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ABSTRACT

The linear k− ε eddy viscosity model and modified versions of two existing nonlinear eddy vis-
cosity models are applied to single wind turbine wake simulations using a Reynolds Averaged
Navier-Stokes code. Results are compared with field wake measurements. The nonlinear mod-
els give better results compared to the linear model, however, high turbulence levels can produce
numerical instabilities.

1 INTRODUCTION
The energy losses in a wind farm due to interaction of wakes can often range between 10% to
20% [1]. Therefore, reliable and practical modeling of the influence of wind turbine wakes in
wind farms is necessary in order to estimate the wind farm annual energy production. Compu-
tational Fluid Dynamics (CFD) methods as Large Eddy Simulation (LES) or Reynolds Average
Navier-Stokes (RANS) can be employed to simulate wake effects. Results of LES has proven to
compare well with results of wake measurements [2] but the computational costs are still high.
RANS is roughly two orders of computational effort cheaper than LES, however, previous studies
have shown that the most widely used turbulence models in RANS, e.g. the linear k− ε eddy
viscosity model (EVM), fail to predict the wake deficit and the Reynolds-stresses in a wake [3].
The basis of a linear EVM is the eddy viscosity hypothesis of Boussinesq that linearly relates
the Reynolds-stresses to the symmetrical part of the velocity gradients (i.e. the strain rate tensor
Si j = 1/2(Ui, j+Uj,i)) [4]. As a result, the linear EVM cannot represent effects caused by the anti
symmetric part of the velocity gradients (i.e. the vorticity tensor Ωi j = 1/2(Ui, j−Uj,i)) and ef-
fects caused by products of the velocity gradients, e.g.: normal Reynolds-stress anisotropy, swirl
and stream line curvature. A turbulence model that can include all these effects is the nonlinear
eddy viscosity model (NLEVM) of Apsley and Leschziner [5], which is based on an extended
eddy viscosity hypothesis where nonlinear terms of products of Si j and Ωi j are present up to the
third order. The cubic NLEVM is used in this research with minor modifications such that the user
can control the (undisturbed) turbulence intensity. In addition to the cubic NLEVM of Apsley and
Leschziner, the quartic NLEVM of Taulbee [6] is investigated, which was previously studied by
Crespo et al. [7]. The background, definition and modifications of the cubic NLEVM and the
quartic NLEVM are given in Sec. 2. In Sec. 3 both NLEVMs are tested and compared with field
measurements of two single wind turbine wake cases.
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In this paper tensors are written with bold symbols and index notation: a ≡ ai j. Traces of
tensors are written as: {a} ≡ aii. Summation is only done with roman indices. Greek indices are
not summed up. In addition, a tensor product is written as: as ≡ aiksk j and {as} ≡ aklslk.

2 NONLINEAR EDDY VISCOSITY MODELS
The background and definition of the cubic and the quartic NLEVM are discussed in Sec. 2.1.
The calibration of the model constants is addressed in Sec. 2.2 and Sec. 2.3. Limiter functions for
guaranteeing positive, bounded eddy viscosity are presented in Sec. 2.4 and Sec. 2.5, respectively.
Sec. 2.6 provides details about the implementation.

2.1 Background and definition
The foundations of the nonlinear stress-strain relationship used in the NLEVMs is based on al-
gebraic Reynolds-stress models (ARSMs) where the Reynolds-stress is calculated via an implicit
algebraic set of equations. The ARSMs are derived from differential Reynolds-stress models by
using Rodi’s weak assumption [8]. In addition, the pressure-strain model of Launder et al. [9] is
used to obtain the full algebraic set of equations:

a = −αs−β
�

sa−as− 2
3
{as}I

�
+ γ (aω−ωa) , (1)

where a ≡ ai j ≡
u�iu

�
j
k − 2

3δi j is the normalized anisotropic Reynolds-stress tensor, with k as the
turbulent kinetic energy, u�iu

�
j as the Reynolds-stress tensor and I ≡ δi j as the Kronecker delta.

The tensors s≡ si j ≡ 1
2
k
ε (Ui, j+Ui, j) andω≡ωi j ≡ 1

2
k
ε (Ui, j−Ui, j) are the normalized strain-rate

tensor and the normalized vorticity tensor, respectively, with Ui, j as the mean velocity gradient
and ε as the dissipation. In addition, three parameters are present in Eq. 1: α , β and γ , which
are a function of the ratio of turbulent production and dissipation: P/ε , and two constants: C1
and C2 that originate from the pressure-strain model of Launder et al. The implicit algebraic
equations of Eq. 1 often behave numerically stiffly. Therefore, Pope [10] proposed a method to
derive an exact explicit solution which has been adopted by Gatski and Speziale [11] to obtain
the full explicit solution in three dimensional space. However, this solution has singularities and
is not useful for practical applications. Taulbee [6] made the assumption that β = 0 to obtain a
simplified ARSM and used the method of Pope to derive the corresponding NLEVM. (Note that
in the literature these explicit solutions are also referred to as explicit algebraic Reynolds-stress
models, however, the term NLEVMwill be used in this research.) Apsley and Leschziner [5] used
a different approach to obtain an explicit solution. Instead of using the method of Pope, a formal
iteration procedure is employed to approximate the full explicit solution.

In the notation of Pope, the explicit solution of Eq. 1 can be written as:

a =
10

∑
λ=1
G(λ) (ηi)T(λ) (s,ω) , (2)

with ten linearly independent tensors T (λ):

T(1) = s, T(6) = ω
2s+ sω2− 2

3{sω2}I,
T(2) = sω−ωs, T(7) = ωsω2−ω

2sω,
T(3) = s2− 1

3{s2}I, T(8) = sωs2− s2ωs,
T(4) = ω

2− 1
3{ω2}I, T(9) = ω

2s2+ s2ω2− 2
3{ω2s2}I,

T(5) = ωs2− s2ω, T(10) = ωs2ω2−ω
2s2ω,

(3)
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G(λ) (ηi) are scalar functions of invariants ηi. There is a finite number of linearly independent
tensor groups because any other higher order tensor, e.q. ωs3ω2−ω

2s3ω, can be written as a
linear combination of T (λ) employing the Cayley-Hamilton theorem [10]. Any rewritten higher
order tensor group will break up into lower order tensors multiplied by invariants which are stored
in the scalar functions G(λ). In total five linearly independent invariants exist:

η1 = {s2}, η2 = {ω2}, η3 = {s3}, η4 = {sω2}, η5 = {s2ω2}. (4)

Due to the linear independence, all tensor groups T (λ) must share the properties of a, hence, each
T (λ) is a second order symmetric deviatoric tensor.

The nonlinear stress-strain relationships in the NLEVMof Taulbee and the NLEVMof Apsley
and Leschziner can be written in the form of Eq. 2. The corresponding scalar functions are given
in Table 1.

G(λ) linear EVM cubic NLEVM quartic NLEVM
G(1) −α −α

�
1+ 2

3β
2η1+2γ2η2

�
−α

�
1− 1

2η2γ
2�/Q

G(2) 0 αγ αγ
�
1−2η2γ2

�
/Q

G(3) 0 2αβ 0
G(4) 0 0 −6αγ4η4/Q
G(5) 0 −3αβγ 0
G(6) 0 −3αγ2 −3αγ2/Q
G(7) 0 0 3αγ3/Q

Table 1: Scalar functions of stress-strain relation of linear EVM and NLEVMs. G(8−10) = 0.
Q≡

�
1−2η2γ2

��
1− 1

2η2γ
2�.

2.2 Calibration
The NLEVMs given in Sec. 2.1 include two or three parameters, namely α ,β and γ . In theory, the
parental ARSM of Eq. 1 defines the parameters. However, the logarithmic region of a boundary
layer is not properly described when the same parameters in the NLEVMs are used because the
NLEVMs are approximated explicit solutions of the ARSM. Therefore, α ,β and γ are determined
from calibration. Apsley and Leschziner determined α ,β and γ by a calibration with a simple
shear flow in which the only non zero components of the strain-rate tensor and the vorticity tensor
are: s13 = s31 = 1

2 σ̃ and ω13 =−ω31 = 1
2 σ̃ , respectively. Note that the shear parameter is defined

as σ ≡ k
ε

�
(Ui, j)

2 and the ∼ symbol denotes calibration parameters. In addition, the standard
atmospheric Cartesian system is used in which the flow direction is x- or 1-axis and the wall
normal direction is z- or 3-axis. The normalized anisotropic Reynolds-stress in simple shear flow
is defined as:

ai j =



ã11 0 ã13
0 −ã11− ã33 0
ã13 0 ã33


 . (5)

Substituting si j, ωi j and ai j , belonging to the simple shear flow, into Eq. 2 leads to three linearly
independent equations for the cubic NLEVM. The solution is derived by Apsley and Leschziner
[5] and it is given in Table 2. The same procedure is carried out for the quartic NLEVM of
Taulbee. The resulting two linearly independent equations are:

ã11 =
(ασ̃)(γσ̃)

Q̃

�
1+

1
4
(γσ̃)2

�
, ã13 =−(ασ̃)

Q̃

�
1+

1
4
(γσ̃)2

�
, (6)
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with

Q̃≡
�
1+(γσ̃)2

��
1+

1
4
(γσ̃)2

�
, (7)

and the solution is also given in Table 2.

cubic NLEVM quartic NLEVM

ασ̃ −ã13+
�
ã213+(ã11− ã33)2−3(ã11+ ã33)2 −2ã13

�
1+

�
ã11
ã13

�2�

βσ̃ 3(ã11+ã33)
ασ̃ 0

γσ̃ (ã11−ã33)
ασ̃ − ã11

ã13

Table 2: Definition of NLEVM parameters α ,β and γ determined by calibration.

2.3 Choice of calibration parameters ã11, ã33, ã13 and σ̃
In the previous section the two NLEVMs are calibrated with a simple shear flow. The simple
shear flow is characterized by the anisotropic Reynolds-stress components ã11, ã33, ã13 and the
shear parameter σ̃ . The choice of these four constants will determine the scalar functions G(λ) in
Eq. 2, hence, the model performance of the NLEVM is directly related to ã11, ã33, ã13 and σ̃ .

For atmospheric flows describing a simple shear flow with �P/ε = 1, it is desired to be able to
set the turbulence intensity Ire f at the inlet boundary for a certain reference height z= zre f . Using
the linear (k−ε) EVM, the turbulence intensity is determined by setting C̃µ . Since the solution of
the linear k− ε EVM for the logarithmic region of a simple shear flow for a rough wall is [12]:

U
u∗

=
1
κ
ln
�
z
z0

�
, k =

u∗2�
C̃µ

, ε =
u∗3

κz
, (8)

usingU =Ure f and z= zre f , then:

Ire f ≡

�
2
3k

Ure f
= C̃− 1

4
µ

�
2
3

κ

ln
�
zre f
z0

� . (9)

Note that U is the stream-wise mean velocity, u∗ is the friction velocity, κ is the Von Karman
constant, z is the distance from the wall and z0 is the wall roughness. In addition, C̃µ is used to
distinguish from the (non constant) Cµ present in the NLEVMs. The value of σ̃ and ã13 can be
related to C̃µ by using Eq. 8:

σ̃ =
k
ε

����
∂U
∂ z

����=
u∗

κz
=

1�
C̃µ

, (10)

and

�P/ε ≡−{ãs̃}= 1
=−2ã13s̃13 =−ã13σ̃ =−ã13 1√

C̃µ

�
⇒ ã13 =−

�
C̃µ . (11)

The other two calibration parameters ã11, ã33 cannot be related to C̃µ . Instead, either measure-
ments or computation can determine the values of ã11, ã33 in simple shear flow with a rough wall.
Apsley and Leschziner used a direct numerical simulation of channel flow to obtain wall functions
for all four calibration parameters. In this research the asymptotic value (normal wall distance
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→ ∞) of ã11, ã33 of the same direct numerical simulation is used [5]: ã11 = 0.333, ã33 =−0.263.
In the work of Crespo et al. [7] the NLEVM of Taulbee was calibrated with atmospheric measure-
ments in which ã11 = −ã33 = 0.38. However, in the current work it is preferred to use the direct
numerical simulation data. A consequence of using the calculated calibration parameters with
ã11 �= −ã33 for the quartic NLEVM is that the resulting a11 and a33 for a simple shear flow are
not equal to the intended value of the calibration parameters. Instead a11 = 1

2 (ã11− ã22) = 0.298
and a33 =− 1

2 (ã11− ã22) =−0.298.

2.4 Boundedness
The scalar function G(1) of the cubic NLEVM is not bounded. Apsley and Leschziner proposed
to use a limiter function fP(σ) for all scalar functions which has been adopted in the present
research. Except for G(4), all scalar functions G(λ) of the quartic NLEVM are all bounded by the
invariant η2 in the denominator:

lim
η2→0

,G(1) = −α , lim
η2→0

,G(2) = αγ , lim
η2→0

,G(6) =−3αγ2 lim
η2→0

,G(7) = 3αγ3, (12)

lim
η2→−∞

G(1,2,6,7) = 0.

The boundedness of the scalar function G(4) is not obvious since it has the invariant η4 in the
numerator, which could hypothetically grow faster than its denominator. η4 = {sω2} is a function
of all nine velocity derivatives Ui, j, however, η2 = {ω2} is only a function of the off-diagonal
velocity derivatives. As a result, the derivatives Uα ,α , present in the nominator of G(4), are not
bounded by the denominator. In the flow around a wind turbine, the derivative ∂U/∂x is large in
vicinity of the rotor which might cause unstable behavior of the NLEVM because of G(4). In the
test case of Sec. 3 a bounding function for η4 is found to be redundant. In addition, the limiter
function fP(σ) that is used for the cubic NLEVM is not applied to the quartic NLEVM.

2.5 Effective Cµ
The NLEVMs of Sec. 2.1 include a flow-dependent Cµ that is used to define the eddy viscosity:
µT = ρCµ

k2
ε . In the notation of Pope the NLEVM can be written as:

a =−2Cµs+
10

∑
λ=2
G(λ) (ηi)T(λ) (s,ω) , (13)

where −2Cµs is the linear part of the NLEVMs with an effective Cµ :

Cµ =−1
2
G(1) =

� 1
2α

�
1+ 2

3β
2{s2}+2γ2{ω2}

�
(cubic)

1
2α(1− 1

2 {ω2}γ2)
(1−2{ω2}γ2)(2−{ω2}γ2) (quartic)

(14)

The calibration parameters α , β and γ and the first invariant {s2} are always positive, however,
the second invariant is always negative: {ω2}. This means that effective Cµ in the cubic NLEVM
is not unconditionally positive. The effectiveCµ in the quartic NLEVM is always positive but can
still become zero. Apsley and Leschziner made the same observation about their cubic NLEVM
and proposed to use a different Cµ in the eddy viscosity relation: Cµ = C̃µ fP where fP is the
limiter function used to keep the scalar functions bounded. However, omitting the complete flow-
dependent Cµ reduces the model performance. In present research the definition of Eq. 14 is used
for both NLEVMs and an unconditional positive and nonzeroCµ is forced by a maximum limiter:

Cµ = max
�
−1
2
G(1),aC̃µ

�
, (15)
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where a is a positive small number such that Cµ �= 0, i.e. 1×10−4.

2.6 Implementation
The NLEVMs are implemented as an extension of the linear k− ε EVM. The nonlinear part of
the stress-strain relationship of the NLEVMs is implemented as a momentum source term. The
effectiveCµ is used to define the eddy viscosity and the transport equations for k and ε used in the
linear EVM are also employed for the NLEVMs.

3 WIERINGERMEER TEST CASE
The cubic and quartic NLEVMs are used to simulate the wake of a single wind turbine. Wake
measurements from the Wind Turbine Test Site Wieringermeer (EWTW), owned by the Energy
Research Centre of the Netherlands (ECN), are used to compare with the numerical simulations.
The results of almost 5 years of measurements have been published by Schepers [13]. In addition,
the 10 minute averaged data was made available for this research. In the two subsequent sections,
a brief overview of the site is presented and the choice of input parameters for the numerical
simulations are motivated. The single wake simulations are discussed in Sec. 3.3.

3.1 Site overview
EWTW is located in the North West of the Netherlands. The landscape mainly consist of flat
farmland. 2 km East from the meteorological mast a large lake (IJsselmeer) is present. The land
and the lake are separated by a dike which is 8 m and 3 m tall with respect to the land and the
lake, respectively.

The meteorological mast is located South of five 2.5 MW wind turbines with a 80 m rotor
diameter and hub height. The layout of the five wind turbines is given in Fig. 1. Two single wake
cases are measured for wind directions around 31◦and 315◦with a corresponding downstream
distance of 2.5D and 3.5D, respectively.

IJsselmeer

0◦
30◦

60◦

90◦

120◦

150◦
180◦

210◦

240◦

270◦

300◦

330◦

Figure 1: Research wind turbines at EWTW site. Left: geometrical sketch, source: [13]. Right:
satellite image of 4 km radius around meteorological mast MM3 (blue dot), five red dots: research
wind turbines, source: Google Earth.

3.2 Input parameters for numerical simulations
In order to compare the measurements with the numerical simulations the following input param-
eters for the numerical simulations are necessary: the undisturbed stream-wise wind speed at hub
height UH,∞, the undisturbed friction velocity u∗, the thrust coefficient CT , the undisturbed turbu-
lence intensity at hub height IH,∞ and the roughness height z0. The estimated input parameters are
listed in Table 3 and are motivated in subsequent sections.
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wake case 2.5D 3.5D
UH,∞ [m/s] 10.9 10.7
CT [-] 0.63 0.63
dir. [◦] 1 6 11 16 21 26 31 36 41 46 51 56 61 285-345
z0 [cm] 13 11 9.1 7.0 5.5 4.3 3.4 2.8 2.4 2.1 1.9 1.2 0.94 3.0
u∗ [m/s] 0.68 0.66 0.64 0.62 0.60 0.58 0.56 0.55 0.54 0.53 0.52 0.50 0.48 0.54
IH,∞ [%] 7.8 7.5 7.3 7.1 7.0 6.9 6.8 6.7 6.7 6.6 6.6 6.5 6.4 10

Table 3: Summary of input parameters for numerical computations of the two single wake cases.

Undisturbed velocity
The meteorological mast is instrumented with sonic anemometers, cups and vanes at 80 m. Unfor-
tunately, upstream measurements are not carried out. Therefore, the upstream undisturbed wind
speed at hub height is estimated from power measurements of wind turbine T5 (3.5D case) and
wind turbine T6 (2.5D case). Only data with undisturbed wind speeds between 10-12 m/s are
selected. The average of the wind speed between 1-61◦and 285-345◦, corresponding to the two
single wake cases, are 10.9 m/s and 10.7 m/s, respectively.

Friction velocity
The friction velocity is calculated with the log law: u∗ =UH,∞κ/ ln(zH/z0).

Atmospheric stability
The lack of upstream measurements makes it impossible to identify and disregard non-neutral
atmospheric measurements. However, the probability of a near neutral atmospheric boundary
layer increases with high wind speeds, i.e. 10-12 m/s.

Thrust coefficient
The thrust coefficient curve is measured and calculated by Schepers [14]. The measurements are
based on the tower bending moment and the calculations are carried out with PHATAS [15]. Both
methods estimate at thrust coefficient of 0.63 for the averaged undisturbed wind speeds of 10.7
m/s and 10.9 m/s.

Turbulence intensity
Since there is a the lack of upstream measurements an estimation of the undisturbed inflow tur-
bulence intensity for the 3.5D case is made by averaging the corresponding closest ’undisturbed’
sector. Between 250◦and 280◦the average turbulence intensity is equal to 10%. Note that only
undisturbed wind speeds between 10-12 m/s are considered. The turbulence intensities for North
Eastern winds are calculated by a number of precursor simulations, as discussed in the following
section.

Roughness height
For Western winds the roughness is dictated by flat farmland with sparse larger vegetation, as
shown in Fig. 1. By physical inspection the roughness height is estimated to be 0.03 m. For
Eastern winds the roughness height is affected by the lake and the farmland. Therefore, the stream-
wise velocity profile at the location of wind turbine T6 is calculated with a RANS precursor
simulation of the most important terrain features: the water to land roughness change, the height
difference between the land and the water and a Gaussian shaped dike. EllipSys3D is used as
flow solver [16]. In total thirteen different wind directions are investigated between 1-61◦with
equidistant intervals. At the inflow a loglaw profile is prescribed where the friction velocity is
set such that the hub height velocity at the original wind turbine location is approximately equal
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to the measured average of 10.9 m/s (deviations are within 0.3%). The linear k− ε turbulence
model is used with constants that are applicable for atmospheric terrain flows, i.e. Cµ = 0.03 and
Cε1 = 1.21 [16].

All precursor simulations show that the wind turbine rotor is operating in the transition zone
between the inner boundary layer, caused by the roughness change and the outer boundary layer.
The velocity profile in the mixing layer is approximated by a logarithmic profile based on linear
curve fit between 60 m and 100 m in the ln(z)− u domain. From the curve fit the effective
friction velocity and the effective roughness height are calculated. The results for all thirteen
wind direction are listed in Table 3 and will be used in the wake simulations. Note that the non-
equilibrium profile could also be used directly as an input for the wake simulations, however, the
NLEVMs show numerically unstable behavior when the non-equilibrium profile is prescribed at
the inlet. Therefore, only the fitted logarithmic profile belonging to the mixing layer will be used
as inlet condition.

3.3 Numerical simulations
The two measured wake cases (2.5D and 3.5D) are simulated with RANS using three different
turbulence models: the linear k− ε EVM and the two NLEVMs from Sec. 2.

Method
The in-house incompressible finite volume code EllipSys3D is used as flow solver [16].

The wind turbine is modeled as an Actuator Disk (AD) [17] on which the blade forces are
distributed in the radial direction and constant in the circumferential direction. The real blade
forces of the research wind turbines of EWTW are not available. Therefore, the force distribution
of the NREL 5 MW reference wind turbine blade, calculated with a detached eddy simulation, is
used in which the total thrust force is scaled withCT .

3D

25D

3D

x

y

12D2D

6.5D

16D 3D

x

z

10D

25D

3D 12D2D

Figure 2: Computational domain. Left: top view. Right: side view. Dotted black box marks the
wake domain. Actuator disk is illustrated as a red filled box. One in every two nodes is shown.

The AD is placed in a box shaped domain of dimensions: 25D× 16D× 10D, as shown in
Fig. 2. In total 192× 64× 96 = 1.18 million cells are used to discretize the domain. The wall
at z = 0 is modeled as a rough wall where the first cell height is in the order of the roughness
height. The boundaries at x = 0 and x = 25D is an inlet and an outlet, respectively. At the
inlet a stream-wise logarithmic profile is specified. The top boundary at z = 10D and the side
boundaries at y= 0 and y= 16D are modeled as symmetric walls. Around the AD a wake domain
of dimensions: 14D× 3D× 3D is defined where uniform spacing of ten cells per diameter is
applied in all directions. (Below z = 1

2 zH the cells in the wall normal direction are refined due to
the presence of the wall.) A mesh study has shown that ten cells per diameter is sufficient [17].
Outside the wake domain stretching is allowed with a maximum edge growth ratio of 1.2.
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The input parameters from Table 3 are used in the AD simulations. However, the NLEVMs
show numerically unstable behavior for a turbulence intensity of 10%. (Note that the instabilities
are also seen when the AD is switched off and they are not related to the unboundedness of G(4)

of the quartic NLEVM.) Therefore, the 3.5D wake case is simulated with a turbulence intensity of
8% such that a comparison between the turbulence models can be made. The 2.5D wake case is
performed with thirteen simulations corresponding to wind directions between 1-61◦with uniform
intervals. One AD simulation is conducted for the 3.5D wake case.

The turbulence intensity is set through Cµ by using Eq. 9 and the logarithmic solution is
preserved by adapting Cε ,1 as: Cε ,1 =Cε ,2−κ2/

��
Cµσε

�
. The other turbulence constants in the

transport equations for k and ε are chosen to be: Cε ,2 = 1.92, κ = 0.40, σε = 1.30 and σk = 1.00.
Standard values for the density and the dynamic fluid viscosity are used: ρ = 1.225 kg/m3

and µ = 1.784×10−5 kg/(m.s).

Results
The results of the numerical simulations are plotted with the results of the measurements in Fig. 3.
For each wake case, three quantities at hub height are plotted against the relative wind direction,
namely: the stream-wise velocity U/UH,∞, the stream-wise Reynolds-stress

√
u�u�/UH,∞ and the

vertical Reynolds-stress
√
w�w�/UH,∞.

2.5D case
For the 2.5D case the linear EVM under predicts the measured wake deficit by 20% as shown in
Fig. 3a. The NLEVMs calculate a much deeper wake deficit compared to the linear EVM but still
under predicted the measured one by 5-10%. The reason for the improved performance is further
explained in the paragraph: Influence of effective Cµ .

The wake at 2.5D is slightly asymmetric. Schepers [13] hypothesized that as this site the
asymmetry of wake is caused by terrain effects. The hypothesis is confirmed by all three turbu-
lence models in which a similar wake asymmetry is seen. Thus, the directional dependency of
the wind profile and the turbulence intensities, calculated by the precursor field simulations, are
capturing the dominant terrain effects.

The Reynolds-stresses calculated by the NLEVMs are closer to the measured Reynolds-
stresses compared the ones calculated by the linear EVM. The vertical Reynolds-stress

√
w�w�/UH,∞

from Fig. 3e calculated by the linear EVM is roughly 25% higher than the measured ones, also
outside the wake. The main reason for the offset is coming from the fact that the linear EVM
is isotropic (aαα = 0 in simple shear) and can only be tuned for the undisturbed turbulent ki-
netic energy. The NLEVMs match the measurements better because the NLEVMs include nor-
mal Reynolds-stresses anisotropy. The stream-wise Reynolds-stress

√
u�u�/UH,∞ from Fig. 3c

calculated by the NLEVM simulations still unpredicted the magnitude of the measured Reynold-
stresses.

3.5D case
As mentioned before, the NLEVMs show numerically unstable behavior in the 3.5D wake case
when the measured turbulence intensity of 10% is used. Therefore, the numerical simulations
cannot directly be compared with the measurements. Compared to the wake deficit of the 2.5D
case, the results of the linear EVM are even more different from the results of the NLEVMs, as
seen in Fig. 3b. The wake deficit calculated by the NLEVMs is 15% larger then the one calculated
by the linear EVM. Similar observations can be made about the Reynolds-stress as done for the
2.5D case. The asymmetry of the measured wake deficit are not induced by terrain effects [13].
Zahle and Sørensen concluded that the combination of shear and wake rotation can cause wake
asymmetry [18]. However, a similar effect is not seen in the current simulations even though
rotational forces are applied on the AD.
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k− ε EVM cubic NLEVM quartic NLEVM ECN measurements
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3c. Stream-wise Reynolds-stress 3d. Stream-wise Reynolds-stress
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3e. Vertical Reynolds-stress 3f. Vertical Reynolds-stress
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Figure 3: Wake deficit and Reynolds-stresses at hub height for relative wind directions. Left: 2.5D
case with UH,∞ = 10.9 m/s, right: 3.5D case with UH,∞ = 10.7 m/s. The measurements include
error bars of one standard deviation. For 3.5D case: measured: IH,∞ = 10% and the simulation
are carried out with IH,∞ = 8%.

Influence of effective Cµ
The wake deficit calculated by the NLEVMs is much larger compared to the linear EVM. The
main reason for the difference is the effective, flow-dependent Cµ of Eq. 14. Within 1D down-
stream of the at z = zH + 0.5D, a large positive peak of normalized mean velocity gradient
k/ε∂u/∂ z is present. This gradient is the dominant term in the two invariants η1 ≈ −η2 ≈
1/2(k/ε∂u/∂ z)2. Without the limiter function of Eq. 15, the effective Cµ in the cubic model
for the 2.5D wake case at 31◦becomes negative:

Cµ ≈ 1
2
α

�
1+

�
k
ε
∂u
∂ z

�2�1
3
β 2− γ2

��
≈−6. (16)
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Hence, the limiter function is active and the effective Cµ is equal to 1×10−4C̃µ . As a result, the
turbulent eddy viscosity µT = ρCµ

k2
ε in the cubic NLEVM, is decreased downstream of the AD

and the NLEVM behaves less dissipative compared to the linear EVM. A similar conclusion can
be made about the quartic NLEVM in which the lowest effective Cµ is equal to ≈ 1×10−3.

Using the proposed Cµ formulation of Apsley and Leschziner, in whichCµ is flow-dependent:
Cµ = C̃µ fP(σ) through the limiter function fP(σ), the eddy viscosity is also lowered downstream
of the AD, since the shear parameter is large: σ 2 ≈ (k/ε∂u/∂ z)2. However, the decrease of eddy
viscosity is less compared to using the true effective Cµ of Eq. 14.

Wake recovery
In Fig. 4 the stream-wise velocityU/UH,∞ at hub height at a relative wind direction of 0◦is plotted
against the stream-wise downstream distance (x−xAD)/D for all three turbulence models and both
wake cases. Except for undisturbed turbulence intensity at hub height, the simulation parameters
used in the two wake cases are similar, as listed in Table 3 (31◦and 285-245◦). Hence, the influence
of IH,∞ on performance of the turbulence models can be investigated. The wake recovery calcu-
lated by the linear k− ε EVM is faster with increasing turbulence intensity, however, the opposite
is observed for the NLEVMs. Higher turbulence levels should enhance mixing which accelerates
the wake recovery. Therefore, the NLEVMs show unphysical behavior towards changes of IH,∞.
The unphysical behavior is caused by the flow-dependent Cµ . For higher undisturbed turbulence
intensities, the largest derivative k/ε∂u/∂ z increases, which lowers the flow-dependent Cµ , as
discussed in the previous paragraph. As a result, the eddy viscosity decreases with increasing
undisturbed turbulence intensity and the wake recovery is delayed.

2.5D k− ε EVM 2.5D cubic NLEVM 2.5D quartic NLEVM
3.5D k− ε EVM 3.5D cubic NLEVM 3.5D quartic NLEVM

x−xAD
D [−]
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0.8

0.9

1

1.1

Figure 4: Wake deficit recovery at hub height at a relative wind direction of 0◦. 2.5D case:
IH,∞ = 6.8% and 3.5D case: IH,∞ = 8%.

4 CONCLUSION
The linear k− ε EVM and modified versions of the cubic NLEVM of Apsley and Leschziner and
the quartic NLEVMof Taulbee are tested and compared with wake measurements fromWieringer-
meer for two single wake cases: 2.5D and 3.5D at different wind directions. In the 2.5D case the
performance of the NLEVMs is much better compared to the linear EVM, however, the wake
deficit and the stream-wise Reynolds-stress are still under predicted compared to the measure-
ments. The numerically unstable behavior of the NLEVMs at high turbulence intensities makes
it impossible to simulate the 3.5D case with the observed-based undisturbed turbulence intensity
of 10%. Not having the full flexibility of setting the undisturbed turbulence intensity is a major
drawback of the NLEVMs. The 3.5D case is simulated by all three turbulence models with a tur-
bulence intensity of 8%. In terms of wake deficit and Reynolds-stresses, the difference between
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the linear EVM and the two NLEVMs is even larger compared to the 2.5D case.
The performance increase of the NLEVMs is caused by the flow-dependent Cµ which lowers

the eddy viscosity downstream of the AD. Unfortunately, the flow-dependent Cµ is also respon-
sible for predicting a faster wake recovery for lower undisturbed turbulence intensities, which is
unphysical behavior.
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Jørgensen, “Modelling and measurements of power losses and turbulence intensity in wind
turbine wakes at middelgrunden offshore wind farm,” Wind Energy, vol. 10, pp. 217–228,
2007.

[2] N. Troldborg, G. C. Larsen, H. A. Madsen, K. S. Hansen, J. N. Sørensen, and R. Mikkelsen,
“Numerical simulations of wake interaction between two wind turbines at various inflow
conditions,” Wind Energy, vol. 14, p. 859876, 2011.
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