
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Probabilistic forecasts of wind power generation accounting for geographically
dispersed information

Tastu, Julija; Pinson, Pierre; Trombe, Pierre-Julien ; Madsen, Henrik

Published in:
I E E E Transactions on Smart Grid

Link to article, DOI:
10.1109/TSG.2013.2277585

Publication date:
2014

Link back to DTU Orbit

Citation (APA):
Tastu, J., Pinson, P., Trombe, P-J., & Madsen, H. (2014). Probabilistic forecasts of wind power generation
accounting for geographically dispersed information. I E E E Transactions on Smart Grid, 5(1), 480-489. DOI:
10.1109/TSG.2013.2277585

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/18495103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TSG.2013.2277585
http://orbit.dtu.dk/en/publications/probabilistic-forecasts-of-wind-power-generation-accounting-for-geographically-dispersed-information(69614718-98ed-4138-aaca-ffab4aba404e).html


IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, FEBRUARY 2013 1

Probabilistic forecasts of wind power generation
accounting for geographically dispersed information

Julija Tastu, Pierre Pinson,Senior Member, IEEE, Pierre-Julien Trombe, and Henrik Madsen

Abstract—Forecasts of wind power generation in their proba-
bilistic form are a necessary input to decision-making problems
for reliable and economic power systems operations in a smart
grid context. Thanks to the wealth of spatially distributed data,
also of high temporal resolution, such forecasts may be optimized
by accounting for spatio-temporal effects that are so far merely
considered. The way these effects may be included in relevant
models is described for the case of both parametric and non-
parametric approaches to generating probabilistic forecasts. The
resulting predictions are evaluated on the real-world test case
of a large offshore wind farm in Denmark (Nysted, 165 MW),
where a portfolio of 19 other wind farms is seen as a set of
geographically distributed sensors, for lead times between 15
minutes and 8 hours. Forecast improvements are shown to mainly
come from the spatio-temporal correction of the first order
moments of predictive densities. The best performing approach,
based on adaptive quantile regression, using spatially corrected
point forecasts as input, consistently outperforms the state-of-the-
art benchmark based on local information only, by 1.5%-4.6%,
depending upon the lead time.

Index Terms—renewable energy, prediction, decision-making,
power systems operations, offshore.

I. I NTRODUCTION

ONE OF THE underlying challenges in implementing
smart grid concepts is the efficient integration of re-

newable energy sources, especially wind energy [1]. Indeed,
the stochastic nature of wind power, with its variability and
limited predictability, induces difficulties in operatingand
managing power grids, particularly for balancing electricity
consumption and production [2]. Today, the development of
advanced wind power prediction systems is considered as one
of the most cost-effective solutions for mitigating the impact of
the uncertainty stemming from the integration of wind power
into power grids. In a recent survey of grid operators’ views
on wind power integration, 94% of the respondents indicated
that the integration of a significant amount of wind power will
ultimately depend on the accuracy of wind power forecasts [3].
A history of the short term wind power forecasting and an
overview of the state-of-the-art methodology are given in [4]
and [5], respectively.

Today the main interest turns from point to probabilistic
forecasting [6]. This is driven by the complexity of the related
decision making tasks which calls for the forecast uncertainty
quantification. For example, when trading wind power on the
Danish electricity market, one deals with a non-symmetric
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penalty function as overproduction and underproduction are
not penalized in the same way, when settled through the
balancing market. Therefore, in order to bid optimally it is
not sufficient to know the expected power generation only. One
should also be informed about the possibilities of actual energy
production to exceed or to be less than the expected value,
hence allowing minimizing expected balancing costs [7]. Other
applications of probabilistic forecasts to power grid operations
include economic load dispatch and stochastic unit commit-
ment [8]–[10], optimal operation of storage [11], reserve
quantification [12] and assessment of operating costs [13].

More generally speaking, the benefits of probabilistic fore-
casts can be justified by the fact that for a large class of
decision making problems the optimal solution is directly
linked to a specific quantile rather than the expectation of the
future outcome [14].

For continuous variables like wind power generation, proba-
bilistic forecasts take the form of predictive density functions,
fully describing that random variable for a set of lead times.

Up to now the number of studies on probabilistic wind
power forecasting is relatively small compared with point
forecasting. A part of the available studies focus on indirect
wind power forecasts, i.e. when firstly wind speed predictive
densities are obtained and secondly they are transformed
to wind power forecasts. Most often idealized determinis-
tic power curve is used for such transformation [15], [16].
However in practice power curves are stochastic and of a
rather complex nature [17]. To account for it, stochastic power
curve models can be built, as for example in [18]. Another
possible approach (which is also considered in this work) isto
construct predictive densities for wind power directly, without
the intermediate step of modelling the uncertainty of the wind.
Advantages of this approach are (i) no need to directly account
for the complexity of the stochastic power curve, (ii) owingto
the geographical distribution of wind farms, the corresponding
wind power data contains substantially more information than
numerical weather predictions or 3 hourly data coming from
the few available meteorological stations.

For constructing direct wind power density forecasts, one
could follow two different families of approaches: apara-
metric or a non-parametricone. By the parametric approach
we refer to a distribution-based methodology, which requires
an assumption on the shape of the predictive densities. An
example can be found in Ref. [19]. By the non-parametric one
we refer to the distribution-free techniques, ı.e. to the ones that
are based on estimating the predictive densities directly from
the data, without any constraints on the shape of the resulting
distribution. As an example, adaptive resampling [20], time-
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adaptive quantile regression [21] and time-adaptive quantile-
copula [22] techniques were recently described, their evalua-
tion suggesting that they have a similar performance level [22],
[23].

Our objective here is to introduce and evaluate a methodol-
ogy allowing to issue probabilistic wind power forecasts op-
timally accounting for geographically dispersed information.
The methods are tailored to targeting a single site of interest
while using a number of neighbouring sites as explanatory
variables. Focus is placed on time-adaptivity in order to reduce
the computational load, and also to allow for smooth variations
in the process dynamics, as induced by seasonal effects for
instance [24]. The forecasting methodology is evaluated on
the test case of a portfolio with 20 wind farms in Denmark,
where the offshore wind farm at Nysted (165MW) is the target
one, while the others are used as sensors. Predictions have a
temporal resolution of 15 minutes with lead times up to 8
hours ahead.

The remainder of the paper is structured as follows. Sec-
tion II introduces the new challenges and opportunities related
to wind power forecasting in a smart grid context. Section III
describes the two-step procedures for generating probabilistic
forecasts with high temporal resolutions and optimally ac-
counting for geographically distributed information, in both
parametric and non-parametric frameworks. The data used for
the empirical study is presented in Section IV, while the results
obtained are subsequently discussed in Section V. The paper
ends with concluding remarks in Section VI.

II. W IND POWER FORECASTING IN A SMART GRID

CONTEXT

The evolution from traditional power systems operation to
smart grid concepts has two major implications for wind power
forecasting applications.

First, it is expected to enhance the way information col-
lected by utilities is used in operational practice [1], with
a transition towards higher frequencies for power generation
scheduling, from hours to minutes, potentially reducing re-
serve requirements [25]. This translates to new challenges
for the prediction of wind power generation at high temporal
resolutions (in the order of few minutes), as recently addressed
by [19] (and references therein). These challenges stem from
(i) the concentration of wind turbines within relatively small
geographical areas, hence magnifying power fluctuations, and
(ii) the lack of intra-hour information in traditional forecasts
based on Numerical Weather Prediction (NWP) models. This
has for instance led to the consideration of new meteorological
observations from remote sensing (e.g., satellite or weather
radar images), available at high spatio-temporal resolutions
and to be integrated into prediction systems [26].

Second, the evolution towards smart grids is likely to result
in an increased volume of available information in space
and in time, on both generation and consumption sides [1].
Owing to their geographical dispersion, wind farms comprise
a dense network of atmospheric sensors capable of capturing
valuable information on the spatio-temporal propagation of
meteorological systems, and thereby on the propagation of

wind power forecast errors [27], [28]. Historically, most state-
of-the art wind power prediction systems are optimized and
run locally, for a single region, site or wind farm of interest,
using on-site information only (e.g., meteorological forecasts,
historical measurements of wind power) [24]. Yet, a new
trend in wind power forecasting consists in exploiting spatio-
temporal correlations in wind (power) data collected from
neighbouring sites and integrating off-site information into
prediction systems. The potential gains in terms of forecast
accuracy have been underlined and quantified in a number of
recent studies.

These studies can be divided into two groups. The first
group considers cases for which dominant meteorological
conditions are known a priori and the models are designed
accordingly. To this group one can assign Ref. [29], [30]
where the authors consider situations with one dominant wind
direction, and Ref. [15], [31] designed for the situations
with a strong channelling effect (considering two dominant
directions). The second group does not rely on any dominant,
known in advance weather patterns. Intead, the considered
models are designed to capture the corresponding effects
directly from the data. To this group one can assign Ref. [27],
[32]–[35].

In view of this evolving context and of the limitations with
existing approaches and input data in wind power forecasting,
a path towards improving short-term predictability in wind
power generation, and with high temporal resolution, may
come from combining information from different sources, dif-
ferent locations and potentially different temporal resolutions.
The methodology described in the following can be seen as
part of this ongoing effort for making better use of available
data and information in a smart grid context.

III. M ETHODOLOGY

The objective of the methodology introduced here is to
generate probabilistic forecasts of wind power generation
accounting for geographically dispersed information, which
are to be of higher quality than forecasts produced based on
local information only.

The main idea is based on answering the following ques-
tion: if one has a snapshot of forecast errors currently (or
previously) observed at the number of reference sites, then
how does this information translate to the situation at the
target location at timet + k. Thus, the approach is tailored
to a situation with one target location and a number (possibly
very small) of reference sites. We do not intend to describe a
full space-time covariance structure for the error propagation.
Instead, we focus on a rather pragmatic approach, which is
focused on capturing as much of information available at
present timet as possible and translating it to the situation
at time t+ k.

Depending on the layout of considered wind farms and
specificities of the motion of weather systems over the con-
sidered territory, the optimal amount of information for ex-
plaining a situation at the target location at future timet+ k
can be obtained from the errors observed at present timet or
some past timet − h at the reference sites. In other words,



IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, FEBRUARY 2013 3

if the reference sites are rather remote and it takes longer
than k for the information to propagate from the reference
to the target point, then a snapshot of the past errors (t − h)
should be used as explanatory variables. If on average it takes
less thank for the information to propagate, one should use
the corresponding snapshot taken at timet. Preliminary data
analysis (for example, cross-correlation analysis of the forecast
errors) can be used to get a hint on the average speed of error
propagation over the territory [28]. Further in this work we
focus on the case withh = 0, i.e we use the latest available
information as explanatory variables. This is motivated byour
will to ease the notation and the fact that this setup was optimal
for the considered test case.

The proposed procedure follows two main steps. First, the
original single-valued predictions (also referred to as point
forecasts) are corrected by integrating off-site information.
Subsequently, these are upgraded to full probabilistic forecasts
in the form of predictive densities, also allowing for off-
site information to shape these predictive densities. Both
parametric and non-parametric approaches are described: the
former one is based on censored Gaussian distributions, while
latter one relyies on time-adaptive quantile regression.

A. Parametric predictive densities

Some initial considerations are to direct our choice for
relevant predictive densities. Indeed when normalized by the
nominal capacity of the turbine, farm or portfolio of interest,
wind power generation is double-bounded between 0 and 1.
Also, the non-linear and sigmoid-shaped conversion from wind
speed to power results in conditional heteroskedasticity,i.e.,
in a non-constant variability of wind power generation [36].
Finally, when considering single wind farms rather than
aggregated territories, wind power generation may equal 0
and 1 with a non-zero probability. This results in a non-
negligible concentration of probability mass at the bounds.
These aspects can be also seen in Fig. 1: when the expected
power is far from the natural generation bounds (Fig. 1(b)),the
conditional histogram resembles that of a Gaussian distribution
(a characteristic bell-shape around the expected value canbe
seen). The closer to the bounds, the less dispersed distributions
become and the higher the probability concentration at the
closest bound can be noted. Predictive densities must be able
to account for these specificities.

Various proposals for density functions were made in the
literature, including the generalized Logit-Normal, Censored
Normal and Beta distributions compared in [19], also consid-
ered in the present work. Since the best results were obtained
with Censored Normal distributions, only these are introduced
and discussed in the following.

1) Censored Normal distribution:Wind power generation
as a Censored Normal (CN) variable follows an ordinary
Normal law within the open unit interval. However, since the
values outside[0, 1] cannot be taken, the tails of the Normal
distribution are cut and converted to probability masses atthe
corresponding bounds (0 and 1, respectively). Formally, a CN
predictive density for wind power generationpt at time t is

defined as

fp(y;µt, σ
2
t ) = w0

t δ0(y) + f (0,1)(y;µt, σ
2
t ) + w1

t δ1(y), (1)

wherey ∈ [0, 1], δ0 and δ1 are Dirac functions at 0 and 1,
respectively, whilew0

t and w1
t are the weights representing

probability mass concentration at the bounds. These are given
by

w0
t = Φ(

−µt
√

σ2
t

); w1
t = 1− Φ(

1− µt
√

σ2
t

), (2)

with Φ(.) denoting the standard Normal distribution function.
In parallel,f (0,1)(x;µt, σ

2
t ) follows a Gaussian density func-

tion within the open unit interval (0,1) and equals 0 outside
this interval,

f (0,1)(y;µt, σ
2
t ) =

{

(2πσ2
t )

− 1

2 exp{− (y−µt)
2

2σ2

t

}, y ∈ (0, 1)

0, otherwise
.

(3)
CN predictive densities as in Eq. (1) can be fully charac-

terized by their location,µ, and scale,σ2, parameters which
correspond to the mean and variance of the latent Gaussian
process. These may be well approximated by the mean and
variance of the censored process in practice, since the corre-
sponding bias is found to be of a limited magnitude [19].
Both parameters are here predicted employing conditional
parametric models. Therefore, a short presentation of a generic
conditional parametric models is given below, followed by the
specifics of the models forµ andσ2.

2) Generic conditional parametric models:A generic con-
ditional parametric model reads

yt = θ⊤(zt)xt + ǫt, (4)

where yt is the value for the response variable at timet,
xt = [x1,t, x2,t, · · · , xl,t]

⊤ andzt are two groups of explana-
tory variables.θ(.) = [θ1(.), θ2(.), · · · , θl(.)]

⊤ is a vector of
coefficient functions to be estimated andǫt is a noise term. The
estimation ofθ(.) can be performed in an adaptive recursive
manner as presented in Ref. [37], to which the reader is
referred to for more details. Adaptivity in parameter estimation
reduces computational costs significantly, hence comprising an
essential element for operational implementation.

Briefly, the estimation ofθ(.) is carried out in a semi-
parametric way, i.e., without imposing any particular shape
for the coefficient functions. The only assumption is that these
are smooth enough to be locally approximated by constants (or
polynomials in a more general setting). The estimation prob-
lem then boils down to estimating those local constants (poly-
nomials) at a numberm of fitting points z(j), j = 1, . . . ,m.
This is done by estimating linear models at each of these
fitting points, hence yielding local estimates ofθ(z(j)). After
the local coefficients are estimated, the values of coefficient
functions at any given pointzt can be obtained by interpolation
techniques. In this work we considered linear interpolation.
From our experience if a sufficient number of fitting points is
considered, linear interpolation is sufficient and the increase
of model complexity by considering splines is unnecessary.

The number of fitting points, the forgetting factor and the
bandwidth can be chosen empirically as the values optimizing
the performance of the resulting model.
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(b) Expected power in 48 - 50 % of nominal
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Fig. 1. Distribution of the observed power conditional to different levels of the expected power generation given by thestate-of-the-art forecasting system,
WPPT. 1 hour ahead forecasts are considered. Note that the range of frequencies on the y-axis varies from one plot to the next.

3) Models for the location parameter:The location param-
eter of CN predictive densities is given by wind power point
forecastsp̂t|t−k issued at timet − k for time t, k being the
lead time,

µ̂t = p̂t|t−k. (5)

Two alternatives for obtaininĝpt|t−k are considered, which
are:

1) Local forecasts,p̂t|t−k = p̃t|t−k, are obtained using a
traditional wind power forecasting tool. Thus, they are
optimized with respect to local information, only, and
do not account for information available at neighbouring
sites;

2) Spatio-temporalforecasts,̂pt|t−k = p̌t|t−k, are obtained
by adjusting the local forecasts based on the geograph-
ically distributed information from other wind farms.
This is here carried out with the method of Ref. [27],
using a conditional parametric model for tracking spatio-
temporal dependencies, as rapidly described hereafter.

We suppose that the local forecast error made at timet at
the target location,ξt = pt − p̃t|t−k, depends on the errors

previously recorded at a setI of neighbouring sites,ξ(i)t−k,
i ∈ I. This dependency is assumed to be governed by the
forecasted wind direction as

ξt = θ⊤(ŵt|t−k)xt + ǫt, (6)

with ŵt|t−k denoting the wind direction predicted at timet−k
for time t. It is in practice given by the global average of the
wind field forecast over the considered territory. In parallel,
xt is a column vector of the lagged local forecast errors at the
set of neighbouring locations,ξ(i)t−k, i ∈ I.

Estimation of coefficient functionsθ in model (6) is per-
formed as for the generic model (4). We have used 9 fitting
points in the estimation procedure: from 0◦ to 320◦ with
increments of 40◦. Once the estimates ofθ are obtained, one
can then correct the local wind power forecastsp̃t|t−k with

p̌t|t−k = p̃t|t−k + θ̂
⊤

t−k(ŵt|t−k)xt. (7)

4) Models for the scale parameter:The scale parameterσ2
t

is approximated by the conditional variance of wind power
generation. It is estimated by modelling squared residualsε2t :

ε2t = (pt − p̂t|t−k)
2, (8)

where, as explained in the above,p̂t|t−k = p̃t|t−k or p̂t|t−k =
p̌t|t−k, for the case of local and spatio-temporal forecasts,
respectively. The variance is consequently given by the ex-
pectation of these squared residuals, for which relevant models
are to be proposed.

The volatility of wind power generation is not constant
in time, owing to evolving dynamics in the wind itself, but
also owing to the power curve that amplifies or dampens
wind fluctuations in a nonlinear manner. The former aspect
could for instance be accounted for with regime-switching
models [33]. This was not done here since they were not found
to improve the skill of the resulting probabilistic forecasts. In
parallel, the effect of the power curve can be accommodated by
letting model parameters vary with the level of expected power
generation, translating to conditioning wind power volatility
on the slope of the power curve. For that purpose, the so-
called Conditional Parametric ARCH (CP-ARCH) model is
introduced, as well as its CP-ARCHX extension when adding
geographically distributed information. An extensive compari-
son of these various approaches and models (ARCH, GARCH
and regime-switching models) can be found in Ref. [38].

a) CP-ARCH – using local information only:The CP-
ARCH model can be formulated as

εt = σtrt,
σ2
t = α0(p̂t|t−k) + α1(p̂t|t−k)ε

2
t−k,

(9)

where both point forecastŝpt|t−k and squared residualsε2t−k

can again relate to local or spatio-temporal forecasts,rt is a
noise term andα0, α1 are coefficient functions to be estimated.
This model somewhat states that the conditional variance of
wind power generationσ2

t , at the target location and at time
t, is a function of the previously observed forecast errors at
that location,ε2t−k, only. The model coefficientsα0 andα1 are
made a function of the expected power generation, as given by
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the point forecasts. This is where the impact of the non-linear
shape of the underlying power curve is accounted for.

The model of Eq. (9) is essentially a conditional parametric
AR model forε2t , which can be rewritten as

ε2t = α0(p̂t|t−k) + α1(p̂t|t−k)ε
2
t−k + rt. (10)

Consequently, the estimation ofα0 andα1 is performed as for
the generic conditional parametric model (4), more precisely
by settingyt = ε2t , θ = [α0 α1]

⊤, xt =
[

1 ε2t−k

]⊤
and

zt = p̂t|t−k. We have used 20 fitting points in the estimation
procedure: from 0% to 100% quantile of wind power gener-
ation with increments of 5% (excluding median). The initial
selection of fitting points was done arbitrary. Further attempts
to increase the number of discretization points did not result in
model improvements. Thus, provided that the computational
cost was acceptable (see SectionV-B), we used the initial setup.

A forecastσ̂2
t of the scale parameterσ2

t , issued at timet−k
for time t, is finally given by

σ̂2
t = α̂0,t−k(p̂t|t−k) + α̂1,t−k(p̂t|t−k)ε

2
t−k. (11)

b) CP-ARCHX – accounting for geographically dis-
tributed information: Additional spatio-temporal effects can
be included into the CP-ARCH model by extending it to a
CP-ARCHX one, yielding

εt = σtrt,

σ2
t = α0(p̂t|t−k) + α1(p̂t|t−k)ε

2
t−k + γ(p̂t|t−k)ξ

(j)2
t−k ,

(12)

where, in addition to the variables and parameters of the CP-
ARCH model (9),ξ(j)2t−k denotes squared errors from the local
point forecasts at thejth neighbouring site. The estimation of
α0, α1 and γ is similar to the case of generic conditional
parametric models, by settingyt = ε2t , θ = [α0 α1 γ]

⊤,

xt =
[

1 ε2t−k ξ
(j)2
t−k

]⊤

andzt = p̂t|t−k.
Finally, a forecast for the scale parameter of CN predictive

densities, issued at timet− k for time t, is given by

σ̂2
t = α̂0,t−k(p̂t|t−k) + α̂1,t−k(p̂t|t−k)ε

2
t−k

+γ̂t−k(p̂t|t−k)ξ
(j)2
t−k . (13)

B. Non-parametric predictive densities

A non-parametric approach to issuing predictive densitiesof
wind power generation does not rely on any assumption of a
known distribution for the data. Instead, it suggests predicting
a set ofm quantilesq(τ)t and reconstructing full cumulative
distribution function based on interpolation techniques.This
gives more flexibility, though at a cost, since requiring to
setup and estimatem models, resulting in a larger number
of parameters, while still only partly describing densities.
The quantiles defining the predictive densities are quantile
forecasts for pre-defined nominal proportions, here obtained
in a quantile regression framework.

1) Generic quantile regression models:The most basic
form of a quantile regression model for a responseyt and
a nominal proportionτ , as introduced in Ref. [39], is

q
(τ)
t = F−1

yt
(τ |xt) = β⊤

xt + rt, (14)

whereF−1
yt

is the inverse distribution function ofyt, xt is
a column vector of explanatory variables,β is a vector of
parameters to be estimated andrt is a noise term. Given a
set of N observations on which the model is to be fitted,
estimates ofβ, β̂ are obtained by solving the following linear
programming problem:

β̂ = argmin
β

N
∑

t=1

(

yt − β⊤
xt

)(

τ − 1(yt < β⊤
xt)

)

, (15)

where1(.) is an indicator function, equal to 1 if the condition
between brackets realizes, and to 0 otherwise.

The optimization problem (15) can be solved in a time-
adaptive fashion by applying the method described in
Ref. [21]. Briefly, it consists in updating the dataset used
for estimation in a sensible way each time new data points
become available, so as to minimize computational costs while
allowing for smooth time variations in the model parameters
and still covering the whole range of variations for the various
explanatory variables.

Finally based on the parameters for the quantile regression
model estimated based on past observations, a forecast for
q
(τ)
t , issued at timet− k, can be obtained with

q̂
(τ)
t|t−k

= β̂⊤
xt (16)

By having a bank ofm quantile regression models with, say,
τ = j/(m + 1), j = 1, · · · ,m, and then issuing quantile
forecasts for these various nominal proportions, full predictive
distributions are constructed.

2) Quantile regression models for wind power generation:
Building non-parametric predictive densities for wind power
generation by using quantile regression is performed in two
steps. First, wind power point predictions,p̂t|t−k are used
to determine the mean of the corresponding predictive dis-
tributions (see Section III-A3). Second, uncertainty around
the mean is shaped, thus upgrading point forecasts to full
predictive densities. This is done by estimating a conditional
distribution of the point forecast errors at the target location
(εt) and adding it to the estimate of the expected power
generation, i.e.,

Fpt
= p̂t|t−k + Fǫt , (17)

whereFpt
andFǫt stand for the cumulative density functions

of pt andεt, respectively.
When defining quantile models for the distribution of the

forecast errors, it is essential to account for some of the
important characteristics of the process. Here namely, the
uncertainty is known to be shaped by the power curve [36].
This dependence is known to be non-linear and thus, the
quantile models we study here are given by

q
(τ)
t = F−1

εt
(τ |p̂t|t−k) = g(p̂t|t−k) + rt. (18)

No particular shape is imposed for the functiong. Instead, we
estimate it in a non-parametric way, using a spline represen-
tation. In other words, it is assumed thatg can be viewed
as a piecewise cubic function of̂pt|t−k and, thus, can be
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expressed as a linear combination of the known basis functions
bj , resulting in the following quantile models

q
(τ)
t = β0 +

K−1
∑

j=1

bj(p̂t|t−k)βj + rt, (19)

where bj are natural cubic B-spline basis functions,K is
the number of knots used for the spline construction and
βi(τ) are coefficients to be estimated. Such spline rep-
resentation ofg permits to use the estimation techniques
valid for linear models such as that in Eq. (15), by setting
yt = εt, xt =

[

1 b1(p̂t|t−k) . . . bK−1(p̂t|t−k)
]⊤

and
β = [β0 β1 . . . βK−1]

⊤. Model (19) is referred to as QR
in the following.

In that setup, additional spatio-temporal effects captured
by point forecast errors previously recorded at thejth sensor
location may be accounted for. This translates to havingξ

(j)
t−k

as a supplementary explanatory variable in the QR model, as
a linear or nonlinear term (represented by splines). Since the
spline-based representation did not result in any improvement,
we focus on the simpler linear case. The resulting model is
denoted by QR-X and is written as

F−1
εt

(τ |p̂t|t−k) = g(p̂t|t−k) + γξ
(j)
t−k + rt. (20)

Estimation is similar to the case of model (15), by setting

yt = εt, xt =
[

1 b1(p̂t|t−k) . . . bK−1(p̂t|t−k) ξ
(j)
t−k

]⊤

and

β = [β0 β1 . . . βK−1 γ]
⊤.

Quantile regression is used to provide 18 quantile forecasts
with nominal proportions going from 5% to 95% by 5%
increments, except for the median. 0% and 100% quantiles
are set to 0 and 1, respectively. The setup corresponds to the
one used in [23]. Linear interpolation is used to reconstruct
full distribution functions from the set of quantiles. Fromour
experience if a sufficient number of quantiles is considered, the
linear interpolation is sufficient and the increase of complexity
by considering splines is unnecessary. Empirical study could
be performed in order to check whether an increase in the
number of fitting points improves the performance of the
models.

IV. DATA

The data used in this study were provided for 20 wind farms
located in Denmark. All wind farms are owned and operated
by the same power company. The respective locations of these
wind farms are shown in Fig. 2. For each wind farm, the
following information is available:

• Wind power measurements at a temporal resolution of
15 minutes. They are normalized by the respective nom-
inal capacitiesPn of the various wind farms;

• Point forecasts of wind power generation, with lead
times from 0 to 48 hours, and temporal resolution of 15
minutes. These predictions were generated with the Wind
Power Prediction Tool (WPPT) [24], which is one of the
state-of-the-art prediction models for the short-term wind
power forecasting as discussed in Ref. [5];

• Meteorological forecasts of wind speed and wind direc-
tion at 10 meters above ground level, with lead times from

1 to 48 hours, and temporal resolution of 1 hour. These
forecasts were generated by the HIRLAM model operated
by the Danish Meteorological Institute (DMI) [40].

The data covers a period from May 1, 2008 to December 31,
2009. A first part of the data from May 1, 2008 to December
31, 2008 was used as a burn-in period in order to allow time-
adaptive parameters not to be influenced anymore by their
initial values. Forecast evaluation was carried out over the re-
mainder of the dataset, from January 1, 2009 to December 31,
2009. Due to the large number of missing values, the effective
evaluation period was eventually consisting of approximately
8.5 months (more than 25.000 forecast series for each of the
lead times considered).

The Nysted wind farm was chosen as the target wind farm
in this study. Nysted is located offshore on the Rødsand
sand bank, near Lolland, Denmark, and is the southernmost
of all wind farms shown in Fig. 2. There are two main
reasons behind this choice. Firstly, Nysted was the largestwind
farm in Eastern Denmark until 2010, with a rated capacity
of 165MW, and therefore was one of the main contributors
to the aggregated amplitude of wind power fluctuations in
that region. It also accounted for about 36% of the installed
capacity owned by the company operating it. And secondly,
Nysted has an appealing location with many wind farms
located “upwind” in view of the prevalence of westerly flows
over Denmark [41]. Indeed, improvements in forecast accuracy
resulting from the use of off-site information are expectedto
be larger for wind farms located “downwind”, as shown by
Ref. [27] for instance.
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Fig. 2. Map of the 20 wind farms included in the analysis. The Nysted wind
farm is marked as number 10 and with a red square. Information from the wind
farms with blue triangles contributed to improve the predictability of wind
power generation at Nysted. Information from the wind farms with green bullet
points was found not to improve the predictability of wind power generation
at Nysted. The size of the points is proportional to the ratedcapacity of the
wind farms, on a logarithmic scale.

Out of the 19 nearby wind farms, only 8 wind farms (num-
ber 3, 6, 11, 13, 14, 16, 18 and 20) were used as explanatory
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variables. The selection was performed empirically, basedon
the stepwise selection.

In Ref. [28] it was found that correlations in wind power
forecast errors between two wind farms were very small for
distances larger than 50 km, over the Western Denmark area.
Our findings are consistent with these results since most wind
farms that contribute to improve wind power predictability
at Nysted are located within such range (see Fig. 2). More
surprisingly, despite the large distances separating Nysted from
wind farms 18 and 20 (approximately 265 km and 176 km,
respectively), integrating information from these last two wind
farms also led to substantial gains in forecast accuracy. Both
wind farms 18 and 20 are located out in the open sea as
Nysted, while the remaining wind farms in this analysis are
located onshore or near-shore. This difference with the results
in Ref. [28] could be explained by a higher spatial persistence
and homogeneity of wind field dynamics over waters than
over lands, where the terrain roughness is known to be a very
influential factor.

V. EMPIRICAL RESULTS

A. Model notation

The following notations are used for the model names:

• CN:CP/CP-ARCH refers to CN predictive densities with
µ given by the spatio-temporal point forecasts (7) andσ2

estimated using the CP-ARCH model (9);
• CN:CP/CP-ARCHX refers to CN predictive densities

with µ given by the spatio-temporal point forecasts (7)
andσ2 estimated using the CP-ARCHX model (12);

• WPPT/QR stands for the non-parametric predictive den-
sities based on the time-adaptive quantile regression (QR)
(19). Local forecasts (WPPT) are used as input;

• CP/QR stands for the non-parametric predictive densities
based on the time-adaptive quantile regression (QR) (19).
Spatio-temporal forecasts given by (7) are used as input;

• CP/QR-X stands for non-parametric predictive densities
with additional consideration of the spatio-temporal ef-
fects in the uncertainty modelling step as in (20). Spatio-
temporal forecasts given by (7) are used as input;

B. Computational details

The parameters for the parametric densities were updated
every 15 min. A single update step took less than a second of
computing time. The quantile regression models were updated
daily. A single update step took approximately 3 seconds when
evaluating 20 different quantile models. The computations
were performed on a laptop, having a processor Intel i 7-
2620M CPU 2.70 GHz and the installed RAM of 8 GB

C. Overall evaluation

The evaluation and comparison of probabilistic forecasting
approaches follows the guidelines, scores and diagnostic tools
described in Ref. [42]. The lead score is the Continuous
Ranked Probability Score (CRPS), which is a proper score
for density forecasts. This score is negatively oriented: the
smaller it is, the better the forecasts are.

Adaptive quantile regression with original WPPT point
forecasts as input (WPPT/QR) is considered as the base
benchmark. Other predictive densities are compared to the
benchmark approach and the relative improvements in CRPS
(skill scores) are calculated. The summary of the results is
given in Fig. 3.
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Fig. 3. Evaluation of predictive densities in terms of relative CRPS
improvement, as a function of lead time. Point labels indicate the CRPS values
[% of nominal capacity] for the benchmark model WPPT/QR.

The models have similar levels of CRPS improvement for
all the lead times considered. This was also confirmed by using
the Diebold-Mariano test statisticstn [43], which may be more
generally used to test for equal performance of probabilistic
forecasts.tn is asymptotically standard Normal under the null
hypothesis of vanishing score differentials. This hints atthe
fact that forecast improvements brought in by the proposed
methodologies mainly come from the space-time correction of
the point forecasts defining the conditional mean of predictive
densities. Further consideration of space-time dynamics in the
modelling of uncertainty around the mean does not seem
to bring additional benefit. This is confirmed by the fact
that CP/QRX does not outperform CP/QR, and similarly
CN:CP/CP-ARCHX does not outperform CN:CP/CP-ARCH.

Consequently, we further focus on the evaluation of the
CP/QR and CN:CP/CP-ARCH predictive densities, since com-
prising the best performing non-parametric and parametric
probabilistic forecasts, respectively. Both types of probabilis-
tic forecasts outperform the benchmark approach given by
WPPT/QR (see Fig. 3). The statistical significance of those
improvements has been verified using the Diebold-Mariano
test statisticstn. The corresponding results are given in Table I.

The non-parametric densities accounting for the space-time
dynamics (CP/QR) show statistically significant improvements
for lead time up to 8 hours ahead. Such an observation is
consistent with the spatio-temporal scales for the inertiaof
weather systems passing over Denmark. The improvements for
the parametric alternative based on CN predictive densities can
be considered statistically significant up to 5 hours ahead.At
the same time, it is not possible to reject the null hypothesis
such that CP/QR and CN:CP/CP-ARCH perform similarly for
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TABLE I
TESTING FOR EQUAL FORECAST PERFORMANCE WITH THE

DIEBOLD-MARIANO TEST STATISTICStn . p IS THAT THE PROBABILITY

THAT THE CORRESPONDING VALUE OFtn IS ACHIEVED WITH THE NULL

HYPOTHESIS BEING TRUE. ‘*’ SYMBOLS MARK STATISTICALLY

SIGNIFICANT DIFFERENCES INCRPS.

Horizon 15 min 1 h 4 h 5 h 6 h 7 h 8 h
CP/QR vs tn -9.29 -12.32 -5.63 -3.43 -2.34 -2.60 -3.19
WPPT/QR p 0.00* 0.00* 0.00* 0.00* 0.02* 0.01* 0.00*

CN:CP/CP-ARCH tn -6.06 -10.45 -3.22 -2.28 -1.34 -1.07 -0.65
vs WPPT/QR p 0.00* 0.00* 0.00* 0.02* 0.18 0.28 0.51

CP/QR vs tn -1.60 -0.90 -0.41 -0.25 -0.00 -0.39 -1.08
CN:CP/CP-ARCH p 0.11 0.37 0.68 0.80 1.00 0.70 0.28

all lead times up to 8 hours ahead. From the 5-hour lead time,
the benefits from space-time considerations start fading away.
Mainly, this is caused by the fact that the benchmark approach
is chosen non-parametric. Thus, CP/QR and WPPT/QR are
of the same model family, while CN:CP/CP-ARCH differs
from WPPT/QR in its nature, since being parametric. This
results in higher variance of score differentials once comparing
CN:CP/CP-ARCH and WPPT/QR, and subsequently lowertn
values.

Another interesting point to mention is that the peak in the
improvements is observed for the prediction horizons of 1 hour
ahead. This is in line with the layout of the considered wind
farms. From the map in Fig. 2 one can see that almost all
the considered reference sites are within 50 km from Nysted.
According to [28], an average speed of error propagation
over Denmark is 30-50 km/h (depending on the prevailing
wind direction). This result is consistent with the fact that the
peak of cross-correlations between Nysted and almost all the
reference sites comes at lags of approximately 1 hour ahead
and correspondingly results in the highest improvements.

D. Conditional evaluation

Emphasis is then placed on the situation-dependent perfor-
mance of probabilistic forecasts, through a conditional forecast
evaluation exercise. Results are shown and discussed for 1-
hour ahead forecasts only, since these are qualitatively similar
for the other lead times from 15 min to 8 hours ahead.

Firstly, since predictive densities evolve with the level of
expected power generation, the overall skill of these densities
is assessed based on the CRPS score, as a function of the
point forecast values. The corresponding results are depicted
in Fig. 4.

The CRPS for all the predictive densities considered in-
creases for expected power levels in the medium range.
This can be explained by the fact that higher uncertainties
in the wind power generation are faced in periods with
medium power generation, i.e., in the steep slope part of the
power curve. The performances of the parametric and the
non-parametric densities are similar in this predicted power
range. Some differences can be noted, however, close to
the generation bounds. Closer to the generation bounds, the
censoring effect in the parametric densities is more present
(see Figure 1), hence leading to a higher bias in parameter
estimates. For the particular case of the the upper bound,
that is, when expected power is close to nominal capacity,
it is also that power down-regulation actions were not always
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Fig. 4. CRPS conditional to the expected wind power generation (given by
point forecasts) for the 1-hour lead time, with WPPT/QR considered as the
benchmark. Power levels are given by 20 equally populated classes deduced
from the distribution of point forecasts.

flagged and discarded from the dataset, as much as they should
be, then affecting the parameter estimation and evaluationof
the forecasts. Better results are therefore expected to be seen
in case down-regulation actions are better dealt with when
gathering wind power generation datasets in the future.

Similar differences in conditional forecast skill can be
observed when assessing the skill of predictive densities con-
ditional to actual power measurements, see Fig. 5. Parametric
densities perform better during periods when observed power
is not close to the generation bounds. In contrast during peri-
ods with low and high power generation, the non-parametric
densities show superior results. This suggests that CN:CP/CP-
ARCH forecasts have a better ability to discriminate among
the observations when the power is in its medium range and
a worse ability to discriminate as the power generation gets
closer to its natural bounds.
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Fig. 5. CRPS conditional to the observed power generation level for the
1-hour lead time, with WPPT/QR being the benchmark. Power levels are
given by 20 equally populated classes deduced from the distribution of power
measurements.

As an illustration of the type of probabilistic forecasts finally
obtained with the various approaches proposed here, Figure6
gives the example of predictive densities issued by the CP/QR
model, issued on the 24th of November, 2009, at 17:15, their
shape evolving with the level of power and with the lead time.
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VI. CONCLUSIONS

Focus was given to probabilistic wind power forecasting
with consideration of geographically distributed information,
hence permitting to capture additional space-time dynamics.
The proposed methodology can be used for issuing density
forecasts for a single site of interest, while using information
from the other wind farms as explanatory variables.

The methodology is based on discrete formulation of the
problem as opposed to proposing a full space-time covariance
model which normally would call for a larger amount of
reference sites spread throughout the territory. The approach
chosen here is based on proposing ways to best summarize a
snapshot of forecast errors observed at timet when issuing
probabilistic forecasts for timet+ k.

Two ways of constructing predictive densities were de-
scribed and analysed. The parametric approach relied on CN
distributions while the non-parametric one employed quantile
regression techniques. All estimation methods were introduced
in a time-adaptive framework in order to reduce computational
costs, while allowing for long-term variations in the process
dynamics, as induced by meteorological systems for instance.

The empirical results obtained on the test case of a port-
folio of wind farms in Denmark show that accounting for
spatio-temporal effects improves the quality of probabilistic
forecasts for a range of lead times, here up to 8 hours. It was
shown to be sufficient to focus on correcting the conditional
expectation of wind power generation. Additional inclusion
of spatio-temporal effects into the uncertainty modellingstep
did not significantly further improve the skill of the predictive
densities. None of the proposed approaches outperformed the
benchmark for lead times further than 8 hours ahead, in line
with the scales of motion of weather systems over a small
region such as that covered by Denmark. Thus, likely, for a
different test case, depending on the geographical layout of the
considered wind farms and some meteorological particularities
of the area, this maximum lead time would differ.

The performance of parametric and non-parametric ap-
proaches were also compared, uncovering that they both
performed similar for lead times up to 5 hours ahead, and
with an advantage for non-parametric predictive densitiesfor
further lead times. Based on overall skill, the highest-quality

forecasts were obtained by adaptive quantile regression with
spatially corrected point predictions, with CRPS improvements
between 1.5% to 4.6% depending upon the lead time. Further
research on both parametric and non-parametric approaches
to wind power probabilistic forecasting may challenge the
comparison carried out here.
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