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Abstract—Stochastic geometry models are used to study wire-
less networks, particularly cellular phone networks, but most of
the research focuses on the typical user, often ignoring atypical
events, which can be highly disruptive and of interest to network
operators. We examine atypical events when an unexpected
large proportion of users are disconnected or connected by
proposing a hybrid approach based on ray launching simulation
and point process theory. This work is motivated by recent
results [1] using large deviations theory applied to the signal-to-
interference ratio. This theory provides a tool for the stochastic
analysis of atypical but disruptive events, particularly when the
density of transmitters is high. For a section of a European city,
we introduce a new stochastic model of a single network cell
that uses ray launching data generated with the open source
RaLaNS package, giving deterministic path loss values. We collect
statistics on the fraction of (dis)connected users in the uplink, and
observe that the probability of an unexpected large proportion of
disconnected users decreases exponentially when the transmitter
density increases. This observation implies that denser networks
become more stable in the sense that the probability of the
fraction of (dis)connected users deviating from its mean, is
exponentially small. We also empirically obtain and illustrate
the density of users for network configurations in the disruptive
event, which highlights the fact that such bottleneck behaviour
not only stems from too many users at the cell boundary, but also
from the near-far effect of many users in the immediate vicinity
of the base station. We discuss the implications of these findings
and outline possible future research directions.

Index Terms—Atypical network configurations, large devia-
tions, ray launching

I. INTRODUCTION

To better understand wireless networks, researchers have

successfully developed mathematical models of networks

based on point processes, where the main performance quan-

tity is the signal-to-interference ratio (SIR). The network

models are routinely based on the Poisson point process, which

is the most tractable spatial point process [2, 3], resulting often

in closed-form expressions [4, 5]. Furthermore, to any single

observer in the network, the network will appear more Poisson

in terms of how received signal power values behave randomly,

provided there are sufficient random propagation effects such

as shadowing multi-path fading [6, 7], even if there is some

degree of correlation [8].
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Stochastic network models usually share two general char-

acteristics. First, the models largely reflect the experience of

a typical user in the network, made formal by Palm calculus,

where the focus is often on deriving the probability distribution

of the SIR of the typical user. Second, the signal propagation

model is a deterministic distance-dependent path loss function

coupled with independent and identically distributed (iid)

random variables, which represent propagation effects such

as shadowing or fading.

We depart from these standard network model assumptions

by offering a new approach, where its novelty stems from

tackling the SIR analysis with two methods, one stochastic

and one deterministic, coupled together. Our aim is to study

atypical or rare events of the network in terms of SIR values.

More specifically, we will examine rare events of the single-

cell random network model, with the emphasis on analyzing

the fraction of users that are (or not) connected to the central

base station. The analysis of such unlikely but disruptive

events is often difficult because simulations are expensive for

rare events. This work should help network designers not

only to quantify the probability of such bottleneck events,

but also to determine and efficiently simulate typical user

configurations that lead to the disruption behaviour.

Although we achieve our results through stochastic simula-

tions, we are motivated and guided by recent SIR-based math-

ematical results by Hirsch, Jahnel, Keeler and Patterson [1]

using large deviations theory, which is a powerful probabilistic

tool for studying atypical events in random systems. More

precisely, in our case, this theory establishes an asymptotic

rate of exponential convergence to zero for the probability of

certain atypical events in the limit of high-user densities, which

is an increasingly relevant setting, particularly given the rise of

so-called ultra-dense networks [9]. The use of large deviations

theory to study random systems in physics is standard [10, 11],

but a recent handful of papers [12–16] have also used it to

study interference and SIR in wireless networks.

In addition to studying atypical events, the other key aspect

of this work is to replace the standard propagation model,

consisting of a path loss function and iid random variables,

with path loss values estimated by using ray launching simu-

lations and building data [17]. The ray launching is performed

with the open source package RaLaNS [18] and building data

is gathered from publicly available city models [19]. Our

new hybrid approach offers a way to combine stochastic and

deterministic simulation techniques, resulting in more realistic

models and simulations.

http://arxiv.org/abs/1712.07458v2
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Fig. 1. A heat map of path loss values (in decibels) around Hausvogteiplatz in
Berlin, estimated using a ray launching method from the open source package
RaLaNS [18]. The rectangular region has dimensions 311m by 274m. The large
∗ symbol denotes the simulated signal source, intrepreted here as a base station.
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Fig. 2. A Poisson point process with density λ = 0.01 representing users
scattered around Hausvogteiplatz in Berlin, away from buildings.

Overall, this paper has two principal aims. First, we wish to

demonstrate the hybrid approach for a simple network model,

without introducing additional model complexities such as

power control or additional network relays. Second, we wish

to show the insight gained from recent results based on

large deviations theory. We support these results by collecting

statistics on the fraction of (dis)connected users. Important

empirical observations include that the probability of unlikely

events vanishes exponentially fast as the transmitter density

increases and users clustered around a base station decrease

the overall connectivity (in the uplink) in a network cell.

II. NETWORK MODEL

We consider a single base station positioned at the center o
of some region of a city represented by a bounded and closed

set W ⊂ R
2. We assume user locations are distributed ac-

cording to a Poisson point process Xλ with intensity measure

λµ, where λ > 0 is a scaling parameter. In the homogeneous

setting, µ is simply the two-dimensional Lebesgue measure

(or area) and λ represents the expected number of users per

unit area.

For our single-cell network model, we focus only on the

uplink scenario without power control, where messages are

directed towards the base station. For a single user located at

Xi ∈ Xλ, its SIR in relation to the target base station at o is

given by

SIR′(Xi) :=
ℓ(|Xi|)∑

Xk∈Xλ\{Xi}
ℓ(|Xk|)

, (1)

where | · | denotes the Euclidean distance and ℓ is the path

loss, which we assume to be bounded in order for the large

deviations results to hold [1]. The path loss is often assumed

to be a function of the form ℓα(s) = min{1, s−α}, where

α > 0 is the path loss exponent. This framework also works

if definition (1) is generalized to include random fading or

shadowing variables and noise terms; see the recent thesis by

Tóbiás [20]. In our case, ℓ is given by data provided by the

aforementioned ray tracing simulations, which we detail in

Section III-B.

A direct connection from Xi to the base station can be

established successfully if SIR′(Xi) ≥ τλ for a connectivity

parameter τλ > 0, known as the SIR threshold. When working

in the high-density regime, that is, as λ → ∞, one can safely

ignore finite contributions such as the signal term ℓ(|Xi|) or

finite noise in the denominator of equation (1), and work

instead with the quantity

SIR(Xi) :=
ℓ(|Xi|)∑

Xk∈Xλ ℓ(|Xk|)
. (2)

This is sometimes called the signal-to-total-interference ratio,

but we continue to refer to it as the SIR. Note that, in this

setting, the user Xi is unable to connect to the base station if

ℓ(|Xi|) < τλ
∑

Xk∈Xλ

ℓ(|Xk|) = λτλLλ(ℓ(| · |)),

where

Lλ := λ−1
∑

Xk∈Xλ

δXk
, (3)

denotes the empirical measure of the Poisson point process

Xλ. Here, for sets B ⊂ R
2, the Dirac measure δx(B) = 1 if

and only if x ∈ B.

Empirical measures are especially amenable for large devi-

ations analysis, as we will outline in Section III-A. In the limit

of high densities, with probability one, Lλ converges (weakly)

to µ. In particular, as λ → ∞, the SIR values SIR(Xi)
tend to zero if τλ stays fixed, leading to a trivial limiting

connectivity model. Hence, in order to guarantee comparability

under the high-density limit, we assume the SIR threshold to

be proportional to λ by setting λτλ = τ .

Our main quantity of interest is the proportion of discon-

nected users, namely

Lλ[SIR] := λ−1
∑

Xi∈Xλ

1{SIR(Xi) < τ}. (4)

Put simply, the larger the random scalar quantity Lλ[SIR], the

larger the fraction of disconnected users in the network. It is

the distribution of Lλ[SIR] that we want to study in the limit

of many users.
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III. TECHNIQUES

A. Large deviations theory

Large deviations theory aims to determine the asymptotic

exponential rate of decay of the probabilities of unlikely events

in some limiting regime. The classic introduction to the theory

starts with a collection of iid random variables T1, . . . , Tn and

their empirical (or sample) mean

Sn :=
1

n

n∑
i=1

Ti . (5)

If Tn are Gaussian with mean m and standard deviation σ,

then the empirical mean’s probability density p(s) behaves

asymptotically as

p(s) = e−nJ(s)+o(n), (6)

where

J(s) = (s−m)2/(2σ2), s ∈ R ,

is called the rate function. For large n, the density p con-

centrates around the minimizer of J(s), which in this case

is the mean m. Away from the minimizer, the probability

density converges to zero exponentially fast with rate J . This

observation can be captured in the following ‘in a nutshell’

version of a large deviation principle

lim
n→∞

1

n
log P(Sn ≈ s) = −J(s). (7)

As another example, consider iid random variables dis-

tributed according to an exponential distribution Em with

probability density pm(s) = m−1e−s/m. The probability

density of their empirical mean has the same exponential form

(6), and the rate function can be expressed via the relative

entropy (or Kullback-Leibler divergence), which we denote by

h. More precisely, the rate function J is given by the relative

entropy of an exponential distribution with mean s > 0 with

respect to the initial (or a priori) distribution Em, namely

J(s) = h(Es|Em) =

∫
ps(t) log

ps(t)

pm(t)
dt . (8)

In particular, for exponential distributions,

J(s) = s/m− 1− log(s/m), (9)

which again attains its minimum at s = m. The appearance

of relative entropies in the rate functions is a universal feature

of a large class of stochastic processes, and it will also appear

in our results below.

The above types of large deviations results that focus on em-

pirical means are called level-1 large deviations. In so-called

level-2 large deviations, the empirical mean is replaced by

another class of random variable, empirical measure, defined

as

Ln :=
1

n

n∑
i=1

δTi
. (10)

Essentially, the random quantity Ln(B) represents the random

proportion of variables of the stochastic process T1, . . . , Tn

taking values in the set B.

Empirical measures contain far more information than em-

pirical means. For example, Sn is just the expectation of

the random measure Ln. It is the principal goal of large

deviations theory to derive limit statements of the form (7)

for a great variety of functionals of stochastic processes; see

also the standard textbook [21] or, for a lighter introduction,

the article [11].

Despite the theory of large deviations being mathematically

technical at times, it proves useful in giving insight into

the properties of random systems deviating away from their

expected or typical behaviour. In our case, where we replace

n with the density λ, it has been recently proven in [1,

Corollary 1.2.] that the following large deviations result for

the proportion of connectable users holds,

lim
λ→∞

1

λ
logP(Lλ[SIR] > b) = − inf

ν: ν[SIR]>b
h(ν|µ) . (11)

Here, h denotes the relative entropy of measures ν and µ on

W , with a definition analogous to expression (8). The quantity

ν[SIR] is defined in the same way as Lλ[SIR] (see equation

(4)), but where the empirical measure Lλ (see equation (3))

is replaced (twice) by the measure ν; see also [1, Section 1]

for details.

In the large deviations result (11), if b is sufficiently large,

so that the event is unlikely in the sense that b > µ[SIR], the

rate function infν: ν[SIR]>b h(ν|µ) is strictly positive. This, in

particular, implies exponential decay of the probability for the

unlikely event; see [1, Corollary 1.3.].

Looking beyond the mathematical details, the intuition of

the large deviations result (11) is that events that are functions

of the SIR in the uplink, such as the number of (dis)connected

users, are highly unlikely to deviate away from their means

in the high-density regime. In other words, the probability of

such events happening decreases exponentially as the number

of users increases. From an operator’s perspective, this implies

that, if the networks can handle high-density situations then,

in such regimes, atypical events happen very rarely and the

system behaves highly predictable. Let us mention that, in

this work we focus on the proportion of disconnected users as

defined in (4), but also other functions of SIR can be studied

using the same approach.

Returning to the large deviations result (11), further investi-

gation of the minimizing measure ν can provide deeper insight

into the most likely behaviour of the system conditioned on

the unlikely event, via Gibbs conditioning. Additionally, it can

be used to derive importance sampling schemes, which allows

one to simulate the unlikely events more efficiently, through

a change of measure; see for example [22, 23]. This is partic-

ularly helpful because the unlikely events are (exponentially)

rare and therefore expensive to simulate. However, calculating

or estimating the rate function is a deterministic optimization

problem, which is often challenging, so this approach may

only be beneficial for very high user densities. This is one of

the principal reasons why we propose and use a novel hybrid

simulation approach.
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B. Ray launching simulations

Ray launching is a deterministic simulation method that uses

geographical and material information of buildings to estimate

how electromagnetic signals propagate in environments such

as cities. The method is based on shooting rays from a

transmitter location, which are then reflected, diffracted, and

scattered through a virtual environment. The physical process

of electromagnetic wave propagation is abstracted through

simplified mathematical equations. Naturally, the results are

always an approximation to reality, where the quality of the

approximation depends on the computational effort.

For our ray launching simulations, we considered a rectan-

gular region or window W (with dimensions 311m by 274m)

surrounding the small plaza Hausvogteiplatz, located in the

heart of the German city Berlin. The input data is publicly

available building data from the Berlin three-dimensional

city model [19]. This data collection provides a CityGML

description, which is an open standard format for building

models, at a level of detail called LoD2. This level of detail is

fine enough to see a simplified three dimensional outer shell

of every building, as well as simplified roof shapes. We note

that the building height information is also contained in the

model, and it can be considered in subsequent work.

To select a realistic scenario, while at the same time keeping

the computational effort at a reasonable level, we took a

rectangular sample window of Hausvogteiplatz, as described

above, from the total data set. We then manually performed

minor corrections by eliminating redundant points in the

polygonal description of the building surfaces, which also

ensured that the polygons are planar, producing compatible

input data. The resulting corrected CityGML data is part of the

supplementary data collection, which is available online [17].

To perform the ray tracing, we used a package called

RaLaNS [18], which consists of two main components. The

first component is a ray launcher that uses CityGML descrip-

tions of buildings, as well as some additional information

describing the number and location of wave emitters, to

compute a discrete map of signal strengths. This map is a two-

dimensional matrix representing the relative received signal

power at a certain point at a fixed height. If a simulation is

done for multiple heights or there are more than one source,

the result is a collection of matrices. The output data of this

step are path loss values given as a readable text file, which

can then be further processed. A visualization, namely a heat

map, of a typical set of such path loss data is illustrated in

Figure 1.

For completeness, we sketch the second component of

RaLaNS, but the results presented here are based on only the

ray launcher component of RaLaNS. The second component

is a path loss model that plugs into the network simulation

package ns-3 [24]. It provides path loss models for a ns-3

simulation by reading the results of its ray launcher simulation

whenever the ns-3 simulation asks for a path loss at a given

position. While the ray launcher part is computationally quite

expensive, downstream ns-3 network simulations still run very

efficiently. Different user mobility models or even traffic relay

strategies are also possible.

Returning to the ray launching simulation, we assumed that

the physical path loss of electromagnetic waves is bidirec-

tional, so, in a given environment, the relative signal loss from

one point to another is the same in the opposite direction. This

phenomenon is caused by physical laws and is well reflected

by ray launching simulation results as long as the spatial

resolution, that is, the number of rays, is sufficiently high. In

general, the path loss values are estimated by a ray starting at

the base station, which is then measured at a user location. We

assumed that the same path loss applies for signals originating

from the user location.

C. Stochastic simulations

For the stochastic simulations, we divided the rectangular

region W into tiles wi,j of fixed width ∆x and height ∆y,

so the tiles form a disjoint partition of W with ∪i,jwi,j =
W . Using the corrected building data, we wrote a script to

indicate where buildings exist and do not [17]. Based on the

ray launching data, we set ∆x = ∆y = 1, and encoded the

discrete building data with a discrete intensity measure

µd(wi,j) = ∆x∆y1{wi,j contains no buildings} , (12)

which replaces µ as the intensity measures of the Poisson

point process of users; see Section II. This means that any

user in the same tile wi,j will have the same path loss value,

but the approximation error is negligible. Now simulating

the inhomogeneous Poisson point process on W amounts to

simulating an independent Poisson random variable for each

tile wi,j with parameter λµd(wi,j). A typical realization is

illustrated in Figure 2.

In our simulations, we want to study the effects of varying

the user density λ. As outlined in Section II, we work with the

rescaled threshold τ = λτλ, which means that we adjust the

SIR threshold τλ linearly in the density. The calibration of τ
is done in such a way that we can expect a sizeable proportion

of connected and disconnected users. More precisely, we set τ
to be the average path loss divided by the expected path loss

under the measure µd, which is simply the inverse of the total

area of the non-building regions, that is, τ = µd(W )−1.

To study the probability P(Lλ[SIR] > b) via simulations, we

also need to make a proper choice for b. For a fixed value of

λ, we set b = E(Lλ[SIR])(1 + ǫ), where ǫ > 0 is sufficiently

large in order to study the deviations away from the mean,

but not too large, since otherwise the rare event becomes too

difficult to observe. For E(Lλ[SIR]), we just estimate it using

simulations with a fixed value of λ.

IV. RESULTS

The dimensions of our sample window W means its area

is approximately 85000km2, with roughly a third covered by

buildings, so even λ = 1 results in a very large number of

users (more than 50000). We were still able to perform all

the stochastic simulations on a standard desktop machine in

reasonably fast times. The number of simulations typically

ranged from 1000 − 10000, taking seconds or minutes. The

notable exception was the heat map of bad configurations



5

illustrated in Figure 7, which took a couple of hours due to

the large number of simulations. We usually set τ = −50 dB,

which approximately corresponds to µd(W )−1, that is, the

inverse of the total area of non-building regions our sample

window expressed in decibels.

A. Large deviations

As suggested by the analytical results (11), as we increase

λ, the atypical events Lλ[SIR] > b become less and less likely,

hence we need more and more simulations to properly estimate

P(Lλ[SIR] > b). The exponential nature of large deviations

implies that a good heuristic for the number of simulations is

to use a number proportional to cedλ, for constant c > 0 and

d > 0. For our results, we generally used the quantity 1000eλ

rounded to the nearest whole number. Fortunately, we only

needed to simulate our network model for density values λ ≤
1, which we found were sufficiently large for large deviation

results to be observed. This is arguably due to the relatively

large sample window W .

1) The rate function: We estimated a value of the rate func-

tion by simulating our network model, varying the user density

λ, and then collecting statistics on the event Lλ[SIR] > b. This

gave us an estimate for P(Lλ[SIR] > b), which (after logging)

we fitted to a linear model: ŷ1 = p1λ + p2. In this linear

model −p1 corresponds to the estimate for a value of the rate

function. In Figure 3, we see that the linear model fits very

nicely. Only for small values of λ the simulation results do not

fit to the straight line, which suggests that the rate function

does not yet dominate in the probability of the deviations. The

fitted parameters of the linear models gave us an estimate for

the rate function as illustrated in Figure 4, where we see it

approaches the value −p1.

Again, if we increase b (by increasing ǫ), it becomes more

difficult to estimate P(Lλ[SIR] > b). We see in Figure 5

that the quantity can be estimated for small λ, but larger λ
would require more and more simulations. The corresponding

estimate for a value of the rate function is given in Figure 6.

2) Bad configurations: To gain some intuition into the

structure of bottleneck configurations, we took an average

of user configurations for which a large proportion of users

is disconnected. More precisely, we ran many simulations,

and then examined the realizations for which Lλ[SIR] > b.
Using these atypical realizations, we counted the number

of users (that is, Poisson points of Xλ) that fall in each

tile wi ⊂ W . For each tile wi,j , we then averaged the

corresponding ensemble of numbers in order to obtain an

estimate for the mean user density for atypical events of a

large fraction of disconnected users.

To perform this step, we reduced the user density down

to λ = 2−12 and increased ǫ. This corresponds to observing

larger deviations, which appear less frequently, but, due to the

small λ, we can balance this by performing more simulations.

The results are illustrated as a heat map in Figure 7, which

was produced with roughly one million simulations, taking

approximately one to two hours on a standard machine.

Let us explain the intuition behind the heat map in Figure 7.

In atypical events, the user density increases in certain areas,
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Fig. 3. Simulation estimate of log P(Lλ[SIR] > b) with τ = −50 dB and
ǫ = 0.01, fitted to a linear model ŷ1 = p1λ + p2, where p1 = −2.138 and
p2 = −1.014. The value of −p1 is an estimate for the rate function.
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Fig. 4. Simulation estimate of − log P(Lλ[SIR] > b)/λ with τ = −50 dB
and ǫ = 0.01, fitted to a model ŷ2 = p1 + p2/λ, where p1 = −2.138 and
p2 = −1.014.
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Fig. 5. Simulation estimate of log P(Lλ[SIR] > b) with τ = −50 dB and
ǫ = 0.05, fitted to a linear model ŷ1 = p1λ + p2, where p1 = −46.65 and
p2 = −1.077. The value of −p1 is an estimate for the rate function.
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Fig. 6. Simulation estimate of − log P(Lλ[SIR] > b)/λ with τ = −50 dB and
ǫ = 0.05, fitted to a model ŷ2 = −p1−p2/λ,p1 = −46.65 and p2 = −1.077.
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Fig. 7. Heat map of bad user configurations with simulation parameters ǫ =
0.3 and λ = 2−12 (or λ ≈ 2.44× 10−4), and τ = −50 (or τλ = −13.88)
dB. The average user density is estimated for the atypical event of a large
fraction of disconnected users. The regions of higher values show where users
tend to be located during bad configurations. Naturally, these include regions
far or hidden from the target base station. But there is also a region around
the base station, due to the so-called near-far effect, where too many users
have decreased the SIR values of the remaining network users.

showing two different effects. First, more users are located in

areas with strong path loss, which are essentially the regions

with no line-of-sight connectivity or far from the base station,

which is reflected in Figures 7 when compared to the path

loss values in Figure 1. Second, there is also an increase of

users close to the base station, which is due to the near-far

effect (referred to as the screening effect in [1]), where an

accumulation of users increases the interference at the base

station. Due to the increased interference, users in certain

mid-range areas that would be typically connected to the base

station now become disconnected. Figure 7 also reveals that,

in more abstract terms, it is entropically more favourable to

increase the user density in the vicinity of the base station

than to place more disconnected users in a much larger area

away from the base station. This explains the higher density

values around the base station.

Let us further remark that there is also no entropic gain for

our process to decrease the density of users in the disruptive

event. Indeed, in that event, simulations only show an increase

of users in certain areas. Consequently, ignoring the dark

blue (building) regions in Figure 7, the low-value regions

correspond to the original λ value.

B. Least and most connected configurations

In addition to large deviations in our network, we observe

how the least and most connected configurations behave. This

is done by first performing multiple simulations, and then

by examining the configurations with the least and most

number of connected users. We observed a lot of variation

(or, statistically speaking, variance) in our results for low

user density λ. For example, in Figures 8 and 9, we see

that in the most and least connected configurations (from 10

000 simulations), the fraction of (dis)connected users differs

significantly, namely, more than 40%, where λ = 0.001. But

then for λ = 0.01, this difference has reduced in Figures 10

and 11. In other words, the difference between the least and
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Fig. 8. The least connected configuration (7.02% connected) of a Poisson point
process with density λ = 0.001 and τ = −60 (or τλ = −30) dB.
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Fig. 9. The most connected configuration (50.00% connected) of a Poisson
point process with density λ = 0.001 and τ = −60 (or τλ = −30) dB.
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Fig. 10. The least connected configuration (17.99% connected) of a Poisson
point process with density λ = 0.01 and τ = −60 (or τλ = −40) dB.
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Fig. 11. The most connected configuration (32.06% connected) of a Poisson
point process with density λ = 0.01 and τ = −60 (or τλ = −40) dB.

most connected configuration decreases as the average number

of users per area increases.

V. DISCUSSION AND FUTURE DIRECTIONS

In our numerical results, we have seen that the probability

of unlikely events, as well as the difference between the

most and least connected configuration, decreases as the user



7

density increases. In terms of connectivity, this observation

implies that in dense random networks all configurations

appear stochastically (or statistically) the similar.

The diminishing probability of unlikely events is (poten-

tially) good news in terms of planning for unlikely or rare

events, because the probability of such events will vanish in the

high-density setting. But of course, dense user configurations

will still put strain on networks, even if certain unlikely

configurations do not occur. In other words, if a particular

network can survive the pressure induced from one high-

density configuration, then with high probability, it can survive

all other high-density configurations, as stochastically they all

behave very similar, with the atypical events almost never

occurring. Of course, if a network can withstand any high-

density configuration is another question.

We used simulations for the event of an atypical number of

disconnected users to build up a portrait of the user density for

such configurations. We stress that the heat map in Figure 7

does not just reveal where users will experience bad coverage,

but also where users will cause bad coverage for the remaining

network users. The heat map reflects the natural intuition that

user-paths with strong path loss are less likely to be connected.

More interestingly, it also illustrates the near-far effect, where

having too many users clustered around the target base station

can be bad for overall network (cell) coverage. This highlights

the fact that users should not be allowed to be clustered around

base stations. Admittedly, this will not pose a great problem

for regular base stations located on isolated rooftops in cities,

but the observation is more important for smaller cells located

in regions where there are many users.

In terms of improving the network connectivity, it would

be interesting to see the effects of augmenting the network

with relays, where, if users cannot connect directly to the

base station, they can use an intermediate relay. In fact, a

large deviations framework of such a model has already been

developed in the paper [1] that served as the mathematical

motivation behind the current work. Using the approaches

outlined here, researchers can study the random behaviour of

relay-augmented networks.

The only source of randomness in our network model as

well as in the simulations is due to the Poisson point process of

users, and not the signals. Consequently, for all our results, the

random behaviour is due to the random number and location of

users, and not how the signals behave. One possible research

direction is incorporating additional layers of randomness,

such as fading variables, into the model, and observing the

effects. As previously remarked, recent results [20] show that

our model can be generalized to include random variables

representing propagation effects such as fading.

VI. CONCLUSION

Based on ray launching simulations and recent SIR results

using large deviations theory, we have developed a hybrid

model approach and studied the connectivity of users in a

single-cell scenario of a German city, with the focus being

on atypical and disruptive events of a large proportion of

users not being connected to the base station. This work

has demonstrated that large deviations theory can be used

to gain insight into stochastic network models, thus pointing

researchers in directions for further investigation.

For the average number of users in atypical events, we

produced a heat map reflecting bad user configurations in a

single cell. It highlights both where users experience bad cov-

erage and where users induce bad coverage for the remaining

users. More specifically, it illustrates the near-far effect when a

higher than average number of users surround the base station,

causing the interference to increase (in the uplink), then users

located farther away from the base stations tend to have lower

than otherwise expected SIR values.

A key observation is that in networks there is an interesting

trade-off in the high-density regime. From a deterministic

perspective, there is increased strain on the network, leading

to possible network breakdowns. From a random perspective,

however, the probability of random deviations away from the

mean decrease exponentially, meaning there is a vanishingly

small probability of atypical events occurring, resulting in

a type of stochastic stability in the high-density setting. In

summary, if a wireless network can be designed to withstand

the stress from one high-density configuration of users, then, in

all likelihood, such a network can withstand the stress from all

high-density configurations, as stochastically all high-density

configurations behave the same.
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