be the inclusion of a cubic nonlinearity in
the contact mode in case the response amplitudes of the beam get large enough
for this to be relevant.

With these comments on the minimalistic modelling of the vibro-impacting
beam with symmetric mechanical stops we will now turn to another type of
reduction; while this part of the thesis was focused on reduced models of a
mechanical experiment. Chapter 3 is focused on the reduction of a reference
high-dimensional dynamical systems to a low-dimensional dynamical system.
In the end of Paper C, we present an example (from [JPS05]) where a 25 dimen-
sional dynamical system is reduced to a 3-dimensional dynamical system, while,
so far as analysis shows, accurately preserving the skeleton and the quantitative
measures of the reference dynamical system.

9Note that we use L as the distance to the mass point for simplicity.



Chapter 3

Dimension reduction of
dissipative dynamical systems

Reductionism is concerned with the idea that the meaning of the ’whole’ is to be
understood via its smaller parts and their interrelations. While some claim that
this idea is essential to our understanding of life in general, others refuse this
idea; we shall not take part in such a debate but merely state the fact that the
scientific method is very useful. One of the basic ideas of the scientific method
is that in order to understand complex problems they should be broken into
smaller problems of which there is a deeper understanding of cause and effect.
Applied mathematicians and physicists approach problems very naively and try
to formulate them in mathematical models; as to the validity of the models,
in a real-world context, the ambition is often modest; the quote attributed to
George E.P. Box [BD07] expresses this quite well

Essentially, all models are wrong, but some are useful.

Mathematical modeling has already proofed extremely useful in many fields,
e.g., fluid dynamics, structural dynamics, electrodynamics, quantum mechanics
and many more.

While a recurring property of dynamical systems suitable for dimension reduc-
tion is the emergence of pattern and structure; the language of mathematics is
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suitable to describe precise details, the validity of approximations in modelling is
often restricted to convergence results in the limit where the finite-dimensional
approximations go to infinity because they must approximate an element of an
infinite-dimensional function space. For linear systems it is sometimes possible
to obtain global results, in such a way that reduced models may be constructed
with clear error bounds. In nonlinear systems, as we have seen in Chapter 1, the
story is much more complicated and interesting. There is a long history of clas-
sical results in dynamical systems, often driven by applications e.g. nonlinear
mechanics, that try to circumvent this property of mathematical formulations;
perturbation theory has been very successful in this context. However, it is
very important to understand that perturbation theory is essentially a theory
of how to use linear theory to extent knowledge of some known solution, equa-
tion, geometry — this is of course a simplified view, but it is a reminder of the
conservation of complexity.

It is this restriction to local analysis which prevents rigorous construction of
globally valid reduced models. In our work the construct falls in the category of
local analysis around an attracting subset of the high-dimensional phase space,
i.e., we limit our reduced model to a subspace for which a mathematical frame-
work exists. Another group of methods base the reduced models on statistical
observations, i.e., these methods ignore the apparent limitations of the theory of
dynamical systems, with the sole ambition to construct useful models. Clearly,
each approach has their advantages and disadvantages.

Next, we give a short overview of the main directions in reductive methods and
place them in a broader setting of reduction in mathematics; but before we do
that we define exactly what we mean with the term dimension reduction in the
current study. Consider the following,

Definition 3.1 An ideal dimension reduction of a dynamical system satisfies
the following
(a) reduction of phase space dimension,
(b) preservation of bifurcation structures,
(c) preservation of ω-limit set structure,
(d) preservation of the quantitative measures connected to (b)-(c).

Another way of stating this in a short and precise manner is that an ideal
dimension reduction preserves the skeleton and the quantitative measures of
the reference dynamical system. The addition of ’ideal ’ in the above definition
is used to underscore that dimension reduction may be useful without satisfying
all of (a)-(d). With the theoretical background of Chapter 1 the definition 3.1
should be self-explanatory, however, we note (c) is to account for special types
of attracting sets.
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3.1 An overview of some classes of reduction
methods

In the deterministic dynamical systems where reduction methods may be ap-
plied, the a priori assumption is often that the dynamics after short transients
are restricted to some low-dimensional attractors in phase space. The dynam-
ics on these attractors can be arbitrarily complicated, e.g., fixed points, peri-
odic/heteroclinic/homoclinic orbits, tori and chaos may be embedded.

The short transients are related to a more specific common denominator of the
different methods, i.e., the observation of time-scale separations paves the way
for the subsequent restriction to the slow time scale. Be aware that the choice of
formulation with slow and fast time scales is sometimes misleading, since more
time scales can be involved; as an example consider a solution to some linear
ODE, x(t) = x0 exp(αt) cos(ωt), it is evident that there are two time scales
determined by the dissipation parameter α > 0 and the frequency parameter
ω. This difference is more subtle than one may expect (cf. Section 1.5.1 where
the dissipative time scale sets the scene), in particular, the focus in the current
work is on reductive methods that rely on spectral gaps.

3.1.1 Geometric Singular Perturbation theory

There is a wide range of methods that are based on geometric singular perturba-
tion theory (GSP), see [Fen79]. The method is based on an extreme separation
of time scales in a dynamical system; consider the following system,

ẋ = f(x, y, ε),

εẏ = g(x, y, ε),
(3.1)

where ε ∈ R and f : Rk × Rn−k × R → Rk and g : Rk × Rn−k × R→ Rn−k
are assumed smooth. The perturbation problem is called singular because the
solutions change character in a singular manner with the parameter ε.

There are two expected time scales in the dynamical system (3.1), the evolution
of x is O(1) and y is O(1/ε). As ε approaches zero the spectral gap becomes
very large and in the limit where ε = 0, Equation (3.1) becomes,

ẋ = f(x, y, 0),

0 = g(x, y, 0).
(3.2)

The interpretation of this situation is that the ’dynamics’ of y is instantaneous
compared to that of x. Now assume that we are interested in the dynamics on
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a specific compact subset Kx ×Ky of phase space where

M0 = {(x, y) : g(x, y, 0) = 0 ∧ (x, y) ∈ Kx ×Ky ⊂ Rn}, (3.3)

and assume that on this set Dyg is regular such that, M0 = graph(h0) where
y = h0(x) for x ∈ Kx; subscripts in M0, h0 are used to underscore that ε = 0.
The construction of such zero sets was discussed in Chapter 1. In this case the
dimension reduction is immediate since the reduced system is restricted to the
k-dimensional compact manifold M0 with boundary, i.e.,

ẋ = f(x, h0(x), 0), (3.4)

where the dynamical system is then k-dimensional. We further assume that M0

is a normally hyperbolic manifold, for ε = 0 this amounts to demanding that
the eigenvalues of Dyg for all (x, y) ∈M0 are not on the imaginary axis.

Under these conditions and for sufficiently small ε > 0, [Fen79] there exists a
slow manifold Mε diffeomorphic to M0, locally invariant under Equation (3.1)
and it lies within O(ε) of M0. This also implies that Mε = graph(hε) where
y = hε(x) with x ∈ Kx. Note that just as with the center manifolds the slow
manifold Mε is not necessarily unique.

This result is very suitable for dimension reduction of dynamical systems with
small parameters that introduce large spectral gaps. In chemical reaction kinet-
ics several methods have close ties to GSP, e.g., computational singular pertur-
bation (CSP) [LG94], intrinsic low-dimensional manifold (ILDM) [MP92] and
an iterative method [RF90]. In [KK02] the asymptotic connections to GSP are
investigated for ILDM and the iterative method and in [ZKK04] the connection
is made for CSP.

From the point of view of practical applications GSP may be applied to a wide
range of problems, and in systems that clearly have time scale separation but
no explicit small parameters it is sometimes useful to temporarily to multiply
some terms (expected to be small) with an ε to the differential equation, do the
calculations and set ε = 1. It should be remarked that the slow manifolds may
still be practically useful even when ε is not small. However, this is application
specific.

From a numerical point of view these methods typically end up as a problem
of obtaining solutions to a sequence of nonlinear equations of dimension scal-
ing with the dimension of the fast variables y; and the sequence is of length
proportional to the order of the approximation.
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3.1.2 Linear projection methods

This category of reduction methods can be understood by linear algebra, and
by recollecting Section 1.2. Consider a dynamical system,

ẋ = f(x), (3.5)

where x ∈ Rn and f is the smooth function f : Rn → Rn. For simplicity let
φ1, . . . , φn be an orthonormal basis for Rn and consider x in this basis,

x(t) =

n∑

i=1

ai(t)φi. (3.6)

Furthermore, define the subspace Ur = span(φ1, . . . , φr) where 0 < r < n; a
dimension reduction based on linear projections is then the reduction to the
linear subspace Ur, i.e., the solutions xr(t) ∈ Ur. Explicitly we may write,

xr(t) =

r∑

i=1

ai(t)φi, where ai(t) = φTi x(t). (3.7)

Galerkin’s principle is then to force the residual of the dynamical system to be
in the orthogonal complement of Ur; this amounts to,

φTi (ẋr − f(xr)) = 0, for i = 1, . . . , r. (3.8)

letting a(t) ∈ Rr and defining the function f̃j(a) = φTj f(aiφi), where repeated
indices are summed, the reduced dynamical system is then,

ȧ = f̃(a), (3.9)

where f̃ : Rr → Rr. Observe that the linear projections have a very fun-
damental problem; as opposed to methods that reduce the dynamics to ap-
proximate invariant manifolds, linear projection methods completely disregard
the possibility of nonlinear interactions with the orthogonal complement U⊥r =
span(φr+1, . . . , φn) in Rn. This is very unfortunate and there is no easy way to
tell if the linear projections cut the skeleton of the dynamical system in a fatal
way.

A crucial step that we ignored initially is to comment on how the linear projec-
tions are chosen, i.e., how are the φi’s determined? When there is no natural
choice of subspace Ur based on the dynamical system a priori one way which has
proven useful is the following, see e.g., [RCM04][Row05][KGVB05]. Assume that
we have computed an ensemble of observations at discrete times {t1, . . . , tm}.
Define the data matrix,

X =
[
x(t1), x(t2), . . . , x(tm)

]
∈ Rn×m. (3.10)
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Each column represents an observation of a trajectory at some time in phase
space, note that since the system is autonomous the time-dependence is in some
sense arbitrary because this analysis is only based on spatial geometry. Now,
imagine that the m observations make up a point cloud in Rn, then we want to
find an r-dimensional hyperplane that approximates the point cloud best, i.e.,
where the sum of the distances to the hyperplane is minimal. This is a least
squares maximization problem,

maximize ‖ΦX‖2 , (3.11)

where Φ =
[
φ1, . . . , φr

]
; the r basis vectors in Φ that span the hyperplane

can be found, via e.g., principal component analysis (PCA), proper orthogonal
decomposition (POD) or the singular value decomposition (SVD).1

For completeness let us note that the rectangular matrix X may be represented
by its SVD,

X = USV T , (3.12)

where U ∈ Rn×n are the left singular vectors, S ∈ Rn×m is a diagonal matrix
of singular values (ordered highest to lowest), V ∈ Rm×m is the matrix of the
right singular vectors and the matrices U and V have orthonormal columns such
that,

UTU = I, (3.13)

V TV = I. (3.14)

The optimal r-dimensional hyperplane is spanned by the r first columns of U .

We remark that it is of course possible to consider a different weighted norm in
this process, i.e., this particular choice may depend of the dynamical system at
hand; nevertheless in nonlinear systems there is in general no reason to expect
that the covariance is a good measure for the representation of the skeleton of
the dynamical system, thus it is not a surprise that the method fails sometimes
although practically all the covariance is represented.

One of the direct advantages of the linear projection methods is that they are
simple and still have the potential to work efficiently in very high-dimensional
systems.

1In statistics when X is centered the matrix 1
n
XXT is known as the covariance matrix,

hence the choice of Φ is chosen such that it maximizes covariance.
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3.1.3 Nonlinear normal modes

The method of nonlinear normal modes (NNM) has proven very useful in a
multitude of applications and the method seems to be the most popular choice
for dimension reduction in the nonlinear mechanics communities, see e.g., the
recent review [AM13]. NNMs are not clearly fixed to one definition in the
mathematical sense, for example, one definition due to Rosenberg is for NNMs
in conservative systems, vibration in unison, and this is not necessary for the
NNMs found via the invariant manifold approach due to Shaw and Pierre [SP91];
we shall disregard this ambiguity and instead only consider the latter in the
context of dissipative/non-conservative systems.

As noted in [SP93] the mathematical construct of nonlinear normal modes via
the invariant manifold approach is inspired by the corresponding theory of in-
variant manifolds in dynamical systems. A particularly important theory is the
center manifold theory (generalized to sets) or the theory developed by Fenichel
[Fen71] for normally hyperbolic invariant manifolds, and quite possibly related
perturbation results even earlier. Typically, since the method is developed for
mechanical vibration problems, the considered dynamical systems are stated in
second-order form,

Mẍ+ Cẋ+Kẋ = εf(x, ẋ, t), (3.15)

where x ∈ Rn, M,C,K ∈ Rn×n and f : Rn×Rn×R→ Rn. ODEs of this format
are often obtained after numerical discretizations of PDEs based on Newton’s
or Euler’s laws (cf. Appendix E); the spatial dependencies are included in the
structure of the mass, damping and stiffness matrices. Note that, in some cases
Equation (3.15) is not general enough, i.e., f may depend on the acceleration
ẍ and this would make the ODE implicit. For simplicity of the argument, we
assume periodic time dependence and furthermore that a coordinate change
with transformation matrix V , x = V p and q = ṗ and the addition of time as an
explicit variable may lead to the following transformation of Equation (3.15),

ṗ = q,

q̇ = −Ω2p− 2ξΩq + εf̃(p, q, θ),

θ̇ = 1,

(3.16)

where ξ > 0, ε ∈ R, p, q ∈ Rn, θ ∈ S1, Ω ∈ Rn×n is a positive-definite diagonal
matrix (ordered 0 < ω1 ≤ ω2 ≤ . . . ≤ ωn where ωi := Ωii) and f̃ : Rn×Rn×S1 →
Rn. This form is referred to as the modal form, and the damping is linear
modal damping; setting ε = 0 and disregarding the periodic coordinate θ the
eigenvalues of the origin are λk = −ξωk ± iωk

√
1− ξ2; consequently the origin

is a hyperbolic asymptotically stable fixed point.

Letting ε 6= 0 the system becomes forced and the idea of the construction of
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NNM is then to choose a master mode, e.g., the first degree of freedom p1, q1

and let all other degrees of freedom be slaved to the master mode and θ, i.e.,

pi = Pi(p1, q1, θ),

qi = Qi(p1, q1, θ),
(3.17)

for i ∈ {2, 3, . . . , n}. This introduces the standard invariance equations by
plugging the relations (3.17) in Equation (3.16) and obtain,

D(p1,q1,θ)Pi ·



ṗ1

q̇1

θ̇


 = Qi,

D(p1,q1,θ)Qi ·



ṗ1

q̇1

θ̇


 = −Ω2Pi − 2ξΩQi + εf̃i(p, q, θ),

(3.18)

for i ∈ {2, 3, . . . , n}. In [JPS05] the coordinates of the master coordinates
are transformed to polar coordinates, i.e., we let (p1, q1) 7→ (r, φ); one of the
reasons for doing this is to pave the way for a simple marching type method
for constructing the invariant manifolds in intervals of r. We note that it is
not strictly necessary to construct the invariant manifolds locally and patch
them together, but this type of consideration of computational complexity is
of great importance for practical purposes of dimension reduction, see e.g., the
discussion in [PPS02]. Geometrically slices are matched to each other, e.g., if we
want the invariant manifolds on the domain (0, rend]×S1×S1 then the invariance
equation is first solved for (0,∆r] × S1 × S1 then (∆r, 2∆r] × S1 × S1 etc. N -
times rend = N∆r. They use a finite-dimensional function space V for each
slice composed of two linear basis functions in Nr = 2 and a Fourier/spectral
basis in the two angular coordinates composed by Nφ and Nθ functions, hence
the slaved modes are described by,

Pi(r, φ, θ) =

Nr∑

j=1

Nφ∑

k=1

Nθ∑

l=1

aijklRj(r)Φk(φ)Θl(θ),

Qi(r, φ, θ) =

Nr∑

j=1

Nφ∑

k=1

Nθ∑

l=1

bijklRj(r)Φk(φ)Θl(θ),

(3.19)

where a, b ∈ Rn×RNr ×RNφ×RNθ . This leaves 2(n−1) ·Nr ·Nφ ·Nθ unknowns
to be determined for each slice. In [JPS05] the Galerkin method is the chosen
approach to solve the invariance equation, hence the residual/defect of the ap-
proximation is forced out of the finite-dimensional approximating subspace V .2

2Our derivation here differs slightly, from that of the particular example in [JPS05] be-
cause the solution strategy in [JPS05] is adapted to take advantage of the nonlinearity being
independent of velocities.
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Explicitly, let X denote the domain (the slice)

∫

X


D(r,φ,θ)Pi ·



ṙ

φ̇

θ̇


−Qi


 ·RjΦkΘl dX = 0,

∫

X


D(r,φ,θ)Qi ·



ṙ

φ̇

θ̇


+ Ω2Pi + 2ξΩQi − εf̃i(p, q, θ)


 ·RjΦkΘl dX = 0,

for i = 2, 3, . . . , n and all Nr · Nφ · Nθ combinations of i, j, k. If the integrals
cannot be calculated analytically, then they are integrated via some suitable
(Gaussian) quadrature scheme. Alternatively the problem may be reformulated
slightly with Dirac delta weight functions such as to apply collocation. At this
stage a finite-dimensional set of coupled nonlinear equations has been obtained,
i.e., the invariant manifold problem is reduced to a zero-problem (cf. Chapter
1),

F (u) = 0, (3.20)

where u ∈ R2(n−1)·Nr·Nφ·Nθ represents the unknowns aijkl, bijkl.

A few extra remarks are in place. It seems in [PPS02], definitely in [JPS05],
that in the examples where the invariant manifolds are decomposed into smaller
parts the computation of slice of the invariant manifolds are computed indepen-
dently with respect to each other; while this has shown to work perfectly in a
wide range of problems, there are some details that should be mentioned. When
the invariant manifold is computed as one big piece, a solution it is necessar-
ily a connected compact manifold with boundary, however, unless3 boundary
conditions are prescribed on an initial hypersurface then there is a continuum
of invariant manifolds that solve the problem; consider e.g. the layer of trivial
’invariant manifolds’(/trajectories) ẋ = 1, ẏ = 0 or perhaps even more troubling
the example in [Kel67] which was discussed in Chapter 1 which shows that cen-
ter manifolds are non-unique even when satisfying the condition of tangency
at the origin. The non-uniqueness implies that if the manifolds are computed
in independent slices then collection of all slices is typically not going to be a
connected compact invariant manifold with boundary, however this can be ac-
counted for by stitching together slices through an averaging process. This is
done in [JPS05]. It may be interesting to test the NNM invariant manifold con-
struction by turning the method into a marching method, where the manifold
is continuously grown, in fact this would reduce the number of unknowns by a

3This discussion needs much more detail than is meaningful to include in this presentation,
however, readers that are more interested in nonlinear first-order PDEs (e.g. Equation (3.18))
may consult Evans [Eva10] for details on uniqueness, existence and the connection to the
prescribed boundary conditions (characteristic vs. noncharacteristic).
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at least factor of two and the approximated manifold would be constructed as
a continuous and piecewise smooth manifold.

In this method the complexity is determined by the number of coupled nonlinear
equations and as earlier mentioned this scales as 2(n−1) ·Nr ·Nφ ·Nθ, and if we
generalize it to k-dimensional invariant manifolds in n-dimensional dynamical
systems then it scales as (n− k) ·Nk where N is the number of basis functions
assumed to be the same in all independent variables. For manifolds with large
codimension (n − k) in Rn the method is challenged because it scales with
the codimension. However, the subdivision in r is already a good and quite
substantial reduction since Nk 7→ 2 ·Nk−1.

We shall discuss the different alternatives to the approximation of invariant
manifolds in more detail in Section 3.3.

3.2 Introduction to Paper C

While there exist many reductive methods most of them scale with the codi-
mension of the reduced manifold and others are sensitive to the structure of the
dynamics on and off the manifold. Amongst other things we address these two
problems by applying the theory of normally hyperbolic invariant manifolds, in
particular we apply an iterative method known as the graph transform. Pre-
viously, the graph transform has been applied primarily to manifolds without
boundary, such as tori and periodic orbits. In [BHV07] the graph transform is
applied to the construction of a two-dimensional manifold with boundary in a
chemical kinetics application of codimension one, i.e., it is a three-dimensional
dynamical system. In the current work we apply the graph transform to approx-
imate k-dimensional attracting invariant submanifolds of dissipative dynamical
systems which may also have a periodic time-dependence.

Paper C may be decomposed into five parts

1. Intro to the theory of normally hyperbolic invariant manifolds

2. Detailed description of the graph transform

3. Details of the numerical implementation

4. Dimension reduction of a problem from mechanics

5. Convergence study
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While the background theory presented in Chapter 1 was sufficient for a rel-
atively smooth entrance to Paper A, the topic of dimension reduction via the
theory of normally hyperbolic invariant manifolds (NHIMs) is more difficult.
The persistence theory of invariant manifold is generalized, but the intuition
from the center manifold reduction is valueable in the practical understanding.
We describe the graph transform in proper detail in the continuous case and
give a detailed description of how it may be implemented numerically.

The method is tested on a mechanical system taken from [JPS05] in which
dimension reduction is performed via the previously discussed NNM method of
Shaw and Pierre.

Finally we perform a small convergence study, where the linear convergence rate
of the graph transform is verified.

3.3 Discussions and future directions

In Paper C it was shown how one may apply the graph transform to approximate
attracting invariant k-dimensional submanifolds, and the example which the
method was tested on was an entirely positive test case. The violation of the
overflowing boundary condition indicated no problems for suitably chosen flow
time, i.e., flow times should be chosen such that the pre-image of the next iterate
is not much bigger than the domain over which the manifold is approximated;
or equivalently such that the pre-image is not too much outside the tubular
neighborhood of the previous iterate. Although the violation of the overflowing
boundary condition seems to be a mathematical problem and not a practical
issue it should be handled in a future work on the mathematical aspects of the
approach. Furthermore, subsequent to modifications of the boundary, the whole
(unique) theory of convergence of the graph transform must be satisfied.

As opposed to most other methods the graph transform is largely independent
of the dynamics on the manifold, and this makes it very robust compared to
marching type methods; this is related to the property of the graph transform
being a contraction mapping (under the hypotheses of Theorem 1 in Paper C).
At the same time this iterative property of the graph transform also opens the
possibility of a criterion for knowing wether or not a bifurcation has occurred
outside the manifold, i.e., the hypothesis on the generalized Lyapunov-type
numbers fails; this type of bifurcation criteria for a breakdown of the dimension
reduction or a reduced model is quite unique and may prove very useful as
it provides a clear measure wether or not the dimension reduction is valid in a
tubular neighborhood. In general the breakdown is associated with a bifurcation
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of the normally hyperbolic invariant manifold. In fact, for compact manifolds
without boundary, such as a periodic orbit or torus the equivalent loss of normal
hyperbolicity is a bifurcation parameter, see e.g., [BOV97],[Rei00].

As it was remarked also in Paper C the complexity of the graph transform
method is superior in complexity, because the Newton steps only needs to be
solved for many uncoupled k-dimensional problems; this also renders the method
trivially suitable for parallel computing. Most other methods have complexity
in their Newton steps that also scale with the codimension of the k-dimensional4

manifold, i.e., the number of slaved variables n− k.

Furthermore, the graph transform is conceptually simple to understand and
encode/implement numerically; this is even the case for general k-dimensional
manifolds. In comparison, marching methods or other covering methods are
often more complicated to implement for k > 3.

While there are quite a few advantages of using the graph transform method,
it has a main disadvantage; the convergence of the graph transform is linear
(see [Rei00],[BHV07]) and therefore it is crucially dependent on the spectral
gap or in other words how strong the normal attraction/contraction is. This is
an application-dependent property but it differs from, e.g., marching methods
which do not suffer from a small spectral gap.

Before we go on to discuss some of the general challenges and suggestions for
improvements in dimension reduction we conclude the discussion of the graph
transform with a remark on comparisons between dimension reduction meth-
ods. As it was argued above the graph transform has its advantages and dis-
advantages. The same applies for NNM, marching methods, linear projection
methods, GSP and so on; in particular each of these methods apply to certain
classes of problems, the question of wether or not a dimension reduction method
is good or bad is nonsense. Such a statement can only be meaningful if it is re-
lated to an application (dynamical system). An a priori determination of which
dimension reduction method to apply for a given application depends on the-
oretical and practical considerations; while the former is concerned with direct
assessments on properties of the system, the latter opens up for a different type
of constraints such as efficiency and precision.

Being based on mathematical theory, dimension reduction is only limited by
the abstract properties of the dynamical systems, the methods know no borders
between fields and have proven very useful in a multitude of applications; but
even if it has been successfully applied in many practical applications there
are some important limitations and challenges that seem difficult to overcome

4In the forced system it was even k − 1 because time is trivial.
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without compromises.

From a mathematical point of view the compromises introduce assumptions
that are difficult to substantiate. The first and foremost problem is that dimen-
sion reduction of general dynamical systems remains to be a local approxima-
tion, there exist no practical results for global dimension reduction. There is
a concept of global attractors called inertial manifolds. Inertial manifolds are
finite-dimensional manifolds embedded in an infinite-dimensional space where
all initial conditions converge to the inertial manifold exponentially fast, i.e., it
is a global attractor with exponential attraction rate. As an example, assume

the solutions of a PDE may be represented as u(t, x) =
∞∑
i=0

ci(t)wi(x) where wi’s

are an orthogonal basis for the Hilbert space H; we can imagine that if the PDE
has an inertial manifold then the idea is that there exist an n large enough such
that

ci = Φ(c1, c2, . . . , cn) + error, i > n (3.21)

where Φ is the function that determines the state of the ith mode i > n and
||error|| < C exp(−λt) and C, λ > 0. This principle is very reminiscent of
the reduction techniques that we already rely on in center manifold reduction,
λ is also related to a spectral gap condition. For certain PDEs the existence
of inertial manifolds may be proven, see e.g., [Rob01]. While the existence of
an inertial manifold is reassuring it is not practical; from [Tem97] we take the
following quote,

In many cases the dimension of the attractor A and thus the
number of required parameters is too large for existing computa-
tional resources.
For instance, in fluid mechanics the number of degrees of freedom
(dim A) is of the order of 109 in aeronautical and wind-tunnel ex-
periments, and up to order 1020 in geophysical flows (meteorology).

Here A is the global attractor. It is clear that these attractors are not what we
approximate; not even the reference/full models of aeronautical computational
fluid dynamics (CFD) problems would have this many degrees of freedom. For
practical purposes the ideas are then relaxed a lot and one may find papers that
consider the construction of so-called Approximate Inertial Manifolds (AIMs).
The AIM is constructed by a slaving principle that is very reminiscent of the ones
used in center manifold reduction and sometimes it is referred to as nonlinear
Galerkin; the method is practical but unless it is proven globally valid the name
AIM is a bit misleading.
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From a computational point of view two properties are particularly important
to consider for the reduction methods that are based on approximations of
attracting invariant submanifolds of high-dimensional phase space. Let n be the
dimension of the phase space and k the dimension of the supposed attracting
invariant submanifold; it is tempting to simply state that the minimal number
of nonlinear equations that needs to be solved for in the determination of the
submanifold scales with its codimension (n−k) by considering it as the problem
of determining the zero set of

F (x, y) = 0, (3.22)

where F : Rk×Rn−k → Rn−k is smooth. This type of scaling would be disquiet-
ing because the long term ambition is to be able to perform dimension reduction
of systems with truly large (n− k). A marching method of Guckenheimer and
Vladimirsky [GV04] is of this type and for low codimension it is fast, an example
is given for the approximation of the stable manifold of the hyperbolic equilib-
rium at the origin in the Lorenz system (i.e. a codimension one manifold). We
shall not discuss the method in detail but we note that marching methods are in
general sensitive to the dynamics (contraction/expansion) both on and off the
submanifold. As a trivial example consider the two-dimensional linear system
with a stable fixed point at the origin,

ẋ = −x,
εẏ = −y, (3.23)

where 0 < ε� 1. In this simple case the x-axis is an invariant manifold M and
any initial condition will approach it very fast ∝ exp(− 1

ε t). Marching methods
for calculating the invariant manifold M is then done by solving the invariance
equation setting y = h(x) with ∂xh(0) = 0,

εẏ = −y, ⇒ ∂xh =
1

ε
· y
x
. (3.24)

In this case it is clear that y = h(x) = 0 solves the problem, however consider
a discretized marching method where we initialize from the origin. If at some
step we are a little bit off the x-axis then the derivative explodes because ε is
very large. If on the other hand the x-axis was an unstable manifold, i.e., ẋ = x
then the scheme would be very stable.5 The Galerkin-based NNM reduction is
similarly done by expanding the slow manifold from the origin. At the same
time this has the opposite effect on the graph transform which actually only
converges faster as ε→ 0.

Another practical challenge is related to the representation of the invariant man-
ifolds. If we consider a meshgrid being a cube with m basis functions in each of

5In that case the x-axis would also be an overflowing normally hyperbolic invariant mani-
fold.
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the k dimensions of the manifold then mk is the number of k-dimensional bound-
ary value problems to be solved6; for the Galerkin-based NNM then as previously
mentioned each slice needs to solve a system of roughly (n− k) · 2m(k−1) equa-
tions. This is somehow the curse of dimensionality, the power k term is truly a
challenge, and it makes it very important to have a very sparse representation of
the manifold, i.e., m should be minimized; essentially for large codimension and
manifold dimension the number of coefficients to the basis functions explode
and the numerical computations become very memory intensive. It is a highly
non-trivial task to solve though; the construction of a sparse representation of
functions without sacrificing too much accuracy is a difficult problem. In Paper
C we used a spline basis with uniform grids. There it may be beneficial instead
to consider splines that allow local refinement, e.g., hierarchical splines.

In conclusion the graph transform is crucially dependent on the spectral gap and
is for this reason not suitable for dynamical systems with small spectral gaps if
it is implemented along the lines of the numerical methods in Paper C. On the
other hand the method has great potential to perform dimension reduction on
high-dimensional problems because it does not scale with the codimension in
the Newton steps as many other methods. Additionally a theory of convergence
is available.

6If time is one of the k variables then the number of bvps to be solved is mk−1
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A piecewise-linear model with a single degree of freedom is derived
from first principles for a driven vertical cantilever beam with a local-
ized mass and symmetric stops. The resulting piecewise-linear dynamical
system is smoothed by a switching function (nonlinear homotopy). For
the chosen smoothing function it is shown that the smoothing can induce
bifurcations in certain parameter regimes. These induced bifurcations dis-
appear when the transition of the switching is sufficiently and increasingly
localized as the impact becomes harder. The bifurcation structure of the
impact oscillator response is investigated via the one- and two-parameter
continuation of periodic orbits in the driving frequency and/or forcing
amplitude. The results are in good agreement with experimental mea-
surements.
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1 Introduction

In mechanical engineering applications piecewise-smooth dynamical systems are
often encountered through structural interactions. This is especially the case
in the field of machinery dynamics, e.g., with vibro-impact, and with friction
systems and processes: Vibro-impact systems and processes involve repeatedly
colliding elements and vibrations with abrupt changes in velocity and forces.
Applications include devices to crush, grind, forge, rivet, drill, punch, tamp,
print, tighten, pile, cut, and surface treat a variety of materials and objects, at
frequencies ranging from sub-Hertz to ultrasonic [1], [2], [3]. In other contexts
vibro-impact occurs as an unwanted side effect, often producing noise and wear,
such as with devices operating with stops and clearances, e.g., gear wheels,
rotors, rattling heat exchanger tubes, and guides for roller chain drives. Here,
discontinuities are typically due to abrupt changes in the restoring forces or
boundary conditions, i.e. on a time scale much smaller than those associated
with the free oscillation frequencies of a system. Friction systems and processes
are an inherent or purposefully implemented part of many technical devices,
including automotive brakes and clutches and bowed musical instruments, some
are unwanted in other apparatus, such as in chatter in metal cutting, creaking
doors, and squealing tramways and disc brakes [4], [5]. Here, discontinuities
appear in the dissipative terms of the equations of motion, typically as abrupt
changes in dissipative forces with the sign changes of the relative interface sliding
velocities.

The strong nonlinearity associated with such discontinuous systems and pro-
cesses preclude exact analytical solution in all but a few simple cases and, in gen-
eral, bifurcation analysis is far from straightforward [6]. Analytical approaches
are typically approximate; they include stitching [3], i.e. integrating motions be-
tween impacts or other discontinuities, and using kinematic impact conditions
to switch solution intervals; averaging; harmonic linearization [1]; and various
kinds of discontinuous transformations of variables, e.g., see [7]. Details about
some of the mathematical methods for piecewise-smooth systems can be found,
e.g., in [8]. However, in most cases one needs to resort to or complement the
analysis with numerical solutions of the equations of motion [9].

One of the main modeling challenges emerges from the fact that the con-
tinuum physical laws of impacts, friction etc. are not well understood. Hence,
while the equations of motion for many smooth mechanical systems can be de-
rived directly from the theory of elasticity, the modeling of mechanical systems
with impacts and/or friction involves identifying suitable reaction laws. This
results in a range of modeling decisions that are often problematic to substan-
tiate theoretically. This is both in terms of the mathematical structure of the
reaction laws, as well as the extra parameters that need to be estimated. Under
these conditions it is very advantageous to be able to make comparisons with
experimental measurements to test the given model.

In this paper we construct a mathematical model for a vibro-impacting can-
tilever of which experiments were performed and reported in [10]; see Figure 1
for a sketch of the experimental setup. In [10], the authors perform control-based
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bifurcation analysis of the experiment, i.e., real-time bifurcation analysis of a
mechanical vibro-impacting system. The method of control-based continuation
is a method that makes it possible to perform bifurcation analysis of systems
for which no mathematical model is given; the method was recently developed
in [11] and demonstrated in a rotating pendulum experiment in [12]. Since then,
control-based continuation has been used to investigate the bifurcation struc-
tures of mechanical experiments, such as the current case of a cantilever beam
with symmetric mechanical stops [10] and a nonlinear energy harvester [13], [14].
The model derived here deals with the smooth modeling of small-amplitude vi-
brations of a driven cantilever beam under the influence of symmetric stops, and
it concludes with a comparison with experimental measurements. In Section 2
we derive the single-degree-of-freedom model of a cantilever beam that vibro-
impacts on symmetric stops. The structural mechanics of the model is based on
the Euler-Lagrange beam equation and the reduction is inspired by the Galerkin
step in [15] and [16]. In Section 3 a smooth version of the dynamical system
is constructed by a nonlinear homotopy. In Section 4 numerical bifurcation
analysis of the smoothing procedure is performed in order to test that the bifur-
cation results are robust with respect to the smoothing homotopy parameter.
In Section 5 the model results are compared with experimental measurements.

2 Mathematical model

A mathematical model for the mechanical vibrations of a cantilever beam with
symmetric mechanical stops, as sketched in Figure 1, is derived. In Section 2.1
the governing PDE and the main assumptions for its validity are given. In
Section 2.2 the structure of the single-degree-of-freedom model is derived by
Galerkin’s method, but without an explicit choice for the approximating sub-
space, i.e., a mode shape is not chosen explicitly. In Section 2.3 the model
parameters are estimated and compared with values fitted to experimental data.

2.1 Transverse vibration of a cantilever with a lumped
mass

Formally the PDE is derived by Euler-Bernoulli beam theory, for small-amplitude
transverse vibrations of a slender cantilever. Furthermore, the cantilever is har-
monically driven and has a lumped mass m attached. Following, e.g., [17], [18],
the complete system can be derived as

(
mδ(z − Lm) + ρA0

)
ü+ EIu′′′′ + µu̇′′′′ = 0, (1a)

u′(0, t) = u′′(L, t) = u′′′(L, t) = 0 and u(0, t) = v0(t). (1b)

Here, u = u(z, t) is the transverse displacement in inertial coordinates, z is the
axial coordinate; the overdot denotes derivation w.r.t. time t, and the prime
denotes derivation w.r.t. space z. Furthermore, δ(·) is the Dirac delta distribu-
tion; v0(t) = A cosωt describes the harmonic excitation of the clamped base; L
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Figure 1: Experimental setup of the vertical cantilever beam of length L, with
a lumped mass point m, symmetric mechanical stops at a transverse distance
δ and a periodic excitation v0(t) of the clamped boundary. In the experiment;
E = 2 · 1011 Pa, I = 2.08 · 10−12 m4, A = 2.5 · 10−5 m2, ρ = 8 · 103 kg

m3 , m =
0.2116 kg, δ ≈ 10−3 m, Lm = 0.1275 m, Li = 0.071 m and Lm = 0.1275 m and
L = 0.161 m.

is the beam length; ρ is the beam density; A0 is the cross-sectional area of the
beam; µ is the coefficient of stiffness proportional damping; E is the modulus
of elasticity; I is the cross section area moment of inertia; and Lm is the axial
position of the attached mass. In a co-moving frame, using u = η + v0, the
governing equations transform to

(
mδ(z − Lm) + ρA0

)
(η̈ + v̈0) + EIη′′′′ + µη̇′′′′ = 0, (2a)

η(0, t) = η′(0, t) = η′′(L, t) = η′′′(L, t) = 0. (2b)

The equations of motion in the co-moving frame (2) are equivalent to a cantilever
beam with a lumped mass under the influence of an axially uniformly distributed
harmonic forcing, and a time-harmonic point force proportional to the lumped
mass at the position z = Lm.
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2.2 Reduced ODE model

The configuration space of the cantilever in the PDE description is infinite
dimensional. In order to construct a finite-dimensional description an approxi-

mating subspace is chosen for the spatial coordinate. Let η(z, t) =
N∑
i=1

ai(t)φi(z),

where all φi(z) satisfy the essential boundary conditions. Galerkin’s method is
then used to obtain a finite-dimensional ODE

∫ L

0

[(
mδ(z − Lm) + ρA0

)
(η̈ + v̈0) + EIη′′′′ + µη̇′′′′

]
φj(z)dz = 0. (3)

After applying essential and natural boundary conditions via integration by
parts, Equation (3) can be written as

Mä + Cȧ + Ka + v̈0d = 0, (4)

where

Mij = mφi(Lm)φj(Lm) + ρA0

〈
φi, φj

〉
, (5a)

Cij = µ
〈
φ′′i , φ

′′
j

〉
, (5b)

Kij = EI
〈
φ′′i , φ

′′
j

〉
, (5c)

di = mφi(Lm) + ρA0

〈
1, φi

〉
. (5d)

ai = ai(t). (5e)

Here the angle brackets denote the inner-product
〈
f, g
〉

=
∫ L

0
fg dz. Equation

(4) is a second order linear ODE with modal amplitudes a, mass M, damping C
and stiffness K matrices and a time-dependent force vector v̈0d. When such a
dynamical system is driven near or at its lowest resonance (the frequency corre-
sponding to the smallest eigenvalue of the matrix M−1K), quantitatively good
results can be obtained even with a single-degree-of-freedom model, because
all higher-order modes are expected to have negligible amplitudes in compar-
ison. In addition, all higher-order modes are increasingly damped under the
assumption that the damping is stiffness proportional, cf. Equations (5) where
C ∝ K. In the contact phase the mechanical stop moves the imaginary part
of the eigenspectrum to higher values, i.e. the stiffness increases. Combining
(5c) with the natural assumption that the beam shape in the contact phase has
larger curvature in the neighborhood of the mechanical stop, it can be expected
that the lowest eigenfrequency of the beam increases when in contact.
To obtain a single-degree-of-freedom model, we let η(z, t) be the continuous,
piecewise-defined, function

η(z, t) =

{
a(t)φf (z), |a| < ∆,
∆ sgn(a)φf (z) + (a(t)−∆ sgn(a))φc(z), |a| ≥ ∆,

(6)

where sgn(·) denotes the sign-function, subscripts f and c denote ”free” and
”contact”, respectively, and ∆ is the displacement amplitude of the mass point

5



at which the beam grazes the mechanical stop. In what follows it is assumed
that the cantilever displacement change is small compared to the change in
curvature along the beam between solutions in free flight and contact phase. As
a consequence we have

0 <
|ηc − ηf |

L2(η′′c − η′′f )
� 1, (7)

where ηf is a free configuration and ηc is a contact configuration. Here, we
assume that the beam mass is negligible relative to the lumped mass, i.e.,
ρA0L
m � 1. Moreover, the following relations between the parameters in free

flight and the contact phase are assumed:

cc = cf (1 + β), (8a)

kc = kf (1 + α), (8b)

mc = mf = m(1 + γ), (8c)

dc = df (1 + ν), (8d)

where the relative changes in damping β and stiffness α are large compared
to γ and ν, respectively. Here we neglect the mass increment with γ while
retaining the forcing increment with ν for bookkeeping and later use. Dropping
the subscripts, the system is then given by

mä+ cȧ+ ka+ dv̈0 = 0, for |a| < ∆,
(9a)

mä+ c(1 + β)ȧ+ k(1 + α)a+ Γ sgn(a) + d(1 + ν)v̈0 = 0, for |a| ≥ ∆.
(9b)

Here, the constant Γ = −α∆ balances the static reaction forces of the beam at
the mechanical stop, i.e., the beam is bent and the elastic forces push it back
towards the unbent state; this implies that the restoring force is continuous
and piecewise linear. At a = ±∆ the mechanical stops are reached. Let the
clamped basepoint be harmonically moved, i.e., v0 = A cos(ωt). Rescaling and

nondimensionalising the system by t 7→ ω−1
1 t and a 7→ ∆a, where ω1 =

√
k
m ,

and defining Ω = ω
ω1

, 2ξ = c
mω1

, and I = d
m
A
∆ , Equations (9) transforms into

ä+ 2ξȧ+ a− IΩ2 cos(Ωt) = 0, for |a| < 1,
(10a)

ä+ 2ξ(1 + β)ȧ+ (1 + α)a−α sgn(a)−I(1 + ν)Ω2 cos(Ωt) = 0, for |a| ≥ 1,
(10b)

which is the dynamical system analysed in Section 4.
An alternative approach yields an almost equivalent dynamical system: the

model is derived by recognizing, a priori, that the mechanical system is analo-
gous to that given in Figure 2. Using Newton’s second law for the mass, one
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arrives at the dynamical system

mä+ k1a+ v̈0 = 0, for |a| < ∆, (11a)

mä+ k2a+ (k1 − k2)∆ sgn(a) +mv̈0 = 0, for |a| ≥ ∆. (11b)

By adding damping, this mechanical analogue can be a good approximation to
(9), but in certain cases the changing geometry might be important; e.g. the
modal mass, and forcing amplitude can vary. Furthermore, when using this
direct ODE modeling approach it is difficult to assign a proper physical mean-
ing to the mass m, and model and material parameters as well as geometrical
parameters are not directly available. From a mathematical perspective, the
derivation presented here and those given in, e.g., [15] and [16], clarify underly-
ing arguments that justify the reduction from PDE to low-dimensional ODEs.

m

k1

k2 k2

v0(t) = A cos(ωt)

∆ ∆

Figure 2: The mass/spring-system that is mechanically equivalent to the can-
tilever beam system in Figure 1.

The model (10) was derived without any explicit use of specific shape func-
tions nor numerical methods. To keep the derivation simple, we estimate the
lowest-resonance frequencies in free flight and in contact in the next section.
When comparing the theoretical findings to experimental data, a beam config-
uration as shown in Figure 3 is used.

2.3 Parameter estimation

In free flight, the beam stiffness can be approximated by standard methods: The
beam is driven at a frequency close to the first eigenfrequency; in this case the
stiffness can be found via the lowest eigenfrequency of system (2) without damp-
ing and forcing. We observe that for a single-mode expansion the undamped
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(a) (b)

Figure 3: The assumed configuration of the cantilever: Panel (a) shows the
one-element configuration in free flight; while Panel (b) shows the two-element
configuration in the contact phase.

squared eigenfrequency is approximated via

k/m =
EI
∫ L

0
(φ′′)2dz

Mφ2(LM ) + ρA
∫ L

0
φ2dz

, (12)

where k/m is calculated as K11/M11 from (5). Let the beam shape φ(z) be
approximated by the cubic polynomial that solves the static problem, as is
illustrated in Figure 4 without the reaction force R. The resulting the eigenfre-
quency is given by

f =
1

2π

√
k

m
≈ 8.4 Hz. (13)

This frequency deviates by about 10% from the experimentally measured fre-
quency of 7.75 Hz. The estimation method is equivalent to the Rayleigh-Ritz
method see, e.g., [19] or, for a more exact approach, [20]; the gain in precision
is < 1%.

For vibrations involving contact, the estimation is more difficult due to the
amplitude-dependent constraint which results in a nonlinear PDE. However, by
assuming that this change in stiffness can be estimated by the static problem
through the change in tip stiffness, the problem is linear. The equation that has
to be solved is the differential equation for a slender bending beam under the
assumption of small displacements (Euler-Bernoulli) and point loads, that is,

EIu′′′′ = 0, Euler-Bernoulli beam, (14a)

u(0) = u′(0) = 0, clamped end, (14b)

u′′(L) = 0, moment free end, (14c)

EIu′′′(Li) = R, EIu′′′(L) = P, transverse point forces. (14d)

This linear structural problem is statically indeterminate. The solution can be
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0 Li L

z

P

R

Figure 4: Cantilever beam exposed to transverse point forces R and P . The
reaction force R acts as the mechanical stop, and P is the point force acting on
the mass point.

written as see, e.g., [21]

u(ζ) = u1(ζ) + u2(ζ), where ζ =
z

L
, γ =

Li
L

and (15a)

u1(ζ) =

{
−RL3

6EI ζ
2(3γ − ζ), ζ ≤ γ,

−RL3

6EI γ
2(3ζ − γ), 1 ≥ ζ > γ,

(15b)

u2(ζ) =
PL3

6EI
ζ2(3− ζ), ζ ≤ 1. (15c)

The relative change in tip stiffness is given by α, where tip stiffness is defined
as

k =
∂P

∂u

∣∣∣∣
ζ=1

.

When the beam does not touch the mechanical stop the reaction force is zero,
i.e., R = 0 and, therefore, the tip stiffness is given by

k1 =
∂P

∂u

∣∣∣∣
ζ=1

=
3EI

L3
(16)

for free flight. When the beam touches the mechanical stop one has to know
R = R(P ). At the impact, u(γ) = δ and this implies a linear relationship
between P and R given by

u(γ) = δ = −RL
3

3EI
γ3 +

PL3

6EI
γ2(3− γ).
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From this expression it follows that the tip stiffness in the contact phase is

k2 =
∂P

∂u

∣∣∣∣
ζ=1

=
3EI

L3

(
1− 1

4
(3− γ)

2
γ

)−1

. (17)

Combining (8b), (16) and (17) leads to

α =

(
1− 1

4
(3− γ)

2
γ

)−1

− 1 =

(
1− 1

4

(
3− Li

L

)2
Li
L

)−1

− 1. (18)

It appears that α → 0 for Li → 0, and α → ∞ for Li → L. In other words,
the change in stiffness vanishes as the mechanical stop is moved towards the
clamped end, and it is unbounded as the mechanical stop approaches the free
tip. This agrees with the physics of the problem. When the mechanical stop
is at the clamped end, it is not going to impact with the beam so the change
in tip stiffness vanishes. When the mechanical stop approaches the tip of the
beam, it will become harder to move the tip of the beam transversely, to the
point where it is not possible to do so as the mechanical stop is blocking any
motion of the tip.

Since the damping is chosen proportional to the stiffness (2), the change
in damping has the same order of magnitude as α. In Table I we see that α
deviates by about 20% from the experimentally fitted value.

Theory Experiment
f ∼ 8.4 Hz 7.75 Hz
α 4.9 5.9
ξ — 3 %
β O(1) 0.885

Table I: Stiffness parameters f and α, and damping parameters ξ and β. The
parameter f is the natural frequency of the cantilever. Experimental values are
model-fitted values.

In summary, the mathematical model (10) has been derived for a clamped
beam model with symmetric mechanical stops. The parameters of the model
can be split into two main groups as follows:

• Fixed parameters: damping ξ and ratio β of damping constants are ob-
tained from experimental data.

• Free parameters: forcing amplitude I, frequency Ω, stiffness ratio α, and
relative forcing amplitude ν.

The damping ξ and the natural frequency f (Table I) in free flight are fitted
to the experimental data. The relative stiffness α is considered free, but in the
actual experiment it was not changed.
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3 Smoothing of the piecewise-smooth impact model

In the present case of a cantilever beam with mechanical stops a smooth rep-
resentation is constructed and analyzed. The smoothing is realized through a
nonlinear homotopy or, equivalently, a smooth switching function. To this end,
we consider a differentiable nonlinear scalar switching function H = H(x, p)
where H converges pointwise to a Heaviside-type step function as p → ∞. Us-
ing x = (x1, x2)T , where x1 = a and x2 = ȧ, Equation (10) is reformulated as
the first-order system

ẋ = f(x, t,λ) =

{
f1(x, t,λ)), |x1| ≤ 1,
f2(x, t,λ)), |x1| > 1,

(19)

where f : R2 × R × Rk+1 7→ R2 is piecewise smooth. The smooth dynamical
equivalent is obtained by the following homotopy

ẋ = g(x, t,λ, p) := Hf1 + (1−H)f2, (20)

so that g : R2×R×Rk+1×R 7→ R2 is now a smooth function. This approach has
been taken in [22]; see also [23].The choice of H(x, p) is a modeling decision and,
in general, one can smooth a given sequence of impacts in a piecewise-defined
system by smooth functions that approximate the nonsmooth right-hand sides.
Well-known examples are the Bump function (compact support) and the hy-
perbolic tangent function. In general, a piecewise-smoothly defined system has
smooth representations given by sums, g(x,λ,p) =

∑
i

Hi(x,λ, pi)fi(x,λ). Note

that the smooth switching functions can also depend on the system parameters
and in some cases this might be of interest if, e.g., the natural switching occurs
over a predefined range depending on a model-specific geometric parameter. If
the smoothing procedure is performed in order to construct a smooth equiva-
lent to the nonsmooth system then a necessary condition is that there exists
smoothing homotopy parameter values p∗i such that the bifurcation diagrams
are robust for all pi > p∗i .

Smoothing processes introduce additional parameters pi that may effect the
solution and bifurcation structure. Hence, it is important to analyse, e.g., how
special points depend on the smoothing homotopy parameters and whether they
are robust with respect to changes in the parameters pi. In the present case,
with one smoothing homotopy parameter p, we are interested in quantitative
measures, such as the displacement of the cantilever, which should not change
for sufficiently large p. From the point of view of numerical computations it
is not tractable to make p extremely large, because this introduces very large
derivatives near the nonsmooth events. Therefore, the strategy is to find a
suitable value of p that does not induce artificial and unwanted dynamics or
skew the quantitative results in the parameter domains of interest.

We consider the dynamical behavior of the smoothed equivalent of system
(10) with parameters λ = (ξ, β, α,Ω, I, ν). Specifically, we consider the can-
tilever beam with stops

ẋ = Hf1 + (1−H)f2, (21)
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with

f1(x, t,λ) =

(
0 1
−1 −2ξ

)
x + IΩ2 cos(Ωt)

(
0
1

)
,

f2(x, t,λ) =

(
0 1

−(1 + α) −2ξ(1 + β)

)
x + α

(
0

tanh(Kx1)

)
+ IΩ2 cos(Ωt)

(
0

1 + ν

)
,

and

H(x, p) =
(

1 + (x2
1)p
)−1

.

Our choice of the smooth switching function H is visualized in Figure 5 for
several values of p. In the present case, the smoothing depends only on the dis-
placement of the beam and the smoothing homotopy parameter p. Notice that

−3 −2 −1 0 1 2 3

0

0.5

1

x

 

 

log
10

(p)=0.3

log
10

(p)=0.5

log
10

(p)=1

log
10

(p)=2

H.side(1−|x|)

Figure 5: Smooth switching functions H(x, p) for log10(p) ∈ {0.3, 0.5, 1, 2} com-
pared to the Heaviside step function Heaviside(1− |x|).

the definition of f2(x, t,λ) is modified slightly by approximating the discontin-
uous sign-function in Equation (10b) with the smooth hyperbolic tangent func-
tion. This is a necessary step in order to make the dynamical system smooth.
In the nonimpacting region any term in f2(x, t,λ) is multiplied by the smooth
switching term 1−H(x, p) which converges to zero pointwise as p→∞. There-
fore, it only matters how well the hyperbolic tangent function approximates the
sign-function for |x| ≥ 1. In Figure 6, the piecewise-constant switching term
and (1− H(x, p)) sgn(Kx) is plotted together with the smooth approximations
(1 − H(x, p)) tanh(Kx) with log10(p) = 2 and K = 0.5, K = 1, K = 5 and
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K=1

K=5

K=100

(1−H(x,100))sgn(x)

(1−H.side(1−|x|))sgn(x)

0.95 1 1.05
0

0.5

1

Figure 6: Smooth switching term (1 − H(x, p)) tanh(Kx) for p = 100 and
K ∈ {0.5, 1, 5, 100} compared with piecewise-smooth switching functions (1 −
H(x, 100)) sgn(x) and (1−Heaviside(1− |x|)) sgn(x).

K = 100. The smooth approximations are visually indistinguishable for K = 5
and K = 100; we choose to fix K = 100. In the impacting regions the error
between the sign-function and the hyperbolic tangent function with K = 100 is

1− tanh(100|x1|) < 10−15 for |x1| > 1.
Since the local variations are below the numerical tolerances, we can conclude
that further investigations of the dependence of the smoothing on the smoothing
parameter K is not necessary.

4 Numerical bifurcation analysis

In this section we investigate the dynamical behavior of the smooth system
using the numerical continuation and bifurcation analysis package AUTO [24].
We continue periodic orbits in one and two parameters of the smooth system
(21) at the 1:1 resonance. As mentioned earlier, the mechanical system is, a
harmonically-driven single-degree-of-freedom nonlinear oscillator for which the
nonlinearity is hardening, because the effective beam stiffness is larger in the
contact phase. When such a system is driven with a large enough forcing am-
plitude near its natural frequency (eigenfrequency) the usual response is a non-
linear resonance peak. Figure 7 shows one of the nonlinear resonance peaks,
where Ω denotes the scaled forcing frequency and ||x1||∞ denotes the maximal
displacement amplitude of the periodic orbits. Stable and unstable branches are
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indicated by solid and dashed lines, respectively. For a range of frequencies, we
have a bistable system with three coexisting periodic orbits, two stable orbits
separated by an unstable orbit. There are two bifurcation points marked by
the two grey bullets, which are fold points (limit point/saddle point/turning
point). Together, the fold points organize a hysteresis loop that determines the
possible behavior of the system when keeping all parameters fixed except for
the forcing frequency. Starting with a relatively large forcing frequency, the
system stabilizes to a solution on the lower branch. Continuously decreasing
the forcing frequency causes a discontinuous (increase) jump in the response
amplitudes when reaching the left-most fold point. Similarly, starting from a
relatively small forcing frequency, and continuously increasing the driving fre-
quency results in a discontinuous (decrease) jump in response amplitude when
passing the right fold point on the upper stable branch.

1 2 3
0

1

2

3

4

5

Ω

||
x

1
||

∞

Figure 7: Nonlinear frequency response diagram of system (21) with ν = 0, α =
5.9 and log10(p) = 2. Stable branches are solid, unstable branches are dashed
and the two fold points are marked with grey bullets. The other parameters are
(ξ, β, I) = (0.03, 0.885, 0.2).

In Section 4.1 we investigate the behavior of the system without considering
a change in the forcing amplitude at the mechanical stop, i.e., for ν = 0. In
Section 4.2 the case of doubling the forcing amplitude in the contact phase is
considered, i.e., we set ν = 1. In this case, the system has two additional fold
points and the bifurcation diagram exhibits an isola of periodic solutions that
is not connected to the main solution branch. In what follows we neglect the
discontinuous damping terms when the regularity is stated, this is motivated by
the fact that the damping is orders of magnitude smaller than all other terms.

4.1 Continuous forcing amplitude

First we consider the case of a continuous forcing amplitude, i.e., ν = 0, so that
system (10) is Lipschitz continuous. Moreover, we choose a moderately stiff im-
pact using an intermediate value of α = 5.9. Based on Equation (18), α = 5.9
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geometrically corresponds to a placement of the mechanical stops at 3/5-length
of the beam (from the clamped end z = 0). Figure 8(a) shows the corresponding
one-parameter bifurcation diagram; as in Figure 7, ||x1||∞ denotes the maximal
amplitude of the periodic orbits and the bifurcation parameter is the scaled
frequency Ω. At first sight, the bifurcation diagram shows a typical nonlinear
resonance like the one shown in Figure 7. However, two additional very localized
folds are robustly present on the upper branch; see the enlargement in Figure
8(a). Since we are smoothing a piecewise-smooth system, we also investigate
how the bifurcation diagram depends on the smoothing homotopy parameter p.
To this end, we follow the loci of all four fold points in two parameters. Figure
8(b) shows the bifurcation diagram projected onto the (log10(p),Ω)-parameter
plane. The two upper fold points are robust, in the sense that they are prac-
tically independent of p as p → ∞, while the two lower fold points disappear
in a cusp for log10(p) ≈ 1.5. Hence, for p large enough, the smoothed system
exhibits the same expected bifurcation structure as system (10). We conclude
that, with a Lipschitz-continuous vector field for ν = 0, the smoothed system
shares the same bifurcation structure as the Duffing oscillator near resonance,
because the two localized fold points on the left of the resonance are induced
by the smoothing. In another setting, it may be advantageous to create this
smoothing effect deliberately by design; however, for the mechanical system
under consideration here, this is unwanted behavior.
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Figure 8: System (21) with ν = 0 and α = 5.9; Panel (a) shows the frequency
response diagram for log10(p) ≈ 1.1; Panel (b) shows the loci of fold points in the
(log10(p),Ω)-plane. The remaining parameter set is (ξ, β, I) = (0.03, 0.885, 0.2).

For α = 10, still with ν = 0, the change in stiffness is almost twice as large
as for α = 5.9. Based on Equation (18), α = 10 geometrically corresponds
to a placement of the mechanical stops at 2/3-length of the beam (from the
clamped end z = 0). There is no qualitative difference between Figures 8 and 9.
Note from the enlargements that the two localized fold points are both below
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threshold of the mechanical stop; this indicates that they are induced by the
smoothing, since the piecewise-smooth system is linear if the mechanical stops
are not impacted upon, i.e., for solutions with ||x||∞ < 1.

The additional fold points emerge, because the smooth switching is not suf-
ficiently localized. Consequently, the restoration force features a softening effect
that is unphysical. For each given α there is a suitable choice of p, but as α is
increased, the smoothing must be more localized, i.e., p must be increased. If
p is not sufficiently large the softening effect becomes more pronounced, and
in the present case this is the sole mechanism for the observed smoothing-
induced bifurcations; softening and hardening effects are explained, e.g., in [25]
and [26]. Figure 10 illustrates how, for small p, the smooth approximations of
the piecewise-linear elastic restoring force and/or its derivative dips (i.e., spring
softens) in a neighborhood of x = 1. In Figure 9b the fold points are continued
in (log10(p),Ω). It is observed that they disappear in a cusp for log10(p) ≈ 2,
hence, the smoothing should be chosen such that log10(p) > 2.
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Figure 9: System (21) with ν = 0 and α = 10; Panel (a) shows the frequency
response diagram for log10(p) ≈ 1.1; Panel (b) shows the loci of fold points in the
(log10(p),Ω)-plane. The remaining parameter set is (ξ, β, I) = (0.03, 1.5, 0.2).

4.2 Discontinuous forcing amplitude

We next consider the case where the the forcing amplitude is such that system
(10) is discontinuous, by setting ν = 1. We first set α = 5.9, so that the
cantilever is undergoing moderately stiff impacts. These parameter values will
also be used when the system is compared with experimental data in Section
5. Figure 11(a) shows that, for ν = 1, two fold points are again introduced
in the same region as in Figure 8(a) and the qualitative structure is the same.
However, these fold points are not induced by the smoothing process. This is
illustrated by the two-parameter bifurcation diagram in Figure 11(b), which
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Figure 10: Elastic restoring force as a function of transverse displacement.
Panel (a) shows the moderate impact, α = 5.9. Panel (b) shows the hard impact
α = 10. The legends refer to different smoothing levels of the piecewise-linear
force, i.e., different p. PWL denotes the piecewise-linear force.

shows that the two additional fold points do not disappear in a cusp as p is
increased. For this particular parameter set there are four limit points for any
p.

As was mentioned earlier, it may be of interest to include dependencies of
model parameters in the smoothing functions. For example, the smooth switch-
ing functions generally depend on model parameters, i.e., p = Θ(λ) where Θ is
designed by a-priori model properties or from numerical continuation results.
Our analysis shows that the smooth switching must be scaled according to the
stiffness ratio α, i.e., p = Θ(α); however, since the experimental data is for fixed
α, we need not construct Θ(α) explicitly for more values of α than are already
investigated. We mention here the modeling and analysis of the dynamics of
the main landing gear on a plane [27], where such a smoothing dependence is
analyzed further, because, in that case, the smooth switching function naturally
depends on an active bifurcation parameter.

In addition to the difference in the number of fold points between the case
of continuous vs. discontinuous forcing amplitude the latter exhibits an isola
of periodic solutions for all sections in a small range of the rescaled forcing
amplitude Il = d

m
A
∆l

; where ∆l denotes the displacement of the end-point of the
beam when the beam touches the mechanical stops. This isola is not connected
to the main solution branch. The structure of the branching process of the
isola is shown in Figure 12; where Figure 12(a) is a projection of the fold point
curve that connects the two right-most fold points in the sections showing the
nonlinear resonance tongue, e.g., Figure 11(a). Note that the fold point curve
that connects the two left-most fold points is not present because the forcing
amplitude is to small. The horizontal lines are the sections which are shown
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Figure 11: System (21) with ν = 1 and α = 5.9. Panel (a) shows the frequency
response diagram for log10(p) = 1.5. Panel (b) shows the loci of fold points
in the (log10(p),Ω)-parameter plane; all four branches are disconnected. The
remaining parameter set is (ξ, β, I) = (0.03, 0.885, 0.2).

in Figures 12(b)–12(d) and combined they illustrate structure of the isola. In
Figure 12(b) the section with Il = 0.0463 is shown and it is readily observed that
the frequency response exhibits only the main solution branch for the system
(21) with no impacting solutions, i.e., a linear resonance peak as a result of weak
forcing; in Figure 12(c) the section with Il = 0.0475 is shown and an isola of
periodic solutions appears; increasing the forcing amplitude to Il = 0.0487 and
the isola has reconnected to the main solution branch. In the present case the
isola is caused by the discontinuous change in forcing amplitude. In Figure 13(a)
a global two-parameter bifurcation diagram is shown, this will be explained in
detail in Section 5.

5 Comparison with experiments

The experimental data is adapted from [10], where experimental continuation
is performed for an impacting beam experiment. A cantilever beam of length
0.161 m with end mass 0.2116 kg is periodically excited by a shaker and allowed
to hit stops at 0.71 m with a gap between cantilever and stops of 10−3 m (cf.
Figure 1). The data set was obtained via frequency sweeps with constant gains
of the shaker. As a result the amplitudes of the excitation are not constant
along the constant-gain sweeps conducted in the experiment. We transformed
this data set for comparison with the numerical findings of the model (21). The
non-constant forcing amplitudes during sweeps prohibit conclusive evidence of
the presence of isolas in the experiment, as observed in the model; the necessary
information is simply not contained in this data set. The coupling of the shaker
to the mechanical structure resulted in some cases in forced excitations that
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are not perfect harmonics. This could be the reason why, in the experimental
data the cusp point also comes earlier than in the model. We now consider
system (21) with ξ, β, α, ν and p are fixed, while Il and Ω are free parameters.
The values used are ξ = 0.03, β = 0.885, α = 5.9, ν = 1 and p = 102. The
experimentally fitted value of the change in forcing amplitude was found to be
ν = 1, even though the theoretical predictions indicate that ν should be of
higher order and, therefore, negligible.
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Figure 12: The solid curve in Panel (a) is a projection of the loci of fold
points, while the three horizontal lines correspond to the sections for Il ∈
{0.0463, 0.0475, 0.0487}, which are shown in Panels (b)–(d), respectively. Panel
(b) shows the frequency response of Il = 0.0463; panel (c) shows the isola for
the frequency response of Il = 0.0475; panel (d) shows the frequency response
of Il = 0.0487. The remaining parameter set is (ξ, β) = (0.03, 0.885).
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(a)

(b) (c)

Figure 13: Panel (a) shows the global bifurcation structure of the 1:1 resonance
tongue in two parameters, namely, driving force amplitude Il and driving fre-
quency Ω. The thin curves will be used for experimental comparison. The solid
black curves represent the loci of fold points. Panel (b) shows the experimen-
tal data plotted against the surface indicating the mechanical stops. Panel (c)
shows the smooth model (21) with the experimental data adapted from [10].
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We are interested in how the loci of fold points depend on driving frequency
Ω and the rescaled forcing amplitude Il. From now on we also consider a rescal-
ing of the displacement of the end point of the beam by ∆l; this is denoted by
al and ||al|∞ is the maximal displacement amplitude of the periodic solutions.
The scaling is introduced because the laser in the experiment measures the dis-
placement at a certain distance below the lumped mass and for experimental
comparison al is adjusted accordingly using the beam configuration in Figure 3
and assuming small displacements; this transformation has no effect on qualita-
tive measures. The global two-parameter bifurcation diagram is shown in Figure
13(a); here we see how the resonance tongue is bending over due to the mechan-
ical stops and the nonlinearity they induce. In the diagram there are two solid
black curves, separated via the plane section given by {(Ω, Il, ||al||∞) : Ω = 1},
and these are the loci of fold points and both of the curves loop back over them-
selves in a cusp in the projection onto the (Ω; Il)-parameter plane. The range
over which the isola exists is visualized by cutting the manifold in two pieces
leaving out the sections with the isola. This isola is very thin and can not be
observed in the experimental data. The thin solid/dashed curves are used for
experimental comparison later.

The experimental data set is shown in Figure 13(b) with the mechanical
stop indicated by the transparent surface, and we can clearly see the match of
the resonance tongue bending over due to the mechanical stops. Figure 13(c)
shows an enlargement of the continuation results from the smooth system (21)
in (Ω, Il, ||al||∞) together with the experimental data. It is difficult to asses the
quantitative agreement between the model and experiments because the data
is scattered and the density of measurements varies nonuniformly. Therefore,
all experimental comparison is done via sections of constant forcing shown in
Figure 14.

Figure 14(a) shows the section for Il ≈ 0.03. The model predicts low-
amplitude nonimpacting solutions for this value of (scaled) forcing amplitude,
but the experimental data is showing impacting solutions. This indicates that
the cusp point or grazing point is not predicted perfectly. From the figure it
looks as if the experimental data indicates an isola as well. As mentioned earlier,
it is not possible to conclude if this is indeed the case because the experimen-
tal sweeps were conducted with constant gain of the shaker. Furthermore, for
small-amplitude forcing the noise levels might not be negligible.

Figure 14(b) shows the section for Il ≈ 0.07. For this value of the forcing
amplitude the quantitative agreement of both upper and lower branches is very
good. It is worth noting that, for orbits close to the mechanical stops, there
is, in some of the figures, a small indication of clustering points. They could
be ascribed to the fact that experimental measurements naturally show some
fluctuations in regions where noise levels are comparable to the distance from the
mechanical stops, and grazing orbits are particularly vulnerable to this effect.

Figures 14(c) and 14(d) show the sections for Il ≈ 0.11 and Il ≈ 0.16, re-
spectively. Again, the quantitative agreement of both upper and lower branches
is very good. From the enlargement it is seen that the width of the ’linear’
resonance in the model is not in exact agreement, with the experimental data,
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and the upper branch is slightly overestimated. The reasons for these small
discrepancies could be the choice of damping model or damping parameters,
which are phenomenological.

In Figures 14(e) and 14(f) sections are shown with Il ≈ 0.20 and Il ≈
0.24, respectively. For these values of the forcing amplitude, the quantitative
agreement is less good; in particular, the effect of overestimating the upper
branches is slightly more pronounced, but it should be noted that the absolute
errors are < 1 mm. Furthermore, from the enlargements it can also be observed
that the fold points of the lower branches are not sharply defined for these large
forcing amplitudes.
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Figure 14: Panels (a)-(f) shows the comparison of the smooth model (21) with
the experimental data set. Each plot represents one of the thin solid/dashed
curve sections in Figure 13. The smoothing homotopy parameter is p = 100
and Il takes the values 0.03, 0.07, 0.11, 0.16, 0.20 and 0.24, respectively. The
solid/dashed curve represents the continuation results of (21) and the grey bul-
lets are the scattered point set from the experimental data. The enlargements
are for proper visual comparison in the regions with experimental data.

24



The correspondence between the experimental data and the mathematical
model also depends on the ambiguous choice of the ratio m

d for the rescaling

Il = d
m

A
∆l

. In these calculations m/d = 2/3 was used and the measured distance

δ in Figure 1 is corrected to fit by setting δ = 0.85 · 10−3 m. Furthermore,
it is to be expected that the model validity is restricted to small-amplitude
displacement, because for larger displacement amplitudes the beam should be
treated as a nonlinear elastica.

It would have been desirable to investigate whether or not the two limit
points before the first linear resonance exist in the experiment or not. Unfortu-
nately, this is not feasible, because these two points lie at a distance below the
noise level of the experiment.

6 Discussions and conclusions

In this paper a single-degree-of-freedom model of a cantilever beam with sym-
metric mechanical stops and a mass attached was derived. Model parameters
were estimated from first principles and compared to experimentally fitted val-
ues. These comparisons are given in Table I and it should be remarked that the
nonlinear stiffness ratio α is quite well approximated. The model is particularly
suited for small-amplitude solutions, for which it predicts the experimental data
very well.

In contrast to the more traditional setting where mechanical systems with
impacts are realized by nonsmooth models, the present paper dealt with the set-
ting in which the impact model is described with a smooth model. To obtain this
model a smooth switching (nonlinear homotopy) was applied. The smoothing
procedure was investigated by means of numerical bifurcation analysis. It was
investigated when and how the bifurcation structure was affected by the smooth-
ing. The investigation showed that, as the smoothing function approaches the
Heaviside function, the bifurcation diagram becomes practically independent
of the smoothing homotopy parameter. This investigation was performed for
moderate impacts, hard impacts and discontinuous forcing amplitudes. The
mechanism for the smoothing-induced bifurcations was also identified, and it
was shown that the suitable smoothing homotopy parameter depends on the
stiffness ratio, i.e., p = Θ(α); specifically, increasing α implies increasing p.
With this in mind, it may be noted that the smoothing process can cause nu-
merical difficulties as α becomes very large, because then p must be very large.
In such cases it may be beneficial to perform multisegment numerical continu-
ation of the nonsmooth system.

The behavior of the smooth model was compared with the experimental
data [10]. The qualitative structure was verified within the range of the data set.
The quantitative comparison was good overall, with a tendency to overestimate
the upper branch as the forcing amplitudes becomes large. The results in the
paper demonstrate that a smooth single-degree-of-freedom model describes the
experimental behavior very well and that high-dimensional FE models are not
always necessary to obtain predictions of good quantitative quality.
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For future work it is interesting to test the model in a larger parameter regime
to explore its limits. Specifically it would be interesting to investigate other
parameter regimes of excitation frequency and amplitude. Since a posteriori
fitting was kept to a minimum, it could also be interesting to find an optimal
fit in a reasonable parameter-neighborhood, now that model parameters have
been determined with mechanical interpretations and proper magnitudes.
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Abstract

We propose and investigate three different methods for assessing stability of dynamical equilibrium states during
experimental bifurcation analysis, using a control-based continuation method. The idea is to modify or turn off

the control at an equilibrium state and study the resulting behavior. As a proof of concept the three methods are
successfully implemented and tested for a harmonically forced impact oscillator with a hardening spring nonlinearity,
and controlled by electromagnetic actuators. We show that under certain conditions it is possible to quantify the
instability in terms of finite-time Lyapunov exponents. As a special case we study an isolated branch in the bifurcation
diagram brought into existence by a 1:3 subharmonic resonance. On this isola it is only possible to determine stability
using one of the three methods, which is due to the fact that only this method guarantees that the equilibrium state can
be restored after measuring stability.

Keywords: Control-based Continuation, Experimental Bifurcation Analysis, Impact Oscillator, Electromagnetic
Actuators, Determining Stability, Finite-Time Lyapunov Exponent (FTLE)

1. Introduction

We propose and test different strategies for experimentally determining the stability of dynamical equilibrium
states (here periodic orbits with stationary amplitude) that can be applied when conducting experimental bifurcation
analysis using a control-based continuation method. Control-based continuation [1, 2, 3, 4, 5, 6] is a technique that
allows path following of stable as well as unstable dynamical equilibrium states under variation of system parameters,
i.e. it enables investigations of the type shown in Figure 1. The method utilizes a non-invasive stabilizing control,
which locally turns both stable and unstable equilibrium states into asymptotically stable ones. A consequence of
adding control is that investigating the Jacobian or fitting a simple model to judge the stability of the system will yield
information about the artificially stabilized system rather than the underlying uncontrolled system.

Following Lyapunov’s idea of defining stability, we show how it is possible to assess the stability by modifying
or turning off the control signal for a certain amount of time, and study the resulting behavior of the system. As
a result it is possible to experimentally obtain bifurcation diagrams with indication of the stability of individual
branches as well as locating the bifurcation points where the stability changes, cf. Figur 1. Under certain conditions
it is possible to quantify the rate of divergence from an unstable state in terms of the finite-time Lyapunov exponent
(FTLE). Depending on the type of system, it may be unacceptable to allow unbounded divergence from an unstable
equilibrium: The divergence must not alter the system and the control must be able to restore the equilibrium state
after the stability check. We show how it is possible to assess the stability of an equilibrium state while only allowing
a limited divergence. Details on the experimental test rig (cf. Figure 2) and the implementation of the control-based
continuation method are given in [6], while here we propose and test new methods for determining stability.
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Figure 1: Experimental frequency response of a harmonically forced nonlinear impact oscillator obtained by parameter
sweep and control-based continuation. Response from traditional frequency sweeps is denoted by (+) for increasing
and (◦) for decreasing frequency. Response obtained by control-based continuation is denoted by (—) for stable part
and (– – –) for unstable part.

2. Experimental Setup

The experimental test rig is shown in Figure 2; it comprises a harmonically forced impact oscillator with electro-
magnetic actuators. The impactor is a flexible beam with a tip mounted mass. The beam will impact the mechanical
stops when the vibration amplitude exceeds the gap size. This impact causes an increased stiffness which results in
highly nonlinear responses for certain ranges of forcing parameters, see Figure 1. Electromagnetic actuators mounted
on each side of the impactor mass are used to generate a non-invasive control force u necessary for the control-based
continuation. The direction of the generated force is dependent on the sign of the control signal. Two laser sensors are
used to measure the relative displacement of the impactor mass, which is used for characterizing the current state of
the experiment x. Note that several internal scalings are used in the continuation code, which means that the presented
measured quantities are non-dimensionalized. The response amplitude of the impactor is measured using the norm:

||c|| :=
√√√2∗Q∑

i=0

c2
i , (1)

where the ci are the Fourier components and Q denotes the number of Fourier modes used, in our experiment usually
Q = 5. All results and plots presented throughout the paper are experimental measurements made using the test rig.

3. Suggestion of three methods for assessing stability in experiments

Control-based continuation employs a path following algorithm that tracks branches of stable and unstable equi-
librium under the variation of system parameters. It works by iterating a series of prediction and correction steps:
First a prediction step is made in the tangent direction of the equilibrium branch, and then this prediction is corrected
orthogonally back onto the branch using a root finding algorithm [7]. Since we are continuing dynamical equilibrium
states, the predicted and current state are expressed in terms of a predicted reference trajectory y(t) defined by the dis-
crete points y j = y(t j), t j = t0 + j∆t, j = 0, 1, . . . , n and a measured state x(t) defined by the sampled points x j = x(t j),
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Figure 2: The experimental test rig: A harmonically forced impact oscillator with electromagnetic actuators. (a) Front
view of the full test rig. (b) Impactor side view. The test rig consists of (1) a platform with flexible legs, which allows
movement only in the forced direction; (2) an electromagnetic shaker to apply a harmonic force to the platform; (3)
flexible beam with tip mass; (4) adjustable mechanical stops, which will cause impacts and increased stiffness when
the vibration amplitude of the beam exceeds the gap size; (5) electromagnetic actuators which can exert a control
force directly on the tip mass; (6) laser displacement sensors. Further details can be found in [6].
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where ∆t = 1/ fs is the sampling interval and fs the sampling frequency. The predicted state y(t) is artificially created
and stabilized by a non-invasive proportional derivative (PD) control:

u(t) = PD(x(t) − y(t)) := Kp(x(t) − y(t)) + Kd(ẋ(t) − ẏ(t)), (2)

where Kp and Kd denote proportional and derivative gain, respectively.
The corrector keeps changing the reference state y until the predicted and measured state are close to identical

x − y ≈ 0, at which point the periodic contribution from control effectively vanishes (u ≈ 0). The measured state x
is accepted as a stable or unstable equilibrium state of the underlying uncontrolled system, and the control is only
activated if the measured state x diverges from the reference state y. A bifurcation diagram (cf. Figure 3) consists of a
number of such successful continuation steps. At each accepted state we wish to determine and possibly quantify the
stability.

To determine stability information, we implement and test three simple ideas based on modifying or turning off the
control, while observing the resulting behavior of the system. In theory nothing happens when turning off the control
at a stable state, as long as turning off the control does not cause a perturbation of the system. Due to the fact that
an experiment will have noise in both measurements and control, the continuation algorithm accepts a measured state
x as an equilibrium state of the underlying uncontrolled system within some tolerance. Therefore, one must expect
a small residual drift when turning off the control at a stable state. The stability tests presented here all require the
tolerance with which the corrector accepts a state x as an equilibrium state to be sufficiently strict.

When turning off the control at an unstable equilibrium state, the current state x starts to diverge from the refer-
ence state y, cf. Figure 4. Branches of unstable equilibrium states act as seperatrices in the bifurcation diagram, so
depending on the initial conditions given when turning off the control, the state will diverge and settle onto another
stable state; in our system either a higher or a lower amplitude stable equilibrium state, cf. Figure 3. If the noise in
the experiment is very low, it might be necessary to introduce a small in-phase perturbation in order to facilitate the
divergence, but in our case the imperfections in the experiment make this unnecessary. In [6] it is explained how to
implement such an in-phase perturbation and an in depth investigation of the effects of turning off the control at stable
and unstable states is presented in [8].
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Figure 3: Bifurcation diagram with a continuous measure of stability plotted in grayscale (interpolated in between
measurement points): Dark tones denote a small stability estimator and hence a stable state. Lighter tones denote a
large stability estimator and hence an unstable state. All measurement points are marked with (·) and consecutively
number labeled (shown for every fifth point). These labels will be used to identify different equilibrium states and will
be referred to with # and label number throughout the paper.
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Figure 4: Reconstructed phase plane orbits using the current state x(t) and a delayed coordinate x(t − τ), showing
two examples of divergence from unstable equilibrium states. (a) System is initialized on the stabilized equilibrium
state marked by #10 in Figure 3 corresponding to the initial orbit ( ). Once the control is disabled, the measured
state x starts to diverge from this equilibrium state and settles onto the upper branch, at slightly larger amplitude. (b)
Control is disabled from state #16 which results in x diverging and settling onto the lower branch, at a much smaller
amplitude.

3.1. Method 1: Free flight stability check

The first method is based on a simple heuristic idea: Turn off the control actuators and observe if the current state
x diverges from the reference state y, implying that the equilibrium state is unstable. Figure 5 presents time series
from such an experiment starting from different equilibrium states. A conclusion to draw from these time series is that
it can be helpful to study the divergence of the difference x − y rather than x. A state can diverge from an equilibrium
both in amplitude and phase and the latter is more pronounced in the difference x− y (compare Figure 5b and 5c). We
define a normalized root mean square error

ε =
RMS(x − y)
1 + RMS(y)

(3)

where RMS denotes the root mean square value of a sampled signal defined as

RMS(x) =

√
1
n

(
x2

1 + x2
2 + · · · + x2

n

)
. (4)

The error ε provides a combined measure of how fast and far a state x diverges from a reference state y upon disabling
control, and it seems to be a robust measure of instability. A large error ε means that the state x has diverged from the
reference state y, and we consider it to be unstable. Since ε is a continuous measure it is required to select a threshold
for instability. If the error exceeds this threshold, the equilibrium state is considered unstable and vice versa. Figure 6
shows the error ε for each point of the bifurcation diagram in Figure 3 along with the chosen threshold for stability.
The grayscale used in Figure 3 reflects the value of ε and is interpolated between each measured point along the curve.
It appears that the estimator predicts regions of instability that is in good agreement with theory.

There are some precautions to take when using the free flight stability test: Some systems can be allowed to have
unbounded divergence, while others cannot. In order to resume the continuation after a stability check, the control
must be able to restore the system to the reference state. This requires the divergence not to damage or alter the
system, and requires more available control energy than is necessary for the continuation itself. Furthermore, stable
and unstable states may lie close in phase space, and depending on precision of the test equipment it may be hard to
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Figure 5: Time series for free flight stability tests. Left column: Time series of x (—) and y (—). Right column:
Difference between current state and reference state (x − y). (a) Starting at a stable state (#5). (b) Divergence from
unstable (#16) and settling onto lower amplitude stable state, the divergence predominantly changes the amplitude. (c)
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Figure 6: Stability indicator ε for the bifurcation diagram in Figure 3. Numbers on the x-axis correspond to label
numbers along the bifurcation branch. The chosen threshold, which indicates the limit of instability εt = 0.05, is
marked by (- - -).

6



distill a binary measure of stability, as the indicator for stability in some cases approaches the threshold for instability
smoothly (cf. Figure 6).

Interpreting the time series for x or the difference x − y (cf. Figure 5) is straightforward for some states but less
obvious for others. Signals may look qualitatively different, depending on their location in the bifurcation diagram.
Nevertheless the divergence seems to be close to exponential for most unstable states, which means that a one degree
of freedom linear harmonic oscillator solution of the form: x−y = Aeλt cos(ωt+φ)+d (with variable phase φ, variable
amplitude A and DC-offset d) can be fitted. The finite-time Lyapunov exponent λ will give information about how
fast the system diverges. A more simple strategy is to do a linear fit to the logarithm of the peaks (cf. Figure 7), which
compares to looking at a Poincaré section. The slope of the linear fit will also yield the finite-time Lyapunov exponent
λ.
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Figure 7: Retrieving stability information for an unstable state (#16) by using a linear fit to the logarithm of the peaks.
(a) Smoothened difference x− y with detected peaks (using the Matlab functions: Smooth (moving average filter from
the Curve Fitting Toolbox) with a 20 points window and Findpeaks (Signal Processing Toolbox)). (b) Logarithmic
plot of the detected peaks (◦) along with linear fit (—) in the time-interval t ∈ [0.4; 1.2].

3.2. Method 2: Stability check using deadband control

We introduce a deadband Π in the non-invasive control signal (2)

u(t) =


0 for ||PD(x(t) − y(t))|| ≤ Π

PD(x(t) − y(t)) for ||PD(x(t) − y(t))|| > Π.
(5)

Now nonzero control will only be enabled when the requested control signal exceeds the deadband. Proper choice
of this deadband will cause the control to enable only if the state x diverges from the reference state y. Stability is
determined by noting if the control was enabled. The number of control bursts might also be used as a continuous
measure of stability for more noisy systems. Figure 8 shows time series for a deadband stability check for a stable and
an unstable state. Note that the control is only enabled for the unstable state, and that the state x is not allowed to have
unbounded divergence. The width of the deadband can be selected to be of the same order of magnitude as the noise
in the control signal, but in Figure 8 it has been kept relatively wide for visualization purposes. For the deadband
stability check to work, the deadband must be correctly adjusted (considering noise, closeness of nearby states and
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the controls’ ability to restore the system) and the time window for the stability check must be long enough for the
system to diverge noticeably at all unstable states.

−5

0

5

x
(t

)−
y
(t

)

−20

0

20

P
D

(x
−

y
)

0 1 2 3 4 5
−1

0

1

u
(t

)

Experiment Time, t [s]
0 1 2 3 4 5

Experiment Time, t [s]

−2

0

2

x
(t

),
 y

(t
)

(a) (b)

Figure 8: Time series for deadband control stability tests at (a) a stable state (#5) and (b) an unstable state (#10).
Deadband limits (- - -) are shown together with controller output in the third panel and the deadbanded control signal
which is sent to the actuators is shown in the fourth panel. Note that the control is only active for the unstable state
(b) and that it manages to reduce the divergence amplitude of the system comparing with Figure 5c.

3.3. Method 3: Deadband-limited free flight

This method combines the advantages of Method 1 and 2 in order to measure finite-time Lyapunov exponents λ
without allowing unbounded divergence. The trade-off is that the method requires conditions which cannot always be
expected from an experiment: The measurements have to be relatively clean, and the divergence has to be approxi-
mately exponential. Furthermore, the measured states must be allowed to diverge inside the deadband, which requires
the divergence to be completely reversible by the control. In other words, the divergence must not alter the system
and the control must be able to restore the equilibrium state after measuring stability.

We modify the deadband control such that whenever the deadband is exceeded (||PD(x(t)− y(t))|| > Π) the control
signal u(t) is held active for a certain time interval T ∈ [tenable; tenable+hold]. Consequently, the system is restored to
the reference state meaning that x − y ≈ 0. The result is a sequence with several periods of free flight limited to
diverge only inside the deadband as it is shown in Figure 9. For a sufficiently narrow deadband the divergence will
only include the local (exponential) behavior and not allow the system to settle onto a different stable equilibrium
state. Our observations suggest that the estimated Lyapunov exponent is not dependent on which side of the branch of
unstable equilibria the state diverges to, as long as we only study the local behavior. For each stability check (at every
point of the bifurcation curve) the following postprocessing is performed:

1. Center the data set x − y by subtracting its mean value.
2. Smoothen the time series using a moving average / lowpass filter. In Matlab this can be done by using the

function ’smooth’ (Curve Fitting Toolbox).
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3. Detect peaks of the absolute value of the smoothened signal to get both positive and negative peaks. It can be
helpful to use a peak detection algorithm that can discard values smaller than a certain tolerance and require the
peaks to be separated by a certain time span. In Matlab this can be done using the function ’findpeaks’ (Signal
Processing Toolbox).

4. Divide the data set into separate segments of free flight. This can be done by checking the control signal, as this
is zero when the system is in free flight, cf. Figure 9.

5. Evaluate the Cooks’ distance [9] for each segment and use this information to remove statistical outliers from
the data sets.

6. Perform linear interpolation on each set of peak data and average the slopes to get the finite-time Lyapunov
exponent λ.

Near the fold points of the frequency response we experience a slow divergence (Figure 5d) but the exponential fit still
seems to be robust, cf. Figure 10. Note also that the method only estimates the divergence rates for unstable states.
For stable states the stability is not quantified and the value is set to zero for plotting purposes. For noisy experiments
or experiments with low sampling rate, it can be helpful to consider intersections with a hyper plane in the phase space
(e.g. zero velocity crossings) rather than detecting peaks of a time series, as the intersection can be located by linear
interpolation [10].
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Figure 9: Deadband-limited free flight stability check at an unstable state (#16). Removed outliers are marked by (×)
in fit. Average Lyapunov exponent: λ = 3.65 ± 0.58.

4. Results

The following will present the results of applying the three suggested methods for determining stability during
continuation using the test rig presented in Figure 2.
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Figure 10: Deadband-limited free flight stability check near the upper fold point (#24). Average Lyapunov exponent:
λ = 0.76. Note the slow divergence compared to the one in Figure 9.

4.1. Continuation results

Figure 11 presents five consecutive continuation runs overlaid along with stability information obtained by the
three different stability test methods. Note that Method 1 and 2 give very similar results, while Method 3 estimates
the fold point amplitudes a bit higher and with less deviation than the other methods.

4.2. Stability near the fold points

Figure 12 shows the stability estimators for the five bifurcation diagrams depicted in Figure 11, calculated using
methods 1 and 3. They are normalized with respect to the total arclength of the corresponding branch, e.g. applying
this normalization to Figure 6 the first and last point would get values zero and one respectively. This is necessary
since we use an adaptive continuation step length, causing the number of points along each branch to vary. The two
methods are seen to give qualitatively similar results, but the free flight test (cf. Figure 12(a)) shows a large jump
in estimator at the lower fold point and a smooth transition across the stability limit at the upper fold point. We
ascribe this to the fact that the normalized root mean square error ε is a combined measure of how fast and far a state
diverges, rather than an explicit divergence rate such as the finite-time Lyapunov exponent. At the lower fold point,
the system diverges and settles onto a stable state quite far from the unstable state, whereas close to the upper fold
the bifurcation branches lie very close (cf. Figure 13) causing a short divergence before settling onto a nearby stable
state. In comparison, the divergence rate λ in Figure 12(b) changes smoothly with respect to the arclength at both fold
points. Note that Method 3 detects the onset of instability by the control signal exceeding the deadband which means
that an equilibrium state is considered unstable when λ > 0. Figure 13 shows a zoom of the upper fold point with
stability information obtained using Method 3. It is interesting to note how the rate of divergence decreases smoothly
when tracking around the fold point, meaning that the stability changes smoothly along the equilibrium branch.
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Figure 11: Five overlaid bifurcation diagrams for forcing strength A = 0.5 with stability estimator plotted in grayscale
(dark for small values, light for larger values). Stability information retrieved using (a) the free flight method (Method
1), (b) the deadband control method (Method 2) and (c) the deadband-limited free flight method with Lyapunov
exponent estimation (Method 3). Note that the grayscale has been scaled nonlinearly to visualize the change of
stability at the fold points rather than the variation of the estimator along the unstable part of the branch.
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Figure 13: Zoom of the upper fold point in Figure 11(c).
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4.3. Stability at a family of isolated equilibrium branches (isola)

Figure 14 presents the experimental finding of an isola, by which we mean a family of stable and unstable equi-
librium branches that are detached from the primary resonance peak in the bifurcation diagram. This isola is created
by a 1:3 subharmonic resonance, at which the impactor is forced at approximately three times its fundamental reso-
nance frequency, but the response is approximately at its fundamental resonance frequency. The isola was found by
parameter sweep and two consecutive continuation-runs. Its existence was suggested by simulation of a single-degree-
of-freedom model of our test rig [11] and was initially found by systematic parameter sweeps. Several branches of
stable as well as unstable equilibria seem to coexist in that parameter region and continuing of the unstable branches
is a mean for mapping out a more complete picture of the possible dynamical responses. Near 26.6-26.8 Hz the
branches cease to exist due to a shift in the phase between impactor and platform, i.e. the impactor and platform starts
to vibrate in-phase, which causes the relative amplitude between impactor and mechanical stops to be insufficient for
impact, which in turn effectively changes the response of the system. At this point, the sweep settles onto a stable
equilibrium at a much lower amplitude, while the continuation reports an endpoint and terminates. A more refined
and systematic investigation of this isola requires the precision of measurements and actuation to be increased, as well
as implementing a means to do systematic branch switching at bifurcation points.

For the case of the isola, it was only possible to successfully apply the deadband control stability test (Method
2), as it would otherwise not be possible for the control to restore the equilibrium states after stability check. The
deadband had to be adjusted to only allow divergence just above the noise level (5 times tighter than the deadband in
Figure 8). Due to noise, the control signal would exceed the deadband a few times at the stable states, causing a few
control bursts, while unstable states were characterised by an effectively active control (an approximate factor of 100
more control bursts).
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Figure 14: Isola composed of the stable and unstable equilibrium branches of a 1:3 subharmonic resonance found
by a parameter sweep and two consecutive continuation-runs, using different settings for tolerances and step size.
The sweep is denoted by (+) for increasing and (◦) for decreasing frequency. Stability information is assessed using
Method 2.
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5. Conclusions

The experiments presented show that it is possible to assess stability during control-based continuation of bifur-
cation branches by momentarily modifying or turning off the control. Three different methods have been proposed:
1) Free flight stability check, 2) stability check using deadband control, and 3) deadband-limited free flight. All
three methods have been successfully applied to determine stability during experimental continuation, and each of the
methods is shown to be suitable in different situations:

The free flight stability test (Method 1) is robust and easy to implement but requires the divergence to be com-
pletely reversible by the control. The estimated normalized RMS error between reference and measured state is shown
to give a good indication of the stability but does not provide direct information about the rate of divergence. Similarly,
the deadband stability check (Method 2) does not provide information about the rate of divergence, but on the other
hand has the advantage to be employable while only allowing minimal divergence. The isola presented in Section 4.3
is a good example of the usefulness of Method 2, since its ability to limit the divergence to a pre-defined maximum
makes it the only of the three methods which allows stability assessment in this situation.

Finally the deadband-limited free flight method (Method 3) is able to provide an estimate of the rate of divergence
while allowing only a limited divergence. In turn the method puts more requirements on the experiment, is more
difficult to implement and has more parameters that need to be adjusted. The stability estimator is observed to approach
the stability threshold smoothly at bifurcation points regardless of the stability test method. In other words, continuing
a branch of equilibria, the stability is noted to change smoothly, e.g. from unstable to stable, especially at the upper
fold point. A quantitative measure of stability is determined only at unstable states; to extend the capability to stable
states, one could introduce an in-phase perturbation and measure the (exponential) decay of transients. Unfortunately,
for the system that we investigate this is difficult because the transients are damped out within few oscillations at
stable equilibrium states away from the fold points. To get just a few points for estimation the perturbation has to be
so strong it effectively changes the response of the system. This could possibly be improved using a fitting method
which fits the whole data set rather than just the peaks.

The isola presented in Figure 14 serves as a good example of the usefulness of control-based continuation method
with additional stability investigations. It shows how the method can be used to obtain a more complete picture of the
bifurcation diagram in regions where multiple stable and unstable equilibrium states coexist. Furthermore, it is seen
that continuing branches of unstable equilibria can be the key in discovering seemingly unconnected stable equilibrium
branches. It also points out room for improvement, by underlining the need for a method to switch between multiple
branches at bifurcation points. Other possibilities for future research include fitting the time series obtained during
free flight to a single-degree-of-freedom harmonic oscillator to get statistically more accurate estimates of the finite-
time Lyapunov exponents. It might also be possible to determine the stability directly from the control signal. In our
experiments the control signal appears to be uncorrelated noise once the correction step has converged, regardless of
the stability of the equilibrium state. Perhaps superimposing the control with a noise signal or even introducing a
locally destabilizing control can help to develop maybe a faster method to determine stability and to obtain further
insights.
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Abstract Using the theory of normally hyperbolic invariant manifolds we
approximate attracting submanifolds in high-dimensional dynamical systems
with a spectral gap in order to obtain a low-dimensional description. We ap-
ply the graph transform method and use it in a natural continuation scheme.
The complexity of the construction scales with the dimension of the attracting
submanifold. Typically marching methods scale with the much larger codimen-
sion. As an example we demonstrate how this method can be applied to obtain
very accurate reduced models for the transverse vibrations of a beam with a
torsional nonlinearity at one end and a linear spring and harmonic forcing at
the other end.
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1 Introduction

Mathematical modelling as a discipline has changed its style considerably over
the last couple of decades with the increasing computational power. Where ap-
proximate solutions to nonlinear differential equations were constructed using
for example transforms, perturbation methods and averaging methods such
as to be able to construct approximate bifurcation diagrams; today, we con-
struct families of solutions and bifurcation diagrams in the order of seconds
for single degree of freedom dynamical systems using numerical continuation
and bifurcation software such as, e.g., CoCo [1] and AUTO [2]. At the same
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2 M. Elmeg̊ard, J. Starke

time the dimension/degrees of freedom (dof) of the problems that can be
solved numerically has increased by many orders of magnitude, e.g., from a
small Duffing oscillator O(1) to a finite element model of the large amplitude
vibrations of a beam O(10) to vibrations of a wing of a windmill O(106).
While low-dimensional problems are handled very well by numerical contin-
uation software, it is still not possible to construct bifurcation diagrams for
high-dimensional models efficiently. This is due to insufficient computational
power, e.g., for performing the many Newton iterations in the continuation
runs or handling large Jacobians and in turn evaluate test-functions for bifur-
cations. With a demand for proper nonlinear analysis of the high-dimensional
models, much focus has been put on developing methods that make this possi-
ble. There are different approaches to this problem; one of the methods solves
the original problem by taking advantage of the spectral gap directly in the
Newton steps, see e.g., [3]. Where a continuation and bifurcation analysis of pe-
riodic orbits in a large-scale, 104-dimensional, dissipative fluid problem is per-
formed using a Newton-Krylov method. The review article [4] on bifurcation
analysis in high-dimensional fluid applications and the specific computational
problems that emerge; other approaches are reductive methods under names
such as model reduction, dimension reduction, reduced-order-modelling, coarse
graining methods, equation-free methods and multi-scale methods. The un-
derlying rationale of reductive methods is that the observed dynamics is often
low-dimensional compared to the very high-dimensional ambient space where
the models are naturally described. Low-dimensional dynamics may be clas-
sified in a number of ways, for example, via data analysis (manifold learning,
signal analysis), or by classifying according to the geometry and complexity
of the asymptotic dynamics or bifurcation structures, e.g., periodic solutions
and tori. The fundamental idea of (most) reductive methods is that they are
based on the assumption that orbits quickly relax to some low-dimensional
attracting submanifold in a high-dimensional ambient space. The time-scale
separation, in the contractive and expansive sense, often appears under names
such as spectral gaps [5], generalized Lyapunov-type numbers [6], [7], expo-
nential dichotomies [8]; with varying definitions these properties describe the
effect of how volumes contract in phase space in the neighborhood of, e.g.,
attracting manifolds, and in that sense they are all simple geometric quanti-
ties. In model reduction one then attempts to chart the attracting manifold
to a low-dimensional subspace in a way such that the attractor in the reduced
system is diffeomorphic to the original attractor. This idea naturally leads to
a non-trivial problem of identifying suitable mappings. Many reductive meth-
ods exist in different applied fields, a small selection is for example, in chemi-
cal engineering, intrinsic low-dimensional manifold (ILDM) [9], computational
singular perturbation [10], an iterative method [11]; in mechanical engineer-
ing, proper orthogonal decomposition (POD), method of snapshots, balanced
truncation [12], and nonlinear normal modes (NNM) [13], [14], [15], [16], [17].

A mechanical system is considered in the current paper as an example ap-
plication. Therefore, we comment on the approaches to model reduction in
mechanical systems. The method of snapshots is based on finding basis func-
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tions to project the reference dynamical system onto, thereby constructing
a reduced order model, i.e., the method is based only on linear projections.
The basis functions are found by sampling many orbit trajectories and then
following up with data analysis, e.g., via proper orthogonal decomposition
(POD) to derive an optimal (in least squares sense) fit of the point cloud by
a k-dimensional hyperplane where k � n; equivalently this may be consid-
ered as a statistical regression problem of maximizing variance using k basis
vectors to span the k-dimensional hyperplane. The main advantage of such a
reduction technique is that it can potentially be applied rather efficiently to
high-dimensional problems; the drawback is that there is no guarantee that
the nonlinear behavior is captured by a hierarchy that prioritize projections
according to, e.g., energy or variance, see for example [18].

The method of NNMs in dissipative systems with an invariant manifold
approach was presented in [14] and may be viewed as a type of center mani-
fold reduction. Using the method of NNMs an attracting submanifold is con-
structed and asymptotic as well as transient behavior is predicted very well in
several applications, see e.g., [19]. The main drawback of this method, when
used for dissipative systems, is that for a k-dimensional submanifold in an
n-dimensional dynamical system n − k first order nonlinear coupled partial
differential equations must be solved and in large scale systems, k � n, and in
general, such methods are sensitive to the tangent and normal dynamics of the
submanifold as well as the boundary condition, i.e., the (k − 1)-dimensional
hypersurface.

In the present paper we will approach the problem of dimension reduc-
tion with methods from dynamical systems theory, specifically we will apply
the graph transform (GT) and the theory of normally hyperbolic invariant
manifolds (NHIM) in order to derive low-dimensional models. As example we
reduce a mechanical vibration problem from 25 to 3 dimensions and show
that even transient behavior is accurately predicted. This model was chosen
as an example because it was previously analyzed using the method of NNMs
in [16]. The structure of the paper is as follows: in Section 2 we motivate the
geometrical approach to dimension reduction through bifurcation analysis and
invariant manifolds, we state Theorem 1 of [6] which is the theoretical basis
for the reduction method and explain the hypotheses and the consequences of
the theorem; in Section 3 we give the details of the graph transform; in Section
4 we give the details of it and two methods that may be used to perform the
transform and we discuss the modifications needed for the graph transform to
work in the present setting; in Section 5 the method is applied to a nonlinear
mechanics problem and results are presented; in Section 6 convergence prop-
erties and results are presented; in Section 7 we conclude with a discussion of
advantages, disadvantages and perspectives of the method.
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2 Attracting submanifolds in dissipative dynamical systems

In the current section we will provide an overview and some background of
the theory that we will use to reduce the dimension of dissipative dynamical
systems. While the theoretical constructions are mathematically technical, the
concepts are relatively simple and of geometrical flavor; we will provide the
sufficient details with a stress on geometry.

The choice of method for dimension reduction in dynamical systems de-
pends very much on the purpose. For equilibrium/fixed points the center man-
ifold reduction [20], [21] can be applied to derive reduced representations ac-
cording to the dimension of the nonhyperbolic linear subspaces of the fixed
point, i.e., the center eigenspace which is spanned by the eigenvectors with
corresponding eigenvalues λ with Re(λ) = 0. In essence; all auxilliary phase
space variables are locally given by the variables of the center eigenspace. The
center manifold persists under small perturbations, meaning that if a bifurca-
tion occurs it can be unfolded in the reduced set of equations. Consider the
following dynamical system,

ẋ = Cx+ f(x, y, α),

ẏ = Sy + g(x, y, α),

α̇ = 0,

(1)

where (x, y, α) ∈ Rnc × Rns × Rnp ,f(0, 0, 0) = g(0, 0, 0) = 0, all eigenvalues of
the matrix C have zero real part and all eigenvalues of the matrix S have neg-
ative real part. In a neighborhood of the fixed point (x, y) = (0, 0) there exist
invariant center manifolds all of which share the same qualitative dynamics,
and on these y = h(x, α) resulting in a reduced dynamical system

ẋ = Cx+ f(x, h(x, α), α). (2)

The relation y = h(x, α) is generally non-unique, but sufficiently close to the
fixed point the whole family of center manifolds will exhibit the same quali-
tative behavior. We can therefore consider variations in the model parameter
α. A related and more general concept is the invariant manifold theorem for
fixed points, see e.g., [21]. For dimension reduction purposes this implies that
if a local bifurcation occurs it is represented in the reduced dynamical system
(2), i.e., it is the ideal nonlinear projection for the reduction; note that a linear
projection may fail badly (cf. linear projection methods in general).

In the current paper we want to construct dimension reductions in the
connection of more complicated sets than fixed points. In particular the man-
ifolds that will be approximated are ’global’ and therefore a generalization of
the center manifold theorem that applies to sets is needed; this theoretical
result is due to Fenichel [6] and for a more accessible entry to the subject see
Wiggins [7]. Another useful approach that could, under some additional as-
sumptions, have been taken as basis for this work is the approach of geometric
singular perturbations [22], [23].

We restate the result of Fenichel 1971 verbatim
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Theorem 1 (Fenichel, 1971 [6])
Suppose ẋ = f(x) is a Cr vector field on Rn, r ≥ 1. Let M̄ ≡ M ∪ ∂M be a
Cr compact connected manifold with boundary overflowing invariant under the
vector field f(x). Suppose ν(p) < 1 and σ(p) < 1

r for all p ∈M . Then for any
Cr vector field fpert(x) C1 θ-close to f(x), with θ sufficiently small, there is
a manifold M̄pert overflowing invariant under fpert(x) and Cr diffeomorphic
to M̄ .

A compact manifold with boundary is called overflowing invariant if the flow
φt of ẋ = f(x), is pointing strictly outward at the boundary and if p ∈ M
implies that φt(p) ∈M for t ≤ 0. The functions ν(p), σ(p) are the generalized
Lyapunov-type numbers. ν(p) < 1 for all p ∈M means that vectors normal to
the manifold M expand in negative time under the linearized dynamics; the
closer ν(p) is to 0 the stronger is the attraction towards the manifold. When
σ(p) approaches 0 it means that a volume in the neighborhood of the manifold
will flatten quickly along the manifold in forward time. Furthermore; f(x) and
fpert(x) are C1 θ-close on a compact set K containing M if

sup
x∈K
||f(x)− fpert(x)|| ≤ θ, (3)

sup
x∈K
||Df(x)−Dfpert(x)|| ≤ θ. (4)

Theorem 1 is a particularly strong and useful result for many purposes in quali-
tative and quantitative analysis of dynamical systems. It is a persistence result,
i.e., it provides a priori knowledge about possible changes of the overflowing
invariant manifold when we perturb or deform their corresponding dynami-
cal system. While we apply the implicit function theorem for, e.g., bifurcation
analysis of equilibrium points or periodic orbits etc., we may interpret ν(p) and
σ(p) as global bifurcation parameters of the overflowing invariant manifolds,
see [7]. In Figure 1 we illustrate some of the concepts through a geometrically
intuitive example of why we need the conditions of Theorem 1 on the gen-
eralized Lyapunov-type numbers. In Panel 1(a) the contraction normal to the
manifold M is stronger than the contraction tangent to M , i.e., σ(p) < 1/r;
M is overflowing invariant; M is attractive, i.e., ν(p) < 1. In this case the
perturbed manifold is Cr and sketched as the red curve. In Panel 1(b) the
contraction normal to the manifold M is weaker than the contraction tangent
to M , i.e., σ(p) > 1; M is overflowing invariant. In this case M is not nor-
mally hyperbolic and as a consequence the manifold may bifurcate under the
perturbation of the vector field.

In the current setting we apply the theory to ODEs, i.e., finite-dimensional
systems and this implies that the compactness is equivalent to being closed
and bounded (Heine-Borel theorem). Connectedness is trivially verified for our
application.
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M
Mpert
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ν(p) < 1 and σ(p) < 1
r

(a)
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x

M
Mpert

a b

ν(p) < 1 and σ(p) > 1

(b)

Fig. 1: Geometrical illustration of Theorem 1 for a compact domain U = [a, b]:
Panel (a) shows an overflowing NHIM with ν(p) < 1 and σ(p) < 1/r for
all p ∈ M in the dynamical system ẋ = f(x). The red curve illustrates the
persistence of the NHIM in a θ-close dynamical system ẋ = fpert(x). Panel
(b) shows the same case but with the violation σ(p) > 1 of Theorem 1, in this
example the perturbed manifold develops a cusp at the center fixed point.

3 Approximating attracting submanifolds via the graph transform

The proof of Theorem 1 can be done via the graph transform method [6], [7].
We will apply the results for the discrete approximation of compact normally
hyperbolic invariant manifolds demonstrated in [27], [28], [29], [30], [31] for
manifolds without boundary. In [31] an example is given for which pieces of
an attracting two-dimensional manifold that violates the overflowing condition
are constructed using the graph transform with a small modification. We will
rely on the same type of modification in the numerical approximation of k-
dimensional manifolds. We remark here that our list of references for the work
on normally hyperbolic invariant manifolds is by no means exhaustive and
we are aware that there exist related results for generalized center manifold
theorems and integral manifolds in nonautonomous systems.

Next we give an introduction to the graph transform with the necessary
details for the numerical constructions given in the following sections. Consider
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the following dynamical system

ẋ = f(x, y, λ),

ẏ = g(x, y, λ),
(5)

where x ∈ Rk, y ∈ Rn−k, λ ∈ R and f, g are Cr functions of all variables. Let
M0 be a compact overflowing NHIM of the dynamical system (5), with λ = 0,
defined by,

M0 =
{

(x, y) ∈ Rk × Rn−k
∣∣y = h0(x), λ = 0,∀x ∈ U ⊂ Rk

}
. (6)

where h0 : Rk 7→ Rn−k is Cr and U is a compact connected subset. It follows
directly from Theorem 1 that since M0 is a compact overflowing NHIM there
is a one-parameter family of NHIMs defined by the parameter λ. Let fλ, gλ
be vector fields that are θ-close to f, g for sufficiently small |λ|. The graph
transform may be performed using M0 as initial condition to converge to Mλ

because it is a priori known that Mλ is to be found in a tubular neighborhood
of M0. In the current application the tubular neighborhood may be considered
as the one shown in Figure 2. Let x(t, x0, y0) ≡ F t(x0, y0) and y(t, x0, y0) ≡

y

x

ε-tubular neighborhood

M0

Mλ

a b

Fig. 2: Illustration of a tubular neighborhood (gray) of M0 (blue) which is
the overflowing NHIM in the unperturbed dynamical system. Mλ (red) is the
overflowing NHIM of a θ-close dynamical system which via Theorem 1 is inside
the tubular neighborhood. The compact domain is U = [a, b].

Gt(x0, y0) be the flow of Equations (5). We also use φt as a more compact

notation for the flow, i.e., φt(x, y) ≡
(
F t

Gt

)
(x, y). We illustrate the graph

transform in Figure 3 and define it as follows,

graph(hi+1) =

(
F t

Gt

)
(graph(hi)), (7)
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y

x
a b

graph(hi(x)) = Mi

φt(graph(hi(x)))

x̃

(x̃, ỹ)

φt(x̃, ỹ)

p1

Fig. 3: Illustration of graph transform. φt is the flow of the considered dynami-
cal system and ỹ = hi(x̃). For the consecutive iteration of the graph transform
φt(graph(hi(x))) is cut at the boundaries of the compact domain U = [a, b].

where the equality only holds after cutting of the manifold at the boundary of
the compact domain (in Figure 3 the interval [a, b]). The superscripts, i and
i+ 1, denote the iterative sequence and graph(hi) is the ith graph transform
defined by

graph(hi) = M i =
{

(x, y) ∈ Rk × Rn−k
∣∣y = hi(x),∀x ∈ U ⊂ Rk

}
. (8)

Remember that the domain of the graph transform is compact and the mani-
fold is overflowing by assumption; this together with several other properties,
e.g., a Lipshitz condition on the vector field, makes the graph transform a
contraction mapping on a suitable function space that ensures existence and
uniqueness of solutions. Note that the overflowing condition at the boundary
is necessary for the pre-image, under φt, of M i+1 to be inside a tubular neigh-
borhood of M i, cf. Figure 3. If all the hypotheses of Theorem 1 are satisfied
it implies that hi → h∞ as i → ∞ where graph(h∞) is the unique compact
overflowing NHIM, i.e., it satisfies the invariance (fixed point) equation

(
F t

Gt

)
(graph(h∞)) = graph(h∞), (9)

where it is again necessary to cut-off at the boundary. We point out that
the goal is to construct an approximation to graph(h∞). Another important
property of the graph transform is that the iterative sequence only converges
at a linear rate; this implies that the size of the difference in contraction rates
σ(p) will be important for practical purposes. We will refrain from commenting
on wether the graph transform is fast or slow. The objective measures are the
linear convergence rate; computational complexity, i.e., O(n3) vs. O(k3); and
the size of the spectral gap. Firstly, linear convergence is an obvious drawback;
secondly, if k � n methods that scale with k are advantageous; thirdly a large
spectral gap may give convergence after a few graph transform steps and small
spectral gaps will take many iterations. We therefore stress that the practical
usefulness is as all other methods dependent on the application at hand. Now
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let us illustrate how for example the spectral gap is crucial to the usefulness
of the graph transform by considering the simplest possible case [7];

ẋ = αx,

ẏ = −βy, (10)

where α, β ∈ R>0 and x, y ∈ R. Here we easily verify that

M =
{

(x, y) ∈ R× R
∣∣y = 0, for x ∈ [−1, 1]

}
, (11)

is an example of a compact overflowing NHIM (and also the unstable manifold
of the fixed point (0, 0)). The generalized Lyapunov-type numbers in this sys-
tem are given by ν = exp(−β) and σ = α/β, note that in this case the numbers
do not depend on the position p. Weak normal hyperbolicity or small spectral
gap corresponds to σ(p) being close to 1 and strong normal hyperbolicity or
large spectral gap corresponds to σ(p) being close to 0. In the same sense one
can imagine that strong normal hyperbolicity has a dampening effect on the
effects of nonlinear perturbations normal to the reduced manifold.

4 Numerical approximation of k-dimensional attractive
submanifolds via the graph transform

In this section we consider the numerical implementation of the graph trans-
form for the approximation of k-dimensional compact attracting NHIMs of
dynamical systems for use in dimension reduction. We present algorithms and
discuss their strengths and weaknesses. Our implementation is along the lines
of previously detailed accounts presented in [28], [29], [30], [31].

While the graph transform is conceptually easy to understand in the cur-
rent setting of dimension reduction and the numerical implementation is rather
straightforward; the difficulties are mostly of technical character. We have to
decide on a finite-dimensional representation of the manifold and there are
many possibilities. From a numerical point of view, the priority is to represent
the manifold to an acceptable accuracy with a low number of basis functions
and the manifold should be computationally inexpensive to evaluate. This is
of increasing importance as the dimension of the manifold increases.

For our implementation we have chosen the basis space to be tensor-
product splines (cubic ∼ C2) with uniform grid. The main advantage is that
the mesh is structured and they are cheap to evaluate. For a k-dimensional
manifold the tensor-product representation is

h(x) ≈
N1∑

j1=0

N2∑

j2=0

. . .

Nk∑

jk=0

cj1j2...jkφj1(x1)φj2(x2) . . . φjk(xk), (12)

where φji(xi) is a cardinal spline for the ith variable and the coefficients
cj1,...,jk ∈ Rn−k. The evaluation of such a tensor-product with uniform grids
is not expensive because the splines have compact support and furthermore
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there is only one type of spline in each variable called cardinal spline. Approx-
imations with global basis functions (spectral elements), would be much more
expensive to evaluate. A good property which is sacrificed is the possibility of
local refinement, e.g., this could be applied via finite elements (interpolation
on simplicial complexes) or hierarchical splines. For any scheme that we chose
we should also remember that we need the approximating function to have
high enough regularity for the bifurcation analysis, e.g., unless it is smoothed
afterwards then a piecewise-smooth approximation would not be suitable.

For the graph transform method we will discuss the two strategies for ap-
proximating attractive manifolds; both of which may benefit by small changes
in the iterative scheme depending on the application. The graph transform
was described in the previous section for the continuous setting and given by
Equation (7). The method is indeed simple to understand due to its geometric
nature; flow the whole manifold, M i = graph(hi), and reparameterize it. In the
discrete setting the method is more complicated because we can only flow a set
of discrete points and not the manifold as a set; in this context the topology
of the dynamics on the NHIM becomes relevant. We know that the general-
ized Lyapunov-type numbers are uniform estimates for the relation between
the manifold and the ambient space; the NHIM contraction and expansion
rates will in general be highly non-uniform; remember that a k-dimensional
compact overflowing NHIM M may have all sorts of attractors and repellers
that are possible in a k-dimensional dynamical system. We will discuss two
methods of iterating the graph transform for compact overflowing NHIMs and
refer to them as GT-bvp and GT-ivp, respectively. We illustrate the discrete
graph transform in Figure 4 for both GT-bvp and GT-ivp.

4.1 Graph transform via boundary value problems — GT-bvp

GT-bvp is the standard method by which the graph transform has been im-
plemented and this is by solving a boundary value problem (BVP) at each
discrete grid point. Assume that we start with M i = graph(hi), which is pa-
rameterized by and defined for all x ∈ U ⊂ Rk, where U is compact connected,
in fact for our applications U is simply a k-dimensional rectangle, i.e., M i is
diffeomorphic to U . Under the hypotheses of Theorem 1 M i+1 is diffeomor-
phic to M i and the pre-image of M i+1 is inside a tubular neighborhood of
M i; this means that the BVP and the graph transform is well-posed for some
fixed t > 0. The discrete graph transform follows directly from the definition
Equation (7) which leads naturally to

(
Id
hi+1

)
(x̃) =

(
F t

Gt

)
◦
(

Id
hi

)
(x) (13)

where x ∈ Rk is the unknown and x̃ is a grid point of which we want to
know the corresponding function value hi+1(x̃). Note that by the hypotheses
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a bx̃jx̃j−1 x̃j+1
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Fig. 4: Illustration of the two algorithm choices for the graph transform step.
Panel (a) shows the graph transform step by solving boundary value problems
via single shooting from M i to a grid point x̃j . Panel (b) shows the flow
of all grid points for flow time t, and how the two reparametrization steps
are completed. First, all grid points (black bullets) from M i are acted on by
the flow time t; they will in general end up off the grid (red bullets) and

a temporary manifold M̃ i+1 is interpolated from the scattered data set; the
values at grid points of M i+1 are assumed to be identical to M̃ i+1 and M i+1

is reinterpolate from these grid point values (black bullets).

of Theorem 1 and the definition of the setup x is uniquely determined by

x =

[
F t ◦

(
Id
hi

)]−1
(x̃), (14)
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and consequently the problem is k-dimensional. Written in a more standard
form for numerical BVPs we have

F t(x, y)− x̃j = 0,

Gt(x, y)− hi+1(x̃j) = 0,

y − hi(x) = 0,

(15)

where x is the unknown, x̃j is the jth grid point, j = 1, 2, . . . , N index for grid
points, y ∈ Rn−k and i = 1, 2, . . . , n− k. The BVP is defined by k+ (n− k) +
(n−k) equations and the unknowns (xj , y, h

i+1(x̃j)), i.e., k+(n−k)+(n−k)
unknowns and it is well-posed. However, since hi(x) is known a priori it may
be used that (y, hi+1(x̃j)) are explicitly given in the equations and only the
starting point x remains to be determined; this defines a k-dimensional BVP,

F t(x, hi(x))− x̃j = 0. (16)

Depending on the choice of solution method, the complexity of the Newton
iterations can be chosen to scale with the dimension of the manifold or the
ambient space Rn, i.e., O(k3) or O(n3). For a method that relies on Newton
iterations to solve a BVP for k unknowns this is the minimal complexity,
and this is a superior property and necessary advantage in the case where the
codimension of the manifold is large.

Conclusively we comment on some of the important details related to the
GT-bvp approach. With a specified flow time t, it is natural to consider the
problem of how to ensure convergence of the Newton iteration, and this can
be done via a simple homotopy (continuation) step from the trivial solution
for flow time t = 0. Hence under the hypothesis of Theorem 1 the continuation
problem in ε defined in the following way is well-posed

F εt(x, y)− x̃j = 0,

Gεt(x, y)− hi+1(x̃j) = 0,

y(i) − hi(x) = 0,

(17)

or

F εt(x, hi(x))− x̃j = 0, (18)

where ε is increased from 0 to 1 in steps. Collocation and shooting methods are
the standard methods for solving BVPs and depending on the choice of method
the continuation problem will be k- or n-dimensional. Since the BVPs are nat-
urally formulated as continuation problems numerical continuation packages
such as, e.g., CoCo and AUTO can be applied to solve the BVPs. Further
technical considerations in the implementation is the order of the polynomial
approximation in collocation schemes or the order of the integrators for shoot-
ing and error control. For many more details on BVPs and continuation, see
e.g., [1] [32].
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4.2 Graph transform via initial value problems — GT-ivp

The GT-ivp method is relying solely on integration followed by a reinterpola-
tion. Let X denote a suitably chosen discrete set of base points x ∈ U ⊂ Rk;
then the graph transform is simply the time-t flow of the set (X,hi(X)),

(
Id
hi+1

)
(X̃) =

(
F t

Gt

)
◦
(

Id
hi

)
(X), (19)

followed by a reinterpolation step of the new set (X̃, hi+1(X̃)) such as to
approximate the function hi+1. While each graph transform step is orders of
magnitude faster than solving BVP; it suffers from bad reinterpolations mainly
because of non-uniformity; in particular it is non-trivial to control the quality
of the reinterpolation of higher dimensional manifolds from scattered data;
however, for our application the manifold is represented by a single chart and
as a consequence we do not have to worry about the connectivity of the data
set. There are two natural choices for interpolating on this scattered data set;
one is via a higher-dimensional triangulation (Delauny, Voronoi) followed by
linear interpolation and for small flow time t the triangulation may still be
good. The second method is meshfree (or meshless) interpolation [33], [34] via
radial basis functions (Gaussians, Wendland, etc.) and it is precise for dense
covers. But we do not have the luxury of dense covers (dense cover of a k-
dimensional cube Nk points quickly gets expensive); furthermore, it may be
a difficult task to choose good shape parameters for the basis functions if the
data is sparse, e.g., for Gaussian basis functions φ(r) = exp(−c2r2) where the
parameter c must be chosen well and r = ||x− xj ||.

Compared with GT-bvp, GT-ivp has potential to be much faster but it may
suffer severely from the topology of the dynamics on the reduced manifold M
and care must be taken in the choice of flow-time in the graph transform; fur-
thermore, since M will in general have attracting and repelling neighborhoods
the points must be reinterpolated between each step to prevent accumulation
of the interpolation points in the attractors. In [30] three methods to iterate
the graph transform for attractive one- and two-dimensional NHIMs without
boundary (periodic orbits, tori) are presented, demonstrated and compared
thoroughly; however, for the application in dimension reduction with mani-
folds with boundary many significant details change. The manifolds in this
paper is constructed only using GT-bvp.

4.3 Modifying the graph transform to attracting submanifolds

One of the necessary conditions for the graph transform to converge in the
present formulation is that the manifold is overflowing. This condition is not
satisfied for attracting manifolds such as those usually approximated in dimen-
sion reduction. As it was mentioned earlier this implies that the pre-image of
M i+1 is not inside a tubular neighborhood of M i and consequently uniqueness
is lost. We illustrate this in Figure 5. However, in the case of model reduc-
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Fig. 5: Illustration of the consequences of violating the overflowing condition.
The red bullets show that the pre-image of the end-points are outside the
tubular neighborhood of M i.

tion there is a multitude of manifolds that are all good candidates for M∞.
As mentioned earlier this non-uniqueness is often encountered in applications
and we must modify the vector field at the boundary

∂M =
{

(x, y) ∈ Rk × Rn−k
∣∣y = h(x),∀x ∈ ∂U

}
, (20)

of the manifold. This may sound quite invasive, but in the case of dimension
reduction we can check if the approximated attracting submanifold is good or
not by comparison with the original models. In a discrete implementation such
modifications of the vector field in small neighborhoods of the boundary are
inconvenient, instead we will modify the graph transform steps by using ex-
trapolation at the boundary. We note that the choice of extrapolation method
is of course non-unique; in our implementations later we use a simple constant
extrapolation from the k-dimensional rectangle domain.

It should be remarked that, while the modification may seem harmless, an
extra effect comes into play; in the case of an overflowing compact NHIM the
error from each iteration and reparameterization is suppressed by the attrac-
tiveness and the fact that any pre-image of any point on M i+1 is inside the
tubular neighborhood of M i. When the overflowing condition is not satisfied
errors may be transported in through the boundary via the extrapolation step.

For the convergence of the graph transform in the construction of a good
approximate manifold M , the convergence criteria is usually

||hi+1 − hi|| < tol, (21)

and a measure for contraction rate is,

||hi+1 − hi||
||hi − hi−1|| . (22)

The norm in our implementation was the 2-norm, however, it was practical to
define another measure which we will describe in Section 6.
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5 Example application: Reduction of a nonlinear mechanical
problem

In this section we will approximate the attracting invariant manifolds via the
graph transform in an example of the mechanical vibrations of the transverse
vibrations of an Euler-Bernoulli beam with a torsional nonlinearity. The me-
chanical system is taken from [16] where dimension reduction is successfully
applied via the method of NNMs. We motivate the use of the graph transform
for dimension reduction in nonlinear mechanical systems by considering the
case where we have obtained a finite-dimensional ODE model from a PDE
formulation; assume that the ODE has the following structure,

Mẍ+ Cẋ+Kx = εf(x, ẋ, t, λ), (23)

where M,C,K ∈ Rn×n are the mass, damping and stiffness matrices, respec-
tively, x ∈ Rn and ε ∈ R. In order to keep the example simple, we assume
that M,C,K are symmetric positive definite and that C is chosen as lin-
ear modal damping; f ∈ Rn is smooth in all parameters and periodic, i.e.,
f(x, ẋ, t, λ) = f(x, ẋ, t+ 2π, λ). This allows the following modal form

p̈+ 2ξΩṗ+Ω2p = εg(p, ṗ, t, λ), (24)

where ξ is the modal damping factor and Ω is a diagonal matrix with entries
corresponding to the eigenfrequencies ωi of the undamped vibrations ordered
such that ωn > . . . > ω1 > 0. We put this system on standard first-order form,

ṗ = q,

q̇ = −2ξΩq −Ω2p+ εg(p, q, θ, λ),

θ̇ = 1,

(25)

or as blocks
ṗi = qi,

q̇i = −2ξωiqi −Ω2pi + εgi(p, q, θ, λ),

θ̇ = 1,

(26)

for i = 1, . . . , n, where the periodic coordinate is θ ∈ S1. Let ε = 0 and
disregard θ for a moment; in this case the origin is a global attractor and each
pi and qi approaches 0 at an exponential rate, i.e., exp(−ξωit). In this case
there is a hierarchy of unique normally hyperbolic attracting submanifolds;
the lowest dimensional is given by,

M =
{

(p, q) ∈ R2n
∣∣pi = qi = 0 for i = 2, . . . , n ∧ (p1, q1) ∈ V ⊂ R2

}
,

where V contains the origin. Note that the hierarchy is determined directly
by the ordering implicitly defined by the damping model. When ε = 0 the θ-
dependence is decoupled and this independent variable is varying periodically,
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i.e., the attracting submanifold is periodically varying and given by

M0 =
{

(p, q, θ) ∈ Rn × Rn × S1
∣∣pi = qi = 0

for i = 2, . . . , n ∧ (p1, q1, θ) ∈ V × S1
}
.

If we assume that the vector field has been modified such thatM0 is overflowing
then Theorem 1 provides the existence and uniqueness of a NHIM Mε for some
ε > 0, i.e.,

Mε =
{

(p, q, θ) ∈ Rn × Rn × S1
∣∣pi = hi(p1, q1, θ), qi = hi+n(p1, q1, θ)

for i = 2, . . . , n ∧ (p1, q1, θ) ∈ V × S1
}
.

From here on, the graph transform may be used in a homotopic continuation
for ε → 1, assuming that the conditions of Theorem 1 are satisfied. We note
that it may be quite instructive to consider the case where the system is linear
and harmonically forced, i.e., gi(θ) = Ai cos(θ); in this case the reduction im-
plies that the reduced variables relax to their periodic steady states, i.e., their
states only depend on θ; it is useful to remember this when thinking about
the same system with the addition of a weak nonlinearity. Note that param-
eters can be added to the construction by adding parameters as independent
variables in the dynamical system, i.e.,

ṗ = q,

q̇ = −2ξΩq −Ω2p+ εg(p, q, θ, λ),

λ̇ = 0,

θ̇ = 1,

(27)

where λ ∈ Rr and in this case the manifolds are then also parameterized
by λ, i.e., hi = hi(p1, q1, θ, λ). Hence such a manifold would be (3 + r)-
dimensional. The manifolds may naturally be constructed independently for
each parameter-value in a continuation scheme. Note that it would be a triv-
ial extension to add other types of time dependent forcing with other peri-
ods; of particular importance are then the smoothness requirements on g and
the overflowing condition. We remark that there exist other useful results,
that allow for equivalent analysis, e.g., persistence results in the noncompact
case [35], [36]. This can for example be useful for the analysis of systems with
general time dependence.

5.1 Harmonically forced Euler-Bernoulli beam with a torsional nonlinearity

As an example we apply the described graph transform to obtain a dimension
reduction of a nonlinear mechanical problem shown in Figure 6. The model is
taken from [16], where a dimension reduction is performed by the previously
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u

z

γt

k

f0 cos(ωf t)

Fig. 6: System sketch of the mechanical system: a harmonically forced Euler-
Bernoulli beam with a linear spring k at the end point and a torsional nonlin-
earity γt at the simply supported end.

mentioned method of NNMs. We restate the weak form and refer to [16] for
further details,

∫ t2

t1

{∫ l

0

(ρAüδu− EIu′′δu′′)dx− ku(l, t)δu(l, t)

− γt(u̇(0, t))δu′(0, t) + F (t)δu(l, t)

}
dt = 0, ∀t1 < t < t2.

(28)

Here, u = u(z, t) is the transverse displacement, z is the axial coordinate;
the overdot denotes derivation wrt. time t, and the prime denotes derivation
wrt. space z. Furthermore, l = 1 m is the beam length; ρ = 7860 kg/m3 is
the mass density; A = 0.0025 m2 is the cross-sectional area of the beam; E =
2 ·1011 N/m2 is the modulus of elasticity; I = 5.0 ·10−8 m4 is the cross section
area moment of inertia; k = 108 N/m is the stiffness of the spring at z = l;
F (t) = f0 cosωf t describes the harmonic excitation at x = l with f0 = 3·106 N;
γt is the torsional nonlinear force at z = 0 defined as

γt(u̇(0, t)) =
[
5 · 103 · [u̇(0, t)]2 + 2 · 104 · [u̇(0, t)]3

]
N, (29)

where N denotes the unit Newton. Subsequently, linear modal damping is
added to the model. After a suitable discretization, the system is represented
in a 12-dof system (n = 12) description in the usual second order form,

Mp̈+ Cṗ+Kp = G(t) +N(ṗ), (30)

where M,C,K ∈ R12×12 are the mass, damping and stiffness matrices, re-
spectively, and G(t) represents the harmonic forcing and N(ṗ) is the torsional
nonlinearity. Rescaling time, transforming the system to modal form and sub-
sequently to first order form as shown previously in order to obtain,

ṗ = q,

q̇ = −2ξΩq −Ω2p+ G̃(θ, λ) + Ñ(q, λ),

θ̇ = 1,

(31)
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where the compact domain is U = [a1, b1] × [a2, b2] × R2πZ. In other words,
U is the direct product of a two-dimensional rectangular region and a ’circle’;
and the attracting submanifold that we want to approximate is given by

M =
{

(p, q, θ) ∈ R12 × R12 × R2πZ
∣∣pi = hi(p1, q1, θ), qi = hi+n(p1, q1, θ)

for i = 2, . . . , 12 ∧ (p1, q1, θ) ∈ U
}
.

In [16] the invariant manifold is then constructed by transforming the first
mode to polar coordinates and then solving the invariance equation from an
initial hypersurface (k−1 dimensional) defined by the solution of the linearized
problem. In general, marching methods may be faster because they are not
based on an iterative contraction mapping principle, but if a marching method
is used to march in backwards time then a normally attracting manifold is
an unstable object, e.g., consider approximating the center stable manifold
marching from (0, 0) in the simple case given in Equation (10) with α < 0 and
|α/β| � 1, this yields an unstable algorithm, because the manifold is unstable
in backward time. The graph transform method does not share these problems;
in fact, when approximating the attracting submanifolds for this mechanical
system we could initialize the graph transform from the zero-solution, and it
converged to the manifold from this guess.

5.2 Results

Next we will review the results from the approximation via the graph trans-
form. In order for a dimension reduction to be a success in an application, it
is reasonable to demand that a prioritized set of conditions should be satis-
fied. Firstly, all qualitative measures of the limit sets are preserved, i.e., the
bifurcation structure of the reference model and the reduced model must be
identical. Secondly, quantitative measures are preserved, e.g., response ampli-
tudes of periodic solutions. Thirdly, the attracting manifold is invariant, i.e.,
if a trajectory is initialized on the manifold then it stays on the manifold.

In order to thoroughly test the two first conditions we construct a two-
parameter bifurcation diagram in frequency ωf and forcing amplitude f0. The
third condition is tested by initializing a trajectory on the manifold and com-
paring it with the trajectory of the full model; this is done in Section 6. Fur-
thermore, we compare a simple reduction based on linear projections with two
reductions based on the graph transform, where one manifold is constructed
for a fixed set of parameters and another which includes dependency on the
forcing amplitude f0.

We begin by explaining the two-parameter bifurcation diagram which we
computed from the full model. The numerical bifurcation analysis was per-
formed in MATLAB R© using the numerical continuation package CoCo [1]. In
the present case this was particularly convenient because the spline represen-
tation of the manifolds for the reduced equations could then be done via the



Dimension reduction in dissipative dynamical systems 19

’griddedinterpolant()’ function provided in MATLAB R2013a. In Figure 7 we
show the results of the bifurcation analysis, and since the system is periodically
forced we are considering families of periodic solutions, i.e., each point in the
bifurcation diagram on the manifold represents a periodic orbit. For the pre-
viously defined model parameters and with (ωf , f0) as bifurcation parameters.
In the diagram the ||p1||-axis, is the displacement of the first mode defined by
a Poincaré map as q1 changes sign from positive to negative velocity. The man-
ifold in the bifurcation diagram is often referred to as a nonlinear resonance
tongue; the red section of the manifold marks unstable periodic orbits while the
blue part is stable periodic orbits; the common boundary of the red and blue
manifolds is a smooth curve of fold points. The linear resonance of the system
corresponds to the first modal eigenfrequency ω1 = 222.43 rad/s. Dynamical
systems with such a type of nonlinear resonance tongue has the possibility of
hysteresis, i.e., increasing the frequency from ωf = 160 rad/s at (sufficiently
large forcing amplitudes) to ωf = 280 rad/s will give a discontinuous jump in
response amplitude (large to small) and vice versa.

(a)

(b)

Fig. 7: Bifurcation diagram of the 1:1 nonlinear resonance tongue of the ref-
erence model Equation (31). Blue parts denote stable periodic orbits and red
parts denote unstable.
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We compare the bifurcation diagram of the reference model with bifurca-
tion diagrams produced by linear reduction, GT-based reduction all param-
eters fixed and a GT-based reduction with the forcing amplitude f0 as an
independent variable.

The linear reduction is a linear projection onto the first mode, i.e., we con-
sider pi = qi = 0 ∀ i = 2, . . . , n. It is a good idea to check this in order to
see if a nonlinear reduction is necessary at all. In Figure 8 the full system is
compared with the linear reduction; the bifurcation structures of the two sys-
tems are topologically equivalent, but the quantitative prediction of response
amplitudes and fold points is very bad in the linear model, in particular the
hardening nonlinearity has a stronger effect in the linear case, this implies that
energy is transferred via nonlinear couplings.

(a)

(b)

Fig. 8: Comparison of nonlinear resonance tongues between the linear reduc-
tion (blue) and the reference (red). Note that both ||p1|| and fold points are
badly predicted.

Now we turn to the GT-based reductions. In the first case the attracting
submanifold is approximated for a fixed parameter set, i.e., the manifold is
3-dimensional. The results are shown in Figure 9; in general, the quantita-
tive and qualitative measures are fairly well approximated, and it is expected
that the errors increase as the parameter set changes for example when the
forcing amplitude changes away from the value of which the manifold was ap-
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proximated. In the last GT-based reduction we added the dependency on the

(a)

(b)

Fig. 9: Comparison of nonlinear resonance tongues between the GT-based
reduction with fixed parameters (blue) and the reference model (red). Note
that ||p1|| is very well predicted in a neighborhood of the construction values
(ωf , f0) = (242, 1) and fold points quite well predicted for the whole range.

manifold of the forcing amplitude f0 in order to show that the reduced model
can indeed approximate the reference model to high precision. The results are
shown in Figure 10.

Figures 8-10 are the maximum value of the displacement of p1, and so they
do not show how the reduced models approximates all degrees of freedom, this
was chosen such that a comparison with the linear reduction would be more
meaningful; Figure 11 shows this comparison for the manifold with interpo-
lated values of the force amplitude parameter, i.e., Figure 10 but with the
norm of all dimensions as the measure. Here we observe that the precision is
not as accurate, but this is not a problem as such; in Figure 12 we show that
it is easy to approximate the result of the reference model; this is done by
comparing a slice where a manifold is also constructed for a range of values
ωf = {160, 200, 240, 280} rad/s. Furthermore, in Figure 9 it is observed that
the reduced model with a manifold constructed at a fixed parameter set has a
systematic underestimation of response amplitude when f0 is larger than the
value for which the manifold was approximated and vice versa. Similarly, it
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(a)

(b)

Fig. 10: Comparison of nonlinear resonance tongues between the GT-based
reduction with parameter dependence in f0 (blue) and the reference model
(red). Note ||p1|| is very well predicted over all and that fold points are perfectly
predicted.

may be observed in Figure 12(a) that the norm of the solutions is overesti-
mated for ωf smaller than the value for which the manifold was approximated
and vice versa. This may be understood by considering the effect that forcing
amplitude and frequency have on the response to first order, i.e., basically
from linear analysis or something reminiscent of a lowest order perturbation
correction. For the frequency dependence we let all velocities be corrected by,

qi ≈ hi+n(p1, q1, ω
∗
f ) +

ωf − ω∗f
ω∗f

hi+n(p1, q1, ω
∗
f ). (32)

With this correction the perturbation correction is shown in Figure 12(b).
It is may be possible to do better corrections, we merely wanted to show
that corrections outside the reduced manifold have a good chance of behaving
’linearly’ in a system such as the one considered here.

6 Convergence — how invariant is the approximated manifold?

As mentioned earlier there is a satisfying theory of convergence for the graph
transform. In the current format since the boundary of the manifold is not
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(a)

(b)

Fig. 11: Comparison of nonlinear resonance tongues between the GT-based re-
duction with parameter dependence in f0 (blue) and the reference model (red).
Note ||X|| is the norm of the solution over all dimensions. Notice the system-
atic overprediction for ωf < 250 rad/s and underprediction for ωf > 250 rad/s,
where ωf = 250 rad/s is the value for which the manifold was constructed. Fur-
thermore, this reduced manifold is with added parameter dependence on the
forcing amplitude f0, this explains why the reduced manifold approximation
is intersecting the reference manifold in a curve with ωf ≈ 250 rad/s.

overflowing invariant a hypothesis of Theorem 1 is not satisfied and the con-
vergence should not necessarily be expected to be uniform. Furthermore, the
relevant measure for dimension reduction is more practical, i.e., while it may
be possible to converge to some strict tolerance between consecutive iterates
of the graph transform as in previous papers on the graph transform e.g. [31];
however, this convergence property seems to be too strict for practical pur-
poses. What we really want to know is how invariant the manifold is.

Let x(t) be an orbit from the full/reference model, equivalently let xred(t)
be an orbit of the low-dimensional reduced model and let x̃red be the mapping
that brings the reduced orbit into the full phase space, this is naturally done
via the constructed invariant manifold. Consider the following measure,

||x− x̃red||2 =

∫ T

0

(x− x̃red)2 dt, (33)
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Fig. 12: Full norm of solutions: Comparison of reference model (black curve)
with reduced models (blue, red, green). Panel (a) is based on a reduced man-
ifold with fixed parameters (ωf = 242 rad/s), notice the systematic over and
underestimation; Panel (b) is based on a reduced manifold with fixed param-
eters (ωf = 242 rad/s) with a semi-analytical first order correction; Panel
(c) is based on a reduced manifold with parameter dependence in ωf for
{160, 200, 240, 280} rad/s; Panel (d) is all approximations plotted together
against the reference model.

where T should then depend on the forcing period, i.e., some suitable number
of periods. This is the squared error and it may be rewritten in discrete form. In
the current implementation we applied a slightly different norm in the discrete
data by introducing a weighted scaling such that the individual dimensions
are expected to be scaled to O(1); this is done by a positive definite diagonal
matrix A that scales the dimensions according to the maximal amplitude of
the periodic orbit. The norm is defined by,

||X||2A = (AX)T · (AX) = XT (ATA)X, (34)
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where A ∈ Rn×Rn and X ∈ Rn×RN with N being the number of time steps.
The convergence criteria is defined as a relative measure,

e =
||X −Xred||A
||X||A

< Reltol. (35)

Since the idea of the convergence check is to measure how invariant the mani-
fold is, the initial condition to the orbits is chosen on the manifold away from
the stable limit cycles such that we also measure the transients on the mani-
fold. If the system was initialized off the manifold the initial transient would
count as an error and this would be misleading. This convergence measure
provides the means to determine optimal settings for basis function type, grid
type and stopping criteria when iterating the graph transform.

In the following we shall present some examples of this convergence test.
The approximated attracting submanifolds that where used for the compar-
isons where constructed using a uniform grid with (Np1 , Nq1 , Nθ) = (31, 31, 21)
and we find e < 0.01, i.e., the relative square error is less than 1%. A reference
orbit x(t) [red] and a reduced orbit xred(t) [blue ×’s] are shown in Figure 13
for a visual comparison of the 2nd and 12th slaved mode. It should already
be clear from the figures that the orbits agree, note that this is also the case
for the transients on the attracting submanifold, however, this type of visual
measure is not practical for manifolds of high codimension for example; the
figures serve as visual verification that the orbits may be approximated very
accurately.

The measure e is naturally not unique, it is a creative measure since the
orbits are not in any way dense on the manifold; furthermore, the choice of
norm and convergence criteria may be chosen suitably for given applications.
In Table I some values of e are shown for several variations of the grids and
iteration number. The iterations are initialized from the same initial guess,
and the results indicate that the graph transform quickly relaxes at a level
of relative error e; as it is expected for consistent numerical methods e does
indeed decrease with finer grids. A strict analysis of the convergence of the

Grid\ Ite. 10 100 1000
(8, 8, 4) 27.65 % 7.75 % 8.13 %
(8, 8, 8) 27.90 % 5.07 % 4.39 %
(8, 8, 16) 28.74 % 4.78 % 4.35 %
(16, 16, 4) 27.07 % 8.88 % 7.04 %
(16, 16, 8) 26.31 % 5.95 % 1.85 %
(16, 16, 16) 27.11 % 5.71 % 1.52 %
(32, 32, 4) 27.44 % 8.90 % 7.37 %
(32, 32, 8) 26.67 % 5.99 % 1.78 %
(32, 32, 16) 27.46 % 5.76 % 0.91 %

Table I: Convergence of invariance measure as a function of grid density and
graph transform iteration. Grid means (Np1 − 1, Nq1 − 1, Nθ − 1).

graph transform is not made in the traditional format, because the boundary
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Fig. 13: Phase plane visual comparison; red is the reference orbit; blue crosses
are the reduced model; green is the periodic orbit: Panel (a) shows the lowest
slaved mode (2) and Panel (b) shows the highest slaved mode (12). Note how
precise the transient details are captured.

is not overflowing invariant the convergence is not uniform, it oscillates but
converges at a linear rate as it should, see this in Figure 14. It seems reasonable
to hypothesize that more invasive boundary modifications such as fixing the
boundary would render the convergence uniform and the submanifold unique.
A regular convergence study still remains to be performed after a suitable
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Fig. 14: Verification of the linear convergence rate of the graph transform; d is
the 2-norm difference between the ith and (i+ 1)th iterate of the graph trans-
form. Note that, the convergence is nonuniform, this is due to the violation of
the overflowing condition; modifications that fix the boundary from a certain
iteration might possibly solve this. Furthermore, the number of graph trans-
forms is very large in the figure; in the practical applications it is unnecessary
to perform many graph transform iterations (cf. Table I). This convergence
study is made for (Np1 − 1, Nq1 − 1, Nθ − 1) = (8, 8, 8). While the graph
transform has converged to a tolerance that is 102 times smaller than that at
ite. = 1000 the relative convergence measure is basically (cf. Table I) unchang-
ing e = 4.37% and this exemplifies that the strict convergence measure is not
that relevant for the practical application in dimension reduction.

boundary modification; note however that the convergence measure of the
graph transform has little impact on the quality of the manifold (cf. Table I).

7 Discussion, conclusion and perspective

In the previous sections we demonstrated how the graph transform can be
applied in dimension reduction, we also provided the details for the numerical
implementation, and discussed the advantages and disadvantages compared to
other methods of construction. Summing up; the graph transform method is
algorithmically of minimal complexity in the Newton steps because it scales
with the spatial dimension of the manifold k− 1 for nonautonomous systems)
in solving the BVPs; furthermore, it is robust and independent wrt. the dy-
namics on the manifold, this makes it trivial to obtain good uniform meshes
and unlike many other methods the graph transform offers a theory of con-
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vergence; the only drawback being that the scheme is only linearly convergent
(cf. Figure 14) and this underlines the importance of the size of the spectral
gap; however, as Table I indicates the reduced manifolds are rather useful for
practical purposes for relatively early iterates. The violation of the overflow-
ing condition, in general, implies non-uniqueness and in order to overcome
this the graph transform was modified using extrapolation at the boundary
similar to [31]; we did not prove that the method always converges using this
modification, but as it was shown in Section 6 the modified algorithm does
share the linear convergence rate; although it is not uniformly convergent. We
remark that the algorithm was not optimized in the current study; a few ob-
vious changes that may increase the speed is, an adaptive scheme for varying
the flow time, e.g., as there is a sort of hierarchy of time scales that settle to
the reduced manifold at different time scales the flow time may be increased,
in the particular example such a time scale hierarchy could be found by the
linear modes, i.e., the 12th mode basically settles fast and the 2nd settles last.

Other methods march from an appropriate (k − 1)-dimensional boundary,
but these are vulnerable to the structure and topology of the dynamics on and
off the manifold; furthermore, marching methods in which the Newton steps
scale with the codimension of the attracting low-dimensional submanifold are
not suitable for high-dimensional systems (large-scale systems). In the pa-
per [37] a series of efficient methods for computing the stable two-dimensional
manifold of the origin in the Lorenz system are reviewed. The setting is dif-
ferent because the stable manifold is unique and attracting as a set and by
definition all points on the stable manifold converge to the origin as t → ∞;
this provides the possibility of a good global transversal initial condition, in the
present setting it is more problematic because the dynamics on the manifold
does not have such a simple structure. Nevertheless, with some modifications
the methods of advancing the front of these manifolds could be useful in the
setting of model reduction. In particular, the method of Krauskopf and Osinga
using geodesic circles [38] [39] and Hendersons computation via fat trajecto-
ries [40], [41], [42]; both methods generalize to higher dimensions. We remark
that a mixed scheme which takes advantage of the speed of low-complexity
marching methods and the superior convergence and stability properties of
the graph transform may be a better alternative than one or the other.

We remark that if dimension reduction is to be used in practice then it
is of importance that reduced models are validated by comparison with ref-
erence models; and this comparison should be performed via the bifurcation
structure found in the reduced models. The graph transform has Newton steps
of complexity scaling only with the manifold dimension k and this makes it
attractive for systems with high codimension as opposed to the traditional
methods.
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Appendix D

Beam theory

In this Appendix we derive the beam equation. The derivation is based on three
sources Landau [LL86], Klarbring [Kla06] and Antman [Ant06].

We derive the equations of motion from Euler’s Laws to describe the dynamics
of the beam. Euler’s Law of linear momentum,

∫

Ω

b dV +

∫

∂Ω

T · n dS =

∫

Ω

ρa dV, (D.1)

and Euler’s Law of angular momentum,

∫

Ω

x× b dV +

∫

∂Ω

x× (T · n) dS =

∫

Ω

x× ρa dV, (D.2)

where S and V denotes surface and volume, respectively, ρ is the mass density,
a is the acceleration, b is contributions from volume forces. In both equations
n denotes the normal vector directed out of beam volume Ω and T is the stress
tensor and T·n is the stress component in the normal direction n; the fields may
in general depend on space and time. In the following we imagine the beam to
be static and let a = 0, later we can add time dependence. The first assumption
is that the beam is so thin that we may approximate it with a curve. Essentially
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this means that Euler’s Laws may be reformulated in a simplified form,

∫ s

c

q dξ + f(s)− f(c) = 0, (D.3)

∫ s

c

r× q + l dξ + m(s)−m(c) + r(s)× f(s)− r(c)× f(c) = 0, (D.4)

where the terms outside the integrals are cut forces and cut couples (boundary
conditions for the end points) of the piece of rod [c, s], and l is a body force
couple that originates from a part of the surface of the beam. Assuming a
proper amount of regularity we differentiate the expressions and obtain the
local formulations,

∂f

∂s
+ q = 0, (D.5)

r× q + l +
∂m

∂s
+

∂

∂s
(r× f) = 0, (D.6)

substitution of Equation (D.5) in (D.6) simplifies the angular momentum equa-
tion,

∂m

∂s
+
∂r

∂s
× f + l = 0. (D.7)

Equation (D.5) and (D.7) are the equilibrium equations of the Cosserat1 theory
of beams/rods [Ant06]. Given a beam described by r(s) and the body force
q(s) and couple l(s), Equation (D.5) and (D.7) is in general a set of six linear
non-autonomous ordinary differential equations; it may be comfortable to under-
stand the system from this perspective, e.g., for the purposes of considerations
regarding uniqueness, existence and regularity.

Before we go on with the reduction of the equations we state the relations of
the one-dimensional theory of rods to the three-dimensional beams, see [Kla06],

1This theory is due to two brothers Eugene and Francois Cosserat in the early 20th century.
Although, it is unrelated, it is perhaps an interesting historical note that Eugene began his
studies at École normale supérieure in 1883 and one year later Jacques Hadamard became a
fellow student and the graph transform that is a cornerstone of Paper C is due to Hadamard
(1901).
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such that we understand the significance of the variables; we have

q(s) =

∫

A(s)

b dxndxb +

∫

∂A(s)

T(n) dr,

f(s) =

∫

A(s)

T(es) dxndxb,

l(s) =

∫

A(s)

(xnen + xbeb)× b dxndxb +

∫

∂A(s)

(xnen + xbeb)×T(n) dr,

m(s) =

∫

A(s)

(xnen + xbeb)×T(es) dxndxb,

where xn, xb are coordinates in the cross-sections. Seeing these equations, may
provides extra insight to the mathematical details of the problem. These rela-
tions are useful to understand how geometrical variations and parameter varia-
tions would come into play, but it is important to understand that they are not
particularly useful if the geometry is much more than trivial perturbations from
an easily parameterized object.

In the current study, we restrict the bending to a plane, and our beam is sym-
metric across the plane that contains the centroid of the beam. If we choose
a right-handed orthonormal coordinate system defined by the standard basis
{ex, ey, ez}, and we assume that the bending plane is span{ex, ez}, then we
may reduce the variables to,

q = qxex + qzez, f = fxex + fzez,

l = lyey, m = myey,

r = rxex + rzez.

(D.8)

Substituting the relations of Equations (D.8) in Equation (D.5) and (D.7) we
obtain the component form of bending in the plane,

∂fx
∂s

+ qx = 0, (D.9)

∂fz
∂s

+ qz = 0, (D.10)

∂my

∂s
+ νfx − ηfz + ly = 0, (D.11)

where ν, η are defined by ∂r
∂s = ηex + νez. If we furthermore assume that the

centroid of the undeformed beam is a subset B of the z-axis,

B = {(x, y, z) ∈ R3| x = y = 0, z = s ∈ [0, L]}, (D.12)

then the hypothesis of small displacements and small curvatureamounts to
||rx||/L � 1 and ||∂ssr||L � 1; since by definition η = ∂sr · ex = ∂srx we
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may conclude that the moment from ηfz may be neglected via the smallness
constraints for the cantilever beam (rx(0) = r′x(0) = 0). This is realized by
using,

||r′x(s)|| =
∣∣∣∣
∣∣∣∣r′x(0) +

∫ s

0

r′′x(ξ) dξ

∣∣∣∣
∣∣∣∣ ≤ ||r′x(0)||+ ||r′′x ||L� 1. (D.13)

Alternatively one may artificially extend the beam to R in a way such that
the smallness constraints still hold uniformly; in such a case Taylor’s theorem
[Rud64] may be applied to obtain a useful uniform estimate of the first derivative
of a function f assuming

c0 = sup
x∈R
|f(x)|, c2 = sup

x∈R
|f ′′(x)|, (D.14)

and letting h > 0 we write

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(a)h2, (D.15)

where a ∈ R.

f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(a), (D.16)

choose h =
√
c0/c2 to obtain,

sup
x∈R
|f ′(x)| ≤M√c0c2, (D.17)

where is M is a constant with M ≥ 0, thus we obtain ||r′x(s)|| � 1. These two
arguments may seem a bit pedantic, but we show them since, strictly speaking,
the smallness of the first derivative does not follow merely from the smallness
constraints.

It follows that ν = 1 to first order because r(s) is parameterized unit-speed. It
is worth noting that these conditions equivalently imply that the length L∗ of
the deformed beam is the same as the undeformed L to first order. In [Ant06]
it is remarked that η = 0 and ν = 1 means that the material is unshearable and
inextensible, respectively. Combining this with the Euler-Bernoulli constitutive
equation which says that the moment is linear in curvature, we may obtain the
Euler-Bernoulli beam equation.

We will not derive the Euler-Bernoulli constitutive equation here; it is as follows,

my = EI
∂2u

∂s2
, (D.18)
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where we let u denote the transverse displacement of the beam. Differentiating
Equation (D.11), applying η = 0 and ν = 1, and using Equation (D.9) and
(D.18) to obtain,

∂2

∂s2

(
EI

∂2u

∂s2

)
+
∂ly
∂s
− qx = 0. (D.19)

Again as a consequence of the smallness conditions we may interchange s with
z and u = uex likewise to obtain,

∂2

∂z2

(
EI

∂2u

∂z2

)
+
∂ly
∂z
− qx = 0. (D.20)

In our applications we are concerned with the forced transverse vibrations of
thin beams with constant cross sections and homogeneous material; so in order
to get some dynamics in the equation we can add this to the body couple ly and
body force qx.

For the body couple one may add the effect of rotational inertia of the cross

sections, ly = −ρIxx ∂3u
∂z∂t2 ; this effect is negligible in the present study because

the considered beams are thin and Ixx ∝ L2
thickness, hence to first order it is

reasonable to take ly = 0. The excitation and the linear momentum of the

moving body is added through the body force term qx = F (z, t)−ρA∂2u
∂t2 , and by

substitution we obtain Euler-Bernoullis beam equation for the small transverse
vibrations of a harmonically forced thin beam,

ρA
∂2u

∂t2
+ EI

∂4u

∂z4
= F (z, t). (D.21)
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Galerkin princple

We derive the weak form of the transverse vibrations of a beam in the following
way,

0 =

∫ L

0

(
ρA

∂2u

∂t2
+ EI

∂4u

∂z4
− F (z, t)

)
φ(z) dz

=

∫ L

0

[(
ρA

∂2u

∂t2
− F (z, t)

)
φ(z) + EI

∂2u

∂z2

∂2φ

∂z2

]
dz +

[
EI

∂3u

∂z3
φ− EI ∂

2u

∂z2

∂φ

∂z

]L

0

.

Since the beam is a cantilever, it has one end clamped (at z = 0) and one end
free (at z = L), i.e.,

u(0, t) =
∂u

∂z
(0, t) = 0, (essential bcs) (E.1)

∂2u

∂z2
(L, t) =

∂3u

∂z3
(L, t) = 0, (natural bcs). (E.2)

Essential boundary conditions are satisfied through the choice of approximating
function space, φ(0) = ∂zφ(0) = 0, whereas the natural conditions are satisfied
directly in the weak form, such that the weak form is then

0 =

∫ L

0

(
ρA

∂2u

∂t2
φ+ EI

∂2u

∂z2

∂2φ

∂z2
− F (z, t)φ

)
dz.
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Now let Sn = span(φ1(z), . . . , φn(z)) be a suitable chosen approximating finite-
dimensional subspace1 and let un =

∑n
i=1 ai(t)φi(z), Galerkins equations then

emerge from the constraint that the residual of the weak form is orthogonal to
the approximating subspace, hence inner-product between the residual and φj
must vanish for all j = 1, . . . , n

0 =

∫ L

0

(
ρA

∂2un
∂t2

φj + EI
∂2un
∂z2

∂2φj
∂z2

− F (z, t)φj

)
dz, (E.3)

0 =

∫ L

0

(
ρA

∂2ai
∂t2

φiφj + EIai
∂2φi
∂z2

∂2φj
∂z2

− F (z, t)φj

)
dz. (E.4)

Note that we sum over the repeated index i. Equation E.4 is a standard n-
dimensional T -periodically forced second order ODE,

Mä+Ka = f(t), (E.5)

where M,K ∈ Rn×n are symmetric matrices and f : R→ Rn and
a = (a1, . . . , an) ∈ Rn.

1It is implied that we are talking about a function space with an inner-product.
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