

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Solving the selective multi-category parallel-servicing problem

Range, Troels Martin; Lusby, Richard Martin ; Larsen, Jesper

Published in:
Journal of Scheduling

Link to article, DOI:
10.1007/s10951-013-0353-x

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Range, T. M., Lusby, R. M., & Larsen, J. (2015). Solving the selective multi-category parallel-servicing problem.
Journal of Scheduling, 18(2), 165-184. DOI: 10.1007/s10951-013-0353-x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/18494963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10951-013-0353-x
http://orbit.dtu.dk/en/publications/solving-the-selective-multicategory-parallelservicing-problem(1a7ff569-1e07-4543-ac80-da11769728fa).html

Noname manuscript No.
(will be inserted by the editor)

Solving the Selective Multi-Category Parallel-Servicing
Problem

Troels Martin Range · Richard Martin

Lusby · Jesper Larsen

Abstract In this paper we present a new scheduling problem and describe a short-
est path based heuristic as well as a dynamic programming based exact optimiza-
tion algorithm to solve it. The Selective Multi-Category Parallel-Servicing Problem
(SMCPSP) arises when a set of jobs has to be scheduled on a server (machine)
with limited capacity. Each job requests service in a prespecified time window and
belongs to a certain category. Jobs may be serviced partially, incurring a penalty;
however, only jobs of the same category can be processed simultaneously. One
must identify the best subset of jobs to process in each time interval of a given
planning horizon while respecting the server capacity and scheduling requirements.
We compare the proposed solution methods with a MILP formulation and show
that the dynamic programming approach is faster when the number of categories
is large, whereas the MILP can be solved faster when the number of categories is
small.

Keywords Machine scheduling · dynamic programming · node-disjoint shortest-
path problem · preprocessing

Mathematics Subject Classification (2000) 90B35 · 90C35

1 Introduction

Given a set of possible jobs which can be undertaken in the future, one would like
to select a subset of these jobs which maximizes the total profit, and this must be
done within the bounds of the available resources. Such a problem is referred to

Troels Martin Range
Department of Business and Economics, COHERE, University of Southern Denmark, Cam-
pusvej 55, 5230 Odense M, Denmark, Tel.: +45 6550 3685, E-mail: tra@sam.sdu.dk

Richard Martin Lusby
Department of Engineering Management, Technical University of Denmark, Produktionstorvet,
building 426, 2800 Kgs. Lyngby, Denmark, Tel.: +45 4525 3084, E-mail: rmlu@dtu.dk

Jesper Larsen
Department of Engineering Management, Technical University of Denmark, Produktionstorvet,
building 426, 2800 Kgs. Lyngby, Denmark, Tel.: +45 4525 3385, E-mail: jesla@dtu.dk

2 Troels Martin Range et al.

as a selection problem. Selection problems often arise as pricing problems when
using column generation. Examples are Gilmore and Gomory (1961), who use a
knapsack problem as the pricing problem in column generation for solving the
cutting stock problem, and Desrochers et al. (1992), who solve the vehicle routing
problem with time windows by decomposing the problem into a set partitioning
master problem and a shortest path problem with time windows. Chen and Powell
(1999) apply column generation to the parallel machine scheduling problem where
the pricing problem selects a sequence of jobs to schedule on a single machine.

In this paper we describe and develop methods for a specific selection problem,
which we have termed the Selective Multi-Category Parallel-Servicing Problem (S-
MCPSP). This problem has a set of jobs, where each job belongs to a category
and has a prespecified service time interval during which it requests service. It is
only possible to service jobs from the same category simultaneously, and it is only
possible to service a limited number of jobs at the same time. The planning period
is split into atomic time intervals, and servicing each job in an atomic period yields
a direct profit. However, it is possible to service only a fraction of a job, but doing
this will add a penalty cost. The problem is then to identify the most profitable
subset of jobs to service in each atomic period for the full planning period such
that only jobs from the same category are serviced in the same period and such
that the limited capacity of the server is not violated. Note that in this paper the
term server is synonymous with machine. Instead of maximizing profit, we prefer
to minimize the penalty cost, where a positive profit corresponds to a negative
penalty cost.

To illustrate this, we provide a solution to an instance of the problem in Fig-
ure 1. The instance has 500 potential jobs divided into 16 categories, 25 periods,
and a server capacity of four. The periods are given horizontally, whereas the po-
sitions within the server are illustrated vertically. The jobs undertaken are shown
as blocks. If a block has either a gray start or end, then it is partially serviced.

1 2 4 5 6 7 8 9 10 11 123 13 14 15 16 17 18 19 20 21 22 23 24 25

Category 15 Category 9 Category 4

Fig. 1 Solution to instance 41 with 16 categories and a server capacity of four.

1.1 The Patient Admission Scheduling Problem

One particular application of the SMCPSP is the pricing problem for a room-based
decomposition of the Patient Admission Scheduling problem (PAS). This problem

Solving the Selective Multi-Category Parallel-Servicing Problem 3

was first proposed by Demeester et al. (2010), while the decomposition approach
is described in Range et al. (2013). Essentially, the PAS entails assigning patients
to hospital rooms during a planning period, such that patients are assigned in
the best possible manner while being transferred in and out of rooms as little as
possible.

The set-up of the PAS is as follows. The hospital has a set of available rooms.
Each room in the hospital has a number of beds – typically one, two, or four – as
well as a set of additional properties regarding equipment and specialism of the
resident department. Assigning a patient to a room incurs a penalty cost per period
based on how well suited the room is for the patient. This patient-to-room penalty
is based on several parameters, such as compatibility with preferred equipment,
compatibility with the specialism of the department in which the room resides,
and the deviation between the number of beds in the room and the patient’s
preferences of room sizes (typically, smaller rooms are preferred). It is possible to
transfer patients between rooms during the admission; however, this is penalized
as it results in extra work for the staff and discomfort for the patients. A patient
has to occupy exactly one bed each night of his or her stay. That is, for each
patient-time combination within the patient’s admission, a bed and thereby a
room has to be assigned. An assignment of patient-time combinations to a specific
room constitutes a room schedule. An additional requirement of not mixing the
genders in the rooms in any given period is also present, i.e., it is not possible to
have both male and female patients in the same room in the same period. This is
referred to as the gender segregation constraint. A solution to the PAS is a set of
room schedules – one for each room – satisfying the gender segregation constraint
and where each of the patients is assigned to exactly one room during each of the
nights of his or her stay.

The PAS can be decomposed into a generalized set partitioning problem as
the master problem, and, for each room, an SMCPSP with two categories as the
pricing problem. The master problem has the set of room schedules as columns
and constraints stating that each patient-time period has to be covered by exactly
one column. Furthermore, a set of constraints is present stating that a room can
be used at most once. As there are potentially billions of possible room sched-
ules, columns are generated dynamically using the reduced costs to indicate which
columns are attractive. The SMCPSP arises as the pricing problem for a specific
room as 1) a room can be considered the server which has a capacity correspond-
ing to the number of beds, 2) each patient can be interpreted as a job requiring
service while having a penalty cost in each period (possibly negative due to the
reduced costs), and 3) the categorization corresponds to the gender segregation
constraints. Furthermore, patients can be transferred from one room to another;
this corresponds to partially servicing the patient in the room at hand and incurs
the transfer penalty.

This paper is organized as follows. Initially, Section 2 provides a more formal
definition of the problem and presents a mathematical model thereof. Given that
this is a new problem, we review related literature in Section 3 to help place this
new scheduling problem. Section 4 introduces two underlying networks for the
problem and discusses several shortest path based methods for generating lower
and upper bounds on the SMCPSP. To reduce the problem size, we describe effi-
cient preprocessing strategies in Section 5. We exploit the preprocessed problem to

4 Troels Martin Range et al.

construct an exact dynamic programming algorithm in Section 6. Computational
results are presented in Section 7, while concluding remarks are given in Section 8.

2 Problem Description

A server can process Q jobs of the same category simultaneously. A set of possible
jobs, J = {1, . . . , J}, is given where each job requests service in a predefined period.
Time is discretized into atomic periods, T = {1, . . . , T}. Hence, each job, j ∈ J ,
has a starting period, aj ≥ 1, and an ending period, bj ≤ T , and we define the
set of service periods for job j as Tj = {aj , . . . , bj}. We denote the set of all jobs
which may be serviced in period t as J pert = {j ∈ J |t ∈ Tj}. Processing job j in
period t has a penalty (or cost) of pjt ∈ R ∪ {∞}, where pjt =∞ for t /∈ Tj . If the
penalty is negative, then we interpret the penalty as a profit. A set of categories,
C = {1, . . . , C}, is given, and cj ∈ C is the category of job j ∈ J . Furthermore, we
let J catc = {j ∈ J |cj = c} be the subset of jobs belonging to category c ∈ C. As it is
allowed to partially service a full job, we define two penalties. The first penalty, πs,
is a penalty for starting (or restarting) a job later than aj . The second penalty, πe,
is for prematurely ending the service of a job, i.e. stop processing an already started
job before period bj . These penalties are equal for all jobs and all periods. To ease
the notation, we define the set W = {(j, t) ∈ J × T |t ∈ Tj} as the set of feasible
job-period combinations. Furthermore, we let the set Jct = J catc ∩J pert be the jobs
of category c which can be undertaken in period t. The server can only process
jobs from the same category in a single period, i.e. two jobs, i, j ∈ J with cj 6= ci,
cannot be processed in the same period. We let the set K = {(j, i) ∈ J ×J |cj 6= ci}
be the pairs of jobs which are incompatible with each other.

A solution to the SMCPSP is a sequence of sets of jobs S = (S1, . . . ,ST), where
St ⊆ J . We say that a solution is feasible for the SMCPSP if the three following
conditions are all satisfied:

1. For all t ∈ T the capacity constraint is satisfied, i.e. |St| ≤ Q.
2. For all t ∈ T the set St ⊆ J pert .
3. For all t ∈ T either the set St = ∅ or the set St ⊆ J catc for at most one category

c ∈ C.

The set of all feasible sets in period t ∈ T is denoted Ft. The size of Ft is the set
of possible combinations of jobs in period t, which is given by

∑
c∈C

∑Q
q=0 (|Jct|

q).
This is exponential in the capacity, Q, as well as in the size, |Jct|, of the possible
jobs within the same categories.

We let ft−1,t(S1,S2) be a function counting the number of late starts for the
set of jobs S2 in period t if we have processed the jobs in S1 in period t − 1. We
can express the function explicitly as

ft−1,t(S1,S2) =
∣∣(S2 ∩ J pert−1) \ S1

∣∣ (1)

Similarly, we let gt−1,t(S1,S2) be a function counting the number of prematurely
ended jobs for the set of jobs S2 when we have processed the jobs in S1 in period
t− 1. The number of jobs prematurely ended can be expressed as

gt−1,t(S1,S2) =
∣∣(S1 ∩ J pert) \ S2

∣∣ (2)

Solving the Selective Multi-Category Parallel-Servicing Problem 5

Then we can express the objective function as

P (S) =
∑
t∈T

∑
j∈St

pjt

+πs
∑

t∈T \{1}

ft−1,t (St−1,St)

+πe
∑

t∈T \{1}

gt−1,t (St−1,St)

(3)

We say that a solution, S, with cost P (S) is minimal if we cannot remove a full job
or parts of a job without changing the cost and if we cannot exchange parts of a
job with parts of another job yielding the same cost but requiring less processing
time. The first condition avoids having jobs in the solution with zero penalty, and
the second ensures as many free periods as possible. In the case where the solution
is not minimal, we have alternative solutions to the problem. The selective multi-
category parallel-servicing problem is then the problem of identifying a feasible
solution, S = (S1, . . . ,ST), which minimizes P (S). The optimal solution value is
denoted P ∗.

It should be noted that if πs = πe = 0, then the problem reduces to the problem
of identifying the most profitable job combination in each period and each category
as there would be no cost component connecting the periods. Hence, for each period
we could just select jobs with positive profit in decreasing order in each category
and then select the category which has the highest profit. It is easy to see that
this solution would be optimal.

On the other hand if, πs = πe =∞, then we disallow partially servicing a job
and essentially turn this problem into a unit-weight multiple-choice multiple-knap-
sack problem with precedence constraints. The unit weight is because the weight
of a job in each of the capacity constraints is one unit. It is a multiple-knapsack
problem because the problem has a multiple number of knapsack constraints cor-
responding to the capacity constraints. For each knapsack constraint we can only
choose jobs of the same category, which makes the problem a multiple choice prob-
lem. Finally, if it is not allowed to partially service a job, once servicing the job
has begun, it will continue to be serviced in subsequent periods (assuming the
job has a service time of more than one time period). This gives (possibly cyclic)
precedence constraints.

2.1 A Linear Integer Programming Model

A mathematical model can be constructed for the SMCPSP. We use the following
variables. Let xjt ∈ {0, 1} indicate whether or not job j is undertaken in period
t. Furthermore, let γsjt indicate that job j is started or restarted in period t, and
γejt indicate that job j is either ended or preempted from period t− 1 to period t.
To ensure that only a single category is used in each period t, we let yct indicate
whether or not a job in category c is undertaken in period t. A mathematical
formulation of the SMCPSP is then

min
∑

(j,t)∈W

(
pjtxjt + πsγsjt + πeγejt

)
(4)

6 Troels Martin Range et al.

s.t.
∑

j∈J per
t

xjt ≤ Q, ∀ t ∈ T (5)

xjt − xj,t−1 − γsjt ≤ 0, ∀j ∈ J ,∀t ∈ Tj \ {aj} (6)

xjt − xj,t+1 − γejt ≤ 0, ∀j ∈ J ,∀t ∈ Tj \ {bj} (7)

xjt − yct ≤ 0, ∀c ∈ C, ∀j ∈ J catc ,∀t ∈ T (8)∑
c∈C

yct ≤ 1, ∀t ∈ T (9)

xjt ∈ {0, 1}, ∀(j, t) ∈ W (10)

γsjt, γ
e
jt ≥ 0, ∀(j, t) ∈ W (11)

yct ≥ 0, ∀c ∈ C,∀t ∈ T (12)

The objective (4) minimizes the total penalty of the solution. Constraints (5)
state that the capacity in each period cannot be exceeded. Constraints (6) and (7)
ensure that the start and end are measured respectively, while constraints (8) state
that category c is used in period t if job j from category c is undertaken in period
t. Constraints (9) make the categories mutually exclusive by only allowing a single
category to be active in each period. Finally, constraints (10)-(12) set the domains
of the variables. Note that if the xjt-variables are all binary, then the remaining
variables will also have binary values in an optimal solution. Hence, these are just
standard non-negative continuous variables.

3 Related Literature

The problem considered in this paper requires that a subset of jobs is selected (all
of which belong to the same category) to be serviced on each day of a specified
planning horizon without exceeding the capacity of the server. In this section we
briefly review other similar selection problems and present a brief discussion on
job shop scheduling.

Selection problems typically entail finding an optimal subset of items from an
extremely large number of possibilities and are, not surprisingly, widely studied
in the operations research literature. In the vehicle routing problem (VRP), for
instance, one has a fleet of vehicles and must determine which subsets of customers
should be visited by which vehicles to minimize the total driving distance while
respecting a number of different constraints (see e.g. Drexl (2012)). Similarly,
in the crew pairing problem faced by airlines, one must determine an optimal
subset of flights to be flown by each crew member (see e.g. Anbil et al. (1993);
Andersson et al. (1998)). Typically, the selection problem for each vehicle/crew
member appears as the subproblem in a column generation framework and is
solved as a resource-constrained shortest-path problem. For a general introduction
to this, we refer the reader to Irnich and Desaulniers (2005). This problem involves
computing a least cost shortest path that respects a set of resource constraints. It is
typically solved using a label setting algorithm which implicitly considers all paths
in the network and relies on strong dominance criteria to remove unpromising
labels and reduce the computation time (see e.g. Irnich (2008)).

Other similar selection problems include the traveling salesman problem with
profits (also termed the selective traveling salesman problem), the prize collecting

Solving the Selective Multi-Category Parallel-Servicing Problem 7

steiner tree problem, and the prize collecting arc routing problem. The former is
a variant of the well-known traveling salesman problem in which it is no longer
necessary to visit all customers. Instead, a profit is assigned to each vertex, and
one must maximize the collected profit, balanced with travel cost. A survey on
variants of this selection problem as well as techniques for solving them is given
by Feillet et al. (2005). Similarly, in the prize collecting steiner tree problem each
vertex of a weighted graph is associated with a prize and a cost, and one must find
a spanning tree by using a subset of the nodes that collects a total prize not less
than a certain quota. Haouri et al. (2013) present several compact mixed integer
programming formulations and describe the theoretical properties of each. Near-
optimal solutions for instances containing up to 2500 nodes and 3125 edges are
given. In the prize collecting arc routing problem, a prize is assigned to each edge
(in addition to cost) and is collected the first time the edge is traversed. One must
typically construct a tour in the given network that maximizes the sum of the
collected prizes minus the travel cost. The polyhedral structure of this problem is
described in Aráoz et al. (2006), while Black et al. (2013) consider an extension of
the problem in which the arc prizes are time dependent.

Another well-known selection problem is the knapsack problem, see e.g. Pisinger
(1995). In this problem one is given a set of items, each with an associated weight
and profit, and then one must select an optimal subset of items that maximizes
the profit while respecting a certain weight capacity. As mentioned previously, one
can view the SMCPSP as a series of interconnected multidimensional unit weight
knapsack problems. A recent review of knapsack problem variants and their rela-
tive difficulty is provided by Smith-Miles and Lopes (2012).

Since this problem entails assigning jobs to a machine, this section would not
be complete without a short discussion of the SMCPSP’s relation to job-shop
scheduling. In job-shop scheduling problems one is given a set of jobs where each
job requires a certain processing time on a set of machines that can host one job
at a time. Typically, one must schedule the jobs in a way that minimizes the total
time required to complete the jobs, the tardiness of the jobs, or the idle time of
the machines. Often no preemption is permitted. That is, one cannot end a job
prematurely once it has begun. There are several differences between the job-shop
scheduling problem and the SMCPSP. In the latter, all jobs require servicing by
one machine, jobs cannot be processed outside their service window, the time to
complete all jobs is known a priori, the server can host more than one job at a
time, and preemption is possible. An introduction to job-shop scheduling and its
complexity is given in Garey (1976).

In the case where the problem only has a single category, the problem can
be solved as a Q node-disjoint shortest-path problem, i.e. identifying Q paths
having no nodes in common, such that the total sum of the penalties obtained is
minimized. The network required for this is described in Section 4.2. Bang-Jensen
and Gutin (2001) include a chapter on identification of disjoint paths in digraphs
along with a description of the relevant literature. In our case, however, Q node-
disjoint paths always exist, but we are interested in the least total penalty instead.
Tholey (2005) develops a polynomial algorithm for finding two node disjoint paths
in a directed acyclic graph. Suurballe and Tarjan (1984) construct a dynamic
programming algorithm for identifying minimum total cost pairs of paths which
are edge disjoint in a graph with non-negative costs. The emphasis in our case

8 Troels Martin Range et al.

is somewhat different as we are trying to identify node-disjoint paths in a graph
having possibly negative costs.

4 Underlying networks

Before solving the problem, we discuss two networks which are closely related to
the problem. The first network is a small network representing whether or not a
single job is processed in each of the time periods. We will refer to this network as
the single job network and it is described in Section 4.1. The single job network is
primarily used for preprocessing (see Section 5.1) and as reference notation. The
second network is a full representation of a single stream of jobs, i.e. given that
we have a server with a capacity of one job in each period, the network gives the
possible sequences of (partial) jobs which can be undertaken in each period. This
network can be used to identify upper and lower bounds of an optimal solution
(see Section 4.3). We refer to this network as the full period-job network and it is
described in Section 4.2. We finish this section with a few comments on solving
shortest path problems in acyclic graphs (see Section 4.4) since our networks are
acyclic due to the temporal nature of the scheduling environment.

4.1 Single job network

Given a job, j ∈ J , we will only include the full job or part of the job in an optimal
solution if it reduces the objective. This is because it is allowed to exclude part of
the full job in the solution without incurring a penalty. To exploit this, we set up
a directed graph which can be used to calculate the smallest possible penalty for
a job.

0 1 2 3 4 5 6 7 8

Fig. 2 Single job graph for T = {1, . . . , 7}

The graph is illustrated in Figure 2. It has two nodes for each t ∈ T , where
the first node corresponds to the job being processed in period t, while the second
node corresponds to the job not being processed in period t. We let V = {vt|t ∈ T }
be the set of nodes for jobs being processed (the white nodes) and U = {ut|t ∈
T ∪{0, T +1}} be the set of nodes for the job not being processed (the gray nodes).
Additionally, we have a source node, u0, and a sink node, uT+1, as a part of U
since these correspond to the case where the job is not being processed prior to
the planning horizon or after the planning horizon. In all, we have the node set
N = V ∪ U . The graph has an arc from each node corresponding to period t to

Solving the Selective Multi-Category Parallel-Servicing Problem 9

each node corresponding to period t+ 1 for t = 0, . . . , T . An arc (ut, vt+1) between
a node from ut ∈ U to a node from vt+1 ∈ V indicates that the job is started in
period t+ 1. Likewise, an arc (vt, ut+1) indicates that the job is discontinued after
period t. We denote the set of arcs A. This is the underlying graph for any job in
the problem. The only difference between the jobs is how the penalties are set on
the arcs in the graph. Thus, we will set up an individual cost matrix for each of
the jobs. We will denote this cost matrix as cj for job j, and it can be specified as
follows:

cjhk =

pj,t+1, (h, k) = (vt, vt+1)
0, (h, k) = (ut, ut+1)

pj,t+1 + πs, (h, k) = (ut, vt+1), t+ 1 > aj
pj,t+1, (h, k) = (ut, vt+1), t+ 1 ≤ aj

πe, (h, k) = (vt, ut+1), t < bj
0, (h, k) = (vt, ut+1), t ≥ bj
∞, (h, k) /∈ A

(13)

The single job graph for job j is then denoted Gj(N,A, cj).
A path through this graph corresponds to a schedule for processing the job.

Such a schedule can be divided into subsequences of periods where each subse-
quence either processes the job for the entire subsequence or does not process the
job for the entire subsequence. In the following discussion we denote a subpath
(ut, vt+1, . . . , vs−1, us) for a processing sequence for t < s−1. Similarly, we denote the
subpath (ut, ut+1, . . . , us−1, us) as a non-processing sequence for t < s. The cost of
using a non-processing sequence is always zero. Any path can be composed of a se-
quence of processing sequences and non-processing sequences having identical start
and end nodes. Let αjts be the cost of traversing this processing sequence in the
graph for job j. If αjts ≥ 0, then the processing sequence will yield a non-negative
penalty, and it is therefore better to leave the job unprocessed. In other words, if
αjts ≥ 0, then it is better to use the non-processing sequence (ut, ut+1, . . . , us−1, us)
instead of the path (ut, vt+1, . . . , vs−1, us) as it makes it possible to process an-
other job, i, for the processing sequence which may have negative αits. Likewise, a
partial processing sequence is a subpath (vt, vt+1, . . . , vs−1, us) starting with a pro-
cessing node and having only a non-processing node as the last node. For a given
job j ∈ J , we let βjts be the penalty for the partial processing sequence starting

in node vt and ending in node us. Note that βjts + cjut−1,vt = αj,t−1,s. Figure 3
schematically shows this. The full black path represents the processing sequence
(u2, . . . , u7) with length αj,2,7, while the dashed path indicates the partial pro-
cessing sequence (v2, . . . , u7) with length βj,2,7. Obviously, if we extend the dashed

path by the dotted arc (u1, v2) with cost cju1,v2 , we would obtain the processing
sequence (u1, . . . , u7) with length αj,1,7.

For two nodes, n1, n2 ∈ N , corresponding to job j for the graph Gj(N,A, c
j),

we let δj(n1, n2) be the value of the shortest path from n1 to n2. If no path exists
from n1 to n2, then we define δj(n1, n2) = ∞. In the case where a path exists
between two non-processing nodes, ut, us ∈ U with t < s, a trivial upper bound on
the shortest path is obtained by using the path (ut, . . . , us) which has value 0, i.e.
for each pair ut, us with t < s we have that δj(ut, us) ≤ 0 for all j ∈ J . Next, for a
processing node vt, the value δj(vt, us) is the best possible value for finishing job
j before period s if it is being processed in period t.

Given that there are two (sub-)paths in the single job network, we can com-
pare these in at least two ways. One way is to compare the cost of the two paths

10 Troels Martin Range et al.

0 1 2 3 4 5 6 7 8

Fig. 3 Relationship between αjts and βjts

– the one with the lowest cost is deemed better than the other path. The sec-
ond way of comparing the paths is on the utilization of the server. Intuitively, if
one path utilizes the server less than the other path, then the first path is con-
sidered to be better, as it allows for other paths to utilize the server more. To
be more precise, let P = (wt, . . . , ws) and P ′ = (w′t, . . . , w

′
s) be two paths, with

t < s, and where wt = w′t and ws = w′s. We say that P is more flexible than
P ′ if {w ∈ P ′|w ∈ U} ⊂ {w ∈ P|w ∈ U}. A more flexible path does not uti-
lize the server in periods where the less flexible path does not utilize the server.
Furthermore, the more flexible path has some periods where it does not utilize
the server but where the less flexible path does. Hence, the more flexible path
allows other paths to utilize the server in these periods. Note that the process-
ing sequence (ut, vt+1, . . . , vs−1, us) is the least flexible (ut, us)-path, i.e. any other
(ut, us)-path in the graph will be more flexible than the processing sequence. On
the other hand, the non-processing sequence (ut, ut+1, . . . , us−1, us) is the most
flexible (ut, us)-path. This is an important feature of the processing sequences and
non-processing sequences, which we will exploit in Propositions 3-5.

4.2 Full Period-Job Network

In each period we can either undertake jobs or have no jobs being serviced. Let
E = {et|t ∈ T } be the set of nodes indicating that no job is undertaken in the
period t ∈ T . For each job-time combination in W, a node is added and we refer
to an element of this set as wjt ∈ W. Finally, a source node, o, and a sink node, d,
are used. This gives the node set N =W ∪ E ∪ {o, d}.

The graph is layered and has a layer for each period t ∈ T as well as a layer
for the source node and a layer for the sink node. We label the layer for the source
node as 0 and label the layer for the sink node as T +1. An arc exists for each pair
of nodes in adjacent layers in the direction of increasing layers. The cost of an arc
(h, k) depends on three factors: (1) if k = wj,t+1 ∈ W, then we put cpenhk = pj,t+1,
otherwise we put cpenhk = 0; (2) if h = wjt ∈ W with t < bj and k 6= wj,t+1 ∈ W,
then job j is finished prematurely and we put couthk = πe, otherwise we put couthk = 0;
and (3) if k = wj,t+1 ∈ W with t+ 1 > aj and h 6= wjt ∈ W, then job j is started
late and we put cinhk = πs, otherwise we put cinhk = 0. The cost of arc (h, k) is then
chk = cpenhk + couthk + cinhk.

Solving the Selective Multi-Category Parallel-Servicing Problem 11

4.3 Shortest Path Based Bounds

It is possible to identify simple bounds on the problem by observing that a path
through the full period-job network described in Section 4.2 yields a single stream
of jobs to be executed. Hence, solving a shortest (o, d)-path problem in the full
period-job network yields a least cost sequence of nodes having one node for each
layer and where the nodes either correspond to a job being processed in the period
or the server being idle for a single stream in the period. If Q = 1, then this is
clearly an optimal solution for the SMCPSP. However, this is not the case for
Q ≥ 2, but we can use the graph to obtain upper and lower bounds on the optimal
solution value for SMCPSP.

Let z(M) be the value of the shortest (o, d)-path in the subgraph induced by
M ⊆ N where o, d ∈ M . We let (o, v1, . . . , vT , d) be a path through the induced
subgraph. It is clear that it is not possible to find a better (o, d)-path in the graph
than one with value z(N), thus duplicating this path Q times will yield a lower

bound solution i.e. we have that Qz(N) ≤ P ∗.
An upper bound can be obtained by iteratively removing nodes from the graph.

The method begins with M1 = N and iteration counter i := 1. The shortest
(o, d)-path problem on the subgraph induced by Mi is solved to obtain the path
(o, vi1, . . . , v

i
T , d). If vit = wjt ∈ W, then remove vit as well as all nodes wht with

(j, h) ∈ K from Mi to obtain Mi+1. We increment i and repeat this process if
i ≤ Q, otherwise we terminate with an upper bound value z(M1) + . . . + z(MQ).
This is indeed an upper bound as we only construct paths which are compatible
with the previously obtained paths. That is, by construction we have that

Qz(N) ≤ P ∗ ≤ z(M1) + . . .+ z(MQ)

if the sequence M1, . . . ,MQ is obtained using the method described above. Note
that we do not exclude any nodes from E, and it is therefore always possible to
use the path (o, e1, . . . , eT , d) having the cost of zero. Consequently, the heuristic
construction will be trivially upper bounded by zero.

4.4 Comments on Shortest Path algorithms in Acyclic Graphs

In the following sections we use shortest path algorithms extensively, and a few
comments are needed prior to this discussion. First of all, recall that the networks
in this paper are all acyclic networks which make the algorithms for solving shortest
path problems efficient (polynomial worst case time complexity in the number of
arcs). Now, suppose that the acyclic graph is given by G(N,A), where N is the set
of nodes and A is the set of arcs. The shortest path problem can be solved easily
by first sorting the nodes in topological order, and then identifying the shortest
path to each of the nodes in this order. See Cormen et al. (2001) or Ahuja et al.
(1993) for introductions to solving shortest path problems. We will refer to this
approach as a forward pass where we identify the shortest (o, v)-path for v ∈ N .
In later sections we use the shortest (v, d)-path for any v ∈ N . This is also easy
to identify as we simply have to identify the shortest (d, v)-path for the nodes in
a reverse topological order, i.e. we start with d and then extend to the immediate
predecessors of d to get their shortest paths. For each of these nodes we would
then extend to their predecessors and so forth.

12 Troels Martin Range et al.

5 Problem Size Reduction

The SMCPSP is highly structured, and we can exploit this structure to assist the
exact solution procedure. We provide two ways of simplifying the problem. The
first way is to use the single job network to identify jobs that will never be started
nor ended in some periods. This is described in Section 5.1. In the second approach,
which is described in Section 5.2, we use the single job network for different jobs
to compare these and identify which jobs are better than others.

5.1 Single Job Preprocessing

A (u0, uT+1)-path in the single job network described in Section 4.1 gives which
periods the job j should be processed. The value δj(u0, uT+1) of a least cost
(u0, uT+1)-path in this graph is the best possible contribution of job j. The path
from u0 to uT+1 using only nodes from U will have cost zero, and if the least
cost (u0, uT+1)-path has value zero then we will never include job j in the optimal
solution of the SMCPSP. The reason is that we are indifferent to whether or not to
include the job penalty wise. But if we include the job j, then it might use server
capacity which is better used for jobs yielding negative penalties. In general, we
will always remove paths yielding a zero penalty.

The above argument will be used repeatedly to remove paths – thereby remov-
ing the corresponding (partial) jobs – which yield a zero penalty, as they may use
server capacity that can be better used for other jobs. Note that we may in some
cases be able to include the job without pushing other jobs out of the solution.
In that case, we have alternative optimal solutions, where we select the one that
excludes jobs yielding a zero total penalty. Thus the preprocessing below aims at
identifying a solution excluding as many zero total penalty jobs as possible.

In the case where the least cost (u0, uT+1)-path is negative it may be prudent
to include either the full job or parts of the job in the solution. We can, however,
identify periods for which we will never start, finish, or continue the job.

Given an arc (n,m), where either n ∈ V or m ∈ V with cost cjnm, it is easy to
find a least cost (u0, n)-path as well as a least cost (m,uT+1)-path. Let the values
of these least cost paths be δj(u0, n) and δj(m,uT+1), respectively. The value of the

least cost path including the arc (n,m) must then be δj(u0, n)+cjnm+δj(m,uT+1)
and if this value is non-negative, then the arc will never be used in the optimal
SMCPSP solution we are seeking. However, we can do better than this, as we
can eliminate certain arcs which may be on paths yielding negative costs. This
elimination is described in the following two propositions.

Proposition 1 Let j ∈ J and suppose that for some t : aj < t ≤ bj the penalty

pjt > 0. Then it will never optimal to start job j in period t.

Proof If we have to start the job in period t, then the path in the graph has to
pass through the node ut−1. From this node two paths exist to node ut+1, one
passing through vt, and one passing through ut. Comparing the costs of these two
paths, we have that cut−1,ut + cut,ut+1 = 0 < cut−1,vt + cvt,ut+1 = πs + pjt + πe

for pjt > 0. Hence, it is not optimal to pass through vt on the path from ut−1

to ut+1. Next, from the node ut−1 two paths to vt+1 exist, one passing through

Solving the Selective Multi-Category Parallel-Servicing Problem 13

ut, and one passing through vt. Again comparing the two paths costs we have
cut−1,ut + cut,vt+1 = πs + pj,t+1 < πs + pjt + pj,t+1 = cut−1,vt + cvt,vt+1 , and it will
again not be optimal to pass through vt if pjt > 0.

The consequence of Proposition 1 is that if we start a job late, it will always
be better to delay starting the job until the penalty is non-positive, and we can
therefore eliminate the possibility of using the arc (ut−1, vt). As we can eliminate
the possibility of starting a job late in a period, we can also eliminate the possibility
of prematurely ending a job in a period. This is what the next proposition states:

Proposition 2 Let j ∈ J and suppose for some t : aj ≤ t < bj the penalty pjt > 0.

Then it will never be optimal to end job j between period t and period t+ 1.

Proof Two partial paths exist which end job j from period t to period t+ 1. These
paths are vt−1 → vt → ut+1 and ut−1 → vt → ut+1. Now, observe that the first
path is worse than the path vt−1 → ut → ut+1 because cvt−1,ut + cut,ut+1 = πe <

pjt + πe = cvt−1,vt + cvt,ut+1 , and the second path is worse than ut−1 → ut → ut+1

as cut−1,ut + cut,ut+1 = 0 < πs + pjt + πe = cut−1,vt + cvt,ut+1 .

As a consequence of Proposition 2, it will be better to end the job earlier than time
t or not to end it between time t and time t+1 than to end it between the periods
t and t+ 1. Thus, we will never use the arc (vt, ut+1) and it can be eliminated.

When eliminating arcs, we reset their cost values to infinity, i.e. if we eliminate
arc (n,m) for job j, we put cjnm =∞. We will use this to distinguish between the
arcs that are usable and the arcs which are not usable in the dynamic programming
procedure, which is described in Section 6.

The elimination of arcs described above will tend to become stronger as the
penalties of the individual job-time combinations on average get larger. Further-
more, if the penalties πs and πe increase, the elimination of arcs will also become
stronger, as more shortest paths using arcs having these penalties will become
non-negative. This is verified by the computational experiments discussed in Sec-
tion 7.2.

5.2 Job Ranking and Elimination

The capacity in each period is limited by Q, and it will not be optimal to undertake
jobs for which Q better jobs exist. In this section we describe how to rank the jobs
such that a job guaranteeing to yield a worse solution if it is undertaken without
undertaking another better job will be ranked worse than the other job. Intuitively,
given two jobs i, j ∈ J catc , job i is better than job j if for any way of processing
job j we can identify a way of processing job i which is at least as flexible and
has no larger cost than the way of processing job j. We will exploit the fact that
processing sequences are the least flexible ways of processing a job in a specific
period. This allows us to make direct comparisons on cost as all other paths are
no less flexible than the processing sequences. We formalize the job ranking below.

In this section we only compare jobs within the same category. This is due to
the fact that even though a job from one category is better than a job in another
category, it may happen that the second category overall has better jobs than the
first category. Hence, if we first rank jobs across categories and later eliminate jobs
based on this ranking, we may end with a non-optimal solution.

14 Troels Martin Range et al.

Given a (ut, us)-processing sequence for job j ∈ J catc , then if another job i ∈
J catc exists with αjts > δi(ut, us), it is better to use the shortest path yielding
the value δi(ut, us) for i than to use the (ut, us)-processing sequence for job j.
Not only is the cost of using the shortest path for job i less than the cost of
using the (ut, us)-processing sequence for job j, but it may also be more flexible
than the (ut, us)-processing sequence, because it may have more elements from U

than the processing sequence. Furthermore, if αjts = δi(ut, us) and i < j, then
for tiebreaking we say that it is better to use the path yielding δi(ut, us) for job
i than using the (ut, us)-processing sequence for job j. Finally, if αjts = δi(ut, us)
and a (ut, w

i
t+1, . . . , w

i
s−1, us) exists having value δi(ut, us) with wir ∈ U for some

r ∈ {t + 1, . . . , s − 1}, then the path (ut, w
i
t+1, . . . , w

i
s−1, us) has the same value

for job i as the (ut, us)-processing sequence while being more flexible, as it has
more elements from U than the processing sequence. As a consequence, the path
(ut, w

i
t+1, . . . , w

i
s−1, us) gives the possibility of including another job with negative

penalty in period r. Observe that if αjts ≥ 0, then we can exploit the first and
the last conditions, as any other job will have δi(ut, us) ≤ 0. If δi(ut, us) < 0, then
we have found a sequence which has a strictly lower cost. On the other hand, if
δi(ut, us) = 0, then we know that the non-processing sequence (ut, ut+1, . . . , us)
using only nodes from U will have cost 0, which satisfies the last condition. Hence,
we are only interested in the situations where αjts < 0.

In order to exploit the fact that one job can be considered better than another
job, we define three sets of jobs which are regarded as better than job j if we only
observe the period from t to s. First we define the set of strictly better jobs as

D1
jts = {i ∈ J catc |αjts > δi(ut, us)}

Next, the set of jobs that are only being more flexible, but which have the same
cost as job j, is given by

D2
jts =

{
i ∈ J catc

∣∣∣∣αjts = δi(ut, us),

∃r : t < r < s ∧ wir ∈ U

}
where wir is a part of a path (ut, w

i
t+1, . . . w

i
s, us) that has a cost equal to δi(ut, us)

for job i. Finally, the set of jobs that have the same cost, but which have smaller
indices, is defined as

D3
jts = {i ∈ J catc |αjts = δi(ut, us), i < j}

The latter set is used for tie breaking. Now, the set of jobs which are better than
the (ut, us)-processing sequence for job j is the union of the three sets above

Djts = D1
jts ∪D

2
jts ∪D

3
jts (14)

When the size of the set Djts increases, there are more jobs which are better than
job j for the period pair t, s. Intuitively, if the size of Djts is sufficiently large for all
pairs of t, s, then it is less likely that job j will be included in an optimal solution
for the SMCPSP. This gives rise to the following proposition for eliminating jobs:

Proposition 3 Let j ∈ J catc for category c ∈ C and let Djts be defined as in (14). If

|Djts| ≥ Q for all pairs t, s ∈ T with aj − 1 ≤ t < s ≤ bj + 1 and αjts < 0, then an

optimal solution for SMCPSP exists which does not include job j.

Solving the Selective Multi-Category Parallel-Servicing Problem 15

Proof Suppose that j ∈ J catc for c ∈ C and for one pair t, s with aj−1 ≤ t < s ≤ bj+1
the processing sequence (ut, vt+1, . . . , vs−1, us) for job j is a part of the optimal
solution S∗ = (S∗1 , . . . ,S∗T). As argued above, if αjts ≥ 0, then the processing
sequence can be replaced by the sequence (ut, ut+1, . . . , us−1, us) having the same
or better cost than the processing sequence for job j. Hence, assume that αjts < 0
and assume that |Djts| ≥ Q. Then at least one i ∈ Djts must exist which is not
part of the optimal solution. This job i can be in one or more of the sets D1

jts,

D2
jts, and D3

jts. If i ∈ D1
jts, then we can replace the processing sequence by a better

sequence for job i, and the solution would therefore not be optimal. On the other
hand, if i ∈ D2

jts ∪D
3
jts, then a feasible sequence for job i exists which yields the

same cost, and we can therefore replace the processing sequence for job j with the
sequence for job i. Hence, in any case we can replace the processing sequence for
job j with a sequence for job i, which is no worse. As this is true for any solution
including the processing sequence for job j, it is also true for an optimal solution
including the processing sequence for job j. Hence, we can identify an alternative
solution excluding job j.

Proposition 3 enables us to eliminate all jobs satisfying the condition before solving
the actual problem, thus reducing the size of the problem. However, one must
exercise caution when using Proposition 3. This is due to elimination based on the
set D2

jts, which may result in two jobs both being deemed better than the other,
hence risking the possibility of eliminating both jobs. As a consequence, we apply
the simpler version where we limit Djts to the union of D1

jts and D3
jts and thereby

avoid the problem altogether.
The remaining jobs are then included when solving the problem. These jobs

can be ranked depending on the period, i.e. identifying which jobs are best to start
in a period and which jobs are best to end in a period. Hence, in a given period,
we first rank the jobs which can be started in the period (see Proposition 4) and
then we rank the jobs which can be ended in a period (see Proposition 5). This
is done by comparing (partial) processing sequences beginning in the period for
one job j with the corresponding shortest path value for another job i. We may
thereby show the existence of better paths, both cost wise and flexibility wise, for
job i for each of the (partial) processing sequences for the first job j.

We begin with the start ranking for a period. If a job j is started in period
t, then a (ut−1, us)-processing sequence has to be undertaken for job j for some
s > t. However, if we have another job i which can also be started in period t and
for which we can construct a path for arbitrary s > t including the arc (ut−1, vt)
that has a cost no larger than using the (ut−1, us)-processing sequence for job j

but may be more flexible than the (ut−1, us)-processing sequence, then we would
start job i instead of job j. Hence, if we start job j in period t, then we have
to ensure that job i is also started in period t or has been started in a previous
period. This is the main idea in Proposition 4.

Proposition 4 Let j ∈ J catc for category c ∈ C, and for each i ∈ J catc let (vt, w
i
t+1, . . . , w

i
s−1, us)

for vt ∈ V and us ∈ U be a path having value δi(vt, us). If

αj,t−1,s ≥ δi(vt, us) + ciut−1,vt (15)

for all t < s ≤ bj + 1 with αj,t−1,s > δi(vt, us) + ciut−1,vt for some s, then it will never

be better to start job j in period t without either starting job i in period t or processing

job i in both the periods t− 1 and t.

16 Troels Martin Range et al.

Proof Suppose that jobs i, j ∈ J catc and suppose that (15) holds for all t < s ≤
bj + 1. In the case where job i is not being processed in period t − 1 and period
t, we have the following: If we start job j, then regardless of which time s we end
job j we can identify a sequence for job i which yields no more penalty than job
j. Hence it will not be better to start job j without starting job i. If job i is being
processed in the periods t− 1 and t, then it will take up a position and only Q− 1
positions are left for job j, in which case we can freely start job j because the
better job i is already started.

Proposition 4 can be used to rank the jobs for starting. If (15) holds as an equality
for all t < s ≤ bj , then the two jobs can be viewed as equally good, and we then
rank on the job index, i.e. we say that it is better to start job i than job j if
i < j. Now let j ∈ J catc and let Rsjt ⊆ J

per
t ∩ J catc be the set of jobs i satisfying

Proposition 4 as well as the jobs with a lower index satisfying (15) with equality
for all t < s ≤ bj , i.e. it is better to start each job i ∈ Rsjt in period t than starting
job j in period t. Clearly, we have that if |Rsjt| ≥ Q, then we will never start job j

in period t.
Now we turn to the ranking of jobs which can be ended in a period. The idea is

that if we have (at least) two jobs, i, j, receiving service from the previous period
and we are trying to end one of the jobs, say job j, prematurely, then if job i can
obtain a better cost than job j while being more flexible in the upcoming periods,
we will rather end job j than job i. Hence, we would either end both jobs, end job
j, or continue both jobs. This is basically what Proposition 5 states.

Proposition 5 Let j ∈ J catc for category c ∈ C and for each i ∈ J catc let (vt, w
i
t+1, . . . , w

i
s−1, us)

for vt ∈ V and us ∈ U be a path having value δi(vt, us) with bi ≤ bj . If

βj,t−1,s ≥ δi(vt, us) + civt−1,vt (16)

for all t < s ≤ bj + 1 with βj,t−1,s > δi(vt, us) + civt−1,vt for some s, then it will never

be better to continue job j instead of job i in period t without continuing job i in period

t.

Proof Suppose that S∗ = (S∗1 , . . . ,S∗T) is an optimal solution and i, j ∈ S∗t−1 are
included in the optimal solution in period t. Furthermore, suppose that jobs i, j are
defined as in Proposition 5. If we continue job j and discontinue job i from period
t−1 to period t, we incur the penalty βj,t−1,s for some future period s where job j

is discontinued. However, for this period we could use (vt−1, vt, w
i
t+1, . . . , w

i
s−1, us)

for job i, which yields a cost δi(vt, us) + civt−1,vt that is no larger than job βj,t−1,s.
Thus, we can always exchange the partial processing sequence (vt, . . . , vs−1, us) for
job j with the corresponding best path for job i and thereby get a solution which
is no worse.

As for the insertions we can establish the set of jobs which are better to end after
period t− 1 compared to a given job j. We denote as Rejt the set of all the jobs i
satisfying Proposition 5 as well as the jobs i < j satisfying (16) with equality for
all t < s ≤ bj + 1. Note that we cannot use the relation |Rejt| ≥ Q to state that
we will never end job j in period t. This is due to the fact that not all elements
of Rejt may be present in the set St−1, and therefore it may still be of interest to
end job j after period t− 1.

Solving the Selective Multi-Category Parallel-Servicing Problem 17

As mentioned in the beginning of this section, the ranking and elimination
of jobs is only feasible for jobs within the same category. As a consequence, we
have that if the number of categories increases while the number of jobs and the
capacity remain the same, then ranking and elimination become weaker as we do
not have as many jobs in each category to use for the ranking.

6 A Dynamic Programming Approach

The SMCPSP has a structure which lends itself to dynamic programming. In each
period we have to identify a combination of at most Q, compatible jobs and we
can construct this combination without any restrictions except the cost, which
is calculated based on the combination of jobs in the surrounding periods. In
terms of dynamic programming we can use the periods as stages and the possible
combinations of the jobs in each of the periods as the states. In this section we
will use the terms stage and period interchangeably.

The dynamic programming is based on the construction of feasible combina-
tions of jobs, S ∈ Ft, in increasing periods, t. If necessary, we use subscript t for
St to explicitly state that the set St is from Ft. We term a feasible combination of
jobs S, indicating a state set. In this section we will use the following:

– Pt(S) is the minimal cost of obtaining S in stage t using any sequence of sets
(S1, . . . ,St−1) ∈ F1 × . . .×Ft−1.

– Lt(S) = (Pt(S),S) is the state corresponding to state set S at stage t, where
S ∈ Ft.

– St = St∩J pert+1 is the set of jobs included in St in stage t which are not required

to finish between period t and period t+ 1, i.e. bj > t for j ∈ St and bj = t for
j ∈ St \ St. We will refer to the set St as the reduced state set.

– Λt is the set of efficient states in stage t. A state is efficient if it is not dominated
by any other state in the stage. Sufficient criteria for dominance are described
in Section 6.1.

– J st = {j ∈ J |cjut−1,vt <∞} is set of jobs which can be started in period t.

– J et = {j ∈ J |cjvt−1,ut < ∞} is the set of jobs which can be discontinued after
period t− 1.

We elaborate on some of these elements in what follows. To identify the small-
est possible value of the objective function for a state set S, we reformulate the
objective (3) as a recursion

Pt(S) =

∑
j∈S

pjt, t = 1

∑
j∈S

pjt + min
S′∈Ft−1

Pt−1(S′)+
πsft−1,t(S′,S)+
πegt−1,t(S′,S)

 t > 1

(17)

where the value of state S is calculated as the direct penalty received for the state
and the minimum penalty of shifting from a set of jobs in the previous period t−1
to the set of jobs S in period t.

Proposition 6 Let St ∈ Ft be a feasible combination of jobs in period t ∈ T . Then

Pt(St) derived by recursion (17) yields the minimum penalty for obtaining St for any

sequence (S1, . . . ,St) ∈ F1 × . . .×Ft.

18 Troels Martin Range et al.

Proof For t = 1,
∑
j∈S1 pj1 is exactly the cost of using set S1 in period 1. Now

suppose that t = 2 and we have found P1(S1) for all S1 ∈ F1. Let S2 ∈ F2, and
suppose that P2(S2) is not the minimum penalty value for S2. Then an S1 ∈ F1

must exist such that

min
S′∈F1

{
P1(S′) + πsf1,2(S′,S2) + πeg1,2(S′,S2)

}
>

P1(S1) + πsf1,2(S1,S2) + πeg1,2(S1,S2)

But this is in contradiction to the left-hand side being minimal. The same argument
is valid for t > 2, and we thereby have that recursion (17) will give the minimum
penalty for obtaining any state St ∈ Ft for any t ∈ T .

Proposition 7 P ∗ = min{PT (S)|S ∈ FT } is the optimal value for SMCPSP.

Proof By proposition 1 we know that PT (S) is the minimum value for obtaining
state S ∈ FT . Then selecting the minimum value feasible end state, S∗, must
be the optimal solution. If it is not, then another solution must exist such that
S′ ∈ FT yielding a better end state solution, but this is in contradiction with S∗
having minimal value.

From this recursion a dynamic programming algorithm can be derived, where
we iterate through each stage and generate the possible combinations based on
the states from the previous stage. We will elaborate further on the dynamic
programming algorithm in Section 6.2.

6.1 State Dominance

A vital part of a dynamic programming algorithm is the dominance used to reduce
the number of possible, efficient states. Given two states in the same stage, we
say that the first state dominates the second state if we can prove that for any
extension of the second state to the end stage an extension of the first state to
the end stage exists such that the extension of the first state will have no larger
cost than the extension of the second state. In the SMCPSP it is not possible to
dominate directly on the cost component as the future cost is dependent on the
jobs in the current state. In this section we will present two sufficient conditions
for dominance.

The first type of dominance assumes that for each reduced state set S we know
a lower bound on the value on any extension of S to the end stage as well as an
upper bound on the best feasible extension of S. We denote these two bounds as
LBt(S) and UBt(S), respectively. Now we have the following dominance rule:

Dominance 1 If S1,S2 ∈ Ft then L(S1) dominates L(S2) if

Pt(S1) + UBt(S
1
) ≤ Pt(S2) + LBt(S

2
)

which is true because the left-hand side is the value of a feasible extension of S1,
whereas the right-hand side is a lower bound on the value of any possible extension
of S2.

The lower bound of the extension of state S2 is easily obtained by using the
full period-job network by solving a shortest (d, n)-path problem in the reverse full

Solving the Selective Multi-Category Parallel-Servicing Problem 19

period-job network for any node n in layer t. Let this shortest path value be γn.
Then a lower bound on the value of any extension is obtained as

LBt(S
2
) = (Q− |S2|)γet +

∑
j∈S2

γwjt

which is the sum of the shortest path values from d to each node corresponding

to job j ∈ S2 and the shortest path value from d to the empty server node et in
layer t for each of the unused positions after period t.

An upper bound on the extension of S1 can be derived by any feasible extension

of S1 to the end stage. We could modify the approach described in Section 4.3 and

not start at the origin node but instead use elements of S1 as the initial nodes for
the shortest paths. This may, however, be time consuming as we have to do this
for each individual reduced state set. Instead, we rely on a global upper bound
for the full problem. If an upper bound solution of value zub has been found for
the full problem, then this bound along with dominance criterion 1 can be used to
eliminate states. If a state set S has zub ≤ Pt(S)+LBt(S), then it is never possible
to reach a solution with lower value than zub by extending S, and we can therefore
eliminate state Lt(S). Thus, it is of interest to have as tight an upper bound as
possible. This approach has the advantage that we do not need to compare every
state with every other state, but only with the known upper bound. Hence, the
running time is significantly faster; however, we may not eliminate all states that
can be removed.

As noted earlier, all state sets in a stage have the same set of feasible extensions.
The direct penalty, pjt, of processing a job j in a stage t is independent of the
jobs processed in the earlier stages. This is, however, not the case for the late-start
penalty πs and the early-end penalty πe, where we need to consider the immediate
predecessor states. The idea of the next dominance criterion is that we remove all
jobs from one state set and instead insert all the jobs from the other state set in
the upcoming stage. The extensions of the two state sets will be the same state
set. Now, if the first modified state set has a lower penalty than that of the second,
unmodified state set, then the second state set will be dominated by the first state
set. This is due to the fact that any extension of the second state set can be
obtained more cheaply by a similar extension of the modified first state set.

Observe that it is only necessary to take the reduced state sets into consider-
ation because all modifications are done in the next stage. Suppose that we have

the two reduced state sets S1,S2 derived from two state sets S1,S2. To obtain S2

from S1 we have to remove the elements of S1 \S2 from S1 and insert the elements

of S2 \ S1 into S1. In the first case we incur an additional penalty of πe|S1 \ S2|,
and in the second case we incur an additional penalty of πs|S2 \ S1|. As we obtain
the same state in the next state, the penalties of the individual elements cancel

out. Note that in the case where S2 is extended in such a way that elements of S2

are prematurely ended or elements not already in S2 are started, we have that this
can be done with no larger penalty (and in some cases with strictly lower penalty)

for S1. This gives the following dominance criterion:

Dominance 2 If S1,S2 ∈ Ft, then Lt(S1) dominates Lt(S2) if

Pt(S1) + πe|S1 \ S2|+ πs|S2 \ S1| ≤ Pt(S2)

20 Troels Martin Range et al.

This criterion has the following implications. First, if πs = πe = 0, then it is
only necessary to do the following comparison Pt(S1) ≤ Pt(S2), which makes
the problem very easy.1 However, the larger the values of πs and πe are, the
more difficult it is to use this dominance criterion for dominance. Secondly, an

important special case of dominance criterion 2 is when S1 and S2 have S1 = S2;
the dominance reduces to comparing the cost of obtaining the states, i.e. Lt(S1)

dominates Lt(S2) if Pt(S1) ≤ Pt(S2) and S1 = S2. Finally, this dominance criterion

gives a maximum difference between two efficient states as |S1 \ S2| ≤ Q and

|S2 \ S1| ≤ Q, i.e. we have that Pt(S2) − Pt(S1) < Q(πs + πe). Hence, if we keep
track of the minimum value of any state obtained in a stage, then we can simplify
the dominance check but at the expense of not dominating all possible states. If
Pmint = min{Pt(S)|S ∈ Ft}, we can eliminate S2 if Pt(S2) ≥ Q(πs+πe)+Pmint . We
apply this version of the dominance check in our dynamic programming algorithm.

6.2 Algorithm

The dynamic programming algorithm is based on the extension of efficient states
from one stage to the next. In the following discussion we will assume that we
have identified a set of non-dominated states for period t− 1 (and therefore know
the set Λt−1) and that we are going to construct the set Λt.

Let L(St−1) ∈ Λt−1 and St ∈ Ft be a feasible state set for the period t. If St is
an extension of St−1, then St is composed of the jobs carried on from period t− 1
to period t and jobs newly inserted in period t. We put Ot = St−1 ∩ St ⊆ J pert to
be the set of (old) jobs staying in the state set and It = St \St−1 ⊆ J pert to be the
set of newly inserted jobs in the state set. Hence, St = Ot ∪ It is partitioned into
the set of old jobs and the set of new jobs. We say that Ot and It are compatible
if Ot ∪ It ∈ Ft and Ot ∩ It = ∅. The requirement of Ot and It being disjoint is to
avoid counting the penalty of the intersection of these sets twice. If this penalty
is negative, then it would be prudent to add the element in the intersection twice,
which should not be possible. Note that any efficient state set in Ft can be obtained
using this partition. The cost of the partition for the continued jobs is given by

dot (S,O) = Pt−1(S) +
∑
j∈O

pjt + |(S ∩ J pert) \ O|πe (18)

where dot (S,O) is the penalty incurred when extending S ∈ Ft−1 while only keeping
the jobs O ⊆ S in the new state. Observe that the set O can be obtained from
any state set S containing O, and we can therefore get many different values of
dot (S,O) depending on the state sets S. We are interested only in using the S for
which dot (S,O) is minimal, and we therefore put the cost of O to be

dot (O) = min
{
dot (S,O)|Lt−1(S) ∈ Λt−1,O ⊆ S

}
(19)

The cost of the newly inserted jobs is calculated as

dnt (I) =
∑
j∈I

pjt + |I ∩ J pert−1|π
s (20)

1 In fact, in the case where πs = πe = 0 we would not solve the dynamic programming, but
rather use the approach described in section 2.

Solving the Selective Multi-Category Parallel-Servicing Problem 21

where dnt (I) is the penalty of inserting the jobs I into a state in period t. The
penalty of the composite state set dt(O, I) is then upper bounded by dt(O, I) ≤
dot (O)+dnt (I). If no job has been removed from St−1 and reinserted in It, then this
bound holds as an equality i.e. if (St−1 \O)∩ I = ∅ then d(O, I) = dot (O) + dnt (I).
It is, however, always possible to select the partition of O ∪ I such that we avoid
reinsertion of already removed jobs. We can now rewrite the recursion (17) in
terms of the sets O and I as follows:

Pt(St) = min

dt(O, I)

∣∣∣∣∣∣∣
St = O ∪ I,
O ⊆ S : Lt−1(S) ∈ Λt−1,
I ⊆ J per

t ,
O ∩ I = ∅

 (21)

Hence, it is sufficient to construct the partial state sets O and I and merge these
into full state sets St = O ∪ I. Thus, in our proposed algorithm, we suggest to
construct the sets O and I such that we exploit the information from Proposition 4
and Proposition 5 and then merge the compatible pairs to form the state sets St.
We elaborate on this below.

The sets O are constructed by removing jobs from state sets S with Lt−1(S) ∈
Λt−1. It is only allowed to have elements from S in the set O. Hence the number

of newly constructed O-sets is at most 2|S|. As we have proven that it is never
optimal to discontinue some jobs after period t−1, we only consider the jobs from
S∩J et for removal. The number of possible sets O can be further reduced if we take
Proposition 5 into account, i.e. we only remove a job j from S if all jobs i having
i ∈ Rejt ∩ S are also removed. We let Γt be the set of all generated (dot (O),O).

The construction of the sets I is slightly more complicated than the construc-
tion of the O-sets. First of all, we can only construct sets of jobs in which the jobs
are compatible. Hence, in the following, we consider a single category c ∈ C and
the jobs in J ′ = Jct ∩ J st for which it is feasible to start the job in period t and
for which we have not proven that it will never be optimal to start the job in the
period t.

Let (n1, . . . , nk) be a sorted sequence of the jobs from J ′, i.e. for each i =
1, . . . , k the job ni ∈ J ′. The sequence is sorted such that for 1 ≤ i < j ≤ k

the job nj is not ranked better than job ni, i.e. ni /∈ Rsnjt. This sorting can be
achieved through a topological sorting of the jobs using the ranking as arcs. Now
let {o, n1, . . . , nk, d} be the set of nodes in a graph having one arc from o to each ni
for i = 1, . . . , k and one arc from each ni to each nj with i < j as well as an arc from
each ni to d. Then we have an acyclic graph where an (o, d)-path containing at
most Q nodes from {n1, . . . , nk} corresponds to an insertion set, I. Identifying all
such paths from the graph corresponds to identifying the set of insertion sets. The

number of paths having a length of at most Q is
∑Q
q=0 (|J

′|
q), which is polynomial

in size for fixed Q, but exponential in size for increasing Q. Hence, it is critical
that this size is reduced. The ranking has to be taken into account, which we do
next.

We are interested in exploiting Proposition 4 to limit the number of insertion
sets generated. It states that if job ni is ranked better than job nj then it either
has to be started at the same time as job nj or it has to have been started in an
earlier period. Hence, if we include job nj in I, then a position for job ni has to
be reserved in O ∪ I. Consequently, as we have sorted the jobs according to rank,
a path visiting node nj either has to have visited node ni as well, or any extension

22 Troels Martin Range et al.

of the path has to include at most Q−1 of the nodes in J ′. The first case is where
job ni is in I, while the latter case corresponds to requiring that node ni is in
the set O. In general we must reserve positions for all ni ∈ Rsnjt which are not a
part of the path prior to visiting node nj . This reservation of positions effectively
reduces the number of I-sets constructed. We denote the set of generated pairs as
(dnt (I), I) for Θtc.

After constructing the sets Γt and Θtc it is necessary to merge the elements
into states, i.e. to construct (Pt(S),S) where S = O ∪ I for O ∈ Γt and I ∈ Θtc
for c ∈ C such that S ∈ F . The first requirement is that the number of jobs in O
and I does not exceed Q. The second requirement is that either O = ∅ or I = ∅
or all jobs in O and I have to be of the same category. The third requirement is
that I ∩ O = ∅, i.e. the sets do not have any jobs in common. Finally, the fourth
requirement is that for each job j ∈ I the set Rsjt ⊂ O ∪ I, i.e. each of the jobs
which are better to insert in period t has to be included in the state set. If any of
the four requirements is not satisfied, then the state set S = O ∪ I is discarded.
On the other hand, if all the requirements are satisfied, then the state set yields a
new possible state with cost dot (O) + dnt (I). Clearly, there can be several different
ways to construct the same state set S by merging different elements from Γt and
Θtc, and we choose only the state with the least cost. If more than one merging
attains this least cost, we choose arbitrarily. In practice, we have a duplicate check
based on a key value of the state. This can be implemented using a hashtable.

1 Λ0 ← {(0, ∅)};
2 for t← 1 to T do
3 Γt ← Construct O sets (Λt−1,t);
4 foreach c ∈ C do
5 Θtc ← Construct I sets (t,c);
6 Λt ← Λt∪ Merge (Γt,Θtc);

7 end
8 Λt ← Eff (Λt);

9 end

Algorithm 1: SMCPSP dynamic programming

The dynamic programming procedure is summarized in Algorithm 1. An initial
set of efficient states for period 0 is initialized to be a dummy state (0, ∅). The algo-
rithm then iterates through the stages. In each stage t the set of Γt is constructed
by identifying the O-sets from the efficient states in the previous stage. For each
category the set of possible new insertions is then constructed by setting up the
graph structure described above. After constructing Θtc the algorithm merges this
with the elements from Γt. The algorithm prunes inefficient states from Λt once all
categories have been considered. This is done by applying the dominance relations
which are described in Section 6.1. The algorithm has the following time bound:

Proposition 8 The time complexity of algorithm 1 is O(CTmQ), where m = max{|Jct||c ∈
C, t ∈ T }.

Proof The algorithm runs T iterations and we will bound each iteration. Each
iteration can be subdivided into C iterations – one for each category. Hence, we
limit our attention to finding the complexity of an iteration for a single period

Solving the Selective Multi-Category Parallel-Servicing Problem 23

and a single category, and afterwards this complexity has to be multiplied by CT .
Consequently, we have to show that each such iteration has complexity O(mQ).

The largest number of unique state sets which can be generated for any cate-
gory in any period is

Q∑
q=0

(
m

q

)

where m = max{|Jct||c ∈ C, t ∈ T }. Now note that (mq) ≤ mq

q! , and we therefore
use the upper bound on the binomial coefficient instead of the binomial coefficient
itself.

Generating the O-sets is bounded by O(mQ), which can be realized as follows:
The number of state sets of the same category from the previous iteration is

Q∑
q=0

mq

q!

and from each of these we may generate 2q new O-sets, of which many may be
duplicates. Keeping these in a list or a hashtable makes it possible to replace
duplicates in O(q) time, where the check itself is constant, but the length of the
state set is q. It costs q to output the individual sets. Let ∆ be the constant in the

duplicate check, and then the generation of the O-sets takes
∑Q
q=0

∆q22qmq

q! . Note

that q22q

q! ≤ 12 for any q and it is therefore constantly bounded. The leading term

of this expression is mQ. Therefore, generating the O-sets is bounded by O(mQ).

Generating the I-sets has a complexity equivalent to identifying all paths of
length at most Q in a graph, which can be done in

∑Q
q=0

mq

q! time and each of

these sets have to be returned, in total requiring
∑Q
q=0

qmq

q! iterations. As q
q! ≤ 1

for any q we have that generating all I-sets is bounded by O(mQ).

We can merge O-sets and I-sets as long as the total number of elements do not
exceed the capacity Q and they do not have any elements in common. An upper
bound on the number of possible merges is

Q∑
q=0

Q−q∑
p=0

(
m

q

)(
m

p

)
≤

Q∑
q=0

Q−q∑
p=0

1

q!p!
mq+p (22)

The leading terms of this expression are those where p + q = Q and this leading
term is present Q + 1 times in the sum above. Furthermore we have that p!q! ≥
bQ/2c!dQ/2e! for q+p = Q. Each of these generated sets must returned and checked
for duplicates, which can be done in Q2 time per set. We have that

Q2(Q+ 1)

bQ/2c!dQ/2e! ≤ 9 (23)

for any Q, and therefore the merge is upper bounded by O(mQ).

Each of the three operations above is repeated once in each of the CT iterations.
The algorithm is therefore bounded by O(CTmQ).

24 Troels Martin Range et al.

7 Computational Experiments

It is of interest to find out in which cases the dynamic programming procedure
performs well and in which cases the mathematical model performs better. To this
end we have constructed a set of test instances. These are described in Section 7.1,
and the results are discussed in Section 7.2.

The algorithms have been implemented in C++ and compiled with the MinGW
4.5.2 compiler. The tests have been run on a Windows 7 based laptop equipped
with an Intel i7 cpu and 8Gb RAM. The MILP model described in Section 2.1 has
been implemented using the COIN-OR interface to the CPLEX 12.2 32bit solver.
When solving the MILP model we use the default settings for CPLEX. Note that
using the default setting for CPLEX allows CPLEX to use more than one thread
when solving the MILP model – in our case it can use up to eight parallel threads.

7.1 Test instances

In order to test the described methods a set of 45 random instances has been
constructed. The intention with these tests is to show how the methods behave
when we change the number of categories, the size of the penalties πs and πe, the
maximal length of a job, and finally the capacity of the server.

Each of the instances has 500 jobs and a planning horizon of 25 periods. The
duration of each job is a uniformly distributed integer between 1 and a maxi-
mal length of either 5, 10, or 20 periods. All jobs have job-period penalties, pjt,
uniformly distributed in the interval [−30.0, 10.0]. This allows for a job to have
a possibly positive penalty, while making most jobs profitable. The instances are
divided into five subsets with three instances each. These subsets have a different
number of categories. The number of categories is 1, 2, 4, 8, and 16. Within each
subset three instances are constructed. One where the value of the penalties is low,
πs = πe = 5.0; one where the value of the penalties is medium, πs = πe = 25.0;
and one where the value of the penalties is high, πs = πe = 100.0. This makes it
increasingly undesirable to start a job late as well as end a job prematurely. In
order to test the problem for different server capacities we duplicate the 45 sets,
giving 90 sets, where the 45 first have a server capacity of two and the second
45 have a server capacity of four. We omit the trivial case having a server capac-
ity of one as this is solved directly by the lower bounding approach described in
Section 4.3.

7.2 Results

We have solved each of the instances described in Section 7.1 with a server capacity
of two and of four. In this section we will discuss the effects of the preprocessing,
as well as compare the methods described previously.

In Table 1 the effects of the preprocessing are given. Column I is the instance
number, C is the number of categories for the instance, ML is the maximal length
of a job, and T indicates whether the values of πs and πe are low (L), medium
(M), or high (H). The remainder of the table is divided into two parts; one part
for Q = 2 and another part for Q = 4. Each of these has the size of the job set |J |

Solving the Selective Multi-Category Parallel-Servicing Problem 25

Q = 2 Q = 4
I C ML T |J | avg. EA avg. |Rs

jt| avg. |Re
jt| |J | avg. EA avg. |Rs

jt| avg. |Re
jt|

1 1 5 L 106 1.65 3.36 3.08 161 1.71 5.51 5.15
2 1 5 M 144 2.33 3.52 2.19 219 2.49 5.53 3.70
3 1 5 H 148 4.20 3.73 1.94 229 4.19 6.26 3.35
4 1 10 L 109 2.80 6.11 5.85 170 3.06 9.88 9.50
5 1 10 M 152 3.32 5.62 4.07 218 3.49 8.40 6.17
6 1 10 H 176 7.48 6.01 2.50 250 7.49 8.71 3.94
7 1 20 L 124 4.85 10.70 10.52 186 5.00 15.86 15.57
8 1 20 M 158 5.16 8.34 6.99 234 5.80 13.21 11.25
9 1 20 H 171 9.27 6.66 3.35 243 10.22 9.98 5.12

10 2 5 L 165 1.79 2.79 2.62 236 1.89 4.17 3.93
11 2 5 M 215 2.54 2.76 1.87 303 2.84 4.24 2.90
12 2 5 H 207 4.05 2.66 1.42 310 4.34 4.43 2.50
13 2 10 L 170 3.28 5.01 4.85 251 3.38 7.77 7.58
14 2 10 M 213 3.54 3.66 2.72 303 4.17 6.08 4.72
15 2 10 H 244 7.55 4.27 1.96 324 8.06 5.93 2.87
16 2 20 L 170 4.68 6.61 6.51 247 4.83 9.84 9.68
17 2 20 M 218 5.56 6.41 5.45 300 6.12 9.20 7.90
18 2 20 H 231 9.65 4.36 2.10 309 10.70 6.26 3.23
19 4 5 L 235 1.83 2.18 2.06 321 1.98 3.09 2.94
20 4 5 M 288 2.96 2.09 1.49 365 3.25 2.77 2.06
21 4 5 H 273 4.12 1.83 1.05 371 4.40 2.68 1.66
22 4 10 L 248 2.87 3.53 3.39 343 3.09 5.09 4.90
23 4 10 M 301 4.25 3.03 2.33 370 4.56 3.93 3.03
24 4 10 H 300 7.87 2.62 1.27 384 8.53 3.72 1.98
25 4 20 L 281 5.10 5.79 5.70 355 5.16 7.41 7.31
26 4 20 M 295 5.87 3.82 3.20 358 6.20 4.74 4.01
27 4 20 H 321 10.69 3.25 1.63 396 11.76 4.27 2.32
28 8 5 L 319 1.92 1.30 1.28 412 2.10 1.94 1.91
29 8 5 M 334 3.20 1.14 0.83 393 3.40 1.49 1.16
30 8 5 H 348 4.77 1.20 0.75 417 5.04 1.62 1.08
31 8 10 L 336 3.16 2.42 2.34 412 3.24 3.11 3.03
32 8 10 M 359 4.51 1.87 1.46 412 4.81 2.33 1.86
33 8 10 H 360 8.29 1.63 0.83 430 8.78 2.10 1.20
34 8 20 L 328 5.55 3.71 3.66 390 5.49 4.41 4.37
35 8 20 M 352 6.17 2.30 1.97 412 6.43 2.73 2.38
36 8 20 H 371 11.70 2.01 1.10 419 12.57 2.44 1.43
37 16 5 L 394 2.06 0.93 0.89 449 2.09 1.15 1.10
38 16 5 M 397 3.47 0.66 0.50 433 3.63 0.81 0.64
39 16 5 H 408 4.73 0.71 0.48 440 4.88 0.84 0.59
40 16 10 L 405 3.46 1.49 1.45 453 3.41 1.72 1.69
41 16 10 M 408 4.50 1.08 0.84 446 4.76 1.24 1.00
42 16 10 H 427 8.66 1.05 0.57 466 9.05 1.26 0.75
43 16 20 L 404 5.05 2.10 2.08 446 4.92 2.32 2.29
44 16 20 M 405 6.76 1.57 1.39 453 7.10 1.79 1.60
45 16 20 H 414 12.99 1.22 0.72 460 13.73 1.49 0.94

Table 1 Effects of the preprocessing. All numbers are rounded to two decimal points.

after job elimination of full jobs. Avg. EA is the average number of arcs eliminated
in the single job graph for the jobs remaining after the elimination of full jobs.
Finally, avg. |Rsjt| and avg. |Rejt| give, respectively, the average size of the number
of jobs which are better to start than a given job and the average size of the
number of jobs in a specific period which are better to finish than a given job in
a specific period.

26 Troels Martin Range et al.

In all cases, the number of jobs is reduced by the preprocessing; however, this
reduction is most significant in the single category case. This is not surprising as
the elimination based on Proposition 3 becomes weaker as the number of categories
increases, while the number of jobs remains the same. It is evident that the number
of eliminated arcs in the single job graph increases when we increase the value of
πs and πe. This is mainly due to the shortest path-based elimination as it becomes
more likely that the arcs having the larger penalties will never be on a negative
penalty path. The average sizes ofRsjt andRejt tend to decrease when the number of
categories increases and when the penalties get larger. This is no surprise either; the
average number of jobs in each category will decrease as the number of categories
increases (and the number of jobs does not increase by the same magnitude).
Hence, there are simply fewer jobs which can be better than a given job in the
same category. When increasing the maximal length (and implicitly the average
length) of the jobs, we also increase the number of job-period combinations. As a
consequence of this, we observe that when increasing the maximal length of a job,
the average number of arcs eliminated increases. For the same reason, we observe
an increase in both avg. |Rsjt| and avg. |Rejt| when we increase the maximal length
of a job.

We have solved each of the aforementioned 45 instances with a server capacity
of 2 and a server capacity of 4. The results of these tests can be seen in Tables 2
and 3, respectively. Each row corresponds to an instance. The first four columns
describe instance characteristics, where I is the instance number, C is the number
of categories, ML is the maximal length of a job, and T is the type of πs and
πe with low (L), medium (M), and high (H). The following three columns show
the calculated bounds. LB and UB are the shortest path based lower and upper
bounds described in Section 4.3, whereas LP is the lower bound derived using the
LP relaxation of the MILP model described in Section 2.1. We have not included
computation times for these as they are small. Next, the computation time TIP (s)
in seconds for the integer model using CPLEX is given along with the computation
time TDYN (s) in seconds for the dynamic programming. If the algorithm failed
to solve the instance due to it running out of memory, this is indicated by “-”.
Finally, the optimal value P ∗ found by the exact approaches is stated.

The shortest path based lower bound, LB, is in all tests dominated by the LP
lower bound. This is not surprising as the LP bound takes the different categories
into account while not allowing the solution to use more than one job in each
period. In contrast, the shortest path based LB just duplicates the jobs in each
period and selects these in the most favorable way. Compared with the LP lower
bound we also note that the shortest path based lower bound, LB, deteriorates as
the number of categories increases and the server capacity increases. However, for
C = 1 the LP bound is tight for all instances.

The shortest path upper bound is close to the optimal solution when the num-
ber of categories is low; however, when the number of categories increases, the
distance to the optimal solution also increases. This effect seems to be magni-
fied for the high-penalty case compared to the low-penalty case. Furthermore, the
distance from the optimal solution also increases when the capacity of the server
increases.

For instances with the same server capacity and number of categories it can be
observed that increasing the maximal length of a job tends to increase the solution
times for both the MILP model and the dynamic programming. When we increase

Solving the Selective Multi-Category Parallel-Servicing Problem 27

I C ML T LB LP UB TIP (s) TDyn(s) P ∗

1 1 5 L -1336.05 -1293.54 -1293.54 0.36 0.00 -1293.54
2 1 5 M -1213.38 -1179.30 -1179.30 0.30 0.00 -1179.30
3 1 5 H -1281.11 -1209.97 -1209.97 0.28 0.00 -1209.97
4 1 10 L -1275.19 -1256.70 -1252.69 0.73 0.13 -1256.70
5 1 10 M -1161.61 -1116.19 -1116.19 2.03 0.16 -1116.19
6 1 10 H -1098.53 -1071.15 -1071.15 0.75 0.12 -1071.15
7 1 20 L -1295.80 -1269.11 -1269.04 1.28 0.20 -1269.11
8 1 20 M -1047.39 -999.56 -999.56 1.26 0.28 -999.56
9 1 20 H -1031.48 -981.70 -978.56 1.37 0.14 -981.70

10 2 5 L -1318.39 -1268.07 -1254.15 0.45 0.02 -1267.01
11 2 5 M -1224.91 -1111.06 -1029.97 1.19 0.02 -1097.60
12 2 5 H -1291.8 -1176.57 -1141.05 1.03 0.00 -1170.23
13 2 10 L -1265.25 -1223.47 -1212.47 1.40 0.20 -1221.26
14 2 10 M -1188.23 -1075.71 -1025.48 1.65 0.28 -1072.24
15 2 10 H -1089.84 -995.22 -827.02 7.75 0.20 -964.79
16 2 20 L -1326.92 -1280.43 -1272.26 1.69 0.23 -1279.74
17 2 20 M -1120.53 -1022.48 -945.38 3.32 0.34 -1014.92
18 2 20 H -1062.61 -952.80 -815.15 12.61 0.09 -917.72
19 4 5 L -1288.73 -1201.82 -1166.75 0.64 0.02 -1196.31
20 4 5 M -1202.43 -1046.08 -994.39 2.73 0.02 -1025.05
21 4 5 H -1295.59 -1124.26 -947.28 2.11 0.02 -1109.04
22 4 10 L -1298.52 -1229.58 -1217.05 1.65 0.52 -1225.11
23 4 10 M -1142.38 -1022.72 -965.73 1.79 0.76 -1017.28
24 4 10 H -1083.31 -961.20 -761.80 14.57 0.50 -922.50
25 4 20 L -1271.30 -1204.72 -1190.11 3.35 0.30 -1200.76
26 4 20 M -1183.40 -1013.14 -922.51 38.91 0.25 -953.70
27 4 20 H -1080.37 -919.79 -776.18 24.29 0.11 -879.51
28 8 5 L -1316.05 -1164.77 -1127.68 0.50 0.02 -1162.92
29 8 5 M -1238.01 -981.921 -769.228 10.19 0.02 -923.33
30 8 5 H -1211.09 -1003.05 -796.448 4.43 0.02 -967.72
31 8 10 L -1286.16 -1183.48 -1117.99 2.43 0.79 -1179.11
32 8 10 M -1176.10 -968.54 -857.47 22.46 0.67 -912.49
33 8 10 H -1166.03 -918.48 -728.78 38.80 1.09 -846.50
34 8 20 L -1292.54 -1191.27 -1165.13 8.16 0.33 -1186.66
35 8 20 M -1019.33 -902.91 -743.30 106.04 0.23 -843.76
36 8 20 H -1043.97 -888.29 -730.78 40.90 0.09 -842.62
37 16 5 L -1354.35 -1170.03 -1048.91 0.87 0.02 -1161.40
38 16 5 M -1233.58 -920.685 -744.078 4.52 0.02 -875.16
39 16 5 H -1285.42 -943.092 -741.019 8.88 0.02 -864.187
40 16 10 L -1288.79 -1133.97 -1038.62 1.72 2.27 -1130.70
41 16 10 M -1167.01 -909.05 -710.57 51.88 2.27 -846.24
42 16 10 H -1156.75 -945.88 -689.68 25.21 1.49 -881.12
43 16 20 L -1278.54 -1159.26 -1077.12 3.93 0.17 -1152.91
44 16 20 M -1074.09 -855.30 -681.24 149.01 0.17 -796.021
45 16 20 H -1006.56 -810.14 -672.54 74.19 0.09 -731.56

Table 2 Results with server capacity Q = 2. All numbers are rounded to two decimal points.

the maximal length, the average length of a job is implicitly increased, and thereby
the number of job-period combinations is also increased.

For the MILP the computation time increases as the number of categories
increases. The main reason for this is that the integrality gap increases when we
increase the number of categories. On the other hand, the computation time of the
dynamic programming approach decreases as the number of categories increases.
This is due to the decreasing size of Ft when we increase the number of categories

28 Troels Martin Range et al.

I C ML T LB LP UB TIP (s) TDyn(s) P ∗

1 1 5 L -2672.11 -2479.43 -2479.03 0.41 0.47 -2479.43
2 1 5 M -2426.77 -2170.75 -2168.07 0.46 0.59 -2170.75
3 1 5 H -2562.21 -2236.46 -2236.12 0.33 0.29 -2236.46
4 1 10 L -2550.38 -2430.54 -2419.58 0.75 77.99 -2430.54
5 1 10 M -2323.22 -2084.88 -2081.68 0.76 109.98 -2084.88
6 1 10 H -2197.06 -2045.30 -2042.58 0.79 61.24 -2045.30
7 1 20 L -2591.61 -2464.77 -2457.85 1.92 15299.3 -2464.77
8 1 20 M -2094.78 -1879.55 -1877.27 1.51 - -1879.55
9 1 20 H -2062.97 -1828.76 -1822.10 1.62 - -1828.76

10 2 5 L -2636.78 -2395.61 -2319.91 0.61 0.25 -2394.02
11 2 5 M -2449.82 -1977.29 -1659.02 2.89 0.52 -1940.47
12 2 5 H -2583.59 -2067.46 -1831.33 3.48 0.09 -2027.32
13 2 10 L -2530.50 -2322.89 -2286.64 2.15 23.46 -2318.32
14 2 10 M -2376.47 -1924.44 -1696.54 10.98 46.75 -1873.42
15 2 10 H -2179.69 -1798.49 -1116.61 7.26 13.18 -1774.00
16 2 20 L -2653.84 -2438.41 -2369.51 2.29 4044.56 -2436.21
17 2 20 M -2241.06 -1885.85 -1568.38 7.30 7001.23 -1879.24
18 2 20 H -2125.21 -1763.26 -1096.53 12.15 656.79 -1730.41
19 4 5 L -2577.47 -2134.73 -1950.86 2.20 0.20 -2121.42
20 4 5 M -2404.86 -1818.82 -1519.14 7.35 0.25 -1753.96
21 4 5 H -2591.17 -1902.84 -1219.13 4.54 0.03 -1842.13
22 4 10 L -2597.03 -2246.75 -2144.46 2.36 8.03 -2238.65
23 4 10 M -2284.76 -1821.21 -1612.34 12.60 9.51 -1776.94
24 4 10 H -2166.62 -1689.65 -900.02 20.58 2.17 -1607.12
25 4 20 L -2542.59 -2263.99 -2151.64 4.82 477.13 -2256.15
26 4 20 M -2366.79 -1749.00 -1382.27 70.41 511.98 -1661.08
27 4 20 H -2160.74 -1637.98 -912.33 66.11 165.66 -1531.53
28 8 5 L -2632.09 -1929.14 -1652.96 0.61 0.09 -1927.82
29 8 5 M -2476.02 -1576.15 -878.69 10.17 0.08 -1481.39
30 8 5 H -2422.19 -1555.41 -908.64 11.76 0.03 -1468.49
31 8 10 L -2572.33 -2133.97 -1825.97 4.81 3.29 -2117.05
32 8 10 M -2352.20 -1566.30 -1070.29 46.26 3.17 -1487.36
33 8 10 H -2332.06 -1528.51 -760.44 24.97 1.37 -1444.94
34 8 20 L -2585.09 -2188.53 -2051.00 8.64 53.76 -2180.31
35 8 20 M -2038.65 -1568.29 -1038.46 126.92 32.20 -1509.13
36 8 20 H -2087.94 -1515.93 -1002.75 20.33 13.70 -1471.29
37 16 5 L -2708.7 -1749.72 -1303.99 0.81 0.08 -1744.09
38 16 5 M -2467.16 -1331.14 -768.48 3.07 0.06 -1281.08
39 16 5 H -2570.84 -1263.93 -747.06 5.24 0.03 -1185.72
40 16 10 L -2334.01 -1459.35 -789.21 33.35 2.42 -1379.96
41 16 10 M -2577.58 -1878.19 -1421.46 4.82 2.78 -1860.14
42 16 10 H -2313.50 -1420.66 -696.68 57.38 3.32 -1278.19
43 16 20 L -2557.07 -2050.26 -1715.96 4.12 5.04 -2044.14
44 16 20 M -2148.18 -1399.14 -787.36 211.21 6.65 -1324.29
45 16 20 H -2013.13 -1375.13 -672.53 53.01 3.65 -1262.35

Table 3 Results with server capacity Q = 4. All numbers are rounded to two decimal points.

and keep the number of jobs fixed. It is interesting to see that the dynamic pro-
gramming approach has the opposite effect in computation time compared to the
MILP when we increase the number of categories, and this effect is profound in
both directions. For Q = 4, C = 1, and a maximal length no larger than ten, the
MILP model is solved around a hundred times faster than the dynamic program-
ming, whereas for Q = 4 and C = 16 the dynamic programming is solved up to
30 times faster than the MILP model. It should be observed that the dynamic

Solving the Selective Multi-Category Parallel-Servicing Problem 29

programming solver has severe difficulties in solving the instances with a server
capacity of four, only one category, and a maximal job length of 20. In these cases
the number of states generated explodes, which leads to either long solution times
or running out of memory.

The M-cases tend to take slightly longer than the L-cases and the H-cases.
We believe that the reason for this is twofold. When the penalties πs and πe

decrease, Dominance criterion 2 becomes stronger because the part depending on
these two penalties decreases, thereby making it easier to dominate a state. On the
other hand, when the penalties increase, the preprocessing based on Propositions
1 and 2 becomes stronger removing more arcs from the single job graphs. This will
result in significantly fewer constructed states. These two factors each work to the
advantage of the algorithms in the extreme cases, whereas they are not significant
in the medium case.

8 Conclusion

In this paper we have introduced a new scheduling problem called the Selective
Multi-Category Parallel-Servicing Problem. The problem selects (partial) jobs with
predetermined processing times for processing on a server capable of executing jobs
of the same category in parallel.

The problem can be solved to optimality either by the mixed integer linear
programming model presented or by the dynamic programming algorithm con-
structed. We show that the time complexity for the dynamic programming is
polynomial when the capacity of the server is fixed. Furthermore, we have intro-
duced shortest path based methods for identifying lower and upper bounds for the
problem. Finally, we introduce several methods for preprocessing the problem.

Our computational study shows that the dynamic programming approach is
faster than solving the mixed integer linear programming model when either the
capacity of the server is low or the number of categories is high, whereas the
contrary is true in the other cases. Furthermore, we demonstrate that the prepro-
cessing significantly reduces the size of the instances.

The problem might be generalized by allowing subsets of categories to be pro-
cessed simultaneously. This could be interesting if the jobs had more than one
characteristic which make them incompatible. We have left this for future research,
however.

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows - Theory, Algorithms,
and Applications. Prentice Hall.

Anbil, R., Barnhart, C., Hatay, L., Johnson, E. L., and Ramakrishnan, V. S. (1993). Crew-
pairing optimization at american airlines decision technilogies. In Ciriani, T. A. and Leach-
man, R. C., editors, Optimization in Industry, volume 1, chapter 2, pages 31 – 36. John
Wiley & Sons.

Andersson, E., Housos, E., Kohl, N., and Wedelin, D. (1998). Crew pairing optimization. In
OR in Airline Industry. Kluwer Academic Publishers.

Aráoz, J., Fernández, E., and Zoltan, C. (2006). Privatized rural postman problems. Computers
& OR, 33(12):3432–3449.

Bang-Jensen, J. and Gutin, G. (2001). Digraphs: Theory, Algorithms and Applications.
Springer Monographs in Mathematics. Springer.

30 Troels Martin Range et al.

Black, D., Eglese, R., and Wøhlk, S. (2013). The time-dependent prize-collecting arc routing
problem. Computers and Operations Research, 40:526 – 535.

Chen, Z.-L. and Powell, W. B. (1999). Solving parallel machine scheduling problems by column
generation. INFORMS Journal on Computing, 11(1):78.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms.
MIT Press.

Demeester, P., Souffriau, W., Causmaecker, P. D., and Berghe, G. V. (2010). A hybrid tabu
search algorithm for automatically assigning patients to beds. Artificial Intelligence in
Medicine, 48:61–70.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342.

Drexl, M. (2012). Rich vehicle routing in theory and practice. Logistics Research, 5:47–63.
Feillet, D., Dejax, P., and Gendreau, M. (2005). Travelling salesman problem with profits.

Transportation Science, 39(2):188 – 205.
Garey, M. R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of

Operations Research, 1(2):117 – 129.
Gilmore, P. and Gomory, R. (1961). A linear programming approach to the cutting-stock

problem. Operations Research, 9(6):849 – 859.
Haouri, M., Layeb, S. B., and Sherali, H. (2013). Tight compact models and comparative anal-

ysis for the prize collecting steiner tree problem. Discrete Applied Applied Mathematics,
161:618 – 632.

Irnich, S. (2008). Resource extension functions: Properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints, chap-
ter 2, pages 33–66. Springer: New York.

Pisinger, D. (1995). Algorithms for Knapsack Problems. PhD thesis, Department of Computer
Science, Copenhagen University.

Range, T. M., Lusby, R. M., and Larsen, J. (2013). A column generation approach for solving
the patient admission scheduling problem. Discussion Papers on Business and Economics
1/2013, Department of Business and Economics, University of Southern Denmark.

Smith-Miles, K. and Lopes, L. (2012). Measuring instance difficulty for combinatorial opti-
mization problems. Computers and Operations Research, 39:875 – 889.

Suurballe, J. W. and Tarjan, R. E. (1984). A quick method for finding shortest pairs of disjoint
paths. Networks, 14:325–336.

Tholey, T. (2005). Finding Disjoint Paths on Directed Acyclic Graphs, volume 3787 of Lecture
Notes in Computer Science, pages 319–330. Springer.

