Technical University of Denmark

Towards the development of advanced TIMES demo models for electric vehicles

Genikomsakis, Konstantinos N. ; Grohnheit, Poul Erik

Publication date: 2013

Link back to DTU Orbit

Citation (APA):

Genikomsakis, K. N., & Grohnheit, P. E. (2013). Towards the development of advanced TIMES demo models for electric vehicles [Sound/Visual production (digital)]. EFDA-TIMES and ETSAP-TIAM Workshop : 64th Semiannual ETSAP meeting, Roskilde, Denmark, 04/11/2013

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

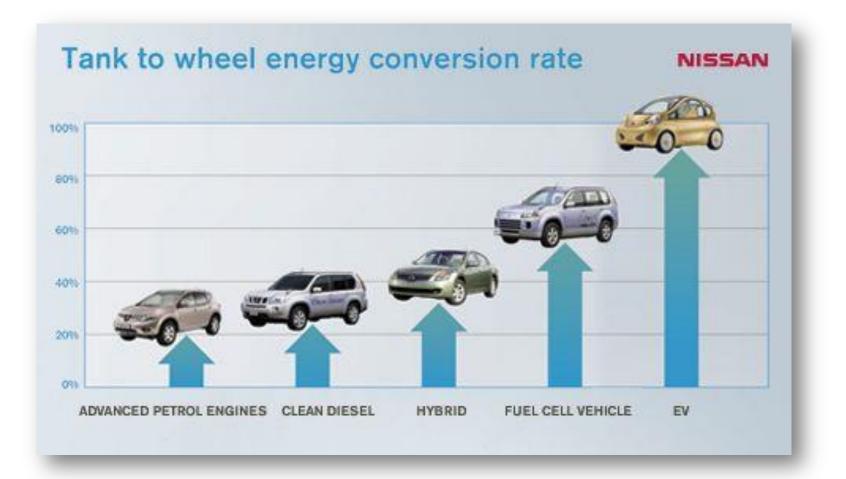
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

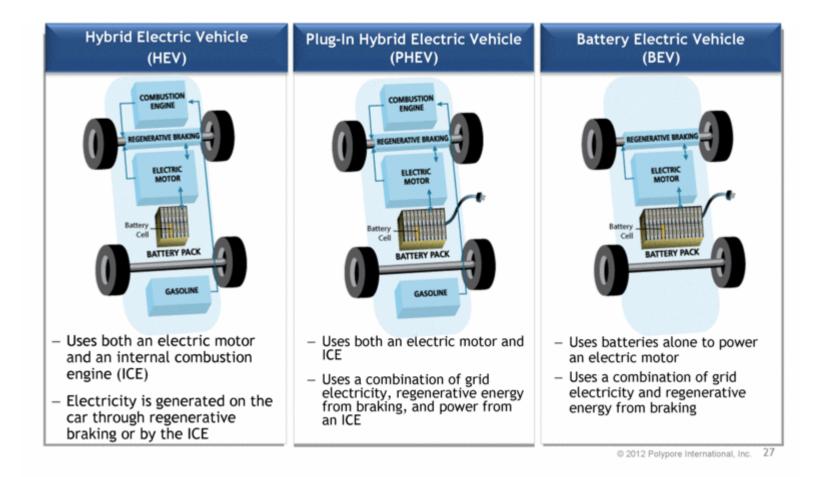
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Towards the development of advanced TIMES demo models for electric vehicles

Konstantinos N. Genikomsakis and Poul Erik Grohnheit

EFDA-TIMES and ETSAP-TIAM Workshop DTU Risø Campus, Roskilde, Denmark back-to-back with 64th Semi-annual ETSAP meeting, Seoul, Republic of Korea Program continuing in Denmark with Skype connection to remote participants


5th November 2013

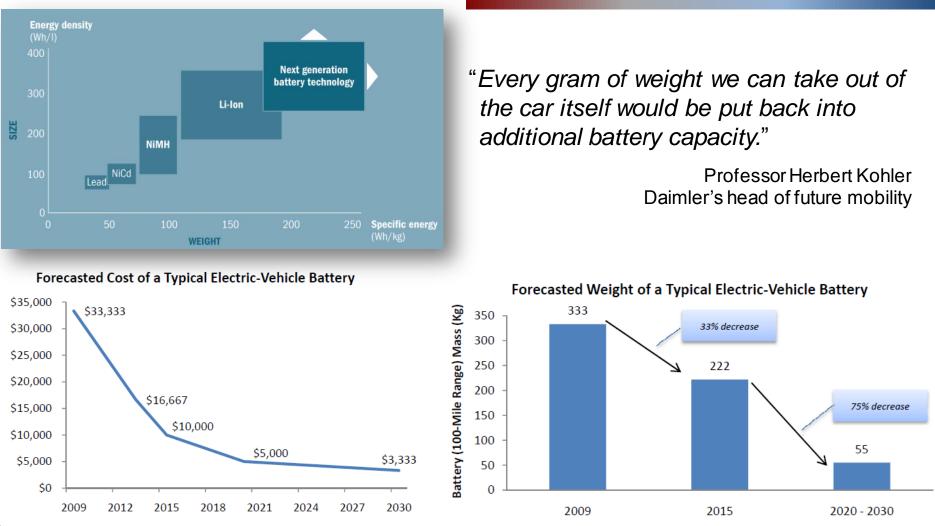


Technical University of Denmark

Efficiency of vehicle technologies

Differences of electric driving vehicles (EDVs)

Infrastructure and power levels for charging PEVs


Recharging type	Power (kW)	Voltage - Current	Current type	Recharging time
Conventional recharging (slow)	up to 3.7	230 V - 16 A	AC	6 h - 8 h
Semi-fast recharging	up to 43	400 V - up to 62 A	AC	1.5 h - 4 h
Fast recharging	up to 100	400 V - up to 250 A	DC	15 min - 30 min

Sources:

Yilmaz, M., Krein, P.T., 2013, Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles, IEEE Transactions on Power Electronics 28 (5), pp. 2151-2169

Ajuntament de Barcelona, Use electric vehicles - Practical guide on electric mobility, http://w41.bcn.cat/downloads/use-elecric-vehicles.pdf

Technologies, cost and weight of EV batteries

Sources:

Cost

Roland Berger Strategy Consultants, 2009, Powertrain 2020 – The Future Drives Electric

Electric & Hybrid Vehicle Technology International, July 2011

DEPARTMENT OF ENERGY, 2010, THE RECOVERY ACT: TRANSFORMING AMERICA'S TRANSPORTATION SECTOR BATTERIES AND ELECTRIC VEHICLES

TIMES demo models

- Step-by-step approach:
 - Supply curve

. . .

- Supply + simple demand
- Electricity generation
- Electricity sophistication
- Multi-regional approach

- 小田 いっつい 難い コンタイト 小田 6 いっつい 8 いっつい 10 いっつい 難い こうい 14 いっ 囲 16 いっつい 18 いっつい 20 いっつい 22 いっつい 24 いっつい 26 い 悪い 28

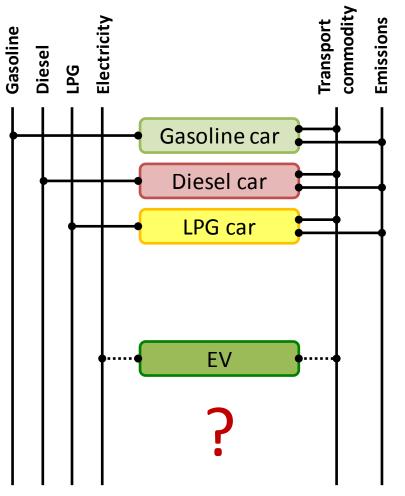
DEMO ModelS

We start with the energy balance of EU27 and focus on building a model with our standard splitting and naming conventions. The model starts with a simple supply curve feeding a single demand and grows into a model that uses incrementally new parameters and features that exist. The most important difference compared to the old approach is that VEDA features are revealed <u>when they are demanded</u> by the situation... so that the motivation and advantages are clear.

A lot of attention will be paid to keep the results reasonable so that they can be used for illustrating policy analysis.

Phase I - Module I (Base / intermediate TIMES features)

Model/Step	Model/Step Name	Key Features	Parameters	Notes/Messages
Number			introduced	
1	Supply Curve	Supply curve for coal: - 1 commodity (coal) - 3 Extraction technologies - 1 Import - 1 Export Final Coal projection	 STOCK CUM COST COM_PROJ ACT_BND LIFE 	Single region model, 2 periods model Simplified Energy Balance (by sector and primary energy) Supply curve with fixed demand Annual Jupezlice, - VT_ <workbook name="">_<sector>_<version> - SwSetting</version></sector></workbook>
2	Supply + simple demand	Supply side: - 4 commodities • Energy (oil and gas) • Residential Demand (gas cons) • Emission (CO2) - 9 processes • 9 extraction techs • 0 II, Gas and Coa Import and Export • 4 End-use (2 existing and 2 new) gas and oil consumption	- EFF - INVCOST - ENV_ACT - AFA - START	- VT_ <workbook name="">_<sector>_<version></version></sector></workbook>
3	Electricity Generation	ELC - Oil - Coal		The EUD demand flat to show extrapolation powerful ELC demand will grow. ELC is an energy commodity and not demand commodity!!!
				:
Model/Step	Model/Step Name	Key Features	Parameters	Notes/Messages
Number			introduced	
		- Hwd.		- VT_ <workbook name="">_<sector>_<version></version></sector></workbook>


Technical-economic modelling with the TIMES model generator: Training course on VEDA-TIMES, Cape Town, June 2012

Existing TIMES demo model for transport

~FI Comm											
Csets	Regior		lame CommDesc			Unit	LimType		vl T	PeakTS	Ctype
*Commodity Se Membership	t Region Name	Commodit, Name	y Commodity Descri	ption		Unit	Sense of th Balance EQN.	-	ce Level F	Peak Monitoring	Electricity
DEM		DTD1	Demand Transp	port Sector - Dema	nd 1	PJ					
ENV		TRACO				kt					
~FI_Process	5										
Sets	Region	TechNa	me TechDesc			Tact	Тсар	Tslvl		PrimaryCG	Vintage
*Process Set Membership	Region Name	Technolog Name		ption		Activit Unit		of Proc	ice level	Primary Commodity Group	Vintage Tracking
DMD		TOTEOIL	Demand 1 - Cru	logies Transport So de oil and Petroleur	m Products) PJ	PJa				
		TOTNOIL		logies Transport So de oil and Petroleur		PJ	PJa				
		~	I_T								
TechName	Comm	I-IN Co	omm-OUT	STOCK	EFF	AFA	INVCOST	FIXOM	LIFE	START	ENV_ACT
*Technology Name	Input Co	mmodity Ou	itput Commodity	Existing Installed Capacity	Efficiency	Utilisation Factor	Invesctment Cost	Fixed O&M Cost	Remaining Lifetime	-	Activity Emission Coefficient
*Units				PJa			M€/PJ	M€/PJa	Years	3	kt
TOTEOIL	TRAOI		ſD1	16666	1.00	0.90	8	0.16	15	5	
TOTNOIL	TRAOI		RACO2 ID1		1.10	0.90	10	0.20	15	5 2006	65
			RACO2								65

7

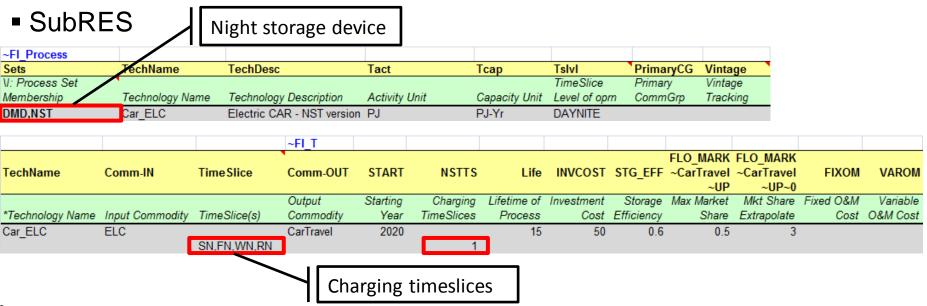
Considerations for modeling of EVs

Part of Reference Energy System (RES)

Source:

http://www.afteroilev.com/Pub/EFF_Tank_to_Wheel.pdf http://www.bazaardesigns.com/

(cumulative)	
100%	Fuel in 'tank' - gasoline
- 62%	Engine losses due to heat
- 17%	Standby / Idle losses
- 6%	Driveline losses
= 15%	Tank to Wheel Efficiency



	low		high	
	100%	to	100%	Fuel in 'tank' - electricity
х	99%	to	99%	Battery charge / discharge efficiency
х	90%	to	99%	Voltage Controller (electronic throttle)
х	80%	to	88%	Electric motor uses power
x	94%	to	94%	Driveline (adjusted from cumulative loss)
=	67%	to	81%	Tank to Wheel Efficiency

Existing models for EVs from KanOrs-EMR model library (2009)

Demand template

Commodities							
~FI_Comm							
Csets	CommName	CommDesc	Unit	LimType	CTSLvI	PeakTS	Ctype
				Sense of the	e		
*Commodity Set	Commodity	Commodity		Balance	Timeslice	Peak	Electricity
Membership	Name	Description	Unit	EQN.	Level	Monitoring	Indicator
DEM	Heating	Heating Demand	PJ		DAYNITE		
	Cooling	Cooling Demand	PJ		DAYNITE		
	CarTravel	Travel By Car	PJ		DAYNITE		

Source:

Amit Kanudia, VEDA-FE: MODEL LIBRARY: NIGHT STORAGE DEVICES, Jun 30, 2009, http://support.kanors-emr.org/

Existing models for EVs from KanOrs-EMR / VEDA forum (2010)

									1 6						
Commod	lities - Tra	nsport								Dem	and in	millio	n pass	senger-k	m
~FI_Comm													1	- 0-	
Csets			CommNam	ne Comml	Desc			Unit	LimType	CTSLvI	PeakTS	Ctype			
DEM			CAR_LD		istance Ca			MPKms		ANNUAL	-				
			CAR SD		listance C			MPKms		ANNUAL	_				
			TRA		ransport D	Demand		PJ		ANNUAL	-				
NRG			OILGSL	Gasolin	-										
			ELC	Electric	-					DAYNIT	E WP	ELC			
ENV			TRACO2N		nission - 1	Transport		kT							
			GHG		missions			Mt							
DEM			ΠL	Passen	ger Train			MPKms							
~FI Process															
Sets	TechName	TechDesc			Tact	Тсар	Tslvl	Primary	CVintage						
DMD		Train.Light.Railcar	ELC.00.Bas	e-vear.	MVKms			DEMO	NO						
DMD		ELC Car - dual mo			MVKms				YES	1					
DMD		Gasoline Car - Du			MVKms				YES					-	
DMD	TRATEC00	TRA.Other Transp	ort.00.		PJ	PJa			NO		Diffe	rent e	fficien	cy for	
												+ /I	al: at a u	, 	
										— /I	snor	t/long	distar	nce dem	iand
Existing (Cars						~FI_T								
TechName	TechDes	_		Comm-IN		Comm-IN-A	Comm Ol	п	CEFF	Input	Cap24.a	t ACTFLO	DEMO /		Life
rechivame	rechbest	6		Comm-in	•	Comm-ini-A	Comm-OC		CEFF	mput	Саргис	I ACIFLO	~DEIVIO F	мг-	Life
							*		MKms/PJ		stock/de	e Passen	and Car	Max Ann	Years
									WKms/PJ		mand	Passen	ger/Car	Km	rears
CARGSL00	Gasoline	Car - Dual mode		OILGSL						7	0.00)1	1.5	20000	20
							CAR_LD		1.2	/					
							CAR_SD		0.9						
<u>N-</u>									/		_	_			
CARELC000	ELC Car	- dual mode - with l	PG heater	ELC							0.00)1	1.5	20000	20
							CAR_LD		2.0						
							CAR_SD		1.8						
						OILLPG				0.0	1				

Source:

Antti Lehtila, Topic: ELC Caras night storage technology, Jun 09, 2010, http://www.kanors-emr.org/VedaSupport/forum/uploads/30/demoplugin.zip

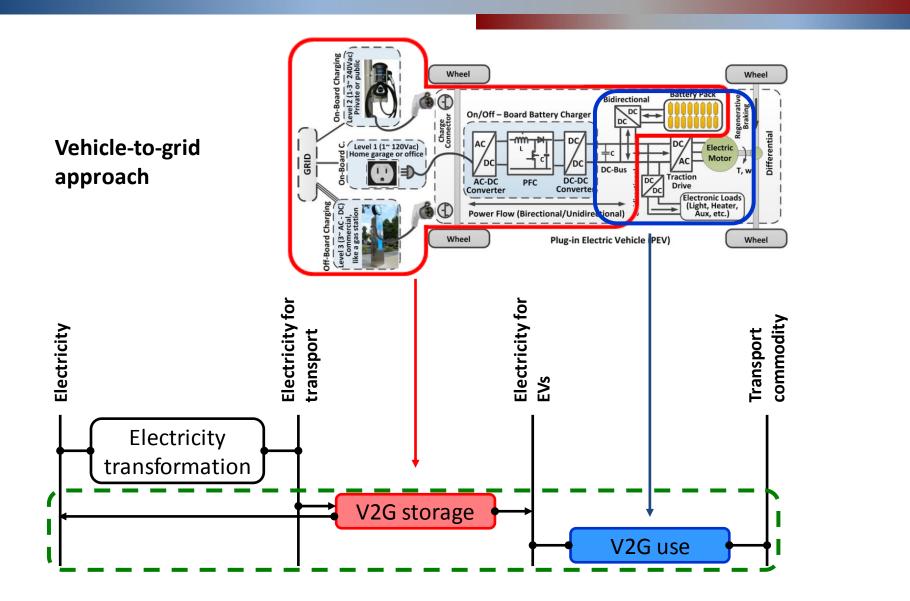
Existing models for plug-in hybrid EV from KanOrs-EMR / VEDA forum (2010)

SubRES

~FI_Comm																
Csets	C	ommName		CommDesc	Unit		LimType	C	TSLvl Pe	akTS [\] Cty	ре					
FIN	G	-ELCSEAS		ELC By Sea	son		N	S	EASON							
~FI_Proces																
Sets	TechName		TechDesc				Tact		Тсар	Tslvl	Primary		age			
DMD	CARELC04		ELC Car - dua			ter - NEW			000units			NO				
DMD	CARGSL05		Gasoline Car	- Dual mode	- NEW		MVKm		000units			NO				
DMD	TTLRELC101		New Train				MVKm		000units			NO	_			
DMD,NST	CARPLUG05		ELC Car Plug	-In Hydro			MVKm	S	000units			NO				
					~FLT											
																FLO_SHA
TestMana	*T	0	IN	0 OUT	00	OTADT	0555		0044	ACTFLO~E		1.16	EIVON	4540	FLO MAR	R~G-
TechName	*TechDesc	Comm	-IN Comm-IN-A	Comm-OUT	CommGrp	START	CEFF	input	CapZAct	ACTELO~L	AF	Lite	FIXOIVI	AFAC	K~UP	ELCSEA
																S
*				*			MKms/PJ		stock/demand	Passenger /Car	Max Ann	Years	kEur/U			
CARGSL05	Gasoline Car - Dual mode - NEW	OILGS	1			2001.0			0.001		20000.0					
CAROSEUS	Gasonne Gar - Duar mode - NEW	OILOS	-	CAR LD		2001.0	0.9		0.001	1.5	20000.0	20.0				
				CAR_SD			0.6							0.8		
*																
CARELC04	ELC Car - dual mode - with LPG heater - N	EW ELC				2001.0			0.001	1.5	20000.0	20.0				
				CAR_LD			2.0 1.9							0.8	0.2	
			OILLPG	CAR_SD			1.9	0.0						0.0	0.3	
TTI REL C101	New Train	FLC	OILEI O			2001.0	24.0			27.0	31/37.0					
CARPLUG05	ELC Car Plug-In Hydro	ELC			NRG	2001.0	2.0		0.001	1.5	20000.0	20.0				0.55
		OILGS	L				0.7									
			V	CAR SD			0.8							0.8	0.5	
			\													
									s of fue							
		OILGS		CAR_LD CAR_SD			0.7 1.0 0.8							0.8	0.4 0.5	

Plug-in hybrid EV: Two types of fuel

Source:


Antti Lehtila, Topic: ELC Caras night storage technology, Jun 09, 2010, http://www.kanors-emr.org/VedaSupport/forum/uploads/30/demoplugin.zip

Existing models for plug-in EV from KanOrs-EMR / VEDA forum (2012)

						-										
Demand - five demands fo	r the five illustrative teo	chnology alt	ternatives													
~FI_Comm Csets CommNai Comm	Deeg	Unit Li	mTune CT		akTS Ctype			_T:COM_FR								
				YNITE	акто стуре			mName RD		RP SD	SN SP		VN WP	FD		P
	mand 1 - DAYNITE level	MPKms		YNITE			CAR	pkm1-D	0.1 0	0.15 0.11	0 0.1		0 0.1			0.12
		MPKms		NUAL			CAR	pkm2-D	0.1 0	0.15 0.11	0 0.1	14 0.09	0 0.1	16 0.1		0.12
		MPKms		NUAL			CAR	pkm1-A	0.1 0	0.15 0.11	0 0.1	14 0.09	0 0.1	16 0.1		0.12
		MPKms		NUAL			CAR	pkm2-A		0.15 0.11				16 0.1		0.12
NRG ELC Electri		PJ		YNITE WF	P ELC		CAR	pkm3-A	0.1 0	0.15 0.11	0 0.1	14 0.09	0 0.1	16 0.1	13 0	0.12
		PJ	DA													
FIN G-ELCSEA Season		PJ	N SE	ASON												
FIN G-ELCSEA Season	narelectricity r	FJ		ASON												
~FI_Process									ЪΓ							
	chDesc		Tact	Тсар	Tslvl	PrimaryC	(Vintage	_	11	Introd	ductio	n of l	oad (curv	<i>l</i> es	
	c import		PJ		DAYNITE		NO			introc	actio		ouu		105	
	SL import		PJ		DAMANTE		NO									
DMD,NST NSTCAR-DD NS				000units	DAYNITE	0.04005	NO									
DMD,STG STGCAR-DD ST				000units	DAYNITE	G-CAR2E										
DMD,NST NSTCAR-DA NS				000units	DAYNITE ANNUAL		NO									
DMD,NST STDCAR-DA ST				000units			NO NO									
DMD,NST STDCAR+DA ST	DCAR technology, Alvivu	JAL+ANNUAI		000units	ANNUAL		NO									
Car Processes - five alt	ernatives, of which t	he first fou	ır are equi	valent												
					~FI_T											
										NCAP_AFC	NCAP_AF	-				FLO_SHAR
TechName *TechDesc		Comm-IN	Comm-IN-	A Comm-C	OUT CommGrp	VI: CEFF	CEFF	Cap2Act	ACTFLO	~ANNUAL	C~DAYNIT	AFA	AF	Life	INVCOST	~UP~G-
											E					ELCSEAS
*				*		MKms/PJ		stock/dem	Passenge	Max Ann	Max Ann	Max Ann	Max Ann	Years		
								and	r/Car	Km	Km	Km	Km			
NSTCAR-DD NSTCAR tech	nology, DAYNITE-DAYNI					3		0.001	0.3333			1	2	15	1	
		GSL				0.7			1.4286							
				CARpkn	11-D				1.5000	20000	20000					
STGCAR-DD STGCAR tech	nology, DAYNITE-DAYNI					3		0.001	0.3333			1	2	15	1	
		GSL				0.7			1.4286							
				CARpkn	12-D				1.5000	20000	20000					
NSTCAR-DA NSTCAR tech	nology, DAYNITE-ANNUA					3		0.001	0.3333			1	2	15	1	
		GSL				0.7			1.4286							
				CARpkn	11-A			0.001	1.5000	20000	20000			45		
STDCAR-DA STDCAR tech	nology, ANNUAL-ANNUA						3	0.001				20000		15	1	
		GSL		045			0.7		4 5000							
				CARpkn			2	0.001	1.5000			20000		45	4	0.6
STDCAR+DA STDCAR tech	nology, AININUAL-ANNUA				NRG		3 0.7	0.001				20000		15	1	0.6
		GSL		CADeles	2 4		0.7		1.5000							
Course				CARpkn	IJ-A				1.5000							
Source:																10

Antti Lehtila, Topic: ELC Caras night storage technology, Mar 30, 2012, http://www.kanors-emr.org/VedaSupport/forum/uploads/30/TestPlugin.zip

Representation of a vehicle-to-grid (V2G) car

V2G model: Fuel and demand commodities

Fuel sector (*):

~FI_Comm								
Csets	Region	CommName	CommDesc	Unit	LimType	CTSLvI	PeakTS	Ctype
*Commodity Set Membership	-	Commodity Name	Commodity Description	Unit	Sense of the Balance EQN.		Peak Monitoring	Electricity Indicator
NRG		TRAELC	Transport Electricity	PJ		DAYNITE		
		TRAELCV2G	Transport Electricity for V2G cars	PJ				

		~FI_T			
TechName	Comm-IN	Comm-OUT	STOCK	EFF	LIFE
*Technology			Existing Installed		Remaining
Name	Input Commodity	Output Commodity	Capacity	Efficiency	Lifetime
*Units			PJa		Years
TRAEELC	ELC	TRAELC	269	1.00	50
TRANELC	ELC	TRAELC		1.00	50

~FI_Process								
Sets	Region	TechName	TechDesc	Tact	Тсар	Tslvl	PrimaryCG	Vintage
						TimeSlice level	Primary	
*Process Set	Region	Technology		Activit		of Process	Commodity	Vintage
Membership	Name	Name	Technology Description	y Unit	Capacity Unit	Activity	Group	Tracking
PRE		TRAEELC	Sector Fuel Existing Transport Sector- Electricity	PJ	PJa			
		TRANELC	Sector Fuel New Transport Sector- Electricity	PJ	PJa			

Transport sector (*):

	~FI_Co	mm						
Csets	Region	CommName	CommDesc	Unit	LimType	CTSLvI	PeakTS	Ctype
					Sense of the			
*Commodity Set	Region				Balance			Electricity
Membership	Name	Commodity Name	Commodity Description	Unit	EQN.	Timeslice Level	Peak Monitoring	Indicator
DEM		DTD2	Demand Transport Sector - Demand 2	Million_Pkm		DAYNITE		

		~FI_T	
Attribute	CommName	Timeslices	2005
	Demand		
*	Commodity Name		
*Units			
COM_FR	DTD2	SD	0.3
COM_FR	DTD2	SN	0.1
COM_FR	DTD2	WD	0.4
COM_FR	DTD2	WN	0.2

V2G model: Processes and user constraint

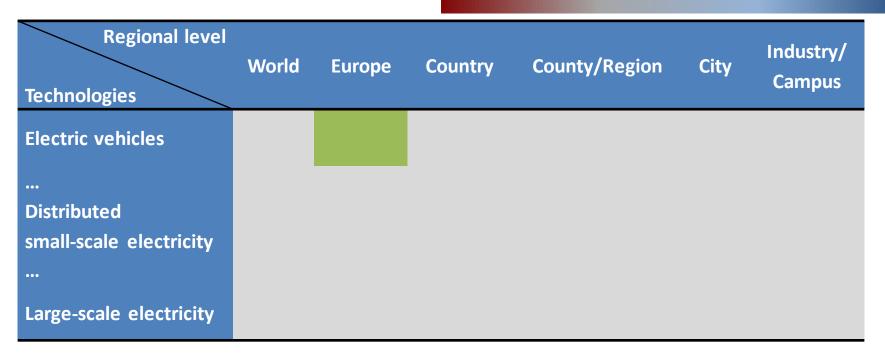
Transport sector (*):

~FI_Process														
Sets	Region	TechName		TechD)esc			Tact	Тсар	Tslvl	PrimaryC	G Vintage		
*Process Set Membership	Region Name	Technology Name		Technol	ogy Description			Activi	ty Unit Capacit	TimeSlice le of Process y Unit Activity	vel Primary Commodity Group	Vintage Tracking		
DMD		TOTEOIL00		Crude	oil and Petroleu	Transport Secto m Products Transport Secto	Ŭ	MVK	ms 000_u	nits				
		TOTNOIL00			oil and Petroleu	im Products Transport Secto	r - New Deman	MVK nd 2 - EV	ms 000_u	nits				
		TOTNELCV2Gu	se01	use El	ectricity	Transport Secto		MVK	ms 000_u	nits				
DMD,NST		TOTNELCV2Gs	torage01		e Electricity	i nanopoli ocolo	i itew Deman	PJ	PJa	DAYNITE				
			~FLT											
TechName		Comm-IN	Comm-0	UT	STOCK	EFF	AFA	ACTFLO	Cap2Act	INVCOST	FIXOM	LIFE	START	ENV_ACT
*Technology Na	ame	Input Commodity	Output Con	nmodity	Existing Installed Capacity	Efficiency			stock/demand	Invesctment Cost	Fixed O&M Cost	Remaining Lifetime		Activity Emission Coefficient
*Units					000_units	MVKms/PJ	Max Ann Km	Passenger/Car		M€/000_units	M€/000_unitsa	Years		kt
TOTEOIL00		TRAOIL	DTD2 TRACO2		225654	412.82	15000	1.5	0.001	20	0.4	8		65
TOTNOIL00		TRAOIL	DTD2 TRACO2			433.47 [*]	15000	1.5	0.001	20	0.4	12	2006	65
TOTNELCV2	Guse01	TRAELCEV	DTD2			1666.67	15000	1.5	0.001	23	0.46	15	2015	
					~FLT									
TechName		Comm-IN	Tim		Comm-OUT	STOCK	AFA	INVCOST	FIXOM	LIFE	START	ENV_ACT	NSTTS	STG_EFF
*Technology Na *Units	ame	Input Commodity	Time		Output Commodity	Existing Installed Capacity PJa	Utilisation Factor	Invesctment r Cost M€/PJ	Fixed O&M Cost	Remaining Lifetime		Activity Emission Coefficient kt	Charging TimeSlices	Storage Efficiency
TOTNELCV2	Gstorage?	01TRAELC	SN,WN	•	TRAELCV2G ELC					14	2015		ſ	0.98

User constraint: Battery capacity corresponding to capacity unit of cars

UC_N	Pset_Set Pset_PN	Pset_CI Pset_CO	UC_ATTR	Year	LimType	UC_CAP	UC_RHSRTS~0	UC_Desc
UC_EVs_equal_to_EV_batteries	TOTNELCV2Guse01			2005,2020	FX	-0.108	2	_
	TOTNELCV2Gstorage	01		2005,2020		1000		

*Showing additions only


Timeslices

Timeslice resolution in existing models

Model	Tim	eslice per	level	Total number of timeslices			
	Season	Weekly	DayNite				
DEMO	S W		D N	4			
ΡΕΤ	R S F W		D N P	12			
TIMES-DK	R S F W	WD NW	A D C B	32			

- EV charging options vs Charging time vs Number of timeslices
- Increasing the timeslice resolution in demo models can serve as a first step towards understanding the potential role of EVs

Conclusion

- Further development
 - Module with electric vehicle technologies
 - Update of parameters for technology characterization
 - Preliminary results for policy analysis
- Testing of new technologies requires definition of "regions"