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ABSTRACT 

 

Several studies have indicated that cellulase action on cellulose fibers and their conversion to 

glucose is inhibited by lignin and lignin-derived phenolic substances, which are released during 

the pretreatment of lignocellulosic biomass. A prerequisite for optimization of the cellulose-to-

glucose conversion is to either get rid of the inhibitory substances or to alter them in a way, so 

they no longer decrease the action of cellulases.  

The main focus in the present work was the investigation of the influence of the enzymes that are 

being expressed from the white-rot fungi when lignin was present in the cultivation broth, on the 

cellulase catalyzed hydrolysis of pretreated biomass, and to understand the mechanism of their 

action on phenolic substances.  

In this thesis, 44 fungi from the genus Alternaria, Fusarium, Memnoniella, Stemphylium, Ulocladium, 

Ganoderma, Trametes, and Polyporus were evaluated for their ability to grow on lignocellulosic 

material, such as sugarcane bagasse – a competitive substrate for grain bioethanol. From this 

investigation, four white-rot fungi (Ganoderma lucidum, Trametes versicolor, Polyporus brumalis, and 

Polyporus ciliatus), were selected for the growth on lignin (lignin alkaline) and investigated for 

production of enzymes under such conditions (Paper I).  

G. lucidum was found to produce high amounts of laccase which corresponded to its exceptional 

growth on lignocellulosic substrate and lignin. This observation led to a hypothesis that this 

particular laccase might act in a synergistic way with cellulase preparations and yield in higher 

cellulose-to-glucose catalyzed hydrolysis. To test this hypothesis the laccase-rich crude extract 

from G. lucidum was added to the cellulase catalyzed hydrolysis of cellulose from the pretreated 

sugarcane bagasse (Paper I).  A positive outcome of this reaction, a 17% increase in the total 

glucose yields during cellulase catalyzed hydrolysis of cellulose, led to amplification of laccase 

gene and its expression in Pichia pastoris (Paper II). This approach was directed into obtaining a 

monocomponent laccase enzyme and to prove that the higher yields of cellulose-to-glucose 

conversion are partly due to the presence of laccase, and are not caused by the other proteins, 

present in the laccase-rich crude protein extract.  

The addition of the laccase from G. lucidum, expressed in P. pastoris resulted in a total increase in 

the glucose yields by 20 and 33% depending on the cellulase cocktail preparation. This discovery 

is significant considering the fact that the cellulase cocktail preparations, namely Cellic®CTec1 

and Cellic®CTec2, are improved in respect to phenolic-derived, and end-substrate inhibitors.  

Additionally, the molecular dynamics simulations (MD) of the obtained amino acid sequence of 

the laccase from G. lucidum highlighted a potential mechanism of laccase detoxification of the 

cellulase-pretreated-biomass-derived inhibitors (Paper II).  

The mechanism of laccase reaction on the phenolic substrates was further evaluated by the 

literature study of the reactions that take place in the catalytic pocket of this oxidoreductases and 

the structural alteration that can lead to a more robust, or completely inactive, laccase (Review 

paper).  
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DANSK SAMMENFATNING 

 

Adskillige studier har vist, at cellulase katalyseret nedbrydning af cellulose til glucose inhiberes 

af lignin og lignin-afledte phenoliske stoffer, som frigives under forbehandling af lignocellulose-

biomasse. En forudsætning for optimering af enzymkatalyseret cellulose-til-glucose konvertering 

er derfor enten at fjerne de inhibitoriske stoffer eller at ændre dem på en sådan måde, at de ikke 

inhiberer den cellulase katalyserede cellulose-nedbrydning.  

Det primære fokus i det foreliggende PhD arbejde var at identificere et eller flere enzymer, der 

produceres af hvide rådsvampe under deres vækst på lignin, med det formål at undersøge, 

hvorvidt sådan enzymaktivitet kan booste cellulase katalyseret hydrolyse af forbehandlet 

biomasse, og desuden at forstå mekanismen for disse enzymers katalytiske oxidation af 

phenoliske stoffer. 

I denne afhandling blev 44 svampe fra slægten Alternaria, Fusarium, Memnoniella, Stemphylium, 

Ulocladium, Ganoderma, Trametes, og Polyporus evalueret for deres evne til at vokse på 

lignocellulosemateriale, såsom sukkerrørsbagasse.  Sukkerrørsbagasse er den fiberholdige masse, 

som er tilbage efter ekstraktion af sukker fra sukkerrør, og blev valgt som et 

lignocellulosesubstrat, idet det vurderes som et konkurrencedygtigt substrat til cellulose-baseret 

ethanol produktion. Fra denne undersøgelse blev fire hvide rådsvampe (Ganoderma lucidum, 

Trametes versicolor, Polyporus brumalis, og Polyporus ciliatus), udvalgt til vækst-studier på lignin 

(alkalisk lignin og lignocellulose) og undersøgt for produktion af phenol-oxidativ enzymaktivitet 

(Paper I).  

Blandt disse blev G. lucidum identificeret som den bedste producent af laccase aktivitet, et resultat 

som stemte overens med denne organismes fremragende vækst på lignocellulose-substratet og 

lignin. Denne observation førte til den hypotese, at den særlige laccase, som G. lucidum 

producerer under disse vækstbetingelser, kan have synergistisk effekt på cellulase katalyseret 

nedbrydning af lignocellulose, og give højere udbytte i cellulose-til-glukose katalyseret 

hydrolyse.  For at teste denne hypotese, blev det laccase-rige råekstrakt fra G. lucidum tilsat til 

cellulase katalyseret hydrolyse af cellulose i forbehandlet sukkerrørsbagasse (Paper I). Der blev 

opnået et positivt resultat af denne reaktion i form af en 17% stigning i det samlede glukose 

udbytte ved den cellulase katalyserede hydrolyse af cellulose.  Det videre arbejde førte til 

succesfuld kloning og ekspression af det pågældende laccase gen fra G. lucidum i P. pastoris 

(Paper II). Denne fremgangsmåde blev valgt for at opnå produktion af monokomponent 

laccaseenzym, med henblik på at bevise, at det højere udbytte af cellulose-til-glucose omdannelse 

med det laccase-rige råekstrakt fra G. lucidum skyldtes tilstedeværelsen af laccase-enzymet, og 

ikke vat forårsaget af andre proteiner som var til stede i laccase-rige råekstrakt. 

Tilsætning af laccase fra G. lucidum, udtrykt i P. pastoris, til cellulase-katalyseret nedbrydning af 

sukkerrørsbagasse resulterede i en samlet stigning i glucoseniveauer udbytter ved 20 og 33% 

afhængigt af cellulase-præparatet. Denne opdagelse er signifikant i betragtning af den 

kendsgerning, at de benyttede cellulasepræparater, nemlig Cellic ® CTec1 og Cellic ® CTec2, er 

de nuværende industrielle state-of-the art præparater.  
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Molekylære simuleringer (MD) af enzym-strukturen, baseret på den opnåede aminosyresekvens 

af laccasen fra G. lucidum, indikerede muligheden for docking af p-coumarinsyre i enzymets 

aktive site, dvs. at direkte interaktion med phenol er en potentiel mekanisme som kan forklare 

laccase-katalyseret afgiftning (via oxidation af phenol inhibitorer) under cellulase katalyseret 

nedbrydning af forbehandlet biomasse (Paper II). 

Mekanismen for laccases reaktion på phenoliske substrater blev yderligere vurderet udfra en 

litteratur-baseret undersøgelse af de reaktioner, der finder sted i den katalytiske lomme af denne 

type oxidoreduktaser. Ligeledes blev de strukturelle ændringer, der kan føre til hhv. mere 

robuste eller inaktive laccaser kortlagt (Review paper). 
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HYPOTHESIS AND OBJECTIVES  

FOR THE PHD THESIS 

 

The main purpose of this chapter is to summarize the main hypothesis and objectives that were 

the basis for the PhD study. The main goals for each of the research papers are therefore 

presented below: 

 

Paper I  

Identification of a highly active laccase from a novel strain of Ganoderma lucidum. 

 

Hypotheses  

 The hypothesis for Paper I was that if white-rot fungi are capable of growing and 

destroying lignin, then they must produce enzymes that are responsible for lignin 

modification or its degradation. Most probably, such enzymes catalyze the redox reactions 

 

 The enzymes involved in the lignin degradation or detoxification of the fungal growth 

environment from the growth limiting factors are suspected to be expressed during the 

organism cultivation on lignin (LA – lignin alkaline) and/or lignin containing 

lignocellulosic materials (SCB – sugarcane bagasse) 

 

 These enzymes may therefore be useful in boosting lignocellulose degradation during 

cellulase catalyzed hydrolysis, by either directly modifying the lignin to allow better access 

for the cellulases, or – more likely – by catalysis of lignin derived phenols to lesser 

inhibitory compounds. As the result of that enzymatic action (cellulase plus laccase) we 

expect to obtain a higher release of monosaccharides which could be used in the bioethanol 

production 

 

Objectives  

 To test the hypotheses, forty fungal strains (described in detail in Paper I), selected on a 

priori knowledge of their lignocellulosic habitat conditions, would be evaluated for their 

ability to perform growth when LA and/or SCB were added to the cultivation medium in 

order to stimulate their lignin modifying enzyme production 

 

 The proteins released during the fungal growth would be evaluated for their activity to 

oxidize phenolic and/or phenolic-derived substrates (that the lignin structure is built of)  
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 The protein that shows activity towards the tested phenolic-derived substrates would be 

analyzed for its amino acid sequence (MALDI-TOF/MS analysis) and identified to which 

class of oxidizing enzymes it belongs (lignin peroxidase, manganese peroxidase, laccase) 

by amino acid sequential blasting in the protein database  

 

Paper II 

A novel laccase from Ganoderma lucidum, recombinant enzyme expression, and the boosting of 

lignocellulose biomass degradation.  

 

Hypotheses  

 The cellulase action during hydrolysis of cellulose is retarded by lignin or inhibitory 

lignin derivatives (see section; 2.1.3.1 Fate of lignin – factors limiting the cellulolytic 

hydrolysis of biomass). We expect that the enzymatic modification of these inhibitory 

substances by enzymes produced by white-rot fungi would boost cellulase catalyzed 

cellulose degradation 

 

 In other words, the addition of the laccase-rich protein extract from G. lucidum to the 

cellulase catalyzed hydrolysis of the pretreated SCB would enhance the yields of released 

glucose (Paper I), and therefore we expect that a laccase activity is responsible for this 

phenomenon. The mechanism of obtaining increased glucose yields may follow either 

detoxification of the pretreated material, lignin degradation to smaller compounds that 

will not bind cellulases nonspecifically, or polymerization of small components to larger 

ones that will no longer be able to inactivate cellulases 

 

Objectives  

 To clone the laccase gene from G. lucidum and express it under the AOX1 promoter in a 

high copy number 

 

 To add the expressed in P. pastoris laccase from G. lucidum to the same pretreated 

lignocellulose preparation as described in Paper I, and evaluate its effect on the overall 

glucose yields released during cellulase catalyzed hydrolysis of lignocellulose 

 

 To evaluate the optimal temperature and pH conditions for obtaining maximal yields of 

glucose 

 

 To perform molecular dynamic (MD) simulations of the cloned and expressed in P. 

pastoris laccase (LacGL1) with the most dominant phenolic inhibitor present in the steam-

exploded hydrolysates of the sugarcane bagasse  



  

   xiii 

 To evaluate the structural changes in the substrate binding site of the LacGL1 laccase in 

comparison to a well known and studied laccase model structure from Trametes versicolor, 

and to propose a hypothetical mechanism for the increased total glucose yields during 

cellulase catalyzed hydrolysis of the pretreated SCB 

 

 

Research Review 

Structure, functionality, and tuning laccases for their industrial applications. 

 

Hypotheses 

 Laccases are suspected to take part in the delignification/detoxification process of the 

wood (see section; 3.2 Lignin modifying enzymes – why focus on laccases?). Therefore, if the 

3D model structure of the expressed (G. lucidum) laccase shows structural similarity to 

the well studied laccase from Trametes versicolor then it could indicate that the oxidative 

catalysis is comparatively good for the G. lucidum enzyme. 

 

 The exact mechanism of laccase action in lignin degradation/depolymerization is not 

known. Therefore, by trying to understand in detail the structural features and the step-

by-step catalytic mechanism, it would be easier to interpret the obtained results (Paper I 

and Paper II) and the possible unique features of G. lucidum laccase (Review paper). 

 

Objectives  

 To understand the mechanism and specific sub-reactions that take place in the catalytic 

pocket of laccases (reduction of dioxygen to water) and how that process/mechanism can 

influence or contribute to lignin depolymerization 

 

 To understand how the electrons, that are abstracted from phenoxy radicals, migrate 

within the copper centers that are responsible for catalysis (T1-Cys-His-T3β pathway) 

 

 To understand what happens to the substrate once it is being oxidized by laccases 

(oxidation of phenolic and non-phenolic substrates) 

 

 To focus on the laccase features, such as the redox potential that define how good the 

laccase is in potential degradation/detoxification of lignin 

 

 To focus on laccase structural regions that improve enzyme’s performance, such as the 

substrate binding loops, amino acids that coordinate to the T1 and T2/T3 Cu sites 
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 To focus on laccase structural regions that decrease or even totally inactivate the enzyme, 

such as the C-terminal region  

 

 To understand the structural features of laccases (fold and copper binding) and their 

potential role in lignin depolymerization/degradation processes 
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CHAPTER 1 

  

INTRODUCTION 

The biofuel production from the lignocellulosic material is an alternative to the rising demands 

for oil in the transportation sector, especially in the USA and Asia (India, China). The need for 

higher ethanol production is caused by an increase number of vehicles per citizen, booming 

infrastructure, high prices for the depleting fossil oil, and the desire of the politicians to become 

independent of the foreign oil suppliers (Edenhofer, 2011).  

The world fuel production by feedstock ranges from 61% for sugar crops (e.g. sugarcane bagasse, 

sugar beet) and 39% for grains (e.g. corn), with an area distribution as depicted in Fig. 1. 

 

Figure 1. The world’s fuel ethanol production prognosis for 2013 (Berg and Licht 2010, Ministry of Economy, Trade and 

Industry, Japan). 

The biofuel production sector uses lignocellulosic materials to produce ethanol. However, the 

nature of the lignocellulose is complex and resistant to the enzymatic attack. Therefore, the 

lignocellulosic biomass needs to be subjected to pretreatment. Pretreatment is a process where the 

structure of lignin, cellulose and hemicellulose is altered, in order to increase the surface area of 

the material, leading the same to an easier access to the cellulose and hemicellulose fibers. These 

fibers can, in turn, be hydrolyzed by cellulases to monosaccharides. Glucose, and now also 

xylose, are the two most important carbon sources for microbial fermentation where the 

metabolic end product is ethanol.  

The main obstacle to the cellulolytic conversion of cellulose to glucose is the presence of lignin 

and lignin-derived phenolics that are released after pretreatment and which tend to retard the 

enzymatic conversion (Palonen et al. 2004; Selig et al. 2007). Despite the significant progress, 

recently been made with respect to improving the cellulolytic enzyme blends and minimizing the 
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cellulolytic enzyme adsorption to lignin by development of integrated pretreatment systems for 

removing the lignin from pretreated biomass, there is a surprising scarcity of work on enzymatic 

modifications of lignin and lignin-derived compounds to improve lignocellulose processes (Koo 

et al. 2012; Yang et al. 2012). 

In nature, there exist microorganisms that can efficiently degrade lignin in wood. These 

microorganisms, namely white-rot fungi which are proven to be the best lignin degraders 

(Kawase 1962), can completely devoid wood of lignin. Their enzymes could therefore be of a big 

value for further improvements of the cellulolytic enzymes blends for the biofuel production and 

make the cellulose-to-glucose conversion less laborious.  
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CHAPTER 2 

  

COMPOSITION OF LIGNOCELLULOSIC MATERIAL 

 

 

In a process of understand the lignin degradation mechanism and the obstacles that the 

microorganisms need to overcome in order to get the access to the plant polysaccharides, one 

needs to learn and be aware of the structure of the lignocellulosic material.  

 

2.1  The Plant Cell Layers 

The plant cell wall consists of several layers (Fig. 2.1 A), which include; middle lamella (ML), 

primary wall (P), inner layer of the secondary wall (S1), middle layer of the secondary wall (S2), 

inner layer of the secondary wall (S3), and wart layer (W) (Sjöström, 1993). These walls provide 

mechanical strength, but also have ability to expand allowing the plant cells to grow and divide.  

 

  

 

 

 

       

 

Figure 2.1 Representation of the plant cell walls; A) Wood cell structure showing the middle lamella (ML), the primary 

cell wall (P), and the secondary cell wall comprising of three layers (S1, S2, S3) (Côté, 1967); B) The primary cell wall with 

cellulose, hemicellulose and  fibers, embedded in lignin (Rosgaard et al. 2005). 

 

The middle lamella’s function is to cement two adjoining cells of the cell wall together. Early in the 

growth development of the plant, it mainly contains pectic substances which eventually become 

highly lignified (Alberts et al. 2008). The primary wall is generally thin (0.1-0.2 µm), flexible, and 

extensible layer formed while the cell is growing. It mainly consists of cellulose, hemicellulose 

and protein and is completely embedded in lignin (Fig. 2.1 B). The secondary wall is a thick layer 

formed inside the primary wall, after the cell is fully grown. It is build of three layers namely S1, 

S2, and S3 (as described above), which consist mostly of cellulose microfibrils wounded around 

the plant cell wall in a neatly organized matrix of hemicellulose and lignin with different 

orientations in each layer (Sjöström, 1993; Krogh, 2008). The warty layer is a thin amorphous 

membrane located in the inner surface of the cell wall in all softwoods and hardwoods, 

A B 
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containing deposits of still unknown, but characteristic for each species, composition (Sjöström, 

1993). 

 

2.1.1  Cellulose 

Cellulose is a linear polymer of D-glucose monomers, linked by β-1,4-glucosidic bonds in which 

every second residue is rotated 180° around its longitudinal direction (Fig. 2.1.1 A). The linearity 

of the cellulose chain is stabilized through inter- and intramolecular hydrogen bonds (Fig. 2.1.1 

A) (Gardner and Blackwell, 1974). Typically, 36 cellulose chains, with 10.000 D-glucose molecules 

each, having the same direction but a different starting and ending point, assemble in one 

microfibril (5-15 nm in diameter) (Krogh, 2008). The microfibril is greatly stabilized through inter- 

and intramolecular hydrogen bonds, which prevents cellulose from the microbial degradation 

and penetration by as small molecules as water (Lynd et al. 2002).  From the structural point of 

view, microfibrils are heterogeneous in structure and comprise of highly ordered (crystalline) 

regions, which are alternated by less ordered (amorphous) regions (Sjöström, 1993). The 

amorphous regions of cellulose also have weaker intrermolecular hydrogen bonds. Microfibrils 

build up fibrils and finally fibers (Fig. 2.1.1 B). In addition to crystalline and amorphous regions, 

cellulose fibers contain various types of irregularities, such as kinks, twists of microfibrils or 

voids such as surface micropores, large pits, and capillaries (Lynd et al. 2002). 

In general, cellulose gives rigidity, but to confer the rigidity, e.g. to a stem, there is a need for 

other materials that can stick and glue the polysaccharides together. The stickness is caused by 

hemicellulose and the glue is lignin (Krogh 2008).  

 

Figure 2.1.1 A) Inter- and intramolecular hydrogen bonds in cellulose; B)  SEM image of the cellulose fibers, available at 

http://www.personal.psu.edu/tjr5043/extened%20text/index.html 

 

2.1.2  Hemicellulose 

Hemicellulose, in contrast to cellulose, is a heterogeneous polysaccharide and functions as an 

interlock to the cellulose microfibrils. Hemicellulose can be a branched chain polysaccharide of 

both different hexoses and pentoses. The hexose monomers are mainly D-glucose, D-mannose, D-

galactose, and the pentose monomers are mainly D-xylose and L-arabinose (Krogh, 2008). 

A B 

http://www.personal.psu.edu/tjr5043/extened%20text/index.html
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Another monomeric component that is also present in the hemicellulose is uronic acid (Sjöström, 

1993). The hemicelluloses from different types of wood, e.g. softwood and hardwood, differ both 

in structure and amount (Table 2.1.2). In hardwood (angiosperm tree), e.g. birch, beech, poplar, 

aspen or oak, the predominant hemicellulose type is glucuronoxylan (O-acetyl-4-O-

methylglucurono-β-D-xylan). On the other hand, softwood (gymnosperm tree) e.g. spruce, pine 

or fir is mostly (20%) composed of galactoglucomannan (Sjöström, 1993). In the gras family 

(poaceae), e.g. rice, wheat, oat and switchgrass is mainly glucoarabinoxylan as in hardwood, but 

in contrast the substituting glucouronic acid is not methylated (Carpita, 1996). For a more 

detailed description of grass hemicellulose (Carpita, 1996) and hardwood and softwood 

celluloses (Sjöström, 1993). 

Table 2.1.2 The major hemicellulose components (Sjöström, 1993) 

   Composition 
Hemicellulose type Occurrence Amount (%of wood) Units Molar ratio Linkage 

Gallactoglucomannan Softwood 5-8 

β-D-Manp 
β-D-Glcp 
α-D-Galp 

Acetyl 

3 
1 
1 
1 

14 
14 
16 

(Galacto)glucomannan Softwood 10-15 

β-D-Manp 
β-D-Glcp 
α-D-Galp 

Acetyl 

4 
1 

0.1 
1 

14 
14 
16 

Arabinoglucuronoxylan Softwood 7-10 

β-D-Xylp 
4-O-Me-α-D-

GlcpA 
α-L-Araf 

10 
2 

1.3 
6 

14 
12 
13 
13, 
16 

Glucuronoxylan Hardwood 15-30 

β-D-Xylp 
4-O-Me-α-D-

GlcpA 
Acetyl 

10 
1 
7 

14 
12 

Glucomannan Hardwood 2-5 
β-D-Manp 
β-D-Glcp 

1-2 
1 

14 
14 

β-D-Manp: β-Mannopyranose, β-D-Glcp: β-D-Glucopyranose, α-D-Galp: β-D-Galactopyranose, β-D-Xylp: β-D-Xylopyranose, 4-O-Me-
α-D-GlcpA: 4-O-Methyl-α-D-Glucuronic Acid, α-L-Araf: α-Arabinofuranose,  

 

2.1.3  Lignin 

Lignin derives from a Latin word lignum which means wood. Lignin is an integral part of 

secondary cell walls and its main function is to strengthen and conduct the water in the plant 

stems. Due to its hydrophobic nature and crosslinking with polysaccharides, lignin is a barrier for 

water to access the cell walls. Lignin is a heterogeneous biopolymer build of three phenylpropane 

units (Fig. 2.1.3); guaiacyl (from the precursor coniferyl alcohol), syringyl (from the precursor 

sinapyl alcohol), and p-hydroxyphenyl (from the precursor p-coumaryl alcohol).  
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Figure 2.1.3 Schematic representation of three main monolignols forming a three-dimensional network of lignin.  

 

 Those three building blocks of lignin are generated from D-glucose through complex reactions 

catalyzed by various enzymes (Sjöström, 1993) and their amount differs significantly between 

hardwood, softwood and grasses. For example, there are 98% of guaiacyl units in softwood, Cycas 

revoluta, and 88% in Podocarpus macrophyllus. Softwood is almost completely devoid of syringyl 

units and instead contains p-hydroxyphenylunits (Gross, 1980). In contrast to softwood, 

hardwood contains a higher amount of syringyl units, whose content can vary from 40% (beech) 

to 84% (Eucalyptus globulus) (Choi et al. 2001; Pinto et al. 2005). The syringyl unit has two 

methoxy groups on the phenyl ring, whereas guaiacyl has one that confers different chemical 

properties and reactivity. One theory is that guaiacyl lignin keeps the lignin-cellulose more 

densely packed that syringyl lignin, which might be the reason for restricted hydrolysis of 

cellulose (Krogh, 2008). The radical coupling of the monomeric phenylropane units yield in a 

complex irregular matrix (Fig. 2.1.4) where the single phenylpropane units are joined together by 

variety of linkages. The model lignin presented by Adler (1977) consists of 16 phenylpropane 

units and it represents only a fragment of the lignin matrix (Sjöström, 1993). The high variability 

in the molecular structure of lignin is to a large degree due to the different resonance structures of 

the phenoxy radicals (Durbeej et al. 2003).  The linkage type in lignin differs significantly in 

softwoods and hardwoods (Table 2.1.3), however, the most common linkages are β-O-4, β-5, β-β, 

β-1, 5-5, and 5-O-4 (Fig. 2.1.4; Table 2.1.3). 

Lignin has also been reported to bind to hemicellulose and probably also cellulose in the so-called 

lingo-cellulose- or lignin-carbohydrate complex (Fig. 2.1.5) (Fenegel and Wegener, 1984; Sjöström, 

1993) which might be responsible for structural enforcement of lignocellulose structure. The 

covalent binding between lignin and hemicellulose can be either of an ester or ether type (also 

glycosidic bonds are possible).  

 
 
Figure 2.1.5 Examples of suggested lignin-carbohydrate bonds; 1) an ester linkage to xylan through 4-O-methyl 
glucuronic acid; 2) an ester linkage to xylan through arabnofuranose unit; 3) an ether linkage to galactoglucomannan 
through a galactopyranose unit. 
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 Figure 2.1.4 Adler’s (1977) fragment of softwood model lignin. The most common linkages are bolded black. 

 

Table 2.1.3 Percentage of different types of linkages connecting  
the phenylpropane units in lignin (Adler, 1977; Sjöström, 1993) 

Linkage typea Dimer structure 
Percent of the total linkage 

Softwood 
(spruce) 

Hardwood 
(birch) 

β-O-4 Arylglycerol-β-aryl ether 50 60b 
α-O-4 Noncyclic benzyl aryl ether 2-8 7 

β-5 Phenylcoumaran 9-12 6 
5-5 Biphenyl 10-11 5 

4-O-5 Diaryl ether 4 7 
β-1 1,2-Diaryl propane 7 7 
β-β Linked through side chains 2 3 

 

         

a The corresponding structures are presented below 
b 40% of the arylglycerol-β-aryl ether structure is of guaiacyl type and 60% is of syringyl type  
 

α-O-4 

β-5 

5-5 

β-O-4 

4-O-5 

β-1 

β-β 
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2.1.3.1  Fate of Lignin – Factors Limiting the Cellulolytic Hydrolysis of Biomass 

The steam explosion is a pretreatment process where biomass is subjected to high-pressure steam 

followed by a rapid decompression, which forces the fibrous material to “explode” into 

component fiber and fiber boundless (Martin-Sampedro et al. 2011). The high pressure steam 

modifies the structure of the plant cell wall, resulting in a partial hydrolysis of hemicellulose, 

leaving cellulose, the rest of the hemicelluloses, and chemically modified lignin (Moilanen et al. 

2011). Therefore, steam explosion is effective in opening up biomass structure and increasing 

accessibility of cellulosic fibers to cellulases (Zimbari et al. 2002). What exactly happens to the 

lignin structure is not known. Boussaid et al. (2000) suspects that lignin is not substantially 

removed in the pretreatment, but is rather momentarily solubilized and relocated. On the other 

hand Ximenes et al. (2010) claims that during the pretreatment process the lignin structure is 

undergoing significant changes, which mainly include its break down to small phenolic 

compounds. Additionally, from the work on aspen wood it has been concluded that during 

steam explosion processes almost simultaneous depolymerization and repolymerization 

reactions in lignin may take place by the formation of carbonium ions which is caused by the 

acidity created during the pretreatment (Li et al., 2007). Both reactions types are thought to 

originate from benzyl alcohol structures in the lignin.  

Pretreatment of lignocellulosic materials is essential in order to enhance the cellulose surface area 

to the cellulases. However, the pretreatment step tends to generate the production of the 

inhibitory compounds that originate from the breakdown of cellulose, hemicellulose and lignin 

(Figure 2.1.3.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.3.1. Plant cell wall derived inhibitors after pretreatment process. The amount and type of the inhibitor may 

vary depending on the pretreatment method applied. Figure adapted from Chandel (2011). 

 

 5-hydroxymethyl 

furfural (HMF) 

 Furfurals 

 5-hydroxymethyl furfural (HMF) 

 weak acids (acetic acid, formic acid, 

levulinic acid) 

 Phenolics (vanillin, 4-

hydroxybenzaldehyde, 

ferulic acid, p-coumaric 

acid, syringaldehyde) 
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The phenolic substrates, which originate from the lignin degradation and have been discovered 

to significantly inhibit cellulase activity, at µM to mM concentrations causing the inactivation of 

cellulases by as much as 20-80% are; 4-hydroxybenzoic, p-coumaric, ferulic, tannic, gallic and 

hydroxybenzoic acid followed by guaiacol and vanillin (Klinke et al. 2004; Ximenes et al. 2011). 

Out of all inhibitory compounds mentioned, the one that deactivates cellulases in the larger 

extent is tannic acid (Ximenes et al. 2011). The same substances can additionally inhibit the 

fermentative organisms by affecting their cellular physiology (disturbing the function of 

biological membranes, leading to poor microbial growth) (Chandel et al. 2011). Furthermore, the 

use of cellulases in the hydrolysis of pretreated lignocellulosic biomass is limited by the presence 

of unmodified during pretreatment step lignin, which is also known to reduce the action of 

cellulases on the carbohydrate substrate by binding them nonspecifically (Moilanen et al. 2011).  

It seems as if the cellulolytic hydrolysis of biomass was directly dependent on the fate of lignin 

and its modifications during the pretreatment process. Therefore, it is essentially important to 

optimize the enzymatic hydrolysis of the pretreated biomass. In the study described in Paper I 

and Paper II, an effect of laccase addition to the cellulase catalyzed hydrolysis of pretreated (by 

steam explosion) sugarcane bagasse was evaluated. The laccase from G. lucidum was found to 

increase the yields of cellulose-to-glucose conversion, overcoming the presence of cellulase-

limiting factors by modification and/or removal of lignin. A hypothetical mechanism of such 

detoxification was also proposed (Paper II). 
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CHAPTER 3 

 

 

FUNGAL DEGRADATION OF  

LIGNOCELLULOSIC PLANT MATRIALS 

 

3.1  White-rot Fungi – Superior Lignin Degraders 

The only organisms known to extensively degrade lignin are fungi (Kirk and Farrell, 1987; Reid, 

1995). They are divided into three different groups based on the type of the rot they produce 

during they proliferation on wood. 

The most effective lignin degraders are basidiomyceteous white–rot fungi (Gilbertson, 1980). They 

generally degrade hardwood better than softwood, which is suspected to be due to higher 

presence of guaiacylpropyl (G) vs. syringylpropyl (S) units in softwood (Blanchette et al., 1988). 

In general (G) units are more resistant to degradation. White-rot fungi are able to completely 

mineralize both the lignin and carbohydrate components of wood. Some species (simultaneous 

rots) remove lignin and carbohydrate (in the form of hemicellulose) at the same proportional rate; 

others (selective white rots) remove lignin faster than cellulose (Blanchette 1995; Reid 1995). 

Although, some white-rot fungi always appear to either selectively or simultaneously degrade 

wood, there are many examples of white-rot fungi where one fungus produces both types of 

attack in the same substrate (see section; Ganoderma lucidum – a medicinal fungus with lignin 

degrading ability). It is suspected that lignin degradation is a result of phenol oxidase activity 

produced by fungi (Reid, 1995) in the culture broth and therefore extracellular peroxidases as 

well as laccase may contribute to the wood degradation phenomenon (see section; Ligninolytic 

enzymes – why focus on laccases?). In spite of the fact that white-rots are the most effective lignin 

degraders, their action on wood is limited by too severe environment conditions (i.e., excessively 

wet or dry sites) or substrates that do not favor their growth and development. These conditions 

can be however overcome by the soft-rot fungi (Blanchette, 1995). 

Soft-rot fungi are classified in Ascomycota and Deuteromycota and the type of rot they produce 

has generally been associated with wood in wet environments. Two forms of soft rot have 

generally been recognized; type I which consists of distinct biconical or cylindrical cavities that 

are formed within the secondary cell walls, and type II that refers to en erosion form of 

degradation where the entire secondary wall is gradually degraded (Blanchette, 1995). The fact 

that the middle lamellae is not eroded and persists even in advanced stages of decay 

distinguishes the type II form of soft rot from a simultaneous white rot (Blanchette 1995). 

Therefore, the soft-rot fungi described by Nielson and Daniel (1989) failed to erode pine wood 

traheids and middle lamellae in birch. 

Brown-rot fungi are basidiomycetes, and are classified in the same familiy as white-rot genera. In 

contrast to the white-rot fungi, however, the brown-rot fungi utilize the hemicellulose and 

cellulose of the cell wall, leaving the lignin essentially undigested, albeit modified by 

demethylation and oxidation (Green III and Highley, 1997). During the changes that occur in 

lignin, the polysachcharides are completely removed causing substantial losses in wood strength 
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properties. Without cellulose, the lignified residue lacks its integrity and may fracture to dust like 

particles (Blanchette, 1995; Ride, 1995). Brown-rot is most common for softwood, and the fungi 

are suspected to evolve from white-rot (Gilbertson, 1980). 

It is clear from the available literature, which dates back to 1980, that the white-rot fungi are the 

superior lignin degraders. The exact mechanism of their performance is not known albeit the 

enzymes that can potentially take part in the wood degradation are mentioned. Lignin 

peroxidase, manganese peroxidase, and laccase are among the most serious candidates (see 

section; Ligninolytic enzymes – why focus on laccases?) 

In this work, in order to test the hypothesis that the white-rot fungi may harbor abilities to 

produce new enzymes for lignocellulose degradation, a total of 44 strains were selected and 

tested for their growth performance on lignin in liquid media (Paper I). Of these strains, 40 were 

selected from a very large and well-known filamentous fungi culture collection tended by 

Professor Jens C. Frisvald (IBT Culture Collection at Center for Microbial Biotechnology, 

Technical University of Denmark, Lyngby, Denmark) and additional four fungi were purchased 

from CBS Fungal Biodiversity Collection (Utrecht, The Netherlands). 

As explained in Paper I, none of the 40 strains from IBT Collection could grow on the medium 

supplied with a lignocellulosic material – sugarcane bagasse, which is why Paper I mainly 

focuses on the four strains obtained from the CBS Fungal Collection. These four fungi; Trametes 

versicolor, Polyporus brumalis, Polyporus ciliatus, and Ganoderma lucidum exhibited growth in liquid 

media supplemented not only with sugarcane bagasse but also with more recalcitrant, lignin 

alkaline. Out of these four mentioned fungi, G. lucidum quickly proved to exhibit superior growth 

on both lignin-containing supplemented to the MEA medium substrates (Paper I).  

 

3.1.1  G. lucidum – Medicinal Fungus with Lignin Degrading Ability 

 

“… In ancient times, it was said that if you discovered Reishi growing in the forest, you 

must keep the secret even from your closest relative – it was that highly regarded…” 

King and Jordan, 2008 

The Ganoderma lucidum has been classified into Kingdom- Fungi, Phylum- Basidiomycota, Class- 

Basidiomycetes, Sub-clas- Homobasidiomycetes, Order-Polyporales, Family- Ganodermataceae, 

Genus- Ganoderma and Species- lucidum (Adaskaveg and Gilbertson, 1986).  

In China and Korea Ganoderma lucidum is known as Ling Zhi, which is translated into “herb of 

spiritual potency” and in Japan it is called Reishi or mannetake, which means “ten thousand year 

mushroom” (Sanodiya et al., 2009). The name Ganoderma is derived from Greek ganos “brightness, 

sheen”, hence shining and aptly describes this mushroom fruiting body, and derma means “skin” 

(Liddell and Scott, 1980).  
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The history of the healing properties of G. lucidum reaches back to the Eastern Han dynasty of 

China (AD 25-220). In those times Ling Zhi was worshipped as a kind of herbal medicine, the 

emperors of the great Chinese and Japanese Dynasties drank with their tees to achieve greater 

vitality and longer life (Sanodyia et al. 2009). In medicine G. lucidum was considered so promising 

that its medicinal value had been attested in a 2000-year-old Chinese medical text (Shen Nong’s 

Herbal Classic) known as an authentic textbook of Oriental medical science (Zhu and 

Woerdenbag, 1995; Sanodyia et al. 2009). 

Nowadays, there are a number of publications describing the medicinal and healing properties of 

G. lucidum. Some of the most compact and well-written are reviews of Zhu and Woerdenbag 

(1995), and especially the one of Sanodiya (2009) that described thoroughly the therapeutic effect 

as well as some of the bioactive compound produced by G. lucidum. It is difficult to list all of them 

since the basidiocarp, mycelia and spores of this fungus contain approximately 400 different 

bioactive compounds. Some of them, which mainly include triterpenoids, polysaccharides 

(mainly β-glucan), nucleotides, sterols, steroids, fatty acids, proteins/peptides, and trace 

elements have been reported to have a number of pharmacological effects including 

immunomodulation (Tasaka et al, 1988; Kim et al. 1997), anti-sclerotic, antioxidative, anti-

inflammatory (Joseph et al., 2009), chemo preventive, antitumor (Sone et al. 1985; Wang et al., 

1997), chemo and radio protective, sleep promoting, antibacterial, antiviral (including anti-HIV) 

(Gao et al. 2003), anti-diabetic (Gao et al., 2004), anti-aging (King and Jordan, 2008) properties and 

many and more.  

Except for its healing properties, G. lucidum (Aphyllophorales) is also acknowledged as a white-

rot fungus producing lignin oxidizing enzymes that efficiently degrade hardwood (Adaskaveg et 

al., 1990; Blanchette, 1995; D’Scouza et al., 1999). Common hardwood hosts  in North America 

and Europe include oak, maple, sycamore, and in the southwestern United States and Mexico 

include mesquite, olive and grape (Adaskaveg and Gilbersten 1986). Additionally, Blanchette 

(1991) includes G. lucidum in a list of the most serious wood decayers. The study of Luna et al. 

(2004) on fungal decay in Poplar (Populus deltoids), reveals that G. lucidum performs a combination 

between i) selective and ii) simultaneous delignification. This result is in agreement with 

Blanchette (1984), who discovered that some white-rot fungi are able to produce both types of 

decay in the same wood. Delignification of poplar by G. lucidum resulted in a 60% wood weight 

loss in 2-5 months (Adaskaveg and Gilbertson, 1986; Luna et al. 2004). The structures of wood 

that were the most resistant to G. lucidum’s attack were vessels (Luna et al., 2004). The reasons 

why vessels might be more robust towards degradation by oxidative enzymes produced by 

white-rot fungi might be due to a larger S1 and S3 vs. the smaller S2 layer in the cell walls of the 

wood, high lignin content and high relative concentration of guaiacyl vs. syringyl lignin 

(Blanchette, 1988). Regardless of the degree of delignification, lignin is not degraded without the 

loss of some polysaccharides, however, it is suspected as if the hydrolysis of cellulose was due to 

the prolonged incubation of fungus on woody substrate since during delignification stage 

cellulolytic enzymes are repressed or nonfunctioning (Adaskaveg et al. 1990). Furthermore, Kirk 

and Moore (1972) found that the rate of lignin/carbohydrates removal by fungi varied depending 

on the wood used as substrate.  

From the light and scanning microscopy, as described by Luna et al. (2004), it seemed as if the 

selective delignification, a step where mostly cell walls of wood are separated, was a first stage of 
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lignin delignification by G. lucidum (Fig. 3.1.1.1). The second stage (Fig. 3.1.1.2-8) was a 

simultaneous delignification during which the presence of erosion troughs (Fig. 3.1.1.1, 2), cell 

wall thinning (Fig. 3.1.1.2), bore holes (Fig. 3.1.1.3-4), rounded pit erosion (Fig. 3.1.1.5), and 

erosion channels were observed. Additionally, polysaccharides depletion was accompanied by 

chlamydosphores and hyphal accumulation in the difficult to degrade vessel remnants (Fig. 

3.1.1.7). 

 

Figure 3.1.1 Anatomical features of decay by Ganoderma lucidum in Populus deltoids wood after 75 (1), and 150 (2-8) days of 

fungal inoculation. Figures and description of the figures adapted from Luna et al. (2004); 1 and 2-8 represent selective 

and simultaneous delignification of poplar, respectively; 1: centrifugal direction of delignification with remnants of lignin 

in cell corners and portions of middle lamellae (arrowhead) and erosion through in fiber wall (arrow); 2: advanced cell 

wall thinning and cell wall interruptions in fibers (arrowheads); 3: large hole in vessel wall (arrowhead); 4: large hole in 

fiber wall; 5: rounded pit erosion in vessel wall (arrowhead); 6: large holes in ray cells (arrowhead);7: vessel remnants (v) 

with abundant hyphae and chlamydoshores; 8: portions of vessels (v) and fiber wall (f).  

 

In this study, the presence of the oxidative enzymes was measured on the ABTS and 

syringaldazine (Paper I) in the crude protein extracts of the four white-rot fungi that were able to 

grow on sugarcane bagasse and lignin alkaline supplemented media. It was evident that G. 

lucidum expressed by far the highest activity of laccase under these cultivation conditions. The 

activity data corresponded well with its vivid growth.  

Therefore, the further experiments (SDS-PAGE, Native PAGE, and MALDI-TOF analysis) 

showed that the oxidative activity was mainly due to the presence of laccase (see also Substrates 

for Detection of Laccase Activity and IEF of G. lucidum Crude Protein Extract section in the 

experimental considerations section). 

Hence, this work confirmed the hypothesis that it was possible to identify the oxidative enzymes 

(or at least one enzyme) by such an exploratory approach. As explained in Paper I, the further 
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analysis of the laccase-rich protein extract confirmed that its oxidative activity was able to 

enhance the cellulose degradation when added simultaneously with cellulase cocktail to the 

pretreated lignocellulosic biomass (sugarcane bagasse). 

In the work, the laccase was subjected to further examination and it turned out that the laccase 

from G. lucidum was a unique enzyme with a molecular weight of 62.5 kDa (Paper I).  
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CHAPTER 4 

 

 

LIGNIN MODIFYING ENZYMES – WHY FOCUS ON LACCASES? 

 

The degradation of lignin in the wood is seen upon as a complex process involving different 

classes of enzymes. The purpose of this chapter is to introduce the known enzymes whose 

specificity of action may contribute to the depolymerization of wood, rather than their detailed 

description which can be found in a number of review papers (Bourbonnais and Paice; Martinez 

et al. 2005; Kersten and Cullen, 2007; Wang, 2009).  

Lignin digestion is considered as an “enzymatic combustion” process, involving several 

oxidoreductases such as laccases, ligninolytic peroxidases and peroxide generating oxidases. The 

enzymes involved in lignin digestion are furthermore classified in four major groups, based on 

their EC number; lignin peroxidase (LiP; EC 1.11.1.14), manganese-dependent peroxidase (MnP; 

EC 1.11.1.13), versatile peroxidases (VP; EC 1.11.1.16), and laccases (EC 1.10.3.2). Based on their 

sequence and catalytic properties, the extracellular fungal LiP, MnP, and VP belong to class-II 

peroxidases (Wong, 2009). Moreover, the “enzymatic combustion” process is further enhanced by 

synergistic action of several accessory enzymes, which might include glyoxal oxidase (EC 1.2.3.5), 

aryl alcohol oxidase (veratryl alcohol oxidase; EC 1.1.3.7), pyranose 2-oxidase (glucose 1-oxidase; 

EC 1.1.3.4), cellobiose/quinone oxidoreductase (EC 1.1.5.1), and cellobiose dehydrogenase (EC 

1.1.99.18) (Martinez et al. 2005; Kersten and Cullen, 2007; Wang, 2009). 

For a long time laccase was not considered as an enzyme that could contribute to the ligninolysis 

due to the two aspects; its redox potential was too low, meaning that a laccase could only oxidize 

phenolic lignin structures, which contain less than 10% of the woody materials, and P. 

chrysosporuim that could delignify wood was suspected not to express laccase. Only research by 

Bourbonnais and Paice (1990) revealed that redox potential of laccase can be modulated by 

addition of an artificial laccase substrate, ABTS, which enabled a laccase catalyzed oxidation of 

non-phenolic lignin compounds (Eggert et al. 1997). Additionally Eggert (1996) demonstrated 

that this small redox tuning molecule can be also of natural origin, such as Pycnoporus 

cinnabarinus metabolite, 3-HAA (3-hydroxyanthranilate) (Eggert et al. 1996). The role of laccase in 

the wood decay was therefore contradictory and it was rather difficult to understand its exact 

contribution to the lignin-in-wood degradation. However in the course of study and during the 

literature search I came across a number of research papers that claim that laccase is essential for 

lignin degradation. The arguments for that hypothesis and additional features of laccase that 

make it an important enzyme during wood decay are presented below: 

 Laccase catalyzes oxidative reactions of lignin with atmospheric oxygen as an electron 

acceptor (in contrast to lignin peroxidase and manganese peroxidase that are dependent on 

a continuous supply of H2O2) (Martinez et al. 2005) 

 

 The combination of laccase with either LiP and/or MnP, in white-rot fungi, is a much more 

common combination of phenyloxidases than the LiP/MnP pattern found in Phanerochaete 

chrysosporium (Peláez et al. 1995; Tour et al. 1995; Eggert et al. 1997)  
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 Laccase has been visualized cytochemically in degraded wood cell walls (Youn et al. 1995) 

 

 In some fungi, e.g. Pycnoporus cinnabarinus – a very efficient lignin degrader expressing 

only laccase and no LiP and/or MnP, the knock-out of the laccase gene unables the fungus 

to metabolize 14C ring-labeled DHP (dehydrogenative polymer). However, an addition of a 

purified laccase to the laccase-less mutant from P. cinnabarinus restores its lignin 

degradation ability (Eggert et al. 1997; Bermek et al. 1998) 

 

 The most recently discovered genome of Ganoderma lucidum (Chen et al. 2012) revealed an 

existence of 14 different laccase genes vs. 8 genes belonging to either lignin peroxidase, 

manganese peroxidase or versatile peroxidase. This finding might indicate laccase superior 

role in allowing G. lucidum to efficiently grow on media supplemented with lignin alkaline 

(Paper I) 

 

 Laccase is capable of oxidizing high molecular weight lignin compounds even though they 

are much too large to directly penetrate and donate electrons to the T1 copper site (Piontek 

et al. 2002; Review paper). The process is suspected to happen directly through a long-

range electron transfer process, since the T1 copper site is at least 7 Å away from the 

protein surface (Shleev et al. 2006) 

 

 Laccase in the presence (NHA; Palonen and Viikari 2004; HBT; Gutierrez et al. 2012) and 

absence (Jurado et al. 2009; Moilanen et al. 2011; Paper II) of the mediator is able to 

significantly detoxify the pretreated lignocellulosic materials (by up to 75%) and improve 

its glucose release yields (by up to 33%). The possible mechanism during laccase treatment 

of pretreated lignocellulosic materials is condensation and/or polymerization of low 

molecular weight compounds, which is seen upon as a possible role of laccase protection of 

the fungus mycelium from the toxic substances (Youn et al. 1995; Rochefort et al. 2002; 

Shleev et al. 2006) 

 

 Laccase is used for enzymatic detoxification of pretreated lignocellulosic hydrolysates from 

phenolic lignin degradation compounds, prior to fermentation processes and in turn yields 

higher ethanol yields than lignin peroxidase (Jönnson et al. 1998) 

  

 Laccase is a focus of much attention due to its wide range of applications in food industry 

(crosslinking of polysaccharides (Zaidel and Meyer, 2012), beverages, fruit juice processing, 

baking), paper industry (biobleaching and biopulping) bioremediation applications (waste 

water detoxification and decontamination), textile industry (dye decolorization, denim 

processing), personal and medical care applications, and biosensor and analytical 

applications (Madhavi and Lele, 2009) 

 

 Laccase is likely to contribute to the incipient decay of wood by brown-rot fungi Postia 

placenta, enabling it the access to polysaccharides (Wei et al. 2010). 
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4.1  Laccase from G. lucidum CBS229.93, LacGL1 

Rather to attempt to purify the native laccase from G. lucidum crude protein extract, it was 

decided to study the enzyme further by subcloning of its gene to the expression vector and its 

heterologous expression in P. pastoris (see Cloning of Laccase from G. lucidum section in 

experimental considerations and Paper II). 

As outlined in Paper II, the 520-bp LacGL1 laccase, expressed in P. pastoris, appeared to be a 

novel enzyme with a highly conserved sequence in the copper binding regions and a 91% identity 

on the amino acid level, to the G. lucidum described by Joo et al (2007). It also turned out that the 

LacGL1 was extensively glycosylated. This however, did not influence either its oxidation ability 

towards the artificial phenolic substrates tested or its synergistic effect on the total glucose yields 

released during ongoing cellulase catalyzed hydrolysis of pretreated sugarcane bagasse. On the 

contrary, the addition of the LacGL1 to the Cellic®CTec1 cellulase preparation, under 

experimental conditions that were close to the optimal for laccase (pH 4.7, and 40°C), increased 

the glucose yields from 17 to 33% (Paper I and Paper II). This result confirmed the hypothesis 

that a monocomponent enzyme, with an oxidative activity, can help to enhance the glucose yields 

during cellulase catalyzed hydrolysis of cellulose. Additionally, this finding proved that the 

LacGL1 has some unique properties that enable it to significantly enhance the cellulase catalyzed 

cellulose-to-glucose conversion. The exact mechanism of the LacGL1 laccase in the glucose yield 

improvement is not known, however, it is speculated (based on MD simulations) that the LacGL1 

laccase acts towards small phenolic compounds released during the pretreatment of 

lignocellulose biomass (see section; Fate of Lignin – Factors Limiting the Cellulolytic Hydrolysis of 

Biomass) and that particularly amino acids such as 164Leu and 265Phe may play a significant role 

in that mechanism (Paper II).  The importance of these two amino acids on the oxidation of 

phenolic compounds was also reported by Koschorreck et al. (2008). 

This PhD study also provides an insight into the function of the catalytic pocket of the LacGL1 

laccase, which made it possible to confirm that the LacGL1 laccase electron transfer proceeds via 

a well described T1-Cys-His-T3β pathway (Solomon et al. 2008; Augustine et al. 2010; Review 

paper). The four, one-by-one electron transfer in the catalytic pocket of laccases is driven by the 

presence of two acids in the vicinity of the four copper ions. D94 and E487 have been confirmed, 

to be also placed close to the copper ions in case of the LacGL1 (Review paper). An additional 

feature that may influence the oxidation rate of the phenolic substances is a presence of a non-

coordinating phenylalanine in the distance of ~3.5 Å from the T1Cu site, which based on the 

available knowledge influences the ability of the enzyme to abstract the electrons (widely known 

as redox potential) from the lignin phenoxy groups and classifies the laccases to the enzymes 

having a high redox potential. Laccases are also able to oxidize non-phenolic compounds, for 

these reactions, they need a small, diffusible molecule – a mediator (Review paper). 

Additionally, the results from the 3D modeling of the LacGL1 structure revealed that the laccase 

from G. lucidum has three domains and two disulphide bridges that keep the functional structure 

together (Review paper). These features are common for the fungal laccases (Hakulinen et al. 

2002). However, one needs to be cautious about any structural mutations, especially to the C-

terminal end which may lead to an inactive protein (see section; Transformation and Expression of 

the LacGL1_NC). 
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CHAPTER 5  

 

EXPERIMENTAL CONSIDERATIONS 

 

Lignin and lignin derived phenolic substrates pose a barrier for an efficient cellulase action. 

Therefore, in an ideal biofuel production scenario, there is no lignin and lignin related products 

but instead there are high yields of fermentable sugars. So far cellulolytic enzymes are the main 

components of the commercial preparation cocktails however, new enzyme activities are being 

considered. This chapter focuses on the process and aspects that were challenging and those that 

led to the finding that a laccase activity is able to boost cellulase catalyzed hydrolysis of 

pretreated biomass and yield higher overall glucose yields, so desired in the biofuel industry.  

 

5.1  Substrates for Detection of Laccase Activity 

A special care needs to be undertaken when detecting laccase activity in the fungal crude protein 

extracts due to the reasons mentioned below:  

 nature of laccase substrates, most of them are phenol homologs that are or might be 

carcinogenic 

 

 presence of oxidases that produce H2O2 which may auto-oxidize laccase substrates 

 

 presence of peroxidases (lignin and manganese peroxidase), that catalyze H2O2 –

dependent oxidation of laccase substrates  

 

 ability of laccase substrates to be oxidized by catalyze, that instead of removing H2O2, acts 

as a peroxidase and uses H2O2 to oxidize laccase substrates  

Therefore, it is crucially important to consider the above mentioned obstacles that can interfere 

with the true laccase activity (Research paper I), since the detection of laccase activity is a balance 

between the amounts of peroxidases but also the amount of endogenous H2O2 produced in the 

fungal crude protein extracts. 

Table 5.1 gives an overview of the most used substrates for detection of laccase activity and 

simultaneously focuses on their advantages and disadvantages.  

The best laccase substrate seems to be syringaldazine, which is said not to be influenced or 

oxidized by peroxidases and H2O2 present in the crude protein extracts. Harkin et al. (1974) 

overrules as if the concentration of endogenous H2O2 present in the crude protein extracts was 

high enough to catalyze oxidation of syringaldazine by peroxidases. Additionally, syringaldazine 

do not auto-oxidize and form organic hydroperoxides. Therefore syringaldazine is said to be a 

true laccase substrate.  
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Table 5.1 Substrates used for detection of laccase activity in the crude protein extracts 

Substrate Advantages Disadvantages Ref. 

ABTS 
2,2-Azino-bis(3-

ethylbenzothiazoline-6-
sulfonic acid) 

 

 

 non toxic 

 H2O soluble (at a 
concentration of 10 – 50 

µM) 

 immediate oxidation 
reaction after addition of 

laccase 

 suited for laccase 
detection in the crude 
protein extract in the 
absence of catalyses, 

peroxidases, and H2O2 

 not reactive with 
tyrosinases 

 

 oxidized by catalyse, 
during removal of  H2O2 

 not suited for laccase 
detection in the crude 
protein extracts in the 

presence of catalyses and 
H2O2 or peroxidases, and 

high levels of H2O2 

 auto-oxidation with high 
H2O2 levels (0.3% w/w) 

Wolfanden et 
al. 1982; 

Lonergan and 
Baker, 1995 

Syringaldazine 
(3,5-dimethoxy-4-

hydroxybenzylidene) 
hydrazine 

 

 

 soluble in methanol or 
95% ethanol 

 rapid color formation at 
all pH levels 

 suited for laccase 
detection in the crude 
protein extracts in the 

presence of catalyses and 
H2O2 or peroxidases, and 

low levels of H2O2 

 not reactive with 
tyrosinases 

 not reactive with H2O2 
alone 

 toxic 

 color tends to fade 
rapidly outside the pH 3 

to 7 

 not suited for laccase 
detection in the crude 
protein extracts in the 

presence of lignin 
peroxidase and H2O2 
(high level) and Mn2+, 
manganese peroxidase 

and H2O2 
 

Harkin and 
Obst, 1973; 

Harkin et al. 
1974 

MBTH/DMAB 
3-methyl-2-

benzothiazolinone 
hydrazone 

 
/ 3-

(dimethylamino)benzoic 
acid 

 
 

 H2O soluble 

 high rate of reaction (only 
slightly lower than in 

case of ABTS 

 color stable, fades slowly 
over several hours 

 

 toxic 

 requires treatment with 
catalyse prior to laccase 
detection (oxidation by 
lignin and manganese 

peroxidase at low H2O2 
concentrations) 

 in presence of Mn2+ and 
0.05 mM H2O2 is used 

for manganese 
peroxidase activity 

 

del Pilar 
Castillo et al. 

1994; Lonegan 
and Baker, 

1995 
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5.2  IEF of G. lucidum Crude Protein Extract  

Two MALDI-TOF MS analyses were performed (referred in Table 5.2 as 1st and 2nd round, 

respectively). The first analysis focused solely on the single protein band that showed activity 

towards phenolic substrate (1,8-DAN, described in detail in Paper I). After discovering that this 

protein band was a laccase, the short amino acid stretches served as the regions where the 

primers for the laccase gene amplification (Paper II) were designed. The second MALDI-TOF 

analysis was supposed to reveal what exact enzymes are being released during G. lucidum growth 

and whether or not the laccase expression pattern differs depending on the lignocellulosic 

substrates present in the cultivation medium.  The analysis of all the enzymes in the crude 

protein extract were crucially important because the addition of laccase-rich broth boosted total 

yields of released glucose and that no cellulase activity was detected during AZCL cellulase 

assay. Therefore to exclude that the higher yields of glucose were due to the presence of 

cellulases and the reason behind it was laccase activity, the evaluation of the presence of 

cellulolytic enzymes, and especially GH61 (glycoside hydrolase), called a cellulase-enhancing 

factor (Quilan et al. 2011), was at stake.  

The outcome of the 1st round MALDI-TOF analysis resulted in a successful amplification of the 

LacGL1 gene, even though the short amino acid stretches differed slightly in the amino acid 

sequence with the expressed LacGL1 laccase. The 2nd round of MALDI-TOF analysis failed to 

identify all proteins expressed by G. lucidum. It revealed however two aspects; the expression 

pattern of proteins differed depending on the carbon source used (Fig. 5.2) – more proteins were 

expressed when Avicel was added than when SCB was present, and G. lucidum expressed at least 

four different laccase isoforms (spots 3, 4, 5, and 7; Fig. 5.3) – which differed between each other 

with the amount of homologous amino acid short peptides (A-E; Fig. 5.3). The last result 

corresponded well to the genome sequencing data from another G. lucidum strain (14 different 

candidate laccase genes (Chen et al. 2012)). Surprisingly, spot number 6 did not show any 

homology with the LacGL1 sequence. However, it would be very unlikely that another type of 

protein would be situated between laccase isoforms.  

 

Table 5.2 MALDI TOF analysis of proteins from the crude extract of G. lucidum  

MALDI-TOF MS analysis of the proteome peptides Amino acid mutations in 
the LacGL1 laccase 

1st round 2nd round 

TTSIHWHGFFQK  S 
FPLGSDSTLINGLGR  --- 

DDDSTVLTLADWYHVAAR  I, T 

TLSNADIAPDGFTR  I, V, Y 
 FPLGSDSTLINGLGR --- 

 SAGSTVYNYDNPVWR --- 
 ANPNFGNVGFTDGINSAILR --- 

 GIGPKDLTISNADVAPDGFTR Y 
 NLLLETDLH N, V 
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Figure 5.3 Two-dimentional proteomic profiles of G. lucidum CBS229.93. Aliquots containing 50 µg of proteins, from the 

fungal crude protein extracts, were subjected to IEF and separated by molecular weight by SDS-PAGE electrophoresis. 

Following electrophoresis, resolved proteins were stained with Sypro Ruby stain.  The crude protein extracts were 

collected from fungal cultivation media on malt extract medium (MEA), malt extract medium supplemented with Avicel 

(MEA+Avicel), and malt extract medium supplemented with sugarcane bagasse (MEA+SCB). The resolved protein spots 

were in-gel digested with trypsin and analized using MALDI TOF MS/MS. The protein bands were analyzed by MALDI-

TOF MS/MS. Four out of thirteen spots (3, 4, 5, and 7) belong to laccases. The figure has been prepared in collaboration 

with Adelina Rogowska (Southern University of Denmark (SDU), Odense M, Denmark). 

 

Here is the area where 

the laccase enzyme is 

expected to be found 
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Figure 5.2 Peptide mass fingerprints of protein from the crude extract of G. lucidum CBS229.93. Fingerprint mass spectra 

were generated via MALDI-TOF MS analysis. The predicted peptide fragments of laccase corresponding to their m/z 

values are shown at the bottom of the figure. Short peptide sequences colored green are 100% homologous to the LacGL1 

laccase sequence from G. lucidum CBS229.93. Short peptide sequence colored red has one single mutation (F is Y in 

LacGL1 laccase expressed in Pichia pastoris) and Short peptide sequence colored black has two single mutations (L is N 

and T is V in LacGL1 laccase). The two-dimentional proteomic profile of G. lucidum (in the right upper corner of the 

figure) shows how many and what type of short peptide sequences each of the protein spots contains. It seems as if a 

protein spot number 3 corresponded to the P. pastoris expressed LacGL1 laccase (Paper II). This figure has been prepared 

in collaboration with Adelina Rogowska (SDU, Odense M, Denmark).  

 

5.3  Cloning of Laccase from G. lucidum 

A MALDI-TOF analysis of trypsin digested protein that showed activity towards 1,8-

diaminonaphthalene (Paper I), resulted in four short amino acid sequences (Table 5.2, 1st round) 

that belonged to laccase. Among them, two amino acid stretches: TTSIHWHGFFQK and 

FPLGSDSTLINGLGR showed to be highly conserved within laccases from different G. lucidum 

strains. Therefore, the primers for amplification of the laccase gene, LacGL1, were designed based 

on those short peptides (Table 1, Paper I). The primer set, WADGP_fwd3 and LINGLP_rev1, 

gave a 500-bp-streatch of nucleotides that when blasted in the UniProt database, revealed high 

sequence homology to laccase from G. lucidum 7071-9 (UniProt identifier; Q9GH17). Please note 

that due to the nature of the DNA amplification method (described in detail in Paper II), the 
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described WADGP_fwd3 primer is situated in a close proximity to the TTSIHWHGFFQK, 

however is not a part of it. Following the overlapping primer method for amplification of the 

entire LacGL1 gene, I obtained a genomic DNA fragment containing 1963 bp. In the search for 

introns and exons a manual, knowledge-based approach (Padget et al. 1984) was used. It was in 

turn verified with the obtained intron-depleted sequence, by a software-intron-prediction 

analysis (Stanke and Morgenstern 2005). The manual and software based prediction of 

positioning of the introns in the obtained genomic DNA sequence revealed a 100% match. The 

intron-free DNA sequence contained 1563 bp. Because the obtained LacGL1 gene sequence was 

not a full laccase sequence it was decided to fill the missing 8 amino acids in the N- and 8 amino 

acids in the C-terminal ends, based on the highest score for these sequences among laccases from 

different G. lucidum strains. The signal peptide was not taken under consideration since a leader 

sequence was already incorporated into a pPICZαA vector. Such constructed laccase gene, 

LacGL1_NC, containing 1563 bp nucleotide fragment from G. lucidum CBS229.93 and having first 

8 N-terminal and last 8 C-terminal amino acids from G .lucidum 7071-9 (UniProt identifier; 

Q9GH17), was send off to DNA2.0 (DNA2.0, Menlo Park, CA, USA) for subcloning into the 

pPICZαA vector, (containing a STREP® purification tag, Fig. 5.3.1) and codon optimization for 

expression in P. pastoris.  

Please note that the two amplified laccase genes were designated as LacGL1 and LacGL1_NC. 

LacGL1 is a 1563 bp nucleotide fragment coding for a laccase gene from G. lucidum CBS229.93, 

while LacGL1_NC is a hybrid between LacGL1 fragment with 8 N-(GVGPKADLT) and C-

(DALSADDH) terminal sequences from G. lucidum 7071-9, the strain that showed the highest 

nucleotide as well as amino acid homology to the 1563 bp fragment from G. lucidum CBS229.93. 

The underlined amino acids will later show (after RACE technique), that they differed from the 

real sequence of G. lucidum laccase (Paper II). 

 

 

 

Figure 5.3 Alignment of an amplified, intron-free laccase gene (LacGL1) with its closest laccase homolog from G. lucidum 

7071-9. The blue, red, and black boxes represent signal peptide sequence, missing N- and C-terminal amino acids, and 

short peptide stretches obtained by the de novo MALDI-TOF MS analysis, where the primers for 500-bp gene amplification 

fragment were designed, respectively. 

signal peptide 

missing 8 N-terminal amino acids 

missing 8 C-terminal amino acids 

MALDI-TOF short peptides 
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5.3.1  Transformation and Expression of LacGL1_NC 

The transformation and expression of LacGL1_NC laccase gene followed the steps: 

 Assessing the plasmid DNA (DNA2.0_LacGL1_NC) from the GFC filters, supplied by 

DNA2.0 (DNA2.0, Menlo Park, CA, USA) – the constructed vector contained AOX 

promotor, LacGL1_NC gene, and a purification tag (STREP®tag) in the multicloning site. 

 

Figure 5.3.1 The map of the recombinant plasmid DNA2.0_LacGL1_NC used for expression of LacGL1_NC 

laccase gene in Pichia pastoris X-33. The DNA2.0_LacGL1_NC vector contains the sequence coding for the signal 

peptide from Saccharomyces cerevisiae α-mating factor pre pro peptide and gives a fusion of STREP®tag to the C-

terminal end of the subcloned LacGL1_NC laccase gene.  

 

 Transformation of DNA2.O_LacGL1_NC plasmid into E. coli (TOP10 and Match1-T1 

(faster growing strain)) – E. coli was grown at 30ºC due to a lower death rate of E. coli, 

(company guidelines). As a result, very low transformation ratio (50-100 colonies), 

especially for TOP10 E. coli was obtained (plating on Low Salt Medium plus 25 µg/mL 

Zeocin) 

 Isolation of the DNA2.0_LacGL1_NC plasmid and its sequence conformation – AOX 

promotor sequence plus the sequence of the multicloning site in the 

DNA2.0_LacGL1_NC vector construct were as designed and optimized by DNA2.0. No 

single mutations were observed 

 DNA2.0_LacGL1_NC plasmid linearization and transformation to P. pastoris by 

electroporation – different concentration of Zeocin on plates; 100, 500, 1000, and 2000 

µg/mL Zeocin 

 Conformation of existing insert and no mutations in the AOX promoter in P. pastoris 

transformants – randomly chosen 3 transformants for sequencing out of 10 that were 

“positive” in the digestions – existence of the LacGL1_NC gene, AOX promoter, α-factor  

DNA2.0_LacG

L1_NC 
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 Expression of the protein from the recombinant DNA2.0_LacGL1_NC plasmid – BMMY 

medium (recipe detailed in Paper II), 0.5% MetOH, 1mL antifoam, 0.1 mM CuSO4•5H2O, 

20ºC, expression of 50 colonies on the plate, none positive  

 Evaluation of the intracellular and secreted proteins by SDS PAGE – many bands, hardly 

noticeable whether the expressed protein was there. Additionally, the wild type P. 

pastoris strain had a protein at approximately 60-65 kDa (Joo et al. 2007).  

 Western Blot analysis – antibodies against the Strep-tag – no visible results 

 

Following all eight steps, it was found out that no active laccase was expressed. Therefore, I 

speculated the following: 

 α-factor lider sequence from S. cerevisiae – higher expression with a native lider sequence 

from G. lucidum – maybe expression was so low that it could not be monitored. This 

hypothesis was however, excluded by the Western Blot analysis – no detectable response 

of antibodies to the STREP®tag  

 expression at lower temperature – to ensure the proper protein folding and decrease the 

protease activity – literature even down to 10ºC, and then no protease activity as 

compared to 28-30ºC  

 methanol toxicity to the host – I used 1 and 0.5 %  

 laccase toxicity to the host – low transformation efficiency ca. 5 - 20 colonies  

 X-33 is a protease non deficient strain – can laccase be degraded by a protease since the  

laccase sequence was optimized so that it will not be recognized by protease  

 shaking and oxygen access to the growing culture? – too powerful shaking, or too slow, 

oxygen access through stoppers 

 pH of the fermentation broth – kept at 5, but maybe acidic proteases act on laccase 

 SDS-PAGE gel electrophoresis show a large amount of bands – stress??, dead cells 

protein extract?? 

 

 After a careful validation of each of the presented problems, I found out, by 3D structural 

prediction of the LacGL1_NC laccase using Phyre2 software (Kelley and Sternberg 2009), that the 

protein is missing one of the disulphide bridges (Fig. 4.3.2), so important for the functionality of 

an enzyme.  
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Figure 4.3.2 A graphical representation of the LacGL1_NC laccase gene expressed in Pichia pastoris illustrated using the 

PyMOL Molecular Graphical System version 1.5 (Schrödinger, LCC). The yellow colored 3D structure of the laccase was 

predicted by submitting its full amino acid sequence to the 3D comparative protein modeler – Phyre2 (Kelley and 

Sternberg 2009). The pink and green sticks (belonging to Trametes versicolor (PDB ID: 1GYC) and G. lucidum CBS229.93, 

respectively) represent cysteine residues responsible for formation of the disulphide bridges. The brown spheres 

represent copper ions. T. versicolor crystallographic structure of laccase was used as a benchmark for the 3D model 

structure of LacGL1_NC laccase.  

 

Therefore, in order to determine the exact amino acid sequences on the N- and C-terminal end a 

RACE technique was applied (the exact methodology is described in Paper II). The obtained 

mRNA sequence of G. lucidum laccase, translated into amino acid sequence differed from the 

complimentary LacGL1_NC laccase sequence (Fig. 4.3.3). The single mutations occurred 

exclusively in the N- and C-terminal ends of the laccase sequence. Based on the fact that the 

RACE technique revealed the entire laccase sequence and that it was identical to the laccase 

sequence obtained from the genomic DNA amplification, I chose to name it LacGL1.   
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Figure 4.3.3 Alignment of mRNA from the LacGL1_NC, and LacGL1.  The LacGL1_NC was obtained by and artificial 

insertion of the N- and C-terminal end sequences belonging to G. lucidum 7071-9, while the LacGL1 N- and C-terminal 

ends were obtained by a RACE technique (Paper II). The red boxes represent the regions in LacGL1 that were altered in 

respect to the LacGL1_NC, and which in turn could cause improper folding of the LacGL1_NC (Fig. 4.3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mutated regions 

of the LacGL1 
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CHAPTER 6  

 

CONCLUSIONS 

 

In the process of the PhD study two research papers, a review, and a patent have been produced. 

The performed work concludes the following aspects:  

 Out of forty strains tested, belonging to Ascomycota and Basidiomycota, only four white-

rot fungi were chosen for further experiments carried on lignin alkaline (LA) – an 

oxidative enzyme inducer source. The choice of the white-rot fungal strains for further 

experimental analysis was made based on low growth performance of Ascomycota when 

sugarcane bagassewas added to the cultivation medium 

 

 Out of four white-rot fungi tested, only one, namely G. lucidum, could perform a vivid 

growth on medium supplemented with LA. Therefore, Paper I solely focuses on the 

laccase enzyme that we think was responsible for its outstanding growth performance, as 

compared to the growth of other fungi tested 

 

 Separation of the fungal crude protein extract of G. lucidum under denaturing conditions 

revealed presence of an enzyme that had a similar (slightly lower) molecular weight than 

that of a commercial laccase from Trametes versicolor 

 

 Activity staining of the fungal crude protein extract of G. lucidum under native conditions 

(Native PAGE) revealed a presence of an enzyme having activity towards a phenolic 

substrate (1,8-diamononaphthalene) and corresponded well with the MW of the control 

laccase from Trametes versicolor 

 

 G. lucidum’s laccase activity (measured with syringaldazine as a substrate) corresponded 

well with the growth pattern. The more vivid was the growth of G. lucidum, the more 

laccase was produced 

 

 An in-gel trypsin digestion of the potential laccase protein and a de novo MALDI-TOF 

analysis resulted in obtaining four short peptides whose sequence were highly 

homologous (but not identical) to the laccases deposited in the UniProt database 

 

 Addition of the laccase-rich fungal protein extract to the cellulase catalyzed hydrolysis of 

the pre-treated SCB enhanced the yields of the released glucose by 17% (Paper I) 

 

 A cloned and successfully expressed in P. pastoris,  520-amino-acid long laccase from G. 

lucidum (LacGL1) enhanced the total glucose yields, during cellulase catalyzed cellulose 

hydrolysis, by as much as ~20 to up to 33% for Cellic®CTec2 and Cellic®CTec1, 

respectively (Paper II). Therefore, the LacGL1 laccase can find application in e.g. biofuel 

industry 
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 The Km value of the expressed LacGL1 laccase was 0.122 mM and correlated well with the 

Km  of the laccase in the crude fungal protein extract 

 

 The pH optimum for the LacGL1 laccase was 4.7, and the thermal stability studies revealed 

85% remaining activity after 60 min at 50°C. This property of laccase might have been of a 

great help during the delignification/detoxification mechanism that enabled cellulases to 

perform a better action during cellulose-to-glucose conversion 

 

 LacGL1 had 91% and 81% homology to another strain of Ganoderma lucidum and Polyporus 

brumalis, respectively 

 

 The sequence alignment with other fungal laccases revealed a high homology in the copper 

binding regions, which are highly conserved within laccases 

 

 The molecular weight of the expressed laccase was extensively glycosylated, however after 

24-hour-inccubation at 37°C the MW of laccase was identical (~62.5 kDa) as that observed 

in the fungal crude protein extract. Additionally, a similar reactivity towards tested 

substrates and inhibitory substances (Paper II), for the native and heterologously 

expressed laccase, suggested that neither the HIS tag nor the glycosylation had significant 

functional implications on the LacGL1 activity  

 

 This functional neutrality of the HIS-tag was further supported by the conservation of the 

structure excluding the HIS-tag and Phyre2 homology models of the native and the 

expressed laccase 

 

 The molecular dynamics simulations revealed that docking of p-coumaric acid (the 

compound found in the pretreated hydrolysates of SCB and causing severe cellulase 

inhibition) in the LacGL1 binding pocket and is exposed to the solvent caused by the shift 

in 164Leu and 265Phe might favor the detoxification/modification reactions of small 

phenolic substrates that inhibit cellulases action and therefore cause lower yields of 

glucose when laccase activity is not present  

 

 The four coppers in the laccase active site need to be in a reduced form in order to be able 

to reduce atmospheric oxygen to two molecules of water. Two acids in the vicinity of the 

catalytic copper site take part in the mechanism 

 

 The four electrons that are abstracted from four substrate molecules are transferred one 

by one from T1 Cu site to T2/T3 Cu site via the T1-Cys-His-T3β (Review paper) 

 

 The oxidation of the phenolic and non-phenolic substrates follows the same primary 

mechanisms (Cα-Cβ cleavage, Cα-oxidation, or alkyl-aryl cleavage). However one needs to 

remember that oxidation of non-phenolic substrates is mediated by the presence of a 

small, diffusible compound – a mediator 
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 It seems like laccases that have a high redox potential have a non-coordinating 

phenylalanine residue in the vicinity of the T1 Cu site, instead of a methionine that makes 

the T1Cu area more rigid 

 

 Based on the literature review and own unpublished data, it has been observed that the 

mutations and the alterations to the C-termini can completely deactivate laccase function 

and activity 

 

 The 3D modeling of the LacGL1 showed the existence of the common features for fungal 

laccases; the LacGL1 is a three domain protein with copper ions situated in domain 1 and 

3 and two disulphide bridges that keep the structure together 
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CHAPTER 7 

 

FUTURE WORK 

 

In the present study, we showed that the addition of the laccase-rich medium from G. lucidum, as 

well as the laccase-containing broth from P. pastoris, results in the enhancement of glucose yields, 

released during the cellulase catalyzed hydrolysis of cellulose. This result, followed by the patent 

application, is crucially important for industrial application in biofuels sector considering the fact 

that cellulase preparations, namely Cellic®CTec 1 and Cellic®CTec 2 are improved enzyme 

preparations in respect to different types of inhibitors. Unfortunately, the exact mechanism of 

laccase action in the reaction mixture is not known, and would require additional experiments. 

The most acute future research tasks are presented below: 

 IEF data showed existence of at least four additional isoforms of laccase. It would be 

highly beneficial to evaluate the synergistic potential of all four laccases with the cellulase 

ocktail on the total yields of released sugars 

 

 Since the mechanism of laccase action is not known, it would be interesting to evaluate 

the type and amount of the phenolic compounds present in the pretreated sugarcane 

bagasse substrate before and after the laccase treatment 

 

 If the laccase follows the detoxification mechanism, as also suspected from the MD 

simulations (Paper II), and in this way helps cellulases to convert more cellulose to 

glucose, then a thorough identification of soluble, phenolic compounds, present in the 

pretreated sugarcane bagasse should be evaluated and their different concentration 

dosages could be added to the previously washed, soluble, phenolic-free pretreated 

biomass (or Avicel)  

 

 If the laccase follows the lignin depolymerization mechanism, then different lignin 

concentrations could be added to Avicel and the yields of cellulose converted to glucose 

during ongoing cellulase catalyzed reaction could be tested 

 

 The LacGL1 laccase was only tested on the pretreated sugarcane bagasse, however an 

evaluation of its impact on other pretreated lignocellulosic substrates could be compared 

 

 The LacGL1 laccase has a 91% amino acid sequence identity to another laccase from G. 

lucidum, described by Joo et al. (2008). It would be interesting to evaluate this laccase 

potential in the enhancement of cellulose-to-glucose conversion during ongoing cellulase 

hydrolysis of pretreated sugarcane bagasse 

 

 The LacGL1 laccase dosage has been evaluated based on the total concentration of 

proteins that followed expression of laccase; therefore a purification step would be 

necessary to evaluate the real laccase dosage during cellulase catalyzed hydrolysis of 

pretreated biomass 
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 It would be also interesting to subclone the laccase coding gene to a vector with a 

metalloprotein-neutral-purification tag (such as STREP®tag) and crystallize the laccase 

structure for more accurate molecular dynamics simulation with the appropriate 

substrate  

 

 Different cellulase mixtures, available commercially, would also be evaluated for the 

synergistic laccase catalyzed improvement of the sugar yields on different types of 

lignocellulosic materials (beyond sugarcane bagasse) 

 

 The positive effect of laccase on the total glucose yields during small scale, cellulase 

catalyzed hydrolysis of cellulose to glucose was evaluated. It would be interesting to find 

out if the overall output could be scalable to large volumes 

 

 The effect on treating the pretreated sugarcane bagasse with laccase (and other oxidases; 

lignin peroxidase, and manganese peroxidase) would be visualized in the SEM 

microscope, to evaluate the changes to the lignin structure that undergo during that 

reaction 
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 Abstract Based on a differential pre-screening of 44 white-rot fungi on a lignocellulose-

supplemented minimal medium, four basidiomycetes were selected for further study: Ganoderma 

lucidum, Polyporus brumalis, Polyporus ciliatus and Trametes versicolor. In the next round, G. 

lucidum was found to be the only one being able to grow vividly on media supplemented with lignin 

alkaline. The crude protein extract of this G. lucidum exhibited high laccase activity of ~3 U/mL 

towards syringaldazine. This activity was 13 to 17 fold higher than the corresponding activity of the 

crude protein extracts of P. brumalis, P. ciliatus and T. versicolor.  The presence of laccase in the 

crude G. lucidum extract was further evaluated by SDS and Native PAGE electrophoresis. The 

enzyme had a molecular weight of ~62.5 kDa, and a Km value of 0.107 mM (determined on ABTS). A 

partial amino acid sequence analysis of this laccase, obtained by de novo sequencing using MALDI-

TOF MS/MS analysis, revealed 64 to 100% homology to the closely related laccases found in the 

UniProt database, and also indicated that certain sequence stretches had a relatively low homology. 

When the laccase-rich broth was added to lignocellulosic biomass (pretreated sugarcane bagasse) 

together with a state-of-the-art cellulase enzyme preparation (Cellic®CTec1, Novozymes), the laccase 

activity boosted the cellulosic glucose yield by 17% after 24 h (pH 5.1 and 50°C). These results 

indicate that this particular laccase from G. lucidum has unique properties that may prove significant 

in industrial upgrading of lignocellulosic biomass.  

 

INTRODUCTION 

Lignocellulosic materials, such as agro-industrial residues (e.g. straw, bagasse, stover) and forestry 

materials are recalcitrant substrates that are currently studied over the world to allow their utilization 

for biofuel industry. They comprise of cellulose, hemicellulose, and lignin. The latter one is a 

complex, aromatic biopolymer consisting of phenolic units mainly p-hydroxyphenyl, guaiacyl, and 

syringyl-type phenylpropane, which are linked together by ether and carbon-carbon bonds [1]. In 

plants lignin has a function to act as a cementing agent between cellulose and hemicellulose fibers, 

protecting them from microbial and enzymatic attack, and enabling the water transport through vessels 

and tracheids from roots to upper trunks and branches [2,3]. The presence of lignin in the 

lignocellulose materials, used for biofuel production, has been suggested to retard the cellulases 

during their catalyzed hydrolysis of cellulose [4]. 

White-rot fungi are able to grow on wood materials, and are to a certain extent looked upon as 

undesirable because they cause decay of wood [5].  The decay is partly a result of the fungal 

production of oxidative extracellular enzymes that can both efficiently catalyze the degradation of 

lignin and catalyze detoxification of lignin-derived compounds [6,7]. In contrast, brown-rot fungi, can 
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only utilize the hemicellulose and cellulose of the cell wall, leaving the lignin essentially undigested, 

albeit modified by demethylation and oxidation [8]. G. lucidum (lingzhi) is one of the representatives 

of white-rot fungi (Basidiomycota) and is highly adaptable to grow on and degrade a wide variety of 

agro-industrial lignocellulosic waste and wood. This ability is presumed to be due to its ability to 

synthesize relevant hydrolytic (cellulases and hemicellulases) and various oxidative enzymes – some 

of these oxidative enzymes are presumed to be able to catalyze the oxidation of lignin [9]. In the study 

of Adaskaveg and Gilbertson [10] it was shown that G. lucidum generally caused greater weight loss 

of all woods tested, than a Ganoderma tsugae isolate. However, despite the documented ability of G. 

lucidum to efficiently degrade wood, little is known about its potential lignin modifying enzymes.  

The expression system of oxidative enzymes of white-rot fungi is highly regulated by the nutrients 

that the fungi are exposed to [11].  The main hypothesis of this study was that if a fungus can grow on 

a medium supplemented with lignin, then it may also produce extracellular enzyme(s) that can 

promote degradation/modification of lignin or lignin-derived components. Secondly, if such enzyme 

activity is then added to a lignocellulosic substrate undergoing cellulolytic hydrolysis, then the added 

activity may boost the conversion of the cellulose. Accordingly, assessing the growth of a number 

(44) of white-rot fungi, known to grow on plant and decaying wood material, we hoped to identify i) a 

fungus with the ability to grow on a recalcitrant lignocellulosic substrate and/or directly on lignin 

supplemented medium, ii) the enzyme/s that had significant (relevant, oxidative) enzyme activity on 

lignin-mimicking substrates, and iii) assess whether this enzyme activity in turn could burst 

lignocellulose degradation. 

Our focus was turned into a laccase, considering the fact that some fungi are able to degrade lignin 

even though they lack the ability to produce lignin peroxidase and manganese peroxidase [12]. 

Laccase (EC 1.10.3.2) is a blue copper containing enzyme, which catalyzes the removal of an 

electron and a proton from phenolic hydroxyl or aromatic amino groups to form free phenoxy radicals 

and amino radicals, respectively. During this reaction one molecule of atmospheric oxygen is reduced 

to two molecules of water, so that the catalysis is taking place via transfer of 4 electrons per round of 

catalysis [13]. Laccase is also able to catalyze the oxidation of non-phenolic lignin units (C4-

esterified) to radicals, and during this reaction laccase acts via a mediator [14].  

In this paper, we present the discovery that G. lucidum can grow on lignin supplemented media 

and we annotate the presence of laccase activity in the broth derived from this G. lucidum growth. We 

also show that the addition of the G. lucidum derived laccase activity increased the yields of released 

glucose by 17% from pretreated sugarcane bagasse when added to a commercial cellulase preparation 

(Cellic®CTec1). We also report a partial amino acid sequence of the laccase together with a fast 

ABTS based screening methodology for evaluation of presence of the oxidative enzymes in the 

fermentation broth.  

 

MATERIALS AND METHODS  

Organisms 

40 strains of the genus Alternaria, Fusarium, Memnoniella, Stemphylium, and Ulocladium were 

obtained from the IBT Culture Collection at Center for Microbial Biotechnology, Technical 

University of Denmark, (Lyngby, Denmark). The fungal isolates were listed by the IBT numbers (S1, 

Table 1). In addition, four white-rot fungal strains of Ganoderma lucidum (CBS 229.93), Trametes 

versicolor (CBS 100.29), Polyporus brumalis (CBS 470.72), Polyporus ciliatus (CBS 366.74), were 

purchased from CBS Fungal Biodiversity Center (Utrecht, The Netherlands). All cultures were 

maintained on Malt Extract Agar (MEA) slants at 4˚C. 

http://www.cbs.knaw.nl/
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Substrates  

Sugarcane bagasse (SCB) was obtained from the American Society of Sugar Cane Technologists, 

Florida Division (LaBelle, FL, USA). The raw biomass was washed in distilled water (5 times) to 

remove sand particles. The washed SCB was then dried at 50°C for 44 h to a dry matter (DM) content 

of 97% (w/w), milled using a coffee mill, and sieved to pass a sieve size of 500 µm (Endecotts, 

London, UK). The raw SCB contained: 51.1% (w/w) cellulose, 23.1% (w/w) hemicellulose, and 

21.6% (w/w) acid insoluble lignin. For the enzymatic lignocellulose hydrolysis study, the SCB was 

pretreated by steam explosion: 15% dry matter (w/v) at temp. 175°C for 10 min., 11 bars pressure, and 

a double addition of oxygen (3 min. each session) as described previously [15]. After the steam 

explosion the filter cake and the hydrolysate were mixed together, dried at 55°C for 44 h, and milled 

using a coffee-mill and sieved to pass a sieve size 210 µm (Endecotts, London, UK).  The pretreated 

SCB contained: 43.8% (w/w) cellulose, 13.8% (w/w) hemicellulose, and 19.3% (w/w) insoluble 

lignin. 

The content of DM and the biomass composition was determined according to the NREL 

procedure [16]. The levels of glucose and xylose liberated after strong acid hydrolysis were 

determined by HPAEC using Dionex BioLC system equipped with Dionex CarboPac PA1 analytical 

column (Dionex, Sunnyvale, CA, USA) and an electrochemical detector used in the pulsed 

amperiometric detection mode principally as described previously [17] and as detailed by [18].  

Lignin alkaline (LA) was purchased from NacalaiTesque (Kyoto, Japan), Avicel was from Sigma-

Aldrich (Steinheim, Germany). 

 

Media 

Malt Extract medium (MEA), contained: malt extract 20 g/L; peptone 1 g/L; glucose 20 g/L, and 

agar 20 g/L for agar slants. MEA medium was supplemented with 1 mL of a stock trace metal solution 

(1 g/L ZnSO4*7H2O and 0.5 g/L CuSO4•5H2O).  

Minimal Medium (MM), was prepared as described before [19] and contained NH4NO3 1 g/L; 

Na2HPO4 0.2 g/L; KH2PO4 0.8 g/L; MgSO4*7H2O 0.5 g/L.   

For the differential pre-screening of the 44 fungal strains, MM medium was supplemented with 10 

g/L of SCB (the MM medium was supplemented with 2 g/L of glucose when 10 g/L SCB was added). 

For the subsequent growth evaluation of the 4 selected white-rot fungi (G. lucidum, T. versicolor, 

P. brumalis, P. ciliatus), the following media were used:  MEA medium supplemented with 10 g/L 

SCB; MM medium and MEA medium each supplemented with a combination of 5 g/L SCB and 5 g/L 

Avicel; MM medium and MEA medium each supplemented with 10 g/L LA (the MM medium was 

additionally supplemented with 2 g/L of glucose when 10 g/L LA was added).  

The pH of all media was adjusted to 5.6 with 2 M NaOH prior to autoclavation. All fungal cultures 

were cultivated at 25˚C for a period of 16 and 30 days on the MEA and MM supplemented media, 

respectively. The growth of the fungi was always performed on a solid, floating support of Leca® 

beads (Johannes Fog, Lyngby, Denmark). The Leca® beads were added and autoclaved together with 

the medium principally as described in [20]. 

All the media used were inoculated with a 50-mm-diameter-disc cut out of the most peripheral 

side of the MEA agar plate, after a 7-day cultivation of the respective fungus.  
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Freeze-drying of crude fungal protein extracts 

After growth in the respective liquid media, the crude fungal protein extracts were obtained after 

removal of mycelia and Leca® beads by centrifugation at 10.000 rpm for 20 min. The crude extract was 

frozen for 2 h prior to freeze-drying. Freeze-drying of the crude liquid extracts (15 mL) was performed 

on a Lyovac GT 2 (Germany) for 2 days until a visible dry pellet was formed. The dry pellet was then 

concentrated 10 times by solubilization in 1.5 mL of water and used for the ABTS plate assays, SDS-

PAGE and Native-PAGE analysis.  

Protein quantification was performed using the Pierce BCA (BiCinchoninic Acid) protein assay kit 

microplate procedure according to manufacturer’s instructions (Thermo Fisher Scientific, Rockford, 

US) as described before [21]. Bovine Serum Albumin (BSA) obtained from Sigma-Aldrich (Steinheim, 

Germany) was used as a protein standard.  

 

ABTS plate assay for laccase activity visualization 

The assay was performed as described before [22]. Development of a green halo (positive response 

for oxidative enzyme activity) was followed by placing 25 µL of 10x concentrated crude extract 

solution, resuspended in water (as described above) into a 4 mm well in the ABTS-agar plate. 25 µL 

of boiled crude extract solution was used as a negative control, while 25 µL of commercial 

preparation of laccase (Cat. no. 51639), lignin peroxidase (Cat. no. 42603) and manganese peroxidase 

(Cat. no. 93014) were used as enzyme activity controls. All enzymes were from Sigma-Aldrich, 

(Steinheim, Germany) and were diluted to reach the same concentration of U/mL, prior to ABTS-plate 

assay. ABTS (2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) was also from Sigma-Aldrich. 

The false-positive effect of ABTS being oxidized by other than laccase factors/enzymes present in 

the crude protein extract, was evaluated by addition of H2O2 (final concentration of 0.003%, w/v) to 

all commercial protein preparations, and by addition of pure H2O2 (final concentrations of 30, 0.3, 

0.03 and 0.003%, w/v) to the well of ABTS plate. 

 

Laccase activity assay 

Laccase activity was measured spectrophotometrically with syringaldazine (Sigma Aldrich, 

Steinheim, Germany) as a substrate, based on a method of Ryde [23]. Laccase activity was defined as 

the amount of enzyme required to oxidize 1 µmol of syringaldazine per minute at 30°C and pH 6.5. 

Oxidation of syringaldazine was monitored at 530 nm (ε530 = 65000 M
-1

cm
-1

, [24]) for 10 min. The 

assay mixture contained: 100 mM phosphate buffer (2.2 mL, pH 6.5), syringaldazine (0.3 mL, 0.216 

mM) and a pre-diluted fungal crude extract (0.5 mL) that ensured the linear range of Michaelis-

Menten kinetics. The pre-diluted fungal crude extracts were filtered through 0.45 µm filter (MiniSart-

plus, sterile, Sartorius, Germany) prior to activity measurements. 

 

SDS-PAGE  

The yield of expressed proteins into the fungal crude extract was evaluated by Sodium Dodecyl 

Sulphate polyacrylamid (SDS-PAGE) electrophoresis, using a Criterion XT gel system (Bio-Rad, CA, 

USA). The protein samples (65 µL) were diluted in XT sample buffer (25 µL, cat. no. 161-0791) and 

500 mM dithiothreitol (10 µL, Sigma Aldrich, Germany). The samples were boiled at 95˚C for 5 min 
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before being loaded into a 10% separation gel (cat. no. 345-0118). Electrophoresis was carried out at a 

constant voltage of 125 V for 2 h using 5 times diluted XT MOPS as the running buffer (cat. no. 161-

0788). The separated proteins were visualized by staining with Coomassie Blue G-250 (cat. no. 161-

0786). Estimation of Molecular Weights (MW) of the proteins was made against molecular (stained) 

standards (250, 150, 100, 75, 50, 37, 25, 20, 15, 10 kDa) (cat. no. 161-0374). All chemicals used during 

SDS-PAGE were purchased from Bio-Rad, CA, USA. 

 

Native PAGE 

In order to assign the activity of protein at ~62.5 kDa to laccase, a native PAGE electrophoresis 

was performed and proteins in the gel were stained with laccase specific substrate (1.8-

diaminonaphthalene, DAN). Freeze-dried supernatant samples were mixed in a ratio 1:1 with XT 

sample buffer, containing no reducing agents, and loaded onto a Zymogram gel (cat. no. 345-0080) 

without thermal denaturation. Running buffer and protein standards were the same as for the SDS-

PAGE electrophoresis. The separated proteins were visualized by incubation of the gel in a 50 mM 

sodium acetate buffer (pH 5) containing: dimethyl sulfoxide (1%) and DAN solution (2 mM), as 

detailed by [25]. 

 

Kinetic studies of laccase isolated from G. lucidum’s cultivation broth.  

Michaelis constant (Km) was calculated from a Hanes-Wolf plot. The substrate used in this study 

was ABTS at a final concentration of: 0.0113, 0.0085, 0.006, 0.0025, 0.001, 0.0005, and 0.0001 M 

[26]. The conditions for the enzymatic reaction were as detailed in [27]. 

  

MALDI Q TOF MS/MS analysis and conformation of laccase sequence.  

The band of interest (~62.5 kDa) was excised from SDS-PAGE gel and in-gel digested with 

trypsin prior to MALDI-TOF analysis as previously described in [28] and as detailed in [29]. The 

trypsin digestion and sample analysis were carried out at the Department of Biochemistry and 

Molecular Biology at the University of Southern Denmark (Odense, Denmark). The short amino acid 

peptide sequences were obtained by the de novo sequencing and were analyzed using 4800 Proteomics 

Analyzer (Applied Biosystems, Foster City, CA, USA) in MS/MS mode, followed by manual 

interpretation of the obtained MS/MS spectra by the AminoCalc program (Protana, Odense, 

Denmark).  

 

Glucose release from pretreated SCB during laccase and cellulase catalysis 

The effect of glucose release during a simultaneous laccase and cellulase catalysis of 5% (w/v) dry 

matter of pretreated SCB was evaluated in 0.1 M citrate-phosphate buffer pH 5.1 and 50°C (optimal 

for the cellulase preparation). The commercially available cellulase cocktail preparation Cellic
®
CTec1 

(0.064% Enzyme/Substrate ratio (E/S), w/w; Novozyme, Denmark) was used in conjunction with a 

laccase-rich broth from G. lucidum (0.4% E/S, w/w). The hydrolysis reactions were collected after 0, 

1, 3, 5, 16, and 24 hours and stopped by incubation at 99°C for 15 min. Afterwards, the samples were 

centrifuged at 10.000 rpm for 2 min, the supernatants were taken out and filtered through 0.2 µm filter 
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and the yields of released glucose were quantified using D-glucose-HK kit (Megazyme, Denmark) at 

340 nm in an Infinite 200 microtiter plate reader (Tecan, Salzburg, Austria). Glucose yields released 

over time were corrected by the glucose amount present in the hydrolysis sample at time 0. E/S dosage 

was based on the total protein concentration used. Cellic
®

CTec1 is based on the Trichoderma reesei 

cellulase complex (exo-glucanase, endo-glucanase, and β-glucosidase activities) with additional β-

glucosidase and glycoside hydrolase family 61 hydrolyse boosting proteins [30]. All determinations of 

the enzymatic hydrolysis samples were performed in duplicates.  

 

RESULTS 

44 white-rot fungal isolates belonging to the phyla Ascomycota (strains of the genus Alternaria, 

Fusarium, Memnoniella, Stemphylim, and Ulocladium (S1, Table 1)) and Basidiomycota (strains of 

the genus Ganoderma, Trametes, and Polyporus), were pre-screened for growth on minimal medium 

(MM) supplemented with sugarcane bagasse. The sugarcane bagasse was the natural model 

lignocellulosic substrate employed in this study. The 44 strains were selected based on a priori 

knowledge of their lignocellulosic/plant material habitat. The result of this differential pre-screening 

showed that only four of the basidiomycete isolates, namely Ganoderma lucidum, Trametes 

versicolor, Polyporus brumalis, and Polyporus ciliatus were able to grow on the sugarcane bagasse 

medium (within a 2 week growth period).  In order to further evaluate the possible ability of any of 

these four strains to exhibit growth on lignin – and then implicitly express lignin-modifying or 

degrading enzymes – these four strains were inoculated on MM and MEA medium each supplemented 

with lignin alkaline (LA) and with sugarcane bagasse + Avicel, respectively.  

Out of the four basidiomycetes fungi tested, only G. lucidum exhibited significant growth on both 

media supplemented with LA (Table 1).  P. brumalis, P. ciliatus and T. versicolor obtained a faint 

mycelial growth on the MM medium supplemented with LA in comparison to a good growth of G. 

lucidum under the same conditions, but they were unable to grow on the MEA medium when LA was 

added (Table 1). The G. lucidum strain also grew well on the MM medium with SCB+Avicel and 

exeptionally better on the MEA with SCB+Avicel.  Its growth was vivid and the colony size was 

much bigger (in diameter) and thicker when compared to that of P. brumalis, P. ciliatus and even the 

well-studied oxidative enzyme producer – T. versicolor (Table 1).  

 

Table 1. Evaluation of the fungal growth
1 
on the recalcitrant substrate supplementing 

both MM and MEA medium 

Cultivation media used2 
Ganoderma 

lucidum 

Polyporus 

brumalis 

Polyporus 

ciliatus 

Trametes 

versicolor 

LA 3 
MM + ± ± ± 

MEA ++ - - - 

SCB + Av. 4 
MM ++ + + + 

MEA +++ + + + 

SCB 5 
MM ++ + + + 

MEA +++ + + + 
1The grading of the fungal growth on recalcitrant substrate supplementing MM and MEA medium on a (+), (-) 

scale. (±) faint growth (single mycelium colonies), (+) good growth (mycelium mat covering the whole diameter of 

the experimental tube), (++) better growth (as in case of good growth but mycelium mat thicker), (+++) exceptional 

growth (thick mycelium mat plus spreading fungal growth on the walls of the experimental tube), and (-) no 

growth. The grading of the fungal growth was based on the area of mycelium (colony size) floating on the Leca® 

beads support (see Material and Methods section) added to the cultivation medium.  
2Cultivation media used in this study; MEA (malt extract medium) and MM (minimal medium) 
3, 4, 5Cultivation media supplementation: Lignin Alkaline (LA), sugarcane bagasse and Avicel (SCB + Av.), and 

sugarcane bagasse (SCB), respectively. 
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Oxidative enzyme activity assessment of the fungal crude protein extracts on ABTS 

ABTS oxidation was used to evaluate the possible presence of oxidative enzyme activity in the 

crude fungal extract: The oxidation of ABTS in the agar plate assay followed the growth ability 

pattern on the different media tested, meaning that if a fungus could grow on a medium supplemented 

with SCB (with or without Avicel) or LA, then it also expressed enzymes that enabled activity on 

ABTS. The strongest response in the ABTS plate assay (appearance of a green halo, data not shown) 

was observed for the crude protein extract of G. lucidum for all media tested.  No response for 

oxidation of ABTS was observed for P. brumalis, P. ciliatus and T. versicolor for the MEA medium 

supplemented with lignin alkaline (LA), which was in accordance with their lack of growth on this 

medium (Table 1). Oxidation level of ABTS for the LA supplemented MM medium was very low for 

P. brumalis, P. ciliatus and T. versicolor and in contrast significant for G. lucidum, also in accordance 

with the growth ability data (Table 1). 

To assure that the ABTS oxidation was not a “false-positive” auto-oxidative response of ABTS, 

the addition of hydrogen peroxide in concentrations of 30, 0.3, 0.03 and 0.003% (w/v) were tested. 

Only the H2O2 at a level as high as 30% (w/v) was able to auto-oxidize ABTS (data not shown). That 

result excluded the possibility that the oxidation of ABTS was caused by H2O2 produced by fungal 

oxidases. Moreover, neither lignin peroxidase nor manganese peroxidase added, were able to oxidize 

ABTS unless 0.003% (w/v) H2O2 was added to the extract mixture (data not shown). 

 

Kinetic studies of laccase present in the crude extract of G. lucidum 

The kinetic studies for the G. lucidum laccase present in the crude protein extract were performed 

using ABTS as a substrate. ABTS was used in order to compare the obtained Km value with those 

described in the literature. From the Hanes-Wolf plot, which gave a good distribution of the data 

points, the Km value was calculated to be 0.107 mM (Table 2). This value of Km places laccase from 

G. lucidum in the middle range of laccases presented in the Table 2, however is significantly higher 

than a Km value belonging to another G. lucidum laccase, namely GaLc3 [31]. Vmax value was not 

calculated due to lack of purity of the analyzed laccase containing sample. 

 

Table 2. Kinetic constants of laccases and the pH value at which Km was measured  

Substrate Laccase Km (mM) pH Reference 

ABTS 

Pleurotus sajor-caju Lac4 2.50 3.3 46 

Myceliophthora thermophila Lcc1 0.29 6 47 

Pleurotus ostreatus POXC 0.28 3 48 

Pleurotus ostreatus POXA2 0.12 3 48 

Ganoderma lucidum CBS229.93 0.107 5 this article 

Pleurotus ostreatus POXA1 0.09 3 48 

Rhizoctonia solani Lcc4 0.052 5.3 49 

Ganoderma lucidum GaLc3 0.037 5 31 

Trametes trogii POXL3 0.03 3.4 50 

 

Laccase activity assessment for fungal crude protein extracts on syringaldazine   

The highest activity of laccase, present in the fungal crude protein extract using syringaldazine as 

substrate, was obtained for G. lucidum cultivated on MEA medium supplemented with SCB or 

SCB+Avicel, and was 3.1 and 2.9 U/mL, respectively (Fig. 1). This level of laccase activity was 
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approximately 3.5 times higher than when G. lucidum was grown on MM medium under the same 

supplement conditions. These activity levels of laccase were consistent with the vivid growth of G. 

lucidum on the media supplemented with SCB.  The laccase activity in the crude extracts from P. 

brumalis, P. ciliatus, and T. versicolor, respectively, was 13 to 17 times lower than that obtained for 

G. lucidum cultivated on the same media (i.e. MM or MEA supplemented with SCB or SCB+Avicel) 

(Fig. 1). Unfortunately, it was not possible to measure laccase activity on media supplemented with 

LA, due to the interference from the black coloring of lignin and inability to separate it from the 

cultivation media. 

Figure 1. A comparison of the laccase activity in the crude protein extracts from G. lucidum, P. ciliatus, P. brumalis, 

and T. versicolor, cultivated on MEA and MM media, supplemented with SCB or SCB+Av, where SCB – sugarcane 

bagasse, and Av – Avicel. Laccase activity was measured using syringaldazine in accordance with suggestions from 

Lonergan and Baker [51]. The highest activity of laccase was observed for the crude protein extracts from G. 

lucidum. In general, laccase activity was higher when fungal strains were cultivated on MEA (SCB and SCB+Av) 

media. The activity of laccase for T. versicolor could not be determined. The gray and black bars indicate the amount 

of the laccase activity present in the fungal crude protein extracts from MEA and MM media, respectively. 

 

Separation of crude protein extract from G. lucidum using denaturing (SDS-PAGE) 

and native (Native PAGE) conditions.   

Ganoderma lucidum crude protein extract was analyzed by sodium dodecyl sulphate (SDS-PAGE) 

electrophoresis, due to the fungal ability to grow on media supplemented with LA and high laccase 

activity in media supplemented with SCB+Avicel, and SCB. Comparison of bands and MW of a 

control laccase from T. versicolor with the proteins from the crude extract indicated presence of 

laccase (Fig. 2). The band in the separated crude protein extract, corresponding to the laccase from T. 

versicolor, was approximately 62.5 kDa. It was slightly lower than a MW of the commercial laccase. 

Additionally, a sharp, distinct band of ~62.5 kDa was clearly visible in case of MEA medium 

supplemented with LA, regardless of the extensive, black background smearing.  

In order to assign that the MW of the protein from G. lucidum belongs to laccase an in-gel activity 

staining was performed with the substrate specific for laccase (1.8-diaminonaphthalene, DAN). Only 

a single band at 62.5 kDa in each lane (Fig. 3) was stained with DAN. A specific dark brown band 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

SCB SCB+AV SCB SCB+AV SCB SCB+AV SCB SCB+AV 

G. lucidum  P. ciliatus P. brumalis T. versicolor 

U
/m

L
 

MEA 

MM 



  

   53 

was observed which confirmed presence of an active laccase in the G. lucidum crude extract 

preparations derived from the different MEA supplemented media (MEA + SCB; MEA + 

SCB+Avicel; MEA + LA) (Fig. 3). The extracts from the MEA supplemented media were selected 

due to their higher laccase activity (Fig. 1). Additionally, no color development was observed neither 

for the commercial controls of lignin peroxidase and manganese peroxidase (data not shown), nor for 

the lower molecular weight proteins from the crude protein extract. The protein that showed activity 

towards DAN was examined for its amino acid sequence by MALDI-TOF. 

 

Figure 2. An electrophoretic separation (SDS-PAGE under denaturating conditions) of the proteins present in the G 

lucidum’s crude extract, obtained under different cultivation conditions. All protein bands were stained with 

Coomassie Blue G-250. Wells in the gel represent; protein marker (M), laccase protein standard (4), and protein 

crude extract from MEA medium supplemented with SCB (1), SCB+AV (2), and LA (3). The laccase from G. lucidum 

(estimated to 62.5 kDa) had a slightly lower molecular weight than that from a control (Trametes versicolor, Cat. no. 

51639, Sigma Aldrich, Germany). 
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Figure 3. An electrophoretic separation (Native-PAGE under non-denaturating conditions) of the proteins present in the 

G lucidum’s crude extract, obtained under different cultivation conditions. All protein bands were stained with Coomassie 

Blue G-250. Wells in the gel represent; protein marker (M), laccase protein standard (4), and protein crude extract from 

MEA medium supplemented with SCB (1), SCB+AV (2), and LA (3). Native PAGE electrophoresis confirmed presence of 

active laccase at 62.5 kDa. 

 

Partial amino acid sequence of laccase by MALDI-TOF/MS analysis 

The protein band at 62.5 kDa, putatively identified as the laccase enzyme, was further analyzed by 

MS after an in-gel digestion with trypsin. The short peptide amino acid sequences discovered de novo 

by MALDI-TOF analysis had a high homology (64 to 100%) to laccase sequences from other 

basidiomycetes (Table 3). The blasting results in UniProt database [32] showed that the amino acid 

sequences between position 88 to 100 and position 185 to 197 are highly conserved within the family 

of Ganodermataceae’s. The blasting results corroborated that the G. lucidum enzyme was a laccase.  

However, the fact that different peptide fragments, especially in the amino acid sequence regions of 

245-263 and 452-466, exhibited less than 90% sequence identity to existing functional laccases put 

focus on the fact that the G. lucidum might harbor special sequential features that could indicate its 

uniqueness.   

 

Table 3. Overview of the identity of four glycopeptides analyzed by MALDI-TOF from G. lucidum 

CBS229.93 to other laccases deposited in UniProt database 

UniProt 

identyfier  
Identified organism 

AA 

seq. 
sequence identity of discovered glycopeptides, (%) 

   
88TTSIHWH

GFFQK100 

185GSDSTLI

NGLGR197 

245DDDSTVL

TLADWYHV

AAR263 

452TLSNADI

APDGFTR466 

Q9GH17 Ganoderma lucidum 7071-9 520 100 100 80 81 

Q9HDS8 Polyporus ciliatus 524 90 100 80 81 

C5HL41 Ganoderma lucidum TR6 520 100 100 80 81 

B5G552 Ganoderma lucidum RZ 520 100 100 75 88 

Q308Q9 Trametes versicolor 522 100 93 85 64 

A3F8Z8 Polyporus brumalis lac1 520 100 93 90 70 

A3F8Z8 Polyporus brumalis lac2 524 90 93 n.a. n.a. 

Q9UVQ2 Pycnoporus cinnabarinus lac1 518 90 93 75 68 
n.a. – not annotated. 

 

Glucose release from pretreated SCB during laccase-cellulase catalyzed hydrolysis 

of SCB 

Addition of the laccase-rich G. lucidum broth to lignocellulosic biomass (pretreated sugarcane 

bagasse) together with cellulase enzyme preparation (Cellic®CTec1, Novozymes A/S, Denmark) 

resulted in a 17% increase in the overall glucose yields, at the applied experimental conditions; 24h, 

pH 5.1, and 50°C (Fig. 4). The glucose yields were evaluated during cellulase catalyzed hydrolysis of 

pretreated sugarcane bagasse. That the effect was a result of the added laccase activity was 

corroborated by the finding, that the G. lucidum protein extract exhibited no cellulase activity on 

AZCL-cellulose. 
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Figure 4. A graphical comparison of glucose yields released during a 24 h laccase-Cellic®CTec1 catalyzed hydrolysis of 5% 

(w/w) steam exploaded SCB at pH 5.1 and 50°C. Cellic®CTec1 (CC1) and the laccase-rich crude protein extract from 

Ganoderma lucidum (MEA(SCB)) were added in an enzyme/substrate (E/S) ratio of 0.064%, and 0.2% (w/w), respectively. The 

light and dark grey bars indcate the amount of released glucose (g/L) for laccase-Cellic®CTec1 or Cellic®CTec1 catalyzed 

hydrolysis of pretreated SCB, respectively. The glucose yields were 17% higher when laccase-rich fungal protein extract was 

added to the cellulase catalyzed hydrolysis of the pretreated lignocellulosic material.  

 

DISCUSSION AND CONCLUSIONS 

The initial differential screening showed that only four out of 44 white rot fungi could grow 

significantly on media supplemented with lignocellulose (lignocellulose in the form of raw sugar cane 

bagasse). It was speculated that fungi that are capable of growing on SCB and lignin alkaline (LA), 

potentially express new interesting enzymes that may be able to catalyze modification of lignin in 

lignocellulosic biomass undergoing cellulosic hydrolysis. In turn, such lignin modification might yield 

a higher cellulose conversion during cellulase catalyzed hydrolysis of lignocellulosic substrates by 

increasing the available surface area and/or by diminishing the adsorption of cellulases to lignin [33]. 

The growth screening analysis showed that the growth of P. brumalis, P. ciliatus, and T. versicolor, 

which were able to proliferate on sugar cane bagasse, was apparently inhibited by addition of LA to a 

malt extract medium (regardless of the MEA being a sugar and nutrient rich medium).  However, G. 

lucidum was found to grow significantly with LA added, i.e. G. lucidum grew faster and to a larger 

colony size than the other fungi tested. T. versicolor is a well studied oxidizing enzyme producer [34] 

and was chosen as a positive control for assessment of the growth ability on recalcitrant lignocellulose 

substrates and on LA. It was therefore surprising that the growth of T. versicolor was rather poor on 

LA since this fungus is known to produce laccase. Laccase from T. versicolor has been reported to 

detoxify lignocellulosic hydrolysates from wood via catalytic oxidation of monophenolic compounds 

and in turn improve the fermentability of these wood hydrolysates better than for example lignin 

peroxidase [35]. Based on the finding that G. lucidum could grow with LA added to the medium, it 

was conceived that the G. lucidum might produce one or more oxidative enzymes able to catalyze the 

modification of lignin constituents. Hence, the ability of G. lucidum – as the only fungus, to grow well 

on LA was indeed an indication that it had a unique, as compared to P. ciliatus, P. brumalis, and T. 

versicolor, enzyme system that allowed it to degrade/modify lignin or to overcome the 

toxic/inactivating effect of LA addition under carbon and nitrogen rich growth conditions (MEA 

medium). When coupling this interpretation to the growth data on MM or MEA supplemented with 

LA, it might be possible that the laccase from G. lucidum had a role in its ability to grow on the LA 

supplemented media.   
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This comprehension agrees with previously reported results that indicate that G. lucidum expresses 

lignin-modifying enzymes, notably laccase when cultivated on wood-derived lignocellulosic 

substrates (poplar, spruce, oak, and pine) [36]. Earlier studies indicate that white-rot fungi produce 

only laccase in defined media, and laccase and manganese peroxidase in cultures grown with poplar 

[37,38,39]. Paleaz et al. [9] reported that out of 68 fungal strains tested, laccase activity was found in 

50% of them and that laccase had the highest activity among other oxidizing enzymes tested (namely, 

MnP, AAO, and LiP).  MnP and AAO were present in 40 and 29% respectively, and LiP was not 

detected in any of the 68 fungi tested.  

Tour et al. [40] classified different white-rot fungi into five groups, based on the oxidative type of 

enzyme(s) they produce, and laccase was frequently a dominant enzyme indicating its important role 

in lignin degradation. Laccase, being a phenol oxidase (EC 1.10.3.2), catalyzes the oxidation of 

phenols and phenolic lignin substructures by electron abstraction and during this reaction, the enzyme 

is presumed to simultaneously catalyze the formation of radicals that can re-polymerize or lead to 

depolymerization [41]. Laccase thus has polymerizing and depolymerizing activity while MnP and 

Lip only polymerize phenoxy radicals [40]. Due to their adaptable redox potential laccases may 

catalyze the oxidation of both phenolic and non-phenolic lignin derived substrates [42]. The specific 

laccase from G. lucidum was not induced by carbon depletion - as it might be in case of other white-

rot fungi tested when low amounts of laccase were produced when minimal media were used.  This 

finding indicates that the laccase expression might be induced by tryptophan or tyrosine being present 

in the malt extract [43]. It is worth noting that Eggert at el. [12] identified a tryptophan derivative (4-

hydroxyindole) and tryptophane derived metabolite (3-hydroxy-2-aminobenzoate) acting as a 

mediator in laccase-catalyzed reactions performed by P. cinnabarinus. In general, a change in laccase 

activity corresponding to the type of media used (i.e. nitrogen and carbon source availability) is a 

controversial subject [11]. Some authors found that the “ligninolytic” enzyme activity production by 

certain white rot fungi increased under nutrient and carbon limiting conditions, and others reported the 

opposite dependence [19,39,44].  

The ABTS plate assay was used to grade the oxidative enzyme activity based on the degree of 

green color development and the speed with which the oxidation of ABTS took place. Comparing 

these results with the initial growth screening (Table 1), it was found that the activity of fungal crude 

protein extracts on ABTS correlated well with the growth rate.  Additionally, the laccase from G. 

lucidum had relatively high value of Km (0.107 mM), indicating a low enzyme affinity to the substrate. 

The substrate selectivity, thermal robustness, and the response of the laccase activity to reaction 

conditions deserve a further study. The activity band staining of enzymes with a phenolic substrate 

revealed a presence of laccase with a MW of ~62.5 kDa which was further confirmed by MALDI-

TOF analysis. The short amino acid sequences compared with the fungi tested for the growth ability 

(Table 3) revealed significant differences between the amino acids in the short stretches. Additionally, 

this laccase showed the highest short-peptide similarity to Ganoderma lucidum 7071-9 (Q9GH17, 

UniProt identifier). The laccase-rich crude protein extract from G. lucidum was able to increase the 

released glucose yields by as much as 17%. The laccase from G. lucidum might act on lignocellulose 

by opening of its very rigid structure and in this way allowing cellulases a more efficient action on 

cellulose fibers. Alternatively the presumed laccase promoted mechanism may involve enzymatic 

oxidation of the lignin derived components to lesser inhibitory compounds for the cellulase 

hydrolysis. This ability of laccase could be useful for the bioethanol industry, where high yields of 

fermentable sugars are desired. G. lucidum also happens to be a well known medicinal mushroom in 

traditional Chinese medicine and is commonly used for pharmaceutical purposes and in health foods 

[19,45]. Hence, the results presented may provide a step for multiple uses of G. lucidum in future bio-

industrial applications. 



57 
 

REFERENCES 

[1] Widsten P, Kandelbauer A. Laccase applications in the forest products industry: A review. Enz 

Microb Technol 2008;42:293-307. 

[2] Kirk KT, Farrell RL. Enzymatic “combustion”: The microbial degradation of lignin. Ann Rev 

Microbiol 1987;41:465-505. 

[3] Higughi T. Biochemistry of wood components: Biosynthesis and microbial degradation of lignin. 

Wood Res 2002;89:43-51. 

[4] Moilanen U, Kellock M, Galkin S, Viikari L. The laccase-catalyzed modification of lignin for 

enzymatic hydrolysis. Enz Microb Technol 2011;49:492-498. 

[5] Luna ML, Murace MA, Keil GD, Otaño ME. Patterns of decay caused by Pycnoporus sanguineus 

and Ganoderma lucidum (Aphyllophorales) in poplar wood. IAWA J 2004;25(4):425-433. 

[6] Barr DP, Aust SD. Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 

1994;28:78-86. 

[7] Call HP, Mücke I. History, overview and application of mediated ligninolytic systems, especially 

laccase.mediator-system (Lignozym®-process). J Biotechnol 1997;53:163-202. 

[8] Green III F, Highley TL. Mechanism of brown-rot decay: Paradigm or paradox. Internat Biodeter 

Biodegrad 1997;39(2-3):113-124. 

[9] Pelaez F, Martinez MJ, Martinez AT. Screening og 68 species of basidiomycetes for enzymes 

involved in lignin degradation. Mycol Res 1995;99(1):37-42. 

[10] Adaskaveg JE, Gilbertson RL. In vitro decay studies of selective delignification and simultaneous 

decay by the white-rot fungi Ganoderma lucidum and G. tsugae. Can J Bot 1986;64:1611-1619. 

[11] Mansur M, Suarez T, Gonzalez AE. Differential gene expression in the laccase gene family from 

Basidiomycete I-62 (CECT 20197). App Environ Microbiol 1998;64(2):771-776. 

[12] Eggert C, Temp U, DEAn JFD, Eriksson KEL. A fungal metabolite mediates degradation of non 

phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 1996;391:144-148. 

[13] Solomon EI, Augustine AJ, Yoon J. O2 reduction to H2O by the multicopper oxidises. Dalton 

Trans 2008;30:3921-32. 

[14] Galli C, Gentilli P. Chemical messangers: mediated oxidations with the enzyme laccase. J Phys 

Org Chem 2004;17:973-977. 

[15] Sørensen A, Teller PJ, Hilstrøm T, Ahring BK. Hydrolysis of Miscanthus for bioethanol 

production using dilute acid presoaking combined with explosion pre-treatment and ezymatic 

treatment. Biores Technol 2008;99(14):6602-6607. 

[16] Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker P. Determination of 

structural carbohydrates and lignin in biomass. Laboratory analytical procedure (LAP), version 07-08-

2011. NREL/TP-510-42618, 2011:1-15. 

[17] Sørensen HR, Meyer AS, Pedersen S. Enzymatic hydrolysis of water-soluble wheat 

arabinoxylan. I. Synergy between α-L-arabinofuranosidases, endo-1,4-β-xylanase, and β-xylosidase 

activities. Biotechnol Bioeng 2003;81:726-731. 

[18] Petersen M, Johansen KS, Meyer AS. Low temperature lignocellulose pretreatment: effects and 

interations of pretreatment pH are critical for maximizing enzymatic monosaccharide yield from 

wheat straw. Biotechnol Biofuels 2011;4(11):117-126. 

[19] Songulashvili GG, Elisashvili V, Wasser SP, Hadar Y, Nevo E. Effect of the carbon source and 

inoculums preparation method on laccase and manganese peroxidase production in submerged 

cultivation by the medicinal mushroom Ganoderma lucidum (W. Curt.: Fr.) P. Karst 

(Aphyllophoromycetideae). Int J Med Mushr 2008;10(1):79.86. 

[20] Nielsen CF, Larsen TO, Frisvald JC. Lightweight expanded clay aggregates (LECA), a new up-

scaleable matrix for production of microfungal metabolites. J Antibiot 2004:57(1):29-36. 



58 
 

[21] Silva IR, Larsen DM, Meyer AS, Mikkelsen JD. Identification, expression, and characterization 

of a novel bacterial RGI lyase enzyme for the production of bio-functional fibers. Enz Microb Technol 

(2011);49;160-6. 

[22] Srinivasan C, D’Souza TM, Boominathan K, Reddy CA. Demonstration of laccase in the white-

rot Basidiomycete Phaneochaete chrysosporium BKM-F1767. Appl Environm Microbiol 

1995;61(12):4274-4277. 

[23] Ryde JP. The effect of induced lignifications on the resistance of wheat cell walls to fungal 

degradation. Phys. Plant Pathology 1980;16:187-196. 

[24] Lin Y, Lloyd MP. An enzyme kinetics experiment using laccase for general chemistry. J Chem 

Edu 2006;83(4):638-640. 

[25] Hoopes J, Dean JFD. Staining electrophoretic gels for laccase and peroxidase activity using 1.8-

Diaminonaphthalene. Anal Biochem 2001;293:96-101. 

[26] Wolfenden BS, Willson RL. Radical-cations as reference chromogens in kinetic studies of one-

electron transfer reactions: Pulse radiolysis studies of 2.2’-azinobis-(3-ethylbenzthiazoline-6-

sulphonate). J Chem Soc Perkin Trans 1982;II:805-812. 

[27] Bourbonnais R, Paice MG. Demethylation and delignification of kraft pulp by Trametes 

versicolor laccase in presence of 2.2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl Microbiol 

Biotechnol 1992;36:823-827. 

[28] Thaysen-Andersen M, Mysling S, Højrup P. Site-specific glycoprofiling of N-linked 

glycopeptides using MALDI-TOF MS: Strong correlation between signal strength and glycoform 

quantities. Anal Chem 2009;81:3933-3943. 

[29] Schiøt M, Rogowska-Wrzesinska A, Roepstorff P, Boomsma JJ. Leaf-cutting ant fungi produce 

cell wall degrading pectinase complex reminiscent of phytopathogenic fungi. BMC Biol 

2010;8(156:1-12. 

[30] Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen J-C, Brown K, Salbo R, Ding H 

Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Leggio LL. Stimulation of lignocellulosic hydrolysis 

by proteins of glycoside hydrolase family 61: Structure and function of large, enigmatic family. 

Biochem 2010;49;3305-3316. 

[31] Ko E-M, Leem Y-E, Choi HT. Purification and characterization of laccase isozymes from the 

white-rot basidiomycete Ganoderma lucidum. Appl Microbiol Biotechnol 2001;57:98-102. 

[32] Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, 

Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh L-SL. UniProt: the 

Universal Protein knowledgebase. Nucleic Acid Res 2004;32:D115-D119.  

[33] Converse AO, Ooshima H, Burns DS. Kinetics of enzymatic hydrolysis of lignocellulosic 

materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin 

and cellulose. Appl Biochem Biotechnol 1990;24/25:67-73. 

[34] Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M. Lignin oxidation by laccase 

isozymes from Trametes versicolor and role of the mediator 2,2’-azinobis(3-ethylbenzthiazolone-6-

sulfonate) in kraft lignin depolymerization. Appl Evironm Microbiol 1995;61(5):1876-1880. 

[35] Jönnson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B. Detoxification of wood hydrolysates 

with laccase and peroxidase from white-rot fungus Trametes versicolor. Appl Microb Biotechnol 

1998;49:691-697. 

[36] D’Scouza TM, Merritt CS, Reddy CA. Lignin-modifying enzymes of the white rot 

Basidiomycete Ganoderma lucidum Appl Environ Microbiol 1999;65(2):5307-5313. 

[37] Schlosser D, Grey R, Fritsche. Patterns of ligninolytic enzymes in Trametes versicolor. 

Distribution of extra-and intracellular enzyme activities during cultivation on glucose, wheat straw 

and beech wood. Appl Microbiol Biotechnol 1997:47:412-418.  

[38] Horvath EM, Srebotnik E, Messner K. Production of lignin degrading enzymes by Ganoderma 

colossum compared to Phlebia radiata and Coriolus versicolor, 1993:163-164. In Duarte JC, Ferreira 



  

   59 

MC, Ander P. (ed.), Lignin degradation and transformation; biotechnological applications. 

Proceedings of FEMS Symposium. Elsevier Science, Amsterdam, The Netherlands. 

[39] D’Agostini EC, Mantovani TRD, Silveira do Valle J, Paccola-Meirelles D, Colauto NB, Linde 

GA. Low carbon/nitrogen ratio increases laccase production from basidiomycetes in solid substrate 

cultivation. Sci Agric 2011;68(3):295-300. 

[40] Tuor U, Winterhalten K, Fiechter A. Enzymes of white-rot fingi involved in lignin degradation 

and ecological determinants for wood decay. J Biotechnol 1995;41:1-17. 

[41] Higuchi T. Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. 

In: Lewis NG, Paice MG (eds.), Biogenesis and biodegradation of plant cell polymers. ACS 

symposium Series 399, pp. 482-502  

[42] Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. An expanded role of laccase in 

lignin biodegradation. FEBS 1990;267(1):99-102. 

[43] Arora DS, Gill PK. Effects of various media and supplements on laccase production by some 

white-rot fungi. Biores Technol 2001;77;89-91. 

[44] Xavier AMRB. Tavares APM, Ferreira R, Amado F. Trametes versicolor growth and laccase 

induction with by-products of pulp and paper industry. Electr J Biotechnol 2007;10(3):444-451. 

[45] Paterson RRM. Ganoderma – a therapeutic fungal biofactory. Phytochem 2006;67:1985-2001. 

[46] Soden DM, O’Callaghan J, Dobson ADW. Molecular cloning of laccase isozyme gene from 

Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiol 

2002;148:4003-4014. 

[47] Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH. Functional expression 

of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 

2003;69(2):987-995. 

[48] Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia A. A novel laccase from 

Pleurotus ostreatus. J Biol Chem 1997;272(50):31301-31307. 

[49] Xu F, Shin W, Brown SH, Wahlethner JA, Sundaram UM, Solomon EI. A study of a series of 

recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox 

potential, substrate specificity, and stability. Biochimica et Biophysica Acta 1996;1292:303-311. 

[50] Garzillo AMV, Colao MC, Caruso C, Caporale C, Celleti D. Buonocore V. Laccase from the 

white-rot fungus Trametes trogii. Appl Microbiol Biotechnol 1998;49:545-551. 

[51] Lonergan G, Baker WL. Comparative study of substrates of fungal laccases. Lett Appl Mcrobiol 

1995;21:31-33. 

 

 

 

 

 

 

 

 



60 
 

SUPPLEMENTARY MATERIAL  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alternaria arborescens IBT BA1342 

Alternaria arborescens IBT BA500 

Alternaria arborescens IBT BA961 

Alternaria infectoris IBT BA1289 

Alternaria infectoris IBT BA1759 

Alternaria infectoris IBT BA562 

Alternaria tenuissima IBT BA1767 

Alternaria tenuissima IBT BA577 

Alternaria tenuissima IBT BA617 

Alternaria tenuissima IBT BA894 

Alternaria triticina IBT BA1207 

Fusarium avenaceum IBT 40847 

Fusarium coeruleum IBT 2630 

Fusarium equiseti IBT 40221 

Fusarium equiseti IBT 8752 

Fusarium flocciferum IBT 1434 

Fusarium flocciferum IBT 8932 

Fusarium langsethiae IBT 8051 

Fusarium langsethiae IBT 9955 

Fusarium pose IBT 9928 

Fusarium pose IBT 9982 

Fusarium pose IBT 9999 

Fusarium sambucinum IBT 1731 

Fusarium sambucinum IBT 2364 

Fusarium sambucinum IBT 2524 

Fusarium sporotrichioides IBT 1926 

Fusarium sporotrichioides IBT 9967 

Fusarium subglutinans IBT 40638 

Fusarium torulosum IBT 8580 

Fusarium torulosum IBT 8922 

Fusarium tricinctum IBT 1945 

Fusarium tricinctum IBT 2660 

Fusarium tricinctum IBT 8838 

Fusarium venenatum IBT 1338 

Memnoniella echinata IBT 9789 

Memnoniella echinata IBT 9791 

Stemphylium versicarium IBT BA910 

Ulocladium atrum IBT BA1539 

Ulocladium cucurbitae IBT BA1540 

Ulocladium cucurbitae IBT BA520 
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 Abstract Laccases (EC 1.10.3.2) are multicopper oxidases that catalyze the oxidation of 

aromatic compounds with concomitant reduction of dioxygen to water. A novel laccase, LacGL1, was 

identified from the crude enzyme extract of the fungal strain Ganoderma lucidum CBS229.93, 

belonging to the phylum Basidiomycota. The laccase gene sequence, LacGL1, was cloned by PCR 

involving an overlapping set of up- and downstream primers. The cloned gene consisted of 1963 bp, 

with its coding regions interrupted by 9 introns, each containing from 50 to 76 nucleotides, which all 

followed the GT-AG rule at the intron/exon junctions.   A full-length cDNA of LacGL1 which 

contained an uninterrupted open reading frame (ORF) of 1563 bp, was also cloned. The cloned 

laccase gene coded for 520 amino acids including a putative 21-residue signal sequence, and the 

amino acid sequence had 91% and 81% identity with known laccases from Ganoderma lucidum and 

Polyporus brumalis, respectively. The LacGL1 laccase was also heterologously expressed in Pichia 

pastoris. The value of Km on ABTS substrate of the expressed LacGL1 was 0.122 mM and the laccase 

activity on ABTS was 17.5 U/mL. The pH optimum was 4.7 and the enzyme was relatively stable at 

50°C for 60 min. with a remaining activity of 85%. Generally, the kinetics observed for the expressed 

LacGL1 laccase were similar to those from a crude extract of G. lucidum CBS229.93. The LacGL1 

laccase was also able to catalyze the oxidation of hydroquinone, guaiacol, and 2,6-dimethoxyphenol 

and was strongly inhibited by sodium azide. Most interestingly, the expressed enzyme was able to 

promote higher yields of glucose during cellulase catalyzed hydrolysis (no mediators used) of 

pretreated sugarcane bagasse by up to 33% and 19% for Cellic®CTec1 (pH 4.7 and 40°C ) and 

Cellic®CTec2 (pH 5.1 and 50°C), respectively (“Cellic®CTec” series are the state-of-the-art 

Trichoderma reesei cellulase preparations). Through the molecular dynamics simulations of G. 

lucidum laccase and subsequent docking of the p-coumaric acid into the MD-averaged structure, we 

suggest a mechanism of the LacGL1 action that may contribute to obtaining higher glucose yields 

during cellulase catalyzed hydrolysis of lignocellulose. 

 

AKS designed and performed the experimental work (except for: RNA isolation, the LacGL1 expression in Pichia pastoris, and 

MD simulations). AKS interpreted the results, draw conclusions, and wrote the article. ML performed RACE PCR, and 

expressed LacGL1 in Pichia pastoris. NCC and KPK performed MD simulations. AKS, NCC, JDM, AM contributed with 

scientific discussions. AM and JDM read, corrected and agreed on the final manuscript.  
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INTRODUCTION 

SugarCane Bagasse (SCB) is a fibrous residue of cane stalks that is left over after the crushing and 

extraction of the sugar rich juice from sugarcane (Saccharum officinarium). SCB mainly consists of 

cellulose 51% (w/w), hemicellulose 23% (w/w), and insoluble lignin 22% (w/w), and may be used as 

a biomass feedstock for cellulosic ethanol production. 

One of the first prerequisites in such ethanol production is the efficient generation of a fermentable 

hydrolysate, rich in glucose, from the biomass feedstock. However, the efficient decomposition of the 

(ligno)cellulose to fermentable monosaccharides is currently a major bottleneck in lignocellulose-to-

ethanol processes, notably because of the significant robustness of the lignocellulosic biomass to an 

enzymatic deconstruction (Selig et al. 2007). In order to increase the accessibility of the cellulose to 

the enzymatic attack, the lignocellulosic substrates are currently subjected to a hydrothermal 

pretreatment step prior to the enzymatic treatment (Pedersen et al. 2010). Although significant 

progress has recently been made with respect to improving the cellulolytic enzyme blends and 

minimizing the enzyme addition levels for the conversion of cellulose to glucose, the presence of 

lignin and lignin-derived phenolics after the pretreatment retards the enzymatic conversion (Palonen et 

al. 2004; Selig et al. 2007).Various attempts have been made to design integrated pretreatment 

systems for removing the lignin from the pretreated biomass (Koo et al. 2012; Yang et al. 2012) but 

there is a surprising scarcity of work directed towards enzymatic pacification of the lignin and the 

lignin-derived components to enhance cellulolytic lignocellulose conversion.      

Laccases (benzenediol: dioxygen oxidoreductases, EC 1.10.3.2) are copper-containing blue 

oxidases that catalyze the oxidation of phenolic units of lignin and a number of phenolic compounds 

and aromatic amines (with co-presence of a mediator) to radicals, with molecular oxygen as the 

electron acceptor that is reduced to water (Solomon et al. 2008). Laccase has been used to decrease 

the toxicity of steam exploded wheat straw (Jurado et al. 2009) and sugarcane bagasse (Martin et al. 

2007) for second generation bioethanol. The characteristic properties that define a good laccase 

include its redox potential (directly related to kcat) but also the laccase affinity (Km) to the substrate to 

be oxidized. In general, the higher the redox potential, the easier the electrons are abstracted from the 

phenolic phenoxy groups. In nature, laccase produces Mn(III) chelates which allow wood decaying 

enzymes to penetrate wood cell walls (Youn et al. 1995). Therefore, laccases are considered to be 

capable of degrading lignin. 

In nature the best lignin degraders are white-rot fungi (Kawase 1962).  Ganoderma lucidum (Ling 

Zhi) is a non-pathogenic, white-rot, basidiomycete macrofungus known as “the mushroom of 

immortality” which extract and bioactive compounds has been used extensively in China, Japan, 

Korea, and other Asian countries for 2000 years (Sanodiya et al. 2009). Moreover, G. lucidum is 

important due to its role as a decomposer of dead wood, and it can both grow on coniferous and 

hardwood species (Adaskaveg et al. 1990), having enzymes that allow it to break down wood 

components such as lignin and cellulose (Kirk and Moore 1972).  

Based on our discovery that G. lucidum CBS 229.93 can grow on lignin and express high levels of 

laccase activity, the objective of the present study was to clone and express laccase from G. lucidum 

in P. pastoris to obtain the moncomponent enzyme and in turn evaluate the potential boosting effect 

of adding this laccase during cellulase catalyzed hydrolysis of pretreated lignocellulose. The 

motivation for this study was the documented detrimental effect of lignin on cellulase activity, for 

which one cause may be the decreased enzyme concentration due to the cellulase adsorption to lignin 

(Converse et al. 1990; Ooshima et al. 1990). 
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MATERIALS AND METHODS  
Strains and plasmids used in this study 

Ganoderma lucidum (strain CBS229.93), a white-rot, basidiomycete fungus, was purchased from 

CBS-KNAW Fungal Biodiversity Center (Utrecht, The Netherlands) and maintained on Malt Extract 

Agar (MEA) slants (2% (w/w) malt extract, 0.1% (w/w) peptone, 2% (w/w) glucose, and 1.5% (w/w) 

agar). The medium was adjusted to a pH of 6.0 with 2 M NaOH, prior to sterilization (121˚C, 20 

min.).  

Escherichia coli, strain Mach1
TM

-T1
R
 (F- Φ80lacZΔM15 ΔlacΧ74 hsdR(rk-, mk+) ΔrecA1398 

endA1 tonA; Invitrogen, Life Technologies Corporation, Carlsbad, CA, USA) was grown on a 

modified LB (Luria-Bertani) medium (1% (w/w) tryptone, 0.5% (w/w) yeast extract, and 0.1% (w/w) 

sodium chloride, instead of 1% (w/w) sodium chloride, pH 7), supplemented with 35 µg/mL 

kanamycin and transformed with a sequencing vector pCR®-BluntII-TOPO®, carrying genomic DNA 

and cDNA sequences of the LacGL1 gene. E. coli was transformed using guidelines from the Zero 

Blunt® TOPO® PCR Cloning Kit (Invitrogen, Life Technologies Corporation, Carlsbad, CA, USA).  

Pichia pastoris strain X-33 (wild type) was grown on Yeast extract Peptone Dextrose Sorbitol 

(YPDS) plates containing 100 µg/mL zeocin for 3 days at 30°C after being transformed with a MssI 

(PmeI) linearized plasmid pMLα_LacGL1, carrying a laccase gene with a C-terminal c-myc epitope 

and HIS tag and an N-terminal signal peptide from Saccharomyces cerevisiae α-mating factor pre pro 

peptide (MRFPSIFTAVLFAASSALA) (Fig. 1). P. pastoris X-33 negative control was transformed 

with MssI (PmeI) linearized pPICZαA plasmid. All plasmids were purified with QiAprep Spin 

Miniprep Kit (QIAGEN, Hilden, Germany). 

 

Genomic DNA and mRNA isolation 

 0.1 to 0.3 g of G. lucidum’s mycelium was collected from MEA plates using a sterile scalpel, 

transferred to a previously cooled mortar container, and grinded in liquid nitrogen with a pestle. The 

genomic DNA was isolated using the chloroform: phenol: isoamyl alcohol (25:24:1, v:v:v) method 

previously described by Lee and Taylor (1990). Extracted DNA pellets, from 10 isolation tubes, 

resuspended in 10 µL of TE buffer each (10 mM Tris-HCl, 100 mM EDTA, pH 7.2) were collected 

and precipitated together using 2 to 3 volumes of ice-cold 96% ethanol (v/v) and 1/10 volume of 3 M 

sodium acetate, pH 5.2. Such mixture was incubated at -20°C overnight and centrifuged at 14000 rpm 

at 4°C for 30 min. the next day. The supernatant was discarded, whereas the pellet was washed in 70% 

ethanol (v/v), dried at room temperature (but not over dried), resuspended in a desired amount of TE 

buffer, and used for further experiments. 

In order to isolate mRNA, G. lucidum was grown in Minimal Medium (MM) medium (0.1% (w/w) 

NH4NO3, 0.02% (w/w) Na2HPO4, 0.08% (w/w) KH2PO4, 0.05% (w/w) MgSO4*7H2O) supplemented 

with 0.5% (w/w) raw SCB for 7 days at 25°C. The mycelial samples were harvested and treated with 

liquid nitrogen as described for DNA isolation. The total RNA was extracted using the Qiagen 

RNeasy Mini kit (QIAGEN, Hilden, Germany). The contaminating DNA was removed by carrying 

out an in-column DnaseI digestion, according to the manufacturer’s recommendations. The DnaseI 

treated RNA samples were stored in water at -20°C. 
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A two step partial amplification of LacGL1 gene based on genomic DNA 

Prior to the amplification and the LacGL1 gene primer design, an in-gel digestion of 

electrophoretically separated by SDS-PAGE proteins from G. lucidum growth medium, was 

performed. Then, the short peptides, obtained by MALDI-TOF analysis (as described by Sitarz et al. 

2012), were blasted in the UniProtKB database (http://www.uniprot.org/) to find similar protein 

sequences. The conserved stretches of amino acid sequences that corresponded to the sequences of the 

short peptides found within the organisms deposited in the database, served as the regions where 

primers for a 500 bp nucleotide fragment were designed (Table 1). The sequences of designed primers 

were complementary to the mRNA sequence of laccase from G. lucidum (UniProt database protein 

identifier; Q9HG17) and overlapped each other so that the 3’ end of a first primer was repeated at the 

5’ end of the second primer. In total, two sets of four upstream and downstream primers were 

designed, which gave 16 pairs of primers to be tested. The LacGL1 gene amplification of 500 bp was 

carried out by using 8U of RUN polymerase (A&A Biotechnology, Poland) per volume of 25 µL. The 

PCR temperature program was initiated at 94°C for 5 min., followed by 30 cycles of 94°C for 30 s., 

58°C for 30 s., 72°C for 2 min., and a final extension at 72°C for 7 min. The amplified 500 bp 

fragment was purified using QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany), subcloned 

and sequenced in the pCR®-BluntII-TOPO® vector. The obtained nucleotide sequence was 

confirmed by a blast search in the NCBI database to belong to laccases and served as a template for 

designing 100% homologous outward primers (QYCDGLR_fwd1 and YHSHLST_rev1) that were 

used to amplify the 2000 bp LacGL1 gene fragment. Due to a high nucleotide homology between 

LacGL1 and a corresponding 500 bp fragment from G. lucidum Q9HG17, it was assumed that there is 

also a high homology for the entire gene. Therefore the outermost primer sequences, close to N- and 

C-termini were designed as those for 500 bp fragment (Table 1). The PCR profile for obtaining a 2000 

bp fragment of LacGL1 gene was initiated by denaturation of the DNA strain at 96°C for 30 s., 

followed by 35 cycles at 96°C for 30 s., 63.4°C for 30 s., 72°C for 30 s., and a final extension at 72°C 

for 5 min., with the following aliquots of the PCR reaction mixture: 0.25 µL of 2U/µL Phusion 

polymerase (Finnzymes, Finland), 0.5 µL of 50 mM MgCl2, 5 µL of 5xHF buffer, 0.2 µL 25 mM 

dNTPs (Fermentas, Denmark), 2.5 µL of 10 pmol/µL of corresponding P1 and P2 primer (see Table 

1), and 1 µL of a properly diluted DNA. The amplified 2000 bp fragment was subcloned to a 

sequencing vector and sequentially verified.  

 

Obtaining the full nucleotide sequence of LacGL1 cDNA from total RNA of G. 

lucidum by 5’ and 3’ RACE  

The first strand cDNA library construction and the Rapid Amplification of cDNA Ends (RACE) 

experiment were carried out using SMARTer™ RACE cDNA Amplification Kit (CloneTech, USA), 

in order to determine the missing 8% of the flanking regions of LacGL1 gene sequence. 5’ and 3’ 

RACE PCR fragments were generated using the Universal Primer Mix, as supplied in the kit, and 

gene specific primer QKGTNWAD_fwd or SLANPVPK_rev (Table 1), respectively, designed based 

on the partial nucleotide sequence of the gene. The reaction cycle for the RACE technique was as 

follows: 94°C for 1 min.; five cycles of 94°C for 30 s, 72°C for 3 min.; five cycles of 94°C for 30 s, 

70°C for 30 s, 72°C for 3 min.; and 25 cycles of 94°C for 30 s, 68°C for 30 s, 72°C for 3 min. The 

generated RACE products were cloned into pCR®-BluntII-TOPO® vector and sequenced. The 

overlap of 5’ and 3’ sequence fragments enabled assembling of the full coding sequence of the 

LacGL1 gene. The obtained full nucleotide sequence of the LacGL1 gene was then amplified from the 

http://www.uniprot.org/
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cDNA library using MAKFQSL_fwd and LSVDDQ_rev primer (Table 1) and sequenced in a pCR®-

BluntII-TOPO® vector.  

 

Tabel 1. Oligonucleotide primers used for amplification of LacGL1 gene 

Primer namea Primer sequenceb 

 

Primers used for amplification of 500bp fragment from LacGL1 gene from genomic DNA 

WADGP_fwd3 5’-CTG GGC GGA TGG TCC CGC-3’ 
LINGLP_rev1c 5’-CGG CCA AGG CCA TTG ATG AG-3’ 

Primers for amplification of LacGL1 gene fragment outwards from 500 bp fragment 

QYCDGLR_fwd1 5’-CAG TAC TGC GAC GGT CTA AGA GG-3’ 

YHSHLST_rev1 5’-GGT GGA GAG ATG ACT GTG GTA CC-3’ 

Primers used for amplification of 2 kbp fragment of LacGL1 gene from genomic DNA 

IAPDGFT_fwd1c 5’-CAT CGC TCC CGA TGG CTT CAC TC-3’ 
DLCTS_rev1c 5’-CTG ACG TCG GGC AAA GAT CCG-3’ 

Primers used for amplification of a full nucleotide sequence of LacGL1 gene from cDNA 

SLANPVPK_rev 5’-CTT CGG CAC AGG GTT TGC TAG GGA G-3’ 
QKGTNWAD_fwd 5’-CAG AAG GGC ACG AAC TGG GCT GAC-3’ 

LSVDDQ_rev 5’-TAG CGC GGC CGC CTA TTA TCA TTG ATC ATC GAC CGA GAG CG-3’ 
MAKFQSL_fwd 5’-ATG CGA ATT CAT GGC GAA GTT CCA ATC GTT GC-3’ 

α-FACTOR_fwd 5’-ATG CGA ATT CGG CAT CGG TCC CAA GAC C-3’ 
a The name of the primer was based on the corresponding amino acid region in the laccase of Ganoderma lucidum Q9GH17.  
b Oligonucleotide sequence was designed as shown in the figure supplementing the table. Primers for amplification of LacGL1 

gene sequence overlapped each other as shown with the pattern code, in order to maximize the positive response of the primer 

annealing to the genomic DNA of unknown LacGL1 gene sequence. The chosen amino acid regions for primers design were 

based on mRNA of laccase from G. lucidum Q9HG17. 
 c Underlined amino acids in the primer name represent single positional mutations in LacGL1 laccase as compared to laccase 

from G. lucidum Q9GH17. 

 

Construction of an expression vector pMLα_LacGL1  

To construct the expression vector, the laccase cDNA was amplified using a proofreading 

polymerase: Phusion
®

 Hot Start II High-Fidelity DNA Polymerase (Finnzymes, Finland). For 

subcloning the laccase cDNA with the α-mating factor pre pro peptide from Saccharomyces cerevisiae 

(Brake, at al. 1983), primers α-FACTOR_fwd and LSVDDQ_rev (Table 1) were used. The obtained 

product was digested with EcoRI and NotI and cloned to pPICZαA plasmid to generate 

pMLα_LacGL1 vector (Fig. 1). The expression of the LacGL1 laccase yielded a recombinant protein 

containing a c-myc epitope and a HIS tag at the C-terminal end which accounted for 27 additional 

amino acids. The fidelity of all DNA constructs was confirmed by PCR and DNA sequencing. 

 

 

Primer 1 

Primer 2 

Primer 3 

Primer 4 

5’- -3’ 

5’- -3’ 

5’- -3’ 

5’- -3’ 
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Figure 1. The map of the recombinant plasmid pMLα_LacGL1 used for expression of the LacGL1 laccase in Pichia pastoris X-
33. The pMLα_LacGL1 vector contains the sequence coding for the signal peptide from Saccharomyces cerevisiae α-mating 

factor pre pro peptide and gives a fusion of HIS tag and c-myc epitope to the C- terminal end of subcloned LacGL1 gene.  

 

Expression of LacGL1 laccase in P. pastoris X-33 and visualization of its secretion 

P. pastoris strain X-33 was transformed by electrophoresis with pMLα_LacGL1 vector. Plasmid 

pPICZαA was used as a negative control for laccase expression (Invitrogen, Life Technologies 

Corporation, Carlsbad, CA, USA). All expression vectors were linearized with PmeI (MssI) prior to 

the transformation. The transformant cells were selected on Yeast Extract Peptone Dextrose (YPDS) 

agar plates (1% yeast extract, 2% peptone, 2% dextrose, 1 M sorbitol, 2% agar) containing 100 µg/mL 

zeocin. The in-agar expression of LacGL1 laccase from positive P. pastoris transformants was 

detected after 7 days at 30°C on Buffered Minimal Methanol (BMM) agar plates (100 mM potassium 

phosphate, pH 6, 1.34% Yeast Nitrogen Base (YNB), 4x10
-5

% biotin, 1% methanol, and 1.5% agar) 

supplemented with 0.3 mM CuSO4 and 0.04% guaiacol by appearance of brown-red halos.  

Production of the recombinant LacGL1 laccase was also performed in liquid cultures prior to 

fermentation. Inoculation of the selected positive clones into Buffered Glycerol Medium (BGMY) 

medium (1% yeast extract, 2% peptone, 100 mM potassium phosphate, pH6, 1.34% YNB, 4x10
-5

% 

biotin, 1% glycerol) was followed by incubation at 30°C overnight in a shaking incubator. The cells 

were harvested when the OD600 reached a value of 1, resuspended in Buffered Methanol Medium 

(BMMY) medium (1% yeast extract, 2% peptone, 100 mM potassium phosphate, pH 6, 1.34% YNB, 

4x10
-5

% biotin, 0.5% methanol) supplemented with 0.3 mM CuSO4 and incubated for 5 days with an 

addition of methanol to a final concentration of 0.5%, every 24 h. The strain exhibiting the highest 

laccase specific activity for ABTS was chosen for fermentation. 

 

Fermentation of LacGL1 laccase from G. lucidum in P. pastoris  

P. pastoris strain X-33 carrying the pMLα-LacGL1 vector was inoculated overnight at 30°C, at 

150 rpm in the shaking flasks in BMG (Buffered Minimal Glycerol) medium (100 mM potassium 

phosphate, pH 6, 1.34% YNB, 4x10
-5

% biotin, 1% glycerol) until the cell density reached a value of 
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1.7. This step was followed by inoculation of a 5 L Sartorius Biostat Aplus fermentor. The 5 L scale 

production of recombinant laccase in P. pastoris was performed essentially according to Stratton et al. 

(1999) and as detailed by Silva et al. (2011), except that the Methanol Fed-Batch phase was carried 

out at 20°C, in order to improve the enzyme’s stability. Agitation was kept below 750 rpm to avoid 

excessive cell disruption of the P. pastoris cells and in turn to limit the downstream purification 

process. Additional oxygen was added automatically to accommodate optimal growth and enzyme 

expression. The total time for the fermentation process was 112 h.  

In order to harvest the total protein, the fermentation broth was centrifuged at 5300 x g 5°C for 1 

h. The supernatant was then subjected to sterile filtration, followed by concentration of the protein by 

ultrafiltration, using a cross-flow bioreactor system with a 30 kDa cutoff membrane (Millipore, 

Sartorius, Denmark), as described by Silva et al. (Silva et al. 2011). The enzyme aliquots containing 

25% (w/v) glycerol were stored at -80°C. 

 

Native PAGE and EndoH treatment 

The native PAGE electrophoresis was performed according to the guidelines from Sitarz et al. 

(2012), however the substrate used for activity bands visualization was ABTS. The electrophoretically 

separated and fixed on the gel proteins from the crude extract of G. lucidum CBS229.93 and P. 

pastoris fermentation were submerged in 49 mL of 0.1 M citrate-phosphate and 1mL ABTS (4 mM) 

to visualize the activity staining of laccase.  

The EndoH (endoglycosidase) treatment of the LacGL1 laccase was performed as described in 

New England Biolabs procedure (Ipswitch, MA, The USA). The EndoH treatment was performed for 

24 h in order to be able to visualize activity staining.  

 

Phylogenetics of LacGL1 laccase 

From the query sequence of the LacGL1 laccase from G. lucidum CBS229.93, a dataset of putative 

homologous sequences was built by BLAST (Altschul et al. 1997) and run on the UniProtKB database 

(Apweiler et al. 2004). The raw dataset was filtered manually to eliminate potentially non-

homologous sequences, disturbing alignments and duplicates. The sequences retrieved were only 

focused on a scope TaxeID = 4751 (fungal kingdom). An alignment was created using MUSCLE 

(Edgar 2004), and the phylogenetic tree (unrooted, squared) was generated using Seaview software 

(Gouy et al. 2010) using the maximum likelihood method (Felsenstein 1981). Bootstrapping was 

carried out with 100 replications.  

 

Laccase activity assay  

The laccase activity was measured based on a modified method of Ters et al. (2009). The laccase 

activity was defined as the amount of the enzyme required to oxidise 1 µmol of ABTS per minute at 

25°C, and pH 4.7. The assay mixture contained: 0.1 M citrate-phosphate buffer (255 µL, pH 4.7), 

ABTS (5 µL, 4 mM (ABTS stock solution)), and pre-diluted laccase (5 µL) that ensured the linear 

range of Michaelis-Menten kinetics. The oxidation of ABTS was monitored at 420 nm (ε420 = 36800 

M
-1

cm
-1

) for 2 min. in an Infinite 200 microtiter plate reader (Tecan, Salzburg, Austria). The activity 

evaluation on the other assay substrates,  hydroquinone (248 nm), 2.6-dimethoxyphenol (470 nm), and 

guaiacol (436 nm) was done similarly with the substrate concentration as described in Table 2 using 

the following extinction coefficient values: 17.542 M
-1

cm
-1

, 35.645 M
-1

cm
-1

, and 6.400 M
-1

cm
-1

, 
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respectively
 
(Minussi et al. 2007). The data collection was monitored by the program Tecan i-control 

version 1.5.14.0 (Tecan, Salzburg, Austria). The calculated laccase activity was corrected by the 

absorbance of a control sample which contained: 0.1 M citrate-phosphate buffer (255 µL, pH 4.7), 

ABTS (5 µL, 4 mM), and 5 µL of distilled water instead of the enzyme. All determinations of the 

laccase activity were performed in duplicates, with an average sample standard deviation less than 

5%.      

 

Evaluation of the influence of pH and temperature on laccase activity - MODDE   

The effect of the pH and temperature on the LacGL1 laccase activity, expressed from P. pastoris, 

was modeled via randomized, full factorial, statistically designed experiment - MODDE program 

version 7.0.0.1 (Umetrics, Umeå, Sweden). The statistical design consisted of 12 experiments, 

including a triplicate repetition at the center point (pH 5 and 40°C), using ABTS as a substrate. The 

influence of the temperature and pH was monitored between 25-55°C and pH 4-6 (for 0.1 M citrate-

phosphate buffer), respectively. The mixture with the ABTS and buffer at the defined pH value was 

incubated for 5 min. in a thermocycler set to a desired temperature and afterwards added to a 

previously pre-diluted enzyme in a microtiter plate which was incubated for 1 min. in a microtiter 

plate reader set to a desired temperature. After mixing the substrate and buffer with the enzyme, the 

initial rate of the product formation was measured as described above. The volumes and 

concentrations of enzyme, substrate, and buffer were identical as for the laccase activity assay.  

 

Thermal stability studies and evaluation of substrate specificity, kinetic and 

inhibition parameters  

The thermal stability studies of the LacGL1 laccase expressed in P. pastoris were performed by 

incubation of 5 µL of the enzyme and 255 µL of 0.1 M citrate-phosphate buffer, pH 4.7 at different 

temperatures (25, 40, 50, 60, and 70°C) for 2, 5, 15, 30, 45, and 60 min. in a thermocycler. 

Afterwards, 5 µL of 4 mM ABTS were added to the enzyme-buffer mixture and the initial rate of 

product formation was measured as described above. 

The potential inhibitory effect of EDTA, NaN3 and NaF on the rate of product formation was 

monitored with ABTS as a substrate, by addition of the inhibitor-substrate-buffer mixture to the 5 µL 

of LacGL1 laccase preparation. The final concentration of the potential inhibitor evaluated in this 

study was 0.0001, 0.0005, 0.001, 0.01, 0.1 and 50 mM for NaN3, NaF and EDTA, respectively. 

 The Michaelis constant (Km) was calculated from a Hanes-Wolf plot. The linear relationship of the 

data, where the substrate concentration over the reaction rate [S]/[v] is plotted against the substrate 

concentration [S], gave a slope of 1/Vmax, a y-intercept of Km/Vmax and an x-intercept of –Km. The 

substrate used in this study was ABTS with a final concentration in the reaction mixture of: 0.015, 

0.031, 0.041, 0.062, 0.077, and 0.092 mM. The rate of product formation was measured as described 

above. 

 

Preparation of biomass sample for evaluation of laccase effect on released glucose 

yields 

SCB (Sugarcane Bagasse) was obtained from the commercial American Society of Sugarcane 

Technologists, Florida Division (LaBelle, FL, USA). The raw biomass was washed in the distilled 

water to remove any sand particles and dried at 50°C, prior to the pretreatment. Afterwards, 15% dry 

matter (w/v) of SCB was pretreated by the steam explosion process at 175°C for 10 min., 11 bars 
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pressure, and a double addition of oxygen (3 min. each session) as described previously (Sørensen et 

al. 2007). After the steam explosion, the filter cake and the hydrolysate were mixed together, dried at 

55°C for 44 h, and coffee-milled to pass a sieve size of 210 µm (Endecotts, London, UK). The 

pretreated SCB contained; 48.8% (w/w) cellulose, 13.8% (w/w) hemicellulose, and 19.3% (w/w) 

insoluble lignin. 

The content of the dry matter and the biomass composition was determined according to the 

National Renewable Energy Laboratory (NREL) procedure (Sluiter et al. 2011). The levels of glucose 

and xylose liberated after strong acid hydrolysis were determined by HPAEC using Dionex BioLC 

system equipped with Dionex CarboPac PA1 analytical column (Dionex, Sunnyvale, CA, USA) and 

an electrochemical detector used in the pulsed amperiometric detection mode principally as described 

previously (Sørensen et al. 2003) and as detailed by (Pedersen et al. 2011).  

 

Glucose release from pretreated SCB during laccase-cellulase catalyzed hydrolysis 

of SCB 

The effect of the glucose released during a laccase-cellulase catalyzed hydrolysis of 5% (w/v) dry 

matter of pretreated SCB was evaluated in 0.1 M citrate-phosphate buffer at pH 4.7 and 40°C (optimal 

for the LacGL1 laccase) or pH 5.1 and 50°C (optimal for the cellulase preparations), respectively. The 

commercially available cellulase cocktail preparations: Cellic
®
CTec1 and Cellic

®
CTec2 (0.064% 

Enzyme/Substrate ratio (E/S), w/w; Novozymes, Bagsværd, Denmark) were used with the 

combination of the LacGL1 laccase (0.4% E/S, w/w). The hydrolysis reactions were collected after 0, 

1, 3, 5, 16, and 24 hours and stopped by incubation at 99°C for 15 min. Afterwards the samples were 

centrifuged at 10.000 rpm for 2 min., the supernatants were taken out and filtered through 0.2 µm 

filter and the yields of released glucose were quantified using the D-glucose-HK kit (Megazyme, 

Denmark). The glucose yields released over time were corrected by the glucose amount present in the 

hydrolysis sample at time 0. The E/S dosage was based on the total protein concentration used. The 

Cellic®CTec1 and Cellic®CTec2, cellulase preparations, are based on the Trichoderma reesei 

cellulase complex (exo-glucanase, endo-glucanase, and β-glucosidase activities) with additional β-

glucosidase and glycoside hydrolase family 61 hydrolyse boosting proteins (Harris 2010). All 

determinations of the enzymatic hydrolysis samples were performed in duplicates.  

The protein quantification was performed using the Pierce BCA (BiCinchoninic Acid) protein 

assay kit microplate procedure according to manufacturer’s instructions (Thermo Fisher Scientific, 

Rockford, US) as described before (Silva et al. 2011). Bovine serum albumin (BSA) was used as a 

standard.  

 

Homology modeling 

The crystal structure of the Trametes versicolor laccase (TvL) (PDB ID: 1GYC) (Piontek et al. 

2002) was retrieved from the protein data bank. A homology model of the LacGL1 laccase was build 

using Phyre2 (Kelley and Sternberg 2009) in a threading mode using TvL as a template. Both 

structures were prepared for the molecular dynamics simulations using the protein preparation wizard 

in Maestro version 9.2 (Schrödinger LLC: New York, 2011).  

 

Molecular dynamics simulations 

The LacGL1 model and the TvL structure were protonated corresponding to the neutral pH and 

each of them was immersed in a cubic box of TIP4P water (Jorgensen et al. 1983) providing a 
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minimum layer of 13 Å of water on each side of the protein. A charge-neutral system was achieved by 

replacing randomly selected TIP4P molecules with Na
+
. Each system was subjected to the steepest 

descent minimization to a gradient of 1 kcal mol
-1

 Å
-1

 followed by the default pre-simulation protocol 

employed in Desmond Molecular Dynamic System, version 3.0. (D.E. Shaw Research: New York). 

Following the relaxation protocol, a 20 ns NPT simulation was carried out with Desmond for each 

system at 300 K. The simulations were performed with the OPLS_2005 force field (Banks et al. 

2005), periodic boundary conditions and employed the smooth particle mesh Ewald method (Essmann 

1995) for treatment of long-range Coulomb interactions.  MD trajectories were saved to disk at 20 ps 

intervals for subsequent analysis. 

 

Docking 

The structure of the substrate, p-coumaric acid, was generated and optimized in Maestro. The last 

snapshot of the 20 ns MD simulation of the LacGL1 laccase was chosen to represent the structure of 

LacGL1. After superimposition of the MD structure of the LacGL1 laccase and the crystal structure of 

TvL laccase, p-coumaric acid was substituted for 2,5-xylidine present in the crystal structure using the 

most plausible alignment of functional groups.  

 

RESULTS 

 Characterization of laccase gene, LacGL1, and predicted protein, LacGL1 

The MALDI-TOF analysis of the proteins in the crude extract of G. lucidum CBS229.93 revealed 

an existence of a laccase (Sitarz et al. 2012). Based on the homology between the five short peptides 

belonging to G. lucidum CBS229.93 laccase and the laccase from G. lucidum Q9HG17, two sets of 

four primers each were designed based on the mRNA sequence of G. lucidum Q9HG17. Out of the 16 

pairs of primers (each of two sets of four primers, paired forward and reverse), one set 

(WADGP_fwd3 and LINGLP_rev1; Table 1) resulted in an amplification of a 500 bp fragment which 

when blasted in the UniProt database (Apweiler et al. 2004) confirmed a high homology to laccase 

from G. lucidum Q9HG17. The 500 bp fragment was positioned between the two short peptides 

(TTSIHWHGFFQ and FPLGSDSTLINGLG discovered de novo by MALDI-TOF analysis) and was 

80% identical to the mRNA sequence of G. lucidum Q9HG17. This level of identity corroborated that 

the peptide fragment was most likely a laccase. Next, the identified sequence of 500 bp of G. lucidum 

CBS229.93 was used to design 100% identical outward primers, QYCDGLR_fwd1 and 

YHSHLST_rev1, respectively (Table 1). Therefore, an amplification of the genomic DNA with the 

outward primers and their respective fwd and rev partners, IAPDGFI_fwd1 and DLCTS_rev1, 

respectively, whose sequence was again based on G. lucidum Q9HG17, gave a product of 1963 bp 

belonging to the LacGL1 laccase gene. The manual and software analysis (Stanke and Morgenstern 

2005) of the introns and exons in this fragment revealed an existence of 9 introns, located at 183-250, 

319-369, 490-547, 661-722, 790-866, 958-1009, 1166-1218, 1416-1476, and 1740-1796 bp which all 

followed a GT-AG rule at the exon/intron junctions (Padgett et al. 1984) and had a characteristic for 

Basidiomycetes motif within the intron – CTNA (Seitz et al. 1996). This fragment however, did not 

contain N- and C- terminal sequences of the LacGL1 laccase, which were found by applying the 

RACE technique (Ryu et al. 2008). In this way the missing 8% of the final sequence of the LacGL1 

gene was identified and amplified. A comparison between the cDNA and the 1963 bp fragment of the 

genomic DNA sequence of LacGL1, deprived of introns, confirmed that the sequences were identical. 

The final mRNA sequence of the LacGL1 gene consisted of 1563 bp. The analysis of the predicted 
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cDNA gene sequence showed 87% identity with the laccase from G. lucidum strain 7071-9 (Joo et al. 

2007) and 77% with Lac1 gene from Polyporus brumalis (Ryu et al. 2008). 

The cDNA of the LacGL1 laccase gene was translated into an amino acid sequence using an 

ExPASY translate tool (Gasteiger et al. 2005). The translation showed that the LacGL1 laccase gene 

encoded for 520 amino acids including a 21 amino acid long signal peptide with its cleavage site 

predicted by SignalP software (Nielsen et al. 1997; Bendtsen et al. 2004). Afterwards, the amino acid 

sequence of the native laccase with the truncated signal peptide and the purification tag and the 

LacGL1 laccase with the truncated signal peptide but containing a 27-amino-acid purification tag 

were submitted to ExPASY proteomics tool, and the pI and the molecular weight of the proteins were 

calculated to be 5.07, 54.5 kDa and 5.21, 57.5 kDa, respectively. The mass of the native laccase 

corresponded well with SDS-PAGE results of 62.5 kDa (Sitarz et al. 2012). The slightly higher mass 

of the native enzyme revealed by the Native-PAGE (Fig. 2, lane 1) analysis was presumably due to 

the glycosylation since the sequence was found to contain seven potential N-glycosylation sites, 

computed by NetNGlyc server (Blom et al. 2004). Additionally, the analysis of the amino acid 

sequence of the LacGL1 laccase, resulted in 91% identity with a laccase from G. lucidum strain 7071-

9 (Q9HG17 – UniProt identifier), and 81% with a laccase from Polyporus brumalis (A3F8Z8), 

respectively. 

 

 

Figure 2. The activity staining of the laccase from Ganoderma lucidum CBS229.93 on Native PAGE, using an ABTS as a 

substrate. (M) molecular weight standards, (1) the laccase from a crude extract of G. lucidum CBS229.93, (2) the LacGL1 
laccase expressed in Pichia pastoris, (3) the LacGL1 laccase expressed in P. pastoris after EndoH treatment.  

 

The analysis of the amino acid sequence of the LacGL1 laccase from G. lucidum CBS229.93 

revealed a high degree of homology in the highly conserved copper binding domains with their amino 

acids that take part in coordination to the four copper atoms (Fig. 3). These four regions, identified as 

R1-R4, consisted of the ungapped sequence regions that contain conserved residues of 1 cysteine and 

ten histidines that are involved in the binding of the four copper ions (Thurston 1994). The eight out 

of ten histidines appeared in a highly conserved pattern of HXH motifs (Fig. 2) in the protein. An X in 

this motif represents an undefined residue. Moreover, the HXH motifs were separated from each other 

by segments of 25 to 175 amino acids (Kumar et al. 2003). The most important residues that 

coordinated to copper ions were located in domain 1 and 3. 
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Figure 3. Selected alignment parts of randomly chosen enzymes, belonging to the multicopper oxidases family, which show the 

copper binding domains with their conserved amino acids that take part in coordination to the four copper atoms. The amino 
acids in the red boxes indicate fully conserved residues and the triangles below the red boxes point out to the 11 fully conserved 

amino acids coordinating to the four copper atoms. All 11 residues are positioned within the sequence segments (R1-R4), which 

are ungapped for fungal laccases and allow them to be distinguished within a broader class of multicopper oxidases. The red, 
green, pink, and black triangles indicate coordination to the T1Cu, T2Cu, T3αCu, and T3βCu copper ions, respectively. The 

blue circles indicate the residues positioned 4Å axial to the T1 copper ion. Note that the axial, non-coordinating isoleucine 

(455I) and phenylalanine (463F) are invariable among the selected fungal laccases. The secondary structures (α-helices and β-
sheets) above the alignment are based on a crystallographic structure of Trametes versicolor (PDB ID: 1GYC) (Piontek et al. 

2002). The α-helices and β-sheets colored black and green indicate domain 1 (residues 1-131, and 476-499), and domain 3 

(residues 301-475), respectively. Domain 2 (residues 132-300) is not presented here due to the lack of residues serving a 
function in catalysis. The domain coloring in this figure corresponds to the coloration code of domains in Fig. 8B. The 

alignment of the sequences was made using the ClustalW 2.0 software (Goujon et al. 2010; Larkin et al. 2007) and ESPript for 

final output (Gouet et al. 1999). The signal peptides were cleaved off prior to the alignment using the SignalP software. 
 

 

LacGL1 laccase phylogenetics 

The finding of 91% homology between the laccase amino acid sequences of G. lucidum 

CBS229.93 and Q9HG17 (UniProt identifier) on the one hand confirmed that the LacGL1 enzyme 

was a laccase, but hinted that the 9% protein sequence dissimilarity can classify laccases to quite 

different phylogenetic groups (Fig. 4). Laccases belonging to G. lucidum B5G552 and B5G551 appear 

related to the LacGL1 laccase (but are not identical to LacGL1) while the laccases belonging to 

Trametes genus showed to originate from a different ancestor, grouping themselves in a separate 

family rather distant from Ganoderma family but still having regions R1 and R4 highly conserved 

(Fig.3 and 4). 
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Figure 4. A maximum-likelihood phylogenetic reconstruction of the homologous sequences for the LacGL1 laccase. All 
proteins are named according to their Uniprot reference number. The LacGL1 from G. lucidum CBS229.93 (marked with the 

red loop) exhibits the shortest distance to laccase from G. lucidum Q9HG17. These proteins cluster together with two putative 

laccases from G. lucidum UniProt accession numbers B5G552 and B5G551, respectively.  

 

Heterologous expression of the LacGL1 laccase in P. pastoris 

Prior to the fermentation, the expression of the LacGL1 laccase was evaluated from two different 

vectors, one containing α-factor signal peptide from Saccharomyces cerevisiae (pMLα_LacGL1, Fig. 

1) and the second one containing a native signal peptide from G. lucidum CBS229.93 

(pML_LacGL1). Results showed a higher laccase activity when the α-factor signal peptide directed 

the transport of the LacGL1 protein (data not shown) and therefore pMLα_LacGL1 was used for 

laccase expression.  

During the 5-L scale fermentation (112 h) of Pichia pastoris containing the recombinant LacGL1 

laccase gene, the methanolytic yeast growth was monitored by measurement of the OD600, which 

increased from 1.7 to 630 during the cultivation period (data not shown). The level of the extracellular 

proteins, including the LacGL1, reached a concentration of 14.7 g/L. The protein expression was 
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followed by an in-gel activity measurement using Native PAGE electrophoresis and the LacGL1 

laccase activity had response at 125 kDa (Fig. 4).  That this relatively high Molecular Weight (MW) 

of the LacGL1 laccase was due to extensive glycosylation (Bohlin et al. 2006), was confirmed by 

Native PAGE electrophoresis which showed that the MW decreased to 62.5 kDa after EndoH 

treatment (Fig. 4). The LacGL1 laccase activity was 17.5 U/mL after the fermentation and sterile 

filtration.  

 

Characterization of the LacGL1 laccase expressed in P. pastoris  

The main purpose for expression of the LacGL1 laccase from G. lucidum was to obtain a sufficient 

amount of pure, monocomponent enzyme to evaluate its effect on the improvement of the total 

glucose yields released during ongoing cellulase hydrolysis of STEX SCB.  

In order to determine the optimal pH and temperature conditions of laccase expressed in P. 

pastoris, a statistically designed, randomized, full factorial experiment was applied to evaluate the 

individual and interactive effects of two factors (pH and temperature) on the rate of the product 

formation. The highest relative activity of the LacGL1 laccase, predicted by the model was at pH 4.7 

and 55°C and was almost independent of the temperature (Fig. 5) 

 

 

Figure 5. A surface response plot as a function of the pH and temperature on the relative activity (U/mL) of the LacGL1 laccase 

expressed in Pichia pastoris. The relative activity was calculated based on the LacGL1 activity at pH 4.7 and 25°C. The highest 
relative activity was calculated for pH 4.7 (red area of the plot) and was almost temperature independent. The lowest value of 

the relative activity was when the pH value dropped to 6 (blue area of the plot). 

 

The model correlation coefficient R
2
 (0.99) suggested that the fitted model could explain 99% of 

the total variation in the data. Together with the high values of predictivity Q
2
 (0.97) and 

reproducibility (0.98) it could be concluded that the model was reliable. However, the model (Fig. 5) 

only predicted the potential and the most suited conditions for the LacGL1 laccase activity and 

therefore needed further validation. The relative activity measured at pH 4.7, of the LacGL1 laccase, 

did not change significantly for 25, 40, and even 50°C within an hour, however holding at 

temperatures of 60°C and 70°C lowered the laccase activity to 19 and 3%, respectively (Fig. 6). These 

results showed model correctness for temperature range from 25°C to 50°C. Additionally, the LacGL1 
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laccase showed a rather high stability at 50°C and 40°C for a prolonged time of incubation. It retained 

33% activity after 24 h at 40°C in contrast to 23% activity after 5 h at 50°C (Fig. 7).  

 

 

Figure 6. The temperature stability profile of LacGL1 laccase represented as a function of LN [U/mL] vs. incubation time at pH 

4.7 and 0.1 M citrate-phosphate buffer. The highest impact on the rate of product formation under optimal pH conditions and 
incubation time at a specific temperature profile was observed for temp 60°C and 70°C, respectively. The relative difference 

between single measurements was <5%.  

 

 

Figure. 7. LacGL1 laccase stability evolution plot at optimum pH of 4.7 and two different temperature values (40°C and 50°C). 

The plot is a continuation of temperature stability plot (Figure 6), therefore the first measurement is depicted after 1 h. Laccase 

residual activity [%] is calculated based on activity value of laccase measured at pH 4.7 and 25°C. The relative difference 
between single measurements was <5%. 
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Substrate specificity of LacGL1 laccase 

Apart from ABTS, the LacGL1 laccase was able to oxidize other phenolic compounds (Table 2) 

such as; hydroquinone, guaiacol, and 2.6-dimethoxyphenol however in a slower rate than the one 

observed in the case of ABTS. The comparison of the rate of product formation of the laccase from 

the crude extract of G. lucidum (LacGLCE), showed a similar pattern, however the expressed LacGL1 

laccase was slightly faster.  

From the Hanes-Wolf plot, which gave a good distribution of the data points, the Km value for 

ABTS as substrate was calculated to be 0.122 mM and was identical with a value of Km for the 

LacGLCE laccase (data not shown). Vmax value was not calculated due to the lack of purity of the 

LacGL1 laccase. 

 

Tabel 2. The evaluation of the rate of product formation 

 for other laccase assay substrates. 

Substrate [1 mM] 

Laccase relative rate of product 

formation [%]
a
 

LacGL1
b
 Lac_GLCE

c
 

ABTS 100 100 

Hydroquinone 80 66 

Guaiacol 66 57 

2.6-

Dimethoxyphnol 
61 51 

a All values represent the mean of duplicate measurements with a relative difference between single measurements of <5%.  
b Laccase from Ganoderma lucidum, expressed in P. pastoris, and described throughout the paper  
c Laccase from Ganoderma lucidum crude extract, used as a reference for LacGL1 laccase.  

 

 

Additionally, the inactivation of the LacGL1 laccase and the laccase from the crude extract of G. 

lucidum by various concentrations of potential inhibitors is shown in Table 3. Both laccases were 

strongly inhibited by sodium azide (0.01 and 0.1 mM) and dithiothreitol (0.5 mM) and less but still 

significantly, by sodium fluoride. EDTA affected the laccases activity to a lesser extent.  

 

Tabel 3. The effect of the inhibitory substances on the oxidation of ABTS 

 by the LacGL1 laccase from Ganoderma  lucidum, expressed in Pichia pastoris. 

Compound 
Concentration 

[mM] 

Inhibition [%]
a
 

LacGL1 Lac_GLCE 

Sodium azide 

0.0001 16 18 

0.0005 50 47 

0.001 57 57 

0.01 100 89 

0.1 100 100 

Sodium fluoride 

0.0001 8 23 

0.0005 13 24 

0.001 19 28 

0.01 22 38 

0.1 46 56 

EDTA 50 16 30 

Dithiothreitol 0.5 100 100 
a All values represent the mean of duplicate measurements with a relative difference between single measurements of <5%.  
b Laccase from G. lucidum, expressed in P. pastoris, and described throughout the paper  
c Laccase from G. lucidum crude extract, used as a reference for LacGL1 laccase.  
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Homology models created with Phyre2 (Kelley and Stenberg 2009) for LacGL1 with and without 

the 27-amino-acid purification tag (Fig. 8) showed almost identical structures for the common (non-

HIS-tag) part of the sequence. 

  

Figure 8. A graphical representation of the LacGL1 laccase expressed in Pichia pastoris (A) and its superimposition on a native 
laccase without a 27-amino-acid purification tag (B), illustrated using the PyMol Molecular Graphic System Version 1.5 

Schrödinger, LLC. A) The yellow colored 3D structure of Ganoderma lucidum laccase was predicted by submitting its full 

amino acid sequence to the 3D comparative protein modeler – Phyre2 (Kelley and Sternberg 2009). The blue sticks represent 
cysteine residues responsible for formation of disulphide bridges, and the red tail is the 27-amino-acid purification tag; B) The 

three-colored, 3D structure of the native laccase from G. lucidum indicates positioning of the domains and compares the overall 

protein folding to the laccase containing a purification tag. Brown spheres represent four copper ions, which play an important 
role in catalysis. They are located in domain 3 (T1Cu) and between domain 3 and 1 (T2Cu, T3αCu and T3βCu). Domain 1 

(residues 1-131 and 476-499) is colored black, domain 2 (residues 132-300) is colored blue, and domain 3 (residues 301-475) is 

colored green. The range of amino acid residues that are a part of each domain was predicted according to (Aleksandrov and 
Shinddyalov 2003) and found at www.pdb.org under T. versicolor (PDB ID: 1GYC) sequence.  

 

 

Glucose release from pretreated SCB during laccase-cellulase catalyzed reaction  

In order to evaluate any potential effect of laccase addition during the cellulase hydrolysis of 

cellulose, the LacGL1 laccase was added to the buffered solutions of the SCB containing cellulase 

protein preparations. The two protein preparations were investigated, namely: Cellic®CTec1 and 

Cellic®CTec2 (from now on referred to as CC1 and CC2, respectively). The expressed, but not 

purified laccase and the two cellulase preparations were dosed based on total protein concentration. 

The experimental results showed that the laccase addition and the levels of the released sugars are 

dosage dependent. The more laccase was added the more glucose was released (data not shown). The 

combined laccase plus cellulase treatment of STEX SCB were performed at two different conditional 

set ups: pH 4.6, 40°C and pH 5.1, 50°C. The lower pH and temperature values were optimal for the 

LacGL1 laccase (as previously shown from MODDE pH-temp.-activity model, Fig. 5 and thermal 

stability plot, Fig. 6, 7). These conditions are however low for the optimal conditions of the golden 

cellulose standards CC1 and CC2 that perform optimally at 50°C and pH 5.1. The latter conditions 

were therefore also applied here. From the MODDE data, three different effects on glucose levels 

were observed and depended on the three factors: the type of the cellulase preparation, whether or not 

the LacGL1 was added, the temperature, and the pH of the reaction (Fig. 9, 10). Overall, the highest 

improvement of the cellulose conversion, considering also all of the aforementioned factors, was 

reported for LacGL1-Cellic®CTec2 catalyzed hydrolysis of STEX SCB at pH 5.1 and 50°C. The total  

A B 

http://www.pdb.org/
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glucose yields were 19, and 27.5% higher, as compared with a reference CC2 hydrolysis at the same 

conditions, and pH 4.6 and 40°C, respectively. Moreover, the influence of the higher pH and 

temperature on LacGL1-CC2 catalyzed hydrolysis had a 12% improvement effect on the glucose 

yields released from SCB (Fig. 9).  

 

 

Figure 9. A graphical comparison of yieds of released glucose over time in LacGL1-Cellic®CTec1 catalyzed hydrolysisof SCB 

at different pH and temperature values. The diagram bars without edge and those with a thick, red edge represent yields of 

released glucose at pH 4.6; temp. 40°C and pH 5.1; temp. 50°C, respectively. CC1 is an abreviation used for a cellulase 
preparation - Cellic®CTec1 and LacGL1 describes a laccase from Ganoderma lucidum, expressed in Pichia pastoris X-33. 

CC1 and LacGL1 were added in E/S ratio of 0.064%, and 0.4% (w/w), respectively. 

 

On the other hand, the opposite effect of the temperature and pH on the LacGL1-Cellic®CTec1 

catalyzed hydrolysis of the cellulose was observed. Here, the most optimal conditions were pH 4.6 

and 40°C with improvement in glucose yields of 48, and 66% for LacGL1-CC1 and CC1 hydrolyzed 

samples at pH 5.1 and 50°C. Additionally, the LacGL1 addition to CC1 at pH 4.6 and 40°C resulted in 

30% yield improvement (Fig. 10).  

 

 

Figure 10. A graphical comparison of the yieds of released glucose over time in the LacGL1-Cellic®CTec2 catalyzed 

hydrolysis of SCB at different pH and temperature values. The diagram bars without edge and those with a thick, red edge 

represent the yields of released glucose at pH 4.6; temp. 40°C and pH 5.1; temp. 50°C, respectively. The CC2 is an abreviation 
used for a cellulase preparation - Cellic®CTec2 and the LacGL1 describes a laccase from Ganoderma lucidum, expressed in 

Pichia pastoris X-33. The CC2 and the LacGL1 were added in the E/S ratio of 0.064%, and 0.4% (w/w), respectively. 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.064%CC1+0.4%LacGL1 0.064%CC1 0.064%CC1+0.4%LacGL1 0.064%CC1 

pH 4.6, temp. 40°C pH 5.1, temp. 50°C 

G
lu

co
se

 c
o

n
ce

n
tr

at
io

n
 [

g
/L

] 

1 hour 3 hours 5 hours 16 hours 24 hours 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

0.064%CC2+0.4%LacGL1 0.064%CC2 0.064%CC2+0.4%LacGL1 0.064%CC2 

pH 4.6, temp. 40°C pH 5.1, temp. 50°C 

G
lu

co
se

 c
o

n
ce

n
tr

at
io

n
 [

g
/L

] 

1 hour 3 hours 5 hours 16 hours 24 hours 



  

   81 

DISCUSSION 

We have cloned a novel laccase (LacGL1) from a non-pathogenic basidiomycetes fungus 

Ganoderma lucidum CBS229.93, and expressed it in P. pastoris in order to evaluate its effect on the 

total glucose yields released during commercial cellulase catalyzed hydrolysis of the pretreated 

biomass. The role a laccase might play in lignin-like compound detoxification/degradation was 

indicated in our earlier studies (Sitarz et al. 2012) during fungal cultivation on lignin derivatives and 

evaluation of the proteomics profile of the expressed proteins. 

Initially an evaluation of the dominating protein bands on the Native-PAGE gel was done by the 

MALDI-TOF analysis followed by a short peptide based amplification of the LacGL1 gene. The 

LacGL1 gene was translated into amino acid sequence and encoded for 520 amino acids, including a 

21 amino acid signal peptide, which was predicted by SignalP software to be cleaved off at GIGPKT 

N-terminal sequence. This amino acid sequence was identical (GIGPKT) to the closest homolog of 

GaLC3 from G. lucidum strain 7071-9 (Ko et al. 2001), (Q9GH17 UniProt identifier), and was also 

similar but not identical (GIGPV) to the furthest positioned homologue of laccase isozyme I in the 

phylogenetic tree (Fig. 4), belonging to Trametes villosa (Yaver et al. 1996), (Q99O44 UniProt 

identifier). Additionally, the MW visualized by the Native-PAGE electrophoresis was 62.5 and 125 

kDa for the native and the expressed laccase, respectively. The higher MW of the native laccase (as 

compared to software analysis prediction of 54.5 kDa) might be due to glycosylation, since there are 

seven potential glycosylation sites in the G. lucidum laccase sequence, which make a total of 13% of 

the sugar moieties attached to the laccase backbone. Such a phenomenon has also been reported for 

other laccases (Ko et al. 2001). As to the MW of the expressed in P. pastoris laccase, the almost 100% 

higher mass might be partially caused by implementing the purification tag (HIS tag) which is coupled 

with a c-myc epitope on the expression plasmid. The purification-epitope-tag complex accounted for 

27 additional amino acids. The second reason for an observed higher MW is a probable extensive 

glycosylation that is common for a variety of proteins expressed in P. pastoris (Cereghino et al. 2002). 

However, the similar reactivity toward substrates (Table 2) and inhibitory substances (Table 3) for the 

native and heterologously expressed laccase (see below), suggested that neither HIS-tag nor 

glycosylation had significant functional implications on the LacGL1 activity. This functional 

neutrality of the HIS-tag was further supported by the conservation of structure excluding the HIS-tag 

and Phyre2 (Kelley and Sternberg 2009) homology models of the native and the expressed laccase. 

The amino acid sequence analysis of LacGL1 laccase revealed a high degree of homology in the 

highly conserved copper binding regions, R1-R4 (Fig. 2), which together comprised the specific 

signature of laccases (Kumar, et al. 2003). Also a partial sequence, 452-HCHIDFHLEAGF-463, 

identical to that from Trametes villosa (Yaver et al. 1996) might indicate that the LacGL1 laccase also 

has a high redox potential (based on the presence of a T1 copper non-coordinating F residue).  

The LacGL1 laccase showed maximum activity at an acidic pH of 4.7, which was quite similar to 

many fungal laccases whose pH optimum was in the range of 3.0 to 4.5 (Thurston 1994; Heinzkill et 

al. 1998). However, it had a relatively higher value of pH than GaLc3 (3.5). Additionally, the range of 

optimal temperature (50°C) was significantly higher than GaLc3 range (20-25°C). It was interesting 

that these two laccases differ so much in their pH and temperature regimes, considering the fact that 

their amino acid sequences were 91% identical. It is also worth noting that the Km value of the 

LacGL1 laccase was rather high (0.122 mM) compared to the  GaLc3 laccase (0.0037 mM), which 

might indicate a lower affinity to the substrate (in this case ABTS).   

The native and P. pastoris expressed laccases were inhibited by sodium azide, an inhibitor of 

metaloenzymes (Thurston, 1994). This result was similar to the one observed for laccases, L1 and L2, 

from Trametes versicolor (Minussi et al. 2007) and Poluporus pinsitus, Panaeolus sphincitrinus, 

Panaeouls papilionaceus (Henzkill et al. 1998). Additionally, the two laccases LacGL1 and 
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LacGLCE, were also inhibited by sodium fluoride, dithiothreitol and EDTA, but in a lesser extent 

(Table 3).  

The comparison of the pH and temperature range and also the effect of the inhibition and the 

laccase activity towards different substrates, between LacGL1 expressed in P. pastoris and laccase 

from the crude extract of G. lucidum, revealed a very similar dependence. Therefore, unpurified 

laccase LacGL1 was used for evaluation of its effect in cellulase catalyzed hydrolysis of pretreated 

biomass. 

The LacGL1 laccase addition had a significant effect (19% increase) on the total glucose yields, 

released during cellulase catalyzed hydrolysis of the pretreated, unwashed biomass such as the 

sugarcane bagasse, when using a currently used methodology (pH 5.1, 50°C, CC2).We suspect that 

the LacGL1 laccase contributed to the higher cellulose-to-glucose conversion via detoxification of the 

steam-exploded sugarcane bagasse from the cellulase inhibitors. The putative mechanism is discussed 

in more detail below, but for now we note that the positive effect of laccase addition to cellulase 

catalyzed hydrolysis of the pretreated sugarcane bagasse probably occurs within the first 5 (at 40°C 

and 50°C) to 16 h (at 40° C) (Fig. 10A, B), due to the fact that after this time laccase loses its activity 

significantly. However, as the experimental data showed (Fig. 6, 7) addition of the LacGL1 laccase to 

cellulase catalyzed hydrolysis of biomass is a compromise between choosing the conditions that are 

close to the optimal for both enzymes.  A similar improvement in the released sugar yields was 

observed during the hydrolysis of the steam-pretreated softwood (SPS) by Palonen and Viikari (2004), 

who observed a 11-13% and 21% improvement in total sugar yields during cellulase catalyzed 

hydrolysis of SPS, when no mediators and an artificial mediator such as  N-hydroxy-N-

phenylacetamide (NHA) was used, respectively. In the mentioned experiment however, a cellulase 

preparation of the first generation (Celluclast L1.5, and Novozym 188) was used, which is a much less 

robust enzyme preparation than the CC1 and CC2, which we have evaluated in our research. 

Additionally, the advantage of the LacGL1 laccase is significant when taking under consideration the 

fact that it does not need an artificial mediator for its action (that can both inactivate cellulase but also 

laccase itself (Pfaller et al. 1998)). However, some solubilized or colloidal lignin might act as a 

mediator in the oxidation process (Felby et al. 1997).What is more important is the fact that the 

LacGL1 laccase can further improve the sugar yields, for the already improved and robust to the 

inhibitors cellulase preparations, by 19%.  

The enhanced glucose-yields upon the laccase treatment of the STEX-pretreated SCB observed in 

this work could be caused by a variety of molecular mechanisms. The identification of the mechanism 

would be useful in understanding the structure-function correlations to directly improve the 

performance of the laccases for enhancing sugar yields, e.g. by rationally directed mutagenesis and 

improved reaction conditions.  

The STEX-pretreated SCB consists of a variety of degradation intermediates such as the large 

lignin-derived fragments, smaller aldehydes, and the phenolic compounds (Martin et al. 2007). As 

mentioned above, the effective cellulase concentration may be reduced due to encapsulation or other 

protein-surface interactions with lignin, which could possibly be prevented by direct oxidation of 

lignin fragments by the laccases. While direct degradation of the large lignin fragments would be 

challenging when compared to their proficient oxidation of smaller phenols, the oxidation via the 

long-range electron transfer has been observed on lignin fragments (Shleev et al. 2006).  

A possible molecular mechanism of a direct lignin binding has been studied using the MD 

simulations for a T. versicolor laccase (Chen et al. 2011), providing a rationale for such a mechanism. 

However, other studies have found that among the lignin-degrading enzymes, only lignin peroxidase 

(LiP) specifically binds to the synthetic lignin, whereas laccases (from Fomitella fraxinea) did not 

(Johjima et al. 1999), consistent with a long-range electron transfer oxidation of lignin in the best 

case. It is known that laccases can remove phenols from the steam-exploded biomass for the 

detoxification purposes (Jönsson et al. 1998; Palonen and Viikari 2004; Chandel et al. 2007, Chandel 
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et al. 2011) and that the small mono-phenolic compounds may act as direct inhibitors of cellulases 

(Ximenes et al. 2010; Ximenes et al. 2011). It is likely that the LacGL1 oxidizes some of these 

inhibitors to enhance enzymatic activity and glucose yield, although a combination of this mechanism 

and long-range oxidation may also occur.  

Here we investigate a molecular mechanism where the LacGL1 directly oxidizes inhibitory 

phenolic compounds derived from the STEX-pretreatment of SCB. To substantiate such a mechanism, 

a previous study (Martin et al. 2007) identified three dominating phenols in the STEX-pretreated 

SCB, namely p-coumaric acid (0.17%), p-hydroxybenzaldehyde (0.06%), and ferulic acid (0.03%), 

(Fig. 11).  

 

 

Figure 11. The three major phenols identified in the STEX pretreated SCB. 

 

The most abundant of these, p-coumaric acid is a known -glucosidase inhibitor (Ximenes et al. 

2011), and was selected for proof-of-concept modeling of such a mechanism of the LacGL1 laccase. 

First, we made a homology model of the LacGL1 (see Methods and Supporting information), then 

performed the 20-ns MD simulations of the obtained LacGL1 structure to get a realistic, dynamically 

averaged structure of the protein including potential loop or turn movements.  

Docking of p-coumaric acid into the MD-averaged (last snapshot) structure (Fig. 12) showed that 

many of the interactions (except F265 and L164) are similar to those in the crystal structure of the T. 

versicolor laccase complexed with 2,5-xylidine (Bertrand et al. 2002). This is evident from the 

alignment of the obtained MD structure of the LacGL1 laccase with this crystal structure (Fig. 13A). 

 

 

Figure 12. The p-coumaric acid (sticks) docked into the substrate binding site of the 20-ns MD-averaged structure of 

Ganoderma lucidum laccase (LacGL1). The residues of particular interest and their interactions with this phenol are shown in 
van der Waals representation. The copper ions are shown in yellow.  
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When taking into account the dynamics from MD in both systems, we obtained a comparison of 

the two proteins (Fig. 13B) without any bias from the effect of the solvent/MD dynamics vs. crystal 

packing. In both cases, the orientation of D206 allowed it to accept a hydrogen bond from the 

hydroxyl group on the phenolic inhibitor, which is commonly seen. Also the general arrangements of 

the hydrophobic F337 and F162 were commonly observed and similar in both proteins.  

Interestingly, L164 and F265 (to the right in Fig. 13) have moved noticeably in the LacGL1, and 

the associated turn involving L164 has moved ~3 Å relative to both the crystal structure reference and 

the corresponding MD-structure of the TvL, implying that this effect was present regardless of the 

MD dynamics. The change for F265 was due to the rotation around the C-C bond, positioning the 

phenyl ring closer to the substrate binding pocket, and due to a general change in turn position, 

possibly caused by the changed electrostatics in the LacGL1 (which has several more negatively 

charged residues on the outer part of the protein compared to TvL).  

 

 

Figure 13. A) Superimposition of the substrate binding site in the LacGL1 MD structure (blue) and crystal structure of T. 
versicolor laccase 1KYA complexed with 2,5-xylidene (red). B) Superimposition of LacGL1 the MD structure (blue) and the 

corresponding MD-averaged TvL structure (red). Snapshots obtained at 20 ns. Superimposition was made of alpha carbons 

(shown as spheres) in the substrate binding site residues.  

 

 

Also, the turn comprising F332 has moved approximately 3 Å, notably to the same effect of 

rendering the substrate binding site of the LacGL1 considerably (~5Å) more compact. This enhanced 

compactness most likely causes the small phenolic compounds to bind with stronger affinity to the 

laccase, probably improving the catalytic proficiency towards the smaller phenols such as p-coumaric 

acid, although this requires further experimental verification.  

When docked into the MD structure of the LacGL1, the carboxylate of p-coumaric acid was 

favorably exposed to the solvent while preserving a stronger hydrophobic packing vs. TvL. Assuming 

that the phenols sharing the chemical similarity with p-coumaric acid (small, hydrophilic phenol acids 

or aldehydes without alkyl substituents) are the key inhibitors found in STEX-pretreated SCB, this 

provides a molecular model of the binding to laccase of these inhibitors and also suggest why the 

LacGL1 laccase may be particularly proficient in this degradation, by having a natural inclination 

towards smaller, more hydrophilic substrates commonly found in the STEX-pretreated SCB. Thus, the 

arrangement of p-coumaric acid in the substrate binding site suggests that e.g. the smaller p-

hydroxybenzaldehyde may be docked in a similar manner.  

The binding mode and enhanced compactness also immediately suggest rational improvements of 

the LacGL1 laccase for this purpose, although this would require a more careful docking and 

interaction study of several more phenolic compounds of high abundance and inhibitory effect derived 

from the process (and these fractions may be very sensitive to the reaction conditions (Jurado et al. 

2009)). 
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CONCLUSIONS 

A new laccase, having 91% sequence similarity to G. lucidum Q9GH17, was successfully cloned 

and expressed in P. pastoris using an α-factor signal peptide. The cloned laccase had maximum 

activity on ABTS at pH 4.7 and 55°C and showed ability to an extended incubation at 40°C for 24 h 

(however, with a drop in activity by 77%) and had a wide substrate specificity range with a calculated 

value of Km of 0.122 mM. When added to the lignocellulosic biomass (pretreated SCB), the laccase 

contributed significantly to the release of glucose based on Cellic®CTec1 and Cellic®CTec2 

hydrolysis (current, golden standard in commercial cellulase preparations) without the use of artificial 

mediators. 

To our knowledge, we are the first to report a positive effect of laccase on cellulase catalyzed 

hydrolysis of SCB for an overall yield of released glucose on the currently used, new and improved 

commercial cellulase preparations Cellic®CTec1 and Cellic®CTec2. This finding has direct 

implications on decrease in the total enzyme dosage of Cellic®CTec2 on the pretreated biomass, 

which has a potential in decreasing of the overall operational costs of cellulose-to-glucose conversion 

and a simultaneous increase in the yields of the produced ethanol. The implementation of the LacGL1 

laccase to the cellulase catalyzed hydrolysis reactions can boost their tolerance to inhibitory 

compounds produced during different forms of pretreatment, and can additionally save on using the 

process water on washing the biomass off of all inhibitors. The laccase addition has also a potential on 

influencing a faster turnover of the reaction in the hydrolysis tank, which has a direct interpretation in 

the lesser inventory space for lignocellulosic material and the lesser spoilage of it. However, more 

experiments are needed to evaluate if what happens in the reaction mixture is actually a SCB 

detoxification process.  

We have also used 20-ns MD-averaged structures of the LacGL1 laccase and a reference laccase 

(TvL) with associated docking to demonstrate the molecular binding of likely small phenolic 

inhibitors derived from the process. Furthermore, we have suggested why the LacGL1 laccase may be 

particularly proficient for this purpose and have provided a rationale for a future optimization of the 

laccase for this purpose via site-directed mutagenesis. 
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SUPPORTING INFORMATION FOR MOLECULAR DYNAMICS 

SIMULATIONS 

Methods 

Laccase 3D Structures  

The crystal structure of the Trametes versicolor laccase (TvL) (PDB ID: 1GYC
1
) was retrieved 

from the protein data bank
2
. 

A homology model of LacGL1 was build using Phyre2
3
 in threading mode using TvL as a 

template.  

Both structures were prepared for molecular dynamics simulations using the protein preparation 

wizard in Maestro
4
. Preparation included removal of small organic molecules, deletion of waters 

beyond 5 Å from hetero groups, addition of hydrogen atoms, and assignment of bond-orders. Due to 

the lack of force field parameters for copper, bonds to copper were automatically assigned zero bond 

order by Maestro, and all involved bond distances and angles were fixed to the crystal structure 

geometry. All copper ions were assigned a charge of +1. The oxygen species present at the T2 and T3 

copper sites were modeled as single water molecules bound to copper. The hydrogen bonding network 

comprised by the protein and remaining crystal waters was refined by the Maestro protein preparation 

wizard. Due to lack of detailed knowledge about the relative glycosylation of LacGL1 and TvL, the 

carbohydrate (NAG) moieties found in the TvL crystal structure were removed prior to MD 

simulations. 

 

Molecular Dynamics Simulations 

Using Maestro
4
 the LacGL1 model and the TvL structure were protonated corresponding to pH 

"neutral". The Desmond System Builder was used to immerse each prepared structure in a cubic box 

of TIP4P
5
 water providing a minimum layer of 13 Å of water on each side of the protein. The 

automatic ionization procedure provided a charge-neutral system by replacing randomly selected 

waters with Na
+
. System details are provided in Table 1.   

 

Table 1. System details for MD simulations 

Laccase pH / protein charge Atoms #TIP4P waters 

Ganoderma lucidum Neutral / -11 140176 33156 

Trametes versicolor 

(1GYC) 

Neutral / -4 137755 32569 

 

The OPLS_2005 force field parameters
6
 were used for the systems, implying assignment the alkali 

parameters
8
 for Na

+
.  

Each system was subjected to steepest descent minimization to a gradient of 1 kcal mol
-1

 Å
-1

 

followed by the default pre-simulation protocol employed in Desmond consisting of (1) minimization 

with restraints on solute, (2) unrestrained minimization, (3) Berendsen
9
 NVT simulation, T = 10 K, 

small time steps, restraints on heavy solute atoms, (4) Berendsen NPT simulation, T = 10 K, restraints 

on solute heavy atoms, (5) Berendsen NPT simulation with restraints on heavy solute atoms, and (6) 

unrestrained Berendsen NPT simulation.  
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Following the relaxation protocol, a 20 ns NPT simulation was carried out for each system at 300 

K.  

The temperature was regulated with the Nose-Hoover chain thermostat
10

 with a relaxation time of 

1.0 ps. The pressure was regulated with the Martyna-Tobias-Klein
11

 barostat with isotropic coupling 

and a relaxation time of 2.0 ps.  The RESPA
12

 integrator was employed with bonded, near, and far 

time steps of 2.0 fs, 2.0 fs, and 6.0 fs, respectively. A 9 Å cutoff was used for non-bonded 

interactions. The smooth particle mesh Ewald method
13

 with a tolerance of 10
-9

 was used for long-

range Coulomb interactions. MD trajectories were saved to disk at 20 ps intervals for subsequent 

analysis. The root-mean-square backbone atomic positional deviation (RMSD) with respect to the 

initial structures (1GYC crystal structure for the 1GYC simulation, and 1GYC based homology model 

for the LacGL1 simulation) were calculated for each simulation (Figure 1). 

 

 

 
Figure 1.  Backbone RMSD with respect to the initial structure for simulations of LacGL1 (red) and 1GYC 

(green). 

 

RESULTS 

RMSD for NPT simulations 

It is evident from the RMSD plots for the simulations (Figure 1) that both LacGL1 and 

1GYC have reached significant structural convergence at 10 ns. For both laccases, the low 

RMSD (~1.2 to 1.4 Å) for the simulated structures at 10 ns and beyond signifies that the 

overall structure in the initial structure (crystal structure for 1GYC, homology model based 

on 1GYC for LacGL1) is largely conserved in the simulations.  
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 Abstract Laccases (EC 1.10.3.2) are copper-containing oxidoreductases that have a relatively 

high redox potential which enables them to catalyze the oxidation of phenolic compounds, including 

lignin-derived phenolics. The range of action of laccases can be expanded to non-phenolic substrates 

by means of supplementary mediators that essentially transfer the electron. The detailed mechanism 

for laccase-catalyzed oxidation of phenolics, followed by the concomitant reduction of dioxygen to 

water via copper catalysis, involves a complex series of electron transfer reactions balanced by a 

stepwise re-oxidation of copper ions in the active site of the enzyme. Based on a careful validation of 

the available models, a thorough discussion and in detail clarification of the catalytic four-copper 

mechanism of fungal laccases is presented. We also put focus on the features, regions, and 

modifications of laccases that make them desirable oxidoreductases for various industrial applications. 

The availability of 3D structure and of the regions of laccase that can be manipulated by either 

directed evolution, rational design or site-directed mutagenesis, gives a prerequisite for improved 

biorefinery processes.  
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INTRODUCTION 

 Laccases (benzenediol: dioxygen oxidoreductases, EC 1.10.3.2) belong to the family of the blue 

copper oxidases along with ascorbate oxidase (Messerschmidt et al., 1992), bilirubin oxidase 

(Cracknell et al., 2011), ceruloplasmin (Zaitsev et al., 1996), cuprous oxidase from Escherichia coli 

(Singh et al., 2004), and ferroxidase from Saccharomyces cerevisiae (Taylor et al., 2005). The blue 

copper oxidases are characterized by the presence of at least four copper ions in the active site, which 

are distributed in cupredoxin domains (Hakulinen et al., 2002). 

 In nature, laccases play diverse roles, catalyzing reactions involved in  lignification, 

delignification, oxidative in planta stress management, and fungal morphogenesis and virulence 

(Enguita et al., 2003).  

 Laccases are widely distributed among bacteria (Enguita et al. , 2003), bovine rumen flora 

(Beloqui et al., 2006), insects (Dittmer et al., 2004), plants (O’Malley et al., 1993), and fungi 

(Basidomycota and Ascomycota). Laccases produced by white-rot fungi (Basidiomycota) currently 

receive particular interest due to their apparent ability to catalyze the depolymerization (or 

modification) of lignin and in this way assist in the decomposition of plant material. 

 Laccases have a very broad substrate specificity with respect to the electron donor, and 

principally act on diphenols (and apparently also monophenols) and related compounds as electron 

donors, with oxygen as an electron acceptor according to the general overall reaction accrding to 

BRENDA - The Comprehensive Enzyme Information System (www. brenda-enzymes.org): 4 

benzenediol + O2 ↔ 4 benzosemiquinone + 2 H2O (or as discussed later: 4 monophenols + O2 ↔ 4 

quinones + 2 H2O). As  biocatalysts, laccases can catalyze the oxidation of a large array  of different 

substrates (phenols, polyphenols, benzenothiols, polyamines, hydroxyindols, aryldiamines), and their 

substrate range can be further expanded by the use of redox mediators (diffusible electron carriers 

from natural or synthetic sources) (Call, Mücke, 1997;  Cañas, Camarero, 2010; Kunamneni et al., 

2008; Maté et al., 2010). The laccases’ wide substrate range is one of the reasons for them being 

intensively studied over other oxidoreductases. Moreover, their specificity for dioxygen as the 

electron acceptor, in contrast to requiring hydrogen peroxide as an acceptor, as it is in case of 

hydrogen peroxidases, is another advantage. Additionally, laccases can be classified as Low (LRP) or 

High Redox Potential (HRP) laccases depending on their redox potential measured at the Type 1 

(T1Cu) copper site (to be discussed later). The redox potentials for catalysis range from +0.43 V in 

bacterial and plant laccases to +0.79 V in some fungal laccases (Alcalde, 2007; Rodgers et al., 2009). 

The higher the redox potential of a laccase, the broader is the (donor) substrate versatility without the 

use of mediators.  

Laccases have been widely explored to substitute chemical catalysis in various processes, 

notably in the paper and pulp industry. Currently, laccases are subject to intense investigation for pre-

lignification of biomass to develop milder, more “green” processing of biomass e.g. for production of 

bioethanol from lignocellulosic plant resources (Lu et al., 2010).  

 The detailed enzymatic mechanism of the copper-catalyzed oxidoreduction process, notably the 

reduction of dioxygen to water, is complex. However, various details of the available models for the 

catalysis appear contradictory. In order to identify and develop suitable laccases for industrial use, it is 

crucially important to understand the factors that determine the catalytic conversion efficiency, 

notably the redox potential and the significance of the different amino acids coordinating to the T1Cu 

site. Recent developments in the structural elucidation of novel laccases now allow comparisons of 

structure - function relationships to be made, but the significance of specific structural traits of 

laccases for industrial functionality have not been systematically mapped. The purpose of the present 

review is to re-visit the detailed mechanism of the copper-catalyzed reaction mechanism of laccase, 

notably with respect to the reduction of dioxygen to water, and to provide an improved base for 
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defining the specific structural traits that are of significance for employing laccases to catalyze novel 

bioprocessing reactions. A specific purpose of the present review is thus to focus on important 

features for the catalytic reaction and enzyme robustness for industrial use and in turn to explore how 

laccases may be optimized for improved functional properties for extended use in industrial 

applications.  

 

 

OXIDATIVE LIGNIN MODIFICATION BY MULTICOPPER 

OXIDASES.  

 
 Lignin is a tree-dimensional, heterogeneous, random, and water insoluble arrangement of 

phenylpropanoid units present in secondary plant cell walls. The highly-branched structure of lignin is 

made of three monolignols: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol (Fig. 1). Lignin 

can be efficiently depolymerized by enzymes produced by basidiomycetous white-rot fungi. By these 

extracellular enzymes the fungi can support their growth by gaining access to the carbon source in 

form of cellulose and hemicellulose, embedded in the   lignin-cellulose complex. One of these enzymes 

which have gained special industrial attention is the laccase - a multicopper oxidase. This enzyme is 

able to catalyze the reduction of dioxygen to water by oxidation of lignin phenolic hydroxyl groups. 

This process leads to depolymerization of lignin and consists of two steps, where oxidation of phenolic 

substrates is the initial and essential step for the reduction of dioxygen to water, which is the final step.  

 

 

Figure 1. Schematic representation of three main monolignols forming a three-dimensional network of lignin.  

 

Oxidation of phenolic substrates   

 Oxidation of phenolic substrates by laccases is the first step in the lignin depolymerization and 

takes place outside the enzyme, proximal to the T1Cu site, where the substrate interacts with amino 

acids of the binding loops of the laccase (Fig. 9 – to be discussed in section 3). In general terms, the 

oxidation of phenolic hydroxyl groups of lignin catalyzed by laccase, is a one-electron reaction, which 

generates resonance-stabilized phenoxy radicals (Fig. 2) (Kawai et al., 1988), which may undergo a 

second enzyme-catalyzed oxidation (fungal laccases) or a non-enzymatic reaction such as hydration, 

disproportionation or polymerization. However, the preference for either one of these mechanisms is 

not known. In terms of laccase catalyzed cleavage of bonds in lignin, they can follow one of the three 

primary mechanisms: a) Cα - Cβ cleavage, b) Cα -oxidation, or c) alkyl-aryl cleavage (Fig. 3).They are 

presented on a dimeric β-1 lignin model compound.  
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Figure 2. Formation of resonance-stabilized phenoxy radicals of one of the building blocks of lignin - p-coumaryl alcohol.  

 

 Furthermore, laccase-catalyzed oxidation of phenols, anilines, and benzenethiols correlates with 

the redox potential difference between the T1Cu site and the substrate. It becomes more difficult for 

the phenoxy group to be oxidized when electron withdrawing and bulky o- and p-substituents are 

present. It is due to their ability to reduce electron density at the phenoxy group making the phenol 

less reactive in surrendering the electron to the T1Cu of laccase. Moreover, bulky substituents may 

give rise to steric hindrance and thus proper docking of the substrate, resulting in decreased enzyme 

catalysis (Xu, 1996a).  
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Figure 3. Graphical visualization of possible degradation mechanisms of lignin, presented on a phenolic β-1 lignin model 

compound. The suspected primary degradation reactions include: (a) Cα-Cβ cleavage, (b) Cα oxidation and (c) aryl-alkyl 

cleavage. Model compound was adapted from (Kawai et al., 1988). 

 

Reduction of dioxygen to water.  

 The second step that takes place simultaneously with lignin depolymerization is the laccase-

catalyzed reduction of dioxygen to two molecules of water (Dwivedi et al., 2011; Quintanar et al., 

2005; Rulišek et al., 2005; Solomon et al., 2008). This reaction takes place in vitro, in the catalytic 

pocket of the enzyme, at the T2/T3 copper site, and requires four reduced copper ions. The oxidation 

of the copper ions can occur only when a total of four single electrons are abstracted from a phenolic 

hydroxyl group (referred as to a reducing substrate) (Fig. 4, ab). The overall stoichiometry for the in 

vitro step is presented below:  
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4 Cu(++)
a)

oxid.    4 Cu(+)
b)

red.
 
+ O2   2 [Cu(++)Cu(+)]

c, d)
oxid./red.  4 [Cu(++)]

e)
oxid .   4 Cu(+)

b)
red. + 2 H2O 

 

where small, superscript lettering represents singular steps in the catalytic cycle (Fig. 4), and 

stoichiometric forms in square brackets are the intermediate forms generated during the redox 

reaction. 

 The most prevalent and reliable proposal for the catalytic mechanism of multicopper oxidases 

(MCOs) including improvements of the intermediate state structure has been proposed by Solomon’s 

group. This model is presented in Fig. 4.  

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

Figure 4. A two 2-electron mechanism of O2 reduction to H2O by multicopper oxidases (MCO), adapted from Solomon’s group. 

(Augustine et al., 2010; Solomon et al., 2008). Red arrows indicate steps that take place in the catalytic cycle of multicopper 

oxidases, while black ones indicate steps that can be experimentally observed but are not a part of the catalytic cycle. a) The 

fully oxidized MCO is a structure with four copper atoms in their (++) oxidation state and two OH molecules (one is bridging 

between T3βCu(++) and T3αCu(++) and the second one is bounded to the T2Cu(++) center). The fully oxidized MCO receives, 

in total, 4e- from its T1Cu(++) center, which are transferred, one by one, over ~13Å to the T2/T3 trinuclear cluster, forming a 

fully reduced MCO structure b) that can accept an O2 molecule. O2 binds preferentially to T3βCu(+) ion and is then reduced by 

2e-, one from T3βCu(+) and one from T2Cu(+) forming a peroxide intermediate (PI) c) with its 2e- reduced O2. The driving 

force for the 2e- reduction is a negatively charged D94 residue (D94 deprotonates by giving away its H+ to the OH ligand bound 

to the T2 center - step a), which lowers the potential of the T3β-T2 edge. After the first 2e- reduction of O2, one electron is 

transferred intramolecularly from T1Cu(+) to T2Cu(++) via T1-Cys-His-T3β pathway. This transfer is assisted by an H-bond 

shunt between the carbonyl oxygen and T1Cu-Cys ligand and Nδ1 on the His483 ligand bounded to the T3βCu, thus forming a 

PI+e- intermediate d). As a result, the 1e- reduced T2Cu(++) looses its strong bond to peroxide and a H+ from E487 is 

transferred to the peroxide. Moreover the conversion of H2O to OH, while protonating the D94 residue, lowers the redox 

potential of the T2Cu center and increases the driving force for another 1e- transfer to peroxide, thus assisting in O-O bond 

cleavage, producing a fully oxidized native intermediate (NI) with two oxide bridges in the catalytic cavity e). In an excess of 

4H+, 4e- 
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the reducing substrate (RH), NI can be reduced to a fully reduced MCO form by accepting 4e- and 4H+ (3H+ will protonate two 

oxide bridges and release 2 H2O molecules, 1H+ will protonate E487 residue and 1H+ will transfer from D94 residue to the OH 

ligand bounded to the T2Cu center). However in a lack of RH, NI will accept only 2H+ which will protonate only one of the 

oxide bridges, releasing only one H2O molecule. 

 

The prediction of the intermediate state structures by Solomon’s group was based on the Extended 

X-ray Absorption Fine Structure (EXAFS) measurements and Computational Chemistry (CC) (Hsiao 

et al., 2006) calculations extended by combined Quantum Mechanical and Molecular Mechanics 

(QM/MM) (Ryde et al., 2007) study. 

 The mechanism presented by Solomon’s group (Augustine et al., 2010; Solomon et al., 2008) is 

based on the Fet3p protein (a multicopper oxidase from Saccharomyces cerevisiae that functions in 

the iron transport, PDB ID: 1ZPU (Taylor et al., 2005)). However, a comparison of the trinuclear 

cluster and its environment in Trametes versicolor with that of other known structures of this enzyme 

family showed that the trinuclear cluster is structurally highly conserved. Therefore the mechanism of 

the copper oxidation and dioxygen reduction should be common for all members of the blue 

multicopper oxidases. The high conservation is observed in copper geometry, for two channels, which 

accomodate access to molecular dioxygen to and release of water molecule from T2/T3 cluster. The 

tripeptide His-Cys-His, involved in the Electron Transfer (ET) pathway between T1 copper and T2/T3 

trinuclear cluster are also retained in the laccase structure (Piontek et al., 2002).  

 The mechanism of copper oxidation and dioxygen reduction to water can be divided into 5 steps as 

shown in Fig. 4. 

The first step is initiated by abstraction of a single electron from a reducing substrate (Fig. 4a). In 

total four single electrons from four reducing substrate molecules are required in the overall process 

and the laccase stores them as a battery during the first step of lignin depolymerization so that it can 

use them during the dioxygen reduction. The initial phase of electron abstraction takes place at T1Cu 

site of a fully oxidized (resting) form of the enzyme (Fig. 4, a), where all copper atoms are at the (++) 

oxidation state and contains two OH
-
 molecules. One OH

-
 molecule, is bridging between T3αCu(++) 

and T3βCu(++) copper ions and the second one is bounded to T2Cu(++) copper center. The fully 

oxidized structure of multicopper oxidase is stabilized by hydrogen bindings between a deprotonated 

glutamic acid (E487), an oxide bridge of T3βCu(++) and T3αCu(++), and a water molecule between 

the two latter molecules (Augustine et al., 2010). Moreover, there are two highly conserved acid 

residues in the vicinity of the catalytic pocket, which act together to create a flow of protons from the 

T3Cu site of the trinuclear cluster to the T2Cu site to drive the reductive cleavage of O-O bond 

(Augustine et al., 2007). The first one of them, located near the T3 center is an already mentioned, 

deprotonated glutamic acid residue (E487). It is found to be responsible for donation of H
+
 during the 

reductive cleavage of O-O bond in the Peroxide Intermediate (PI) (Fig. 4, d). The second one is a 

protonated aspartic acid residue (D94), located near the T2 site, which plays a key role in the reaction 

of the reduced trinuclear center with a dioxygen, and drives an electron transfer from T2Cu center to 

cleave the O-O bond by deprotonating the T2Cu water ligand (Fig. 4, d) (Augustine et al., 2007).   

 The four one-electron-reduction of four coppers is a slow process, due to the fact that only one 

electron is moved around the catalytic site at a time and travels from T1Cu(++) to T2/T3(++) 

trinuclear cluster over a distance of ~13Å (Fig. 11). After receiving one electron on each of T3Cu’s, 

the bond between T3βCu(++), T3αCu(++), and hydroxide is weakened, and hydroxide is being 

protonated by H
+
 from a bulk solution. Since T2/T3 trinuclear center is positioned in a water channel 

(Fig. 6) (Piontek et al., 2002), the hypothesis of the hydroxide being protonated by H
+
 from a water 

molecule agree with the model (Messerschmidt et al., 1992). As a result, a protonated hydroxide 

dissociates as a water molecule through T2/T3 water channel leaving the catalytic cavity in a fully 

reduced form (Fig. 4, b). However, before the catalytic cavity is able to accept a dioxygen molecule, 

glutamic acid (E487) needs to be protonated by H
+
 from the bulk solution and aspartic acid (D94) 
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needs to be deprotonated. D94 looses its H
+
 to the OH ligand bound to the T2 copper center and forms 

a H2O molecule (Fig. 4, b). Now a fully reduced MCO is ready to accept a dioxygen molecule, which 

has a preference to bind to T3βCu(+), due to its geometry.  The computational studies have shown that 

the T3βCu(+) copper ion has a trigonal pyramidal geometry, which is more reactive to bind a fourth 

ligand than a more energetically stable trigonal planar geometry of T3βαCu(+) (Augustine et al., 

2010). When the dioxygen has docked in the catalytic cavity, the redox potential of T3βCu(++) and 

T2Cu(++) is being lowered by a negative charge from a deprotonated D94 residue. This provides a 

driving force necessary to reduce the dioxygen by 2 electrons (2e
-
 are coming from T3βCu(+) and 

T2Cu(+) copper ions and not from a reducing substrate), thereby forming a PI (Fig. 4, c). The 2e
-
 

reduced dioxygen is now tightly bound to the trinuclear cluster as it is coordinated side-on to the 

T3βCu(++) and also has a strong end-on bonds with both the T2Cu(++) and T3αCu(+) copper ions 

(Fig. 4, c). This assists to stabilize the peroxide and is facilitated by structural flexibility of the T3α-T2 

edge which moves from a distance >5Å in the reduced state to ~4Å in the PI (Augustine et al., 2010).  

 The next step in the dioxygen reduction to water, based on Fet3p protein, is a rapid, single electron 

transfer from T1Cu(+) to T2Cu(++) via the T1-Cys
484

-His
483

-T3β pathway (or T1-Cys
453

-His
454

-T3β 

pathway in Ganoderma lucidum CBS229.93, Fig. 5 (Sitarz et al., 2012)), assisted by an H-bond shift 

(shunt) between the carbonyl oxygen of T1Cu-Cys484 ligand (Cys453 in G. lucidum) and Nδ1 of the 

His483ligand (His454 in G. lucidum) of the T3βCu, forming a PI + e
-
 intermediate (Fig. 4, d). On the 

contrary, the T1-Cys
484

-His
485

-T3α pathway (and possibly T1-Cys
453

-His
452

-T3α pathway in G. 

lucidum) does not have a comparable H-bond (Augustine et al., 2010; Augustine et al., 2008, Taylor et 

al., 2005). As a result of this intramolecular transfer, the T2Cu(++) copper center is being reduced and 

looses its strong bond to peroxide (Solomon et al., 2008). Afterwards, two single electrons from 

T3αCu(+) and T2Cu(+) are transferred on the antibonding orbitals of the peroxide causing an increase 

in the energy and making the peroxide structure very unstable. Therefore, in order to lower the 

bonding order, the O-O bond is cleaved and the proton from E487 is transferred to the peroxide. 

Additionally, the pKa goes down for water molecule and a proton from T2Cu(+)-bound water is 

transferred to the D94. This conversion of H2O to OH lowers the redox potential of the T2 copper 

center and increase the driving force for an electron transfer to peroxide, thus assisting in O-O bond 

cleavage (Augustine et al., 2007) and decay of PI, producing a fully oxidized Native Intermediate (NI) 

(Fig. 4, e).  
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Figure 5. A graphical representation of the three copper centers present in laccases for two superimposed laccases from 

Trametes versicolor (PDB ID: 1KYA) - green sticks, and Ganoderma lucidum CBS229.93 - red sticks, respectively. The red 

colored TRP107 residue belongs to G. lucidum’s laccase and can be found in the vicinity of 3.7 Å from the T3β copper center. 

T. versicolor’s laccase lacks this residue in that position. The interatomic distances of residues belonging to G. lucidum’s 

laccase, in the vicinity of each copper site, are shown in black nicked lines and values are given in Ångstrom [Å]. The amino 

acid nomenclature and their position, according to G. lucidum laccase, are written in black.  All three copper sites are shown as 

brown spheres. Two coordinating water molecules are presented as red spheres. Nδ1, colored blue, represents a nitrogen atom 

from which a proton shifts to the carbonyl of Cys453, when assisting in the electron transfer from T1Cu(+) to T2Cu(++) while 

the dioxygen is bounded to the T2/T3 copper cluster. The T1-Cys453-His452-T3β pathway, which enables the electron transfer 

from T1Cu(++) to T2/T3(++) copper cluster is also shown in the figure by signed single amino acids that form the pathway. 

 

When NI, a fully oxidized form of multicopper oxidase with two bridging oxides is formed, it can 

either return to a fully reduced form of an enzyme by accepting 4H
+
 (3 H

+
 are needed for a release of 

two H2O molecules, 1 H
+
 protonates a deprotonated E487 residue and 1 H

+
 (which is not accounted 

for the gross reaction) is transferred from a protonated D94 residue to the OH ligand on the T2 copper 

center) and  4 e
-
 from four molecules of a reducing substrate simultaneously releasing two water 

molecules, or it can release one water molecule and return to its fully oxidized form. Release of two 

water molecules is possible due to the flexibility of the T3α-T3β edge which facilitates an increase in 

the Cu-Cu distance from <3.5Å in NI back to >5Å in the reduced form. Opening of the trinuclear 

cluster enables the elimination of two water molecules (Augustine et al., 2010) formed probably by 

protons provided by the bulk solvent in the T2/T3 channel. Therefore the way the reaction follows is 

determined by availability of a reducing substrate. In excess of it, laccase will return to its fully 

reduced form and be ready to accept a dioxygen molecule (Augustine et al., 2010). However, if the 

amount of substrate is insufficient, it will return to its resting state and remain in that form until it can 

be oxidized again.  

Other catalytic models had been presented in the literature over the years. The model of 

Andréasson, from 1976 studied the kinetics of laccase by mixing the fully reduced enzyme with 

dioxygen (Andréasson  et al., 1976), where the visualization of formed intermediates was performed 

by EPR and UV-VIS spectroscopy. According to that type of model, which we believe lacks a 

thorough evaluation; the dioxygen was reduced to water by accepting a total of four electrons. The 

two first electrons were transferred from T3 copper ions giving a peroxide end-on coordinated to the 

T3βCu(++). The third electron was rapidly donated from T1Cu(+) to reduce the peroxide end-on 

coordinate and form an oxygen radical and the last, fourth electron was believed to be transferred 

from T2Cu(++) to the previously formed oxygen radical, which showed a slow decay in the EPR 

signal. However, the reaction transfer from T2Cu(++) was too slow to be catalytically significant, and 

therefore it was proposed that during turnover, the last electron is donated to the oxygen radical from a 

reducing substrate molecule via the re-reduction of the T1Cu(+). Moreover, the oxidized laccase form 

had an oxide bride between T3αCu(++) and T3βCu(++) (Andréasson et al., 1976; Bukh et al., 2006; 

Malmström et al., 1969). This oxygen radical model is still an accepted model (Huang et al., 1999; 

Messerschmidt et al., 1993). 

Another model published in the literature and refined as compared to the previously described 

dioxygen model, was based on Magnetic Circular Dichroism (MCD) studies of the long-lived optical 

intermediate (Clark, Solomon, 1992). The model was proposed by Shin et al. (Shin et al., 1996) and 

later improved by Quintanar et al. (Quintanar et al., 2005). According to this model, dioxygen was 

reduced to water by accepting a total of four electrons. The first two electrons were donated from T3 

and T2 copper. The peroxide was then reduced to a hydroxide ion via the simultaneous donation of 

two electrons from T1 and T2 coppers. The optical intermediate arose from the hydroxide ion bridging 

T3 and T2. The oxide/hydroxide ion bridging the T3 pair derived from the solution, whereas the 

hydroxide ion or water molecule coordinated to T2 copper ion, in the fully oxidized enzyme was 
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proposed to originate from the reduced dioxygen (Bukh et al., 2006; Shin et al., 1996). The optical 

intermediate was formed simultaneously with the oxidation of T1Cu site.  

In summary, all available models presented in the literature (Andréasson et al., 1976; Augustine et 

al., 2010; Chalupský et al., 2006; Messerschmidt et al., 1993; Quintanar et al., 2005; Rulišek et al., 

2005; Shin et al., 1996; Solomon et al., 2008; Solomon et al., 2001) have their own interpretation of 

the intermediate structures formed during the oxygen reduction to water. We strongly believe that a 

described here model, which is based on an H-bond shunt is the one that gives the most reasonable 

explanation to what really happens in the catalytic pocket during the redox reaction . However, the 

three major steps that are independent of the intermediate structures seem to be common for all 

models. Those are (Witayakran , Ragauskas, 2009):    

 

1. T1 Cu(++) in its resting state is reduced by accepting electrons from the reducing substrate 

2. Electrons are internally transferred ~13 Å from T1 copper to T2/T3 trinuclear cluster  

3. Molecular oxygen is activated and reduced to water at the T2/T3 trinuclear center. 

 

 

Oxidation of non-phenolic substrates - laccase/mediator-catalyzed oxidation 

Laccases have a lower redox potential (0.5 - 0.8 V) than ligninolytic peroxidases (>1 V) and it was 

initially thought that laccases would only be able to oxidize phenolic substrates which represents less 

than 20% of lignin (Galli, Gentilli, 2004; Kersten et al., 1990). Phenols are typical laccase substrates 

because their redox potential, ranging from 0.5 to 1.0 V vs. NHE (Normal Hydrogen Electrode), is 

low enough to allow electron abstraction by T1 copper (Giardina et al., 2010). However, the range of 

substrates oxidized by laccase can be increased in presence of a mediator, either a synthetic or a 

natural one. 

 The mediator is intended to promote or facilitate enzyme action by increasing its oxidation 

potential (Giardina et al., 2010). It is a small molecule that acts as an electron shuttle: once it is 

oxidized by generating a strongly oxidizing intermediate, a so-called mediator. The oxidized mediator 

diffuses away from the enzymatic pocket and in turn oxidizes any substrate that, due to its size and 

steric hindrance may not directly enter into the active site of the laccases. In other words; enzyme and 

a reducing substrate do not need to interact in a direct manner.  In reactions where the substrates have 

a higher redox potential than laccase, typically 0.5-0.8 V vs. NHE, or the substrate is too large to dock 

into the active site of the laccase, the mediator can catalyze the oxidation (Desai, Nityanand, 2011). 

Therefore, the use of a mediator is suitable for laccase applications when dealing with 

depolymerization of non-phenolic substrates of lignin which constitutes 80% of the lignin polymer 

and may have a higher redox potential than laccase itself.  

 There are two types of mediators, the artificial and native catalysts. In general, mediators should 

be low molecular compounds able to generate stable radicals (in its oxidized form) to avoid the 

inactivation of laccase. Moreover, their reactivity should allow recycling without degeneration. In 

addition for industrial use, an ideal mediator should be available at low costs and should be 

environmentally safe (Cañas, Camarero, 2010).  

 

 

Artificial mediators 

The two most commonly used artificial mediators are 2,2’-azinobis(3-ethylbenzthiazoline-6-

sulphonate) (ABTS) (Bourbonnais, Paice, 1990) and 1-hydroxybenzotriazole (HBT) (Call, Mücke , 

1997; Hirai et al., 2006; Kawai et al., 2002). They oxidize the non-phenolic substrates but follow 

different mechanisms.  
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 Laccase/mediator-catalyzed oxidations of the major non-phenolic substrates (representing 80-90 % 

of lignin) (Kawai et al., 2004), can proceed via three different mechanisms depending on the structure 

of the oxidized mediator (Galli, Gentilli, 2004). The mediators containing a N-OH structural feature, 

such as N-hydroxybenzotriazole (HBT), violuric acid (VA), 3-hydroxyanthanilic acid (HAA), and N-

hydroxyphthalimide (HPI), favor a radical Hydrogen Atom Transfer (HAT) pathway (Fig. 6a), while 

2,2’-azinobis-(3-ethyl-benzylthiozoline-6-sulphate) (ABTS) reacts via an Electron Transfer (ET) 

pathway (Fig. 6b). 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO), and its analogues follow an 

Ionic Oxidation pathway (IO) (Fig. 6c). Examples of mediator-substrate oxidation mechanisms are 

depicted in Fig.7. 

 

 

Figure 6. Schematic representation of the mediator-substrate oxidation catalyzed by laccases via three different routes: a) the 

radical Hydrogen Atom Transfer (HAT) route, b) the Electron Transfer (ET) route, and c) the Ionic Oxidation (IO) route. 

Medox represents oxidized mediation and Medred represents a reduced mediator.  

 

Degradation of one of the examples studied by the Lignin Mediator System (LMS) is a non-

phenolic β-O-4 model compound, representing the major substructure in lignin. In this model the 

dimer: 1-(4-ethoxy-3-methoxyphenyl)-1,3-dihydroxy-2-(2,6-dimethoxyphenoxy)propane, in a coupled 

enzyme/HBT system, can undergo four types of reaction; β-ether cleavage, Cα - Cβ cleavage, Cα -

oxidation, and aromatic ring cleavage. The coupled enzyme/HBT system catalyzes 1 e
-
 oxidation of 

the substrate to form β-aryl radical cation or benzylic (Cα) radical intermediates. However, the 

electron density of the aromatic ring is affecting the reaction. Substrates containing electron-donating 

groups favor aromatic ring cleavage products. The β-aryl radical cation is converted to the product via 

an aromatic ring cleavage, and the benzylic radical is cleaved at the Cα - Cβ bond similar to a Baeyer-

Villiger reaction. The β-ether cleavage of the β-O-4 lignin substructure is caused by reaction with the 

Cα -peroxy radical intermediate produced from the benzylic radical (Kawai et al., 2004; Wong, 2009). 
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Mediators of natural origin 

Mediators of natural origin are classified into two groups. The first one represents compounds that 

are produced by fungi as secondary metabolites, while the second group is based on the origin of the 

compound.  

The first discovered secondary metabolite produced by Pycnoporus cinnabarinus was 3-

hydroxyanthranilic acid. This compound was believed to mediate oxidation of non-phenolic substrates 

and synthetic lignin catalyzed by laccase (Eggert et al., 1996).  However, Li et al. (Li et al., 2001) 

showed that this secondary fungal metabolite generates cinnabaric acid during the oxidative coupling, 

which is simply unable to mediate the oxidation of non-phenolic compounds due to the lack of a 

substituent group that can be further oxidized to phenoxy radical by laccase. There are however 

examples of secondary metabolites produced by fungi that are able to oxidize polycyclic aromatic 

hydrocarbons (PAH); those are: 4-hydrobenzylic alcohol (Johannes, Majcherczyk, 2000) and 4-

hydroxybenzoic acid, which was also used for fungicide degradation and detoxification (Murayama et 

al., 2007). 

The second group of natural mediators represents phenolic compounds related to the lignin 

polymer. These phenolic compounds are presented in herbaceous plants either as secondary 

metabolites, precursors for lignin biosynthesis or they can originate from lignin degradation (Cañas, 

Camarero, 2010). Examples are as follows: acetosyringone, syringaldehyde (delignification of paper 

pulps (Camarero et al., 2007), lipid removal (Gutiérrez  et al., 2006), dye decolorization(Murugesan et 

al., 2009), dehalogenation of pesticides (Torres-Duarte et al., 2009)), vanillin, acetovanilline, ferulic 

acid, and p-coumaric acid (anthracene and benzo[a]pyrene transformation (Cañas  et al., 2007)). 

In general terms, natural mediators follow the Hydrogen Atom Transfer (HAT) oxidation 

mechanism (d’Acunzo, Galli, 2003), and are generally regarded as the most efficient non-phenolic 

degraders in laccase catalyzed reactions. The term “natural”, is not only the definition for the natural 

origin of these compounds, but also defines their role in nature, being the most likely the usual (true) 

mediators of laccases activities during the biodegradation of lignin polymer carried out by laccase 

catalyzed reactions (Cañas, Camarero, 2010).  

 

 

THE STRUCTURE OF FUNGAL LACCASES 

Fungal laccases in general belong to extracellular, monomeric proteins of approximately 60-

70kDa, with an acidic isoelectric point (pI) around 4.0 (Giardina, Faraco, 2010). However, 

glycosylation can increase their molar weight with 10 to 45%, e.g. as shown for Rhus vernicifera 

laccase (Reinhammar, 1997).  

The molecular architecture of laccases has been sequentially arranged in three tightly associated 

cupredoxin-like domains, each of which has a greek key β-barrel topology, and is strictly related to 

that of small copper proteins such as azurin and plastocyanin (Murphy et al., 1997). The laccases are 

also members of the multi-copper oxidase family, housing enzymes such as Rhus vernicifera laccase 

(Nitta et al., 2002), ascorbate oxidase (AOx) (Messerschmidt et al., 1992), ferroxidase from 

Saccharomyces cerevisie (Fet3p) (Taylor et al., 2005), bilirubin oxidase (Cracknell et al., 2011), and 

mammalian ceruloplasmin (CeuO) (Zaitsev et al., 1996). In addition, specific domains contain 

catalytically important copper atoms, which function in the oxidation mechanism (a detailed 

description in section; Reduction of dioxygen to water). 

The observations of a 3D crystallographic structure of Trametes versicolor laccase (PDB ID: 

1KYA chain C) (Fig. 7), revealed that the four catalytically important copper ions are situated in 

domain 1 and 3. The T1 copper site is located in domain 3 with one copper (T1Cu) lying in a shallow 
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cleft on the surface of the enzyme, while the T2 and the T3 copper sites, having one (T2Cu) and two 

(T3αCu and T3βCu) copper atoms, respectively, which form a trinuclear copper cluster (T2/T3) are 

positioned at the interface between domains 1 and 3, which also provide ligand residues for the 

coordination of the copper atoms. This position of the copper atoms fits very well with the 

superimposed structure of Ganoderma lucidum laccase (Sitarz et al. 2012) and is also in agreement 

with the first X-ray structure of Coprinus cinerreus laccase (Ducros et al., 1998). Additionally, the 

superimposed laccases from T. versicolor and G. lucidum have two hypothetical water channels, 

which are located between domains 1 and 3, and 3 and 2. A similar discovery was also described by 

Piontek et al. (Piontek et al., 2002) for a different strain of T. versicolor (PDB ID: 1GYC). However, 

by comparing the two investigated and superimposed laccases; from Trametes versicolor (PDB ID: 

1KYA) and Ganoderma lucidum CBS229.93, it is clear that they differ in their topology (Fig. 7 a, b, 

c). One of the inryguing differences in the 3D structure of G. lucidum laccase, in respect to its 

performance during lignin depolimerization, is an existence of an additional α-helix in the vicinity of 

the trinuclear copper site. The presence of this α-helix results in an additional residue (TRP107) in the 

vicinity of T2/T3 copper site (Fig. 5). The model for G. lucidum’s laccase was predicted by using a 

comparative protein modeler - 3D-JIGSAW, where the crystallographic structure of T. versicolor was 

used as a template. Additionally, the 3D structure from T. versicolor had more than 80% homology on 

the conformational level with the laccase from G. lucidum (Sitarz et al., 2012).  
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Figure 7. A graphical representation of two superimposed laccase structures from T. versicolor (PDB ID: 1KYA chain C) and G. 

lucidum CBS229.93, illustrated using the PyMol Molecular Graphic System Version 1.5 Schrödinger, LLC. a) The red colored 

3D structure of G. lucidum laccase was predicted by submitting its full amino acid sequence (Sitarz et al., 2012) to the 3D 

comparative protein modeler - 3D-JIGSAW (available at: http://bmm.cancerresearchuk.org/~3djigsaw/). The green sticks 

represent cysteine residues responsible for formation of disulphide bridges. b) The three colored 3D structure of T. versicolor that 

was a base for prediction of 3D structure for G. lucidum laccase. Brown spheres represent four copper ions, which play an 

important role in catalysis. They are located in domain 3 (T1Cu) and between domain 3 and 1 (T2Cu, T3αCu and T3βCu). The 

orange sticks represent cysteine residues that form disulphide bridges. Domain 1 (residues 1-131 and 476-499) is colored black, 

domain 2 (residues 132-300) is colored blue, and domain 3 (residues 301-475) is colored green. The range of amino acid residues 

that are a part of each domain was predicted according to (Aleksandrov, Shinddyalov, 2003) and found at www.pdb.org under T. 

versicolor’s sequence. The yellow and blue small spheres that float through the two laccases are the oxygen and water channel, 

respectively. Both channels were calculated using CAVER - a plug-in for PyMol (Medek et al., 2007). c) Two superimposed 

laccases from G. lucidum (a) and T. versicolor (b) with their potential position of disulphide bridges. The color coding is identical 

as in point a and b.  

 

a

) 

b) 

c) 

http://bmm.cancerresearchuk.org/~3djigsaw/
http://www.pdb.org/
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In addition, the tertiary structure of basidiomycete laccases is stabilized by a total of two disulfide 

bridges between domain 1 and 2, and between domain 1 and 3 (Fig. 7 a, b, c). The two disulphide 

bridges are formed between CYS85 and CYS488, and between CYS117 and CYS205, and are present 

in the exact same place for both investigated laccases.  The position and number of disulfide bridges is 

not conserved through out fungal multicopper oxidases, but they can still be arranged into two groups; 

basidiomycetes with two and ascomycetes with 3 disulphide bridges (Hakulinen et al., 2002). 

With respect to the amino acid sequence, all laccases comprise a polypeptide chain of 

approximately 520-550 amino acids (Fig. 8), where 20-22 residues is the N-terminal signal peptide 

(Smith et al., 1997), which is not a part of the mature protein. In rare cases a propeptide (Berka et al., 

1997) and a C-terminal signal peptide (Hakulinen et al., 2006) have been observed. In addition, fungal 

laccases are different to other members of the multi-copper oxidase family, by the presence of a set of 

four, R1-R4 (Fig. 8, Table 1), ungapped sequence regions, containing conserved residues of one 

cysteine and 10 histidines, that are involved in binding of four copper atoms (Thurston, 1994). Eight 

out of ten histidine residues appear in a highly conserved pattern of four HXH motifs (Fig. 8) in the 

enzyme. An X in this motif represents an undefined residue. Moreover, the HXH motifs are separated 

from one another by segments of between 25 and 175 residues (Kumar et al., 2003) and are likely to 

be brought close in a composite catalytic apparatus by an aspect of protein folding.  

 

 

Figure 8. Selected alignment parts of randomly chosen enzymes, belonging to the multicopper oxidases family, which show the 

copper binding domains with their conserved amino acids that take part in coordination to four copper atoms. Amino acids in 

red boxes indicate fully conserved residues and triangles below the red boxes point out to 11 fully conserved amino acids 

coordinating to the four copper atoms. All 11 residues are positioned within sequence segments (R1-R4), which are ungapped 

for fungal laccases and allow them to be distinguished within a broader class of multicopper oxidases. Red, green, pink, and 

black triangles indicate coordination to the T1Cu, T2Cu, T3αCu, and T3βCu copper ions, respectively. The blue circles indicate 

the residues positioned 4Å axial to the T1 copper ion. Note that the axial, non-coordinating isoleucine residue (455I) is almost 

invariable while the residue at position 463 varies among members of the multicopper oxidase family (F, L, M). The secondary 

structures (α-helices and β-sheets) above the alignment are based on a crystallographic structure of Trametes versicolor (PDB 

R4 R3 

R1 R2 
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ID: 1GYC) (Piontek et al., 2002). α-helices and β-sheets colored black indicate domain 1 (residues 1-131, and 476-499); α-

helices  and β-sheets colored green indicate domain 3 (residues 301-475). Domain 2 (residues 132-300) is not presented here 

due to the lack of residues serving a function in catalysis. The domain coloring in this figure corresponds to the coloration code 

of domains in Fig. 6. Alignment of sequences was made using ClustalW 2.0 software (Goujon et al., 2010; Larkin et al., 2007) 

and ESPript for final output (Gouet et al., 1999). The signal peptides were cleaved off prior to alignment using SignalP software 

(Emanuelsson et al., 2007). 

 

 In addition to the R1-R4 sequence segments, laccases have four loop regions, which have been 

identified on basis of their 3D structure (Larrondo et al., 2003). They were designated I-IV, and are 

involved in substrate binding. When comparing the 3D model G. lucidum and the 3D structure of T. 

versicolor, the loops and general 3D structure are almost perfectly superimposed (Fig. 9).  

 

 
 

Figure 9. A graphical representation of superimposed substrate binding loops for laccases from Trametes versicolor (PDB ID: 

1KYA chain c) and Ganoderma lucidum CBS229.93. The red coloring represent loops belonging to G. lucidum, while green 

coloring represents loops belonging to T. versicolor. Brown spheres represent four copper ions, which play an important role 

during reduction of oxygen to water, and a green colored residue, namely XYD712, is a substrate - 2,5-xylidine oxidized by the 

enzyme. 

 

The slight conformational difference is however observed in loop II and III, where T. versicolor 

contains a fragment of a β-strand. The range of amino acids forming a loop in G. lucidum’s laccase 

was chosen according to the laccase from T. versicolor (PDB ID: 1KYA) (Larrondo et al., 2003), 

since these two 3D structures carry 80% homology. The amino acids responsible for substrate binding 

are presented in Table 2.  
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Table 2. Copper signature sequences in fungal laccases. 
Region of 

consensus 
Consensus motifsa in signature sequences of basidiomyceteous laccases 

Residue (coordinating 

copper) 

R1 64HWHG-F/L-FQ-X-GTNWADG-X2-F/G-X-NQCPI87 64H(T2Cu), 66H(T3βCu) 

R2 104GTFWYHSH-L/F-S/G-TQYCDGLRGP-F/MV125 109H(T3βCu), 111H(T1Cu) 

R3 395HPFHLHGH402 
395H(T1Cu), 398H(T2Cu), 
400H(T3αCu) 

R4 447GPWF-L/F-HCHI-D/E-FHL-E/M-X-G-F/L-A-V/I-V-X-A468 
452H(T3αCu), 454H(T3βCu), 
458H(T1Cu) 

 Loop sequence motif b 
 

Loop I Loop II Loop III Loop IV 
159GPAFPLGAD166 261ANPNFGNVGFTGGIN275 332FNGTNFF338 386ATAAAPGAP393 
a
 The start position of the signature sequence is shown with respect to T. versicolor (PDB ID:1KYA c) laccase (Bertrand et al., 2002). 

b The range of amino acids forming a loop in G. lucidum’s laccase was predicted based on T. versicolor (PDB iD: 1KYA c) laccase 

(Larrondo, 2003).  
 

The active site of fungal laccases 

 The copper sites in laccases are very similar to ascorbate oxidase, ceruloplasmin and billirubin 

oxidase, and are categorized into three centers, in which the copper atoms can be distinguished 

according to their characteristic Electronic Paramagnetic Resonance (EPR) and UV/visible signals 

(Dwivedi et al., 2011). Moreover, in a resting state of an enzyme, all four copper atoms are in the (++) 

oxidation state as previously shown in Fig. 4.  

 

T1 copper center (blue copper center) 

 T1 copper (e.g. paramagnetic ‘blue’ copper) has a characteristic absorbance at 614 nm and can be 

detected by EPR. The charge transfer transition SCysCu(++) is responsible for the deep blue color 

of the enzyme (Lee et al., 2002). The T1Cu ion has a trigonal coordination (Fig. 10), with two 

histidines and one cysteine as conserved equatorial ligands (Claus, 2004; Leontievsky et al., 1997). In 

addition two non- (or weakly) coordinating residues has also been observed in vicinity (4Å) of the 

T1Cu(++) center (Rodgers et al., 2009).  
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Figure 10. A graphical representation of T1 copper site for two superimposed laccases from Trametes versicolor (PDB ID: 

1KYA) - green sticks, and Ganoderma lucidum CBS229.93 - aquamarine sticks, respectively. The interatomic distances [Å] are 

based on the location of residues belonging to G. lucidum’s laccase. The amino acid nomenclature and their position according 

to G. lucidum laccase are written in black. PHE-463 and ILE-455 are non-coordinating amino acids and the dashed lines do not 

represent the binding to the copper ion. T1 copper site is shown as a brown sphere.  

 

 The latter weakly coordinating amino acid residues comprise a methionine that can be found in the 

Rhus vernicifera laccase, AOx and CueO. It has been suggested that the methionine residue is a fourth 

ligand, but since the electron donating ability of the thioether group is considerably lower compared to 

the sulphur in cysteine and the imidazole nitrogen, the coordinating property may be low (Gray et al., 

2000). In addition a non-coordinating phenylalanine or a leucine may be found in this position in 

several fungal laccases. The lack of the fourth coordinating axial ligand in fungal laccases may be an 

advantage considered as an important factor determining the higher redox potential values (E0), 

displayed by laccases (Fig. 11), in comparison with the other multicopper oxidases (Giardina et al., 

2010; Gray et al., 2000). It seems like phenylalanine is determining a higher redox potential of T1Cu 

center (Eggert et al., 1998). Therefore it is also expected that the redox potential of G. lucidum’s 

laccase will also be high, due to the presence of a non-coordinating PHE-463 residue in the vicinity of 

the T1Cu center (Fig. 10). Additionally, all residues of T1Cu center are aligned stericaly to a high 

degree for the two superimposed, previously mentioned laccases, although small changes can be 

observed. How those small changes affect the redox potential and the electron abstraction from a 

reducing substrate will remain the topic of the further study of G. lucidum. 

 

 
Figure 11. Diagram showing potentials of the T1 copper site of some oxidoreductases. The values in the boxes represent the 

redox potential and the amino acid residues mentioned, represent residues in the axial position of the T1 copper. Zuccini 

(Caburbita pepo), Myrothecium verrucaria, Homo sapiens, and Trametes villosa (Alcalde, 2007; Kumar et al., 2003), Rhus 

vernicifera (Alcalde, 2007; Yaropolov et al., 1994), Myceliophthora thermophila (Alcalde, 2007; Alcalde et al., 2002; Kumar et 
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al., 2003), Scytalidium thermophilum (Alcalde, 2007; Kumar et al., 2003; Xu et al., 1995), Coprinus cinereus (Alcalde, 2007; 

Kumar et al., 2003; Schneider et al., 1999), Pleurotus ostreatus, and Trametes trogii (Garzillo et al., 2001; Morozova et al., 

2007), Rhizoctania soalni (Alcalde, 2007; Kumar et al., 2003; Wahlethnet et al., 1996), Neurospora crassa (Alcalde, 2007; 

Piontek et al., 2002), Cerrena maxima (Koroleva et al., 2001; Morozova et al., 2007), Trametes versicolor (Alcalde, 2007; 

Alcalde et al., 2002).  

 

 

 The second amino acid that can be found in the vicinity of the T1Cu site is a non-coordinating 

ILE-455 (Fig.10). Moreover, due to its high redox potential (0.5 to 0.8 V (Xu, 1996b) vs. NHE), T1Cu 

is the primary electron acceptor site where substrate oxidation takes place and HIS-458, occurring in 

fungal laccases, is believed to be the entrance door for the electrons abstracted from a reducing 

substrate during their transfer to T1Cu(++). 

 

T2 copper site (normal copper center) 

 T2 copper confers no color (so called: paramagnetic ‘non-blue’ copper), but can still be detected 

by an electronic paramagnetic resonance (Claus, 2004; Leontievsky et al., 1997). Moreover, it is 

strategically proximal to the T3 coppers and coordinates with two histidine residues and one oxygen 

atom as an OH
-
 ligand, forming a trigonal coplanar configuration (Fig. 5) (Xu et al., 2000). 

 

T3 copper site (coupled binuclear copper center, containing two Cu atoms) 

 T3 copper center is a pair of copper atoms, T3αCu and T3βCu that give a weak absorbance in the 

near UV spectrum (330 nm) and it does not have any EPR signal (Claus, 2004; Leontievsky et al., 

1997). Each of the T3 coppers coordinates with three histidine residues and a bridging oxygen atom, 

having a distorted tetrahedral geometry (Fig. 5) (Xu et al., 2000). 

 

T2/T3 copper site (trinuclear copper center) 

 The T2/T3 copper center is a complex domain comprising both the T2 and T3 copper sites. It 

contains three copper atoms, and is localized ~13 Å from the T1Cu site (Reinhammar, Malmstrom, 

1981). The T2/T3 copper site carry out the reduction of molecular oxygen using the electrons 

transferred from the T1Cu site.  

 Fig. 5 illustrates two superimposed trinuclear centers of Trametes versicolor (PDB ID. 1KYA) and 

Ganoderma lucidum CBS229.93. The T3 copper ions are symmetrically connected to six imidazole 

side chain residues from histidines and T2 copper is connected to two imidazoles. The geometry of 

this structure is a trigonal planar. The conserved residues of G. lucidum and T. versicolor are well 

aligned to each other. Moreover, one additional residue; TRP-107, which is colored red, is present 

only in the G. lucidum’s laccase and correlate to the observed α-helix from Fig. 6 that is positioned in 

the vicinity of the catalytic coppers. However, further evidence will require a future elucidation of the 

crystallographic structure of G. lucidum’s laccase. 

 The trinuclear center has access to the solvent through a water channel (Fig. 6), leading to the T2 

and T3 copper atoms. The water channel leading to the T3 coppers contain residues like Asp and Glu, 

which are capable of donating protons (Bento et al., 2006), which form a hydrogen network with the 

water molecules in the channel and therefore allow for the fast access of dioxygen and also an 

effective release of water after performing a ping-pong reaction (Bukh et al., 2006). 
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WHAT IS A GOOD LACCASE? FOCUS ON DESIRED FEATURES 

OF AN INDUSTRIAL OXIDOREDUCTASE 

 
 Laccases have been used for a large number of applications spanning from technical solutions such 

as biobleaching, bioremediation, biosensors, pulp and paper production, opening of biomasses for 

biofuel production, organic synthesis and to functional food ingredients (Table 2.). Given the large 

number of different applications and the diversified desire of the specific processes may not be 

fulfilled by a single good laccase discovered in nature or even optimized by a strong and focused 

molecular evolution strategy. 

 The present laccases have a number of drawbacks with respect to redox potential and the high 

dependency of added mediators to accommodate the oxidation of substrate with high redox potential 

and polymers containing bulky substrates not fitting the active clefts of substrate binding sites of the 

natural laccase. These present deficiencies are detailed below using the opening of ligning-cellulose 

biomass as the example.  

 

 

Resistance of laccase to inactivation by the free radicals.  

Investigations of the laccase-mediated biomass depolymerization process have shown that redox 

mediators drive these enzymes towards the oxidation of non-phenolic substituents such as aliphatic 

alcohols. The mediators therefore play an important role in the biocatalysis process, and a desirable 

enzymatic solution without the mediators has so far not been developed by molecular tools. Although 

the mediator stimulates the catalysis, the laccase is sensitive to the free radicals of the mediator, which 

subsequently inactivate the laccase and reduce the rate of oxidation of the non-phenolic lignin 

structures. According to Li et al. (Li et al., 1999) an effective laccase mediator should be able to 

effectively oxidize non-phenolic lignin at a high rate. In addition one laccase mediator may interact 

efficiently with one laccase but in contrast do not perform at optimal rate with other laccases. For 

example, the mediator, violuric acid inactivates the laccases from Trametes villosa, Pycnoporus 

cinnabarinus, Botrytis cinerea and Myceliophthora thermophila with much higher rate than that of N-

hydroxybenzotriazole (HBT). If violuric acid free radical generated by the laccases could be 

consumed by substrate fast enough, then inactivation of laccases may be avoided and oxidation of the 

substrate would mainly depend on kcat of violuric acid (Li et al., 1999).  

 

High kcat for an effective laccase mediator system (LMS) with high redox potential. 

The kcat is dependent upon the electron transfer from a substrate to the T1 copper, which is 

dependent on both: the difference in the redox potential between the laccase and a substrate, and the 

affinity between laccase and the substrate.  

 

Increase of the redox potential value of T1Cu of laccases of more than 0.7 V. 

It has been experimentally shown that laccase from a thermophilic phaeoid mould Myceliophthora 

thermophila has a redox potential too low to efficiently oxidize 1-(3,4-dimethoxyphenyl)-2-(2-

methoxyphenoxy)propan-1,3-diol in the presence of 1-HBT or violuric acid. Since an effective laccase 

mediator system (LMS) must have a redox potential high enough to oxidize non-phenolic lignin, then 

laccase should also have redox potential high enough to make the oxidation of an effective laccase 
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mediator kinetically possible (Li et al., 1999). Xu et al. suggests a few factors that may influence the 

redox potential of the T1Cu site in fungal laccases (Xu et al., 1996b). The first is the solvent 

accessibility previously reported for the iron-sulfur proteins (Langen et al., 1992). The second factor 

may be an internal hydrogen bonding to the ligands at the T1Cu site, which could change the electron 

density at the copper center. The third factor may be contributed by the dialectric anisotropy around 

the T1Cu site. However, Xu et. al. excludes as if the difference in potentials at the oxidized T1Cu site 

was attributed to the ligand change or a structural distortion (Xu et al., 1996b). 

To sum up, a good laccase should ideally comprise; broad substrate specificity, a reaction 

mechanisms not dependent on a mediator, a high redox potential to accommodate oxidation of the 

major substrates (non-phenolic substituents such as aliphatic alcohols), tolerance to radicals, organic 

solvents and shearing forces and it should additionally have a  high turnover, high t½, broad pH and 

temperature regimes.  

 

Laccase optimization by molecular evolution 

 A growing number of diversity screenings have currently gained a large number of novel laccases, 

although none with superior performance on biomass delignification. Further optimization by directed 

evolution techniques is therefore necessary to satisfy the needs from the industry. One of the main 

targets for improvements is the T1Cu site, which defines the redox potential of the laccases. A higher 

redox potential at the primary electron acceptor site is desired in order to oxidize a range of 

recalcitrant polymers in the biomass. Generally different regions of the laccase polypeptide chain have 

been subjected to specific modifications. They involve:  

 

1. Replacement of aromatic amino acids residues with non-aromatic side chains have been 

carried out to make laccases less vulnerable to free-radicals and to prevent their 

inactivation (Li et al., 1999). 

 

2. Improvements of the substrate binding site to accommodate a better docking of the 

reducing substrate.  

 

Based on predicted modeling, specific amino acid residues involved in hydrophobic 

protein-ligand interactions were selected and substituted by mutation (Galli et al., 2011; 

Mohamad et al., 2008). By this method, the Trametes versicolor laccase became more active 

towards bulky phenolic substrates. In addition the modeling also revealed that PHE-162 was a 

critical residue located in the T1Cu site, and that substitution with an apolar alanine residue 

resulted in increased oxidation of bulky substrate, such as bisphenol A (BPA). Moreover a 

double mutation in positions PHE162ALA and PHE332ALA showed a cooperative effect, 

resulting in 98% oxidation of BPA in only 5 h. Optimization of the T1Cu redox potential can, 

in part be correlated to the axial ligand’s hydrophobicity, which is presumed to increase the 

redox potential of the primary electron acceptor site. This hypothesis is true for laccase from 

Bacillus subtilis (CotA) (Durão  et al., 2006), E.coli (CuO) (Sakurai, Kataoka, 2007) and 

Pseudomonas aeuroginosa’s azurin (Karlsson et al., 1989; Pascher et al., 1993), where 

mutation of an axial Met  Leu resulted in increase in redox potential by as much as 100 mV, 

and 60 mV for the later two organisms, respectively.  
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3. Alternation of C-terminus tail.  

A C-terminal protruding tail is 13-14 amino acids long in the amino acid sequences of 

ascomycetes M. albomyces (Hakulinen et al., 2002), M. thermophila (Bulter et al., 2003; 

Zumárraga et al., 2008) and up to 16 amino acids long in basidiomycete Pleurotus ostreatus 

(Autore et al., 2009). In ascomycetes this tail is generally cleaved off by proteolysis at a 

conserved cleavage site (Asp-Ser-Gly-(Leu/Val/Ile)) to produce an active form of an enzyme. 

Analysis of the 3D structure of the laccase from Melanocarpus albomyces has shown this C-

terminal extension as a plug that blocks the solvent channel, thus leading to the hypothesis that 

its cleavage is required to favor the entrance of oxygen and the subsequent exit of water 

molecules (Hakulinen et al., 2002). Moreover, creating a C-truncated version of ascomycete 

Mycelophthora thermophila laccase, by introducing a stop codon at the processing site, leads to 

a 10-fold decrease in catalytic efficiency of the enzyme. It seems that C-terminal tail exerts a 

strong influence during processing steps, which affect the mature protein activity. According to 

this theory, the C-terminal tail forms a loop interacting with the active site to prevent binding 

of copper ions during processing. It is also assumed that a change of two consecutive amino 

acids (GlyGlu to AspLys) in M. thermophila C-terminal tail might contribute to a higher grade 

of tightness between the C-terminus and the main enzymatic core, which would affect the 

protein folding and the final mature protein (Zumárraga et al., 2008). In any case, the closure of 

the tunnel, leading to the trinuclear copper site, certainly affects the function of the trinuclear 

copper site. Whether this feature is possible among basidiomycete laccases, which have 

different C-terminal residues, is not known. However, going in that direction, Festa et al. (Festa 

et al., 2008) have obtained a more stable and substrate specific laccase from basidiomycete by 

mutagenesis of C-terminal tail of laccase in position PRO494THR, simultaneously allowing a 

higher accessibility of water molecules to the T1Cu site by increasing mobility of loops that 

form the reducing substrate binding site, and possibly leading to an increased activity of 

laccase. Another confirmation of C-terminal end significance on performance and stability of 

laccase from basidiomycetes was shown in experiments of Autore et al. (2009), who decisively 

ruled out the belief that four C-terminal amino acids act as a plug that blocks the access of 

oxygen and water to the trinuclear T2/T3 copper cluster. Experiments were performed on a 

mutant of Pleurotus ostreatus, designed according to the results of aforementioned Zumárraga. 

In case of P. ostreatus, the C-terminal tail has a positive effect on the specific activity to KM 

ratio towards the phenolic substrates such as 2,6-dimethoxyphenol (DMP), and syringaldazine 

(SGZ), but not ABTS.  

 

4. Improved activity and temperature regimes:  

The first study on directed evolution of laccase was carried out by Butler et al. (Bulter et 

al., 2003), where functional expression of a thermophilic laccase was performed in S. 

cerevisiae. The laccase gene was subjected to ten rounds of directed evolution and screening. 

The laccase activity was hereby increased by 170-fold and in addition it also developed a 

higher temperature tolerance.  

 

5. Improved tolerance to organic solvents:  

Another directed evolution study from the group of Alcalde was carried out on the laccase 

from Myceliophthora thermophila. The designed laccase was tolerant to high concentrations of 

organic solvents such as methanol, ethanol (30%), acetonitrile (20%) and dimethylosulfoxide 
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(Alcalde et al., 2005; Bulter et al., 2003). Specific mutants GLU182LYS gave better stability in 

organic media, or increased the redox potential and resistance against denaturation under 

external factors SER280ASN, or modified the channel leading to the trinuclear center, which 

might affect the transit of O2 to the active pocket ASN552HIS, or enhanced substrate binding 

proximal to the T1Cu and increased the tolerance to co-solvents LEU429VAL.  

 

6. Improved catalysis and superb stability:  

The PM1 laccase from basidiomycetes has recently been improved by directed evolution by 

the group of Alcalde (Maté et al., 2010). The final winner laccase contained 15 different 

mutations; five in the yeast α-factor signal sequence and ten in the mature protein. The laccase 

activity was improved by 32,000-fold. The winner laccase was also very tolerant to 

temperature, pH range and organic solvents. Mutations in the signal sequence (yeast α-factor) 

enhanced functional expression, whereas the mutations in the mature protein improved its 

catalytic capacities by altering the interactions with the surrounding residues (Maté et al., 2010; 

Sayut, Sun, 2010).  

 

CONCLUSIONS AND PERSPECTIVES 

 No naturally occurring laccase combines the desired attributes of being robust and active over a 

range of demanding parameters such as high temp, pH, and organic solvents. In order to carry out an 

efficient biocatalyse of non-phenolic substrates the laccase need a strong mediator. To decrease the 

cost of operations and to create a sustainable process the industry search for laccases with higher 

stability, enhanced activity, lower production costs, and improved laccase mediators systems (LMS) 

of natural origin that are environmentally friendly. Other improvements like directed evolution of the 

laccase enzymes has currently been implemented. Some ideas of Laccase without mediator, better 

substrate binding, tolerance to organic solvents, etc., one of the examples, as a troublesome region of 

the laccase can be the C-terminal tail. Depending on the organism, the activity of the enzyme can be 

enhanced or can drop dramatically when this region is modified. Overall, the laccases have a wide 

range of applications, and they can be tuned for even more.   
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Table 3. Laccase modifications and their potential applications in the industry 

 

 

Organism Mutant Modification Expression host Desired characteristics Industrial application Ref. 

Laccase tuned by directed evolution and rational design 

Myceliophthora 
thermophila 

MtL T2  

A(n20)P, S3I, E86G, A108V, N303S, F351L, 

T366M, Y403H, S450P, N454K, L489L, L536F, 

Y552N, H(c2)R 

S. cerevisiae 
(BJ5465)  

Robust at high temp. 

170 fold increase in activity 

22 fold increase in kcat 

decontamination, pulp 

bleaching, bioremediation 

(PAH) 

(Bulter et al., 2003; 

Zumárraga  et al., 

2007)  

Myceliophthora 

thermophila 
MtL 6C9  

A(n20)P, P(n20)H, S3I, E86G, A108V, N303S, 

F351L, T366M, Y403H, S450P, N454K, S462S, 
L476V, L489L, L536F, Y552N, H(c2)R,  

S. cerevisiae 

(BJ5465) 

3,5 fold increase in stability in 20% 

acetonitrile and 30% ethanol mixture 
organic chemistry 

(Alcalde et al., 

2005)  

basidimycete 
PM1 

OB-1  
V[α10]D, N[α23]K, A[α87], V162A, H208Y, 
S224G, A239P, D281E, S426N, A461T 

S. cerevisiae 
(strain type n.d.) 

34.000 fold increase in activity, highly 

robust to temp., organic solvents, and 

acidity  

pulp biobleaching, food 

processing, textile treatment, 
organic synthesis, biofuels, 

bioelectrochemistry,  

(Sayut, Sun, 2010), 
(Maté et al., 2010)  

Improvements in the reduction potential of T1 copper center 

Trametes 

versicolor 
F162A/ F332A  F162A, F332A 

Yarrowia 

lipolytica (Po1g) 

98% consumption of bisphenol A (BPA) 

in 5 h 

bioremediation, biofuel cells, 

paper and pulp bleaching 
(Galli et al., 2011)  

Trametes 

versicolor 
F162A  F162A 

Yarrowia 

lipolytica (Po1g) 

99%, 63%, 78%, and 45%  consumption 

of  2-t-Bu-phenol, 3,5-di- t-Bu-phenol, 
BPA, and trimeric substrate, respectively 

bioremediation, biofuel cells, 

paper and pulp bleaching 
(Galli et al., 2011)  

Alterations in the C-terminus of laccases 

Pleurotus 
ostreatus 

3M7C L112F, P494T (C-terminal loop) 
S. cerevisiae  
(W303-1A) 

higher activity, and increase in stability 
immobilization (stain 
removal) 

(Festa et al., 2008)  

Pleurotus 
ostreatus  

POXA1b∆4 

truncation of 4 amino acids on the C-terminus 

529PLKA533 

 

S. cerevisiae 
 (W303-1A) 

higher specific activity to KM ratio 

towards DMP, and syringaldazine but 

not ABTS 

acidic bio-processes 

(xenobiotic transformation), 
organic synthesis, enzymatic 

polimerization 

(Autore et al., 2009)  

Melanocarpus 

albomyces  

Tr(L559G) and 

Tr(delDSGL559) 

truncation of 4 amino acids on the C-terminus 

556DSGL559, or L559G  

Trichoderma 

reseei RutC-30  

20 fold lower expression levels, unstable 

protein, reduced or no activity on ABTS 

and syringaldazine for Tr(L559G) and 
Tr(delDSGL559), respectively 

n.d. 
(Andberg et al., 

2009)  

Melanocarpus 

albomyces  

Sc(L559G) and 

Sc(delDSGL559) 

truncation of 4 amino acids on the C-terminus 

556DSGL559, or L559G 

S. cerevisiae 

(strain type n.d.) 

inactive Sc(delDSGL559) mutant, 11 fold 

increase in the inhibition constant (Ki) of  
NaN2 for ABTS as substrate,  narrower 

pH opt., and decreased thermal stability 

for Sc(delDSGL559) 

n.d. 
(Andberg et al., 

2009)  

Stachybotrys 

chartarum  

M254F/E346V, 

E348Q 

elongation of C-terminus end by covalently 

linked carotenoid-binding peptides YGYLPSR, 

SLLNATK, KASAPAL, IERSATAPPP, 
CKASAPALC 

Aspergillus niger 

(strain type n.d.) 

4-6 fold increased specific activity, 2-3 
fold increased bleaching ability of 

paprika and tomato stains 

bleaching carotenoid-

containing stains (paprika 

and tomato), detergent and 
textile applications 

(Aehle et al., 2002; 

Janssen et al., 2004;)  

n.d. not determined  
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