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Probabilistic forecasts of wind power generation
accounting for geographically dispersed information

Julija Tastu, Pierre Pinsoigenior Member, IEEEPierre-Julien Trombe, and Henrik Madsen

Abstract—Forecasts of wind power generation in their proba- penalty function as overproduction and underproductian ar
bilistic form are a necessary input to decision-making problems not penalized in the same way, when settled through the
for reliable and economic power systems operations in a smart balancing market. Therefore, in order to bid optimally it is

grid context. Thanks to the wealth of spatially distributed data, t sufficient to k th ted ti e O
also of high temporal resolution, such forecasts may be optimized NOL SLTCIENL IO KNOW INE expected POWET generation onie On

by accounting for spatio-temporal effects that are so far merly ~ Should also be informed about the possibilities of actuargy
considered. The way these effects may be included in relevantproduction to exceed or to be less than the expected value,
models is described for the case of both parametric and non- hence allowing minimizing expected balancing costs [7hedt
parametric approaches to generating probabilistic forecasts. Th applications of probabilistic forecasts to power grid @iens

resulting predictions are evaluated on the real-world test case . . . h . .
of a large offshore wind farm in Denmark (Nysted, 165 MW), include economic load dispatch and stochastic unit commit-

where a portfolio of 19 other wind farms is seen as a set of ment [8]-[10], optimal operation of storage [11], reserve
geographically distributed sensors, for lead times between 15 quantification [12] and assessment of operating costs [13].
minutes and 8 hours. Forecast improvements are shown to mainly  More generally speaking, the benefits of probabilistic fore
come from the spatio-temporal correction of the first order ,cts can be justified by the fact that for a large class of

moments of predictive densities. The best performing approach, decisi Ki bl th timal luti is directl
based on adaptive quantile regression, using spatially corrected ecision making probiems the oplimal solution 1S directly

point forecasts as input, consistently outperforms the statefethe-  linked to a specific quantile rather than the expectatiorhef t
art benchmark based on local information only, by 1.5%-4.6%, future outcome [14].

depending upon the lead time. For continuous variables like wind power generation, proba
Index Terms—renewable energy, prediction, decision-making, bilistic forecasts take the form of predictive density ftiogs,

power systems operations, offshore. fully describing that random variable for a set of lead times

Up to now the number of studies on probabilistic wind

. INTRODUCTION power forecasting is relatively small compared with point

NE OF THE underlying challenges in implementingisrecaSting' A part of the available studies focus on irdire
smart grid concepts is the efficient integration of re’ ind power forecasts, i.e. when firstly wind speed predéctiv

newable energy sources, especially wind energy [1]. In,de?c?ns't'es are obtained and secondly they are transformed

the stochastic nature of wind power, with its variabilitydant_O wind power fprecas(’;s.f Most r? f:en |?eallzt§d d(itsermels-
limited predictability, induces difficulties in operatingnd ic power curve is used for such transformation [15], [16].

managing power grids, particularly for balancing eledtyic However in practice power curves are stochastic and of a

consumption and production [2]. Today, the development Bqther complex nature [17]. To account for it, stochastiego

advanced wind power prediction systems is considered as Sieve models can be built, as for example in [18]. Another

of the most cost-effective solutions for mitigating the mepof possible appro_ac_h (WhiCh. ?S also cqnsidered in_ this Wor_k) s
the uncertainty stemming from the integration of wind powe on;truct prgd|ct|ve densities fqr wind power Q|rectlytm|ut.
into power grids. In a recent survey of grid operators’ vie € intermediate §tep of modellmg_ the uncertamt_y of thedui
on wind power integration, 94% of the respondents indicat \{[ﬁntages ?f t.r:'s ip;ﬁroatch ﬁret(.') no need to dlrgptly qu:lcou
that the integration of a significant amount of wind powe wil or the complexity of the stochastic power curve, (ii) owiag

ultimately depend on the accuracy of wind power forecagts [éh_egeograpzlctal d|5t:|but|on gf ':/vmtd 1I‘|arms, th_e ;:orres?mgth
A history of the short term wind power forecasting and a Ind power data contains substantially more informatioan

overview of the state-of-the-art methodology are given 4j [tnhun}e\r/i/caIVV\;le%tlherrnp;ed|rct||onis c:r ? tr;orl:rly data coming from
and [5], respectively. e few available meteorological stations.

Today the main interest turns from point to probabilistic For constructing direct wind power density forecasts, one

forecasting [6]. This is driven by the complexity of the ttelh COUlq follow two dlfferer_lt families of approach_es: para-
decision making tasks which calls for the forecast uncetyai metric or anon-parametricone. By the parametric approach

guantification. For example, when trading wind power on thee ;ifsernt]o taoglscf::btlﬁ]téog}]bfsfdofnlit0‘12'3%% ;vf&lggsr-?;zur An
Danish electricity market, one deals with a non-symmetr umpti . P predictiv es.
example can be found in Ref. [19]. By the non-parametric one
J. Tastu (juvi@dtu.dk), P.-J. Trombe (pmtr@dtu.dk) and H. sad we refer to the distribution-free techniques, 1.e. to thesotat
(hmad@dtu.dk) are with the Department of Applied Mathematius @om-  gre hased on estimating the predictive densities direotiy f
puter Science at Technical University of Denmark, Kgs. Lyndbenmark. he d ith . h h fth It
P. Pinson (ppin@dtu.dk) is with the Department of Electri€agineering at t .e _ata_' without any constraints Or.l the s ape.o the reg_u ti
Technical University of Denmark, Kgs. Lyngby, Denmark. distribution. As an example, adaptive resampling [20],etim
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adaptive quantile regression [21] and time-adaptive dieant wind power forecast errors [27], [28]. Historically, mosate-
copula [22] techniques were recently described, theiruaval of-the art wind power prediction systems are optimized and
tion suggesting that they have a similar performance |&#L[ run locally, for a single region, site or wind farm of intetes
[23]. using on-site information only (e.g., meteorological faasts,
Our objective here is to introduce and evaluate a methodbistorical measurements of wind power) [24]. Yet, a new
ogy allowing to issue probabilistic wind power forecasts ogrend in wind power forecasting consists in exploiting &pat
timally accounting for geographically dispersed inforirmat temporal correlations in wind (power) data collected from
The methods are tailored to targeting a single site of istereneighbouring sites and integrating off-site informatiarioi
while using a number of neighbouring sites as explanatopyediction systems. The potential gains in terms of forecas
variables. Focus is placed on time-adaptivity in order thuoee accuracy have been underlined and quantified in a number of
the computational load, and also to allow for smooth variai recent studies.
in the process dynamics, as induced by seasonal effects fofhese studies can be divided into two groups. The first
instance [24]. The forecasting methodology is evaluated gnoup considers cases for which dominant meteorological
the test case of a portfolio with 20 wind farms in DenmarlGonditions are known a priori and the models are designed
where the offshore wind farm at Nysted (165MW) is the targetccordingly. To this group one can assign Ref. [29], [30]
one, while the others are used as sensors. Predictions havehare the authors consider situations with one dominantl win
temporal resolution of 15 minutes with lead times up to 8irection, and Ref. [15], [31] designed for the situations
hours ahead. with a strong channelling effect (considering two dominant
The remainder of the paper is structured as follows. Sedirections). The second group does not rely on any dominant,
tion Il introduces the new challenges and opportunitieateel known in advance weather patterns. Intead, the considered
to wind power forecasting in a smart grid context. Sectidn Imodels are designed to capture the corresponding effects
describes the two-step procedures for generating prasbil directly from the data. To this group one can assign Ref.,[27]
forecasts with high temporal resolutions and optimally a¢32]-[35].
counting for geographically distributed information, ioth In view of this evolving context and of the limitations with
parametric and non-parametric frameworks. The data uged éxisting approaches and input data in wind power forecgstin
the empirical study is presented in Section 1V, while theultss a path towards improving short-term predictability in wind
obtained are subsequently discussed in Section V. The papewer generation, and with high temporal resolution, may
ends with concluding remarks in Section VI. come from combining information from different sourced; di
ferent locations and potentially different temporal resioins.
The methodology described in the following can be seen as
part of this ongoing effort for making better use of avaitabl

data and information in a smart grid context.
The evolution from traditional power systems operation to

smart grid concepts has two major implications for wind powe
forecasting applications.

First, it is expected to enhance the way information col- The objective of the methodology introduced here is to
lected by utilities is used in operational practice [1], lwit generate probabilistic forecasts of wind power generation
a transition towards higher frequencies for power genamatiaccounting for geographically dispersed information, chhi
scheduling, from hours to minutes, potentially reducing rere to be of higher quality than forecasts produced based on
serve requirements [25]. This translates to new challengesal information only.
for the prediction of wind power generation at high temporal The main idea is based on answering the following ques-
resolutions (in the order of few minutes), as recently asklrd tion: if one has a snapshot of forecast errors currently (or
by [19] (and references therein). These challenges stem frpreviously) observed at the number of reference sites, then
(i) the concentration of wind turbines within relatively smalhow does this information translate to the situation at the
geographical areas, hence magnifying power fluctuatiams, aarget location at time + k. Thus, the approach is tailored
(ii) the lack of intra-hour information in traditional forecastto a situation with one target location and a number (pogsibl
based on Numerical Weather Prediction (NWP) models. Thisry small) of reference sites. We do not intend to describe a
has for instance led to the consideration of new meteorcébgi full space-time covariance structure for the error progiaga
observations from remote sensing (e.g., satellite or vezathnstead, we focus on a rather pragmatic approach, which is
radar images), available at high spatio-temporal resmisti focused on capturing as much of information available at
and to be integrated into prediction systems [26]. present timet as possible and translating it to the situation

Second, the evolution towards smart grids is likely to resudt timet + k.
in an increased volume of available information in space Depending on the layout of considered wind farms and
and in time, on both generation and consumption sides [$pecificities of the motion of weather systems over the con-
Owing to their geographical dispersion, wind farms conmgrissidered territory, the optimal amount of information for- ex
a dense network of atmospheric sensors capable of captunianing a situation at the target location at future titne &
valuable information on the spatio-temporal propagatién can be obtained from the errors observed at presenttiore
meteorological systems, and thereby on the propagation soime past tim¢ — h at the reference sites. In other words,

Il. WIND POWER FORECASTING IN A SMART GRID
CONTEXT

IIl. METHODOLOGY
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if the reference sites are rather remote and it takes longkafined as

than k for the information to propagate from the reference 9 1 9 1

to the target point, then a snarg))shpotgof the past errors() Toys e, o) = wido(y) + F OV s e, o) + widi(y), @)
should be used as explanatory variables. If on averagedstakvherey € [0,1], §o and ¢; are Dirac functions at 0 and 1,
less thank for the information to propagate, one should useespectively, whilew) and w; are the weights representing
the corresponding snapshot taken at tim&reliminary data probability mass concentration at the bounds. These aengiv
analysis (for example, cross-correlation analysis of thedast by

errors) can be used to get a hint on the average speed of error 0 — g s ) wh=1- @(1 - Mt)’ )

e | Jo?

propagation over the territory [28]. Further in this work we o?
denoting the standard Normal distribution function.

focus on the case with = 0, i.e we use the latest available,,;, o(.)

information as explanatory variables. This is motivatecbby | parallel, fO1 (z; uy, o?) follows a Gaussian density func-
will to ease the notation and the fact that this setup wasradti tion within the open unit interval (0,1) and equals O outside
this interval,

for the considered test case.
The proposed procedure follows two main steps. First, the s ()

original single-valued predictions (also referred to a#ipo ((0.1)(,. . ,2) _{ (2mof) "2 exp{—=55=}, y €(0,1)

forecasts) are corrected by integrating off-site infoiorat 0, otherwise

Subsequently, these are upgraded to full probabilistiedasts 3)

in the form of predictive densities, also allowing for off- CN predictive densities as in Eq. (1) can be fully charac-

site information to shape these predictive densities. Botérized by their locationy, and scaleg?, parameters which

parametric and non-parametric approaches are described:aorrespond to the mean and variance of the latent Gaussian

former one is based on censored Gaussian distributionge wigirocess. These may be well approximated by the mean and

latter one relyies on time-adaptive quantile regression. variance of the censored process in practice, since the-corr
sponding bias is found to be of a limited magnitude [19].
Both parameters are here predicted employing conditional

A. Parametric predictive densities parametric models. Therefore, a short presentation of argen

o ) _ ] _ conditional parametric models is given below, followed byg t
Some initial considerations are to direct our choice f%rpecifics of the models fqz and o2

relevant predictive densities. Indeed when normalizedhay t 2) Generic conditional parametric model# generic con-
nominal capacity of the turbine, farm or portfolio of intste gjtional parametric model reads

wind power generation is double-bounded between 0 and 1. T

Also, the non-linear and sigmoid-shaped conversion fronmiwi ye =0 (2)%: + e, 4
speed to power results in conditional heteroskedastic#y, here y: is the value for the response variable at time
in a non-constant variability of wind power generation [36]xt = w14, 704, ,214)T andz are two groups of explana-
Finally, when considering single wind farms rather thafbry variables8(.) = [61(.), 62(.), -+, 6:()]T is a vector of
aggregated territories, wind power generation may equalcBefficient functions to be estimated ands a noise term. The
and 1 with a non-zero probability. This results in & norsstimation off(.) can be performed in an adaptive recursive
negligible concentration of proba_bility mass at the boundg,anner as presented in Ref. [37], to which the reader is
These aspects can be also seen in Fig. 1: when the expegigrred to for more details. Adaptivity in parameter estiion

power is far from the natural generation bounds (Fig. 1thB, reduces computational costs significantly, hence conmgrian
conditional histogram resembles that of a Gaussian digioib  essential element for operational implementation.

(a characteristic bell-shape around the expected valuéean pgriefly, the estimation off(.) is carried out in a semi-
seen). The closer to the bounds, the less dispersed digtribu rametric way, i.e., without imposing any particular shap
become and the higher the probability concentration at thg the coefficient functions. The only assumption is thaisth
closest bound can be nottla.d.. I_Dredictive densities must lee afe smooth enough to be locally approximated by constants (o
to account for these specificities. polynomials in a more general setting). The estimation prob

Various proposals for density functions were made in them then boils down to estimating those local constantsy¢pol
literature, including the generalized Logit-Normal, Ceresl nomials) at a numbem of fitting points 2y,J = 1,...,m.
Normal and Beta distributions compared in [19], also considhis is done by estimating linear models at each of these
ered in the present work. Since the best results were olotaifigting points, hence yielding local estimates @fz;)). After
with Censored Normal distributions, only these are inta®tl the local coefficients are estimated, the values of coefficie
and discussed in the following. functions at any given point, can be obtained by interpolation

1) Censored Normal distributionWind power generation techniques. In this work we considered linear interpotatio
as a Censored Normal (CN) variable follows an ordinarfyrom our experience if a sufficient number of fitting points is
Normal law within the open unit interval. However, since theonsidered, linear interpolation is sufficient and the éase
values outsidg0, 1] cannot be taken, the tails of the Normabf model complexity by considering splines is unnecessary.
distribution are cut and converted to probability massak@t The number of fitting points, the forgetting factor and the
corresponding bounds (0 and 1, respectively). FormallyNa andwidth can be chosen empirically as the values optimizin
predictive density for wind power generatign at time¢ is the performance of the resulting model.
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Fig. 1. Distribution of the observed power conditional téfetient levels of the expected power generation given bysthge-of-the-art forecasting system,
WPPT. 1 hour ahead forecasts are considered. Note that the tdrfrequencies on the y-axis varies from one plot to the.nex

3) Models for the location parameteifhe location param-  4) Models for the scale parameteThe scale parametet’
eter of CN predictive densities is given by wind power poiris approximated by the conditional variance of wind power
forecastsp,;_; issued at timg¢ — k for time ¢, k£ being the generation. It is estimated by modelling squared residefals

lead time, ) )
iy = P = (Pt = Peje—)" 8
fit = Pft—- (5) et = (Pt — Deje—r) ®)

. L . .. where, as explained in the aboy®,,_ 1 = Dsjt—i O Pyjp—i =
Twc? alternatives for obtaining,,_; are considered, which Peje_r Tor thg case of local a\?c'it S’Eaﬁgﬁérﬁporg‘tfol;ecasts,
are. respectively. The variance is consequently given by the ex-
1) Local forecastspy;—r = piji—, are obtained using a pectation of these squared residuals, for which relevamtatso
traditional wind power forecasting tool. Thus, they ar@re to be proposed.
optimized with respect to local information, only, and The volatility of wind power generation is not constant
do not account for information available at neighbourinm time, Owing to ev0|ving dynamics in the wind itself, but
sites; also owing to the power curve that amplifies or dampens
2) Spatio-temporaforecastspy|;— = piji—. are obtained wind fluctuations in a nonlinear manner. The former aspect
by adjusting the local forecasts based on the geograpfuld for instance be accounted for with regime-switching
ically distributed information from other wind farms.models [33]. This was not done here since they were not found
This is here carried out with the method of Ref. [27]io improve the skill of the resulting probabilistic foretssin
using a conditional parametric model for tracking spatigyarallel, the effect of the power curve can be accommodated b
temporal dependencies, as rapidly described hereaftgetting model parameters vary with the level of expected grow
We suppose that the local forecast error made at tirae generation, translating to conditioning wind power vaigti
the target location§; = p; — py:—r, depends on the errorson the slope of the power curve. For that purpose, the so-
previously recorded at a set of neighbouring sites¢'”,, called Conditional Parametric ARCH (CP-ARCH) model is
i € 1. This dependency is assumed to be governed by téroduced, as well as its CP-ARCHX extension when adding
forecasted wind direction as geographically distributed information. An extensive qari-
son of these various approaches and models (ARCH, GARCH
&= 0" (Wyyp_p)Xs + €1, (6) and regime-switching models) can be found in Ref. [38].

ith denoting the wind directi dicted at time k a) CP-ARCH - using local information onlyThe CP-
with <., denoting the wind direction predicted attime  Ap1 model can be formulated as

for time ¢. It is in practice given by the global average of the
wind field forecast over the considered territory. In paall
x; is a column vector of the lagged local forecast errors at the

set of neighbouring locations,”, , i € I. where both point forecast;_, and squared residuaté ,
Estimation of coeﬁicignt function® in model (6) is Per- can again relate to local or spatio-temporal forecastss a
formed as for the generic model (4). We have used 9 fittinghise term and, o, are coefficient functions to be estimated.
points in the estimation procedure: front @ 320 with This model somewhat states that the conditional variance of
increments of 40. Once the (_estlmates of are obtameq, ONe wind power generation?, at the target location and at time
can then correct the local wind power forecgsts_» With 4 s 3 function of the previously observed forecast errors at
that locationg?_, , only. The model coefficients, and«; are
made a function of the expected power generation, as given by

Et = O, (9)
o} = ao(Peft—k) + al(ﬁt\t—k)gf—k’

~ ~ AT A
Prit—k = Pre—k + 041 (Wyje—)Xs-



IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, FEBRUARY 2013 5

the point forecasts. This is where the impact of the noralinewhere ]-"1;1 is the inverse distribution function of;, x¢ is

shape of the underlying power curve is accounted for. a column vector of explanatory variables, is a vector of
The model of Eq. (9) is essentially a conditional parametrigarameters to be estimated andis a noise term. Given a

AR model fore?, which can be rewritten as set of N observations on which the model is to be fitted,

) . . ) estimates of3, 3 are obtained by solving the following linear
& = O‘O(pt\t—k) + al(pﬂt—k’)gtfk + 7. (1 ) programming pr0b|em:

Consequently, the estimation af, and«; is performed as for N

the generic conditional parametnTc model (4), more. prégise 3 _ argminz (yt _ ﬂTXt) (T 1y < BTXt)) . (15)

by settingy, = ¢7, 0 = [ag 1] , x, = [1 7] and B =

2t = Pye—r- We have used 20 fitting points in the estimation ] o ] ) -
procedure: from 0% to 100% quantile of wind power geney\_/herel(.) is an |nd|cat_or function, equal to 1 if the condition
ation with increments of 5% (excluding median). The initidPetween brackets realizes, and to 0 otherwise.

selection of fitting points was done arbitrary. Furtherrapes ~ The optimization problem (15) can be solved in a time-
to increase the number of discretization points did notitésu adaptive fashion by applying the method described in
model improvements. Thus, provided that the computatior@ef- [21]. Briefly, it consists in updating the dataset used

cost was acceptable (see SectionV-B), we used the initiapse for estimation in a sensible way each time new data points
A forecasts? of the scale parametef, issued at tim¢ —k become available, so as to minimize computational costewhi

for time ¢, is finally given by aIIowiqg for smooth time variations in the_model parameters
and still covering the whole range of variations for the oas
67 = ok (Prye—r) + 61—k (Pepe—r)ei—r-  (11)  explanatory variables.

b) CP-ARCHX — accounting for geographically dis- Finally based on the parameters for the quantile regression

tributed information: Additional spatio-temporal effects can”}ﬁ’)d?' esUmate_d based on past ob_servatlt_Jns, a forecast for
, iIssued at time¢ — k, can be obtained with

be included into the CP-ARCH model by extending it to &t

CP-ARCHX one, yielding (j(IT) =3"x, (16)
tit—k

o = ao(Pre—k) + o (Peji—r)er_ i + Y (Pee—r) 62, (12) By having a bank ofn. quantile regression models with, say,
T =3/(m+1),j = 1,---,m, and then issuing quantile

where, in addition to the variables and parameters of the GBrecasts for these various nominal proportions, full jrék

ARCH model (9),5?_),3 denotes squared errors from the locadiistributions are constructed.

point forecasts at thg" neighbouring site. The estimation of 2) Quantile regression models for wind power generation:

ao, a1 andy is similar to the case of generic conditionaBuilding non-parametric predictive densities for wind ow

Et = OtTt,

parametric models,Tby settingg = <7, 6 = [ag a1 7], generation by using quantile regression is performed in two
X = |1 2, gt@g and z; = Py steps. First, wind power point predictiongy,_, are used
Finally, a forecast for the scale parameter of CN predictif@ determine the mean of the corresponding predictive dis-
densities, issued at time— & for time ¢, is given by tributions (§ee Section 11I-A3). Sec_:ond, gncertamty aubu
the mean is shaped, thus upgrading point forecasts to full
67 = Go,t—k(Defr—i) + @Lt,k(ﬁm_k)sf,k predictive densities. This is done by estimating a conditio

(13) distribution of the point forecast errors at the target tmra
(e;) and adding it to the estimate of the expected power
generation, i.e.,

+'?t—k(ﬁt|t7k)§§{)]§-

B. Non-parametric predictive densities

A non-parametric approach to issuing predictive densdfes
wind power generation does not rely on any assumption ofadere7,, and ., stand for the cumulative density functions
known distribution for the data. Instead, it suggests mtédy of p, ande,, respectively.
a set ofm quantiIeSqﬁT) and reconstructing full cumulative When defining quantile models for the distribution of the
distribution function based on interpolation techniquékis forecast errors, it is essential to account for some of the
gives more flexibility, though at a cost, since requiring tamportant characteristics of the process. Here namely, the
setup and estimate: models, resulting in a larger numberuncertainty is known to be shaped by the power curve [36].
of parameters, while still only partly describing dengtie This dependence is known to be non-linear and thus, the
The quantiles defining the predictive densities are guantijuantile models we study here are given by
forecasts for pre-defined nominal proportions, here obthin
in a quantile regression framework. at” = F rlpe—r) = 9Bee—r) + 1. (18)

1) Generic quantile regression model§the most basic , . )
form of a quantile regression model for a responseand No particular shape is imposed for the functigninstead, we

a nominal proportionr, as introduced in Ref. [39], is estimate it in a non-parametric way, using a spline represen
tation. In other words, it is assumed thatcan be viewed

qt(T) :.7:?;1(7'|Xt) =B x¢ + 14, (14) as a piecewise cubic function g¢f,,_; and, thus, can be

Fpe = Dijt—k + Feys (17)
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expressed as a linear combination of the known basis furctio 1 to 48 hours, and temporal resolution of 1 hour. These

b;, resulting in the following quantile models forecasts were generated by the HIRLAM model operated
K1 by the Danish Meteorological Institute (DMI) [40].

qf@ =By + Z b (Deje—k)Bj + Tt (19) The data.covers a period from May 1, 2008 to December 31,

J=1 20009. A first part of the data from May 1, 2008 to December

31, 2008 was used as a burn-in period in order to allow time-
Iff\&iaptive parameters not to be influenced anymore by their
initial values. Forecast evaluation was carried out overrtt
ainder of the dataset, from January 1, 2009 to December 31,
009. Due to the large number of missing values, the effectiv
aluation period was eventually consisting of approxetyat
8.5 months (more than 25.000 forecast series for each of the
lead times considered).
The Nysted wind farm was chosen as the target wind farm

) X Ho fn this study. Nysted is located offshore on the Rgdsand
by point forecast errors previously recorded at Jiesensor a4 hank, near Lolland, Denmark, and is the southernmost

location may be accounted for. This translates to hayg of all wind farms shown in Fig. 2. There are two main

as a supplementary explanatory variable in the QR model, @3 s4ns hehind this choice. Firstly, Nysted was the largiest
a linear or nonlinear term (represented by splines). Sihee k3 in Eastern Denmark until 2010, with a rated capacity
spline-based representation did not result in any impr@vem s 165Mw, and therefore was one of the main contributors
we focus on the simpler linear case. The resulting model i§ the aggregated amplitude of wind power fluctuations in
denoted by QR-X and is written as that region. It also accounted for about 36% of the installed
f;l(ﬂﬁt‘t_k) = 9(Prp—s) +7§§]—)k 7y (20) capacity owned by the company opergtlng it. And_ secondly,
S ~Nysted has an appealing location with many wind farms
Estimation is similar to the case of model (15), by settingcated “upwind” in view of the prevalence of westerly flows
yr = e, xe = |1 bi(Beje—n) - bx—1(Bejr—) gt@k} and over Denmark [41]. Indeed, improvements in forecast aayura
B=16 8 3 ]T resulting from the use of off-site information are expected
—Po g1 .- PK-1 7 . . be larger for wind farms located “downwind”, as shown by
Quantile regression is used to provide 18 quantile foreca:

with nominal proportions going from 5% to 95% by 5% ef. [27] for instance.
increments, except for the median. 0% and 100% quantiles

are set to 0 and 1, respectively. The setup corresponds to the

one used in [23]. Linear interpolation is used to reconstruc

where b; are natural cubic B-spline basis functionk, is
the number of knots used for the spline construction a
B;(1) are coefficients to be estimated. Such spline rep-
resentation ofg permits to use the estimation technique
valid for linear models such as that in Eq. (15), by settin
Yt = €t Xp = [1 bi(Peje—k) - bK—l(ﬁﬂtfk)]T and
B=1[6 b1 --. BK_l}T. Model (19) is referred to as QR
in the following.

In that setup, additional spatio-temporal effects capmtur

o ) . ()
full distribution functions from the set of quantiles. Fravar 6350-
experience if a sufficient number of quantiles is consideitesl
linear interpolation is sufficient and the increase of canity 6300,
by considering splines is unnecessary. Empirical studydcou & >
be performed in order to check whether an increase in the =
number of fitting points improves the performance of the & 6250-
models. =

e

£ 6200- {\e

IV. DATA g o [}
The data used in this study were provided for 20 wind farms 5 6150- o
Horns Rev 1 0

located in Denmark. All wind farms are owned and operated
by the same power company. The respective locations of these  g1g¢-
wind farms are shown in Fig. 2. For each wind farm, the
following information is available:

Nysted Offshore

o Wind power measurements at a temporal resolution of . . . i
15 minutes. They are normalized by the respective nom- 450 %OTOM Egg?(z3§°?km]65° 700

inal capacities”, of the various wind farms; Fig. 2. Map of the 20 wind farms included in the analysis. Thestsgt wind
. . . . ig. 2. wi inclu i ysis. wi
» Point forecasts of wind power generation, with lea rm is marked as number 10 and with a red square. Informatiom the wind

times from 0 to 48 hours, and temporal resolution of 1farms with blue triangles contributed to improve the prediitty of wind
minutes. These predictions were generated with the WiRewver generation at Nysted. Information from the wind farmngreen bullet
- . . oints was found not to improve the predictability of wind mavgeneration
Power Prediction TO.OI'(WPPT) [24]' which is one of thét Nysted. The size of the points is proportional to the raimpacity of the
state-of-the-art prediction models for the short-termdvinwind farms, on a logarithmic scale.
power forecasting as discussed in Ref. [5];
« Meteorological forecasts of wind speed and wind direc- Out of the 19 nearby wind farms, only 8 wind farms (num-

tion at 10 meters above ground level, with lead times frofver 3, 6, 11, 13, 14, 16, 18 and 20) were used as explanatory

6050-
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variables. The selection was performed empirically, based Adaptive quantile regression with original WPPT point
the stepwise selection. forecasts as input (WPPT/QR) is considered as the base
In Ref. [28] it was found that correlations in wind powebenchmark. Other predictive densities are compared to the
forecast errors between two wind farms were very small faenchmark approach and the relative improvements in CRPS
distances larger than 50 km, over the Western Denmark argskill scores) are calculated. The summary of the results is
Our findings are consistent with these results since mosd wigiven in Fig. 3.
farms that contribute to improve wind power predictability
at Nysted are located within such range (see Fig. 2). More
surprisingly, despite the large distances separatingedyfsbm
wind farms 18 and 20 (approximately 265 km and 176 km, -
respectively), integrating information from these laso twind _
farms also led to substantial gains in forecast accuracth Bo = <
wind farms 18 and 20 are located out in the open sea as
Nysted, while the remaining wind farms in this analysis are 5o
located onshore or near-shore. This difference with theltes =
in Ref. [28] could be explained by a higher spatial persisten 2 « -
and homogeneity of wind field dynamics over waters than g
over lands, where the terrain roughness is known to be a verya « | % —— CPIQR N
influential factor. E b CRIQR X .

CN:CP/CP-ARCH
-%- CN:CP/CP-ARCHX

o
V. EMPIRICAL RESULTS 0 5 10 15 20 25 30

. time steps [x 15 min

A. Model notation ps [ ]

The following notations are used for the model names: Fig. 3. Evaluation of predictive densities in terms of reltiCRPS

» CN:CP/CP-ARCH refers to CN predictive densities wit /opg?‘foﬂﬁgglisa;;zirt‘;]“?:r‘;;f%g;‘g’;\%:rok'?;L%Z‘T'Wg"ﬂgﬁﬁps values
1 given by the spatio-temporal point forecasts (7) afdd
estimated using the CP-ARCH model (9);

o CN:CP/CP-ARCHX refers to CN predictive densities The models have similar levels of CRPS improvement for
with x4 given by the spatio-temporal point forecasts (7all the lead times considered. This was also confirmed bygusin
ando? estimated using the CP-ARCHX model (12); the Diebold-Mariano test statisti¢s [43], which may be more

o WPPT/QR stands for the non-parametric predictive degenerally used to test for equal performance of probaiuilist
sities based on the time-adaptive quantile regression (Qfie)ecastst,, is asymptotically standard Normal under the null
(19). Local forecasts (WPPT) are used as input; hypothesis of vanishing score differentials. This hintshe

« CP/QR stands for the non-parametric predictive densitifsct that forecast improvements brought in by the proposed
based on the time-adaptive quantile regression (QR) (18&)ethodologies mainly come from the space-time correctfon o
Spatio-temporal forecasts given by (7) are used as inptlig point forecasts defining the conditional mean of préedict

« CP/QR-X stands for non-parametric predictive densitietensities. Further consideration of space-time dynamitke
with additional consideration of the spatio-temporal eimodelling of uncertainty around the mean does not seem
fects in the uncertainty modelling step as in (20). Spatite bring additional benefit. This is confirmed by the fact
temporal forecasts given by (7) are used as input;  that CP/QRX does not outperform CP/QR, and similarly

CN:CP/CP-ARCHX does not outperform CN:CP/CP-ARCH.
B. Computational details Consequently, we further focus on the evaluation of the
The parameters for the parametric densities were upda%Ia/QR and CN:CP/CP-ARCH predictive densities, since com-

every 15 min. A single update step took less than a second™oF 9 the best performing non-parametric and parametric

computing time. The quantile regression models were uﬂda{émbab'hsuc forecasts, respectively. Both types of fataitis-

daily. A single update step took approximately 3 secondswh [C forecasts outpc_arform the ben_ch.mark.ap_proach given by
evaluating 20 different quantile models. The computationsPPT/QR (see Fig. 3). The statistical significance of those

. . gmprovements has been verified using the Diebold-Mariano
were performed on a laptop, having a processor Intel i zg

2620M CPU 2.70 GHz and the installed RAM of 8 GB st statistics,,. The c'orresp(.)r.wdmg result§ are givenin Tablg l.
The non-parametric densities accounting for the space-tim

. dynamics (CP/QR) show statistically significant improvemse

C. Overall evaluation for lead time up to 8 hours ahead. Such an observation is

The evaluation and comparison of probabilistic forecagstirconsistent with the spatio-temporal scales for the inesfia
approaches follows the guidelines, scores and diagnasils t weather systems passing over Denmark. The improvements for
described in Ref. [42]. The lead score is the Continuodlse parametric alternative based on CN predictive dessiaa
Ranked Probability Score (CRPS), which is a proper scobe considered statistically significant up to 5 hours ahéad.
for density forecasts. This score is negatively orientds tthe same time, it is not possible to reject the null hypothesi
smaller it is, the better the forecasts are. such that CP/QR and CN:CP/CP-ARCH perform similarly for
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TABLE |
TESTING FOR EQUAL FORECAST PERFORMANCE WITH THE

O—_
DIEBOLD-MARIANO TEST STATISTICSty,,. p IS THAT THE PROBABILITY © - O/Oﬁ;s, ;’X”Xiigr\
THAT THE CORRESPONDING VALUE OFy, IS ACHIEVED WITH THE NULL o a A
HYPOTHESIS BEING TRUE “*' SYMBOLS MARK STATISTICALLY Q,/%
SIGNIFICANT DIFFERENCES INCRPS. £°7 O/'ﬁ
< V3 i
= 3
Horizon 15 min 1h 4 h 5h 6 h 7h 8h 0« | /g
CPIQR vs tn | -9.29 | -1232| -563 | -343 | -2.34 | -260 | -3.19 & i
WPPT/QR p | 0.00* | 0.00% | 0.00% | 0.00* | 0.02* | 0.01* | 0.00* O A *
CN:CP/CP-ARCH| t,, | -6.06 | -10.45 | -322 | -2.28 | -1.34 | -1.07 | -0.65 f o
vs WPPT/QR p | 0.00* | 0.00* | 0.00* | 0.02* | 0.18 | 0.28 | 051 N 5
CPIQRVS | in ‘ -1.60 ‘ -0.90 ‘ -0.41‘ -0.25‘ -o.oo‘ 0.39 ‘ 108 ‘ b3 e ‘é"lf/PQTR’QR
CN:CP/CP-ARCH| p 0.11 0.37 | 0.68 | 0.80 | 1.00 | 0.70 | 0.28 o . CN-GPICP-ARCH

20

40

60

80

100

) ) Level of expected power generation [% Pn]
all lead times up to 8 hours ahead. From the 5-hour lead time,

the benefits from space-time considerations start fadirelyawrig. 4. CcRPS conditional to the expected wind power ger@riven by
Mainly, this is caused by the fact that the benchmark apgroamint forecasts) for the 1-hour lead time, with WPPT/QR coereid as the
is chosen non-parametric. Thus, CP/QR and WPPT/QR #@ér'nc';&ag?-stﬁmgn'e;e's are given by 20 equally populatesbetadeduced
. . A point forecasts.

of the same model family, while CN:CP/CP-ARCH differs
from WPPT/QR in its nature, since being parametric. This
results in higher variance of score differentials once carimg
CN:CP/CP-ARCH and WPPT/QR, and subsequently lotyer flagged and discarded from the dataset, as much as they should
values. be, then affecting the parameter estimation and evaluation

Another interesting point to mention is that the peak in thine forecasts. Better results are therefore expected tedre s
improvements is observed for the prediction horizons ofdrhoin case down-regulation actions are better dealt with when
ahead. This is in line with the layout of the considered windathering wind power generation datasets in the future.
farms. From the map in Fig. 2 one can see that almost allSimilar differences in conditional forecast skill can be
the considered reference sites are within 50 km from Nystashserved when assessing the skill of predictive densities ¢
According to [28], an average speed of error propagati@iitional to actual power measurements, see Fig. 5. Par@metr
over Denmark is 30-50 km/h (depending on the prevailingensities perform better during periods when observed powe
wind direction). This result is consistent with the factttlfeze is not close to the generation bounds. In contrast during per
peak of cross-correlations between Nysted and almost @ll {hds with low and high power generation, the non-parametric
reference sites comes at lags of approximately 1 hour ahershsities show superior results. This suggests that CIKCEP/
and correspondingly results in the highest improvements. ARCH forecasts have a better ability to discriminate among
the observations when the power is in its medium range and
a worse ability to discriminate as the power generation gets
f%I'Qser to its natural bounds.

D. Conditional evaluation

Emphasis is then placed on the situation-dependent per
mance of probabilistic forecasts, through a conditioneg¢dast

evaluation exercise. Results are shown and discussed for 1- .

hour ahead forecasts only, since these are qualitativelifasi @ 1 K ~ i\g\

for the other lead times from 15 min to 8 hours ahead. AT TR
Firstly, since predictive densities evolve with the levél o o O§ +

expected power generation, the overall skill of these diessi = /%(4

is assessed based on the CRPS score, as a function of the é)q, K

point forecast values. The corresponding results are tkpic o /ng \

in Fig. 4. K —— I8
The CRPS for all the predictive densities considered in- &~ f A CPIQR

creases for expected power levels in the medium range.  CN:CPICP-ARCH

40 60 80

This can be explained by the fact that higher uncertainties 0 _
Level of observed power generation [% Pn]

in the wind power generation are faced in periods with
medium power generation, i.e., in the steep slope part of thig. 5. CRPS conditional to the observed power generativel lfor the
power curve. The performances of the parametric and thgour lead time, with WPPT/QR being the benchmark. Power deaeé

. . .. . . . given by 20 equally populated classes deduced from thelititn of power
non-parametric densities are similar in this predicted grOW,casurements.
range. Some differences can be noted, however, close to
the generation bounds. Closer to the generation bounds, the
censoring effect in the parametric densities is more ptesenAs an illustration of the type of probabilistic forecastslig
(see Figure 1), hence leading to a higher bias in parametétained with the various approaches proposed here, F&ure
estimates. For the particular case of the the upper bougiies the example of predictive densities issued by the &P/Q
that is, when expected power is close to nominal capacitpodel, issued on the 24th of November, 2009, at 17:15, their
it is also that power down-regulation actions were not akvaghape evolving with the level of power and with the lead time.
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forecasts were obtained by adaptive quantile regressitim wi
spatially corrected point predictions, with CRPS improeeits
between 1.5% to 4.6% depending upon the lead time. Further
research on both parametric and non-parametric approaches
to wind power probabilistic forecasting may challenge the
oo comparison carried out here.

20%
10%
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power [% Pn]
20 40 60 80 100
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