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Abstract. User-configurable robotics allows users to easily configure robotic 

systems to perform task-fulfilling behaviors as desired by the users. With a user 

configurable robotic system, the user can easily modify the physical and func-

tional aspect in terms of hardware and software components of a robotic sys-

tem, and by making such modifications the user becomes an integral part in the 

creation of an intelligence response to the challenges posed in a given environ-

ment. I.e. the overall intelligent response in the environment becomes the inte-

gration of the user’s construction and creation with the semi-autonomous com-

ponents of the user-configurable robotic system in interaction with the given 

environment. Components constituting such a user-configurable robotic system 

can be characterized as modules in a modular robotic system. Several factors in 

the definition and implementation of these modules have consequences for the 

user-configurability of the system. These factors include the modules’ granular-

ity, autonomy, connectivity, affordance, transparency, and interaction. 

Keywords: Human-robot interaction, reconfigurable robots, educational robots, 

distributed intelligence, modular robotics. 

1 Introduction 

Robotics and artificial intelligence (AI) research has strived to create fully autono-

mous systems, which can exhibit an intelligent response in the environment. The arti-

ficial intelligence research aimed at creating systems, which are able to sense and act, 

to learn and to think, and figure out the right organization of activities at these differ-

ent levels. Much work in classical artificial intelligence research built upon the under-

standing that there would be a level where the body could be abstracted away, and 

one could investigate the thinking in isolation from the body (e.g. in symbol pro-

cessing systems, expert systems, etc.). Even though robotic research engineered phys-

ical robotic systems since the middle of last century, it was not until the end of the 

1980’s and the 1990’s that robotics became a more widespread tool to study thinking 

as embodied.  

A well-known tool which facilitates the study of the intelligence as integration be-

tween the body and the brain is the LEGO Mindstorms. The LEGO Mindstorms pro-

mailto:hhl@playware.dtu.dk


vides a tool, which allows users to easily build a robot with sensors and actuators, to 

build bodies with LEGO pieces and to build brains with simple software, e.g. a GUI. 

As observed in [1], with LEGO Mindstorms the interaction is split into distinct pro-

cesses of building, understanding syntax & semantics, programming, downloading to 

robot, testing/debugging, playing.  

This split is partly due to LEGO Mindstorms being constituted by a central proces-

sor to which sensors, actuators, and LEGO bricks can be attached, and partly due to 

the programming paradigm of performing the programming on a host computer (i.e. 

not situated in the environment of the robot). Hence, LEGO Mindstorms is based 

upon a centralized processing approach with the central processor being programmed 

via a host computer.   

If, on the other hand, we turn to a more distributed processing approach based on a 

collection of self-contained modules each with their own processing and physical 

expression, it is possible to work towards avoiding or diminishing this split and create 

direct action in each interaction by the user. This is done by the creation of physical 

and functional modules which allow exploration of interactive, distributed parallel 

processing in a physical form. Here, action is manifested as soon as modules are ma-

nipulated, such as when modules in the form of building blocks are being put togeth-

er.  

In such a distributed processing approach, processing is distributed to a number of 

modules and the overall processing emerges from the processing of the individual 

modules and their interaction. In a similar way, the physicality is distributed to a 

number of modules, and the overall physical expression is a function of the individual 

physical modules and their interaction. Put together, this can be expressed in terms of 

a modular robotic system: In a modular robotic system, each module has a physical 

and functional expression, and the overall robotic system emerges from the interac-

tion between the modules. 

Modular robotic systems can be used to create self-reconfigurable modular robots 

[2], which autonomously change their physical shape. In the self-reconfigurable mod-

ular robots, the modules are able to autonomously move around attaching and detach-

ing from each other, moving to locations so that the overall shape of the robot (the 

ensemble of modules) becomes appropriate for the task at hand.  

However, instead of focusing exclusively on the creation of fully autonomous and 

self-contained systems to provide an intelligent behavior, there is an attractive possi-

bility of focusing on the creation of systems that allow human-robot interaction to 

create an intelligent response. The concept of user-configurable modular robotic sys-

tems aims at facilitating such generation of intelligent response in the environment 

through the human-robot interaction. 

2 User-configurable Modular Robotics 

In a user-configurable modular robotic system, the user constructs with modules 

(i.e. technological building blocks) to create a physical system and the functionality of 

this system. By making changes to the physical shape of the entity, the user can 



change the functionality of the system. This happens simply by attaching or detaching 

modules and moving modules to different positions. Hence, in such a case, the user is 

making the physical configuration in a hands-on manner, and the user does not need 

to do traditional programming to change the functionality of the system. As soon as 

the user is manipulating with the modules there is a reaction in the environment, i.e. 

there is action in the interaction, and the interaction is not split into distinct processes 

as was the case e.g. with LEGO Mindstorms interaction. 

Therefore, in some cases, it is believed that user-configurable modular robotics 

may lead any user to develop solutions in a simple and very flexible manner. Further, 

the modularity and distributed processing means that the produced solutions are ro-

bust to failure of individual modules through graceful degradation. If one module fails 

then the rest will still be working, contrary to most traditional technological solutions 

with a central processing that may make everything fail if one component fails. Also, 

since there is no central processing and large infrastructure, but the system is com-

posed of a set of individual modules, these may potentially be easily transported 

around and set up anywhere. 

Hence, the overall intelligent response in the environment becomes the integration 

of the user’s construction and creation with the components (modules) of the user-

configurable modular robotic system in interaction with the given environment. We 

formulate this concept as the playware ABC: By building bodies and brains with the 

user-configurable modular system, the user can construct, combine and create to 

make solutions for anybody, anywhere, anytime. Several factors in the definition and 

implementation of the modules have consequences for the user-configurability of the 

system. These factors can be viewed as design issues and include the modules’ granu-

larity, automation/autonomy, connectivity, affordance, and interaction. To shed light 

on these design issues, we have researched user-configurable modular robotic system 

in a wide range of designs, implementations, and applications, some of which will be 

reported below. 

2.1 Granularity 

Granularity of the modules is a crucial issue to consider in the design of modules 

for a user-configurable modular robotic system, both in terms of physical and func-

tional granularity. With coarse-grained modules, the user will be working on a high 

abstraction level with only a few modules needed to obtain the intelligent response, 

i.e. to obtain the right physical and functional response. Hence, the cognitive load on 

the user for creating the intelligent response is considered to be low in a user-

configurable modular robotic system with coarse-grained modules. On the other hand, 

the versatility may be low in a coarse-grained modular system not allowing the user to 

create subtle physical and functional structures lower than the graining size of the 

individual modules. I.e. if all modules are 1m
3
 (e.g. like the MusicTiles magic cubes 

Fig. 1(k)), then it is difficult to make variations in the centimeter-scale of the physical 

structure – and a similar argument goes for the functional variations.   
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Fig. 1. Examples of modular systems with user interaction: (a) ATRON self-reconfigurable 

modular robot, (b) I-Blocks in LEGO Duplo, (c) Light&Sound Cylinders and Rolling Pins for 

elderly dementia patient therapy in multi-sensory room, (d) modular interactive tiles for reha-

bilitation of stroke and cardiac patients, (e) modular interactive tiles for rehabilitation of men-

tally and physically handicapped children in Africa, (f) Fable user-configurable modular robot, 

(g) Fatherboard modular robotic wearable, (h) modular interactive tiles for soccer and play-

grounds, (i) Music I-Blocks, (j) MusicTiles magic matchboxes, (k) MusicTiles magic cubes.   

 

With fine-grained modules, the user will be working on a lower abstraction level 

with more modules needed to obtain the intelligent response, i.e. to obtain the right 



physical and functional response. The cognitive load on the user for creating the intel-

ligent response can be considered to be higher in a user-configurable modular robotic 

system with fine-grained modules, since the user will have to combine more modules 

to obtain the same response as with coarse-grained modules. For instance, the learn-

ing curve for being able to create the desired intelligent system with the fine-grained 

modules may be steeper. Yet, the versatility may be higher in a fine-grained modular 

system with which the user may be able to create subtle physical and functional struc-

tures not possible with coarse-grained modules (e.g. with centimeter-scale modules it 

is possible to construct centimeter-scale variations).  

2.2 Homogenous vs. heterogeneous modules 

When designing modules, it is possible to make them as homogenous modules (all 

modules are similar) or heterogeneous modules (modules differ from one another). 

There also exists the possibility of making physical homogenous but functional heter-

ogeneous modules, though some indication of the heterogeneity of function seems 

necessary for the user, e.g. making the modules in different colors. The Fable modular 

robotic system (Fig. 1(f)) is an example of a user-configurable modular robotic sys-

tem based on heterogeneous modules, whereas the ATRON modular robotic system 

(Fig. 1(a)) is based on homogeneous modules. In the case of Fable, the heterogeneous 

chain-based modular robotic system consists of various modules, such as different 

types of joint, branching and termination modules [3]. Joint modules are actuated 

robotic modules used to enable locomotion and interaction with the environment. 

Branching modules connect several modules together in tree-like configurations. 

Termination modules may add structure, a visual expression, additional sensors, or 

actuators (e.g. grippers or wheels). Similar, the modular robotic wearable exemplified 

with the Fatherboard (Fig. 1(g)) is also a heterogeneous system with modules of dif-

ferent functions such as a buzz, a recorded sound, a voice, a red light, a blue light, etc. 

[4]. 

2.3 Connectivity 

Further, it is important to design which connectivity is desired and advantageous 

between modules. The connectivity may vary from loose to tight, from no connection 

whatsoever to modules all connected, and from chain-based connection to lattice-

based connection. Interestingly, the philosophical consideration of intelligence in light 

of user-configurable modular robotic systems opens up for research into modular 

systems with no physical connection but only functional connection. The MusicTiles 

magic cubes (Fig. 1(j)-(k)) present such an example with physical separate modules 

each representing an instrument, and rotation giving the musical variation of the par-

ticular instrument, while together all modules gives the whole music tune. There is no 

physical attachment between the modules in this user-configurable modular robotic 

system. On the contrary, in the I-Blocks music cubes (Fig. 1(i)), musical expression of 

the given module (instrument) is based upon the attachment of the module to another 

module [5, 6]. As another example, in the case of user-configurable modular devices 



for a multi-sensory room for therapy of elderly dementia patients (Fig. 1(c)), 

Sound&Light cubes changed the ambient sound and light based on physical stacking 

(attaching) the modules together, whereas Rolling Pins changes the responses based 

upon pattern of interaction with physical separate Rolling Pins (two people rolling the 

separate pins in synchrony, rolling speed, etc.) [7]. 

2.4 Ease of construction 

In the case of physical connectivity, the connection mechanism may pose a chal-

lenge in both homogenous and heterogeneous modular robotic systems. Where the 

field of reconfigurable modular robotic systems has confronted this challenge in terms 

of the mechanical and electrical reliability, the mechanical and motion control optimi-

zation, etc., the field of user-configurable modular robotic systems needs to take the 

ease of construction, including attachment and detachment, into consideration. For 

instance, the Fable project (Fig. 1(f)) investigates connectors designed to allow rapid 

and solid attachment and detachment between modules with scalable connectors to 

allow modules of different sizes to be combined and designed to permit neighbor-to-

neighbor communication [3]. The modular interactive tiles use puzzle-shaped con-

nectors [8], while I-Blocks use the LEGO studs [9], I-Blocks music cubes use mag-

nets [5], and the modular robotic wearable uses simple clothes-buttons [4]. In all cas-

es, the connectors have been carefully researched and developed for the ease of con-

struction to allow anybody to easily build with the system.  

2.5 Interaction, affordance, and transparency 

As supplement to ease of construction, user-configurable modular robotic systems 

need to address interaction in general. Interaction can be of many forms, apart from 

attaching and detaching modules, it may be rotation of modules, walking, running and 

jumping on modules as with the modular interactive tiles (Fig. 1(d)-(e)) for prevention 

and rehabilitation [10, 11], rolling and stacking as with the modular robotic devices 

for a multi-sensory room (Fig. 1(c)) [7]. For creating such user interactions, it is im-

portant to design for the modules’ affordance [12, 13], e.g. such as a dice which in-

vites to roll (Fig. 1(k)), a tile which invites to step on it or hit it with a ball (Fig. 1(h)), 

a LEGO brick which invites to attach (Fig. 1(b)), a wearable module with clothes-

buttons which invites to fasten (Fig. 1(g)), rolling pins which invite to roll (Fig. 1(c)), 

etc. Considering the affordance of modules, it may be possible to communicate the 

functionality of modules to the user. Transparency of functionality of modules and 

ensembles of modules is indeed a major challenge in user-configurable modular ro-

botic system, and affordance in module design including material design, interaction 

design, connectivity, etc. must be considered to facilitate the ease of understanding of 

functionality for the user. Indeed, studying and understanding the affordance of mod-

ules and their interplay between each other and with human beings is one of the main 

defining subjects that distinguish user-configurable modular robotics from other kinds 

of modular robotics, including self-reconfigurable modular robotics. 



2.6 Automatic vs. autonomous modules 

The functionality of individual modules and the emergence of the overall intelli-

gent response based on the user’s interaction with the modules may be based on au-

tomatic modules or autonomous modules. In most of the known user-configurable 

modular robotic systems, the system is automatic with pre-programmed content of the 

modules e.g. as closed-loop control, cellular automata or behavior-based system [1, 9] 

or as a pre-produced sound piece [5]. Working towards autonomous modules, re-

search with modular interactive tiles (Fig. 1(d)) shows how these may be adaptive in 

their control, for instance using simple adaptive processing [14] to adapt to the user’s 

physical interactions, or using artificial neural network learning (Fig. 1(k)) [15]. 

There is an interesting research challenge in understanding how automation and au-

tonomy in modules and their coordination may potentially facilitate and guide user 

interaction in user-configurable modular robotic systems. 

3 Discussion and conclusion 

User-configurable modular robotic systems seem a promising concept to allow us-

ers to easily configure robotic systems to perform desired, task-fulfilling behaviors. 

With a well-designed user-configurable modular robotic system, the user can easily 

modify the physical and functional aspect in terms of hardware and software compo-

nents of a robotic system, and by making such modifications the user becomes an 

integral part in the creation of an intelligence response to the challenges posed in a 

given environment.  

As has been outlined, there are several factors in the definition and implementation 

of modules in a user-configurable modular robotic system, which have consequences 

for the user-configurability of the system. Some factors are known from modular 

robotics, but importantly the inclusion of the user poses serious design challenges 

based upon affordance, interaction, transparency, and ease of use, which are not ad-

dressed in traditional modular robotics research. Here, based on lessons learned from 

a few early examples of user-configurable modular robotic systems, these challenges 

have been outlined briefly. Future research work should address these challenges in a 

comprehensive and in-depth manner. Additionally, future research and application 

work should investigate how user-configurable modular robotic systems may contrib-

ute to the development of the playware ABC, i.e. investigate how building bodies and 

brains with the user-configurable modular system, the user may construct, combine 

and create to make solutions for anybody, anywhere, anytime. 
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